
Common Run-Time
Environment (CRE)
Programmer’s Guide
Abstract

This manual describes the Common Run-Time Environment (CRE), a set of run-time
services that enable system and application programmers to write mixed-language
programs. In the TNS environment, the TNS CRE run-time services support C,
COBOL, FORTRAN, and TAL language programs. In the native environment, the
native CRE run-time services support C, C++, COBOL, and pTAL language programs.

Product Version

CRE G09, CRE H01

Supported Release Version Updates (RVUs)

This manual supports G06.25 and all subsequent G-series RVUs and H06.03 and all
subsequent H-series RVUs until otherwise indicated by its replacement publication.

Part Number Published

528146-004 February 2006

Document History
Part Number Product Version Published

528146-003 CRE G09, CRE H01 July 2005

528146-004 CRE G09, CRE H01 February 2006

Common Run-Time
Environment (CRE)
Programmer’s Guide
Glossary Index Examples Figures Tables
What’s New in This Guide xiii
Guide Information xiii
New and Changed Information xiii

About This Guide xv
Audience xvi
Organization xvi
Additional Information xvii
Hypertext Links xix

1. Introducing the CRE
Mixed-Language Programming Without the CRE 1-1
What Is the CRE? 1-2
Selecting a Run-Time Environment 1-5
Advantages of Using the CRE 1-8

2. CRE Services
Comparing the CRE in the OSS and Guardian Environments 2-2

Standard Files 2-2
$RECEIVE 2-3
Memory Organization 2-3
Traps and Exceptions 2-3
Program Initialization 2-4
Program Termination 2-4
Error Reporting 2-5
Standard Functions 2-5
CRE Services 2-5
Process Pairs 2-6

Writing TAL Routines That Use the TNS CRE 2-6
Writing pTAL Routines That Use the Native CRE 2-8
Program Initialization 2-9

Designating a Main Routine 2-9
TNS CRE Initialization 2-10
 Hewlett-Packard Company—528146-004
i

Contents 2. CRE Services (continued)
2. CRE Services (continued)
Program Initialization (continued)

Native CRE Initialization 2-13
Initialization Errors 2-14
Initializing the TNS CRE From TAL 2-15
Initializing the Native CRE From pTAL 2-15

Program Termination 2-15
CRE_Terminator_ Procedure 2-16
Handling Error Conditions in CRE_Terminator_ 2-16

Sharing Standard Files 2-17
Sharing Standard Files Without Using the CRE 2-17
Sharing Standard Files Using the CRE 2-18
Using CRE Functions to Access the Standard Files 2-27
Determining When Standard Files Are Opened 2-28
Using Terminals and Process 2-28
Program Startup Message 2-28
Standard Input 2-29
Standard Output 2-31
Standard Log 2-33

Using $RECEIVE 2-34
$RECEIVE and Program Initialization 2-35
Messages Received From $RECEIVE 2-35
$RECEIVE and the Languages Supported by the CRE 2-35

Using a Spooler Collector 2-36
Memory Organization 2-37

TNS CRE Memory 2-37
Native CRE Memory 2-41

Using the Native Heap Managers 2-43
Undetected Logic Errors Can Exist in Code that Uses the Original Heap

Manager 2-44
Using the Overwrite Feature to Detect Logic Errors 2-44
Using the Programmatic Heap-Management Attributes 2-45

TNS CRE Traps and Exceptions 2-47
Errors in Program Logic 2-48
Hardware Traps 2-49
Catastrophic Errors 2-49
TNS CRE Trap Handler 2-50
Using ARMTRAP 2-51

Writing Messages to Standard Log 2-51
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
ii

Contents 2. CRE Services (continued)
2. CRE Services (continued)
Language-Specific Error Handling 2-52

C Routines 2-52
COBOL Routines 2-53
FORTRAN Routines 2-54
TAL Routines 2-54
pTAL Routines 2-54

Reporting CRE Errors in the OSS Environment 2-54
Native CRE Signals and Exceptions 2-55
Using CRE Services 2-56
Using Standard Functions 2-56

CRE and RTL Prefixes 2-57
Type Suffixes 2-59

Using Process Pairs 2-59
Requirements for Using Process Pairs 2-59
Language Support for Process Pairs 2-60
Using C Routines in Process Pairs 2-60
Results of Operations That Support Process Pairs 2-61

Using the Inspect, Native Inspect, and Visual Inspect Symbolic Debuggers With CRE
Programs 2-62
Selecting a Debugger 2-63
Locating the Corrupter of TNS CRE Pointers 2-64

Circumventing the CRE 2-66

3. Compiling and Binding Programs for the TNS CRE
Compiling Programs for the CRE 3-1

Specifying a Run-Time Environment 3-1
Sourcing-in CRELIB Function Declarations 3-4
CRE Data Blocks 3-5

Binding Programs for the CRE 3-5
Run-Time Libraries 3-7
Sample Binder Sessions 3-8
Bind-Time Validation for Mixed-Language Programs 3-8

4. Compiling and Linking Programs for the Native CRE
Using the Environment Variable for C and C++ Modules 4-1
Sourcing In CRE External Declarations for pTAL Modules 4-2
Linking Modules 4-3
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
iii

Contents 5. Using the Common Language Utility (CLU)
Library
5. Using the Common Language Utility (CLU) Library
What Is the CLU Library? 5-1
Compiling and Binding or Linking Programs That Use the CLU Library 5-2
Creating Processes 5-2
Locating and Identifying File Connectors 5-2
Using the Saved Message Utility Functions 5-2

Services Provided by the Saved Message Utility 5-4
Content of Messages 5-6
Using SMU Routines to Manipulate Messages 5-7
Using the environ Array 5-9

6. CRE Service Functions
Environment Functions 6-1

CRE_Getenv_ 6-1
CRE_Putenv_ 6-2

File-Sharing Functions 6-4
CRE_File_Close_ 6-5
CRE_File_Control_ 6-6
CRE_File_Input_ 6-8
CRE_File_Message_ 6-9
CRE_File_Open_ 6-11
CRE_File_Output_ 6-20
CRE_File_Retrycheck_ 6-22
CRE_File_Setmode_ 6-23
CRE_Hometerm_Open_ 6-24
CRE_Log_Message_ 6-25
CRE_Spool_Start_ 6-27

$RECEIVE Functions 6-30
CRE_Receive_Open_Close_ 6-31
CRE_Receive_Read_ 6-38
CRE_Receive_Write_ 6-41

CRE_Terminator_ 6-42
Exception-Handling Functions 6-44

CRE_Log_GetPrefix_ 6-45
CRE_Stacktrace_ 6-45

7. Math Functions
Arithmetic Overflow Handling 7-1
Standard Math Functions 7-1
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
iv

Contents 7. Math Functions (continued)
7. Math Functions (continued)
Arccos 7-4
Arcsin 7-5
Arctan 7-5
Arctan2 7-6
Cos 7-7
Cosh 7-7
Exp 7-8
Ln 7-8
Log10 7-9
Lower 7-10
Mod 7-11
Normalize 7-12
Odd 7-13
Positive_Diff 7-13
Power 7-15
Power2 7-16
Random_Set, Random_Next 7-17
Round 7-17
Sign 7-18
Sin 7-19
Sinh 7-19
Split 7-20
Sqrt 7-20
Tan 7-21
Tanh 7-21
Truncate 7-22
Example 7-22
Upper 7-22

Sixty-Four-Bit Logical Operations (Bit Manipulation Functions) 7-23
Return Value 7-24
Examples 7-24

Remainder 7-25
Return Value 7-25

Decimal Conversion Functions 7-25
Decimal_to_Int 7-26
Int_to_Decimal 7-27
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
v

Contents 8. String and Memory Block Functions
8. String and Memory Block Functions
String Functions 8-1

Atoi, Atol, Atof 8-3
Stcarg 8-4
Stccpy 8-5
Stcd_I 8-6
Stcd_L 8-7
Stch_I 8-8
Stci_D 8-9
Stcpm 8-10
Stcpma 8-11
Stcu_D 8-12
Stpblk 8-13
Stpsym 8-14
Stptok 8-15
Strcat 8-16
Strchr 8-17
Strcmp 8-18
Strcpy 8-19
Strcspn 8-20
Strlen 8-21
Strncat 8-22
Strncmp 8-23
Strncpy 8-24
Strpbrk 8-25
Strrchr 8-26
Strspn 8-27
Strstr 8-27
Strtod 8-28
Strtol 8-29
Strtoul 8-30
Substring_Search 8-32

Memory Block Functions 8-33
Memory_Compare 8-34
Memory_Copy 8-35
Memory_Findchar 8-36
Memory_Move 8-37
Memory_Repeat 8-38
Memory_Set 8-39
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
vi

Contents 8. String and Memory Block Functions (continued)
8. String and Memory Block Functions (continued)
Memory Block Functions (continued)

Memory_Swap 8-40

9. Common Language Utility (CLU) Library Functions
CLU_Process_Create_ 9-1

Return Value 9-4
COBOL Considerations 9-4
FORTRAN Considerations 9-8

CLU_Process_File_Name_ 9-12
Return Value 9-14
COBOL Considerations 9-15
FORTRAN Considerations 9-16

SMU Functions 9-17
SMU_Assign_CheckName_ 9-18
SMU_Assign_Delete_ 9-19
SMU_Assign_GetText_ 9-21
SMU_Assign_GetValue_ 9-22
SMU_Assign_PutText_ 9-23
SMU_Assign_PutValue_ 9-25
SMU_Message_CheckNumber_ 9-26
SMU_Param_Delete_ 9-27
SMU_Param_GetText_ 9-28
SMU_Param_PutText_ 9-29
SMU_Startup_Delete_ 9-30
SMU_Startup_GetText_ 9-31
SMU_Startup_PutText_ 9-33

SMU Function Considerations 9-34
COBOL Considerations 9-35
FORTRAN Considerations 9-37
TAL Considerations 9-39
EpTAL Considerations 9-39
pTAL Considerations 9-40

10. Run-Time Diagnostic Messages
Error Effects and Recovery 10-1
Format of Messages in This Section 10-2
Trap and Signal Messages 10-3
CRE Service Function Messages 10-6
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
vii

Contents 10. Run-Time Diagnostic Messages (continued)
10. Run-Time Diagnostic Messages (continued)
Heap-Management Messages 10-12
Function Parameter Message 10-14
Math Function Messages 10-15
Function Parameter Messages 10-17
Input/Output Messages 10-18
COBOL Messages 10-25
FORTRAN Messages 10-25
Native CRE Messages 10-25
Mapping Message Numbers Between Run-Time Environments 10-26

A. Data Type Correspondence

Glossary

Index

Examples
Example 2-1. C Program That Overwrites the MCB Pointer 2-65
Example 2-2. Run of C Program That Overwrites the MCB Pointer 2-65
Example 2-3. Inspect Session for C Program That Overwrites the MCB

Pointer 2-66

Figures
Figure 1-1. Language-Specific Run-Time Environments 1-1
Figure 1-2. The Common Run-Time Environment in the Guardian

Environment 1-2
Figure 1-3. The Common Run-Time Environment in the OSS Environment 1-3
Figure 2-1. A C-Series Mixed-Language Process 2-18
Figure 2-2. Using the CRE—Mixed-Language Process—Quiescent State 2-20
Figure 2-3. Using the CRE—The COBOL Routine Defaults Opening Standard

Output 2-21
Figure 2-4. Using the CRE—The TAL Routine Opens Standard Output 2-22
Figure 2-5. Using the CRE—The C Routine Opens Standard Output 2-23
Figure 2-6. Using the CRE—Quiescent State With Standard Output Open 2-24
Figure 2-7. Using the CRE—The COBOL Routine Writes to the File

$VOL.SUBVOL.FILE 2-25
Figure 2-8. Using the CRE—The TAL Routine Writes to the File

$VOL.SUBVOL.FILE 2-26
Figure 2-9. Using the CRE—The C Routine Writes to the File

$VOL.SUBVOL.FILE 2-27
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
viii

Contents Figures (continued)
Figures (continued)
Figure 2-10. Process Startup Message Layout 2-29
Figure 2-11. Establishing the File Name of Standard Input 2-30
Figure 2-12. Establishing the File Name of Standard Output 2-32
Figure 2-13. Establishing the File Name of Standard Log 2-34
Figure 2-14. Organization of a Small-Memory-Model Program Running in the TNS

CRE 2-38
Figure 2-15. Organization of a Large-Memory- or Wide-Memory Model Program

Running in the TNS CRE 2-39
Figure 2-16. Writing a CRE Error Message in the OSS Environment 2-55
Figure 5-1. Messages Manipulated by the SMU 5-5
Figure 6-1. Using Connections to Share a File Open 6-16
Figure 6-2. Determining Spooler Buffering in CRE_File_Open_ 6-20
Figure 6-3. Determining Spooler Buffering in CRE_Spool_Start_ 6-30
Figure 6-4. Structure Allocation to Support Requesters Running as Process

Pairs 6-34
Figure 8-1. Strings in Memory Before Copying Source to Destination 8-20
Figure 8-2. Strings in Memory After Copying Source to Destination 8-20

Tables
Table i. Language Manuals xvii
Table ii. System Programming Manuals xviii
Table iii. Program Development Manuals xviii
Table 1-1. CRE/RTL Files 1-4
Table 1-2. Requirements for Running in the CRE 1-5
Table 1-3. Language Support in TNS CRE and native CRE 1-8
Table 2-1. CRE Services in the Guardian Environment 2-5
Table 2-2. CRE Services in the OSS Environment 2-5
Table 2-3. PARAMs Processed by the CRE 2-11
Table 2-4. CRE Initialization Errors 2-14
Table 2-5. Heap-Management Attributes for the High-Performance Heap

Manager 2-46
Table 2-6. TNS CRE Services Available in the OSS and Guardian

Environments 2-56
Table 2-7. Native CRE Services Available in the OSS and Guardian

Environments 2-56
Table 2-8. TNS CRE Standard Functions Available in the OSS and Guardian

Environments 2-57
Table 2-9. Native CRE Standard Functions Available in the OSS and Guardian

Environments 2-57
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
ix

Contents Tables (continued)
Tables (continued)
Table 2-10. Status Codes Returned by CRE Functions That Support Process

Pairs 2-61
Table 3-1. ENV Options and the Availability of Run-Time Libraries 3-2
Table 3-2. ENV Options and the Availability of Language Features 3-2
Table 3-3. Determining Which ENV Options to Use 3-2
Table 3-4. Recognized and Default ENV Options 3-3
Table 3-5. Common Run-Time Environment Data Blocks 3-5
Table 3-6. Binder Grouping of ENV Directive Parameters 3-5
Table 3-7. Run-Time Environment Resulting From Binding Modules 3-6
Table 3-8. Locations of C-Series and D-Series TNS Run-Time Libraries 3-7
Table 4-1. env Pragma and the Availability of Features 4-2
Table 5-1. Comparison of CRE and CLU Functions 5-1
Table 5-2. SMU Functions 5-3
Table 5-3. Pre-D20 and Current SMU Functions 5-4
Table 5-4. Using SMU Functions 5-6
Table 5-5. Startup Message Parts 5-6
Table 5-6. ASSIGN Message Parts 5-6
Table 5-7. Retrievable Message Parts 5-8
Table 6-1. CRE Environment Functions 6-1
Table 6-2. File-Sharing Functions 6-4
Table 6-3. Language-Specific Constructs for Standard Files 6-16
Table 6-4. $RECEIVE Functions 6-31
Table 6-5. Receive File Message Report Names 6-36
Table 6-6. Using Report^flags 6-37
Table 6-7. Default Values for Options and Completion Code 6-44
Table 6-8. Exception-Handling Functions 6-45
Table 7-1. TNS CRE Standard Math Functions 7-2
Table 7-2. Native CRE Standard Math Functions 7-3
Table 7-3. Sixty-Four-Bit Logical Operations 7-23
Table 7-4. Decimal Conversion Functions 7-25
Table 7-5. Sign Types 7-29
Table 8-1. TNS CRE String Functions 8-1
Table 8-2. Native CRE String Functions 8-3
Table 8-3. TNS CRE Memory Block Functions 8-33
Table 8-4. Native CRE Memory Block Functions 8-33
Table 9-1. SMU Functions 9-18
Table 10-1. C Message Mapping 10-26
Table 10-2. COBOL85 Message Mapping 10-26
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
x

Contents Tables (continued)
Tables (continued)
Table 10-3. FORTRAN Message Mapping 10-31
Table A-1. Integer Types, Part 1 A-1
Table A-2. Integer Types, Part 2 A-3
Table A-3. Floating, Fixed, and Complex Types A-4
Table A-4. Character Types A-5
Table A-5. Structured, Logical, Set, and File Types A-6
Table A-6. Pointer Types A-7
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
xi

Contents Tables (continued)
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
xii

What’s New in This Guide

Guide Information
Common Run-Time Environment (CRE) Programmer’s Guide

Abstract

This manual describes the Common Run-Time Environment (CRE), a set of run-time
services that enable system and application programmers to write mixed-language
programs. In the TNS environment, the TNS CRE run-time services support C,
COBOL, FORTRAN, and TAL language programs. In the native environment, the
native CRE run-time services support C, C++, COBOL, and pTAL language programs.

Product Version

CRE G09, CRE H01

Supported Release Version Updates (RVUs)

This manual supports G06.25 and all subsequent G-series RVUs and H06.03 and all
subsequent H-series RVUs until otherwise indicated by its replacement publication.

Document History

New and Changed Information
This manual contains information about some of the following G-series development
tools. On HP Integrity NonStop NS-series servers, these tools are supported only in
H06.05 and subsequent H-series RVUs.

• TNS/R native C compiler
• TNS/R native C++ compiler
• TNS/R native C++ runtime library version 2
• SQL/MP for TNS/R native C
• SQL/MP Compilation Agent
• NMCOBOL compiler or nmcobol front end
• ld
• nld
• noft
• NS/R pTAL

Part Number Published

528146-004 February 2006

Part Number Product Version Published

528146-003 CRE G09, CRE H01 July 2005

528146-004 CRE G09, CRE H01 February 2006
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
xiii

What’s New in This Guide New and Changed Information
If you are running H06.03 or H06.04 RVUs, continue to use the HP Enterprise Toolkit--
NonStop Edition or HP NonStop S-series servers with these development tools.

This manual contains the following changes from its G-series predecessor:

• Certain information has been restructured for clarity. For example, Table 1-2 on
page 1-5 replaced several paragraphs of text, and the message numbers in
Section 10, Run-Time Diagnostic Messages were removed from the table of
contents.

• H-series information was added, including:

° Declaration source file and library file names

° Linker and loader information

° Wide-character functions wmemchr(), wmemcmp(),wmemcpy(),wmemmove(),
and wmemset()

• G-series information about dynamic-link libraries was added for convenience when
maintaining TNS/R native files on H-series systems.

• Information about C-series systems and compiler features was removed.

• A sentence excluding DCE and Java from use of the high-performance heap
manager was removed in response to Genesis Solution 10-041018-0808.

• The appendix describing Guardian and logical file names and TACL commands
was removed. You can find more current information in the Guardian Procedure
Calls Reference Manual, the Guardian Programmer’s Guide, and the TACL
Reference Manual.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
xiv

About This Guide
The Common Run-Time Environment (CRE) is a set of services used by the HP
compiler language run-time libraries. The CRE makes it easier to write mixed-language
programs.

The Common Run-Time Environment (CRE) Programmer’s Guide describes:

• Run-time environments and how they affect programs.

• Services provided by the CRE, such as program initialization and termination, file
sharing, trap handling, and heap allocation.

• How to compile and bind programs that use the CRE.

• CRE and Common Language Utility (CLU) library run-time functions and diagnostic
messages.

This guide contains only G-series and H-series product information needed to modify
the use of CRE. G-series information is included because G-series compilers and
utilities are available on H-series systems. Although not discussed in this guide, TNS
object code created by C-series C compilers or the D-series Pascal compiler can be
accelerated and run on an H-series system if it already executes successfully on
G-series systems. For actions related to making such code work with CRE, refer to the
latest D-series edition of this guide and to the final editions of the manuals for those
compilers; neither the C-series compilers nor the Pascal compiler are available on
H-series systems.

Unless otherwise indicated in the text, discussions of native-mode behavior,
processes, and so forth apply to both the TNS/R native code that runs on G-series
systems and to the TNS/E native code that runs on H-series systems. Discussions of
TNS or accelerated code behavior in the OSS environment apply only to G-series
systems; H-series systems do not support TNS or accelerated code execution in the
OSS environment.

There are three HP compilers for the COBOL language, invoked by six separate
commands. All these compilers implement the 1985 standard known as COBOL85 and
are released as the product HP COBOL85 for NonStop Servers:

• The TNS compiler COBOL85 command in the Guardian environment or the cobol
command in the G-series Open System Services (OSS) enviroment

• The TNS/R native compiler NMCOBOL command in the Guardian environment or
the nmcobol command in the OSS environment

• The TNS/E native compiler ECOBOL command in the Guardian environment or
the ecobol command in the OSS environment

An older COBOL language standard, the 1974 version, is no longer supported on HP
NonStop servers. Neither that COBOL 74 product nor its Guardian-environment
compiler are included in discussions in this guide unless specifically mentioned.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
xv

About This Guide Audience
The SCREEN COBOL product is also excluded from COBOL discussions in this guide
unless specifically mentioned.

To reduce confusion between the current product name and compiler-specific or
platform-specific behaviors, this guide now uses “COBOL” to refer to the language
when a more specific distinction is not needed or is obvious from context. “COBOL85”
is used only to refer to the HP product or to the TNS compiler in the Guardian
environment. “TNS COBOL” therefore includes the COBOL85 compiler, the OSS
cobol compiler, and the TNS version of the COBOL run-time library, while “native
COBOL” can refer to either the TNS/R or TNS/E compiler.

Audience
This guide is intended for system and application programmers familiar with HP
NonStop servers and the HP NonStop operating system. Readers of this guide should
be familiar with the reference manuals and programmer’s guides of the languages in
which their programs are written.

Organization
This guide covers these topics:

Section 1, Introducing the CRE, describes run-time environments and how they affect
programs.

Section 2, CRE Services, describes the services provided by the CRE, such as
program initialization and termination, file sharing, trap handling, heap allocation and
heap management.

Section 3, Compiling and Binding Programs for the TNS CRE, shows how to compile
and bind programs to run in the TNS CRE.

Section 4, Compiling and Linking Programs for the Native CRE, shows how to compile
programs to run in the native CRE.

Section 5, Using the Common Language Utility (CLU) Library, explains how to use the
functions provided by the Common Language Utility (CLU) library.

Section 6, CRE Service Functions, describes CRE functions that handle file sharing,
$RECEIVE, program termination, and traps.

Section 7, Math Functions, describes the standard math, 64-bit logical, and decimal-
conversion functions provided by the CRE.

Section 8, String and Memory Block Functions, describes the string and memory-block
functions provided by the CRE.

Section 9, Common Language Utility (CLU) Library Functions, describes the syntax of
the functions in the Common Language Utility (CLU) library.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
xvi

About This Guide Additional Information
Section 10, Run-Time Diagnostic Messages, lists the cause, effect, and recovery for
each of the error messages emitted by programs running in the CRE.

Appendix A, Data Type Correspondence, shows the relationships between data types
among different programming languages.

Additional Information

Table i. Language Manuals

Manual Description

C/C++ Programmer’s Guide Describes the syntax and semantics of HP C and C++ for
NonStop servers. Provides guidelines on writing C and C++
programs for NonStop servers.

COBOL Manual for TNS and
TNS/R Programs,
COBOL Manual for TNS/E
Programs

Describes the syntax and semantics of HP COBOL for
NonStop servers. Provides task-oriented information useful
to COBOL programmers.

Data Definition Language
(DDL) Reference Manual

Describes the syntax and semantics of the Data Definition
Language.

FORTRAN Reference Manual Describes the syntax and semantics of HP FORTRAN.

Guardian TNS C Library Calls
Reference Manual

Describes the syntax and semantics of C library calls for
TNS and accelerated programs in the Guardian
environment.

Open System Services Library
Calls Reference Manual

Describes the syntax and semantics of C library calls for
the HP NonStop Open System Services environment.

pTAL Conversion Guide Explains how to convert TAL source code modules to be
compiled with the pTAL compiler.

pTAL Guidelines for TAL
Programmers

Provides guidelines for writing programs in TAL to change
existing TAL code or write new TAL code that converts to
pTAL.

pTAL Reference Manual Describes the syntax and semantics of the Portable
Transaction Application Language (pTAL).

TAL Programmer's Guide,
TAL Programmer’s Guide
Data Alignment Addendum

Provides task-oriented information useful to TAL
programmers.

TAL Reference Manual Describes the syntax and semantics of TAL.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
xvii

About This Guide Additional Information
Table ii. System Programming Manuals

Manual Description

Guardian Application
Conversion Guide

Explains how to convert C-series file system procedure
calls to use the extended features of the D-series file
system procedure calls.

Guardian Programmer's
Guide

Explains how to use the Guardian programmatic interface
of the NonStop operating system in the Guardian
environment.

Guardian Procedure Calls
Reference Manual

Describes the syntax and programming considerations for
using Guardian system procedures.

Guardian Procedure Errors
and Messages Manual

Describes error codes, error lists, system messages, and
trap numbers for system procedures.

Open System Services
Programmer's Guide

Explains how to use the OSS programmatic interface of the
NonStop operating system in the OSS environment.

Open System Services Shell
and Utilities Reference
Manual

Provides a complete description of OSS commands and
utilities.

Open System Services
System Calls Reference
Manual

Describes the syntax and programming considerations for
using OSS library calls.

TACL Reference Manual Describes the syntax for specifying TACL command
interpreter commands.

TNS/E Native Application
Migration Guide

Gives guidelines for migrating applications from the TNS or
TNS/R environment to the TNS/E native environment.

TNS/R Native Application
Migration Guide

Gives guidelines for migrating applications from the TNS
environment to the TNS/R native environment.

Table iii. Program Development Manuals (page 1 of 2)

Manual Description

Binder Manual Explains how to bind object files using Binder.

Crossref Manual Explains how to collect cross-reference information using
Crossref.

Debug Manual Explains how to debug programs using the Debug
machine-level interactive debugger.

eld Manual Explains how to link TNS/E environment PIC object files
using the eld utility.

Inspect Manual Explains how to debug programs using the Inspect source-
level and machine-level interactive debugger.

ld Manual Explains how to link TNS/R environment PIC object files
using the ld utility and to load object files using the rld utility.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
xviii

About This Guide Hypertext Links
Hypertext Links
Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

• This is a hyperlink to Notation for Messages on page xxi.

General Syntax Notation
The following list summarizes the notation conventions for syntax presentation in this
manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words; enter
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words; enter these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

Native Inspect Manual Describes how to use Native Inspect, the built-in
conversational symbolic debugger on TNS/E systems.
Native Inspect is based on the UNIX debuggers GDB and
WDB.

nld Manual Explains how to link TNS/R environment non-position-
independent-code (non-PIC) object files using the nld utility.

rld Manual Explains how to load object files using the rld utility.

Visual Inspect online help Describes how to use Visual Inspect, a graphical symbolic
debugging product that provides powerful data display,
application navigation, and multi-program support
capabilities. Visual Inspect consists of a Windows client and
a NonStop host-based server.

Table iii. Program Development Manuals (page 2 of 2)

Manual Description
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
xix

About This Guide General Syntax Notation
[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list may be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
 [-num]
 [text]

K [X | D] address

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list may be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…

[-] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be entered as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must enter as shown. For example:

"[" repetition-constant-list "]"
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
xx

About This Guide Notation for Messages
Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In the following
example, there are no spaces permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…

!i and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o. In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; !i,o

!i:i. In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

Notation for Messages
The following list summarizes the notation conventions for the presentation of
displayed messages in this manual.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
xxi

About This Guide Notation for Messages
Bold Text. Bold text in an example indicates user input entered at the terminal. For
example:

ENTER RUN CODE

?123

CODE RECEIVED: 123.00

The user must press the Return key after typing the input.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.

lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-register

process-name

[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be
displayed, of which one or none might actually be displayed. The items in the list might
be arranged either vertically, with aligned brackets on each side of the list, or
horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

proc-name trapped [in SQL | in SQL file system]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list might be arranged
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

obj-type obj-name state changed to state, caused by
{ Object | Operator | Service }

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { OK | Failed }
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
xxii

About This Guide Change Bar Notation
% Percent Sign. A percent sign precedes a number that is not in decimal notation. The
% notation precedes an octal number. The %B notation precedes a binary number.
The %H notation precedes a hexadecimal number. For example:

%005400

%B101111

%H2F

P=%p-register E=%e-register

Change Bar Notation
A change bar (as shown to the right of this paragraph) indicates a difference between
this edition of this guide and the preceding edition. Change bars highlight new or
revised information.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
xxiii

About This Guide Change Bar Notation
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
xxiv

1 Introducing the CRE
This section describes the differences between using the Common Run-Time
Environment (CRE) in the Guardian and the HP NonStop Open System Services
(OSS) environments, and in the TNS, TNS/R, and TNS/E native environments. This
section contains the following topics:

• Mixed-Language Programming Without the CRE on page 1-1
• What Is the CRE? on page 1-2
• Selecting a Run-Time Environment on page 1-5
• Advantages of Using the CRE on page 1-8

Mixed-Language Programming Without the
CRE

By default, the standards-based TNS programming languages each have their own
run-time environments defined by their respective run-time libraries (see Figure 1-1).
Each run-time library includes the math, string, heap management, trap and exception
handling, and I/O management functions that define each language-specific run-time
environment. The run-time libraries call system routines to obtain run-time services.

The language-specific run-time environments are different from one another and often
incompatible. Mixed-language programs running in these environments are limited in
their ability to use all of the features of each language and to share data between
routines written in different languages. This incompatibility severely limits the potential
for creating useful mixed-language programs.

Figure 1-1. Language-Specific Run-Time Environments

101VST .VSD

 C
Program

 C
RTL

COBOL
Program

FORTRAN
Program

 TAL
Program

COBOL
RTL

FORTRAN
RTL

NonStop Operating System
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
1-1

Introducing the CRE What Is the CRE?
For a mixed-language program running in a language-specific run-time environment,
the program’s main routine determines the run-time environment for all routines in the
program. The run-time libraries do not coordinate with each other.

For example, the main routine might establish a table of run-time error messages and
include error-reporting routines that require the table to be at a fixed location. It might
also allocate a set of data blocks for keeping track of environment information for the
set of files used by the user-written routines. Error reporting and file I/O operations
follow the rules and schemes of the run-time environment established by the main
routine’s run-time library. The main routine can safely call a routine written in another
language only if the called routine does not perform any operations that conflict with
the rules and schemes of the run-time environment of the main routine. The called
routine cannot perform operations that depend on the services of the called routine’s
own run-time environment, such as error reporting and file I/O operations.

What Is the CRE?
The Common Run-Time Environment (CRE) eliminates the problems cited in the
previous subsection. Programs running in the OSS environment or the Guardian
environment can use the services of the CRE, as shown in the following figures.

Note. For simplicity, Figure 1-1 does not show the TAL run-time library or explicit calls to
system routines in non-TAL programs. Only TAL programs with embedded SQL statements use
the TAL run-time library when they run without the CRE.

Figure 1-2. The Common Run-Time Environment in the Guardian Environment

102VST .VS
D

 C
Program

COBOL
Program

FORTRAN
Program

 TAL
Program

NonStop Operating System

 C
RTL

COBOL
RTL

FORTRAN
RTL

TAL
RTL

CRE Library
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
1-2

Introducing the CRE What Is the CRE?
The CRE provides several products with similar services:

• TNS CRE/RTL (product number T9280) supports programs running in the TNS
environment

• Native CRE/RTL (product number T8431) supports programs running in the TNS/R
native environment.

• NonStop CRE/RTL (product number T1269) supports programs running in the
TNS/R or TNS/E native environments.

The TNS CRE is configured into the system library. The TNS/R native CRE is a public
shared run-time library or hybrid dynamic-link library (DLL). The TNS/E native CRE is a
DLL. Table 1-1 on page 1-4 describes the files that make up the CRE/RTL products.

Figure 1-3. The Common Run-Time Environment in the OSS Environment

103VST .VSD

 C
Program

COBOL
Program

 C
RTL

COBOL
RTL

CRE Library

NonStop Operating System
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
1-3

Introducing the CRE What Is the CRE?
The CRE coordinates many run-time tasks on behalf of the run-time libraries, thus
providing a common environment for all routines in a program, regardless of language.
The CRE provides services that significantly enhance your ability to create mixed-
language programs.

The following table shows the services the CRE provides in the OSS and Guardian
environments:

Table 1-1. CRE/RTL Files

File name Default Location Description

CLUDECS $SYSTEM.SYSTEM Source file containing TNS CRE Saved Message
Utility (SMU) functions, data, and data structure
declarations in TAL.

CLURDECS $SYSTEM.SYSTEM Source file containing TNS/R and TNS/E native CRE
Saved Message Utility (SMU) functions, data, and
data structure declarations in pTAL.

CREDECS $SYSTEM.SYSTEM Source file containing TNS CRE functions, data, and
data structure declarations in TAL.

CRERDECS $SYSTEM.SYSTEM Source file containing TNS/R and TNS/E native CRE
functions, data, and data structure declarations in
pTAL.

TALLIB $SYSTEM.SYSTEM Linkable code file containing the TNS CRE TAL
initialization function definition.

RTLDECS $SYSTEM.SYSTEM Source file containing TNS CRE RTL functions, data,
and data structure declarations in TAL.

RTLRDECS $SYSTEM.SYSTEM Source file containing TNS/R and TNS/E native CRE
RTL functions, data, and data structure declarations
in pTAL.

ZCRESRL $SYSTEM.SYSnn Shared run-time library or hybrid DLL executable
code file containing all TNS/R native CRE functions
and data definitions.

ZCREDLL $SYSTEM.ZDLLnnn DLL containing all TNS/E native CRE functions and
data definitions.

Feature OSS Environment Guardian Environment

Shared access to
standard files (standard
input, standard output,
and standard log)

Available independent of the
CRE

Provided by the CRE

Shared access to a
common user heap

Provided by the CRE Provided by the CRE

Management of
$RECEIVE

Provided by the CRE
(for server management only)

Provided by the CRE
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
1-4

Introducing the CRE Selecting a Run-Time Environment
Selecting a Run-Time Environment
Table 1-2 on page 1-5 lists the requirements for running a program in the CRE.

Management of process
initialization and
termination

Provided by the CRE Provided by the CRE

Management of
checkpoint and restart
activities for process pairs

N.A. Provided by the CRE

Uniform handling of
exceptions

N.A. Provided by the CRE

Uniform format and
content of diagnostic
messages

Provided by the CRE Provided by the CRE

Table 1-2. Requirements for Running in the CRE (page 1 of 3)

Primary
language or
compiler
used for the
program

Need to make
source changes?

Must be
compiled
to run in
the CRE?

Can use
system
procedure
calls for
resources
that are not
shared?

What
changes in
execution?

Can
contain a
main
routine?

C No, if the routine
uses only
operating system
and language
constructs

Yes Yes Only text
and format
of some
run-time
diagnostic
messages,
which come
from the
CRE error-
reporting
functions

Yes

C++ No, if the routine
uses only
operating system
and language
constructs

Yes. Yes. No. Yes.

Feature OSS Environment Guardian
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
1-5

Introducing the CRE Selecting a Run-Time Environment
COBOL85 or
cobol
(TNS)

No, if the routine
uses only
operating system
and language
constructs.

Yes, by
specifying
the ENV
COMMON
compiler
directive.

Yes. No. Yes.

ECOBOL or
ecobol
(TNS/E)

No, if the routine
uses only
operating system
and language
constructs

No, but
ENV
COMMON
compiler
directive is
default

Yes No Yes

NMCOBOL
or nmcobol
(TNS/R)

No, if the routine
uses only
operating system
and language
constructs

No, but
ENV
COMMON
compiler
directive is
default

Yes No Yes

FORTRAN
(TNS)

No, if the routine
uses only
operating system
and language
constructs

Yes, by
specifying
the ENV
COMMON
compiler
directive

Not
applicable

Only text
and format
of some
run-time
diagnostic
messages,
which come
from the
CRE error-
reporting
functions

Yes

EpTAL
(TNS/E)

Yes; calls from
system routines to
CRE library
functions to
perform actions on
those objects,
such as the
standard files, that
you want to share
or coordinate with
other languages

No Yes No No

Table 1-2. Requirements for Running in the CRE (page 2 of 3)

Primary
language or
compiler
used for the
program

Need to make
source changes?

Must be
compiled
to run in
the CRE?

Can use
system
procedure
calls for
resources
that are not
shared?

What
changes in
execution?

Can
contain a
main
routine?
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
1-6

Introducing the CRE Selecting a Run-Time Environment
Refer to Section 3, Compiling and Binding Programs for the TNS CRE, and Section 4,
Compiling and Linking Programs for the Native CRE, for details. Refer to Writing TAL
Routines That Use the TNS CRE on page 2-6 for additional restrictions for TAL
routines running in the TNS CRE.

pTAL routines linked into a program with a native C or native COBOL main routine can
run in the CRE. (The native C or native COBOL main routine ensures that the correct
CRE library initialization and termination functions are called.) Refer to Writing TAL
Routines That Use the TNS CRE on page 2-6 for additional restrictions for pTAL
routines running in the native CRE.

Table 1-3 on page 1-8 compares the languages supported by the TNS CRE and the
TNS/R or TNS/E native CRE.

pTAL
(TNS/R)

Yes; calls from
system routines to
CRE library
functions to
perform actions on
those objects,
such as the
standard files, that
you want to share
or coordinate with
other languages

No Yes No No

TAL (TNS) Yes; calls from
system routines to
CRE library
functions to
perform actions on
those objects,
such as the
standard files, that
you want to share
or coordinate with
other languages

Only if a
compiler
directive is
specified

Yes No Yes, if
changed to
make calls
to specific
CRE library
initialization
and
termination
functions

Table 1-2. Requirements for Running in the CRE (page 3 of 3)

Primary
language or
compiler
used for the
program

Need to make
source changes?

Must be
compiled
to run in
the CRE?

Can use
system
procedure
calls for
resources
that are not
shared?

What
changes in
execution?

Can
contain a
main
routine?
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
1-7

Introducing the CRE Advantages of Using the CRE
.

Advantages of Using the CRE
In the Guardian environment, the CRE has these advantages:

• Removes many restrictions on mixed-language programming. For example, in the
Guardian environment all routines in a program can share access to the standard
files (standard input, standard output, and standard log) and $RECEIVE, not just
those written in the same language. (In the OSS environment, the file system
supports standard files explicitly.)

• Allows a routine to be written in the language best suited for its task. For example:

° A program can have its file operations written in COBOL and its list
management in TAL or C.

° A software development group might have a set of standard FORTRAN
routines that it uses to build its TAL or COBOL programs. The CRE makes
these routines available to all programs, regardless of the language.

• Allows access to functions that are not defined as part of its own language or
run-time library. The CRE functions can be called from any language.

• Enables you to convert applications from one programming language into another
programming language in phases. For example, suppose you need to convert an
application from TAL into C. You can divide the routines in the TAL application into
functional sets. As you convert each set of routines to C, you can test each set by
binding the TAL and C routines into one program.

• Allows easier porting of programs to HP NonStop servers. Not only does the CRE
make it easier to port mixed-language programs, but you can rewrite performance-
critical routines in the language best suited for running on NonStop servers.

Table 1-3. Language Support in TNS CRE and native CRE

Application Language TNS CRE Native CRE

COBOL Yes (using the COBOL85 or
cobol compiler)

Yes (using the ECOBOL, ecobol,
nmcobol, or NMCOBOL compiler)

FORTRAN Yes No

C Yes Yes

C++ Yes Yes

TAL Yes No

pTAL No Yes

Note. The CRE does not support mixed TNS and native programs (that is, programs that
contain both TNS object code/accelerated object code and TNS/R or TNS/E native object
code).
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
1-8

2 CRE Services
This section describes the services and resources managed by the CRE. In this
section, CRE refers to both the TNS environment and native environments. Where
there are differences, TNS CRE and TNS/R native CRE or TNS/E CRE are used.

Your C, COBOL, and FORTRAN routines in the TNS environment, and your C, C++,
COBOL, and pTAL routines in the native environments access most CRE services
transparently to you through their run-time libraries. Each run-time library translates
requests expressed in the syntax of its language into calls to CRE library functions or
system procedures. When you use high-level language constructs to read or write a
standard file, or to call a math or string function, each run-time library calls CRE library
functions that perform the requested operation. Your routines specify the parameters of
each operation using the syntax of the routine’s language; you never need to know the
specifics of the CRE library functions.

Most of the topics described in this section are informational. You must read this
section only if you are writing TAL routines and you want to share access to services
and resources managed by the TNS CRE with routines written in other languages. If
you are writing routines to compile with the C, TNS COBOL, and FORTRAN compilers,
you do not need to know most of the details described in this section.

Use the following table to determine which subsections to read:

Read the Following
Subsection: In order to:

Comparing the CRE in the OSS
and Guardian Environments on
page 2-2

Understand the differences between CRE services in
the OSS and Guardian environments

Writing TAL Routines That Use
the TNS CRE on page 2-6

Write TAL routines that run in the TNS CRE

Writing pTAL Routines That Use
the Native CRE on page 2-8

Write pTAL language routines that run in the native CRE

Program Initialization on page 2-9 Learn the steps that the CRE initialization function
follows to initialize your program

Program Termination on
page 2-15

Learn the steps that the CRE termination function
follows to terminate your program

Sharing Standard Files on
page 2-17

Share access to the standard files (standard input,
standard output, and standard log) among routines
written in different languages

Using $RECEIVE on page 2-34 Share access to $RECEIVE among routines written in
different languages (now available for both TNS C/C++
and native C/C++)

Using a Spooler Collector on
page 2-36

Access a spooler collector directly as a standard file

Memory Organization on
page 2-37

Access the run-time heap from C and TAL routines that
run in the CRE
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-1

CRE Services Comparing the CRE in the OSS and Guardian
Environments
Note that the CRE does not support Event Management Service (EMS) events.

Comparing the CRE in the OSS and Guardian
Environments

Many of the services provided by the CRE in the Guardian environment are not
needed or are not meaningful in the OSS environment. This subsection summarizes
the differences between CRE services in the OSS and Guardian environments for
each of the following topics:

• Standard Files on page 2-2
• $RECEIVE on page 2-3
• Memory Organization on page 2-3
• Traps and Exceptions on page 2-3
• Program Initialization on page 2-4
• Program Termination on page 2-4
• Error Reporting on page 2-5
• Standard Functions on page 2-5
• CRE Services on page 2-5
• Process Pairs on page 2-6 (fault-tolerant programming)

Standard Files
In the Guardian API or environment, the CRE supports three standard files (standard
input, standard out, and standard log), and supports routines that enable program

Using the Native Heap Managers
on page 2-43

Learn how to use the native heap managers and how to
query or set heap-management attributes

TNS CRE Traps and Exceptions
on page 2-47 and Native CRE
Signals and Exceptions on
page 2-55

Learn how the CRE handles traps, signals, and
exceptions

Reporting CRE Errors in the OSS
Environment on page 2-54

Understand how the CRE determines where it writes
error messages in the OSS environment

Using Standard Functions on
page 2-56

Call CRE library functions explicitly from your program

Using Process Pairs on
page 2-59

Learn how the CRE manages process pairs

Using the Inspect, Native Inspect,
and Visual Inspect Symbolic
Debuggers With CRE Programs
on page 2-62

Use the corresponding symbolic debugger product to
locate where a program is overwriting CRE data

Circumventing the CRE on
page 2-66

Use system procedures to manipulate services
managed by the CRE

Read the Following
Subsection: In order to: (continued)
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-2

CRE Services $RECEIVE
modules to share standard files (standard out and standard log) that write to spooler
collectors.

In the OSS environment, the file system supports standard files—the CRE, therefore,
does not provide such support. Language-specific run-time libraries call OSS routines
to access standard files. Because the CRE does not support standard files in the OSS
environment, it does not support the CRE routines for sharing spooled files.

$RECEIVE
$RECEIVE is supported in both the TNS and native CRE environments. In the
Guardian and OSS environments, programs receive the following types of messages
from $RECEIVE: system messages and messages sent by other processes. In the
Guardian environment, processes also receive initialization messages (startup
message, ASSIGN messages, and PARAM message) from $RECEIVE. Processes
running in the OSS environment do not receive initialization messages from
$RECEIVE.

Memory Organization
The CRE manages a user heap for programs running in either the OSS or Guardian
environments.

For a given heap size, a program running in the OSS environment might have a
different amount of available space than the same program running in the Guardian
environment.

Traps and Exceptions
For Guardian processes running in the TNS environment, the CRE enables a trap
handler during program initialization and manages exception handling during program
execution. Programs can use the Guardian ARMTRAP procedure to detect and
process exceptions.

Guardian C programs use the signal feature to detect exceptions, rather than traps.

In the native environment, traps are replaced with signals.

For Guardian processes running in the native environment, the CRE provides a default
signal handler for all signals whose default action is not signal ignore [SIGIGN]. The
signal handler takes all appropriate actions, then terminates the process. The signal
handler does not return control to its caller. Refer to the Guardian Programmer’s Guide
for more information on signals.

The OSS environment supports signals but does not support trap handlers. Therefore,
the CRE does not regain control of a process if an exception occurs. In most cases,
the OSS environment makes error information available to running programs. The CRE
does not provide a signal handler for OSS processes. See the OSS Programmer’s
Guide for more information about exception handling in the OSS environment.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-3

CRE Services Program Initialization
In both the OSS and Guardian environments, the CRE validates the environment
during program execution. If it detects that the environment is corrupted, it writes a
message for the user to read, and terminates the program.

Program Initialization

TNS CRE
In the Guardian environment, the TNS CRE:

• Initializes its own state

• Calls an initialization routine for each language-specific run-time environment that
is represented in the program’s object file

• Establishes a trap handler

• Processes initialization messages including the startup message, ASSIGN
message, and PARAM messages

• Initializes structures for standard files and for process pairs

In the OSS environment on G-series systems, the TNS CRE:

• Initializes its own state

• Calls an initialization routine for each language-specific run-time environment that
is represented in the program’s object file

Native CRE
The native CRE performs only those common steps that pertain to C, C++, native-
mode COBOL, and pTAL run-time initialization. Each language-specific run-time library
causes its own initialization routine to be asserted.

In the Guardian environment, the native CRE:

• Initializes its own state

• Establishes a signal handler

• Processes initialization messages including the startup message, ASSIGN
message, and PARAM messages

• Initializes structures for standard files and for process pairs

In the OSS environment, the native CRE initializes its own state, and each language-
specific run-time library causes its own initialization routine to be asserted.

Program Termination
The CRE calls a language-specific termination routine for each language represented
in the program’s object file and then calls a kernel routine to stop the process. The
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-4

CRE Services Error Reporting
native CRE calls a kernel routine that calls all shared run-time library termination
routines, and then calls another kernel routine to stop the process.

In the Guardian environment, the CRE also ensures that buffers for standard files are
empty and properly closed.

Error Reporting
In general, the CRE writes messages to the standard log file. The location to which the
CRE writes messages, however, can be different in the OSS and Guardian
environments. See Standard Log on page 2-33 for more details.

Standard Functions
The CRE provides many standard functions, including:

• Math functions, described in Section 7, Math Functions

• String functions, described in Section 8, String and Memory Block Functions

• Memory block functions, described in Section 8, String and Memory Block
Functions

The native CRE library supports only standard functions required by the C and C++
run-time libraries.

CRE Services

Table 2-1. CRE Services in the Guardian Environment

Service TNS environment Native environment

Standard files Yes Yes

$RECEIVE message processing Yes Yes

Exception handling Traps Signals

Process initialization Yes Yes

Process termination Yes Yes

Process pairs Yes Yes

Table 2-2. CRE Services in the OSS Environment (page 1 of 2)

Service TNS environment Native environment

Standard files No No

$RECEIVE message processing Limited Limited

Exception handling Signals Signals
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-5

CRE Services Process Pairs
The Saved Message Utility (SMU) functions of the Common Language Utility (CLU)
library are available only in the Guardian environment.

The native CRE library does not support CLU library functions that locate and identify
file connectors.

Process Pairs
The term process pairs refers to the use of primary and backup processes in fault-
tolerant programming. In the Guardian environment, both the TNS and native CRE can
manage the backup process on behalf of the running program.

The OSS environment does not support process pairs (primary and backup).
Therefore, all CRE services and functions associated with process pairs are undefined
in the OSS environment.

Writing TAL Routines That Use the TNS CRE
Unlike C, COBOL, and FORTRAN routines, TAL routines must call TNS CRE functions
explicitly to access TNS CRE services because the TAL run-time library does not
support file I/O, math, or string functions. This subsection describes considerations for
TAL routines that run in the TNS CRE in the Guardian environment.

Follow these guidelines to write TAL routines that run in the TNS CRE:

• Use a TAL ENV directive to establish the correct environment for your TAL
programs. A TAL program can run in the TNS CRE if the TAL main routine has the
ENV COMMON attribute and other TNS CRE requirements are met. Section 3,
Compiling and Binding Programs for the TNS CRE, describes the TAL ENV
directive. See also the TAL Reference Manual.

• Do not manipulate directly the upper 32K of the user data segment. The TNS CRE
uses this space to store its data objects. Do not use memory addresses G[0] or
G[1].

• Do not directly manipulate program resources that are likely to be shared with
other languages.

Process initialization Yes Yes

Process termination Yes Yes

Process pairs No No

Note. All CRE service functions are visible to all programs in the Guardian and OSS
environments. The results of calling a function that is not defined in the current environment,
however, are undefined.

Table 2-2. CRE Services in the OSS Environment (page 2 of 2)

Service TNS environment Native environment
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-6

CRE Services Writing TAL Routines That Use the TNS CRE
• Call TAL_CRE_INITIALIZER_ in the first statement of a TAL main procedure.
TAL_CRE_INITIALIZER_ is located in the TAL run-time library, TALLIB and the
external declaration is located in TALDECS. TAL_CRE_INITIALIZER_ invokes
TNS CRE functions that initialize the TNS CRE. Program Initialization on page 2-4
describes the TNS CRE’s initialization tasks. The TAL Programmer’s Guide
describes the interface to TAL_CRE_INITIALIZER_. Note that the TNS CRE does
not create backup processes.

• Call CRE_Terminator_, not the PROCESS_STOP_, STOP or ABEND system
procedures, for TAL routines that terminate program execution.

• Call system procedures to access resources that are not managed by the TNS
CRE.

• Call system procedures to access resources that can be managed by the TNS
CRE but that you do not want to share with routines written in other languages.

• Call the TNS CRE functions described in Section 6, CRE Service Functions, to
access resources managed by the TNS CRE that you want to share with routines
written in other languages.

For example, call TNS CRE library functions to share access to the standard files
or $RECEIVE. Note that the presence of these objects does not necessarily mean
that your program shares these resource amongst routines written in multiple
languages. If no other language is reading from or writing to $RECEIVE, then your
TAL program can open, read, write, and close $RECEIVE using system
procedures, rather than TNS CRE library functions.

For example, call the PROCESS_CREATE_ system procedure in your TAL routine
to create a new process. The TNS CRE does not provide a run-time function to
create processes on behalf of your program.

• Source in the file CREDECS

• Do not use the INITIALIZER system procedure. Both the TNS CRE and the
INITIALIZER procedure read system messages, including the startup message,
the PARAMs message, and ASSIGN messages.

Programs that use sequential I/O (SIO) procedures (for example, OPEN^FILE,
READ^FILE, WRITE^FILE, CLOSE^FILE, and so forth) are particularly likely to use
the INITIALIZER system procedure.

You must resolve how to remove the call to the INITIALIZER procedure from your
program.

The Guardian Procedure Calls Reference Manual describes the INITIALIZER
procedure and each of the SIO procedures. The Guardian Programmer’s Guide
describes how to use the INITIALIZER system procedure with SIO procedures.

• If your TAL routines call standard math functions, the TAL routines must manage
the trap enable bit of the TNS CRE environment register to control program
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-7

CRE Services Writing pTAL Routines That Use the Native CRE
behavior if a math function detects an error. For more details, see Traps and
Exceptions on page 2-3.

For more information on using TAL in mixed-language programs and writing TAL
programs that use TNS CRE services, see the TAL Programmer’s Guide.

Writing pTAL Routines That Use the Native
CRE

This subsection describes considerations for pTAL language routines that run in the
CRE. Unlike C and C++ routines, pTAL routines must call native CRE functions
explicitly to access native CRE services because pTAL does not support standard
input, standard output, and standard error file I/O, math, or string functions.

pTAL cannot be used to create the main routine of a program that runs in the CRE.
A C or native-mode COBOL main routine that calls a pTAL routine can be used to
provide almost the same functionality.

A program with a pTAL main routine cannot link to a native user library that runs in the
CRE. Thus, the native user library for such a program cannot be written in C, C++, or
native-mode COBOL.

A program with a C or native-mode COBOL main routine can link to a native user
library that runs in the CRE or follows the guidelines for CRE compliance. Thus, the
native user library for such a program can be written in C, native-mode COBOL, or in
pTAL that complies with the following guidelines:

• Do not directly manipulate program resources that are likely to be shared with
other languages.

• Call CRE_Terminator_, not the PROCESS_STOP_, STOP or ABEND system
procedures, for pTAL routines that terminate program execution.

• Call system procedures to access resources that are not managed by the CRE.

• Call system procedures to access resources that can be managed by the CRE, but
that you do not want to share with routines written in other languages.

• Call the native CRE functions described in Section 6, CRE Service Functions, to
access resources managed by the native CRE that you want to share with routines
written in other languages.

• Source in the files CRERDECS, RTLRDECS, or CLURDECS where applicable.

• Do not use the INITIALIZER system procedure. Both the CRE and the
INITIALIZER procedure read system messages, including the startup message,
the PARAMs message, and ASSIGN messages.

Programs that use sequential I/O (SIO) procedures (for example, OPEN^FILE,
READ^FILE, WRITE^FILE, CLOSE^FILE, and so forth) are particularly likely to use
the INITIALIZER system procedure.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-8

CRE Services Program Initialization
You must resolve how to remove the call to the INITIALIZER procedure from your
program.

The Guardian Procedure Calls Reference Manual describes the INITIALIZER
procedure and each of the SIO procedures. The Guardian Programmer’s Guide
describes how to use the INITIALIZER system procedure with SIO procedures.

Program Initialization
Your program begins execution when the operating system transfers control to your
program’s object code. Before executing the code that you wrote, however, the run-
time library for your main routine initializes its run-time environment. For programs
running in the CRE, initialization includes a call to a CRE initialization function.

In the Guardian environment, the CRE performs the tasks described in this subsection.
In the OSS environment on G-series systems, the TNS CRE does not:

• Establish a trap/signal handler
• Process startup messages
• Initialize standard files
• Initialize process pair information

The CRE initialization function establishes the CRE’s internal data structures, I/O
model, and so forth, as well as shared facilities such as the user data heap, standard
files (standard input, standard output, and standard log), and parameters that control
process pairs. After the CRE has established its environment and set up shared
facilities, it calls a language-specific initialization function for each language that is
represented by a routine in your program, except TAL and pTAL. Each language-
specific initialization function sets up its data structures and file I/O model for the
language that it supports.

When the CRE completes initialization, it is set up to provide the services described in
this section, and returns control to the run-time library that called it, namely, the run-
time library for your main routine. The run-time library completes its own initialization
and returns control to your main routine, which begins executing the instructions that
you wrote.

Designating a Main Routine
A program’s main routine is the first routine to execute when the operating system
passes control to your process. An object file must have exactly one main routine to be
a runnable program. Each language supported by the CRE provides syntax to specify
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-9

CRE Services TNS CRE Initialization
a main routine. The following table shows an example of the syntax of a main routine,
called MYMAIN, in each of the languages supported by the CRE.

The reference manual for each language describes the syntax of a main routine.

TNS CRE Initialization
During program initialization, the TNS CRE:

• Opens $RECEIVE, processes the startup message, ASSIGN messages, and the
PARAM message, and closes $RECEIVE.

° For C main routines, the CRE saves the names and values of all PARAMs and
ASSIGNs and returns them to your program automatically.

° For COBOL and FORTRAN main routines, the CRE saves the names and
values and returns them to your program if you specified the SAVE directive for
the main routine.

° For a TAL main routine, the CRE saves the names and values and returns
them to your program if you specified the message-saving parameter in the
TAL_CRE_INITIALIZER_ function.

The TACL Reference Manual describes how you specify ASSIGNs and PARAMs in
TACL. The Guardian Programmer’s Guide describes how you process startup
messages, ASSIGNs, and PARAMs.

The CRE processes ASSIGN messages following the same rules as the
INITIALIZER system procedure. See the Guardian Procedure Calls Reference
Manual for details.

Table 2-3 on page 2-11 shows the PARAMs that the CRE explicitly processes
during initialization. The PARAM Values column shows the values that the CRE
accepts for each PARAM. The CRE terminates your program if the value
associated with any PARAM symbolic name is not valid. Termination occurs
regardless of which languages are used to create program modules.

Language Examples of Main Routine Declarations

C int main(); /* C main routine */
{ ... }; /* called "main" */

COBOL ?MAIN mymain
IDENTIFICATION DIVISION.
PROGRAM-ID. mymain.

FORTRAN PROGRAM mymain

TAL
pTAL

PROC mymain MAIN;
BEGIN
 ...
END;
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-10

CRE Services TNS CRE Initialization

Table 2-3. PARAMs Processed by the CRE (page 1 of 2)

PARAM Name
PARAM
Values

Default
Value Specifies:

BUFFERED-
SPOOLING

ON
OFF

ON Whether buffered spooling is the default

DEBUG ON
OFF

OFF How COBOL85 or cobol handles the
DEBUG switch. See the COBOL Manual for
TNS and TNS/R Programs.

EXECUTION-LOG filename N.A. The file to which the CRE writes log
messages. It can also be used to specify
the standard input and standard output files.
For more details, see Standard Log on
page 2-33, Standard Input on page 2-29,
and Standard Output on page 2-31.

INSPECT ON
OFF

OFF Whether the CRE invokes a debugger or
terminates your program if certain language-
specific run-time errors occur. Although this
PARAM is called INSPECT, you can control
whether your program invokes the default
debugging utility or the symbolic debugging
utility. For more details, see the DEBUG and
PARAM commands in the TACL Reference
Manual.

NONSTOP ON
OFF

ON Whether your program can run as a process
pair. To run as a process pair, your program
must also specify the NONSTOP compiler
directive, which is supported only by the
TNS COBOL, TNS/R COBOL (software
product revision T8107AAT or more recent),
TNS/E COBOL, and FORTRAN compilers.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-11

CRE Services TNS CRE Initialization
• Determines the name of your program’s standard log. (Standard log is another
name for what some languages call STDERR. Messages written to STDERR
appear in standard log. Messages in standard log might be errors, warnings, or
informational.) If the CRE cannot determine the name, it terminates your program.
Standard Files on page 2-2 describes how the CRE determines the name of the file
to open for standard log.

• Establishes a trap handler.

• Invokes an initialization function for each language in your program except TAL.

PRINTER-
CONTROL

filename
*.filename

That the operating system return control to
your program if the printer specified by the
value of the PRINTER-CONTROL PARAM
is either not ready or out of paper. The
semantics for PARAM value are:

• filename matches a file in any
program but cannot appear in more
than one program.

• *.filename matches a file in any
program and can match files in more
than one program

• progname.filename matches a
filename only in the program progname.

SAVE-
ENVIRONMENT

ON
OFF

See next
column

Saves environment information, derived
from PARAMs and startup message, into
the environ array. By default, SAVE-
ENVIRONMENT is ON if the main routine is
written in C, and OFF if the main routine is
not written in C. Use the SAVE-
ENVIRONMENT PARAM to override these
defaults. ASSIGNs, PARAMs, and startup
messages are available in the Guardian
environment but are not available in the
OSS environment, regardless of the value
of the SAVE-ENVIRONMENT PARAM.

SWITCH-1
 . . .
SWITCH-15

ON
OFF

OFF The value of the corresponding switch.
Switches can be tested only by TNS
COBOL and FORTRAN programs. For
details, see the COBOL Manual for TNS
and TNS/R Programs or the FORTRAN
Reference Manual.

Table 2-3. PARAMs Processed by the CRE (page 2 of 2)

PARAM Name
PARAM
Values

Default
Value Specifies:
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-12

CRE Services Native CRE Initialization
• Opens certain shared standard files (standard input, standard output, standard
log), depending on the language of your main routine:

° If your main routine is written in C, the CRE calls a C run-time library function
to open all three standard files unless you have specified the nostdfiles
pragma.

° If your program is written in COBOL, FORTRAN, or TAL, the TNS CRE opens
each standard file only when it receives an open request from your program.

Native CRE Initialization
During program initialization in the Guardian environment, the native CRE performs the
following:

• Processes the startup message, ASSIGN messages, and the PARAM message

• Saves the names and values of all PARAMs and ASSIGNs and returns them to
your program automatically

The TACL Reference Manual describes how you specify ASSIGNs and PARAMs in
TACL. The Guardian Programmer’s Guide describes how you process startup
messages, ASSIGNs, and PARAMs.

The CRE processes ASSIGN messages following the same rules as the
INITIALIZER system procedure. See the Guardian Procedure Calls Reference
Manual for details.

Table 2-3 on page 2-11 shows the PARAMs that the CRE explicitly processes
during initialization. The PARAM Values column of the table shows the values that
the CRE accepts for each PARAM. The CRE terminates your program if the value
associated with any PARAM symbolic name is not valid.

• Determines the name of your program’s standard log. (Standard log is another
name for what some languages call STDERR. Messages written to STDERR
appear in standard log. Messages in standard log might be errors, warnings, or
informational.) If the CRE cannot determine the name, it terminates your program.
Standard Files on page 2-2 describes how the CRE determines the name of the file
to open for standard log.

• Establishes a signal handler.

• Invokes an HP NonStop operating system initialization function.

• Opens certain shared standard files (standard input, standard output, standard
log), depending on the language of your main routine:

° If your main routine is written in C, the CRE calls a C run-time library function
to open all three standard files unless you have specified the nostdfiles
pragma.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-13

CRE Services Initialization Errors
Initialization Errors
Several kinds of errors can occur during CRE initialization. If an error occurs before the
CRE has set up its environment, the CRE invokes PROCESS_STOP_ and specifies
option ABEND with the appropriate error text, as listed in Table 2-4 on page 2-14.

If a process receives an open message before process initialization is complete, the
CRE returns file-system error 100 (FENOTREADY). In this rare situation, the
application returning error 100 must retry the open until the process has received the
close message from its creator process.

Table 2-4. CRE Initialization Errors

Error Text Cause of Error

Backup heap allocation failed Invalid heap or heap control block.

EXECUTION-LOG has invalid
filename (filename)

Text for PARAM EXECUTION-LOG does not specify a
valid external file name.

Invalid environment The CRE cannot locate the Master Control Block
(MCB), or the version level of the MCB is newer than
the release level of the CRE.

Invalid environment - Unable to
obtain minimum process heap
space

CRE could not obtain adequate process heap space.

Invalid startup message volume
value (text)

Invalid volume/subvolume field value; message text
appears when the field value is printable.

Log filename unknown CRE cannot determine the name of the standard log
file.

Missing startup message (nnnnn) $RECEIVE read failed, or the wrong message was
sent. File-system error nnnnn appears when
available.

Not closed by ancestor (nnnnn) $RECEIVE read failed. File-system error nnnnn
appears when relevant.

Not opened by ancestor (nnnnn) FILE_OPEN_ failed. File-system error nnnnn appears
when relevant.

Premature takeover Backup process took over before process memory
was fully initialized.

Signal during initialization Signal or trap occurred before standard log file
initialization was complete.

STDERR assigned invalid filename
(text)

Text in Assign message for STDERR does not specify
a valid external file name. Message text appears
when available; otherwise, file-system error nnnnn
appears if relevant.

Unable to initialize signal handling Native CRE could not initialize default signal handler.

Unable to open $RECEIVE (nnnnn) FILE_OPEN_ failed. File-system error nnnnn appears
when relevant.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-14

CRE Services Initializing the TNS CRE From TAL
The following errors can occur during CRE initialization after the CRE has set up its
environment. Section 10, Run-Time Diagnostic Messages, describes these errors in
greater detail. The CRE writes a message to standard log and terminates your
program if any of these errors occur:

Initializing the TNS CRE From TAL
If your program’s main routine is written in TAL and you want to use the services of the
CRE, you must call the TAL_CRE_INITIALIZER_ library procedure when your program
begins execution. The TAL_CRE_INITIALIZER_ library procedure is located in the TAL
run-time library, TALLIB. The TAL Programmer’s Guide describes the
TAL_CRE_INITIALIZER_ library procedure.

Initializing the Native CRE From pTAL
A pTAL program cannot initialize the native CRE. If your program’s main routine is
written in pTAL and you want to use the services of the CRE, you must recode the
main routine as a normal routine. Then write a C main function that calls the pTAL
routine.

Program Termination
In the Guardian environment, the CRE performs the tasks described in this subsection.
In the OSS environment, the CRE does not:

• Ensure that all CRE buffers are empty
• Close standard files

In the TNS environment, if your program uses high-level language constructs to stop
its run, such as the COBOL STOP RUN statement, the FORTRAN STOP statement ,or

Message Number Cause

17 The CRE could not obtain space from the run-time heap (user data
segment).

21 The operating system returned an error when the CRE tried to read an
initialization message such as an ASSIGN message or the PARAM
message. The message text includes the error number returned by the
operating system.

23 The CRE was unable to convert a file name from internal to external
format.

24 Multiple ASSIGNs apply to the same file.

25 An ASSIGN of the form filename appears in more than one program.

26 A PARAM does not contain a valid value.

27 A PARAM of the form filename appears in more than one program.

55 A parameter to the CRE initializer is missing or invalid.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-15

CRE Services CRE_Terminator_ Procedure
the C exit() function, the compiler generates a call to a language-specific run-time
library function for program termination. For programs that run in the TNS CRE, the
language-specific run-time library function calls the CRE_Terminator_ procedure.

CRE_Terminator_ Procedure
The syntax used to call the CRE_Terminator_ procedure is described in Section 6,
CRE Service Functions. CRE_Terminator_ performs the following tasks:

• In the TNS environment, it invokes a language-specific termination function for
each language, except TAL, represented in your program. In the native
environment, it invokes a NonStop operating system routine that calls all shared
run-time library termination routines.

• If your program terminates normally or because of a logic problem:

° Closes standard input if it is open.

° Ensures that all records in CRE buffers for standard output and standard log
are written, and closes standard output and standard log.

The CRE closes only the three standard files. All other files are closed from the
run-time library function or user routine that opened them. Otherwise, they are
closed implicitly when the CRE calls the PROCESS_STOP_ system procedure.

• Invokes PROCESS_STOP_, passing it CRE_Terminator_ parameters that
correspond to PROCESS_STOP_ parameters.

Handling Error Conditions in CRE_Terminator_
If an error occurs while CRE_Terminator_ is executing, CRE_Terminator_ terminates
your program as smoothly as possible by taking the following actions:

• If CRE_Terminator_ detects that its data has been corrupted, it repairs the
corrupted data if possible. If it cannot repair the corrupted data, CRE_Terminator_
invokes PROCESS_STOP_, specifying ABEND and the text “Corrupted
environment.”

• If a trap occurs in the TNS environment while CRE_Terminator_ is terminating your
program, CRE_Terminator_ invokes PROCESS_STOP_, specifying ABEND and
the text “Trap during termination.”

• If a signal occurs in the native environment while CRE_Terminator_ is terminating
your program, CRE_Terminator_ invokes PROCESS_STOP_, specifying ABEND
and the text “Signal during termination.”

• If your program does not pass the Completion_Status parameter to
CRE_Terminator_, CRE_Terminator_ attempts to write the message “Missing or
invalid parameter” to standard log. If for any reason CRE_Terminator_ cannot write
the message, it uses a generic CRE completion error value for the status code and
reports the text “Missing or invalid parameter.”
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-16

CRE Services Sharing Standard Files
• If CRE_Terminator_ cannot close a standard file, it writes an error to standard log.
If it cannot write to standard log, CRE_Terminator_ uses a generic completion error
value for the status code and reports the text “Close error on IN”, “Close error on
OUT”, or “Close error on log” according to which standard file it cannot close.

• If one of the values supplied as a parameter that CRE_Terminator_ passes on to
PROCESS_STOP_ is rejected, CRE_Terminator_ invokes PROCESS_STOP_,
specifying ABEND and the text “Invalid termination parameter.”

When the CRE completes its termination logic, it returns a status code to the process
that created your process, typically the TACL command interpreter. The status code
specifies the reason your process terminated. See CRE_Terminator_ on page 6-42 for
more details on CRE termination and termination codes.

Sharing Standard Files
The C, COBOL, and FORTRAN languages provide a predefined input file—called
“standard input”—and a predefined output file—called “standard output”. Your program
can use standard input and standard output without having to write extensive code to
define, open, or manage them. For most languages, a third file—“standard log”—is
also predefined. (FORTRAN does not support unit connection to standard log except
for messages specified in FORTRAN PAUSE and STOP statements.)

The CRE enables a program to share the standard files—standard input, standard
output, and standard log—with routines written in more than one language. With the
CRE, shared standard files accessed from routines written in different languages
behave the same as if they were unshared and accessed from only one language.

In the Guardian environment, the CRE performs the tasks described in this subsection.
In the OSS environment, the CRE does not support standard files because the OSS
file system provides this feature.

Sharing Standard Files Without Using the CRE
For programs that do not run in the CRE, I/O requests to standard input, standard
output, and standard log are processed by the language-specific run-time library for the
requesting routine. The run-time library sends requests for system services directly to
the HP NonStop operating system. Running mixed-language programs without the
CRE is limited because of incompatibilities between run-time libraries.

For example, if you have routines written in C, COBOL, and TAL, requests to write to
standard output from C routines are processed by the C run-time library, requests from
COBOL routines are processed by the COBOL run-time library, and requests from TAL
routines must be sent by the routines directly to the operating system. Because the
three routines cannot share the same operating system file open, each establishes a
separate operating system open to the file. If routines in each of the three languages
open and write to the same disk file, data from each of the three run-time libraries

Note. TNS environment language modules cannot share with native language modules.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-17

CRE Services Sharing Standard Files Using the CRE
might write to the same disk location because there is no method for the run-time
libraries to share the file record pointer. That is, because each routine begins writing at
the beginning of the same file, the first record written by each of the program’s routines
writes to the same disk location—thereby overwriting data already written there by
another routine in the same program.

Figure 2-1 on page 2-18 is an example of a mixed-language TNS program that has
COBOL, TAL, and C routines, and does not run in the CRE. The main routine is written
in COBOL. The C and COBOL run-time libraries call system procedures to access a
file. Because the TAL library does not provide support for input or output, TAL routines
must send I/O requests directly to the NonStop operating system.

Sharing Standard Files Using the CRE
For Guardian programs that run in the CRE, I/O requests to standard input, standard
output, and standard log are processed by the language-specific run-time library for the
requesting routine. However, the run-time library requests system services by calling
CRE library functions rather than by calling system procedures directly. If the CRE
receives a request to open a standard file that it has not opened at the operating
system level, it calls the FILE_OPEN_ system procedure to open the file. Having
opened the file, the CRE grants a connection—a path—to the same file open for each
additional request that the CRE receives to open the same standard file. The CRE
coordinates requests for new connections and requests to release previously granted
connections. With the CRE, the standard files belong to a program as a whole, rather
than to any one routine or run-time library of a program.

Figure 2-1. A C-Series Mixed-Language Process

C Run-Time Library

201VST .VSD

 $VOL

 SUBVOL.FILE

0 1 2 3

COBOL:

TAL:

C:

 COBOL Run-Time Library

NonStop Operating System
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-18

CRE Services Sharing Standard Files Using the CRE
For example, if you have routines written in C, COBOL, and TAL, requests to write to
standard output from each of the routines can be coordinated by the CRE. (The C and
COBOL run-time libraries call CRE functions directly. Because the TAL run-time library
does not support I/O operations, routines written in TAL must call CRE functions
directly in order to use the standard files features of the CRE.) If routines in each of the
three languages open and write to the same disk file, no data is lost because the CRE
enables the routines to share the file record pointer.

Standard input and standard output usually correspond to the files you specify with the
IN and OUT parameters when you run a program from TACL. The CRE uses the file
names you specify on PARAMs and ASSIGNs to locate standard log. See Standard
Log on page 2-33 for a detailed explanation of how the CRE determines the physical
name of standard log.

The CRE opens a standard file only when a run-time library for one of your routines
requests that CRE open the file. Standard log, however, is also used by the CRE itself.
The CRE might open it before it receives a request from one of your routines. The CRE
library, run-time libraries, and your routines can write diagnostic messages to standard
log. CRE_File_Message_ on page 6-9 describes how you can write messages to
standard log.

The CRE closes a standard file only when all routines with connections to a standard
file close the file. Your program might need to close all opens to a file in order to
release the file. For example, you might want to print a spooler file without terminating
your program.

The following legend applies to Figure 2-2 on page 2-20 through Figure 2-9 on
page 2-27.

Figure 2-2 through Figure 2-5 show a sequence of opens to standard output by a
program consisting of routines written in TNS COBOL, TAL, and C. In the example,
standard output is a disk file named $VOL.SUBVOL.FILE. The main routine is written
in COBOL.

• Figure 2-2 on page 2-20 shows a quiescent system. Standard output has not been
opened by any routine. There are no operations in progress so all paths are
dashed lines and all objects are white boxes.

• Figure 2-3 on page 2-21 shows an active TNS COBOL routine. However, TNS
COBOL routines do not explicitly open standard files. Instead, the TNS COBOL
run-time library opens standard output the first time a TNS COBOL routine
executes a DISPLAY statement.

202VST .VSD

A dashed line is a path that exists but is not currently active.
A solid line is a path that is active for the current operation.
A white object is inactive for the current operation.
A shaded object is active for the current operation.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-19

CRE Services Sharing Standard Files Using the CRE
• Figure 2-4 on page 2-22 shows the TAL routine opening standard output by calling
CRE_File_Open_. The path from TAL to the CRE is a solid line and, because this
is the first time a routine has requested a connection to standard output, the CRE
calls the system procedure FILE_OPEN_. The path to the operating system is a
solid line and the operating system box is shaded. When the call to FILE_OPEN_
completes, the CRE grants the TAL routine a connection to the file and returns the
connection number to the TAL routine.

• Figure 2-5 on page 2-23 shows the C routine opening standard output. Because
the main routine is not written in C, the C run-time library does not open standard
input, standard output, or standard log when your program begins execution.
Therefore, the C routine must call the fopen_std_file() library function for
each standard file that it accesses.

When the C routine calls fopen_std_file(), the C run-time library calls the
CRE to open standard output. The CRE does not call FILE_OPEN_ because the
CRE already has an open to $VOL.SUBVOL.FILE as a result of the preceding TAL
request. The CRE grants the C routine a connection to $VOL.SUBVOL.FILE and
returns the connection to the C run-time library. The operating system box in
Figure 2-5 on page 2-23 is not shaded because the CRE does not send an open
request to the operating system.

Figure 2-2. Using the CRE—Mixed-Language Process—Quiescent State

C Run-Time Library

203VST .VSD

 $VOL

 SUBVOL.FILE

0 1 2 3

COBOL:

TAL:

C:

 COBOL Run-Time Library

NonStop Operating System

 Common Run-Time Environment Library
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-20

CRE Services Sharing Standard Files Using the CRE
Figure 2-3. Using the CRE—The COBOL Routine Defaults Opening Standard
Output

COBOL: No special action required to open file

TAL:

C:

C Run-Time Library

204VST .VSD

 $VOL

 SUBVOL.FILE

0 1 2 3

 COBOL Run-Time Library

NonStop Operating System

 Common Run-Time Environment Library
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-21

CRE Services Sharing Standard Files Using the CRE
Figure 2-4. Using the CRE—The TAL Routine Opens Standard Output

 Common Run-Time Environment Library

COBOL:

TAL: CALL CRE_FILE_Open_(CRE^Standard^Output);

C:

C Run-Time Library

205VST .VSD

 $VOL

 SUBVOL.FILE

0 1 2 3

 COBOL Run-Time Library

NonStop Operating System
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-22

CRE Services Sharing Standard Files Using the CRE
Figure 2-6 through Figure 2-9 repeat the same sequence as shown in Figure 2-2
through Figure 2-5. In Figure 2-7 through Figure 2-9, however, a routine from each of
COBOL, TAL, and C writes a record to standard output.

• Figure 2-6 on page 2-24 shows a quiescent system. Standard output has been
opened by routines written in C and TAL.

• Figure 2-7 on page 2-25 shows the COBOL routine executing a DISPLAY verb to
write the letter A to standard output. Before calling the CRE to write the letter A,
the COBOL run-time library calls the CRE to open standard output. The CRE
grants a connection to the already open file and returns to the COBOL run-time
library, which writes the letter A to standard output. The letter A appears at the first
logical location in the file $VOL.SUBVOL.FILE.

• Figure 2-8 on page 2-26 shows a TAL routine writing a record to standard output.
Although this is the first TAL write to standard output, its record, containing the
letter B, is written to the second record of standard output.

• Figure 2-9 on page 2-27 shows a C routine writing a record to standard output.
Although this is the first C write to standard output, its record, containing the letter
C, is written to the third record of standard output.

Figure 2-5. Using the CRE—The C Routine Opens Standard Output

COBOL:

TAL:

C: fopen_std_file(STDOUT, FALSE);

C Run-Time Library

206VST .VSD

 $VOL

 SUBVOL.FILE

0
 1 2

3

 COBOL Run-Time Library

NonStop Operating System

 Common Run-Time Environment Library
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-23

CRE Services Sharing Standard Files Using the CRE
Figure 2-6. Using the CRE—Quiescent State With Standard Output Open

C Run-Time Library

207VST .VSD

 $VOL

 SUBVOL.FILE

0
 1 2

3

COBOL:

TAL:

C:

 COBOL Run-Time Library

NonStop Operating System

 Common Run-Time Environment Library
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-24

CRE Services Sharing Standard Files Using the CRE
Figure 2-7. Using the CRE—The COBOL Routine Writes to the File
$VOL.SUBVOL.FILE

COBOL: DISPLAY “A”

TAL:

C:

C Run-Time Library

208VST .VSD

 SUBVOL.FILE

3

 COBOL Run-Time Library

NonStop Operating System

 Common Run-Time Environment Library

 1

 $VOL

2
0
A

Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-25

CRE Services Sharing Standard Files Using the CRE
Figure 2-8. Using the CRE—The TAL Routine Writes to the File
$VOL.SUBVOL.FILE

COBOL:

TAL: CALL CRE_File_Output_(fn, “B”);

C:

C Run-Time Library

209VST .VSD

 $VOL

 SUBVOL.FILE

2 3

 COBOL Run-Time Library

NonStop Operating System

 Common Run-Time Environment Library

0
 1

A
B

Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-26

CRE Services Using CRE Functions to Access the Standard Files
Using CRE Functions to Access the Standard Files
Except under unusual circumstances, use only high-level language constructs to
access standard files. For programs running in the CRE, each language-specific run-
time library calls CRE functions to process your requests. Under some circumstances,
however, you might need to invoke CRE functions or system procedures directly. For
example, you might invoke CRE_File_Control_ to issue a page eject command to a
printer. If your program invokes CRE functions or system procedures directly, you must
ensure that the routines and procedures you invoke do not alter or interfere with the I/O
state maintained by the CRE.

The CRE provides the following functions for standard files. The functions are
described in Section 6, CRE Service Functions.

Figure 2-9. Using the CRE—The C Routine Writes to the File $VOL.SUBVOL.FILE

CRE_File_Close_ CRE_File_Open_ CRE_Hometerm_Open_

CRE_File_Control_ CRE_File_Output_ CRE_Log_Message_

CRE_File_Input_ CRE_File_Retrycheck_ CRE_Spool_Start_

CRE_File_Message_ CRE_File_Setmode_

COBOL:

TAL:

C: printf(“C\n”);

C Run-Time Library

210VST .VSD

 $VOL

 SUBVOL.FILE

3

 COBOL Run-Time Library

NonStop Operating System

 Common Run-Time Environment Library

2 10
A B C
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-27

CRE Services Determining When Standard Files Are Opened
Determining When Standard Files Are Opened
The language in which the main routine is written determines when and if standard files
are opened. If the main routine is written in C, the C run-time library opens the three
standard files as part of program initialization unless the C main routine specifies the
nostdfiles pragma. If the main routine is written in COBOL, FORTRAN, or TAL,
standard files are opened only when routines in those languages explicitly execute a
statement that opens a standard file.

If a program contains C routines and the main routine is not written in C, one of the C
routines must open explicitly each standard file before any C routine in the program
accesses that standard file. You open standard files in C by calling the C library
function fopen_std_file():

fopen_std_file(file, die_on_error)

fopen_std_file() opens a connection to a standard file.

The Guardian TNS C Library Calls Reference Manual describes the
fopen_std_file() library function.

See the reference manual for each language for further information on opening
standard files.

Using Terminals and Process
If the physical file specified for standard input is the same as the physical file specified
for either standard output or standard log (or both), and the device type of standard
input is either a terminal or a process (but not a spooler collector), the CRE opens the
specified file only once and uses the same operating system file open when your
program reads from standard input or writes to standard output or standard log.

Program Startup Message
When your program begins execution, the CRE reads the startup message sent to it by
the process that starts your program. The discussions that follow frequently reference
two of the fields of the startup message: INFILE and OUTFILE. Figure 2-10 shows the
locations of INFILE and OUTFILE in the startup message. The Guardian Programmer’s
Guide describes all of the fields in the startup message.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-28

CRE Services Standard Input
Standard Input
Standard input is a special file that is available to all programs that use the CRE. You
must open it for read-only access.

The device for standard input must support sequential read access. The CRE supports
the following devices for standard input:

• A process (other than a spooler collector)
• $RECEIVE, described in Using $RECEIVE on page 2-34
• A disk file
• A terminal

The CRE determines the file name for standard input as follows. If the INFILE name in
your program’s startup message is:

• Not the name of your program’s home terminal, the CRE uses the INFILE name
from the startup message for standard input.

• Blanks, the CRE does not open a system file but accepts open requests and
returns end of file each time your program reads from standard input.

• The name of your program’s home terminal and you do not specify the
EXECUTION-LOG PARAM, the CRE opens your home terminal if your program
opens standard input.

• The name of your program’s home terminal and you specify a file name as the
EXECUTION-LOG, the CRE uses the file you specify for the EXECUTION-LOG as
standard input.

For example, if your home terminal is named $TERM and you specify AFILE for
EXECUTION-LOG, the CRE opens AFILE if a routine in your program opens
standard input:

PARAM EXECUTION-LOG AFILE
RUN myprog / IN $TERM, /

Figure 2-10. Process Startup Message Layout

211VST .VSD

-1
 vol
name

subvol
 name

Msg
Code

Process
Defaults

 vol
name

subvol
 name

 file
 name

INFILE

 vol
name

subvol
 name

 file
 name

OUTFILE Cmd-Line
 String
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-29

CRE Services Standard Input
If you do not specify the IN parameter, TACL passes the name of your terminal as
the IN parameter, which has the same effect as explicitly specifying your home
terminal as the IN parameter:

PARAM EXECUTION-LOG AFILE
RUN myprog

• The name of your program’s home terminal and you specify an asterisk for the
EXECUTION-LOG, the CRE does not open a file for standard input. Instead, the
CRE returns end of file each time your program reads from standard input:

PARAM EXECUTION-LOG *
RUN myprog / IN $TERM, /

If you do not specify the IN parameter, TACL passes the name of your terminal as
the IN parameter, which has the same effect as explicitly specifying your home
terminal as the IN parameter:

PARAM EXECUTION-LOG *
RUN myprog

Note. The CRE does not recognize a TACL ASSIGN for a logical file called STDIN.

Figure 2-11. Establishing the File Name of Standard Input

no

Error

212VST .VSD

INFILE in
startup message
is home term

 ?

 INFILE
 in startup
message is

blanks
?

Start

PARAM
EXECUTION-LOG
 present

 ?

PARAM
EXECUTION-LOG

is *
 ?

PARAM
EXECUTION-LOG
 is file name

 ?

yes yes

yes yes

yes

no no

no Use INFILE from
startup message

No INFILE. Reads
from standard input
return end of file.

 Use file name
specified in

EXECUTION-LOG

no
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-30

CRE Services Standard Output
If you start your program from a TACL command line or a TACL macro, the INFILE in
the startup message is the name you specify in the TACL IN parameter or, if you do not
specify an IN parameter, then the name by which TACL knows your terminal.

If a program other than TACL starts your program, INFILE in the startup message
contains whatever file name the other program stores when it creates the startup
message.

Standard Output
Standard output is a special file that is available to all programs that use the CRE. You
must open it for write-only access.

The device for standard output must support sequential write access. The CRE
supports the following devices for standard output:

• A process (including a spooler collector)
• An operator console
• A disk file
• A terminal
• A printer

The CRE determines the file name for standard output as follows. If the OUTFILE
name in your program’s startup message is:

• Not the name of your program’s home terminal, the CRE uses the OUTFILE name
from the startup message for standard output.

• Blanks, the CRE does not open a system file but accepts open requests, discards
records that you write to standard output, and indicates a successful write each
time your program writes to standard output.

• The name of your program’s home terminal and you do not specify the
EXECUTION-LOG PARAM, the CRE opens your home terminal if your program
opens standard output.

• The name of your program’s home terminal and you specify a file name as the
EXECUTION-LOG, the CRE uses the file you specify for the EXECUTION-LOG as
standard output.

For example, if your home terminal is named $TERM and you specify AFILE for
EXECUTION-LOG, the CRE opens AFILE if a routine in your program opens
standard output:

PARAM EXECUTION-LOG AFILE
RUN myprog / OUT $TERM, /

Note that if you specify an EXECUTION-LOG PARAM, the CRE will not write to
your home terminal under any circumstances, even if EXECUTION-LOG specifies
the name of your home terminal.

• The name of your program’s home terminal and you specify an asterisk for the
EXECUTION-LOG, the CRE does not open a file for standard output. Instead, each
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-31

CRE Services Standard Output
time your program writes to standard output, the CRE discards the record and
indicates a successful write:

PARAM EXECUTION-LOG *
RUN myprog / OUT $TERM, /

• The name of your program’s home terminal and you specify the program’s home
terminal as the EXECUTION-LOG, the CRE uses the file you specify for the
EXECUTION-LOG as standard output.

If you start your program from a TACL command line or TACL macro, the OUTFILE in
the startup message is the name you specify in the TACL OUT parameter or, if you do
not specify an OUT parameter, then the name by which TACL knows your terminal.

If a program other than TACL starts your program, the OUTFILE in the startup
message contains whatever file name the other program specifies when it creates the
startup message.

Note. The CRE does not recognize a TACL ASSIGN for a logical file called STDOUT.

Figure 2-12. Establishing the File Name of Standard Output

213VST .VSD

Start

 OUTFILE in
startup message
is home term

 ?

PARAM
EXECUTION-LOG
 present

 ?

 PARAM
EXECUTION-LOG

 is *
 ?

 PARAM
EXECUTION-LOG

 is file name

 ?

Error
yes yes

yes yes

yes

no no

no no

no OUTFILE
 in startup message
 is blanks
 ?

Use OUTFILE from
startup message

No OUTFILE. Reads
 from standard input
 return end of file.

 Use file name
specified in

EXECUTION-LOG
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-32

CRE Services Standard Log
Standard Log
Standard log is a special file that is available to all programs that use the CRE. If you
open standard log explicitly, you must open it for write-only access. Your program does
not have to declare it or specify its attributes although it can do so. The CRE and run-
time libraries write messages to standard log such as error messages, warnings, and
informational messages. A user program can also send messages to standard log by
calling CRE_Log_Message_. See CRE_Log_Message_ on page 6-25.

A FORTRAN program cannot open standard log using a default unit number, as it can
standard input (UNIT 5) and standard output (UNIT 6). A FORTRAN program can,
however, use the FORTRAN routines PAUSE or STOP to write a message to standard
log. The FORTRAN Reference Manual describes the PAUSE and STOP statements.

The device for standard log must support sequential write access. The CRE supports
the following devices for standard log:

• A process (including a spooler collector)
• The operator console
• A disk file
• A terminal
• A printer

By default, the CRE writes log messages to your process’s home terminal. You can
direct log messages to another file, however, by specifying a file name in a TACL
ASSIGN command or PARAM command.

• If an ASSIGN specifies the logical name STDERR, the CRE uses the physical
name from the ASSIGN as the name of standard log.

• If a PARAM specifies EXECUTION-LOG, the CRE uses the value of the
EXECUTION-LOG PARAM as the name of standard log. If the EXECUTION-LOG
PARAM specifies an asterisk (*), the CRE does not open a file for standard log and
discards messages that your program writes to standard log.

• If an ASSIGN specifies STDERR and a PARAM specifies EXECUTION-LOG, the
CRE uses the physical name from the ASSIGN unless the physical name specifies
your home terminal, in which case the CRE uses the value of the
EXECUTION-LOG PARAM or, if the EXECUTION-LOG PARAM value is an
asterisk, the CRE does not open standard log.

The CRE does not open a file for standard log if the ASSIGN for STDERR specifies
either:

• Blanks for the file name

• The process’s home terminal, and the value of the EXECUTION-LOG PARAM is
an asterisk

Although the CRE might not open a file for standard log, it accepts requests to open
standard log and requests to write to standard log, but the CRE discards the data you
write and indicates a successful write.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-33

CRE Services Using $RECEIVE
The flow chart in Figure 2-13 on page 2-34 shows how the CRE determines the name
of standard log.

Using $RECEIVE
In both the TNS and native environments, processes have access to a special file
called $RECEIVE. Your process receives messages sent to your process from other
processes (from the operating system, from your backup process, and so forth) by
reading $RECEIVE. Like standard files discussed earlier in this section, $RECEIVE is
a resource that is available equally to all routines in your process, not to any one
routine or language-specific run-time library.

In the Guardian environment, the CRE performs the tasks described in this subsection.
Processes running in the OSS environment do not receive startup, ASSIGN, or

Figure 2-13. Establishing the File Name of Standard Log

Start

ASSIGN
specifies
STDERR

ASSIGN
specifies home

terminal?

yes

yesno

no

no Use ASSIGN value

yes

PARAM
EXECUTION-LOG

present?

 Use default
name if standard
log is opened

Do not open
standard log

 Use name in
EXECUTION-LOG

PARAM

Run-time error

yes

yes yes

no no

no

PARAM
EXECUTION-LOG
 is valid file

name
?

PARAM
EXECUTION-LOG

is *
?

PARAM
EXECUTION-LOG

present

?

.VSD214VST
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-34

CRE Services $RECEIVE and Program Initialization
PARAM messages; the CRE, therefore, does not process such messages when it runs
in the OSS environment.

$RECEIVE and Program Initialization
During program initialization, the CRE reads initialization messages from $RECEIVE.
At the end of program initialization, the CRE closes $RECEIVE. $RECEIVE remains
closed until the CRE receives a request to open it or the CRE itself needs to open it.

Messages Received From $RECEIVE
Your program can receive the following kinds of messages from $RECEIVE:

• System messages that alert your program to important system state changes (for
example, “CPU down” messages, process ABEND messages, and so forth).

• System messages sent by the operating system because a process has called a
system procedure that addresses your process (for example, calls to
FILE_OPEN_, SETMODE, CONTROL, and so forth).

• Messages sent to your process by other processes.

$RECEIVE and the Languages Supported by the CRE
You can read $RECEIVE from any language supported by the CRE. There are two
ways to access $RECEIVE, by calling either CRE functions only or system procedures
only.

TNS CRE
A program can use TNS CRE functions to access $RECEIVE.

Native CRE
A program that runs in the native CRE can use native CRE functions to access
$RECEIVE.

Using CRE Functions to Access $RECEIVE
When a COBOL or FORTRAN routine opens $RECEIVE, the language-specific run-
time library calls the CRE functions that manage $RECEIVE. C or C++, and TAL or
pTAL routines can participate in this model by calling the CRE functions that manage
$RECEIVE. The CRE grants a connection for each open, but all connections share the
same file attributes and the same operating system file open. Functions that manage
$RECEIVE are described in Section 6, CRE Service Functions.

The CRE opens $RECEIVE for exclusive access. If the CRE opens $RECEIVE, no
other routine in your program can open it. If a routine in your program opens
$RECEIVE by a direct call to FILE_OPEN_, or if a C run-time library opens
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-35

CRE Services Using a Spooler Collector
$RECEIVE, the CRE will not be able to open $RECEIVE because it requires exclusive
access.

To access $RECEIVE, a COBOL or FORTRAN run-time library function, or C/C++,
TAL, or pTAL routine opens $RECEIVE by calling CRE_Receive_Open_Close_ with
the open variant. The run-time library function or other-language routine reads
messages from $RECEIVE by calling CRE_Receive_Read_ and replies to messages
from $RECEIVE by calling CRE_Receive_Write_.

Using System Procedures to Access $RECEIVE
Routines written in any of the languages supported by the CRE can access $RECEIVE
by calling system procedures directly. All HP languages include syntax to call system
procedures. To manage $RECEIVE, routines open it by calling the FILE_OPEN_
system procedure. Routines read and reply to messages from $RECEIVE using the
READUPDATEX and REPLYX system procedures. If you access $RECEIVE using
system procedures, do not use language features that access $RECEIVE for you.

Using a Spooler Collector
You can specify a spooler collector as the device for either standard output or standard
log. The following considerations apply to using spooling with the CRE:

• The CRE uses buffered (level-3) spooling for standard output unless you specify
unbuffered spooling.

• You cannot use buffered spooling for standard log. (If you did, you might lose
messages if your program terminates abnormally—precisely the case for which
you want to see the last messages written to standard log.)

• CRE_File_Open_ does not invoke CRE_Spool_Start_ or the SPOOLSTART
system procedure. However, CRE_File_Output_ invokes CRE_Spool_Start_ if
CRE_File_Open_ opens a file that is a spooler collector.

• A TAL routine only needs to call CRE_Spool_Start_ explicitly to specify parameters
to CRE_Spool_Start_ that are not the default parameters. For example,
CRE_Spool_Start_ writes one copy of the specified file to the spooler collector. If
your program requires more than one copy of the output, call CRE_Spool_Start_
after you call CRE_File_Open_ and specify the number_of_copies parameter.

In the Guardian environment, the CRE performs the tasks described in this subsection.
In the OSS environment, the CRE does not support any of the tasks described in this
subsection because the CRE provides spooling features only to support standard files
and it does not support standard files in the OSS environment.

For more details, see CRE_Spool_Start_ on page 6-27.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-36

CRE Services Memory Organization
Memory Organization
This subsection describes the overall layout of memory for programs that use the
services of the CRE, and the data spaces that your program can use to share data.

TNS CRE Memory
In the TNS CRE, the data spaces that your program can use to share data are:

• The extended stack
• The user heap
• Global data

The CRE allocates memory using the same layout in the OSS and Guardian
environments. For a given total amount of memory allocated to a process, however,
the amount of memory available in the OSS environment might be somewhat different
than the amount available to the same process running in the Guardian environment.

Overall Memory Organization
The TNS CRE, the language-specific run-time libraries, and your code share the same
address space for their data, although each has its own block of memory within that
space. The TNS CRE and run-time libraries allocate their data in the upper 32K words
of the user data segment and in extended memory. If your program specifies a small-
memory model, the TNS CRE allocates the heap in the lower 32K words of your user
data segment, just below the run-time stack. If your program specifies a large-memory
model or a wide-memory model, the TNS CRE allocates the heap as the last data
block in the extended segment.

If you use the TNS CRE, Binder ensures that the data structures for the language-
specific run-time libraries and for the TNS CRE do not overlay each other.

Your program maintains its data in the lower 32K words of the user data segment and
in extended memory.

Figure 2-14 on page 2-38 shows the overall memory organization for a program that
runs in a small-memory model and uses the TNS CRE. Figure 2-15 on page 2-39
shows the overall memory organization for a program that runs in a large-memory
model or a wide memory model, and that uses the TNS CRE. Shaded boxes in the
figures contain TNS CRE or language-specific run-time library data. Note that:

• The TNS CRE and run-time libraries store their data in the upper 32K words of the
user data segment, beginning at the 32K-word boundary.

• The TNS CRE allocates the user heap in the lower 32K words of the user data
segment just below the data stack in a small-memory model (Figure 2-14 on
page 2-38). The TNS CRE allocates the user heap in the extended memory
segment in a large-memory model and a wide-memory model (Figure 2-15 on
page 2-39).
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-37

CRE Services TNS CRE Memory
• TNS CRE data in the upper 32K words includes pointers to additional data items,
some of which might be in extended memory.

• The TNS CRE maintains a pointer at word 0 of the user data segment (G[0]) to the
TNS CRE’s Master Control Block (MCB). The TNS CRE and the run-time libraries
use the MCB pointer at G[0] to locate their private data.

• The TNS CRE maintains a pointer at word 1 of the user data segment (G[1]) to the
TNS CRE’s Heap Control Block (HCB).

Figure 2-14. Organization of a Small-Memory-Model Program Running in the
TNS CRE

215VST .VSD

 CRE Data
Run-Time Library Data

User Data Stack

User Heap
 (#HEAP)

User Global Data

Heap Control Block (HCB) Pointer

Master Control Block (MCB) Pointer

64K

32K

G[2]

G[1]

G[0]

User Data Segment
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-38

CRE Services TNS CRE Memory
The Extended Stack
The TNS CRE works with the extended stack model used by both TAL and FORTRAN.
No other languages use this model.

The model of the extended stack uses three data blocks:

• $EXTENDED#STACK is the extended stack itself, allocated in extended memory.

• EXTENDED#STACK#POINTERS is a structure with two fields.

#SX acts as the extended stack S-register.
#MX points to the last usable byte of memory.

• EXTENDED#STACK#FRAME is a single field L-register.

The User Heap
The TNS CRE manages the heap and allocates blocks from the heap to any routine in
your program that requests heap space. The C language includes syntax to request

Figure 2-15. Organization of a Large-Memory- or Wide-Memory Model Program
Running in the TNS CRE

216VST .VSD

 CRE Data
Run-Time Library Data

User Data Stack

User Global Data

Heap Control Block (HCB) Pointer

Master Control Block (MCB) Pointer

64K

32K

G[2]

G[1]

G[0]

User Data Segment

User Heap
 [#HEAP]

Extended Data Segment
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-39

CRE Services TNS CRE Memory
heap space. TAL routines cannot access the TNS CRE functions that allocate heap
space. Data allocated on the heap by a routine written in one language can be
accessed by a routine written in another language by passing the address of the data
from one routine to another. Routines that access the same data on the heap must
specify the same data layout, even if you must use language-specific syntax in each
language to describe the same data.

The heap is maintained in a data block called #HEAP. The TNS CRE allocates space
for #HEAP in the user data segment (just below your program’s run-time stack) if your
program uses a small-memory model, or in extended memory (after all other data
blocks) if your program uses a large-memory model or a wide-memory model.

Specifying the Size of the Heap
You can specify the size of the heap using:

The TNS CRE uses the heap size you specify as the initial size of the heap.

If a program uses a small-memory model, the heap is allocated in the user data
segment, just below the data stack. The TNS CRE uses the size you specify as the
initial size of the heap, but the TNS CRE does not increase the size of the heap once
your program begins running.

If a program uses a large-memory model or a wide-memory model, the heap is the last
block in the extended memory segment. The TNS CRE increases the size of the heap,
if needed, up to the maximum size of an extended memory segment, 127.5 MB. Your
program requires disk space to accommodate the extended memory segment.
Therefore, set the initial size of the heap to be only as large as your program requires.
Use the heap statistics feature to help you determine the size of the heap.

Requesting Space on the Heap:

• Only C routines can request space on the heap. Neither COBOL nor FORTRAN
supports pointers and, therefore, cannot request or access heap data. TAL
supports pointers but cannot call the TNS CRE to request heap space. A TAL
routine can, however, call a C routine to obtain heap space, after which the TAL
routine can access heap data using the pointer returned to it by the C routine.

• C routines request heap space by calling the C malloc() library function, and
return heap space by calling the C free() library function.

Construct Product Reference

HEAP pragma C C/C++ Programmer’s Guide

HEAP compiler directive TAL TAL Reference Manual

SET HEAP command Binder Binder Manual

Note. The TNS CRE does not support the HEAP PARAM. In the Guardian environment, you
can use compiler directives or Binder commands to achieve the same effect as the HEAP
PARAM.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-40

CRE Services Native CRE Memory
Accessing Heap Data:

• C and TAL routines can reference data allocated on the heap by storing the
address of the data into a pointer and referencing the pointer in an expression.
Routines written in COBOL and FORTRAN must call C or TAL routines to
reference heap data.

• A TAL routine can call a C routine to allocate or free heap space. The following
code fragment shows a TAL routine, Do_It, that calls a C routine, GETSPACE, to
get space from the heap. GETSPACE gets a block from the heap and stores a
value in the first 16-bit word of the block. When GETSPACE returns, its value is a
pointer to the newly allocated block. Do_It reads the value stored by GETSPACE.
The C routine is shown first:

#include <stddef.h> nolist
#include <stdlib.h> nolist
int *GETSPACE(int nbytes)
{ int *p;
 p = (int *) malloc(nbytes)
 if (p != NULL) *p = 100;
 return p;
}

The following TAL code calls the C routine GETSPACE:

INT(32) PROC TAL_Malloc = "GETSPACE" (nbytes) LANGUAGE C;
 INT nbytes;
EXTERNAL;

PROC Do_It;
BEGIN
 INT .EXT T_Ptr;

 @T_Ptr := TAL_Malloc(1000);
 IF (@T_Ptr = OD) OR (T_Ptr <> 100) THEN
 BEGIN
 ! Handle error...
 END;
END;

Heap Statistics:

• The TNS CRE maintains statistics that describe heap utilization.

• The native CRE does not support statistics that describe heap utilization.

Native CRE Memory
In the native CRE, the data spaces that your program can use to share data are:

• The user heap
• Global data

The native CRE allocates memory using the same layout in the OSS and Guardian
environments. For a given total amount of memory allocated to a process, however,
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-41

CRE Services Native CRE Memory
the amount of memory available in the OSS environment might be somewhat different
than the amount available to the same process running in the Guardian environment.

Overall Memory Organization
The following table shows the maximum size for the memory segments in the native
run-time environment.

The User Heap
The native CRE manages the heap and allocates blocks from the heap to any routine
in your program that requests heap space. The C and C++ languages include syntax to
request heap space. pTAL routines can access the native CRE functions that allocate
heap space. Data allocated on the heap by a routine written in one language can be
accessed by a routine written in another language by passing the address of the data
from one routine to another. Routines that access the same data on the heap must
specify the same data layout, even if you must use language-specific syntax in each
language to describe the same data.

The native CRE selects an appropriate initial size for the user heap. The native CRE
can increase the size of the user heap once your program begins running if more heap
space is needed.

Specifying the Size of the Heap and the Stack
You can specify a smaller maximum size for the heap using a linker utility.

The main stack has a default limit of 1 MB on G-series systems and 2 MB on H-series
systems, but you can increase this to a maximum of 32 megabytes either by calling the
PROCESS_LAUNCH_ procedure or by using a linker utility.

See the:

• nld Manual
• noft Manual
• ld Manual
• eld Manual
• Guardian Programmer’s Guide

for more information.

Memory Segment Maximum Size

Total of User Heap and Global Variables 128 MB for pre-G05 systems

Total of User Heap, Global Variables,
and Flat Segments

1120 MB for G05 and later systems

Stack 32 MB
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-42

CRE Services Using the Native Heap Managers
Requesting Space on the Heap
C routines request heap space by calling the C malloc() function, and return heap
space by calling the C free() function. pTAL routines do the same. C++ routines
request heap space by calling the new() function, and return heap space by calling
the delete() function.

Accessing Heap Data:

• C, C++, pTAL routines can reference data allocated on the heap by storing the
address of the data into a pointer and referencing the pointer in an expression.

• A pTAL routine can call a C or C++ routine to allocate or free heap space. The
following code fragment shows a pTAL routine, Do_It, that calls a C routine,
GETSPACE, to get space from the heap. GETSPACE gets a block from the heap
and stores a value in the first 16-bit word of the block. When GETSPACE returns,
its value is a pointer to the newly allocated block. Do_It reads the value stored by
GETSPACE. The C routine is shown first:

#include <stddef.h> nolist
#include <stdlib.h> nolist
int *GETSPACE(int nbytes)
{ int *p;
 p = (int *) malloc(nbytes)
 if (p != NULL) *p = 100;
 return p;
}

The following pTAL code calls the C routine GETSPACE:

INT(32) PROC TAL_Malloc = "GETSPACE" (nbytes) LANGUAGE C;
 INT(32) nbytes;
EXTERNAL;

PROC Do_It;
BEGIN
 INT .EXT T_Ptr;

 @T_Ptr := TAL_Malloc(1000D);
 IF (@T_Ptr = OD) OR (T_Ptr <> 100) THEN
 BEGIN
 ! Handle error...
 END;
END;

Using the Native Heap Managers
Beginning at the G06.15 release, the native CRE includes two heap managers:

• The high-performance heap manager, contained in product T1269G09
(NSK CRE/RTL).

The new heap manager is available only for programs that use the native CRE;
this includes native C, native C++, and ECOBOL or NMCOBOL programs.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-43

CRE Services Undetected Logic Errors Can Exist in Code that
Uses the Original Heap Manager
• The original heap manager, contained in product T8431G09 (Native CRE/RTL).
This heap manager is not available on H-series systems.

Both native heap managers offer two external features:

• The overwrite released-space feature, which you can use at run time to detect
errors in handling heap memory in your applications

• Programmatic setting of heap-management attributes, which you can use to
monitor particular attributes of heap management

Undetected Logic Errors Can Exist in Code that Uses the
Original Heap Manager

When a program releases dynamically allocated (heap) memory, the content of the
freed memory block is no longer valid and should not be accessed as if it were still
allocated.

Space can be released to the heap manager in several ways, including explicit calls to
the free() function or the C++ delete function. In addition, destruction of a C++
object can involve implicit release operations, and programs that use packages such
as tools.h++ typically create instances of implicit release operations when they
delete members of collections or elements of lists managed by these packages.

With the new high-performance heap manager, data in freed blocks is more likely to be
overwritten than with the original heap manager. For this reason, in some cases client
programs using the original heap manager could refer to data values in freed blocks
with impunity. However, if a client program using the new heap manager refers to data
values in freed memory blocks, unexpected results may occur, and the program may
fail altogether.

Therefore, HP recommends that you verify that your applications do not attempt to
access data in space that has been released. You can verify your applications by using
the overwrite released space feature.

Using the Overwrite Feature to Detect Logic Errors
If your NonStop server is running the NSK CRE/RTL (T1269), all your processes use
the new high-performance heap manager and they must be correct in their heap
usage.

You can identify programs that perform erroneous memory handling by using the
overwrite released-space feature. You can enable this feature by setting DEFINEs or
PARAMs, or by programmatically setting the RTL^Heap^erase^on^free attribute,
described in Table 2-5.

When the overwrite feature is enabled, if a program retrieves data from space it has
released (an invalid action), the program will no longer obtain the values that resided in
that space before the space was released. The value obtained may cause the program
to behave differently than intended, thus alerting you that invalid logic exists in the
program.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-44

CRE Services Using the Programmatic Heap-Management
Attributes
Guardian Commands to Enable Overwrite
To enable the overwrite released-space feature, use either the ADD DEFINE or the
PARAM command:

• ADD DEFINE =_ERASE_ON_FREE_, CLASS MAP, FILE ON

This DEFINE activates the overwrite released-space feature for each
process subsequently initiated by that TACL session. Note that this DEFINE
influences processes and is propagated or suppressed according to the
rules for all DEFINEs.

• PARAM -ERASE-ON-FREE- {ON|OFF}

The PARAM -ERASE-ON-FREE- can enable or disable the overwrite released-
space feature, and the PARAM takes precedence over the DEFINE
=_ERASE_ON_FREE_ when both are active. Thus, you can disable the overwrite
feature using the PARAM command even when the DEFINE
=_ERASE_ON_FREE_ is active.

OSS Commands to Enable Overwrite
Use either the ADD DEFINE or the EXPORT shell directive as follows:

• add_define =_ERASE_ON_FREE_ class=MAP file=ON

This DEFINE activates the overwrite released space feature for each process
subsequently initiated. Note that this DEFINE influences processes and is
propagated or suppressed according to the rules for all DEFINEs.

• export _ERASE_ON_FREE_={ON|OFF}

The environment variable _ERASE_ON_FREE_ can enable or disable the
overwrite released-space feature, and it takes precedence over the DEFINE
_ERASE_ON_FREE_ when both are active.

Using the Programmatic Heap-Management Attributes
Both the original and the high-performance heap managers enable you to set and
query certain attributes. Table 2-5, Heap-Management Attributes for the High-
Performance Heap Manager, on page 2-46, lists the attributes, their default values, and
their limits. For example, you can monitor and, to some extent, control the allocation of
flat extended segments performed by the heap manager. Table 2-5 lists the attributes
in the format used for pTAL and declared in the RTLDECS file. The format used for C
and C++, which is declared in the RTLDECH file, uses underscores (_) instead of
circumflexes (^) in the attribute names.

To query and set heap-management attributes, you use the
RTL_heap_getattribute_ and the RTL_heap_setattribute_ procedures,
which are defined in the RTLRDECS file for pTAL, and in the RTLDECH file for C and
C++.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-45

CRE Services Using the Programmatic Heap-Management
Attributes
Setting Heap-Management Attributes
You can set five heap attributes: minimum block, erase on free, erase on get, segment
threshold, and segments max.

The C syntax of the routine for setting a heap-management attribute is:

int RTL_heap_setattribute_ (int Attribute, size_t Value) ;

Attribute is an ordinal that specifies the heap attribute. Table 2-5 on page 2-46
defines the ordinals for Attribute.

Value supplies the value to be assigned to the specified attribute.

The routine returns 0 if the call succeeds, or 1 if Attribute is not recognized, or 2 if
Value (interpreted as a signed integer) is negative.

Table 2-5. Heap-Management Attributes for the High-Performance Heap Manager
(page 1 of 2)

Attribute Name Definition and Default Value Attribute Value

RTL^Heap^min^block Minimum size in bytes of a block
allocated from the heap space. Can
be used to prevent accumulation of
numerous unusable chunks of heap
space.

0D

RTL^Heap^erase^on^free Zero = Off

Nonzero = On
(The heap manager overwrites the
contents of released space with
repetitions of the hexadecimal value
FFFC3C3C.) Can be used to identify
programs that erroneously use data
from freed blocks.

1D

RTL^Heap^erase^on^get Zero = Off

Nonzero = On
(The heap manager initializes the
contents of allocated space with
repetitions of the hexadecimal value
FFFC2B2B.) Can be used to identify
where a program fails to initialize
dynamically allocated space.

2D

RTL^Heap^segment^
threshold

The size in bytes beyond which the
heap manager can optionally allocate
flat extended segments. Below this
size, the heap manager will not
allocate flat or external segments.

Default value: 16384 * 2048
(33,554,432)

3D
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-46

CRE Services TNS CRE Traps and Exceptions
Querying Heap-Management Attributes
You can query the value of all the heap attributes listed in Table 2-5. However, the
following six heap attributes can only be queried and not set: space size, space active,
free blocks, free space, heap segments, and heap segment space.

The C syntax for the routine that queries heap-management attributes is:

int RTL_heap_getattribute_ (int Attribute, size_t *Value) ;

Attribute specifies the heap attribute.

Value references the data object to be assigned the attribute value.

TNS CRE Traps and Exceptions
This subsection describes how the TNS CRE handles run-time errors. It covers:

• Errors in program logic (including arithmetic overflow)
• Hardware traps (except arithmetic overflow)
• Catastrophic errors
• TNS CRE trap handler

RTL^Heap^segments^max The number of flat extended
segments that can be allocated
subsequently. Default value: 0 Range
of values: 0 to 32.

4D

RTL^Heap^space^size The heap space area size in bytes. 10D

RTL^Heap^space^active The number of bytes in the heap
space area that are currently active,
that is, the number of bytes that
belong to allocated blocks or to free
blocks that reside between allocated
blocks.

11D

RTL^Heap^free^blocks The count of the free space blocks
currently present in the heap space
area.

12D

RTL^Heap^free^space The sum of the sizes in bytes of all
free space blocks currently present in
the heap space area.

13D

RTL^Heap^segments The number of flat extended
segments already allocated.

14D

RTL^Heap^segment^space The number of bytes in flat extended
segments.

15D

Table 2-5. Heap-Management Attributes for the High-Performance Heap Manager
(page 2 of 2)

Attribute Name Definition and Default Value Attribute Value
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-47

CRE Services Errors in Program Logic
• Using ARMTRAP
• Writing messages to standard log
• Handling errors in TNS CRE-supported languages

In the Guardian environment, the TNS CRE performs the tasks described in this
subsection. In the OSS environment on G-series systems, the TNS CRE does not
process traps or exceptions. Traps are a feature of the Guardian environment. Signals
provide an analogous capability in the OSS environment. See the Open System
Services Programmer’s Guide for more information about signals.

In the OSS environment on G-series systems, the TNS CRE reports only non-
recoverable errors (for example, a corrupted run-time environment). See Reporting
CRE Errors in the OSS Environment on page 2-54 for more details.

Errors in Program Logic
An error in your program that is not caused by a trap (except for an arithmetic overflow
trap) and does not corrupt the CRE’s data or a run-time library’s data is considered a
program logic error. The following are examples of program logic errors:

• Arithmetic overflow

• Insufficient resources; for example, out of heap space

• Invalid actual parameter passed to a standard function

• Invalid result from a standard function

• I/O error when accessing a file

• Case statement in which the case selector does not match any case alternative,
including an “otherwise” alternative

Program logic errors are processed by the run-time library for the routine in which the
error occurred.

Error Handling and Math Standard Functions
When a CRE (or RTL) math function detects an invalid parameter or an error in
computing the function’s value, the function causes an arithmetic fault to occur when
the math function returns to its caller.

In the TNS environment, if your program invoked the math function using a standard C,
COBOL, or FORTRAN construct, the run-time library for the routine that invoked the
math function determines your program’s behavior.

If you invoke a standard math function from a TAL routine in the TNS environment,
your TAL routine can determine the effect of the error by setting or resetting the trap-
enable bit of the TNS environment register. Ensure that the trap-enable bit of the TNS
environment register is set according to the needs of your program before the program
calls a math function.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-48

CRE Services Hardware Traps
If an error occurs in a math function and traps are disabled in the routine that called the
math function, control is returned to the caller:

REAL r, s;
r := -1.0E0;
CALL disable_overflow_traps; ! A user-written routine that
s := RTL_Sqrt_Real32_(r); ! disables overflow traps
IF $OVERFLOW THEN ! Control returns here: test
BEGIN ! error in Sqrt routine
 ...
END;

If traps are enabled when a math function detects an error, the system transfers control
to the current trap handler upon return from the function:

REAL r, s;
r := -1.0E0;
CALL enable_overflow_traps; ! A user-written routine that
s := RTL_Sqrt_Real32_(r); ! enables overflow traps
IF $OVERFLOW THEN ! Program does not reach this
BEGIN ! statement because the
 ... ! system transfers control to
END; ! the current trap handler

Hardware Traps
Hardware traps are exception conditions detected by the hardware of the processor on
which your program is running. The following traps can be reported:

Except for trap 4, arithmetic fault, the CRE treats all of the preceding traps as fatal and
terminates your program.

Catastrophic Errors
The CRE and the run-time libraries maintain data in the upper 32K words of the user
data segment and in extended memory. If your program uses a small-memory model,
the CRE maintains the user heap in a portion of the lower 32K words of the user data
segment.

CRE Message Number Hardware Trap

2 Illegal address reference

3 Instruction failure

4 Arithmetic fault

5 Stack overflow

6 Process loop-timer timeout

7 Memory manager read error

8 Not enough physical memory

9 Uncorrectable memory error

10 Interface limit exceeded
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-49

CRE Services TNS CRE Trap Handler
The CRE and the run-time libraries validate portions of their data at strategic points of
execution to ensure that the data values are not only valid, but that they are meaningful
in the context in which they are used.

The CRE defines an error in which its data has been corrupted or its logic state has
been compromised to be a catastrophic error. If your program has a logic error and
writes over CRE data or run-time library data, the CRE or run-time library reports a
“Corrupted data” or “Logic error” message. Your program might be using an unchecked
array index that exceeds the bounds of its array or your program might be using a
pointer that holds an incorrect address.

In addition to possibly corrupting CRE data or run-time library data, your program might
be overwriting the pointers to the CRE’s data and to run-time library data. At G[0] and
G[1], the CRE maintains pointers to its primary data structure, the Master Control Block
(MCB), and to its Heap Control Block (HCB). If your program overwrites G[0]—for
example, by using a nil-valued pointer to store data—the CRE reports a “Corrupt MCB”
message when the CRE or a run-time library function validates the pointer. Note that
run-time library functions might not validate the MCB pointer each time they use it. The
result of an operation that uses data referenced by an invalid pointer is undefined.

TNS CRE Trap Handler
During program initialization, the TNS CRE enables a trap handler in its own domain.

If your program enables its own trap handler and a trap occurs, your trap handler can:

• Attempt to write an error message to standard log.
• Attempt to continue processing.
• Terminate your program.

Either of the first two actions could fail, depending on the nature of the trap.

If the TNS CRE trap handler is in effect when a trap occurs, the operating system
transfers control to the TNS CRE trap handler. The TNS CRE trap handler takes the
following actions:

• It validates its data. If it finds that its data has been corrupted, the TNS CRE
invokes PROCESS_STOP_, specifying the ABEND option and the message text
“Corrupted environment.”

• If the TNS CRE finds that its data is intact, it attempts to write a message to
standard log that identifies the trap that occurred. If the TNS CRE cannot write to
standard log, it writes the message to the process’s home terminal—unless you
specified the EXECUTION-LOG PARAM, in which case the TNS CRE does not
write an error message.

• If PARAM INSPECT ON was set when your program started execution, the TNS
CRE calls the PROCESS_DEBUG_ system procedure.

Although the TNS CRE calls PROCESS_DEBUG_, you control whether your
program uses the default debugging utility or the symbolic debugging utility by the
values you specify for compiler directives, Binder settings, and TACL commands.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-50

CRE Services Using ARMTRAP
See the Guardian Programmer’s Guide for more information on establishing the
debugger program for your process.

• If the TNS CRE cannot write a diagnostic message to standard log, but it can write
to your home terminal, it writes message 61, “Standard log file error (error),” to
your home terminal. error appears only if the TNS CRE has an error number it
can report. See message 61 in Section 10, Run-Time Diagnostic Messages, for
more details.

• If the standard log is available, the TNS CRE writes a stack trace that shows the
user routine in which the error occurred as the top element on the stack. If the error
occurred in a run-time library, in the TNS CRE, or in a system procedure, the top
element of the stack trace is the user routine that invoked the routine in its run-time
library, in the TNS CRE, or in the operating system.

• The TNS CRE calls CRE_Terminator_ to bring your program to a smooth stop.

Using ARMTRAP
If your program invokes the ARMTRAP system procedure, it will receive notification of
all traps, regardless of the language of the routine that was executing when the trap
occurred. After your program has called ARMTRAP, ARMTRAP must handle all traps.
It cannot handle traps for a portion of your program and then return trap handling to the
TNS CRE. For this reason, do not invoke the ARMTRAP system procedure.

Writing Messages to Standard Log
The CRE writes all messages to standard log, regardless of the language of the routine
that caused the message to be written or how many languages are represented in your
program.

The CRE writes most of the messages that appear in standard log on behalf of run-
time libraries that support the routines in your process. For example, the TNS CRE
writes COBOL messages only as a result of requests it receives from run-time
libraries—typically the COBOL run-time library—to do so. The TNS CRE does not write
COBOL messages because of errors it detects during its own processing.

Any routine in your process has the ability to send a request to the CRE to write a
message to the log file. In general, however, messages identified as COBOL
messages are written in response to requests from the COBOL run-time library, and so
forth.

Note. When the CRE prints a stack trace, it scans from the top of the stack toward the bottom
of the stack, skipping entries on the top of the stack until it encounters a routine name that
does not end in an underscore. The top of the stack trace begins with the first procedure
whose name does not end in an underscore. Therefore, if you create a routine whose name
ends in an underscore and you call a system procedure from your routine, a stack trace will not
include your routine. Therefore, do not create routines whose names end in an underscore.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-51

CRE Services Language-Specific Error Handling
Although the TNS CRE does not determine the effects of, or suggest how to recover
from, errors that occur in routines that your program invokes—for example, in string
functions, math functions, and so forth—the messages in Section 10, Run-Time
Diagnostic Messages, give you some guidance. Consult the language manual for the
function that caused the error to determine the error’s effect and how to recover from
the error.

Language-Specific Error Handling
When an error occurs in your program, its subsequent action depends on the language
of the routine that caused the error. This subsection provides a brief overview of error
handling for each of the languages supported by the CRE.

C Routines
If an error occurs in a CRE or run-time library function called from a C environment, the
CRE returns control to the C run-time library. The C run-time library either:

• Calls the CRE to write a message to the standard log and then terminates the
program.

• Stores a predefined value in the special global variable errno, and returns control
to your C function.

The CRE or the C run-time library terminates your program unconditionally if:

• The C run-time library finds that its data is invalid or a logic error occurs.

• If you specify the CHECK compiler pragma and a run-time check fails.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-52

CRE Services COBOL Routines
• A trap occurs. However, your program can retain control if an arithmetic trap (trap
4) occurs by using the C trap_overflows() library function:

trap_overflows(enable_flag)

If your C function disables traps, enable traps when the function reaches the end of
the code that requires that traps be disabled.

The Guardian TNS C Library Calls Reference Manual describes the
trap_overflows() library function.

See the C/C++ Programmer’s Guide for further details on C error processing.

COBOL Routines
If an error occurs in a CRE or run-time library function called by the COBOL run-time
library, the CRE returns control to the COBOL run-time library, which calls the CRE to
write a message to standard log. If your program specifies a declarative for the
statement that failed, the COBOL run-time library sets the program’s status code and
the GUARDIAN-ERR special register, and performs your program’s declarative. Your
program’s behavior following execution of the declarative depends on the error that
occurred and the code in the declarative.

If you have not specified a declarative, the COBOL run-time library immediately calls
the CRE to terminate your program.

See the COBOL Manual for TNS and TNS/R Programs for further details on TNS and
TNS/R COBOL error processing. See the COBOL Manual for TNS/E Programs for
further details on TNS/E COBOL error processing

Caution. The C trap_overflows() library function takes the following actions:

• It sets or resets the trap enable bit (bit 8) in the TNS environment register.

• It traverses the stack markers in the run-time stack and enables or disables the trap
enable bit in each stack marker, according to whether your program calls trap_overflows to
set or to reset trapping. These actions can have two major effects on your program:

Before a call to trap_overflows, some stack markers might have the trap enable bit set,
and other stack markers might have the trap enable bit reset. After a call to
trap_overflows, all stack markers are the same—either set or reset.

If the stack markers of routines that called your C functions include routines written in
languages other than C, your program might not behave as you expect. The code emitted
by compilers for languages other than C might be based on whether or not traps are
enabled. If your C function returns to a routine written in a language other than C, for
example a COBOL routine, and the trap enable bit in the stack marker for the COBOL
routine has changed, your program might not compute the correct results.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-53

CRE Services FORTRAN Routines
FORTRAN Routines
If an error occurs in a TNS CRE or run-time library function called from a FORTRAN
routine, the TNS CRE returns control to the FORTRAN run-time library. If the error
occurred when your program executed an I/O statement and you specified either the
IOSTAT or ERR parameters on the I/O statement, the FORTRAN run-time library
returns control to your FORTRAN program; otherwise, the run-time library terminates
the program.

See the FORTRAN Reference Manual for further details on FORTRAN error
processing.

TAL Routines
If an error occurs in a CRE function called from a TAL routine, the CRE returns control
to the TAL routine without taking any specific action. Because TAL does not have a
run-time library, your TAL routine must handle all errors explicitly.

pTAL Routines
If an error occurs in a CRE function called from a pTAL routine, the CRE returns
control to the pTAL routine without taking any specific action. Because pTAL does not
have a run-time library, your pTAL routine must handle all errors explicitly.

Reporting CRE Errors in the OSS Environment
If the CRE detects that the run-time environment is corrupted, it reports an error and
terminates the process. The flow chart in Figure 2-16 shows how the CRE determines
the file to which it writes error messages. Note that the write to the home terminal
might fail. Whether the write to the home terminal succeeds or fails, however, the CRE
calls PROCESS_STOP_.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-54

CRE Services Native CRE Signals and Exceptions

Native CRE Signals and Exceptions
For Guardian processes, the native CRE library provides a default signal handler for all
signals whose default action is not signal ignore. The signal handler takes all
appropriate actions, then terminates the process; it does not return control to its caller.

The default signal handler is set once at process initialization time. Any subsequent
calls to signal manipulation functions by the user can associate a different signal
handler with a given signal.

The native CRE library does not provide a default signal handler for OSS processes.

In standard math functions, the native CRE library provides only non-trapping variants
of those functions that can cause arithmetic faults. Arithmetic faults are dynamically
detected, and the native CRE takes all other appropriate actions, such as setting
errno and returning an appropriate value.

For details on signals and signal handlers, refer to the Guardian Programmer’s Guide
or OSS Programmer’s Guide.

Figure 2-16. Writing a CRE Error Message in the OSS Environment

217VST .VSD

Start

 Write to file
 associated with
File Descriptor 2

 Write
Successful?

 Write to
home terminal
 (might fail)

Call PROCESS_STOP_

yes

no
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-55

CRE Services Using CRE Services
Using CRE Services

Using Standard Functions
The CRE provides a library of standard functions that are required by the language-
specific run-time libraries to support your program. The CRE library functions define
the same semantics as those used in C-series run-time libraries, including the slight
variations that are defined by some of the languages.

The CRE ensures that if an error occurs, function behavior is consistent within a
language and, as much as possible, across languages.

For example, the SQRT function always uses the same rules to validate its
parameter’s domain, regardless of the language from which the SQRT function is
called.

The format of the error message that the CRE writes to standard log if the SQRT
parameter is not within the proper domain (that is, if it is less than zero) has the same
format as all other messages written to standard log.

TNS CRE library functions are intended for the use of the C, COBOL, and FORTRAN
run-time libraries, not user-written C, COBOL, or FORTRAN routines. Likewise, the

Table 2-6. TNS CRE Services Available in the OSS and Guardian Environments

Function or Function Group
OSS Environment
(G-Series Systems) Guardian Environment

CRE Standard Files No Yes

$RECEIVE Limited Yes

CRE_Terminator_ Yes Yes

Exception (Trap) Handling No Yes

Process Pairs No Yes

Signal Handling Yes No

Table 2-7. Native CRE Services Available in the OSS and Guardian
Environments

Function or Function Group OSS Environment Guardian Environment

CRE Standard Files No Yes

$RECEIVE Limited Yes

CRE_Terminator_ Yes Yes

Exception (Trap) Handling No No

Process Pairs No Yes

Signal Handling Yes Yes
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-56

CRE Services CRE and RTL Prefixes
native CRE library functions are intended for the use of the C and C++ run-time
libraries, not for use by user-written C, C++, and pTAL routines.

Only make explicit calls to the CRE library when the language’s semantics do not
provide the desired CRE service. The ability to make explicit calls to CRE library
functions is intended primarily for TAL and pTAL routines in programs written in more
than one programming language—mixed-language programs—that must interact with
resources managed by the CRE.

CRE and RTL Prefixes
Each TNS CRE standard function begins with a four-character prefix: either CRE_ or
RTL_. Some functions have only a CRE_ version, others have only an RTL_ version,
and still others have both a CRE_ version and an RTL_ version.

For some standard functions, the native CRE provides only the function names, which
are case-sensitive. Tables are provided at the beginning of each function or function
group section, showing which functions the native CRE supports and the

Table 2-8. TNS CRE Standard Functions Available in the OSS and Guardian
Environments

Function or Function Group
OSS Environment
(G-Series Systems) Guardian Environment

Standard Math Yes Yes

Sixty-Four Bit Logical Operators Yes Yes

Decimal Conversion Yes Yes

String Yes Yes

Memory Block Yes Yes

SMU (CLU Library) No Yes

Environment Information Yes Yes

Table 2-9. Native CRE Standard Functions Available in the OSS and Guardian
Environments

Function or Function Group OSS Environment Guardian Environment

Standard Math Yes Yes

Sixty-Four Bit Logical Operators Yes Yes

Decimal Conversion No No

String Yes Yes

Memory Block Yes Yes

SMU (CLU Library) No Yes

Environment Information Yes Yes
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-57

CRE Services CRE and RTL Prefixes
corresponding function name. See the Guardian Native C Library Calls Reference
Manual for descriptions of these functions.

CRE_ Functions
A function whose name begins with CRE_ is integral to the CRE. For example, the
CRE provides services that manage I/O, $RECEIVE, and traps. These are the services
that the CRE provides. CRE_ functions often require access to information from
previous CRE operations and save information that is used during subsequent calls to
the CRE.

RTL_ Functions
Functions whose names begin with the RTL_ prefix are included in the CRE for one of
the following reasons:

• They support functionality that is required by one or more language-specific run-
time libraries.

• They are context-free: their parameters specify all of their input values and they
return their results in their return values and in reference parameters. They do not
depend on calls to the operating system, to the CRE, or other environments.

• They guarantee that they will return a result without causing an exception or an
error.

For example, the sine function is guaranteed to return a result regardless of the
parameter that you pass to it and does not depend on previous calls made to it.

• A function needs to be available but there are no other libraries in which to store it
for general access from any HP language.

Functions With CRE_ and RTL_ Names
Some functions have two definitions that are identical except that one has a CRE_
prefix and the other an RTL_ prefix. The CRE supports the RTL_ versions for
compatibility with C-series object files and for D-series object files that do not use the
CRE. (See Section 3, Compiling and Binding Programs for the TNS CRE, for more
details on support for C-series programs.) The CRE_ version provides optimal support
for those languages and libraries that need to take full advantage of the services of the
CRE.

For example, your program can call either of the following functions:

CRE_Arccos_Real32_
RTL_Arccos_Real32_

If the parameters you pass do not cause an error, the effect of calling either of these
functions is identical. If an error occurs while the function is computing the return value,
however—for example, an arithmetic overflow or a domain error—the CRE_ version
sets up the errno field required for C functions, and saves the number of the error that
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-58

CRE Services Type Suffixes
occurred. The RTL_ version does not save the errno field nor does it save the
number of the error that occurred.

Type Suffixes
Many standard functions are represented by multiple versions, depending on the types
of the function’s parameters and the result returned by the function. For example, you
can invoke either RTL_Sin_Real32_ (which accepts a 32-bit REAL value and returns a
32-bit REAL result) or RTL_Sin_Real64_ (which accepts a 64-bit REAL value and
returns a 64-bit REAL result). The suffix corresponds to the types of the operands and
the results returned by the function. Use the function that corresponds to the data type
of your data.

Using Process Pairs
Both the TNS CRE and the native CRE support process pairs for fault-tolerant
programming. A process pair is a logical process that runs as two physical processes,
each in a separate processor. One of these processes is the primary process and the
other is the backup process. If the primary process becomes unavailable, the backup
process takes over and continues running.

In the Guardian environment, the CRE performs the tasks described in this subsection.
The OSS environment, however, does not support process pairs.

The primary process performs all of the computations specified by your program and
the run-time functions that your program invokes. While the primary process
successfully runs, the backup process does not execute any of your program’s
instructions. It merely stores state information passed to it by the primary process so
that if the primary process fails, the backup process has the information it needs to
become the primary process.

In addition to executing your program’s instructions, the primary process also:

• Creates the backup process.

• Sends information at strategic points of its execution—called checkpoints—to the
backup process so that if the primary process becomes unavailable (for example,
its processor fails, or a logic error in your program causes the primary process to
fail), the backup process can take over processing and assume the role of the
primary process.

• Monitors $RECEIVE for messages from the backup process that report the status
of previously sent checkpoint messages.

• Starts a new backup process if the backup process becomes unavailable.

Requirements for Using Process Pairs
The CRE runs your program as a process pair only if your program meets the following
requirements:
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-59

CRE Services Language Support for Process Pairs
• The program’s main routine must specify that it can run as a process pair. The
routine’s compiler sets this attribute in your program’s object file based on how you
set the NONSTOP compiler directive.

• Your TACL environment must not specify PARAM NONSTOP OFF. You do not
need to specify PARAM NONSTOP ON because ON is the default value for the
NONSTOP parameter.

• The program must invoke a statement in the language of your main routine that
initiates creation of a backup process.

• If the program opens $RECEIVE, it must open it in TNS COBOL or FORTRAN, or
use routines written in TAL to call TNS CRE functions that manage $RECEIVE.
The program cannot open $RECEIVE from a C routine nor can it open $RECEIVE
by calling the FILE_OPEN_ system procedure if you want the TNS CRE to
manage backup processing for your program.

The CRE and the TNS COBOL and FORTRAN run-time libraries ensure that the
backup process receives not only the data that you checkpoint, but all of the CRE and
run-time library data that the backup process requires to take over as the primary
process if the current primary process cannot continue running.

Language Support for Process Pairs
To program using process pairs, you must use either the FORTRAN or the COBOL
language. To run as a process pair, your program must use COBOL or FORTRAN
constructs to start a backup process and ensure that the backup process has the
information required to become the primary process if the current primary process is
unable to continue executing.

For example, a routine written in COBOL starts a backup process by executing a
STARTBACKUP statement. The COBOL run-time library, with support from the CRE,
creates a backup process. The COBOL program itself does not participate further in
starting the backup process until the STARTBACKUP statement completes. Upon
completion, the COBOL run-time library sets a status code. Test the status code in
your COBOL routine to determine the result of the STARTBACKUP operation. Your
program uses checkpoint statements in the appropriate language (COBOL or
FORTRAN) at strategic points of its execution to send checkpoint information to its
backup process.

In mixed-language situations, write all the routines that control process pairs, such as
STARTBACKUP and CHECKPOINT, either in COBOL or FORTRAN. Do not control
process pairs from both COBOL and FORTRAN routines; however, a program that
runs with a backup process can contain both COBOL and FORTRAN routines.

Using C Routines in Process Pairs
Although the COBOL and FORTRAN run-time libraries support process pairs, the
C run-time library supports only active backup processes (and thus is incompatible
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-60

CRE Services Results of Operations That Support Process Pairs
with CRE support for process pairs). Therefore, a process pair can include C routines
only if those routines do not depend on run-time library resources. That is, C routines:

• Cannot request or return heap space.

• Cannot call system procedures that depend on the operating system environment,
such as FILE_OPEN_, FILE_CLOSE_, READ, or WRITEREAD. You can call
system procedures only if the procedures do not depend on prior context and do
not write data that is accessed during subsequent calls to system procedures. For
example, your program might call system procedures such as NUMIN and
NUMOUT.

• Cannot initiate checkpoint operations.

C Data in a Process Pair
In a process pair, C routines can use data that is:

• Passed as parameters
• Declared locally within the routine
• Declared globally by COBOL or FORTRAN routines

For more details on using process pairs with the TNS CRE, see the COBOL Manual for
TNS and TNS/R Programs and the FORTRAN Reference Manual.

Results of Operations That Support Process Pairs
Each operation that supports process pairs generates a status code that is made
available to your program in a language-specific fashion. Table 2-10 on page 2-61
shows the status codes that can occur.

Note. A program that runs as a process pair cannot use the heap because only C routines
can allocate space from the heap but C is prohibited from allocating heap space in a
process pair.

Table 2-10. Status Codes Returned by CRE Functions That Support Process
Pairs (page 1 of 2)

Status Code Meaning

0000 The requested operation completed successfully.

0100 A takeover occurred because the primary process stopped.

0101 A takeover occurred because the primary process aborted.

0102 A takeover occurred because the primary process’s CPU failed.

0103 A takeover occurred because the primary process called CHECKSWITCH.

1000 The backup process’s CPU is down.

2nnn The CRE is unable to communicate with the backup process. nnn is a file
system error code.*

*The CRE converts file system error codes that are greater than 900 to 000.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-61

CRE Services Using the Inspect, Native Inspect, and Visual Inspect
Symbolic Debuggers With CRE Programs
Using the Inspect, Native Inspect, and Visual
Inspect Symbolic Debuggers With CRE
Programs

This subsection describes how to use the Inspect, Native Inspect, and Visual Inspect
symbolic debuggers with programs that use the CRE, especially to locate where a
program is overwriting TNS CRE data.

The CRE and run-time libraries report several of the diagnostic messages shown in
Section 10, Run-Time Diagnostic Messages if they find that their data has been
corrupted. Some of the messages you might see as a result of run-time library or CRE
data corruption are:

If the CRE or a run-time library reports a “Corrupted data” message, you can use any
symbolic debugger appropriate for the type of code to help isolate where the data is
being corrupted.

3nnn A call to FILE_OPEN_CHKPT_ failed. nnn is a file system error code.*

4nnn PROCESS_CREATE_ failed. nnn is a file system error code.*

Status codes between 4900 and 4999 represent the value returned by the
PROCESS_CREATE_ system procedure. The status code is established
by adding the number 4900 to the value returned by
PROCESS_CREATE_. See PROCESS_CREATE_ in the Guardian
Procedure Calls Reference Manual for more information on error codes
returned by PROCESS_CREATE_.

5000 There have been more than 10 failures by your program’s backup process.
The CRE does not attempt to start another backup process.

6000 An invalid parameter or other logic error was detected.

Message Number Message Text

11 Corrupted environment

12 Logic error

13 MCB pointer corrupt

15 Checkpoint list inconsistent

32 Invalid heap or heap control block

35 Heap corrupted

Table 2-10. Status Codes Returned by CRE Functions That Support Process
Pairs (page 2 of 2)

Status Code Meaning

*The CRE converts file system error codes that are greater than 900 to 000.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-62

CRE Services Selecting a Debugger
Selecting a Debugger
You can use the Inspect, Native Inspect, or Visual Inspect symbolic debugger to debug
a program that uses the CRE.

• To specify Inspect or Native Inspect as the debugger, run your program using the
RUND TACL command; for example:

RUND mtro ...

• To specify Visual Inspect as the debugger, use the RUNV TACL command, as
follows:

RUNV mtro ...

When you run your program using the RUND or RUNV TACL command, your
program enters the appropriate debugger before it executes any of your program’s
instructions.

Considerations for Using Inspect or Native Inspect
If you are using Inspect with the CRE, note the following considerations:

• Because the CRE provides multiple connections to a single open of an operating
system file, an Inspect INFO OPENS command shows only one open for each
standard file, regardless of how many connections the CRE has granted for the
file. If none of your routines have the standard file open, the file does not appear in
the file list displayed by Inspect.

• When you use the Inspect debugger to display your program’s identifiers, it
attempts to locate the identifier you specify, regardless of the language of the
routine you are currently inspecting. For example, if you are inspecting a C routine,
you can display the TAL variables VAR_A and VAR^B by entering:

display var_a, var^b

The Inspect debugger locates identifiers whose names you specify in a display
command unless it cannot resolve an ambiguity. For example, if your program
contains a C and a TAL variable named VAR_A and the language of the current
scope is C, Inspect finds the C variable when you enter:

display var_a

If you want to display the TAL identifier, you must use the SET LANGUAGE
command as follows:

SET LANGUAGE TAL
display var_a

• You cannot mix identifiers from different languages within an expression in an
Inspect display command.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-63

CRE Services Locating the Corrupter of TNS CRE Pointers
Considerations for Using Visual Inspect
If you are using Visual Inspect with the CRE, note the following considerations:

• Visual Inspect can find a global variable of any language independent of the
language of the scope in the Program Control View. To find a global identifier, open
a Display dialog and then select the Global radio button. Type your variable or
expression in the Expression box and click OK.

First Visual Inspect looks in the globals associated with the language of the current
scope. Next, Visual Inspect looks in the other globals space.

° If you are debugging a mixed C and TAL program that has the same named
global defined in C and TAL, and if the current execution point is in C, Visual
Inspect finds the C global.

° If the current execution point is in TAL, Visual Inspect finds the TAL global.

° If the global exists in only one language, and other language is the current
scope, Visual Inspect finds the one global that exists.

• Visual Inspect can find the correct identifier in the case of an ambiguity.

° If your program contains both a C and a TAL variable named VAR_A, Visual
Inspect finds the TAL identifier if the language of the source in the current
window is TAL.

° If the source of the current window is C, and you want to find the TAL identifier,
you should either use the Display dialog and specify the scope you want, or
open a scope view of any TAL routine and create a watch item from that
window.

• Because the CRE provides multiple connections to a single open of an operating
system file, the Visual Inspect Opens Manager shows only one open for each
standard file, regardless of how many connections the CRE has granted for the
file. If none of your routines have the standard file open, the file does not appear in
the file list displayed by Visual Inspect.

• You cannot mix identifiers from different languages within an expression in the
Visual Inspect Expression box.

Locating the Corrupter of TNS CRE Pointers
If the TNS CRE reports error 13, “MCB pointer corrupt,” you can use the Inspect or
Visual Inspect debugger to help locate the statement that is overwriting the MCB
pointer.

Using Inspect
By using low-level Inspect commands, you can set a memory breakpoint at location
G[0]. If your program writes data at the memory location at which you have set a
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-64

CRE Services Locating the Corrupter of TNS CRE Pointers
memory access breakpoint, the debugger displays a message that shows which
statement overwrote the data.

Example 2-1 on page 2-65 shows the source code of a C program. The statement at
line 7 of the program overwrites the TNS CRE’s pointer at G[0] to the MCB.

Example 2-2 on page 2-65 shows the information written to standard log when the
program is run.

Example 2-3 on page 2-66 is an Inspect session that shows the statement that
overwrites the MCB pointer by setting a memory-access breakpoint at location zero.
The program breaks after it executes the statement at line 7.

Example 2-1. C Program That Overwrites the MCB Pointer

 1. #pragma runnable
 2. #pragma symbols
 3. main ()
 4. {
 5. int *i;
 6. i = 0;
 7. *i = 0100;
 8. *i = 0101;
 9. *i = 0102;
10. }

Example 2-2. Run of C Program That Overwrites the MCB Pointer

mysubv 45> mtro
PID: 1,148 \ASYS.$FACE.MYSUBV.MTRO
\ASYS.$:1:148:61677064 - *** Run-time Error 013 ***
\ASYS.$:1:148:61677064 - MCB pointer corrupt
\ASYS.$:1:148:61677064 - From _MAIN + %24, UC.00
ABENDED: 1,148
3: Premature process termination with fatal errors or
diagnostics
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-65

CRE Services Circumventing the CRE

Using Visual Inspect
In Program Control View, choose Breakpoints from the View menu. In the Breakpoints
Manager window, choose the Data tab and click the + tool button. From the Add
Breakpoint window, select the Address radio button and enter %0 in the Address box.
Then click OK.

Circumventing the CRE
All HP languages support syntax that you can use to circumvent the CRE or to
circumvent your languages’ run-time libraries by calling system procedures directly.
Although some situations might require that you call system procedures directly, do so

Example 2-3. Inspect Session for C Program That Overwrites the MCB Pointer

mysubv 46> rund mtro <-- Run with Inspect.
INSPECT - Symbolic Debugger - T9673D10 - (08JUN92) System \ASYS
Copyright HP Computers Incorporated 1983, 1985-1992
INSPECT
175,03,00147 MTRO #_MAIN.#10.001(MTR)
-MTRO-b #main <-- Set breakpoint
Breakpoint created: 1 Code #main.#4(MTR) at start user code.
-MTRO-resume <-- Resume execution.
PID: 3,147 \ASYS.$FACE.MYSUBV.MTRO
INSPECT BREAKPOINT 1: #main
175,03,00147 MTRO #main.#4(MTR)
-MTRO-source on <-- Display source code
SOURCE mode has been enabled when program reaches
-MTRO-source breakpoint.
 #1 #pragma runnable
 #2 #pragma symbols
 #3 main ()
1 *#4 { <-- Asterisk means
 #5 int *i; statement 4 (actually
 #6 i = 0; statement 6) is the
 #7 *i = 0100; next statement to
 #8 *i = 0101; execute.
 #9 *i = 0102;
 #10 }
-MTRO-low <-- Use low-level Inspect.
_MTRO_bm 0,w <-- Set memory breakpoint
_MTRO_high <-- Use high-level Inspect
-MTRO-resume <-- Resume execution
INSPECT MEMORY ACCESS BREAKPOINT <-- Breakpoint hit
175,03,00147 MTRO #main.#8(MTR) <-- Inspect shows line
 *#8 *i = 0101;
-MTRO-source <-- Display full text
1 #4 { showing asterisk on
 #5 int *i; statement 8, which
 #6 i = 0; shows that the error
 #7 *i = 0100; occurred at
 *#8 *i = 0101; statement 7.
 #9 *i = 0102;
 #10 }
-MTRO-low <-- Use low-level Inspect
_MTRO_d 0 <-- Value at location 0 is
000000: 000100 <-- 100 octal, which was
_MTRO_stop <-- stored at statement 7.
mysubv 47>
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-66

CRE Services Circumventing the CRE
with great caution. If you call system procedures to modify a resource that the CRE is
managing, for example, a standard file, the CRE cannot ensure that subsequent
access to the resource will produce the results you expect.

For standard files, CRE functions provide most of the functionality you need. The CRE
includes functions that execute an operating system CONTROL operation
(CRE_File_Control_), a SETMODE operation (CRE_File_Setmode_), and so forth. If
you call a system procedure that leaves a file in a state that conflicts with the state
known to the CRE, the CRE might or might not detect that its state is inconsistent with
that of the operating system for the same resource, or the CRE might process
subsequent requests but the results might be incorrect.

Except where absolutely necessary, use the standard constructs of each programming
language to access resources that the CRE manages.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-67

CRE Services Circumventing the CRE
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
2-68

3
Compiling and Binding Programs for
the TNS CRE

Read this section for information about compiling and binding TNS and accelerated
programs that run in the Common Run-Time Environment (CRE). This section
describes both the Guardian and OSS environments, but focuses on the Guardian
environment. Refer to the C/C++ Programmer’s Guide and COBOL Manual for TNS
and TNS/R Programs for information about compiling and binding in the OSS
environment on G-series systems.

Refer to Section 4, Compiling and Linking Programs for the Native CRE, for details on
compiling and linking native programs.

Before you can use the information in this section, you must convert your existing
C-series file system programs to meet the requirements of the D-series file system
procedures. Refer to the Guardian Application Conversion Guide for detailed
conversion information.

Compiling Programs for the CRE
There are two major changes in compiling programs for the CRE as opposed to
compiling programs that do not use the CRE. To compile a program for the CRE, you
might need to:

• Specify the desired run-time environment with an ENV compiler directive

• Use a SOURCE directive to specify the external declarations for CRE library
functions that are called from TAL routines

Specifying a Run-Time Environment
You use the ENV directive to specify the run-time environments in which a program
can run. For each of the ENV options, the compilers generate different code and
impose different restrictions on which run-time libraries and language features routines
can use.

Table 3-1 on page 3-2 shows the availability of run-time libraries, depending on the
specified ENV option.

Note. TNS object code, accelerated object code, and native object code cannot be mixed in
one program file. Thus, you cannot mix modules compiled by a TNS compiler or processed by
the Accelerator or Object Code Accelerator with modules compiled by a TNS/R or TNS/E
native compiler.

Note. Compiler directives are called “pragmas” in the C language. This manual uses the
term “directive” to refer both to directives and to pragmas.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
3-1

Compiling and Binding Programs for the TNS CRE Specifying a Run-Time Environment

All language features are available to routines that run in user code space. The ENV
directive restricts the availability of certain language features to enable routines to run
in user library and system library code spaces. Table 3-2 on page 3-2 shows the
availability of language features, depending on the specified ENV option:

Use the ENV directive options as follows:

Table 3-1. ENV Options and the Availability of Run-Time Libraries

ENV Option Available Run-Time Library

COMMON CRE library

OLD A COBOL and FORTRAN run-time library

LIBRARY CRE library

NEUTRAL None

EMBEDDED None

LIBSPACE None

Table 3-2. ENV Options and the Availability of Language Features

Language Feature O
L

D

C
O

M
M

O
N

L
IB

R
A

R
Y

N
E

U
T

R
A

L

E
M

B
E

D
D

E
D

L
IB

S
P

A
C

E
High-level language
I/O operations

Yes Yes Yes* No No No

User heap operations Yes Yes Yes No No No

Main routine Yes Yes No Yes** No No

Relocatable data
blocks

Yes Yes No Yes Yes No

* LIBRARY permits the use of high-level language I/O facilities if direct access to relocatable data blocks is not
needed for the operations.

** NEUTRAL cannot be used for a main routine if the program uses run-time library resources.

Table 3-3. Determining Which ENV Options to Use (page 1 of 2)

ENV Option Use for

COMMON C, COBOL, and FORTRAN user code routines that run in the CRE

TAL main routines that run in the CRE

LIBRARY C or COBOL user library routines that run in the CRE
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
3-2

Compiling and Binding Programs for the TNS CRE Specifying a Run-Time Environment
All routines in a program must be compiled to run in either a language-specific run-time
environment or the CRE. Routines compiled with the ENV NEUTRAL, ENV
EMBEDDED, and ENV LIBSPACE directives are exceptions to this rule; these routines
do not depend on run-time library resources so they can run in either environment.

All routines that run in the user library space (user library routines) must be compiled
for the same run-time environment as their callers in the user code space (user code
routines). For example, TAL user library routines compiled with the ENV NEUTRAL
directive can be called by TAL routines compiled for either a language-specific run-time
environment or the CRE. C and COBOL user library routines can be called only by
programs that run in the CRE.

Table 3-4 on page 3-3 lists the recognized and default ENV directive options for each
language.

OLD COBOL or FORTRAN user code routines that use the TNS COBOL or
FORTRAN language-specific run-time libraries only

EMBEDDED C user code routines that do not rely on run-time libraries; intended for
subsystems programming

LIBSPACE C user library or system library routines that do not rely on run-time libraries;
intended for systems programming

Table 3-4. Recognized and Default ENV Options

Language Recognized ENV Directives Default ENV Option

C COMMON, EMBEDDED, LIBRARY, LIBSPACE COMMON

COBOL COMMON, LIBRARY, OLD OLD

FORTRAN COMMON, OLD OLD

TAL COMMON, NEUTRAL, OLD NEUTRAL

Table 3-3. Determining Which ENV Options to Use (page 2 of 2)

ENV Option Use for
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
3-3

Compiling and Binding Programs for the TNS CRE Sourcing-in CRELIB Function Declarations
The C compilers generate programs that run in the CRE. The TNS COBOL,
FORTRAN, and TAL compilers generate programs that can run in either a language-
specific run-time environment or the CRE. To produce TNS COBOL, FORTRAN, or
TAL programs that run in the CRE, you must compile with the ENV COMMON
directive. To produce TNS COBOL, FORTRAN, or TAL programs that run in language-
specific run-time environments, you must compile with the ENV OLD directive or
without any ENV directive.

You can specify an ENV directive either in a compilation command or in the program
source code before any declarations. For example, the following compilation command
produces a TAL object file compiled for the CRE:

TAL / IN source, OUT listing / ; ENV COMMON

Compiling TAL Programs for the CRE
TAL routines compiled with the ENV NEUTRAL directive can be bound into a program
that runs in either the CRE or a language-specific run-time environment. However, a
TAL routine compiled with the ENV NEUTRAL directive cannot be the main procedure
in a program that runs in the CRE because the TAL compiler only allocates and
initializes the special data blocks required by the CRE when the main routine is
compiled with the ENV COMMON directive.

For a program with a TAL main procedure to run in the CRE, the program must make
explicit calls to CRE functions for initialization, input/output, and so on. In all the other
languages, the CRE is almost invisible to you. Refer to the TAL Programmer’s Guide
for details on writing TAL programs that use the CRE.

Sourcing-in CRELIB Function Declarations
CRELIB contains the CRE library functions documented in Section 5, Using the
Common Language Utility (CLU) Library,Section 6, CRE Service Functions,and
Section 7, Math Functions. If your TAL routines call CRE library functions whose
names begin with CRE_, you must compile the routines with a SOURCE directive that
references CREDECS, the external declarations file for the CRE library functions.
Likewise, if your TAL routines call functions whose names begin with RTL_, you must
compile the program with a SOURCE directive that references RTLDECS, the external
declarations file for the RTL_ functions.

CREDECS and RTLDECS are located in $SYSTEM.SYSTEM by default. Each
declaration is placed within a TAL SECTION directive. Some declarations in
CREDECS and RTLDECS contain TAL BLOCK statements to declare global data
blocks. Your program should read the source code from only those sections of the files
that contain declarations you need in your program. Programs that use these
declarations must follow the coding guidelines for BLOCK declarations. Refer to the
TAL Programmer’s Guide for details.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
3-4

Compiling and Binding Programs for the TNS CRE CRE Data Blocks
CRE Data Blocks
When a compilation unit contains a main procedure, the C compilers allocate and
initialize special data blocks required by the CRE. When a compilation unit contains a
main procedure and you have specified an ENV COMMON directive, the TNS COBOL,
FORTRAN, and TAL compilers allocate and initialize these special data blocks.
Table 3-5 on page 3-5 lists the special data blocks.

Binding Programs for the CRE
Binder categorizes the ENV directive parameters into three groups: OLD, NEUTRAL,
and COMMON. For the most part, these groups match the various ENV options.

Refer to Compiling Programs for the CRE on page 3-1 for a complete discussion of the
ENV directive. Table 3-6 on page 3-5 shows how Binder classifies object files into one
of three groups depending on the compiler version or specified ENV option.

Table 3-5. Common Run-Time Environment Data Blocks

Data Block Name Description

Basic control block #CRE_GLOBALS Located at G[0] and G[1] of the user data
segment.

Master control block #MCB If a program contains FORTRAN routines, the
Binder program allocates the MCB in the upper
32K area of the user data segment, regardless of
the value of the HIGHCONTROL FORTRAN
directive.

CRE run-time heap #CRE_HEAP A run-time heap required by CRE functions. It is
the last block in the upper 32K area of the user
data segment.

Table 3-6. Binder Grouping of ENV Directive Parameters (page 1 of 2)

Binder Group Language Generated by

OLD C C-series compilers by default

COBOL C-series compilers by default
D-series compilers by default
D-series compilers with ENV OLD specified

FORTRAN C-series compilers by default
D-series compilers by default
D-series compilers with ENV OLD specified

TAL D-series compilers with ENV OLD specified

COMMON C D-series compilers by default
D-series compilers with ENV COMMON specified

COBOL D-series compilers with ENV COMMON specified
D-series compilers with ENV LIBRARY specified
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
3-5

Compiling and Binding Programs for the TNS CRE Binding Programs for the CRE
The rules for binding modules together follow:

• You can bind object files that are in the same Binder group; the resulting object file
runs in the same environment as the input object files.

• You can bind object files that include routines from both the OLD and NEUTRAL
Binder groups; the resulting object file runs in a language-specific run-time
environment.

• You can bind object files that include routines from both the COMMON and
NEUTRAL Binder groups; the resulting object file runs in the CRE.

• You cannot bind object files that include routines from both the COMMON and OLD
Binder groups.

When you bind object files compiled for different environments, each procedure retains
its original ENV attribute.

Table 3-7 shows the run-time environment resulting from binding modules from
different Binder groups together.

FORTRAN D-series compilers with ENV COMMON specified

TAL D-series compilers with ENV COMMON specified

NEUTRAL C D-series compilers with ENV EMBEDDED specified
D-series compilers with ENV LIBSPACE specified

TAL C-series compilers by default
D-series compilers by default
D-series compilers with ENV NEUTRAL specified

Note. If you specify the ENV NEUTRAL directive in a TAL source file, BINSERV does not allow
the resulting object file to be combined with object files compiled for the COMMON or OLD
Binder groups. For example, BINSERV will not generate an object file if a file that contains an
ENV NEUTRAL directive also specifies a SEARCH directive to a file compiled with ENV
COMMON or ENV OLD directives. This rule prevents an object file from gaining the COMMON
or OLD attributes.

Table 3-7. Run-Time Environment Resulting From Binding Modules

Binder Group OLD COMMON NEUTRAL

OLD language-specific Not allowed language-specific

COMMON Not allowed CRE CRE

NEUTRAL language-specific CRE language-specific or CRE

Table 3-6. Binder Grouping of ENV Directive Parameters (page 2 of 2)

Binder Group Language Generated by
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
3-6

Compiling and Binding Programs for the TNS CRE Run-Time Libraries
Use the Binder INFO command with the DETAIL clause to show the ENV attribute of a
particular data or code block. For example:

@ add * from test
@ info *, detail

TEST^PROCEDURE 167
 LANG: TAL ENV: NEUTRAL TIME: 1992-06-19 09:48

Run-Time Libraries
The TNS C, COBOL85, FORTRAN, and TAL products each consist of a compiler and a
set of separately packaged run-time functions called a run-time library. Compilers
generate code that depends on the availability of functions in the run-time libraries. The
operating system requires that all references to run-time functions be resolved before a
program is run. To resolve these references, you must either use Binder to bind the
necessary run-time functions into your program or configure the run-time functions into
the system library. The operating system resolves references to run-time functions at
process startup for routines in the system library.

Table 3-8 on page 3-7 shows the locations of the run-time libraries.

The TNS C, COBOL, and FORTRAN run-time libraries are in the system library. You
never have to bind the run-time library into TNS C, COBOL, or FORTRAN programs;
however, you must bind the appropriate memory-model file into C programs. Refer to
the C Programmer's Guide for details on the C memory-model files.

You must bind the TALLIB file into programs with TAL routines that contain embedded
SQL statement or calls to the TAL_CRE_INITIALIZER_ procedure. Refer to the TAL
Programmer’s Guide for more information.

The TNS COBOL and FORTRAN run-time libraries include functions that run in the
CRE and functions that run in the COBOL and FORTRAN language-specific run-time
environments. Thus, TNS COBOL and FORTRAN programs can run in their language-
specific run-time environments or the CRE.

In addition, a run-time library called CRELIB contains the CRE library functions
documented in Section 5, Using the Common Language Utility (CLU) Library,

Table 3-8. Locations of C-Series and D-Series TNS Run-Time Libraries

Language Guardian Run-Time Library OSS Run-Time Library (G-series)

C CLIB is in the system library.

COBOL C8LIB is in the system library.

FORTRAN FORTLIB is in the subvolume
containing the FORTRAN compiler.
FORTSYS is in the system library.

N.A.

TAL TALLIB is in the subvolume
containing the TAL compiler.

N.A.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
3-7

Compiling and Binding Programs for the TNS CRE Sample Binder Sessions
Section 6, CRE Service Functions, and Section 7, Math Functions. The TNS C, TNS
COBOL, and FORTRAN run-time libraries call the functions in CRELIB. If you bind the
appropriate languages’ run-time libraries into your program, you must also bind in
CRELIB.

Sample Binder Sessions
The following binding example assumes that your program is made up of a TNS C
object file (CFILE), a TNS COBOL object file (COBFILE), and a TAL object file
(TALFILE). The C object file uses the wide-memory model in C, and the TAL object file
contains routines that call CRE library functions.

To create an executable program of minimal size, enter the following Binder
commands:

ADD * FROM CFILE
ADD * FROM COBFILE
ADD * FROM TALFILE
SELECT SEARCH CWIDE -- Add wide memory-model C library functions
BUILD MyProg

Bind-Time Validation for Mixed-Language Programs
To help you bind mixed-language programs, Binder provides parameter, return-value,
and language consistency checking.

Parameter and Return-Value Checking
The Binder SELECT CHECK PARAMETER command specifies the extent to which
Binder checks the consistency of parameters and return value types between called
and calling routines.

Binder issues a warning message if the called routine’s parameter requirements do not
match those of the caller. Because each language has its own set of data types,
matching parameters and return-value types between languages cannot be exact. To
reduce the number of extraneous Binder warnings generated when you bind mixed-
language programs, specify the SELECT CHECK PARAMETER STRONG option. (The
STRONG option is more lenient than the STRICT option.) Under the STRONG option:

• Formal and actual parameters for intralanguage calls must be the same size, type,
and mode (passed by value or by reference).

• Formal and actual parameters for interlanguage calls must belong to the same
class. The classes of parameters are:

° Two-byte scalar, passed by value
° Four-byte integer scalar, passed by value
° Four-byte real scalar, passed by value
° Eight-byte integer scalar, passed by value
° Eight-byte real scalar, passed by value
° Byte address
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
3-8

Compiling and Binding Programs for the TNS CRE Bind-Time Validation for Mixed-Language Programs
° Word address
° Extended address
° Two-byte procedure parameter
° Four-byte procedure parameter

Only C supports the passing of structured parameters by value. Such parameters
cannot match parameters passed from any other language.

• Return types (values returned on the stack) for both interlanguage and
intralanguage calls must belong to the same class. The classes of return values
are:

° Two-byte integer scalar
° Four-byte integer scalar
° Four-byte real scalar
° Eight-byte integer scalar
° Eight-byte real scalar
° No return type

Language Consistency Checking
Binder provides language consistency checking by making sure that callers specify the
correct language for called routines. If a caller explicitly states that the language of a
called routine is unspecified, Binder does not perform this check.

If one caller specifies one language, and a subsequent caller specifies a different
language, and neither of them has been resolved, Binder issues the message:

**** WARNING 149 **** Referencing procedures do not agree on the
language of procedure procedure-name.

After it issues the message, Binder must determine which language to use for
subsequent checking. If either caller is written in the same language as the called
routine, Binder uses that language. If both callers specify languages other than that of
the called routine, Binder selects the language of one of the caller routines. Binder
makes this selection in the following order:

TNS COBOL
FORTRAN
TAL
TNS C

For example, if one caller specifies C and another caller specifies COBOL, Binder
selects COBOL for the called routine.

Once Binder has determined the language of a called routine, and a caller specifies a
different language, Binder issues the message:

**** WARNING 148 **** Referencing procedures claim that
procedure procedure-name is written in a different language.

If Binder issues these messages during a bind session, examine calls to the named
procedure in your source code to make sure they specify the correct language. Note
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
3-9

Compiling and Binding Programs for the TNS CRE Bind-Time Validation for Mixed-Language Programs
that two routines in the same object file cannot have the same name, even if they are
written in different languages.

Refer to the Binder Manual for more information.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
3-10

4
Compiling and Linking Programs for
the Native CRE

Read this section for information about compiling and linking native programs that run
in the Common Run-Time Environment (CRE). This section describes both the
Guardian and OSS environments, but focuses on the Guardian environment. Refer to
the Open System Services Shell and Utilities Reference Manual and the
C/C++ Programmer’s Guide for information about compiling and linking in the OSS
environment.

See Section 3, Compiling and Binding Programs for the TNS CRE, for details on
compiling and binding TNS and accelerated programs.

Before you can use the information in this section, you must convert your existing
C-series programs to meet the requirements of the D-series operating system. Refer to
the Guardian Application Conversion Guide for detailed conversion information.

Native programs cannot use all of the CRE services available to TNS and accelerated
programs. Refer to the TNS/R Native Application Migration Guide or the appropriate
programming language manual for the changes required to convert TNS programs to
native programs.

Using the Environment Variable for C and C++
Modules

By default, the native C and C++ compilers generate modules that run in the CRE. The
env pragma (or -Wenv flag to the c89 utility) determines the availability of run-time
library and language features in a module. The four env pragmas are:

• env common
• env library
• env embedded
• env libspace

The default is env common. For each env pragma, the compilers generate different
code and impose different restrictions on which run-time library and language features
can be used.

Table 4-1 on page 4-2 shows the features available with each env pragma.

Note. TNS object code, accelerated object code, and native object code cannot be mixed in
one program file. Thus, you cannot mix modules compiled by a TNS compiler or processed by
the Accelerator with modules compiled by a TNS/R or TNS/E native compiler.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
4-1

Compiling and Linking Programs for the Native CRE Sourcing In CRE External Declarations for pTAL
Modules

If an env library or env libspace pragma is specified, the native C and C++
compilers place literal constants in the read-only data area and generate errors for
global variable declarations.

Use the env pragmas as follows:

The env pragmas also define four feature-test macros. The feature-test macros are
used in HP header files to select the function declarations appropriate for each code
space. Feature-test macros are defined as follows:

Sourcing In CRE External Declarations for
pTAL Modules

Unlike TAL routines, a pTAL routine cannot be the main procedure in a program that
runs in the CRE. The EpTAL or pTAL compiler does not establish the run-time
environment and allocate and initialize the special data blocks required by the CRE. To
work around this restriction, write a C main function that simply calls a pTAL routine.

Unlike the TAL compiler, which requires you to specify an ENV COMMON or ENV
NEUTRAL directive for programs that run in the CRE, the EpTAL or pTAL compiler

Table 4-1. env Pragma and the Availability of Features

Feature env common env library env embedded env libspace

C run-time library and
CRE library

Yes Yes No No

User heap operations Yes Yes No No

Main routine Yes No No No

Global variable
declarations

Yes No Yes No

env Pragma Use for:

env common User code functions that run in the CRE

env library User library functions that run in the CRE

env embedded User code functions that do not rely on run-time libraries; intended for
subsystems programming

env libspace User library functions that do not rely on run-time libraries; intended
for systems programming

env common _COMMON

env library _LIBRARY

env embedded _EMBEDDED

env libspace _LIBSPACE
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
4-2

Compiling and Linking Programs for the Native CRE Linking Modules
does not require any ENV directives. The compiler issues a warning for any ENV
directives that it finds.

If your pTAL routines call CRE functions, you must compile the routines with a
SOURCE directive that references the external declarations file for the CRE function
as follows:

These external declarations files are located in $SYSTEM.SYSTEM by default. Each
declaration is placed within a pTAL SECTION directive. Some declarations contain
pTAL BLOCK statements to declare global data blocks. Your program should read the
source code from only those sections of the files that contain declarations you need in
your program. Programs that use these declarations must follow the coding guidelines
for BLOCK declarations. Refer to the pTAL Reference Manual for details.

Linking Modules
When linking modules to create a program that runs in the CRE, you must specify the
correct shared run-time libraries (SRLs) or dynamic-link libraries (DLLs) for the
resolution of external references to CRE and native C or COBOL run-time library
functions, and in certain cases you must specify an additional library. By default, the
OSS and PC workstation c89, nmcobol, and ecobol utilities specify the correct SRLs
or DLLs for the CRE.

If you run the nld or ld utility to perform the linking, you must:

• Always search the CRE SRL file, ZCRESRL

• When there are TNS/R native C modules, search the TNS/R native C run-time
library SRL file, ZCRTLSRL

• When there are TNS/R native COBOL modules, search the TNS/R native COBOL
run-time library SRL file, ZCOBSRL

• When the main routine is written in TNS/R native C, link in the TNS/R native C run-
time library object file, CRTLMAIN for a non-PIC file or CCPPMAIN for a PIC file

If you run the eld utility to perform the linking, you must:

• Always search the CRE DLL file, ZCREDLL

• When there are TNS/E native C modules, search the TNS/E native C run-time
library DLL file, ZCRTLDLL

• When there are TNS/E native COBOL modules, search the TNS/E native COBOL
run-time library DLL file, ZCOBDLL

If the Function Name Begins With: Specify This File:

CRE_ CRERDECS

RTL_ RTLRDECS

CLU_ CLURDECS
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
4-3

Compiling and Linking Programs for the Native CRE Linking Modules
• When the main routine is written in TNS/E native C, link in the TNS/E native C run-
time library object file, CCPLMAIN

Unlike the Binder product, the native linker utilities do not perform any special checking
for mixed-language programs or programs that use the CRE.

Examples of Compiling and Linking
1. In this example, the pTAL compiler compiles the pTAL source file PTALSRC and

generates the object file PTALOBJ. Then the native C compiler compiles the C
source file CSRC and generates the object file COBJ. Finally the LD utility links the
PTALOBJ and COBJ files with the CRE and C run-time library hybrid SRLs and C
run-time library object file and produces the executable file MYEXEC:

PTAL / IN PTALSRC, OUT $S.#TEST / PTALOBJ

NMC / IN CSRC, OUT $S.#TEST / COBJ

LD $SYSTEM.SYSTEM.CRTLMAIN PTALOBJ COBJ -O MYEXEC &
 -LIB $SYSTEM.SYS00.ZCRESRL -LIB $SYSTEM.SYS00.ZCRTLSRL

Additional DLLs might need to be linked in, depending on the routines your
program uses.

The pTAL compiler and the OSS c89 utility simplify the compiling and linking
processes. The same files are used as in the previous example, but the c89 utility
replaces the Guardian environment CCOMP and LD commands, as shown in the
following sequence of OSS commands:

gtacl -p "ptal / in ptalsrc, out $s.#test / ptalobj"

c89 csrc /G/MYDISK/MYVOL/ptalobj -o myexec

2. In this example, the EpTAL compiler compiles the pTAL source file EPTALSRC and
generates the object file EPTALOBJ. Then the native C compiler compiles the C
source file ECSRC and generates the object file ECOBJ. Finally the ELD utility
links the EPTALOBJ and ECOBJ files with the CRE and C run-time library DLLs
and C run-time library object file and produces the executable file EMYEXEC:

EPTAL / IN EPTALSRC, OUT $S.#TEST / EPTALOBJ

CCOMP / IN ECSRC, OUT $S.#TEST / ECOBJ

ELD $SYSTEM.SYSTEM.CCPLMAIN EPTALOBJ ECOBJ -O EMYEXEC &
 -LIB $SYSTEM.SYS00.ZCREDLL -LIB $SYSTEM.SYS00.ZCRTLDLL

Additional DLLs might need to be linked in, depending on the routines your
program uses.

The EpTAL compiler and the OSS c89 utility simplify the compiling and linking
processes. The same files are used as in the previous example, but the c89 utility
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
4-4

Compiling and Linking Programs for the Native CRE Linking Modules
replaces the Guardian environment CCOMP and ELD commands, as shown in the
following sequence of OSS commands:

gtacl -p "eptal / in eptalsrc, out $s.#test / eptalobj"

c89 ecsrc /G/MYDISK/MYVOL/eptalobj -o emyexec
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
4-5

Compiling and Linking Programs for the Native CRE Linking Modules
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
4-6

5
Using the Common Language Utility
(CLU) Library

This section describes the services provided by the Common Language Utility (CLU)
library. It explains how to use the services of the Saved Message Utility (SMU), part of
the CLU library, in COBOL, FORTRAN, and TAL routines in the TNS environment, and
in C, C++, COBOL, and pTAL routines in a native environment.

CLU library routines can be used only in the Guardian API.

What Is the CLU Library?
The Common Language Utility (CLU) library is a collection of functions that provides
common services to two or more language products. CLU functions provide a separate
set of services from the CRE routines.

The CLU provides services that enable:

• COBOL and FORTRAN routines to create processes

• COBOL and FORTRAN routines to locate and identify file connectors
(TNS CRE only)

• COBOL, FORTRAN, TAL, and pTAL routines to save and manipulate messages
sent to a process by the operating system

CLU functions differ in general from CRE functions as shown in Table 5-1 on page 5-1.
Note also that CRE functions work only in the CRE, whereas CLU functions work either
in the CRE or in certain language-specific run-time environments.

Table 5-1. Comparison of CRE and CLU Functions

TNS CRE Native CRE TNS CLU Native CLU

Where
located

CRELIB file Shared run-time
library, or hybrid
dynamic-link
library (DLL) for
TNS/R

DLL for TNS/E

CLULIB file Shared run-time
library, or hybrid
dynamic-link
library (DLL) for
TNS/R

DLL for TNS/E

How to use Can optionally
be bound into
TNS programs

Binding not
required

Must be explicitly
bound into TNS
programs

Binding not
required
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
5-1

Using the Common Language Utility (CLU) Library Compiling and Binding or Linking Programs That
Use the CLU Library
Compiling and Binding or Linking Programs
That Use the CLU Library

For the TNS CRE, you must explicitly bind into your program’s object file all CLU
functions referenced by your program. To bind the CLU functions into your object file,
specify the following Binder command:

SELECT SEARCH $SYSTEM.SYSTEM.CLULIB

To call CLU functions directly, TAL routines must also source-in CLUDECS, the
external declarations file for the CLU functions. CLUDECS is located in
$SYSTEM.SYSTEM by default.

For the TNS/R or TNS/E CRE, pTAL routines must source in CLURDECS, a file
located by default in $SYSTEM.SYSTEM.

ECOBOL and NMCOBOL programs can call only the Saved Message Utility functions
listed in Table 5-2 on page 5-3. These functions are in the library file ZCRESRL on
G-series systems and ZCREDLL on H-series systems.

Creating Processes
To create a process, routines can use the CLU_Process_Create_ function. Using this
function, a process is created using the conventions of the TACL RUN command. This
function is available to any CRE program and to COBOL or FORTRAN programs
compiled for execution in a non-CRE environment—that is, with ENV OLD specified or
assumed by default. See the definition of this routine in Section 9, Common Language
Utility (CLU) Library Functions, for more details.

Locating and Identifying File Connectors
A file connector is an abstract entity through which a program accesses a file. It is
physically represented by a run-time data object called a File Control Block (FCB).
Each file connector has a logical file name and a physical file name (called the
Guardian file name or TANDEMNAME).

To locate and identify file connectors, COBOL and FORTRAN routines can use the
CLU_Process_File_Name_ function. Using this function, your routine can locate a file
connector, obtain its identity, and optionally alter the Guardian file name value. See the
definition of this routine in Section 9, Common Language Utility (CLU) Library
Functions, for more details.

The native CRE does not support functions that locate and identify file connectors.

Using the Saved Message Utility Functions
The Saved Message Utility (SMU) functions listed in Table 5-2 on page 5-3 enable
routines to manipulate saved startup, ASSIGN, and PARAM messages that are sent to
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
5-2

Using the Common Language Utility (CLU) Library Using the Saved Message Utility Functions
your process by the process that starts your process. The SMU functions can be called
by COBOL, FORTRAN, TAL, and pTAL-compiled programs.

The TNS CRE SMU functions, data, and data structure declarations in TAL are
available in the CLUDECS file. The TNS/R and TNS/E native CRE SMU functions,
data, and data structure declarations in pTAL are available in the CLURDECS file.

Table 5-2. SMU Functions

Name Action

SMU_Assign_CheckName_ on
page 9-18

Checks whether an ASSIGN message with a given
logical file name exists.

SMU_Assign_Delete_ on
page 9-19

Deletes a portion or all of an ASSIGN message.

SMU_Assign_GetText_ on
page 9-21

Retrieves a portion of an ASSIGN message as text and
assigns it to a string variable.

SMU_Assign_GetValue_ on
page 9-22

Retrieves a portion of an ASSIGN message as an integer
and assigns it to an integer variable.

SMU_Assign_PutText_ on
page 9-23

Creates or replaces a portion of an ASSIGN message
with text from a string variable.

SMU_Assign_PutValue_ on
page 9-25

Creates or replaces a portion of an ASSIGN message
with a value from an integer variable.

SMU_Message_CheckNumber_
on page 9-26

Checks whether a specific message exists.

SMU_Param_Delete_ on
page 9-27

Deletes a portion or all of the PARAM message.

SMU_Param_GetText_ on
page 9-28

Retrieves a portion of the PARAM message as text and
assigns it to a string variable.

SMU_Param_PutText_ on
page 9-29

Creates or replaces a portion of a PARAM message with
text from a string variable.

SMU_Startup_Delete_ on
page 9-30

Deletes the entire startup message.

SMU_Startup_GetText_ on
page 9-31

Retrieves a portion of the startup message as text and
assigns it to a string variable.

SMU_Startup_PutText_ on
page 9-33

Creates or replaces a portion of the startup message with
text from a string variable.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
5-3

Using the Common Language Utility (CLU) Library Services Provided by the Saved Message Utility
TNS COBOL and FORTRAN routines can continue to use pre-D20 SMU functions.
Table 5-3 on page 5-4 lists the pre-D20 SMU functions and the corresponding current
SMU functions.

Pre-D20 and current SMU functions work somewhat differently. For example, the
current SMU functions do not support checkpointing. To capture changes in internal
run-time data structures for checkpointing purposes, TNS COBOL and FORTRAN
routines can use the pre-D20 SMU functions. Section 9, Common Language Utility
(CLU) Library Functions, describes the current SMU functions.

Services Provided by the Saved Message Utility
When TACL starts a process, it sends a series of messages to the process that
describes the following:

• IN and OUT file names
• Default volume and subvolume
• Current ASSIGN values
• Current PARAM values
• Additional text specified with the RUN command

Table 5-3. Pre-D20 and Current SMU Functions

Pre-D20 SMU Function Current SMU Function

ALTERPARAMTEXT None

CHECKLOGICALNAME SMU_Assign_CheckName_ on page 9-18

CHECKMESSAGE SMU_Message_CheckNumber_ on page 9-26

CREATEPROCESS None

DELETEASSIGN SMU_Assign_Delete_ on page 9-19

DELETEPARAM SMU_Param_Delete_ on page 9-27

DELETESTARTUP SMU_Startup_Delete_ on page 9-30

GETASSIGNTEXT SMU_Assign_GetText_ on page 9-21

GETASSIGNVALUE SMU_Assign_GetValue_ on page 9-22

GETBACKUPCPU None

GETPARAMTEXT SMU_Param_GetText_ on page 9-28

GETSTARTUPTEXT SMU_Startup_GetText_ on page 9-31

PUTASSIGNTEXT SMU_Assign_PutText_ on page 9-23

PUTASSIGNVALUE SMU_Assign_PutValue_ on page 9-25

PUTPARAMTEXT SMU_Param_PutText_ on page 9-29

PUTSTARTUPTEXT SMU_Startup_PutText_ on page 9-33
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
5-4

Using the Common Language Utility (CLU) Library Services Provided by the Saved Message Utility
To save these messages for manipulation with SMU functions:

• COBOL and FORTRAN programs use the SAVE compiler directive

• TAL programs call TAL_CRE_INITIALIZER_ and pass the OPTIONS parameter to
it, as described in the TAL Programmer’s Guide.

If a process (a “parent” process) initiates other processes, it can use SMU functions to
customize the startup, ASSIGN, and PARAM messages it received when it started, and
pass the customized messages to the processes it initiates.

If a process initiates other processes, the parent process can save the messages that
describe its startup environment, and then use SMU functions to customize the startup
environment for the new processes. Figure 5-1 on page 5-5 illustrates how descendent
processes can inherit customized messages from the parent process.

Figure 5-1. Messages Manipulated by the SMU

501VST .VSD

Startup message (IN file, OUT file, default volume and subvolume)

ASSIGN messages (logical file name and Compaq file name)

PARAM message (name and associated value)

 Saved
Messages

Parent process
Saves messages
Modifies messages (optional)
Launches new process and passes
 modified messages to it

Descendent
 Process
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
5-5

Using the Common Language Utility (CLU) Library Content of Messages
SMU functions operate on copies of the process creation messages that establish the
execution environment for a program. The functions let you check, retrieve, delete, or
replace portions of messages. Table 5-4 on page 5-6 lists the SMU functions by action
and by type of message operated on.

Content of Messages
The content of startup, ASSIGN, and PARAM messages are listed in the following
paragraphs.

Startup Message
The startup message contains information about the startup of process. Table 5-1 on
page 5-1 lists the parts of the startup message:

ASSIGN Messages
ASSIGN messages contain file names and attributes that you specify using a TACL
ASSIGN command. Table 5-6 on page 5-6 lists the parts of an ASSIGN message.

Table 5-4. Using SMU Functions

Action Startup Message ASSIGN Messages PARAM Message

Check SMU_Message_CheckNumber_ SMU_Message_CheckNumber_
SMU_Assign_CheckName_

SMU_Message_CheckNumber_

Get SMU_Startup_GetText_ SMU_Assign_GetText_
SMU_Assign_GetValue_

SMU_Param_GetText_

Put SMU_Startup_PutText_ SMU_Assign_PutText_
SMU_Assign_PutValue_

SMU_Param_PutText_

Delete SMU_Startup_Delete_ SMU_Assign_Delete_ SMU_Param_Delete_

Table 5-5. Startup Message Parts

Portion Name Type Identifies

VOLUME Text Default volume and subvolume names

IN Text Input file name

OUT Text Output file name

STRING Text The startup message’s parameter string (the text that follows
the RUN option list)

Table 5-6. ASSIGN Message Parts (page 1 of 2)

Portion Name Type Identifies

LOGICALNAME Text Logical file name (DEFINE or ASSIGN file name)

TANDEMNAME Text Physical file name (Guardian file name)

PRIEXT Integer Primary extent size of file
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
5-6

Using the Common Language Utility (CLU) Library Using SMU Routines to Manipulate Messages
PARAM Message
The PARAM message contains all parameter names and the values associated with
the names.

• A count of the number of named parameters.

• A list of the parameters in the following form:

° Length of name
° Name
° Length of value
° Value

Using SMU Routines to Manipulate Messages
The following paragraphs summarize how you can manipulate messages using the
SMU routines.

Changing Environment Values
TACL ASSIGN, VOLUME, and PARAM commands let you specify default values that
persist in your TACL environment until you explicitly change them or until you log off.

In the RUN command to start a process, you can specify IN and OUT files and a
parameter string. These startup values override the default values for that process only
and do not persist in your environment.

Getting Environment Information
In the Guardian environment, a process can use the SMU functions to fetch the values
of or store values into its PARAM, ASSIGN, and startup messages. Processes running
in the OSS environment cannot use the SMU routines.

To access environment information using the SMU routines, your program must take
the following steps:

• Save the messages.
• Use the Get family of SMU functions.

SECEXT Integer Secondary extent size of file

FILECODE Integer File code

ACCESS Integer Access mode—input, output, or input/output

EXCLUSION Integer Exclusion mode—shared, exclusive, or protected

RECSIZE Integer Record size of file

BLKSIZE Integer Block size of file

Table 5-6. ASSIGN Message Parts (page 2 of 2)

Portion Name Type Identifies
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
5-7

Using the Common Language Utility (CLU) Library Using SMU Routines to Manipulate Messages
• Specify the message parts to retrieve.

Table 5-7 on page 5-8 lists the message parts you can retrieve and the SMU function
you use for each.

The Get subset of SMU functions enables your program to examine the names of files
and their specified overrides before it tries to open the files. The program can thus be
selective about the files it opens; it can choose among file descriptions according to the
overrides it finds.

You can also use the Get subset of SMU functions to retrieve run-time parameters to a
program. A program can take different actions based on the values specified in
PARAM messages and command line information.

Changing the Environment Information
You can use the Put subset of SMU functions to change the stored values and text in
ASSIGN, PARAM, and startup messages. You can pass different environment
information to descendant processes without changing the environment for subsequent
RUN commands.

Each function in the Put subset is the exact counterpart of a function in the Get subset.

Table 5-7. Retrievable Message Parts

SMU Function Message Part Returns

SMU_Assign_GetText_ LOGICALNAME Logical file name

TANDEMNAME Guardian file name

SMU_Assign_GetValue_ ACCESS Access mode

BLKSIZE Block size

EXCLUSION Exclusion mode

FILECODE File code

PRIEXT Primary disk extent

RECSIZE Record size

SECEXT Secondary extent

SMU_Param_GetText_ The name of a parameter The value of that parameter

SMU_Startup_GetText_ IN Guardian file name of IN file

OUT Guardian file name of OUT file

STRING Value following command run-
option

VOLUME Default volume and subvolume
names
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
5-8

Using the Common Language Utility (CLU) Library Using the environ Array
Deleting Environment Information
You can use the Delete subset of SMU functions to delete entire ASSIGN, PARAM,
and startup messages. You can also delete parts of ASSIGN and PARAM messages.

You cannot, however, delete parts of the startup message. Instead, you can use
SMU_Startup_PutText_ to assign null values to startup message parts, thereby
achieving the same effect as deleting the parts.

Using the environ Array
In the OSS environment, a process can access information in an array called
environ. Such information is provided by the OSS file system.

In both the OSS and Guardian environments, C programs use the getenv() and
putenv() functions to access the environ array. TAL and pTAL programs can use
the CRE_Getenv_ and CRE_Putenv_ routines to access the environ array. COBOL
saves messages only if you use the compiler SAVE directive. To access saved images
of messages generated by TACL in the Guardian environment, use the Saved
Message Utility (SMU).

In the Guardian environment, the CRE stores information in an array called environ if
either of the following conditions are true:

• The value of the SAVE-ENVIRONMENT PARAM is ON when the process starts

• The process’s main routine is written in C and the value of the
SAVE-ENVIRONMENT PARAM is ON or the SAVE-ENVIRONMENT PARAM is not
specified

If the value of the SAVE-ENVIRONMENT PARAM is OFF when the process starts, the
CRE does not store environment information in the environ array.

To access information in the environ array from a program whose main routine is not
written in C, you must enter the following TACL command before you run your
program:

PARAM SAVE-ENVIRONMENT ON

The first four entries in the environ array are:

In addition to these four entries, the environ array contains the names and values of
all parameters (PARAMs) in your environment when your process starts.

"STDIN" Gives the file name of the standard input file, stdin.

"STDOUT" Gives the file name of the standard output file, stdout.

"STDERR" Gives the file name of the standard error file, stderr.

“DEFAULTS" Gives the default volume and subvolume names used to qualify
partial file names.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
5-9

Using the Common Language Utility (CLU) Library Using the environ Array
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
5-10

6 CRE Service Functions
This section describes the interfaces to the CRE service functions. The service
functions include:

• Environment Functions on page 6-1
• File-Sharing Functions on page 6-4
• $RECEIVE Functions on page 6-30
• CRE_Terminator_ on page 6-42
• Exception-Handling Functions on page 6-44

The TNS CRE service functions, data, and data structure declarations in TAL are
available in the CREDECS file. The native CRE service functions, data, and data
structure declarations in pTAL are available in the CRERDECS files.

C, COBOL, and FORTRAN run-time libraries call CRE service functions to access
resources managed by the CRE. Do not call CRE service functions from C, COBOL, or
FORTRAN routines; use each language’s high-level constructs instead. Call CRE
service functions only from TAL and pTAL routines that must share resources
managed by the CRE with routines written in another language.

Many of the functions described in this section specify literal values that are
predefined. For example, if you invoke CRE_File_Close_, you can use a predefined
literal value to specify which standard file you are closing. The literal values used in
this section are declared in the CREDECS file. See Section 3, Compiling and Binding
Programs for the TNS CRE, for information on using CREDECS.

Environment Functions
This subsection describes the functions that retrieve and modify program environment
variables. These functions are listed in Table 6-1 on page 6-1.

CRE_Getenv_
The CRE_Getenv_ function retrieves the address of the value portion of an
environment variable.

The syntax for the TNS CRE environment is:

Table 6-1. CRE Environment Functions

Function Name Function Action

CRE_Getenv_ on
page 6-1

Returns a pointer to the value portion of an environment variable.

CRE_Putenv_ on
page 6-2

Stores a value in the value portion of an environment variable.

INT(32) PROC CRE_Getenv_(name);
 STRING .EXT name; ! in, required TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-1

CRE Service Functions CRE_Putenv_
name

is a pointer to a null-terminated string that specifies the name of the environment
variable whose value CRE_Getenv_ returns. name identifies a value established
either in a PARAM command or by a previous call to CRE_Putenv_.

The syntax for the native CRE environment is:

Var_name

is a pointer to a null-terminated string that specifies the name of the environment
variable whose value CRE_GETENV_ returns. Var_name identifies a value
established either in a PARAM command or by a previous call to CRE_PUTENV_.

 Return Value
CRE_Getenv_ returns one of the following:

• The 32-bit address of the value of the environment variable specified in name
• Null (0D) if name is not the name of an environment variable

Considerations
CRE_Getenv_ corresponds to the C language getenv() function. CRE_Getenv_ is
valid in large and wide memory model C programs running in the Guardian
environment and in wide memory model C programs running in the OSS environment.
CRE_Getenv_ is not valid in small memory model programs. See the C/C++
Programmer’s Guide for more information.

If CRE_Getenv_ returns a nonzero value, the value it returns is the address of a null-
terminated string.

Processes running in the Guardian environment can also use the Saved Message
Utility (SMU) routines, described in Section 9, Common Language Utility (CLU) Library
Functions, to obtain environment information such as the process startup message,
ASSIGNs, and PARAMs.

CRE_Putenv_
The CRE_Putenv_ function stores a value into an environment variable.

EXTADDR PROC CRE_GETENV_=”getenv”(Var_name) LANGUAGE C;
 STRING .EXT name;
 EXTERNAL; ! in, required native only

INT(32) PROC CRE_Putenv_(name-value);
 STRING .EXT name-value; ! in, required TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-2

CRE Service Functions CRE_Putenv_
name-value

is a null-terminated string that contains the name of an environment variable
followed by an equal sign (=), followed by the value to store in the specified
environment variable, as follows:

name=value

For example, the following string in name-value, stores the string “ABCDEFGH”
in the environment variable “ALPHABET”:

ALPHABET=ABCDEFGH0

where the zero (0) is a null byte that terminates the name-value string.

The syntax for the native CRE environment is:

Var_string

is a null-terminated string that contains the name of an environment variable
followed by an equal sign (=), followed by the value to store in the specified
environment variable, as follows:

Var=string

For example, the following string in Var_string, stores the string “ABCDEFGH”
in the environment variable “ALPHABET”:

ALPHABET=ABCDEFGH0

where the zero (0) is a null byte that terminates the Var_string string.

Return Value
CRE_Putenv_ returns one of the following:

• 0 if CRE_Putenv_ is successful

• A negative number, which is the negation of a CRE error number from the following
table:

Considerations
CRE_Putenv_ corresponds to the C language putenv() function.

INT(32) PROC CRE_PUTENV_=”putenv”(Var_string)LANGUAGE C;
 STRING .EXT Var_string; ! in, required
 EXTERNAL; ! native only

Error Code Cause

31 Cannot obtain data space
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-3

CRE Service Functions File-Sharing Functions
If name (TNS CRE) exists, CRE_Putenv_ stores value in the name environment
variable. If Var_string (native CRE) exists, CRE_Putenv_ stores string in the Var
environment variable.

If name (TNS CRE) does not exist, CRE_Putenv_ creates a new environment variable
called name and associates value with it. If Var_string (native CRE) does not exist,
CRE_Putenv_ creates a new environment variable called Var and associates string
with it.

CRE_Putenv_ uses additional heap space, if needed.

CRE_Putenv_ returns 0 unless it requires, but is unable to obtain, heap space in which
case it returns error code 31. If it returns a nonzero value, errno is set to ENOMEM.

 CRE_Putenv_ is not valid in small memory model C programs. See the C/C++
Programmer’s Guide for more information.

File-Sharing Functions
The functions described in this subsection, which are listed in Table 6-2 on page 6-4,
support file sharing in the Guardian environment. The results of calls to these functions
in the OSS environment are undefined. All of the functions listed are available in the
native CRE library.

Table 6-2. File-Sharing Functions

Function Name Function Action

CRE_File_Close_ on page 6-5 Closes a standard file.

CRE_File_Control_ on page 6-6 Sends an operating system control operation to a
standard file.

CRE_File_Input_ on page 6-8 Reads a record from standard input.

CRE_File_Message_ on page 6-9 Sends a message to a standard file.

CRE_File_Open_ on page 6-11 Opens a standard file.

CRE_File_Output_ on page 6-20 Sends a record to standard output or standard log.

CRE_File_Retrycheck_ on
page 6-22

Determines whether an operation that resulted in an
operating system error is retryable.

CRE_File_Setmode_ on page 6-23 Sends an operating system SETMODE operation to a
standard file.

CRE_Hometerm_Open_ on
page 6-24

Opens a process’s home terminal.

CRE_Log_Message_ on page 6-25 Writes a message to standard log.

CRE_Spool_Start_ on page 6-27 Invokes the SPOOLSTART system procedure.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-4

CRE Service Functions CRE_File_Close_
CRE_File_Close_
The CRE_File_Close_ function closes the standard file that you specify.

The syntax for the TNS CRE environment: is:

The syntax for the native CRE environment is:

file_ordinal

identifies the standard file to close. You can use the following symbolic names for
file_ordinal:

disposition

is an optional parameter that specifies the tape position parameter for a call to the
FILE_CLOSE_ system procedure.

cplist

if present and its address value is nonzero in the TNS environment, is a checkpoint
list. In the native CRE environment, this parameter has no meaning and should be
left empty (it is used by COBOL for process pair execution).

Return Value
CRE_File_Close_ returns:

• 0 if the close operation is successful

• A positive number, which is a file system error number

INT PROC CRE_File_Close_(file_ordinal, disposition, cplist)
EXTENSIBLE;
 INT file_ordinal; ! in, required
 INT disposition; ! in, optional
 INT(32) .cplist; ! in/out, optional TNS only

INT PROC CRE_File_Close_(file_ordinal, disposition, cplist)
EXTENSIBLE;
 INT file_ordinal; ! in, required
 INT disposition; ! in, optional
 INT(32) .EXT cplist; ! in/out, optional native only

CRE File Ordinal Symbolic Names

CRE^Standard^Input

CRE^Standard^Output

CRE^Standard^Log
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-5

CRE Service Functions CRE_File_Control_
• A negative number, which is the negation of a CRE error number from the following
table:

Considerations
CRE_File_Close_ decrements its count of the number of connections it has granted. If
after decrementing its count by one, the number of outstanding connections is nonzero,
CRE_File_Close_ returns to its caller without taking further action. If the result of
decrementing the number of outstanding connections goes to zero, CRE_File_Close_
calls:

• The CLOSEEDIT system procedure if the file was opened by a call to OPENEDIT.

• The SPOOLEND system procedure and then the FILE_CLOSE_ system procedure
if the file was a spooler collector that was open for buffered (level-3) spooling.

• The FILE_CLOSE_ system procedure for all other files.

CRE_File_Control_
The CRE_File_Control_ function invokes the CONTROL or SPOOLCONTROL system
procedures, passing the parameters you specify when you call CRE_File_Control_.

file_ordinal

identifies the standard file to which to send a control operation. You can use the
following symbolic names for file_ordinal:

CRE^Standard^Input
CRE^Standard^Output
CRE^Standard^Log

operation

is the operation parameter to pass to the CONTROL or SPOOLCONTROL system
procedures.

Error Code Cause

16 Checkpoint list exhausted

55 Missing or invalid parameter

63 Undefined shared file

INT PROC CRE_File_Control_(file_ordinal, operation, param);
 INT file_ordinal; ! in, required
 INT operation; ! in, required
 INT param; ! in, required TNS,native
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-6

CRE Service Functions CRE_File_Control_
param

is the param parameter to pass to the CONTROL or SPOOLCONTROL system
procedures.

Return Value
CRE_File_Control_ returns one of the following:

• 0 if the control operation is successful

• A positive number, which is a file system error number

• A negative number, which is the negation of a CRE error number from the following
table:

Considerations
If the standard file associated with file_ordinal is a spooler collector,
CRE_File_Control_:

• Invokes the SPOOLSTART system procedure, if SPOOLSTART has not been
invoked yet for file_ordinal.

• Invokes the SPOOLCONTROL system procedure, passing operation and
param to the corresponding SPOOLCONTROL parameters.

If the standard file associated with file_ordinal is not a spooler collector,
CRE_File_Control_ calls the CONTROL system procedure, passing operation and
param to the CONTROL procedure.

CRE_File_Control_ does not retry operations that return an error.

For more information on the SPOOLSTART and SPOOLCONTROL system
procedures, see the Spooler Programmer’s Guide.

For more information on the CONTROL system procedure, see the Guardian
Procedure Calls Reference Manual.

Error Code Meaning

55 Missing or invalid parameter

57 Parameter value not accepted

63 Undefined shared file

64 File not open
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-7

CRE Service Functions CRE_File_Input_
CRE_File_Input_
The CRE_File_Input_ function reads a record from a standard file.

file_ordinal

identifies the standard file from which to read. You can use only the symbolic name
CRE^Standard^Input for file_ordinal.

buffer:read_count

defines the data area (buffer) in which to store the data read. read_count
specifies the maximum number of bytes to read.

count_read

if present, is the number of bytes read into buffer when CRE_File_Input_ returns
control to your program. If no bytes are read, count_read is zero.

write_count

if present and has a value other than -1, is the number of bytes in buffer to write
as a prompt before reading from the file. If you do not specify write_count, a
prompt is not issued.

Return Value
CRE_File_Input_ returns one of the following:

• 0 if the input operation is successful

• A positive number, which is a file system error number

• A negative number, which is the negation of a CRE error number from the following
table:

INT PROC CRE_File_Input_(file_ordinal, buffer:read_count,
 count_read, write_count)
 EXTENSIBLE;
 INT file_ordinal; ! in, required
 STRING .EXT buffer; ! out, required
 INT read_count; ! in, required
 INT .EXT count_read; ! out, optional
 INT write_count; ! in, optional TNS,native

Error Code Cause

55 Missing or invalid parameter

56 Invalid parameter value

63 Undefined shared file

64 File not open

78 EDITREAD failed
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-8

CRE Service Functions CRE_File_Message_
Considerations
CRE_File_Input_ reads the next sequential record from the file referenced by
file_ordinal unless file_ordinal specifies a null file in which case
CRE_File_Input_ returns end of file without taking any other action.

If file_ordinal does not reference a null file, CRE_File_Input_ reads the next
sequential record by calling:

• READEDIT if the file is an EDIT file that was opened by calling OPENEDIT.

• EDITREAD if the file is an EDIT file that was opened by calling FILE_OPEN_ and
EDITREADINIT.

• WRITEREADX if the file is a terminal or process (other than a spooler collector)
and write_count is not equal to -1. In this case, write_count specifies the
number of bytes to write from buffer during the write portion of the
WRITEREADX operation.

• READX for all other cases.

CRE_File_Input_ does not retry operations that return an error.

CRE_File_Message_
The CRE_File_Message_ function sends a message to a standard file.

file_ordinal

identifies the standard file to which to send a message. You can use the following
symbolic names for file_ordinal:

buffer:message_bytes

is the message to send. If read_count is not -1, CRE_File_Message_ stores a
response, if one is received, at buffer.

INT PROC CRE_File_Message_(file_ordinal,
 buffer:message_bytes,
 indent_bytes, read_count,
 count_read)
 EXTENSIBLE;
 INT file_ordinal; ! in, required
 STRING .EXT buffer; ! in/out, required
 INT message_bytes; ! in, required
 INT indent_bytes; ! in, optional
 INT read_count; ! in, optional
 INT .EXT count_read; ! out, optional TNS,native

CRE File Ordinal Symbolic Names

CRE^Standard^Output

CRE^Standard^Log
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-9

CRE Service Functions CRE_File_Message_
indent_bytes

if present, specifies whether or not CRE_File_Message_ should write your
message on multiple lines, if necessary and, if so, the indentation to use for all
lines after the first.

CRE_File_Message_ alters the contents of buffer as follows, if your message
requires more than one line:

• If indent_bytes > 0, each message line after the first line is indented by
indent_bytes characters.

• If indent_bytes = 0, message lines after the first line are not indented.

• If indent_bytes = -1, the message is written in its entirety on one line.
CRE_File_Message_ returns an error if the length of the message exceeds the
number of bytes that can be written to the output device.

• If indent_bytes < -1, each message line after the first line uses the first
absolute_value(indent_bytes) characters of the first line of the message as
a prefix.

read_count

if present, is the maximum number of bytes CRE_File_Message_ reads in
response to the message it writes. CRE_File_Message_ returns a response only if
read_count is greater than or equal to zero and the device type associated with
file_ordinal is a terminal or a process (other than a spooler collector). The
response is stored in buffer. If you do not specify read_count,
CRE_File_Message_ does not return a response.

count_read

if present, is the actual number of bytes in the response. CRE_File_Message_ sets
count_read to -1 if it does not attempt to read a response or if its attempt to read
a response is not successful.

Return Value
CRE_File_Message_ returns one of the following:

• 0 if the message operation is successful

• A positive number, which is a file system error number

• A negative number, which is the negation of a CRE error number from the following
table:

Error Code Cause

55 Missing or invalid parameter

56 Invalid parameter value
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-10

CRE Service Functions CRE_File_Open_
Considerations
CRE_File_Message_ retries operations that return an error and are recoverable.

CRE_File_Open_
The CRE_File_Open_ function opens a standard file.

The syntax for the TNS CRE environment is:

The syntax for the native CRE environment is:

57 Parameter value not accepted

63 Undefined shared file

64 File not open

INT PROC CRE_File_Open_(file_ordinal, flags, access,
 exclusion, no_wait,
 sync_receive_depth, options,
 cplist) EXTENSIBLE;
 INT file_ordinal; ! in, required
 INT flags; ! in, optional
 INT access; ! in, optional
 INT exclusion; ! in, optional
 INT no_wait; ! in, optional
 INT sync_receive_depth; ! in, optional
 INT options; ! in, optional
 INT(32) .cplist; ! in/out, optional TNS only

INT PROC CRE_File_Open_(file_ordinal, flags, access,
 exclusion, no_wait,
 sync^receive_depth, options,
 cplist) EXTENSIBLE;
 INT file_ordinal; ! in, required
 INT flags; ! in, optional
 INT access; ! in, optional
 INT exclusion; ! in, optional
 INT no_wait; ! in, optional
 INT sync_receive_depth; ! in, optional
 INT options; ! in, optional
 INT(32) .EXT cplist; ! in/out, optional native only

Error Code Cause (continued)
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-11

CRE Service Functions CRE_File_Open_
file_ordinal

identifies the standard file to open. You can use the following symbolic names for
file_ordinal:

flags

if present, specifies CRE options. flags.<0:13> must be 0. flags.<14:15>
specifies the buffering attribute for a spooler collector. If flags is not passed,
CRE_File_Open_ assumes its value to be 0.

access

if present, specifies read-only, write-only, or read-write access to the file. If the file
is not open and you either do not specify access or specify its value as -1,
CRE_File_Open_ uses:

• Read-only access if you are opening standard input
• Write-only access if you are opening standard output or standard log

If the file is already open and you do not specify access or specify its value as -1,
CRE_File_Open_ sets the access for the current open to the same value used
when the file was first opened.

CRE_File_Open_ converts extend access to write-only access.

access corresponds to the access parameter to the FILE_OPEN_ system
procedure.

Refer to the FILE_OPEN_ procedure in the Guardian Procedure Calls Reference
Manual for valid access parameter values.

exclusion

if present, specifies shared, exclusive, or protected access to the file. If the file is
not open and you either do not specify exclusion or specify its value as -1,
CRE_File_Open_ uses:

• Shared if the device is a terminal
• Protected if the device is a process or a disk and the access mode is read-only
• Exclusive in all other cases

If the file is already open and you do not specify exclusion or you specify its
value as -1, CRE_File_Open_ sets exclusion for the current open to the value
used when the file was first opened.

CRE File Ordinal Symbolic Names

CRE^Standard^Input

CRE^Standard^Output

CRE^Standard^Log
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-12

CRE Service Functions CRE_File_Open_
exclusion corresponds to the exclusion parameter to the FILE_OPEN_ system
procedure.

Refer to the FILE_OPEN_ procedure in the Guardian Procedure Calls Reference
Manual for valid access parameter values.

no_wait

if present, is the nowait parameter to pass to the FILE_OPEN_ system procedure.
CRE_File_Open_ returns an error if you specify a nonzero value for no_wait. If
you do not specify no_wait, CRE_File_Open_ uses a value of zero.

sync_receive_depth

if present, is the sync-or-receive-depth parameter to pass to the FILE_OPEN_
system procedure. The value passed to FILE_OPEN_ is determined as follows:

• If sync_receive_depth is present and nonzero, CRE_File_Open_ passes
sync_receive_depth to FILE_OPEN_.

• If sync_receive_depth is present and zero, CRE_File_Open_ passes zero
to FILE_OPEN_ unless:

° Your program is compiled to run as a process pair

° Your program includes more than one language (not including TAL and
pTAL)

In these cases, the CRE specifies 1 for the FILE_OPEN_ sync-or-receive-
depth parameter.

• If sync_receive_depth is not present, the CRE specifies 1 for the
FILE_OPEN_ sync-or-receive-depth parameter, except for $RECEIVE, for
which it specifies 0.

options

if present, is the options parameter for FILE_OPEN_. If you do not specify
options, CRE_File_Open_ passes zero to FILE_OPEN_, unless the access
mode is read-only and the file is $RECEIVE (TNS CRE environment only), in which
case it passes one to FILE_OPEN_.

cplist

if present and its address value is nonzero in the TNS environment, is a checkpoint
list. In the native CRE environment, this parameter has no meaning and should be
left empty (it is used by COBOL for process pair execution).

Return Value
CRE_File_Open_ returns one of the following:

• 0 if the open operation is successful
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-13

CRE Service Functions CRE_File_Open_
• A positive number, which is a file system error number

• A negative number, which is the negation of one of the following CRE error
numbers:

Considerations

• Opening standard files

The CRE manages shared access to only three files: standard input, standard
output, and standard log. Standard files are used as a source of sequential records
when specified for input (standard input) and as a destination to which to write
sequential records when specified as output (standard output and standard log).
See Section 2, CRE Services, for a full description of the three standard files.

To open a standard file, your program must call CRE_File_Open_. Except for
routines written in TAL, the run-time library for each language calls
CRE_File_Open_. Only TAL routines must call CRE_File_Open_ explicitly.

For each standard file, your program must call CRE_File_Open_ before it calls any
other CRE functions for that file. CRE_File_Open_ opens each standard file
according to the I/O model of the language in which your program’s main routine is
written.

To access files other than standard files, your program (or its run-time
environment) must use standard file system procedures such as the FILE_OPEN_
system procedure.

The device type for standard input must be a process, $RECEIVE (in the TNS
CRE environment), a disk, or a terminal.

Error Code Cause

16 Checkpoint list exhausted

17 Cannot obtain control space

20 Cannot utilize file name

55 Missing or invalid parameter

57 Parameter value not accepted

63 Undefined shared file

65 Invalid attribute value

66 Unsupported file device

67 Access mode not accepted

68 Nowait value not accepted

69 Syncdepth not accepted

71 Inconsistent attribute value

77 EDITREADINIT failed

79 OPENEDIT failed
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-14

CRE Service Functions CRE_File_Open_
The device type for standard output and standard log must be a process, the
operator console, a disk, a printer, or a terminal.

If you specify different values for the exclusion, sync_receive_depth, or
options parameters on any open after the first open, the CRE returns an error
stating that the requested attributes are incompatible with existing attributes,
unless the requested attributes are a subset of the existing attributes.

• File connections

For each standard file, the CRE opens a file one time, regardless of how many
times your program opens that standard file. The CRE grants a connection to the
file to each caller of CRE_File_Open_ that specifies the same standard file—
standard input, standard output, or standard log. Because CRE_File_Open_ grants
a connection to the same open of the file to each caller, each reference to the file
reads or writes, as appropriate, to the same file.

Under some circumstances, the CRE does not open a physical file. The CRE does,
however, grant connections to the standard file, even though it does not open a
file.

Figure 6-1 on page 6-16 shows how the CRE manages connections to standard
files. As shown in the figure, CRE_File_Open_ searches its I/O file table for an
entry that corresponds to the standard file that you are opening. If an entry exists,
CRE_File_Open_ grants the caller a connection to the file. Otherwise,
CRE_File_Open_ calls the FILE_OPEN_ system procedure to open the file.

See Section 2, CRE Services, for a full description of how the CRE determines the
name of the file to open for each standard file.

• Accessing standard files

Use the standard constructs of the languages in which you write your routines to
access standard files. Table 6-3 on page 6-16 shows examples of how your
program accesses the standard files supported by the CRE. For more information,
see the reference manuals for the languages in which your routines are written.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-15

CRE Service Functions CRE_File_Open_

Figure 6-1. Using Connections to Share a File Open

Table 6-3. Language-Specific Constructs for Standard Files

Language
Standard File

Standard Input Standard Output Standard Log

C str = gets(sp);
ch = getchar();
scanf("%s", sp);

puts(sp);
putchar(ch);
printf("hello",\n);

perror(sp);

COBOL ACCEPT sp DISPLAY sp Not available

FORTRAN READ(5,100) sp WRITE(6,100) sp PAUSE string
STOP string

601VST .VSD

User
Routine

User
Routine

User
Routine

 Run-Time
Library
Routine

 Run-Time
Library
Routine

 Run-Time
Library
Routine

User
Process

Language-Specific Run-Time
Libraries

CRE_File_Open_

Shared File

Guardian
File

Name Connections

Standard Input

Standard Output

Standard Log

$myterm

$myterm

$vol.subvol.log

3

1

3

I/O File Table

Common Run-Time Environment
Library

FILE_OPEN_ Guardian File
System
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-16

CRE Service Functions CRE_File_Open_
• Opening terminals and processes

A standard file can access a terminal or a process (except a spooler collector) for
both input and output. If the file you specify for standard input is the same as the
file you specify for standard output or standard log, the CRE opens the operating
system file only once, although you must invoke CRE_File_Open_ once for the
read component of the open, and once for the write component of the open. The
CRE, however, opens the operating system file only once and specifies read-write
access.

• Disk files

You can specify an existing or nonexistent disk file as a standard file. If you specify
a file that does not exist, CRE_File_Open_ attempts to create a file. If it is unable
to create a file, either because you specified an unacceptable access (for example,
you open a nonexistent file as read-only) or because the operating system
returned an error when CRE_File_Open_ attempted to create the file,
CRE_File_Open_ returns an error.

° The FILE_OPEN_ and EDITREADINIT system procedures if your
program’s main routine is written in COBOL or FORTRAN, specifies that it
is to run as a process pair, and opens the file for read-only access. If your
FORTRAN or COBOL routine specifies that it is to run as a process pair
and attempts to open an EDIT file with an access mode other than read-
only, CRE_File_Open_ returns error 67, “access mode not accepted.”

° Files other than EDIT files

CRE_File_Open_ opens all files other than EDIT files by calling the
FILE_OPEN_ system procedure.

° EDIT files

CRE_File_Open_ opens EDIT files using:

° The OPENEDIT_ system procedure if your program’s main routine is
written in C/C++, pTAL, or TAL, or is written in COBOL or FORTRAN and
does not specify that it is to run as a process pair.

° Nonexistent disk files

If your program specifies a nonexistent disk file and an access mode other
than read-only, CRE_File_Open_ attempts to create a file for you.
CRE_File_Open_ creates:

Note. Some of the descriptions in this subsection specify different CRE actions depending on
whether a program’s main routine specifies that the program runs as a process pair. In all such
cases, the actions of the CRE are based solely on whether the main routine specifies that the
program runs as a process pair, regardless of whether the program initiates process pairs or
whether the program is running as a process pair.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-17

CRE Service Functions CRE_File_Open_
° An EDIT file if your program’s main routine is written in C/C++, pTAL, or
TAL, or if your program’s main routine is written in COBOL or FORTRAN
and does not specify that it is to run as a process pair.

° An entry-sequenced file if your program’s main routine is written in COBOL
or FORTRAN and specifies that it is to run as a process pair (regardless of
whether your program is currently running as a process pair).

• Spooler collectors

You can specify a spooler collector as the external file for either standard output or
standard log.

Although you specify a spooler collector, the CRE does not call the SPOOLSTART
system procedure during CRE_File_Open_. Your program can call
CRE_Spool_Start_ to establish parameters to the spooler collector (for example,
the number of copies you want printed, or the location at which to print your listing)
after you call CRE_File_Open_ but before you initiate any other CRE I/O function.

If your program specifies a spooler collector for output but does not call
CRE_Spool_Start_ before its first call to a CRE I/O function, the CRE calls
SPOOLSTART if it determines that it needs to do so (for example, if you have
specified buffered spooling but have not called CRE_Spool_Start_ or if you
specified CRE^Undecided^spooling).

If the file referenced by file_ordinal is a spooler collector, the flags
parameter specifies the type of spooling you want. You can use the following
literals when you call CRE_File_Open_. (The literals are declared in the
CREDECS file.)

The following example shows a call to CRE_File_Open_ that specifies a spooling
literal.

CALL CRE_File_Open_(file_no, CRE^Buffered^spooling,...);

° Simple Spooling

If you specify CRE^Simple^spooling, the CRE does not allocate a buffer for
spooling and writes output directly to the spooler collector by calling the
WRITEX system procedure. Your program uses level-1 spooling unless it calls
CRE_Spool_Start_, in which case it uses level-2 spooling.

° Buffered Spooling

If you specify CRE^Buffered^spooling, the call to CRE_File_Open_ fails if:

° file_ordinal specifies standard log.

Spooling Type Meaning

CRE^Simple^spooling Unbuffered spooling (level-1 or level-2 spooling)

CRE^Undecided^spooling Spooling type determined by the CRE

CRE^Buffered^spooling Buffered spooling (level-3 spooling)
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-18

CRE Service Functions CRE_File_Open_
° The CRE is unable to allocate a buffer for spooled output.

° Undecided Spooling

If you specify CRE^Undecided^spooling, pass zeroes for flags, or do not
specify flags, the CRE converts your request to CRE^Simple^spooling if:

° file_ordinal specifies standard log.
° The CRE is unable to allocate a buffer for spooled output.

If you specify CRE^Undecided^spooling when you open the file, and the CRE does
not convert your request to CRE^Simple^spooling as described in the preceding
text, the CRE determines whether to use simple or buffered spooling as follows:

The flow chart in Figure 6-2 on page 6-20 shows how CRE_File_Open_ processes
your open request when you specify a spooler collector.

For more information on the buffered spooling, see CRE_Spool_Start_ on
page 6-27.

For more information about spooling, refer to the Spooler Utilities Reference
Manual and the Spooler Programmer’s Guide.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-19

CRE Service Functions CRE_File_Output_

CRE_File_Output_
The CRE_File_Output_ function writes a record to a standard file.

Figure 6-2. Determining Spooler Buffering in CRE_File_Open_

.

INT PROC CRE_File_Output_(file_ordinal, buffer:write_count,
 count_written, spacing_option)
 EXTENSIBLE;
 INT file_ordinal; ! in, required
 STRING .EXT buffer; ! in, required
 INT write_count; ! in, required
 INT .EXT count_written; ! out, optional
 INT spacing_option; ! in, optional TNS,native

Start
 Flags=
Buffered

Spooling?

 Flags=
Simple

Spooling?

Flags=Undecided
Spooling

no

yes yes

Nowait=0?

File Ordinal
=Standard

Log?

no

yes

no

no

yes

no

no

no

yes

yes

yes

yes

Nowait=0?

File Ordinal
=Standard

Log?

 Can
Allocate
Buffer

 Can
Allocate
Buffer

Error

Use Buffered
Spooling

Use Simple
Spooling

 Spooling
Undecided

602VST .VSD
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-20

CRE Service Functions CRE_File_Output_
file_ordinal

identifies the standard file to which to write. You can use the following symbolic
names for file_ordinal:

buffer:write_count

is the record to transmit (buffer) and its length in bytes (write_count).

count_written

if present, is the number of bytes written when the record is transmitted. If a record
is not transmitted, count_written is zero. See the following considerations for
more information on count_written.

spacing_option

if present, specifies spacing actions. If you do not pass spacing_option,
CRE_File_Output_ uses a value of one.

spacing_option is applicable when the target device of CRE_File_Output_ is a
process, line printer, spooler collector, or terminal. The bits in spacing_option
are defined as follows:

You can use spacing_option.<4:15>, number of lines to advance, to obtain
particular effects. For example, a series of lines written with spacing_option 2
creates double-spaced lines. A series of lines written with spacing_option 0
creates overprinted lines.

Return Value
CRE_File_Output_ returns one of the following:

• 0 if the output operation is successful
• A positive number, which is a file system error number

CRE File Ordinal Symbolic Names

CRE^Standard^Output

CRE^Standard^Log

Bits in
spacing_option Meaning

0 On this operation:

0: Write before advancing
1: Write after advancing

1 Default spacing mode:

0: Write before advancing
1: Write after advancing

2:3 Reserved

4:15 Number of lines to advance
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-21

CRE Service Functions CRE_File_Retrycheck_
• A negative number, which is the negation of a CRE error number from the following
table:

Considerations

• If the file referenced by file_ordinal is a spooler collector, the current spooling
state is either buffered spooling or undecided spooling, and the spooler has not
been initialized, CRE_File_Output_ calls the CRE_Spool_Start_ procedure.

• If the file referenced by file_ordinal is a spooler collector open for level-3
spooling, CRE_File_Output_ calls SPOOLWRITE.

• If file_ordinal specifies a null file—that is, CRE_File_Open_ has been called
and has granted one or more connections to the file but an operating system file
was not opened— CRE_File_Output_ sets count_written to the value specified
in write_count, and returns 0 as the value of the function.

• If the file was opened by a call to the OPENEDIT system procedure,
CRE_File_Output_ calls the WRITEEDIT system procedure.

• In all other cases, CRE_File_Output_ calls the WRITEX system procedure to write
the contents of buffer.

• CRE_File_Output_ does not retry operations that return an error.

CRE_File_Retrycheck_
The CRE_File_Retrycheck_ function determines whether an I/O operation that
completed with an operating system error should be retried.

file_ordinal

identifies the standard file for which to check for a retryable operation. You can use
the following symbolic names for file_ordinal:

CRE^Standard^Input
CRE^Standard^Output
CRE^Standard^Log

Error Code Cause

55 Missing or invalid parameter

57 Parameter value not accepted

63 Undefined shared file

64 File not open

INT PROC CRE_File_Retrycheck_(file_ordinal, error)
 EXTENSIBLE;
 INT file_ordinal; ! in, required
 INT error; ! in, optional TNS,native
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-22

CRE Service Functions CRE_File_Setmode_
error

if present and greater than or equal to zero, is a file system error code; otherwise,
if present and less than zero, error is a negated CRE error ordinal.

Return Value
CRE_File_Retrycheck_ returns 0 if file_ordinal is not valid or if error is present
and has a negative value; otherwise, CRE_File_Retrycheck_ returns the value
returned to it from a call to the FILEERROR system procedure. See “FILEERROR” in
the Guardian Procedure Calls Reference Manual for more information on the
FILEERROR procedure.

Considerations

• Retrying an operation is appropriate only if:

° The last operation failed.
° The failure was detected by the operating system.
° The cause of the failure is considered recoverable.

• CRE_File_Retrycheck_ does not return errors.

CRE_File_Setmode_
The CRE_File_Setmode_ function invokes the SETMODE or the SPOOLSETMODE
system procedure, passing the parameters you specify when you call
CRE_File_Setmode_.

file_ordinal

identifies the standard file to which to send a setmode operation. You can use the
following symbolic names for file_ordinal:

CRE^Standard^Input
CRE^Standard^Output
CRE^Standard^Log

function

is the function parameter for a SETMODE or SPOOLSETMODE system
procedure.

INT PROC CRE_File_Setmode_(file_ordinal, function, param1,
 param2) EXTENSIBLE;
 INT file_ordinal; ! in, required
 INT function; ! in, required
 INT param1; ! in, required
 INT param2; ! in, optional TNS,native
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-23

CRE Service Functions CRE_Hometerm_Open_
param1

is the param1 parameter for a SETMODE or SPOOLSETMODE system procedure.

param2

is the param2 parameter for a SETMODE or SPOOLSETMODE system procedure.

Return Value
CRE_File_Setmode_ returns one of the following:

• 0 if the setmode operation is successful

• A positive number, which is a file system error number

• A negative number, which is the negation of a CRE error number from the following
table:

Considerations

• If the standard file associated with file_ordinal specifies buffered spooling or
undecided spooling and CRE_Spool_Start_ has not been invoked,
CRE_File_Setmode_ calls CRE_Spool_Start_.

• If the file specified by file_ordinal is a spooler collector and your program is
using level-3 spooling for that file, CRE_File_Setmode_ invokes the
SPOOLSETMODE system procedure, passing the parameters to
CRE_File_Setmode_ to SPOOLSETMODE. Otherwise, CRE_File_Setmode_
invokes the SETMODE system procedure passing the parameters to
CRE_File_Setmode_ to SETMODE.

• CRE_File_Setmode_ does not retry operations that return an error.

CRE_Hometerm_Open_
The CRE_Hometerm_Open_ function opens your process’s home terminal.

file_number

is assigned the file number of your process’s home terminal if the open operation
succeeds; otherwise, CRE_Hometerm_Open_ assigns -1 to file_number.

Error Code Cause

55 Missing or invalid parameter

63 Undefined shared file

64 File not open

INT PROC CRE_Hometerm_Open_(file_number);
 INT .EXT file_number; ! out TNS,native
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-24

CRE Service Functions CRE_Log_Message_
Return Value
CRE_Hometerm_Open_ returns one of the following:

• 0 if the open operation is successful

• A positive number, which is a file system error number

• A negative number, which is the negation of a CRE error number from the following
table:

Considerations

• CRE_Hometerm_Open_ opens your process’s home terminal and returns its file
number in file_number.

• If the CRE receives an EXECUTION-LOG PARAM at process initialization,
CRE_Hometerm_Open_ does not store a value in file_number and returns error
20, “Cannot utilize file name.”

• CRE_Hometerm_Open_ does not retry operations that return an error.

CRE_Log_Message_
The CRE_Log_Message_ function writes a message to standard log. Although you
should use standard constructs in your programming language, you can directly invoke
CRE_Log_Message_ from your application program to log a message.

buffer:message_bytes

defines the address and length of the message to transmit.

indent_bytes

if present, specifies formatting of the message.

read_count

if present, specifies the number of bytes to read in response to the message.

Error Code Cause

20 Cannot utilize file name

INT PROC CRE_Log_Message_(buffer:message_bytes,
 indent_bytes,
 read_count, count_read)
 EXTENSIBLE;
 STRING .EXT buffer; ! in/out, required
 INT message_bytes; ! in, required
 INT indent_bytes; ! in, optional
 INT read_count; ! in, optional
 INT .EXT count_read; ! out, optional TNS, native
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-25

CRE Service Functions CRE_Log_Message_
count_read

if present, is the number of bytes in the response.

For details on the parameters to CRE_Log_Message_, see the descriptions of the
corresponding parameters in the CRE_File_Message_ procedure.

Return Value
CRE_Log_Message_ returns one of the following:

• 0 if the message operation is successful

• A positive number, which is a file system error number

• A negative number, which is the negation of a CRE error number from the following
table:

Considerations

• CRE_Log_Message_ sends a message to standard log. If standard log is not
open, CRE_Log_Message_ opens it.

• CRE_Log_Message_ retries operations that cause recoverable errors.

Error Code Cause

17 Cannot obtain control space

20 Cannot utilize file name

55 Missing or invalid parameter

56 Invalid parameter value

57 Parameter value not accepted

66 Unsupported file device

71 Inconsistent attribute value

79 OpenEdit failed
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-26

CRE Service Functions CRE_Spool_Start_
CRE_Spool_Start_
The CRE_Spool_Start_ function invokes the SPOOLSTART system procedure.

file_ordinal

identifies the standard file for which to initiate SPOOLSTART. You can use the
following symbolic names for file_ordinal:

CRE^Standard^Output
CRE^Standard^Log

buffering

if present, specifies the buffering attribute for the spooler job; if buffering is not
passed, CRE_Spool_Start_ uses 0. You can use the symbolic names in the
following table to specify buffering:

CRE^Simple^spooling
CRE^Buffered^spooling
CRE^Undecided^spooling

The preceding literals are defined in the CREDECS file for the TNS CRE, and the
CRERDECS file for the TNS/R or TNS/E native CRE. Refer to Section 3,
Compiling and Binding Programs for the TNS CRE, for information on the
CREDECS file. Refer to Section 4, Compiling and Linking Programs for the Native
CRE, for information on the CRERDECS file.

Figure 6-3 on page 6-30 shows the algorithm CRE_Spool_Start_ uses to choose
simple spooling or buffered spooling for the file associated with file_ordinal.

INT PROC CRE_Spool_Start_(file_ordinal, buffering,
 location:loc_bytes,
 form_name:form_bytes,
 report_name:report_bytes,
 number_of_copies, page_size,
 flags, owner, max_lines,max_pages)
 EXTENSIBLE;
 INT file_ordinal; ! in, required
 INT buffering; ! in, optional
 STRING .EXT location; ! in, optional
 INT loc_bytes; ! in, optional
 STRING .EXT form_name; ! in, optional
 INT form_bytes; ! in, optional
 STRING .EXT report_name; ! in, optional
 INT report_bytes; ! in, optional
 INT number_of_copies; ! in, optional
 INT page_size; ! in, optional
 INT flags; ! in, optional
 INT owner; ! in, optional
 INT(32) max_lines; ! in, optional
 INT(32) max_pages; ! in, optional TNS, native
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-27

CRE Service Functions CRE_Spool_Start_
location:location_bytes

if present, specifies the location for the spooler job and its length in bytes.
CRE_Spool_Start_ passes this parameter to the SPOOLSTART system
procedure’s location parameter. CRE_Spool_Start_ ensures that the string it
passes to SPOOLSTART is 16 bytes long by truncating or adding blank characters
to the string you specify.

form_name:form_bytes

if present, specifies the form name for the spooler job. CRE_Spool_Start_ passes
this parameter to the SPOOLSTART system procedure’s form-name parameter.
CRE_Spool_Start_ ensures that the string it passes to SPOOLSTART is 16 bytes
long by truncating or adding blank characters to the string you specify.

report_name:report_bytes

if present, specifies the report name for the spooler job. CRE_Spool_Start_ passes
this parameter to the SPOOLSTART system procedure’s report-name parameter.
CRE_Spool_Start_ ensures that the string it passes to SPOOLSTART is 16 bytes
long by truncating or adding blank characters to the string you specify.

number_of_copies

if present, specifies the number of copies to print. CRE_Spool_Start_ passes
number_of_copies to the num-of-copies SPOOLSTART parameter.

page_size

if present, specifies the number of lines per page to be used by the Peruse utility
for its PAGE and LIST commands. CRE_Spool_Start_ passes page_size to the
page-size SPOOLSTART parameter.

flags

if present, specifies certain attributes for the spooler job. See the Spooler
Programmer’s Guide for details. CRE_Spool_Start_ passes flags to the flags
SPOOLSTART parameter.

owner

if present, specifies the spooler job owner. CRE_Spool_Start_ passes owner to the
owner SPOOLSTART parameter.

max_lines

if present, specifies the maximum number of lines to allow for the spooler job.
CRE_Spool_Start_ passes max_lines to the max-lines SPOOLSTART parameter.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-28

CRE Service Functions CRE_Spool_Start_
max_pages

if present, specifies the maximum number of pages to allow for the spooler job.
CRE_Spool_Start_ passes max_pages to the max-pages SPOOLSTART
parameter.

Return Value
CRE_Spool_Start_ returns one of the following:

• 0 if the input operation is successful

• A positive number, which is a file system error number

• A negative number, which is the negation of a CRE error number from the following
table:

Considerations

• CRE_Spool_Start_ invokes the SPOOLSTART system procedure, passing the
parameters it received to SPOOLSTART.

• CRE_Spool_Start_ does not validate or alter any of the parameters you specify
except to ensure that the lengths of the location, form_name, and
report_name parameters are 16 bytes.

• The standard file specified by file_ordinal must already be open.

• You can only reference the file associated with file_ordinal with calls to
CRE_File_Open_ before you call CRE_Spool_Start_.

• The file referenced by file_ordinal must be a spooler collector. If your program
calls CRE_Spool_Start_ after it opens the file and before it calls any other
procedure for the spooled file, the CRE uses the CRE_Spool_Start_ buffering
parameter to determine whether to use simple or buffered spooling.

Error Code Cause

55 Missing or invalid parameter

56 Invalid parameter value

57 Parameter value not accepted

63 Undefined shared file

64 File not open

65 Invalid attribute value

71 Inconsistent attribute value

108 Invalid I/O device
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-29

CRE Service Functions $RECEIVE Functions
$RECEIVE Functions
This subsection describes the functions that support $RECEIVE. Both the TNS and
native CRE environment support $RECEIVE functionality. Table 6-4 on page 6-31 lists
the functions in this subsection.

Figure 6-3. Determining Spooler Buffering in CRE_Spool_Start_

Spool_Start_
Buffering =
Buffered

 ?

 Previous
Buffering =

Simple
?

Spooler
already
started
 ?

no

 Spool_Start_
Params Besides
 File_Ordinal &

Buffering
Specified

?

Use Buffered

Spooling

Spool_Start_
Buffering =
Simple

 ?

no

yes yes
 Previous
Buffering =

Buffered
 ?

 PARAM
BUFFERED=SPOOLING

=OFF
 ?

yes

Error
yesyes

Use Simple
Spooling

 Spool_Start_
Params Besides
 File_Ordinal &

Buffering
Specified

 ?

Spool_Start_

Buffering =
Undecided

no

yes

no

 Previous
 Buffering =
Undecided

?

no
 Use
Previous
Buffering

Start

yes

no

yes

no
no

yes

Spooler
already
started
 ?

no

yes

no

.VSD603VST
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-30

CRE Service Functions CRE_Receive_Open_Close_

CRE_Receive_Open_Close_
CRE_Receive_Open_Close_ provides a logical open or close of $RECEIVE on behalf
of its caller.

The syntax for the TNS environment is:

The syntax for the native environment is:

variant

defines if the call is an open or a close request. It is nonzero for an open request,
zero for a close request.

attributes

if present and its address value is not equal to zero, points to a structure that
specifies attributes to apply to $RECEIVE. For further information, see Specifying
the Receive File Open Attributes on page 6-32.

cplist

if present and its address value is nonzero in the TNS environment, is a checkpoint
list. In the native CRE environment, this parameter has no meaning and should be
left empty (it is used by COBOL for process pair execution).

Table 6-4. $RECEIVE Functions

Function Name Function Action

CRE_Receive_Open_Close_
on page 6-31

Opens or closes $RECEIVE.

CRE_Receive_Read_ on
page 6-38

Reads a message from $RECEIVE by calling
READUPDATE.

CRE_Receive_Write_ on
page 6-41

Replies to a message from $RECEIVE by calling REPLYX.

INT PROC CRE_Receive_Open_Close_(variant, attributes,
 cplist) EXTENSIBLE;
 INT variant; ! in, required
 INT .EXT attributes; ! in, optional
 INT(32) .cplist; ! in/out, optional TNS only

INT PROC CRE_Receive_Open_Close_(variant, attributes,
 cplist) EXTENSIBLE;
 INT variant; ! in, required
 INT .EXT attributes; ! in, optional
 INT(32) .EXT .cplist; ! in/out, optional native only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-31

CRE Service Functions CRE_Receive_Open_Close_
Return Value
CRE_Receive_Open_Close_ returns one of the following:

• 0 if the input operation is successful

• A positive number, which is a file system error number

• A negative number, which is the negation of a CRE error number from the following
table:

Specifying the Receive File Open Attributes
This subsection describes the fields of the structure that the attributes parameter
references.

The format of the attributes structure is defined by the following TAL STRUCT:

STRUCT CRE^RFOA^model(*); ! $RECEIVE open attributes
BEGIN
 INT Maximum^requesters; ! Max requesters supported
 INT Maximum^syncdepth; ! Max saved / requester
 INT Maximum^reply; ! Max bytes in saved reply
 INT Receive^depth; ! Max server queue depth
 INT Report^flags[0:3]; ! Report system msg flags
 FILLER 2; ! Reserved (must be 0)
END; -- CRE^RFOA^model

The structure CRE^RFOA^model is in the CREDECS file. Refer to Section 3,
Compiling and Binding Programs for the TNS CRE, for information on the CREDECS
file.

Figure 6-4 on page 6-34 shows how each of the fields in CRE^RFOA^model affects
how the CRE allocates memory for requester processes:

Error Code Cause

17 Cannot obtain control space

55 Missing or invalid parameter

57 Parameter value not accepted

65 Invalid attribute value

71 Inconsistent attribute value

RFOA field Effect

Maximum^requesters

(value 3)

The server can support three simultaneous requester processes
because it has allocated space for three sets of server replies:
Requester 1 Replies, Requester 2 Replies, and Requester 3
Replies. Therefore, the server can support all three requesters:
Requester A, Requester B, and Requester C.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-32

CRE Service Functions CRE_Receive_Open_Close_
See the Guardian Programmer’s Guide and the Guardian Procedure Calls Reference
Manual for additional information about $RECEIVE processing.

Maximum^syncdepth

(value 4)

The server can support requesters that issue up to four I/O requests
to the server between calls to a checkpoint system procedure such
as CHECKPOINT, CHECKPOINTX, CHECKPOINTMANYX, and so
forth.

Maximum^reply

(value 24 bytes)

The server can store replies that are up to 24 bytes long, as shown
in each Reply table.

Receive^depth The server’s Received Message Table holds messages received
from $RECEIVE for which a REPLYX has not been issued. Because
the table shows that it now holds eight messages, the operating
system rejects any subsequent messages from requesters until the
server calls the CRE_Receive_Write_ function to reply to one of the
messages.

RFOA field Effect (continued)
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-33

CRE Service Functions CRE_Receive_Open_Close_

Specifying Maximum^requesters:

• Maximum^requesters specifies the maximum number of opens from other
processes that your process can manage at any point in time. The CRE returns
error 12, “file in use,” if it receives an open request that would exceed the number
you specify in the Maximum^requesters field.

Specifying Maximum^syncdepth:

• Maximum^syncdepth specifies the maximum number of replies that the CRE
holds for each requester in case the requester’s backup process becomes the
primary process and begins executing the instructions that appear immediately
after the previous CHECKPOINT. The value you specify for Maximum^syncdepth
is application dependent. In general, Maximum^syncdepth specifies the
maximum number of messages that any requester can send to your process
before the requester calls a checkpoint system procedure such as CHECKPOINT,

Figure 6-4. Structure Allocation to Support Requesters Running as Process
Pairs

loop: ...
 WRITE to server
 ...

WRITE to server
 ...

WRITE to server
 ...

WRITE to server

CHECKPOINT
GO TO loop

loop: ...
 WRITE to server
 ...

WRITE to server
 ...

WRITE to server
 ...

WRITE to server

CHECKPOINT
GO TO loop

loop: ...
 WRITE to server
 ...

WRITE to server
 ...

WRITE to server
 ...

WRITE to server

CHECKPOINT
GO TO loop

Requesters

Requester A Requester B Requester C

Server
Maximum^reply = 24
Receive^depth = 8
Maximum^syncdepth = 4
Maximum requesters = 3

 Maximum
requesters

= 3

Reply 1 Reply 1 Reply 1

Reply 2 Reply 2 Reply 2

Reply 3 Reply 3 Reply 3

Reply 4 Reply 4 Reply 4

1

2

3

4

 24
bytes

 24
bytes

 24
bytes

(Maximum^reply)
Requester 1

 Replies

(Maximum^reply)
Requester 2

 Replies

(Maximum^reply)
Requester 3

 Replies

Receive
 depth
 = 8

Received Message 1

Received Message 2

Received Message 3

Received Message 4

Received Message 5

Received Message 6

Received Message 7

Received Message 8

1

2

3

4

5

6

7

8

Received Message Table

604VST .VSD
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-34

CRE Service Functions CRE_Receive_Open_Close_
CHECKPOINTX, CHECKPOINTMANY, CHECKPOINTMANYX, and so forth. Note
that the CRE allocates enough space to accommodate the maximum number of
retained replies times the maximum number of requesters times the maximum
number of bytes per saved reply. For example:

Space_allocated := Maximum^requesters *
 Maximum^syncdepth *
 Maximum^reply;

Your program might be able to allocate less space if it can distinguish requests that
alter a database from requests that only return information without altering a
database. Your program might be able to allocate less space:

° If it does not retain messages that do not update a database.

° If it is not necessary that the program receive the same response to a
database query for each such query. If it is possible for a database to be
changed, however, by another process, two successive queries might return
different and inconsistent responses.

Specifying Maximum^reply:

• Maximum^reply specifies the maximum number of bytes in each message that
the CRE saves.

Specifying Receive^depth:

• You read messages by calling CRE_Receive_Read_ and reply to messages by
calling CRE_Receive_Write_. These functions correspond to the READUPDATEX
and REPLYX system procedures.

Specifying Report^flags:

• You can specify, on a message by message basis, which system messages you
want to receive. The CRE receives all system messages but returns to your
program only those messages that you specify in Report^flags.

Table 6-5 on page 6-36 shows literals that you use to specify the messages you
want to receive. The literals shown in Table 6-5 are in the CREDECS file.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-35

CRE Service Functions CRE_Receive_Open_Close_
For each word in Report^flags, use a logical OR (LOR) operation to specify the
system messages you want to receive. For example, your program is notified
whenever the CRE receives a CONTROL, SETMODE, cpu^down, cpu^up,
remote^cpu^down, remote^cpu^up, settime, power^on, OPEN, or CLOSE
system message by initializing Report^flags, as follows:

STRUCT rcv_param (CRE^RFOA^model);

rcv_param.Report^flags[0] := 0;
rcv_param.Report^flags[1] := 0;

Table 6-5. Receive File Message Report Names

Symbolic Name System Message Number

Report^flags[0]
 CRE^cpu^down^mask
 CRE^cpu^up^mask
 CRE^settime^mask
 CRE^power^on^mask
 CRE^NEWPROCESSNOWAIT^mask
 CRE^message^missed^mask
 CRE^3270^status^mask
 CRE^SIGNALTIMEOUT^mask
 CRE^LOCKMEMORY^done^mask
 CRE^LOCKMEMORY^failed^mask
 CRE^PROCSIGNALTIMEOUT^mask

-2
-3
-10
-11
-12
-13
-21
-22
-23
-24
-26

Report^flags[0]
 CRE^CONTROL^mask
 CRE^SETMODE^mask
 CRE^RESETSYNC^mask
 CRE^CONTROLBUF^mask
 CRE^SETPARAM^mask
 CRE^message^cancelled^mask
 CRE^DEVICEINFO2^mask

-32
-33
-34
-35
-37
-38
-41

Report^flags[2]
 CRE^remote^cpu^down^mask
 CRE^process^deleted^mask
 CRE^PROCESS_CREATE_^mask
 CRE^OPEN^mask
 CRE^CLOSE^mask
 CRE^break^mask
 CRE^devinfo^query^mask
 CRE^subname^mask
 CRE^FILE_GETINFO_^mask
 CRE^FILENAME_FINDNEXT_^mask
 CRE^node^down^mask
 CRE^node^up^mask
 CRE^GMOM^notify^mask
 CRE^remote^cpu^up^mask

-100
-101
-102
-103
-104
-105
-106
-107
-108
-109
-110
-111
-112
-113

Report^flags[3]
 CRE^pathsend^dialogue^abort^mask -121
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-36

CRE Service Functions CRE_Receive_Open_Close_
rcv_param.Report^flags[2] := 0;
rcv_param.Report^flags[3] := 0;

rcv_param.Report^flags[0] := CRE^cpu^down^mask LOR
 CRE^cpu^up^mask LOR
 CRE^settime^mask LOR
 CRE^power^on^mask ;

rcv_param.Report^flags[1] := CRE^CONTROL^mask LOR
 CRE^SETMODE^mask ;

rcv_param.Report^flags[2] := CRE^remote^cpu^down^mask LOR
 CRE^remote^cpu^up^mask LOR
 CRE^OPEN^mask LOR
 CRE^CLOSE^mask ;

If your program does not specify attributes or attributes is present but its
address value is zero, the CRE uses the following attributes:

Maximum^requesters = 1
Maximum^syncdepth = 1
Maximum^reply = 0
Receive^depth = 1
Report^flags[0:3] = [-1, 0, 0, 0]

Report^flags[0] has special meaning. Refer to Table 6-6 on page 6-37.

Specifying the Close Variant
If variant specifies 0 to close a connection, CRE_Receive_File_Open_Close_ closes
the specified connection. If the number of connections becomes zero but the CRE has
messages queued that have not been read by the program,
CRE_Receive_Open_Close_ returns a 201 reply to each of the messages. The
CRE_Receive_Open_Close_ closes the file unless it needs to maintain an open for
internal reasons such as monitoring a backup process.

Table 6-6. Using Report^flags

Program Has Not Previously Opened
$RECEIVE

Program Has Already Opened $RECEIVE

Report^flags[0] < 0 Report^flags[0] => 0 Report^flags[0] < 0 Report^flags[0] => 0

Program does not
receive system
messages.

Program receives
system messages
specified in
Report^flags[0:3].

Caller receives
same system
messages as
original opener of
$RECEIVE.

If caller specifies the
same system messages
as original opener,
Report^flags are okay.
Otherwise,
CRE_Receive_Open_C
lose_ returns an error.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-37

CRE Service Functions CRE_Receive_Read_
CRE_Receive_Read_
CRE_Receive_Read_ calls the READUPDATE system procedure to request a record
from $RECEIVE.

buffer:read_count

is the data area (buffer) in which to store the record read and the maximum
number of bytes to read (read_count).

count_read

is assigned the number of bytes read if a record is obtained.

time_out

if present, specifies how many hundredths of a second CRE_Receive_Read_
should wait for a message from $RECEIVE before timing out the request.

If time_out is greater than or equal to zero, the CRE returns error 40, time out, if
it does not receive a message from $RECEIVE within time_out hundredths of a
second.

If time_out is less than zero or you do not specify time_out,
CRE_Receive_Read_ does not time out and waits as long as necessary to receive
a message on $RECEIVE.

sender_info

if present and its value is not equal to zero, is a pointer to a structure, called a
CRE^sender^model. CRE_Receive_Read_ stores in CRE^sender^model a
description of the process that sent the current message.

sender_info must be a pointer to a structure with the following layout:

STRUCT CRE^sender^model(*);
BEGIN
 INT System^flag; ! -1 => system, 0 => user
 INT Entry^number; ! Sender's requester number
 INT Message^number; ! Used for message queuing
 INT File^number; ! Sender's open number
 INT Phandle[0:9]; ! Sender's phandle
 INT Read^count; ! Read count from WRITEREAD

INT PROC CRE_Receive_Read_(buffer:read_count, count_read,
 time_out, sender_info, flags)
 EXTENSIBLE;
 STRING .EXT buffer; ! out, required
 INT read_count; ! in, required
 INT .EXT count_read; ! out, required
 INT(32) time_out; ! in, optional
 INT .EXT sender_info; ! out, optional
 INT flags; ! in, optional TNS, native
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-38

CRE Service Functions CRE_Receive_Read_
 INT Dialog^Flags; ! See following description
 END; ! CRE^sender^model

Dialog^Flags is used by context-sensitive Pathway servers. It provides
dialog information about the server-class send operation that a requestor
initiated by means of a Pathsend procedure call.

The bits of Dialog^Flags have the following meanings:

<0:11> Reserved

<12:13> Dialog status. Indicates the last operation performed by the
message sender. Values are:

0 Context-free server-class send operation.

1 First server-class end operation in a new dialog.

2 Server-class send operation in an existing dialog.

3 Aborted dialog. No further server-class send operations will be
received in this dialog. There is no buffer associated with this
value.

<14> This is a copy of the flags.<14> parameter bit in the requester’s
call to the Pathsend SERVERCLASS_DIALOG_BEGIN_
procedure. This bit identifies the transaction model the requester is
using for dialogs.

<15> Reserved

For more information about the use of Pathsend procedures, Pathsend dialogs,
and the Dialog^Flags field, see the NonStop TS/MP Pathsend and Server
Programming Manual.

flags

if present, is the “any requesters” flag setting if an end-of-file is encountered (no
messages are waiting in $RECEIVE or the requester is waiting for an open
request). If flags is not present, its value is treated as zero.

Using CRE_Receive_Read_
CRE_Receive_Read_ reads messages from $RECEIVE by calling the READUPDATE
system procedure. If your program specifies Receive^depth equals one when it calls
CRE_Receive_Open_Close_ and a received message requires a reply,
CRE_Receive_Read_ calls CRE_Receive_Write_ to reply automatically to the
message. If your program specifies Receive^depth greater than one, but the CRE’s
table of unreplied messages is full, CRE_Receive_Read_ returns error 74 (the number
of READUPDATEs without replies exceeds the Receive^depth specified) to the
process that called your process.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-39

CRE Service Functions CRE_Receive_Read_
Handling Generic System Messages
Generic system messages describe changes in the environment in which your program
is running such as a SETTIME message or a CPU down message. Generic system
messages do not apply to a specific requester although they might affect your
process’s requesters. The CRE updates its state information if it receives a generic
system message. For example, the CRE updates its requester information if it receives
a CPU down message for a CPU in which one of your process’s requesters is running.
In addition, the CRE passes the system message to your program if you included the
mask for that message in Report^flags when you called CRE_Receive_Open_Close_.
See “CRE_Receive_Open_Close_” in this section for more details.

Handling System Messages and Requester Messages
Your process receives:

• System messages that pertain directly to requesters that have opened your
process.

For example, when a requester calls the CONTROL, CONTROLBUF,
RESETSYNC, SETMODE, or SETPARAM system procedure, the operating
system sends a system message to your program with the information specified by
the requester. If the requester is not known to the CRE, CRE_Receive_Read_
rejects the request without passing information to your program.

If the CRE receives a system message from a known requester, it returns the
message to your program if you specified the type of message received in
Report^flags when you called CRE_Receive_Open_Close_.

The CRE always returns nonsystem messages from known requesters to your
program.

• Open messages from requesters attempting to open your program as a server.

If the CRE receives an “open” message from a requester (a message that another
process is attempting to open your program) and your program specifies the
CRE^OPEN^mask as a Report^flag when it calls CRE_Receive_Open_Close_,
CRE_Receive_Read_ passes the open message to your program. Your program
must call CRE_Receive_Write_ to specify whether to honor the open request or
refuse it.

See the reply_code parameter to the CRE_Receive_Write_ function for more
information.

Note. If another process issues a nowait open to your process and you have specified that you
want to receive “open” messages, the other process cannot continue opening your program
until you have responded to the open message. If the other process is opening your program
with a waited open, the other process remains suspended entirely until your program replies to
the open request. Therefore, you might want to ensure that your program responds quickly to
an open request.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-40

CRE Service Functions CRE_Receive_Write_
Return Value
CRE_Receive_Read_ returns one of the following:

• 0 if the input operation is successful

• A positive number, which is a file system error number

• A negative number, which is the negation of a CRE error number from the following
table:

CRE_Receive_Write_
CRE_Receive_Write_ calls the REPLYX system procedure to reply to a message from
$RECEIVE.

buffer:write_count

is the data area (buffer) from which to write and the number of bytes to write
(write_count).

reply_code

is the reply code that REPLYX returns to the requester process. The value you
specify for reply_code determines the value of the condition code indicator
(CCL, CCE, or CCG), and is the value returned if the requester process calls
FILEINFO or one of the FILEGETINFO system procedures. See the Guardian
Procedure Calls Reference Manual for more information on FILEINFO and the
FILEGETINFO procedures.

message_number

specifies the CRE message number to which the reply corresponds. If the value
you specify for Reply^depth in the CRE_Receive_Open_Close_ attributes
parameter is greater than one, you must specify message_number when you call
CRE_Receive_Write_. CRE_Receive_Read_ returns the message number to your
program in the message_number field of its sender_info parameter.

Error Code Cause

55 Missing or invalid parameter

64 File not open

INT PROC CRE_Receive_Write_(buffer:write_count, reply_code,
 message_number)
 EXTENSIBLE;
 STRING .EXT buffer; ! in, required
 INT write_count; ! in, required
 INT reply_code; ! in, required
 INT message_number; ! in, required TNS, native
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-41

CRE Service Functions CRE_Terminator_
If you do not specify reply^depth when you call CRE_Receive_Open_Close_ or
you specify a depth of one, you must specify zero for the message_number
parameter.

Return Value
CRE_Receive_Write_ returns one of the following:

• 0 if the input operation is successful

• A positive number, which is a file system error number

• A negative number, which is the negation of a CRE error number from the following
table:

CRE_Terminator_
The CRE_Terminator_ procedure ensures that all standard files in your program are
closed. In the TNS CRE environment, it also calls a language-specific function from the
run-time library of each language represented by a module in your program.
Language-specific functions are not called in the native CRE environment.

completion_status

describes your program’s status when it ended execution. Valid values for
completion_status are:

CRE^Completion^normal
CRE^Completion^warning
CRE^Completion^error
CRE^Completion^trap
CRE^Completion^fatal

Error Code Cause

55 Missing or invalid parameter

64 File not open

PROC CRE_Terminator_(completion_status, options,
 completion_code, termination_info,
 spi_ssid, text:text_length)
 EXTENSIBLE;
 INT completion_status; ! in, required
 INT options; ! in, optional
 INT completion_code; ! in, optional
 INT termination_info; ! in, optional
 INT .EXT spi_ssid; ! in, optional
 STRING .EXT text; ! in, optional
 INT text_length; ! in, optional TNS, native
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-42

CRE Service Functions CRE_Terminator_
The meanings of completion codes are:

CRE^Completion^normal

specifies that your program completed either by reaching the end of its main
routine or by invoking a language-specific normal termination verb such as
STOP RUN in COBOL.

CRE^Completion^warning

specifies that your program reported warnings during its execution.

CRE^Completion^error

specifies that termination was due to a logic error in your program.

CRE^Completion^trap

specifies that termination was due to a trap (other than an arithmetic overflow
trap, for which CRE^Completion^error is the correct completion status).

CRE^Completion^fatal

specifies that the CRE or a run-time library detected an internal error (for
example, data corruption) within its own environment.

options

if present, is passed to the PROCESS_STOP_ system procedure as its options
parameter. If you do not specify options, the CRE derives a value. See
Table 6-7 on page 6-44 for derived values. Refer to the PROCESS_STOP_
procedure in the Guardian Procedure Calls Reference Manual for more information
about the options parameter.

completion_code

if present, is passed to the PROCESS_STOP_ system procedure as its
completion-code parameter. If you do not specify completion_code, the CRE
derives a value. See Table 6-7 on page 6-44 for derived values. Refer to the
PROCESS_STOP_ procedure in the Guardian Procedure Calls Reference Manual
for more information about the completion_code parameter.

termination_info

if present, is passed to the PROCESS_STOP_ system procedure for its
termination-info parameter. Refer to the PROCESS_STOP_ procedure in the
Guardian Procedure Calls Reference Manual for more information about the
termination_info parameter.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-43

CRE Service Functions Exception-Handling Functions
spi_ssid

is an optional reference parameter. If present, its address is passed to the
PROCESS_STOP_ system procedure for its spi-ssid parameter. spi_ssid must
reference a valid 12-character subsystem identifier (ssid). See PROCESS_STOP_
in the Guardian Procedure Calls Reference Manual for more information. Refer to
the PROCESS_STOP_ procedure in the Guardian Procedure Calls Reference
Manual for more information about the spi_ssid parameter.

text:text_length

is an optional parameter pair. If present, the string referenced by
text:text_length is passed to the PROCESS_STOP_ system procedure for
its text:length parameter pair. text and text_length must both be present or
omitted. Refer to the PROCESS_STOP_ procedure in the Guardian Procedure
Calls Reference Manual for more information about the text:text_length
parameter.

In the TNS CRE environment, CRE_Terminator_ closes your program’s standard files,
calls a language-specific termination function for each language represented in your
program, and calls the PROCESS_STOP_ system procedure.

In the native CRE environment, CRE_Terminator_ closes your program’s standard
files. It then calls a NonStop operating system routine, which calls all standard run-time
library termination routines and global destructors.

For more information about program termination, refer to Section 2, CRE Services.

Exception-Handling Functions
This subsection describes the functions that support exception handling. Table 6-8 on
page 6-45 lists the functions in this subsection.

Table 6-7. Default Values for Options and Completion Code

completion_
status

Normal Termination Abnormal Termination

Options Specified
and
Options.<15> = 0

completion_
code

Options Not
Specified or
Options.<15> = 1

completion_
code

normal 0 none none

warning 0 1 1

error 1 none 3

trap 1 none 3

fatal 1 none 5
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-44

CRE Service Functions CRE_Log_GetPrefix_

CRE_Log_GetPrefix_
CRE_Log_GetPrefix_ returns to its caller the default prefix text that precedes each line
of error or warning information written to standard log.

buffer : buffer_bytes

if present, specifies the address and size of the buffer that CRE_Log_GetPrefix_
fills with the default prefix text. CRE_Log_GetPrefix_ stores the prefix text only if
both buffer and buffer_bytes are present.

prefix_bytes

if present, is the actual number of bytes in the prefix text.

Return Value
CRE_Log_GetPrefix_ returns 0 if buffer:buffer_bytes contains prefix text.
Otherwise, CRE_Log_GetPrefix_ returns the value returned to it by the
PROCESS_GETINFO_ system procedure.

Considerations
If either buffer or buffer_bytes is not passed, CRE_Log_GetPrefix_ returns 0 in
prefix_bytes and leaves buffer unchanged.

CRE_Stacktrace_
CRE_Stacktrace_ writes a stack trace to a standard file.

Table 6-8. Exception-Handling Functions

Function Name Function Action

CRE_Log_GetPrefix_
on page 6-45

Returns to its caller the text that precedes each message in
standard log.

CRE_Stacktrace_ on
page 6-45

Writes a stack trace to either a standard file or to an operating
system file.

INT PROC CRE_Log_GetPrefix_(buffer:buffer_bytes,
 prefix_bytes) EXTENSIBLE;
 STRING .EXT buffer; ! in/out, optional
 INT buffer_bytes; ! in, optional
 INT .EXT prefix_bytes; ! out, optional TNS,native
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-45

CRE Service Functions CRE_Stacktrace_
The syntax for the TNS environment is:

The syntax for the native CRE environment is:

file_ordinal

if present, identifies an open standard file. If absent, CRE_Stacktrace_ writes trace
information to standard log. You can use the following symbolic names for
file_ordinal:

buffer:buffer_bytes

specifies the address and size of the buffer in which to compose stack trace report
lines. The buffer must be a minimum of 132 characters. CRE_Stacktrace_ uses a
132-byte local buffer if either buffer or buffer_bytes is not present.

prefix_bytes

if present, requests that each line include a prefix before the generated text. If
absent, or if CRE_Stacktrace_ uses a local buffer, CRE_Stacktrace_ uses zero for
prefix_bytes. prefix_bytes specifies how many bytes of prefix text to use
with each lines of the stack trace:

INT PROC CRE_Stacktrace_(file_ordinal, buffer:buffer_bytes,
 prefix_bytes, stack_mark)
 EXTENSIBLE;
 INT file_ordinal; ! in, optional
 STRING .EXT buffer; ! in/out, optional
 INT buffer_bytes; ! in, optional
 INT prefix_bytes; ! in, optional
 INT .stack_mark; ! in, optional TNS only

INT PROC CRE_Stacktrace_(file_ordinal, buffer:buffer_bytes,
 prefix_bytes) EXTENSIBLE;
 INT file_ordinal; ! in, optional
 STRING .EXT buffer; ! in/out, optional
 INT buffer_bytes; ! in, optional
 INT prefix_bytes; ! in, optional native only

CRE File Ordinal Symbolic Names

CRE^Standard^Output

CRE^Standard^Log

prefix_bytes Meaning

< -1 All lines of stack trace include the first prefix_bytes of
buffer:buffer_bytes as prefix text.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-46

CRE Service Functions CRE_Stacktrace_
stack_mark

(TNS CRE only) if present, specifies the L-register word of the first stack marker to
display in the stack trace. If stack_mark is not present, reporting begins with the
caller of the caller of CRE_Stacktrace_.

Return Value
CRE_Stacktrace_ returns one of the following:

• 0 if the input operation is successful

• A positive number, which is a file system error number

• A negative number, which is the negation of a CRE error number from the following
table:

Considerations

• If a line of stack trace is longer than the record size for the output device,
CRE_Stacktrace_ breaks the message over as many lines as necessary.

• CRE_Stacktrace_ retries errors that are recoverable.

• CRE_Stacktrace_ begins examining the names of procedures on the stack
beginning with the current procedure—the most-recently called procedure. From
the current procedure, it begins scanning stack frames until it encounters a
procedure name that does not end in an underscore character (_). When
CRE_Stacktrace_ encounters a procedure name that does not end in an
underscore, it writes the stack information for that procedure to the file specified by
file_ordinal. Thereafter, CRE_Stacktrace_ includes all procedures in the stack
trace, including procedures whose names end in an underscore.

 -1 Do not include prefix bytes with any line of stack trace.

 0 Do not include prefix bytes with any line of stack trace.

> 0 Include the first prefix_bytes of buffer:buffer_bytes on
the first line of stack trace and prefix_bytes blanks on each
subsequent line of stack trace.

Error Code Cause

56 Invalid parameter value

63 Undefined shared file

64 File not open

prefix_bytes Meaning (continued)
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-47

CRE Service Functions CRE_Stacktrace_
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
6-48

7 Math Functions
This section describes the interfaces to the math functions. It describes:

• Arithmetic Overflow Handling on page 7-1
• Standard Math Functions on page 7-1
• Sixty-Four-Bit Logical Operations (Bit Manipulation Functions) on page 7-23
• Remainder on page 7-25
• Decimal Conversion Functions on page 7-25

Each function described in this section begins with the prefix RTL_ or CRE_. Refer to
Using Standard Functions on page 2-56 for more information.

The pTAL RTL functions, data, and data structure declarations are in the RTLRDECS
file.

Arithmetic Overflow Handling
In the TNS CRE environment, functions that can cause an arithmetic overflow specify
that a fault might occur, rather than specifying that a trap might occur. A TNS CRE or
RTL function that can cause an arithmetic overflow disables overflow traps while it
executes and tests explicitly for arithmetic overflow after each instruction that can
cause it. Prior to returning, the function enables the arithmetic overflow bit in the
environment register image of the most recent stack marker. If traps were enabled
when your program called the function, your program will trap immediately upon return
from the function. If traps were disabled when your program called the function, your
program will not trap. You might be able to test explicitly for arithmetic overflow upon
return from the function. Refer to the language manual for your routine that calls the
function for more information on detecting arithmetic overflow.

The native CRE environment provides only non-trapping variants for functions that can
cause an arithmetic trap. Non-trapping variants dynamically detect an arithmetic fault,
set errno, and return an appropriate value.

Since the native CRE architecture does not have a saved environment register, you
must evaluate errno upon return from the function. Refer to the language manual for
your routine that calls the function for more information on detecting arithmetic
overflow.

Standard Math Functions
This subsection describes the standard math functions. Table 7-1 on page 7-2
summarizes the standard math functions.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-1

Math Functions Standard Math Functions
Table 7-1. TNS CRE Standard Math Functions (page 1 of 2)

Function
Name Function Action

Arccos on
page 7-4

Returns an arccosine expressed in radians.

Arcsin on
page 7-5

Returns an arcsine expressed in radians.

Arctan on
page 7-5

Returns an arctangent expressed in radians.

Arctan2 on
page 7-6

Returns the arctangent, expressed in radians, of the quotient of its
parameters.

Cos on
page 7-7

Returns the cosine of an angle whose size is expressed in radians.

Cosh on
page 7-7

Returns a hyperbolic cosine.

Exp on
page 7-8

Returns the exponential function (base e) of its parameter.

Ln on
page 7-8

Returns a natural (base e) logarithm.

Log10 on
page 7-9

Returns a common (base 10) logarithm.

Lower on
page 7-10

Returns the largest integer that is not greater than the value of its
parameter.

Mod on
page 7-11

Returns the remainder of an integer division calculation.

Normalize on
page 7-12

Splits a floating-point number into a normalized fraction and an integral
power of two.

Odd on
page 7-13

Determines whether a value is even or odd.

Positive_Diff
on page 7-13

Returns the arithmetic difference between two numbers.

Power on
page 7-15

Returns a number raised to a specified power.

Power2 on
page 7-16

Multiplies a number by an integral power of two.

Random_set
and
Random_next
on page 7-17

Establishes the seed—the initial value—in a pseudo-random number
sequence.

Returns a pseudo-random number.

Round on
page 7-17

Returns the nearest whole number.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-2

Math Functions Standard Math Functions
Table 7-2 on page 7-3 shows the standard math functions supported by the native CRE
library. The native CRE does not provide pTAL prototypes for these functions. It
provides only the function names, which are case-sensitive. You can use the function
prototypes in the C header files as examples when writing your own pTAL prototypes
for these functions.

See the Guardian Native C Library Calls Reference Manual or the Open System
Services Library Calls Reference Manual for descriptions of these functions.

Sign on
page 7-18

Returns its first parameter with the sign set according to its second
parameter.

Sin on
page 7-19

Returns the sine of an angle whose size is expressed in radians.

Sinh on
page 7-19

Returns a hyperbolic sine.

Split on
page 7-20

Separates a floating-point number into integral and fractional parts.

Sqrt on
page 7-20

Returns the square root of a number.

Tan on
page 7-21

Returns the tangent of an angle whose size is expressed in radians.

Tanh on
page 7-21

Returns a hyperbolic tangent.

Truncate on
page 7-22

Returns the nonfractional part of a number.

Upper on
page 7-22

Returns the smallest integer that is not less than the value of its parameter.

Table 7-2. Native CRE Standard Math Functions (page 1 of 2)

Function Name Native CRE Library Function Name

acos Returns an arccosine expressed in radians

acosh Returns a hyperbolic arccosine

asin Returns an arcsine expressed in radians

asinh Returns a hyperbolic arcsine

atan Returns an arctangent expressed in radians

atan2 Returns the arctangent, expressed in radians, of the quotient of its
parameters

cbrt Returns a cube root

Table 7-1. TNS CRE Standard Math Functions (page 2 of 2)

Function
Name Function Action
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-3

Math Functions Arccos
Arccos
The Arccos functions return the arccosine of their parameter.

cos

is a number in the range:

-1.0 less than or equal to cos less than or equal to 1.0

An arithmetic fault occurs if cos is not within this range.

ceil Returns the smallest integer that is not less than the value of its
parameter

cos Returns the cosine of an angle whose size is expressed in radians

cosh Returns a hyperbolic cosine

erf Returns the error function of x

erfc Returns the complementary error function of x

exp Returns the exponential function (base e) of its parameter

floor Returns the largest integer that is not greater than the value of its
parameter

fmod Returns the modulo remainder

frexp Breaks a floating-point number into a fraction and a power of 2

log Returns a natural (base e) logarithm

log10 Returns a common (base 10) logarithm

mod Returns the remainder of an integer division calculation

modf Separates a floating-point number into integral and fractional parts

sin Returns the sine of an angle whose size is expressed in radians

sinh Returns a hyperbolic sine

sqrt Returns the square root of a number

tan Returns the tangent of an angle whose size is expressed in radians

tanh Returns a hyperbolic tangent

REAL(32) PROC { CRE_Arccos_Real32_ } (cos);
 { RTL_Arccos_Real32_ }
 REAL(32) cos; ! in TNS only

REAL(64) PROC { CRE_Arccos_Real64_ } (cos);
 { RTL_Arccos_Real64_ }
 REAL(64) cos; ! in TNS only

Table 7-2. Native CRE Standard Math Functions (page 2 of 2)

Function Name Native CRE Library Function Name
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-4

Math Functions Arcsin
Return Value
The Arccos functions return the angle, expressed in radians, whose cosine is cos. The
value returned is in the range

0 less than or equal to arccos(cos) less than or equal to pi

Arcsin
The Arcsin functions return the arcsine of their parameter.

sin

is a number in the range:

-1.0 less than or equal to sin less than or equal to 1.0

An arithmetic fault occurs if sin is not within this range.

Return Value
The Arcsin functions return the angle, expressed in radians, whose sine is sin. The
value returned is in the range:

-pi/2 less than or equal to arcsin(sin) less than or equal to pi/2

Arctan
The Arctan functions return the arctangent of their parameter.

tan

is the number whose arctangent is returned.

REAL(32) PROC { CRE_Arcsin_Real32_ } (sin);
 { RTL_Arcsin_Real32_ }
 REAL(32) sin; ! in TNS only

REAL(64) PROC { CRE_Arcsin_Real64_ } (sin);
 { RTL_Arcsin_Real64_ }
 REAL(64) sin; ! in TNS only

REAL(32) PROC RTL_Arctan_Real32_(tan);
 REAL(32) tan; ! in TNS only

REAL(64) PROC RTL_Arctan_Real64_(tan);
 REAL(64) tan; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-5

Math Functions Arctan2
Return Value
The Arctan functions return the angle, expressed in radians, whose tangent is tan.
The value returned is in the range:

-pi/2 less than or equal to arctan(tan) less than or equal to pi/2

Arctan2
The Arctan2 functions return the arctangent of the quotient of their parameters.

y

is the ordinate of the ordered pair (y, x) that determines an angle whose tangent is
y / x.

x

is the abscissa of the ordered pair (y, x) that determines an angle whose tangent is
y / x.

Return Value
The Arctan2 functions return the angle, expressed in radians, whose tangent is y / x.
The value returned is in the range:

-pi < arctan2(y, x) less than or equal to pi

The quadrant of the angle, A, returned by the Arctan2 functions is determined by the
signs of y and x:

if y < 0 then A < 0

if x < 0 then absolute_value(A) > pi/2

if x = 0 then absolute_value(A) = pi/2

Considerations
An arithmetic fault occurs if both y and x are equal to zero.

REAL(32) PROC { CRE_Arctan2_Real32_ } (y, x);
 { RTL_Arctan2_Real32_ }
 REAL(32) y, x; ! in TNS only

REAL(64) PROC { CRE_Arctan2_Real64_ } (y, x);
 { RTL_Arctan2_Real64_ }
 REAL(64) y, x; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-6

Math Functions Cos
Cos
The Cos functions return the cosine of an angle.

angle

is the angle, expressed in radians, who cosine is returned.

Return Value
The Cos functions return the cosine of angle. The cosine is in the range:

-1.0 less than or equal to cos(angle) less than or equal to 1.0

Cosh
The Cosh functions return a hyperbolic cosine.

number

is the number whose hyperbolic cosine is returned.

Return Value
The Cosh functions return the hyperbolic cosine of number. The value returned is:

exp(number) + exp(-number)
 2

Considerations
An arithmetic fault occurs if an intermediate calculation causes an overflow.

REAL(32) PROC RTL_Cos_Real32_(angle);
 REAL(32) angle; ! in TNS only

REAL(64) PROC RTL_Cos_Real64_(angle);
 REAL(64) angle; ! in TNS only

REAL(32) PROC { CRE_Cosh_Real32_ } (number);
 { RTL_Cosh_Real32_ }
 REAL(32) number ; ! in TNS only

REAL(64) PROC { CRE_Cosh_Real64_ } (number);
 { RTL_Cosh_Real64_ }
 REAL(64) number ; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-7

Math Functions Exp
Exp
The Exp functions return e—the natural logarithm base—raised to the power passed
as a parameter to Exp.

number

is the exponent to which e is raised.

Return Value
The Exp functions return

enumber

where e is the natural logarithm base, approximately 2.718281828459045.

Considerations
An arithmetic fault occurs if an intermediate calculation causes an overflow or
underflow.

Ln
The Ln functions return a natural—that is, base e—logarithm.

number

is the number whose natural logarithm is returned.

Return Value
The Ln functions return “exponent,” where exponent satisfies the equation:

e
exponent

 = number

REAL(32) PROC { CRE_Exp_Real32_ } (number);
 { RTL_Exp_Real32_ }
 REAL(32) number; ! in TNS only

REAL(64) PROC { CRE_Exp_Real64_ } (number);
 { RTL_Exp_Real64_ }
 REAL(64) number; ! in TNS only

REAL(32) PROC { CRE_Ln_Real32_ } (number);
 { RTL_Ln_Real32_ }
 REAL(32) number; ! in TNS only

REAL(64) PROC { CRE_Ln_Real64_ } (number);
 { RTL_Ln_Real64_ }
 REAL(64) number; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-8

Math Functions Log10
e is the natural logarithm base, approximately 2.718281828459045.

Considerations
An arithmetic fault occurs if number is less than or equal to 0.

Examples
REAL(32) r1, r2, r3;
r1 := CRE_Ln_Real32_(7.389056096); ! r1 is approx 2.
r2 := CRE_Ln_Real32_(20.08553691); ! r2 is approx 3.
r3 := CRE_Ln_Real32_(54.59814999); ! r3 is approx 4.

The values returned in R1, R2, and R3 derive from the following:

ln(7.389056096) ≅ 2. That is, e2 ≅ 7.389056096
ln(20.08553691) ≅ 3. That is, e3 ≅ 20.08553691
ln(54.59814999) ≅ 4. That is, e4 ≅ 54.59814999

Log10
The Log10 functions return a common—that is, base 10—logarithm.

number

is the number whose common logarithm is returned.

Return Value
The Log10 functions return “exponent,” where exponent satisfies the equation:

10
exponent

 = number

Considerations
An arithmetic fault occurs if number is less than or equal to 0.

Examples
REAL(32) r1, r2, r3;
r1 := CRE_Log10_Real32_(100); ! r1 is approx 2.
r2 := CRE_Log10_Real32_(1000); ! r2 is approx 3.
r3 := CRE_Log10_Real32_(10000); ! r3 is approx 4.

REAL(32) PROC { CRE_Log10_Real32_ } (number);
 { RTL_Log10_Real32_ }
 REAL(32) number; ! in TNS only

REAL(64) PROC { CRE_Log10_Real64_ } (number);
 { RTL_Log10_Real64_ }
 REAL(64) number; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-9

Math Functions Lower
The values returned in R1, R2, and R3 derive from the following:

log
10
(100) = 2. That is, 10

2
 = 100

log
10
(1000) = 3. That is, 103 = 1000

log
10
(10000) = 4. That is, 10

4
 = 10000

Lower
The Lower function returns the largest integer that is not greater than the value of its
parameter.

number

is the number for which Lower returns its value.

Return Value
Lower returns the largest integer that is not greater than number.

Example
REAL(64) r;

r := RTL_Lower_Real64_(1.8L0); ! r gets 1.0L0
r := RTL_Lower_Real64_(-1.8L0); ! r gets -2.0L0

REAL(64) PROC RTL_Lower_Real64_(number);
 REAL(64) number; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-10

Math Functions Mod
Mod
The Mod functions return the result of dividing their first parameter by their second
parameter using integer division if their parameters are integers, or using floating-point
division if their parameters are floating-point numbers.

number

is the dividend in calculating the remainder.

modulus

is the divisor in calculating the remainder.

Return Value
For an integer modulo function, the Mod functions return the result of evaluating the
following expression using integer division:

number - ((number) * modulus)
 ((modulus))

For a floating-point modulo function, the Mod functions return the result of evaluating
the following expression using floating-point division:

number - (truncate(number) * modulus)
 ((modulus))

Considerations
If modulus = 0:

• The integer modulo functions causes an arithmetic fault.
• The floating-point modulo functions return 0.

INT PROC { CRE_Mod_Int16_ } (number, modulus);
 { RTL_Mod_Int16_}
 INT number, modulus; ! in TNS only

INT(32) PROC { CRE_Mod_Int32_ } (number, modulus);
 { RTL_Mod_Int32_ }
 INT(32) number, modulus; ! in TNS only

INT(64) PROC { CRE_Mod_Int64_ } (number, modulus);
 { RTL_Mod_Int64_ }
 INT(64) number, modulus; ! in TNS only

REAL(32) PROC RTL_Mod_Real32_ (number, modulus);
 REAL(32) number, modulus; ! in TNS only

REAL(64) PROC RTL_Mod_Real64_ (number, modulus);
 REAL(64) number, modulus; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-11

Math Functions Normalize
Example
INT i, j, k;
REAL(32) r, s, t;

i := 17;
j := 5;
k := RTL_Mod_Int16_(i, j); ! k gets 2

r := 17.2E0;
s := 0.5E0;
t := RTL_Mod_Real32_(r, s); ! t gets 0.2E0

Normalize
The Normalize function splits a floating-point number into a normalized fraction and an
integer power of two. This function is not available in the native CRE library.

number

is the number to split.

power

is a reference parameter into which Normalize stores the integer power of 2.

Return Value
Normalize returns a number, y, such that:

0.5 is less than or equal to y < 1 and number = y * 2power

If number = 0, Normalize returns 0 for both power and the return value.

Example
INT i;
REAL(64) r, s;

r := 1.5L0;
s := RTL_Normalize_Real64_(r, i); ! s gets 0.75L0
 ! i gets 1

REAL(64) PROC RTL_Normalize_Real64_(number, power);
 REAL(64) number; ! in
 INT .EXT power; ! out TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-12

Math Functions Odd
Odd
The Odd function determines whether a number is even or odd. This function is not
available in the native CRE library.

number

is the number that is examined to see if it is even or odd.

Return Value
Odd returns

1 if number is odd
0 if number is even

Example
INT i;
INT(32) d := 17d;

i := RTL_Odd_Int32_(d); ! i gets 1
i := RTL_Odd_Int32_(d + 1D); ! i gets 0

Positive_Diff
The Positive_Diff functions return the arithmetic difference between two numbers if the
first number is greater than the second. If the first number is less than the second
number, the Positive_Diff functions return zero. These functions are not available in the
native CRE library.

INT PROC RTL_Odd_Int32_(number);
 INT(32) number; ! in TNS only

INT PROC RTL_Positive_Diff_Int16_(x, y);
 INT x, y; ! in TNS only

INT(32) PROC RTL_Positive_Diff_Int32_(x, y);
 INT(32) x, y; ! in TNS only

INT(64) PROC RTL_Positive_Diff_Int64_(x, y);
 INT(64) x, y; ! in TNS only

REAL(32) PROC RTL_Positive_Diff_Real32_(x, y);
 REAL(32) x, y; ! in TNS only

REAL(64) PROC RTL_Positive_Diff_Real64_(x, y);
 REAL(64) x, y; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-13

Math Functions Positive_Diff
x

is the minuend, the number from which the subtrahend is subtracted.

y

is the subtrahend, the number to subtract from the minuend.

Return Value
The Positive_Diff functions return:

x - y if x > y
0 if x is less than or equal to y

Example
INT i, j, k;

i := 17;
j := -18;
k := RTL_Positive_Diff_Int16_(i, j); ! k gets 35
k := RTL_Positive_Diff_Int16_(j, i); ! k gets 0
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-14

Math Functions Power
Power
The Power functions raise a number to a specified power. These functions are not
available in the native CRE library.

base

is the number that is raised to a power.

exponent

is the exponent to which base is raised.

Return Value
The Power functions return

baseexponent

INT PROC{CRE_Power_Int16_to_Int16_}(base, exponent);
 {RTL_Power_Int16_to_Int16_}
 INT base, exponent; ! in TNS only

INT(32) PROC{CRE_Power_Int32_to_Int16_}(base, exponent);
 {RTL_Power_Int32_to_Int16_}
 INT(32) base; ! in
 INT exponent; ! in TNS only

INT(64) PROC{CRE_Power_Int64_to_Int16_}(base, exponent);
 {RTL_Power_Int64_to_Int16_}
 INT(64) base; ! in
 INT exponent; ! in TNS only

REAL(32) PROC{CRE_Power_Real32_to_Int16_}(base, exponent);
 {RTL_Power_Real32_to_Int16_}
 REAL(32) base; ! in
 INT exponent; ! in TNS only

REAL(32) PROC{CRE_Power_Real32_to_Real32_}(base, exponent);
 {RTL_Power_Real32_to_Real32_}
 REAL(32) base; ! in
 REAL(32) exponent; ! in TNS only

REAL(64) PROC{CRE_Power_Real64_to_Int16_}(base, exponent);
 {RTL_Power_Real64_to_Int16_}
 REAL(64) base; ! in
 INT exponent; ! in TNS only

REAL(64) PROC{CRE_Power_Real64_to_Real64_}(base, exponent);
 {RTL_Power_Real64_to_Real64_}
 REAL(64) base; ! in
 REAL(64) exponent; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-15

Math Functions Power2
Considerations
The Power functions cause a fault if:

• base = 0 and exponent is less than or equal to 0
• base < 0 and exponent has a floating-point type
• An intermediate calculation causes an arithmetic overflow

Example
INT i, j, k;
i := 2;
j := 3;
k := RTL_Power_Int16_to_Int16_(i, j); ! k gets 8

Power2
The Power2 functions multiply a number by an integral power of 2. These functions are
not available in the native CRE library.

base

is the number to multiply by.

exponent

is an integral power of 2.

Return Value
The Power2 functions return

base * 2exponent

Considerations
An arithmetic fault occurs if an overflow or underflow occurs in an intermediate
calculation.

Example
INT i;
REAL(64) r, s;

r := 7.0L0;

REAL(64) PROC { CRE_Power2_Real64_ } (base, exponent);
 { RTL_Power2_Real64_ }
 REAL(64) base; ! in
 INT exponent; ! in TNS
only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-16

Math Functions Random_Set, Random_Next
i := 3;
s := RTL_Power2_Real64_(r, i); ! s gets 56.0L0

Random_Set, Random_Next
The Random_Set function sets a seed—the value of the initial random number—for a
pseudo-random number generator. The Random_Next function returns the next
pseudo-random number in the current sequence. These functions are not available in
the native CRE library.

seed

is the beginning number of the pseudo-random number sequence.

Considerations

• Each call to CRE_Random_Set_ establishes a new seed value.

• Each call to CRE_Random_Next_ returns the next pseudo-random number in the
current sequence.

Round
The Round functions return the nearest whole number to their parameter. These
functions are not available in the native CRE library.

number

is the number to round.

Return Value
The Round functions return:

truncate(number + 0.5) if number is greater than or equal to 0
truncate(number - 0.5) if number < 0

PROC CRE_Random_Set_(seed);
 INT seed; ! in TNS only

INT PROC CRE_Random_Next_; ! TNS only

REAL(32) PROC RTL_Round_Real32_(number);
 REAL(32) number; ! in TNS only

REAL(64) PROC RTL_Round_Real64_(number);
 REAL(64) number; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-17

Math Functions Sign
Sign
The Sign functions return their first parameter with the sign adjusted according to the
value specified in their second parameter. These functions are not available in the
native CRE library.

number

is the number whose sign is modified.

sign

determines whether the Sign functions return a positive or negative number.

Return Value
The Sign functions return:

absolute_value(number) if sign is greater than or equal to 0
-absolute_value(number) if sign < 0

Example
INT i, j, k;

i := 17;
j := -18;
k := RTL_Sign_Int16_(i, j); ! k gets -17
k := RTL_Sign_Int16_(j, i); ! k gets 18

INT PROC RTL_Sign_Int16_(number, sign);
 INT number, sign; ! in TNS only

INT(32) PROC RTL_Sign_Int32_(number, sign);
 INT(32) number, sign; ! in TNS only

INT(64) PROC RTL_Sign_Int64_(number, sign);
 INT(64) number, sign; ! in TNS only

REAL(32) PROC RTL_Sign_Real32_(number, sign);
 REAL(32) number, sign; ! in TNS only

REAL(64) PROC RTL_Sign_Real64_(number, sign);
 REAL(64) number, sign; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-18

Math Functions Sin
Sin
The Sin functions return the sine of an angle.

angle

is the angle, expressed in radians, whose sine is returned.

Return Value
The Sin functions return the sin of angle. The return value is in the range:

-1.0 less than or equal to sin(angle) less than or equal to 1.0

Sinh
The Sinh functions return a hyperbolic sine.

number

is the number whose hyperbolic sine is returned.

Return Value
The sinh functions return the hyperbolic sine of number. The return value is:

exp(number) - exp(-number)
 2

Considerations
An arithmetic fault occurs if there is an overflow in any intermediate calculation.

REAL(32) PROC RTL_Sin_Real32_(angle);
 REAL(32) angle; ! in TNS only

REAL(64) PROC RTL_Sin_Real64_(angle);
 REAL(64) angle; ! in TNS only

REAL(32) PROC { CRE_Sinh_Real32_ } (number);
 { RTL_Sinh_Real32_ }
 REAL(32) number; ! in TNS only

REAL(64) PROC { CRE_Sinh_Real64_ } (number);
 { RTL_Sinh_Real64_ }
 REAL(64) number; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-19

Math Functions Split
Split
The Split function separates a 64-bit floating-point number into integral and fractional
parts.

number

is the number to separate into an integral and fractional part.

integral_part

is a reference parameter into which Split stores the integral part of number.

Return Value
Split returns the fractional part of number.

Example
REAL(64) r;
REAL(64) s;

r := RTL_Split_Real64_(1.6L0, s); ! r gets 0.6L0
 ! s gets 1.0L0

r := RTL_Split_Real64_(-2.7L0, s); ! r gets -0.7L0
 ! s gets -2.0L0

Sqrt
The Sqrt functions return the square root of a number.

number

is the number whose square root is returned.

Return Value
The Sqrt functions return the square root of number.

REAL(64) PROC RTL_Split_Real64_(number,integral_part);
 REAL(64) number; ! in
 REAL(64) .EXT integral_part; ! out TNS only

REAL(32) PROC { CRE_Sqrt_Real32_ } (number);
 { RTL_Sqrt_Real32_ }
 REAL(32) number; ! TNS only

REAL(64) PROC { CRE_Sqrt_Real64_ } (number);
 { RTL_Sqrt_Real64_ }
 REAL(64) number; ! TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-20

Math Functions Tan
Considerations
An arithmetic fault occurs if number is less than zero.

Example
REAL(64) r, s;

r := 25.0L0;
s := RTL_Sqrt_Real64_(r); ! s gets 5.0L0

Tan
The Tan functions return the tangent of an angle.

angle

is the angle, expressed in radians, whose tangent is returned.

Return Value
The Tan functions return the tangent of angle:

tan(angle) = sin(angle)
 cos(angle)

Considerations
tan(angle) is undefined if cos(angle) = 0.

Tanh
The Tanh functions return a hyperbolic tangent.

number

is the number whose hyperbolic tangent is returned.

REAL(32) PROC RTL_Tan_Real32_(angle);
 REAL(32) angle; ! in TNS only

REAL(64) PROC RTL_Tan_Real64_(angle);
 REAL(64) angle; ! in TNS only

REAL(32) PROC { CRE_Tanh_Real32_ } (number);
 { RTL_Tanh_Real32_ }
 REAL(32) number; ! in TNS only

REAL(64) PROC { CRE_Tanh_Real64_ } (number);
 { RTL_Tanh_Real64_ }
 REAL(64) number; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-21

Math Functions Truncate
Return Value
The Tanh functions return the hyperbolic tangent of number. The value returned is:

tanh = sinh(number)
 cosh(number))

Considerations
An arithmetic fault occurs if an intermediate calculation causes an overflow.

Truncate
The Truncate functions return the nonfractional part of a number. These functions are
not available in the native CRE library.

number

is the number whose integral part is returned.

Return Value
The Truncate functions return the number whose absolute value is the largest integer
that does not exceed the absolute value of number and has the same sign as number.

The Truncate functions return:

ceil(number) if number < 0
modf(number) if number is greater than or equal to 0

Example
REAL(32) r;

r := RTL_Truncate_Real32_(1.6E0); ! r gets 1
r := RTL_Truncate_Real32_(-2.7E0); ! r gets -2

Upper
The Upper function returns the smallest integer that is not less than number.

REAL(32) PROC RTL_Truncate_Real32_(number);
 REAL(32) number; ! in TNS only

REAL(64) PROC RTL_Truncate_Real64_(number);
 REAL(64) number; ! in TNS only

REAL(64) PROC RTL_Upper_Real64_(number);
 REAL(64) number; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-22

Math Functions Sixty-Four-Bit Logical Operations (Bit Manipulation
Functions)
number

is the number to which the Upper function is applied.

Return Value
Upper returns the smallest integer that is not less than number.

Example
REAL(64) r;

r := RTL_Upper_Real64_(1.8L0); ! r gets 2.0L0
r := RTL_Upper_Real64_(-1.8L0); ! r gets -1.0L0

Sixty-Four-Bit Logical Operations (Bit
Manipulation Functions)

This subsection describes the functions that manipulate 64-bit integer operands.
Table 7-3 on page 7-23 summarizes the 64-bit logical operations. Descriptions of the
functions themselves follow.

Table 7-3. Sixty-Four-Bit Logical Operations

Function
Name Function Action

Shift_Left Returns its 64-bit integer parameter logically shifted left.

Shift_Right Returns its 64-bit integer parameter logically shifted right.

Complement Returns the one’s complement of its 64-bit integer parameter.

AND Returns the bit-wise logical AND of its two 64-bit integer parameters.

OR Returns the bit-wise logical OR of its two 64-bit integer parameters.

XOR Returns the bit-wise logical XOR of its two 64-bit integer parameters.

Remainder Returns the remainder from the integer division of its two 64-bit operands.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-23

Math Functions Return Value
You can manipulate bits in 64-bit operands using the following functions.

bit_string

is a 64-bit bit string that is manipulated by the operator.

mask

is a sequence of bits that is applied to bit_string.

count

specifies the number of bits to shift bit_string.

Return Value
The bit-manipulation functions return the value of bit_string after applying the
specified function—Shift_Left, Shift_Right, Complement, AND, OR, or XOR).

Examples
INT(64) i,
 bits := %76543210F;
i := RTL_Shift_Left_Int64_ (bits, 3); ! I = %765432100F
i := RTL_Shift_Right_Int64_(bits, 3); ! I = %007654321F
i := RTL_Complement_Int64_ (bits);
 ! I = %1777777777777701234567F

INT(64) PROC RTL_Shift_Left_Int64_(bit_string, count);
 INT(64) bit_string; ! in
 INT count; ! in TNS
only

INT(64) PROC RTL_Shift_Right_Int64_(bit_string, count);
 INT(64) bit_string; ! in
 INT count; ! in TNS
only

INT(64) PROC RTL_Complement_Int64_(bit_string);
 INT(64) bit_string; ! in TNS
only

INT(64) PROC RTL_And_Int64_(bit_string, mask);
 INT(64) bit_string, mask; ! in TNS
only

INT(64) PROC RTL_Or_Int64_(bit_string, mask);
 INT(64) bit_string, mask; ! in TNS
only

INT(64) PROC RTL_Xor_Int64_(bit_string, mask);
 INT(64)bit_string, mask; ! in TNS
only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-24

Math Functions Remainder
i := RTL_And_Int64_(bits, %55555555F); ! I = %054541010F
i := RTL_Or_Int64_(bits, %55555555F); ! I = %077557755F
i := RTL_Xor_Int64_(bits, %55555555F); ! I = %023016745F

Remainder
The Remainder function returns the 64-bit integer remainder from the integer division
of its parameters.

dividend

is the 64-bit dividend.

divisor

is the 64-bit divisor.

Return Value
Remainder returns the remainder after dividing dividend by divisor.

Decimal Conversion Functions
This subsection describes the decimal conversion functions. Table 7-4 on page 7-25
lists the functions in this subsection.

The native CRE library does not provide Decimal Conversion functions. If your
program must perform these conversions, use language-specific run-time library
decimal conversion functions.

INT(64) PROC RTL_Remainder_Int64_(dividend, divisor);
 INT(64) dividend, divisor; ! in TNS
only

Table 7-4. Decimal Conversion Functions

Function Name Function Action

Decimal_to_Int Converts a decimal number represented in ASCII to a 16-, 32-, or 64-bit
integer.

Int_to_Decimal Converts a 16-, 32-, or 64-bit integer to a decimal number represented in
ASCII.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-25

Math Functions Decimal_to_Int
Decimal_to_Int
The Decimal_to_Int functions convert a string of decimal digits represented in ASCII
characters to a binary value of type INT, INT(32), or INT(64). These functions are not
available in the native CRE library.

str

contains the ASCII string to convert. It can have a maximum of 19 characters. The
value is represented as a string of decimal digits in ASCII, possibly including a
sign. Table 7-5 on page 7-29 shows the representations for the sign.

len

specifies the number of characters in str.

result

contains the binary result. If result is not large enough to contain the converted
result, result is undefined.

Return Value
The Decimal_to_Int functions return one of the following values:

Examples
STRING .EXT s[0:4];;
INT .EXT r[0:0];

INT PROC RTL_Decimal_to_Int16_(str, len, result);
 STRING .EXT str; ! in
 INT len; ! in
 INT .EXT result; ! out TNS only

INT PROC RTL_Decimal_to_Int32_(str, len, result);
 STRING .EXT str; ! in
 INT len; ! in
 INT(32) .EXT result; ! out TNS only

INT PROC RTL_Decimal_to_Int64_(str, len, result);
 STRING .EXT str; ! in
 INT len; ! in
 INT(64) .EXT result; ! out TNS only

Return Value Meaning

0 The operation was successful.

1 The size of the destination was not large enough to hold the value.

2 len was less than 1 or greater than 19.

3 str contained nonnumeric data.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-26

Math Functions Int_to_Decimal
INT err;

s ':=' "1234";
err := RTL_Decimal_to_Int16_(s, 4, r); ! R = 1234;

s ':=' %hB1323334;
err := RTL_Decimal_to_Int16_(s, 5, r); ! R = -1234;

Int_to_Decimal
The Int_to_Decimal functions convert an integer to a character string whose contents
represent a decimal number. You can specify the format in which the sign of the
number is stored in the character string. These functions are not available in the native
CRE library.

int16
int32
int64

 contains the value to convert.

str

 is a string of up to 19 bytes that contains the result of the conversion.

len

specifies the length of str in bytes.

sign_type

specifies how to represent the sign in the result. Table 7-5 on page 7-29 shows the
literals you can use for sign_type when you call Int_to_Decimal.

INT PROC RTL_Int16_to_Decimal_(int16, str, len, sign_type);
 INT int16; ! in
 STRING .EXT str; ! out
 INT len; ! in
 INT sign_type; ! in TNS only

INT PROC RTL_Int32_to_Decimal_(int32, str, len, sign_type);
 INT(32) int32; ! in
 STRING .EXT str; ! out
 INT len; ! in
 INT sign_type; ! in TNS only

INT PROC RTL_Int64_to_Decimal_(int64, str, len, sign_type);
 INT(64) int64; ! in
 STRING .EXT str; ! out
 INT len; ! in
 INT sign_type; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-27

Math Functions Int_to_Decimal
Return Value
The Int_to_Decimal functions return one of the following values:

Considerations
Each function in this group has a secondary entry point. If you invoke the function
using the second entry point, the decimal string returned by the function is terminated
with a single null character. The names of the secondary entry points are the same
names as those given above except that a “c” is appended to the end of the word
“decimal”:

Examples
STRING .EXT s[0:4];
INT err;

err :=
 RTL_Int16_to_Decimal_(1234, s, 5, RTL^Leading^separate);
 ! S = "+1234";

err :=
 RTL_Int16_to_Decimal_(-1234, s, 4, RTL^Trailing^embedded);
 ! S = %h313233B4;

Return Value Meaning

0 The operation was successful.

1 The size of the destination was not large enough to hold the value.
Significant digits were truncated.

2 len was invalid. len must be greater than zero and less than or equal to
19.

3 You specified an unsigned DECIMAL result, but the source was a negative
number. You need to specify a signed result.

4 You specified an invalid sign-type.

Name as Shown Above Name of Secondary Entry Point

RTL_Int16_to_Decimal_ RTL_Int16_to_Decimalc_

RTL_Int32_to_Decimal_ RTL_Int32_to_Decimalc_

RTL_Int64_to_Decimal_ RTL_Int64_to_Decimalc_
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-28

Math Functions Int_to_Decimal
Table 7-5. Sign Types

Sign_type Sign Storage

RTL^Unsigned A sign is not stored. The result is an unsigned string of digits.

RTL^Leading^embedded The leftmost bit of the first byte is set to 1 to indicate a negative
value.

RTL^Leading^separate A “+” or “-” character occupies the first byte. “+” indicates a
positive value, “-” indicates a negative value.

RTL^Trailing^embedded The leftmost bit of the last byte is set to 1 for a negative value.

RTL^Trailing^separate A “+” or “-” character occupies the last byte. “+” indicates a
positive value, “-” indicates a negative value.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-29

Math Functions Int_to_Decimal
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
7-30

8
String and Memory Block Functions

This section describes the string and memory block functions supported by the CRE.

The term “white space” in a function description includes spaces, newline characters,
horizontal tabs, vertical tabs, and form feeds.

String Functions
This subsection describes the string functions supported by the TNS CRE. Each
function described in this section begins with the prefix RTL_ or CRE_. Refer to Using
Standard Functions on page 2-56 for more information.

Table 8-1. TNS CRE String Functions (page 1 of 2)

Function Name Function Action

Atoi, Atol, Atof on
page 8-3

Converts a string of decimal characters to an integer or a real number.

Stcarg on
page 8-4

Scans a string until it finds one of the characters from another specified
string.

Stccpy on
page 8-5

Copies characters from one string to another.

Stcd_I on
page 8-6

Converts a string of decimal characters to an integer.

Stcd_L on
page 8-7

Converts a string of decimal characters to a 32-bit integer.

Stch_I on
page 8-8

Converts a string of hexadecimal characters to an integer.

Stci_D on
page 8-9

Converts a signed integer to a string of decimal characters.

Stcpm on
page 8-10

Scans a string for a substring that matches a specified pattern.

Stcpma on
page 8-11

Determines whether a string starts with a substring that matches a
specified pattern.

Stcu_D on
page 8-12

Converts an unsigned integer to a string of decimal characters.

Stpblk on
page 8-13

Scans a string for a non-white-space character.

Stpsym on
page 8-14

Gets a symbol from a string and stores it in another specified string.

Stptok on
page 8-15

Scans a string for a token and copies the token to another string.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-1

String and Memory Block Functions String Functions
Table 8-2 on page 8-3 shows the string functions supported by the native CRE library.
The native CRE does not provide pTAL prototypes for these functions. It provides only
the function names. Note that the function names are case-sensitive. You can use the
function prototypes in the C header files as examples when writing your own pTAL
prototypes for these functions.

Strcat on
page 8-16

Concatenates two strings.

Strchr on
page 8-17

Scans a string for the first occurrence of a specified character.

Strcmp on
page 8-18

Compares two strings.

Strcpy on
page 8-19

Copies one string to another.

Strcspn on
page 8-20

Scans a string until it finds a character that is present in another
specified string.

Strlen on
page 8-21

Returns the length of a string.

Strncat on
page 8-22

Concatenates one character string to the end of another.

Strncmp on
page 8-23

Compares two strings up to a specified maximum number of
characters.

Strncpy on
page 8-24

Copies characters from one string to another.

Strpbrk on
page 8-25

Scans a string for the first occurrence of any character present in
another string.

Strrchr on
page 8-26

Scans a string backwards for the last occurrence of a specified
character.

Strspn on
page 8-27

Scans a string until it finds a character that is not in another specified
string.

Strstr on
page 8-27

Determines whether one string is a substring of another string.

Strtod on
page 8-28

Converts a string of characters to a 64-bit floating-point number.

Strtol on
page 8-29

Converts a string of characters to a 32-bit integer using a specified
base.

Strtoul on
page 8-30

Converts a string of characters to a 32-bit unsigned integer with a
specified base.

Substring_Search
on page 8-32

Determine whether one string is a substring of another string.

Table 8-1. TNS CRE String Functions (page 2 of 2)

Function Name Function Action
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-2

String and Memory Block Functions Atoi, Atol, Atof
See the Guardian Native C Library Calls Reference Manual for descriptions of these
functions.

Atoi, Atol, Atof
The Atoi, Atol, and Atof functions convert a string of decimal characters to an integer or
floating-point number. These functions are not available in the native CRE library.

str

is a pointer to the string to convert.

Table 8-2. Native CRE String Functions

Function Name Native CRE Library Function Name

strcat Concatenates two strings.

strchr Scans a string for the first occurrence of a specified character.

strcmp Compares two strings.

strcpy Copies one string to another.

strcspn Scans a string until it finds a character that is present in another
specified string.

strlen Returns the length of a string.

strncat Concatenates one character string to the end of another.

strncmp Compares two strings up to a specified maximum number of
characters.

strncpy Copies characters from one string to another.

strpbrk Scans a string for the first occurrence of any character present in
another string.

strrchr Scans a string backwards for the last occurrence of a specified
character.

strspn Scans a string until it finds a character that is not in another specified
string.

strstr Determines whether one string is a substring of another string.

strtok Scans a string for a token and copies the token to another string.

INT PROC RTL_Atoi_(str);
 STRING .EXT str; ! in TNS only

INT(32) PROC RTL_Atol_(str);
 STRING .EXT str; ! in TNS only

REAL(64) PROC RTL_Atof_(str);
 STRING .EXT str; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-3

String and Memory Block Functions Stcarg
Return Value
The Atoi, Atol, and Atof functions return the converted value of str. They return zero if
the first non-white-space character in str is not a sign character (“+” or “-”), a decimal
digit, or, for Atof, a decimal point.

Considerations

• The Atoi, Atol, and Atof functions skip leading white-space characters in str.

• The first non-white-space character can be optionally a plus sign or a minus sign.

• For Atof only, the first non-white-space character can be a decimal point.

• The functions convert successive characters until they encounter either a non-
decimal character or a zero (null) byte.

Example
STRING .s[0:17] := [" 275",0];
INT i;
STRING .t[0:17] := [" 275.9E2",0];
REAL(64) r;

i := RTL_Atoi_(s); ! i gets 275
r := RTL_Atof_(t); ! r gets 27590

Stcarg
The Stcarg functions scan a character string until any character that appears in a
second string is encountered in the first string. These functions are not available in the
native CRE library.

str

is a pointer to the string to scan.

stop_chars

is a pointer to a string containing the characters to scan for in str.

INT PROC RTL_Stcarg_(str, stop_chars);
 STRING .str; ! in
 STRING .stop_chars; ! in TNS only

INT(32) PROC RTL_StcargX_(str, stop_chars);
 STRING .EXT str; ! in
 STRING .EXT stop_chars; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-4

String and Memory Block Functions Stccpy
Return Value
The Stcarg functions return the number of bytes scanned at the beginning of str
before a character in stop_chars was encountered. If no characters from
stop_chars are found in str, the Stcarg functions return the length of str.

Considerations

• The Stcarg functions scan str until any character in stop_chars is found in str
or until they encounter a zero (null) byte in str.

• The Stcarg functions ignore text in str that is inside matched single or double
quotes or that follows an unmatched single or double quote. They also ignore any
character that is preceded by a backslash.

• Both str and stop_chars must be terminated by a zero (null) byte to stop the
scan.

Example
INT count;
STRING .s[0:7] := ["ABCcDEF",0];
STRING .tar[0:3] := ["abcd",0];

count := RTL_Stcarg_(s, tar); ! count gets 3

Stccpy
The Stccpy functions copy not more than a specified number of characters from one
string to another. These functions are not available in the native CRE library.

dest

is a pointer to the destination of the copy.

source

is a pointer to the string to copy.

INT PROC RTL_Stccpy_(dest, source, max_bytes);
 STRING .dest; ! out
 STRING .source; ! in
 INT max_bytes; ! in TNS only

INT(32) PROC RTL_StccpyX_(dest, source, max_bytes);
 STRING .EXT dest; ! out
 STRING .EXT source; ! in
 INT(32) max_bytes; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-5

String and Memory Block Functions Stcd_I
max_bytes

specifies the maximum number of bytes to copy. max_bytes must be a positive
number.

Return Value
The Stccpy functions return the number of characters copied from source to dest.

Considerations

• source must be terminated by a zero (null) byte to stop the scan.

• The Stccpy functions terminate dest with a null byte, independent of whether the
maximum count or a null byte in source stopped the copy operation.

Example
INT i;
STRING .des[0:7];
STRING .src[0:20] := ["abc",0,"def"];

i := RTL_Stccpy_(des, src, 8); ! i gets 3, des gets["abc",0]

Stcd_I
The Stcd_I functions convert a string of decimal characters to a 16-bit integer. These
functions are not available in the native CRE library.

str

is a pointer to the string to convert.

integer

is a pointer to the resulting integer.

Return Value
The Stcd_I functions return the number of characters scanned.

INT PROC RTL_Stcd_I_(str, integer);
 STRING .str; ! in
 INT .integer; ! out TNS only

INT PROC RTL_Stcd_IX_(str, integer);
 STRING .EXT str; ! in
 INT .EXT integer; ! out TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-6

String and Memory Block Functions Stcd_L
Considerations

• The string to convert can contain an optional sign before the string of digits.

• The Stcd_I functions do not skip leading white space.

• The Stcd_I functions stop scanning if they encounter a non-decimal character or a
zero (null) byte.

Example
INT count;
STRING .s[0:7] := ["17xy",0];
INT i;

count := RTL_Stcd_I_(s, i); ! count gets 2, i gets 17

Stcd_L
The Stcd_L functions convert a string of decimal characters to a 32-bit integer. These
functions are not available in the native CRE library.

str

is a pointer to the string to convert.

longint

is a pointer to the resulting 32-bit integer.

Return Value
The Stcd_L functions return the number of characters scanned.

Considerations

• str can contain an optional sign followed by a string of digits.

• The Stcd_L functions do not skip leading white space.

• The Stcd_L functions stop scanning if they encounter a non-decimal character or a
zero (null) byte.

INT PROC RTL_Stcd_L_(str, longint);
 STRING .str; ! in
 INT(32) .longint; ! out TNS only

INT PROC RTL_Stcd_LX_(str, longint);
 STRING .EXT str; ! in
 INT(32) .EXT longint; ! out TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-7

String and Memory Block Functions Stch_I
Example
INT count;
STRING .s[0:17] := ["128456xq7",0];
INT(32) d;

count := RTL_Stcd_L_(s, d); ! count gets 6, d gets 128456

Stch_I
The Stch_I functions convert a string of hexadecimal characters to an integer. These
functions are not available in the native CRE library.

str

is a pointer to the string to convert.

integer

is a pointer to the resulting integer.

Return Value
The Stch_I functions return the number of characters scanned, or zero if str does not
begin with a valid hexadecimal character.

Considerations

• The end of str is defined by the location of a zero (null) byte.
• The Stch_I functions do not skip leading white space.
• The Stch_I functions stop scanning if they encounter a non-hexadecimal character.

Example
INT count;
STRING .s[0:7] := ["1a2xy",0];
INT i;

count := RTL_Stch_I_(s, i); ! count gets 3, i gets 418.

INT PROC RTL_Stch_I_(str, integer);
 STRING .str; ! in
 INT .integer; ! out TNS only

INT PROC RTL_Stch_IX_(str, integer);
 STRING .EXT str; ! in
 INT .EXT integer; ! out TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-8

String and Memory Block Functions Stci_D
Stci_D
The Stci_D functions convert a signed integer to a string of decimal characters. These
functions are not available in the native CRE library.

str

is a pointer to the converted decimal string.

integer

is the integer to convert.

max_bytes

is the size of the buffer, str, provided for the conversion.

Return Value
The Stci_D functions return the length of the resulting string, excluding the terminating
null character.

Considerations

• The Stci_D functions do not store leading zeros in the output string.

• The output string is terminated with a null byte.

• If integer is negative, the output string is preceded by a minus sign.

• If integer is zero, a single zero character is stored.

• The buffer at str must be large enough to hold a minus sign, if integer is
negative, plus the converted number, and a null byte.

If there are more than max_bytes to store, the Stci_D functions store the minus
sign if integer is negative, followed by as many bytes as will fit while still storing
a null character at the end of str.

INT PROC RTL_Stci_D_(str, integer, max_bytes);
 STRING .str; ! out
 INT integer; ! in
 INT max_bytes; ! in TNS only

INT PROC RTL_Stci_DX_(str, integer, max_bytes);
 STRING .EXT str; ! out
 INT integer; ! in
 INT max_bytes; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-9

String and Memory Block Functions Stcpm
If all digits are not stored, the digits stored are the least significant digits of the
converted integer.

Example
INT count;
STRING .s[0:7];
INT i := 17;

! count gets 2, s gets ["17",0]

count := RTL_Stci_D_(s, i, 8);

Stcpm
The Stcpm functions scan a string for the first occurrence of a substring that matches a
specified pattern. This function is not available in the native CRE library.

str

is a pointer to the string to scan.

pat

is a pointer to the pattern string. The pattern is specified using regular expression
notation:

match

is a pointer, returned by Stcpm, to the substring in str that matches pat.

Integer Negative? Max Bytes Max Digits Stored

No N N - 1

Yes N N - 2

INT PROC RTL_Stcpm_(str, pat, match);
 STRING .str; ! in
 STRING .pat; ! in
 INT .match; ! out TNS only

INT PROC RTL_StcpmX_(str, pat, match);
 STRING .EXT str; ! in
 STRING .EXT pat; ! in
 INT(32) .EXT match; ! out TNS only

? matches any character.

s* matches zero or more occurrences of s.

s+ matches one or more occurrences of s.

s matches s.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-10

String and Memory Block Functions Stcpma
Return Value
The Stcpm functions return the length of the first matching substring, if a match was
found. If a match was not found, the functions returns -1.

Considerations

• The ends of str and pat are defined by the location of a zero (null) byte.

• You can use a backslash (\) as an escape character if you need to match a special
character (?, *, or +).

• Note that match must be a pointer to a character pointer.

Example
STRING .s[0:17] := ["xxFORTUNE 500",0];
STRING .pattern[0:4] := ["FO?T",0];
STRING .match;
INT i;

! i get 4.
! @match gets @s[2]

i := RTL_Stcpm_(s, pattern, @match);

Stcpma
The Stcpma functions scan a string to determine whether it starts with a substring that
matches a specified pattern. These functions are not available in the native CRE
library.

str

is a pointer to the string to scan.

INT PROC RTL_Stcpma_(str, pat);
 STRING .str; ! in
 STRING .pat; ! in TNS only

INT PROC RTL_StcpmaX_(str, pat);
 STRING .EXT str; ! in
 STRING .EXT pat; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-11

String and Memory Block Functions Stcu_D
pat

is a pointer to the pattern string. The pattern is specified using regular expression
notation:

Return Value
The Stcpma functions return the length of the matching substring, if found. If a
matching substring is not found, they returns -1.

Considerations

• The ends of str and pat are defined by the location of a zero (null) byte.

• You can use a backslash (\) as an escape character if you need to match a special
character.

Example
STRING .s[0:17] := ["FORTUNE 500",0];
STRING .pattern[0:4] := ["FO?T",0];
INT i;

i := RTL_Stcpma_(s, pattern); ! i gets 4

Stcu_D
The Stcu_D functions convert an unsigned integer to a string of decimal characters.
These functions are not available in the native CRE library.

str

is a pointer to the converted decimal string.

? matches any character.

s* matches zero or more occurrences of s.

s+ matches one or more occurrences of s.

s matches s.

INT PROC RTL_Stcu_D_(str, integer, max_bytes);
 STRING .str; ! out
 INT integer; ! in
 INT max_bytes; ! in TNS only

INT PROC RTL_Stcu_DX_(str, integer, max_bytes);
 STRING .EXT str; ! out
 INT integer; ! in
 INT max_bytes; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-12

String and Memory Block Functions Stpblk
integer

is the integer to convert.

max_bytes

is the number of bytes allocated at str for the conversion.

Return Value
The Stcu_D functions return the length of the resulting string, excluding the terminating
null character.

Considerations

• The Stcu_D functions do not produce leading zeros in the output string.

• If integer is negative, the output string is preceded by a minus sign.

• str is terminated with a null byte.

• If integer is zero, a single zero character is produced.

• The buffer at str must be large enough to hold the converted number and a null
byte. If there are more than max_bytes minus one digits in the converted number,
the Stcu_D functions store max_bytes minus one digits and a null character. The
digits stored are the least significant digits of the converted integer.

Example
INT count;
STRING .s[0:7];
INT i := %100002;

! count gets 5, s gets ["32770",0]

count := RTL_Stcu_D_(s, i, 8);

Stpblk
The Stpblk functions scan a string for a non-white-space character. These functions
are not available in the native CRE library.

str

is a pointer to the string to scan.

INT PROC RTL_Stpblk_(str);
 STRING .str; ! in TNS only

INT(32) PROC RTL_StpblkX_(str);
 STRING .EXT str; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-13

String and Memory Block Functions Stpsym
Return Value
The Stpblk functions return the address of the first non-white-space character in str.

Considerations
The end of str is defined by the location of a zero (null) byte.

Example
STRING .s[0:17] := [" Skip Spaces",0];
STRING .start;

!@start gets @s[2]

@start := RTL_Stpblk_(s);

Stpsym
The Stpsym functions copy a symbol from one string to another string. A symbol
consists of an alphabetic character followed by zero or more alphanumeric characters.
These functions are not available in the native CRE library.

source

is a pointer to the string to scan.

sym

is a pointer, on return, to the symbol.

symlen

specifies the number of bytes allocated in sym for the symbol.

Return Value
The Stpsym functions return the address of the next character in str after the symbol.
If a symbol is not found, the address of the start of str, @str is returned.

INT PROC RTL_Stpsym_(source, sym, symlen);
 STRING .source; ! in
 STRING .sym; ! out
 INT symlen; ! in TNS only

INT(32) PROC RTL_StpsymX_(source, sym, symlen);
 STRING .EXT source; ! in
 STRING .EXT sym; ! out
 INT symlen; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-14

String and Memory Block Functions Stptok
Considerations

• A symbol consists of an alphabetic character followed by zero or more
alphanumeric characters and terminated by a blank character.

• White space is not skipped.

• The end of str is defined by the location of a zero (null) byte.

• To ensure space for a null byte after the symbol, the value you pass in symlen
must be at least one greater than the longest symbol that can be scanned.

Example
STRING .s[0:17] := ["ident1 ident2",0];
STRING .symbol[0:9];
STRING .next;

!@next gets @s[6]
!symbol gets ["ident1", 0]

@next := RTL_Stpsym_(s, symbol, 10);

Stptok
The Stptok functions scan for the next token in a string. A token consists of all
characters from the beginning of the string up to, but not including, any character that
appears in a second string, a string of delimiter characters. These functions are not
available in the native CRE library.

str

is a pointer to the string to scan.

token

is a pointer to the string to which the token is copied.

INT PROC RTL_Stptok_(str, token, tokenlen, stop_chars);
 STRING .str; ! in
 STRING .token; ! out
 INT tokenlen; ! in
 STRING .stop_chars; ! in TNS only

INT(32) PROC RTL_StptokX_(str, token, tokenlen, stop_chars
);
 STRING .EXT str; ! in
 STRING .EXT token; ! out
 INT tokenlen; ! in
 STRING .EXT stop_chars; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-15

String and Memory Block Functions Strcat
tokenlen

specifies the number of bytes allocated in token for the token. Tokens greater
than this length are truncated.

stop_chars

is a pointer to a string that consists of token separator characters; that is,
characters that are not part of the token.

Return Value
The Stptok functions return the address of the next character in str after the token
(the delimiter that stopped the scan).

Considerations

• Both str and stop_chars must be terminated by a zero (null) byte to stop the
scan.

• White space is not skipped at the beginning of str.

• A null byte in token immediately following the token.

Example
STRING .s[0:17] := ["Token1, token2",0];
STRING .token[0:9];
STRING .tar[0:3] := [",-;",0];
STRING .next;

!@next gets @s[6]
!token gets ["Token1", 0]

@next := RTL_Stptok_(s, token, 10, tar);

Strcat
The Strcat functions concatenate two strings.

first

is a pointer to the string to which the second string is concatenated.

INT PROC RTL_Strcat_(first, second);
 STRING .first; ! in/out
 STRING .second; ! in TNS only

INT(32) PROC RTL_StrcatX_(first, second);
 STRING .EXT first; ! in/out
 STRING .EXT second; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-16

String and Memory Block Functions Strchr
second

is a pointer to the string that is concatenated to the first string.

Return Value
The Strcat functions return the address of the resulting string, @first.

Considerations

• Both first and second must be terminated by a zero (null) byte to stop the scan.

• You must ensure that there are enough bytes at the end of first to accommodate
the bytes in second.

• The Strcat functions append a null byte to the result.

Example
STRING fir[0:100] := ["Front",0];
STRING .sec[0:100] := ["Back",0];
STRING .temp;

! @temp gets @fir
! fir gets ["FrontBack",0]

@temp := RTL_Strcat_(fir, sec);

Strchr
The Strchr functions scan a string for the first occurrence of a specified character.

str

is a pointer to the string to scan.

char

is the character to search for. Only bits <8:15> of char are used for the search
character.

INT PROC RTL_Strchr_(str, char);
 STRING .str; ! in
 INT char; ! in TNS only

INT(32) PROC RTL_StrchrX_(str, char);
 STRING .EXT str; ! in
 INT char; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-17

String and Memory Block Functions Strcmp
Return Value
The Strchr functions return the address of the first occurrence in str of char. If str
does not contain char, zero is returned.

Considerations
str must be terminated by a zero (null) byte to stop the scan.

Example
STRING .s[0:100] := ["Find me",0];
STRING .char_ptr;

! @char_ptr gets @s[5]

@char_ptr := RTL_Strchr_(s, "m");

Strcmp
The Strcmp functions compare two strings.

str1

is a pointer to the first string.

str2

is a pointer to the second string.

Return Value
The Strcmp functions return a value that is

< 0 if str1 < str2
 0 if str1 = str2
> 0 if str1 > str2

Considerations

• Both str1 and str2 must be terminated by a zero (null) byte to stop the scan.

• For less-than and greater-than comparisons, characters in str1 and str2 are
compared using the characters’ numeric values in the ASCII collating sequence.

INT PROC RTL_Strcmp_(str1, str2);
 STRING .str1; ! in
 STRING .str2; ! in TNS only

INT PROC RTL_StrcmpX_(str1, str2);
 STRING .EXT str1; ! in
 STRING .EXT str2; ! inv TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-18

String and Memory Block Functions Strcpy
• If str1 and str2 have different lengths but match to the end of the shorter string,
the shorter string is defined to be less than the longer string.

Example
INT sign;
STRING .s1[0:100] := ["Opus is a penguin",0];
STRING .s2[0:100] := ["Opus is a flightless water fowl",0];

sign := RTL_Strcmp_(s1, s2); ! sign gets a positive number

Strcpy
The Strcpy functions copy one string to another.

dest

is a pointer to the destination string.

source

is a pointer to the string to copy.

Return Value
The Strcpy functions return the address of the resulting string, @dest.

Considerations

• source must be terminated by a zero (null) byte to stop the scan.

• If the strings overlap, data is not preserved. That is, if dest begins within source,
the string at dest might not be a copy of what was stored at source. For
example, Figure 8-1 and Figure 8-2 on page 8-20 show the before image and after
image from the following code sequence:

STRING .s[0:11];
STRING .d;

s ':=' "ABCDEFGHIJKL";
@d := @s[4];
d ':=' s FOR 12 BYTES;

INT PROC RTL_Strcpy_(dest, source);
 STRING .dest; ! out
 STRING .source; ! in TNS only

INT(32) PROC RTL_StrcpyX_(dest, source);
 STRING .EXT dest; ! out
 STRING .EXT source; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-19

String and Memory Block Functions Strcspn
Example
STRING .des[0:10];
STRING .src[0:100] := ["Example", 0];

CALL RTL_Strcpy_(des, src); ! des gets ["Example",0]

Strcspn
The Strcspn functions scan a string until they find a character that is found in another
string. These functions are not available in the native CRE library.

str

is a pointer to the string to scan.

Figure 8-1. Strings in Memory Before Copying Source to Destination

Figure 8-2. Strings in Memory After Copying Source to Destination

INT PROC RTL_Strcspn_(str, stop_chars);
 STRING .str; ! in
 STRING .stop_chars; ! in TNS only

INT(32) PROC RTL_StrcspnX_(str, stop_chars);
 STRING .EXT str; ! in
 STRING .EXT stop_chars; ! in TNS only

801VST .VSD

source dest

A B C D E F G H I J K L

802VST .VSD

source dest

A B C D A B C D A B C D
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-20

String and Memory Block Functions Strlen
stop_chars

is a pointer to a string containing the characters to scan for in str.

Return Value
The Strcspn functions return the number of bytes scanned at the beginning of str
before a character in stop_chars was encountered. If no characters from
stop_chars are found in str, the length of str is returned.

Considerations
Both str and stop_chars must be terminated by a zero (null) byte to stop the scan.

Example
INT count;
STRING .s[0:19] := ["Next token, please",0];
STRING .tar[0:3] := [";,:",0];

count := RTL_Strcspn_(s, tar); ! count gets 10

Strlen
The Strlen functions return the length of a string.

str

is a pointer to the string.

Return Value
The Strlen functions return the length of str in bytes.

Considerations

• str must be terminated by a zero (null) byte to stop the scan.
• The value returned does not include the null character at the end of str.

Example
INT i;
STRING .s[0:7] := ["1234567",0];

INT PROC RTL_Strlen_(str);
 STRING .str; ! in TNS only

INT(32) PROC RTL_StrlenX_(str);
 STRING .EXT str; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-21

String and Memory Block Functions Strncat
i := RTL_Strlen_(s); ! i gets 7

Strncat
The Strncat functions concatenate not more than a specified number of characters
from one string to another.

first

is a pointer to the string to which the second string is concatenated.

second

is a pointer to the string that is concatenated to the first string.

max_bytes

specifies the maximum number of characters from second to concatenate to
first. max_bytes must be a positive number.

Return Value
The Strncat functions return the address of the resulting string, @first.

Considerations

• Both first and second must be terminated by a zero (null) byte to stop the scan.

• You must ensure that there are enough bytes at the end of first to accommodate
max_bytes additional bytes.

• The functions append a null byte to the result.

Example
STRING .fir[0:100] := ["Front",0];
STRING .sec[0:100] := ["Back",0];
STRING .temp;
! @temp gets @fir

INT PROC RTL_Strncat_(first, second, max_bytes);
 STRING .first; ! out
 STRING .second; ! in
 INT max_bytes; ! in TNS
only

INT(32) PROC RTL_StrncatX_(first, second, max_bytes);
 STRING .EXT first; ! out
 STRING .EXT second; ! in
 INT(32) max_bytes; ! in TNS
only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-22

String and Memory Block Functions Strncmp
! fir gets ["FrontBa",0]

@temp := RTL_Strncat_(fir, sec, 2);

Strncmp
The Strncmp functions compare two strings for a specified maximum number of
characters.

str1

is a pointer to the first string.

str2

is a pointer to the second string.

max_bytes

specifies the maximum number of characters to compare. max_bytes must be a
positive number.

Return Value
Strncmp returns a value that is

< 0 if str1 < str2
 0 if str1 = str2
> 0 if str1 > str2

Considerations

• Both str1 and str2 must be terminated by a zero (null) byte to stop the scan.

• For less-than and greater-than comparisons, characters in str1 and str2 are
compared using the characters’ values in the ASCII collating sequence.

• If one of the strings has fewer than max_bytes characters and matches the
beginning of the other string, the shorter string is defined to be less than the longer
string, even if the length of the longer string is greater than the length specified by
max_bytes.

INT PROC RTL_Strncmp_(str1, str2, max_bytes);
 STRING .str1; ! in
 STRING .str2; ! in
 INT max_bytes; ! in TNS only

INT PROC RTL_StrncmpX_(str1, str2, max_bytes);
 STRING .EXT str1; ! in
 STRING .EXT str2; ! in
 INT(32) max_bytes; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-23

String and Memory Block Functions Strncpy
• If max_bytes is greater than the length of both strings and if the two strings have
different lengths but match to the end of the shorter string, the shorter string is
defined to be less than the longer string.

Example
INT sign;
STRING .s1[0:100] := ["Opus is a penguin",0];
STRING .s2[0:100] := ["Opus is a flightless water fowl",0];

sign := RTL_Strncmp_(s1, s2, 10); ! sign gets 0

Strncpy
The Strncpy functions copy not more than a specified number of characters from one
string to another.

dest

is a pointer to the destination string.

source

is a pointer to the string to copy.

max_bytes

specifies the maximum number of characters to copy; max_bytes must be a
positive number.

Return Value
The Strncpy functions return the address of the resulting string, @dest.

Considerations

• The end of source is defined by the location of a zero (null) byte.

INT PROC RTL_Strncpy_(dest, source, max_bytes);
 STRING .dest; ! out
 STRING .source; ! in
 INT max_bytes; ! in TNS
only

INT(32) PROC RTL_StrncpyX_(dest, source, max_bytes);
 STRING .EXT dest; ! out
 STRING .EXT source; ! in
 INT(32) max_bytes; ! in TNS
only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-24

String and Memory Block Functions Strpbrk
• If the length of source is greater than max_bytes, the functions do not store a
null character.

• The Strncpy functions copy bytes from source to dest until max_bytes have
been copied or a null byte is encountered in source:

° If max_bytes are copied without encountering a null byte in source, does a
null byte is not stored in dest.

° If a null byte is encountered in source before max_bytes are copied, the
functions copy the null byte and pad dest with additional null bytes until a total
of max_bytes have been written in dest.

Example
STRING .des[0:100];
STRING .src[0:100] := ["HP Computers Incorporated",0];

CALL RTL_Strncpy_(des, src, 6); ! des gets ["HP",0];

Strpbrk
The Strpbrk functions scan a string until they find any character in the string that also
appears in a second string.

str

is a pointer to the string to scan.

stop_chars

is a pointer to the string containing the characters to scan for in str.

Return Value
The Strpbrk functions return the address of the first occurrence in str of any character
in stop_chars. If str does not contain any of the characters in stop_chars, zero is
returned.

Considerations
Both str and stop_chars must be terminated by a zero (null) byte to stop the scan.

INT PROC RTL_Strpbrk_(str, stop_chars);
 STRING .str; ! in
 STRING .stop_chars; ! in TNS only

INT(32) PROC RTL_StrpbrkX_(str, stop_chars);
 STRING .EXT str; ! in
 STRING .EXT stop_chars; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-25

String and Memory Block Functions Strrchr
Example
STRING .s[0:100] := ["800-555-1212",0];
STRING .tar[0:100] := [" -;,.",0];
STRING .char_ptr;

! @char_ptr gets @s[3]

@char_ptr := RTL_Strpbrk_(s, tar);

Strrchr
The Strrchr functions scan a string backwards for the last occurrence of a specified
character.

str

is a pointer to the string to scan.

char

is the character to search for. Only bits <8:15> of char are used for the search
character.

Return Value
The Strrchr functions return the address of the last occurrence in str of char. If str
does not contain char, zero is returned.

Considerations
str must be terminated by a zero (null) byte to stop the scan. The terminating zero
byte must be at the right end of the buffer.

Example
STRING .s[0:100] := ["This is an example",0];
STRING .char_ptr;

! @char_ptr gets @s[13]

@char_ptr := RTL_Strrchr_(s, "a");

INT PROC RTL_Strrchr_(str, char);
 STRING .str; ! in
 INT char; ! in TNS only

INT(32) PROC RTL_StrrchrX_(str, char);
 STRING .EXT str; ! in
 INT char; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-26

String and Memory Block Functions Strspn
Strspn
The Strspn functions scan a string until they find a character in the string that does not
appear in a second string.

str

is a pointer to the string to scan.

span_chars

is a pointer to the string containing the characters to scan for in str.

Return Value
The Strspn functions return the number of bytes scanned at the beginning of str
before a character is encountered that is not in span_chars. If all characters in str
appear in span_chars, the length of str is returned.

Considerations
Both str and stop_chars must be terminated by a zero (null) byte to stop the scan.

Example
INT count;
STRING .s[0:100] := ["An example: how to use RTL_STRSPN",0];
STRING .tar[0:100]:= ["ABCDEFGHIJKLMNOPQRSTUVWXYZ" &
 "abcdefghijklmnopqrstuvwxyz",0];
count := RTL_Strspn_(s, tar); ! count gets 10

Strstr
The Strstr functions determine whether one string is a substring of a second string.

INT PROC RTL_Strspn_(str, span_chars);
 STRING .str; ! in
 STRING .span_chars; ! in TNS only

INT(32) PROC RTL_StrspnX_(str, span_chars);
 STRING .EXT str; ! in
 STRING .EXT span_chars; ! in TNS only

INT PROC RTL_Strstr_(str, substr);
 STRING .str; ! in
 STRING .substr; ! in TNS only

INT(32) PROC RTL_StrstrX_(str, substr);
 STRING .EXT str; ! in
 STRING .EXT substr; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-27

String and Memory Block Functions Strtod
str

is a pointer to the string to scan.

substr

is a pointer to the substring to scan for in str.

Return Value
The Strstr functions return:

• The address of substring within str if substr is found.
• Zero if substr is not found within str.

Considerations
Both str and substr must be terminated by a zero (null) byte to stop the scan.

Example
STRING .s[0:17] := ["FORTUNE 500",0];
STRING .subs[0:4] := ["500",0];
STRING .subptr;

@subptr := RTL_Strstr_(s, subs); ! @subptr gets @s[8]

Strtod
The Strtod functions convert a string of characters to a 64-bit floating-point number.

str

is a pointer to the string to convert.

end_scan

is the address in str where the conversion ended. The pointer returned through
end_scan points to the first unrecognized character in str.

Return Value
The Strtod functions return the converted value.

REAL(64) PROC CRE_Strtod_(str, end_scan);
 STRING .str; ! in
 INT .end_scan; ! out TNS only

REAL(64) PROC CRE_StrtodX_(str, end_scan);
 STRING .EXT str; ! in
 INT(32) .EXT end_scan; ! out TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-28

String and Memory Block Functions Strtol
Considerations

• str must be terminated by a zero (null) byte to stop the scan.
• Leading white space is skipped.
• str is a string of digits, optionally preceded by a sign.
• The functions stop scanning if they encounter an unrecognized character.

Example
STRING .s[0:7] := ["52431",0];
STRING .scanend;
REAL(64) d;

! d gets 52431.
! @scanend gets @s[5]

d := CRE_Strtod_(s, @scanend);

Strtol
The Strtol functions convert a string of characters to a 32-bit integer using a specified
base.

str

is a pointer to the string to convert.

end_scan

is the address within str where the conversion ended. The pointer returned
through end_scan points to the first unrecognized character.

base

specifies the radix of the digits at str. It must be in the range:

0 <= base <= 36

• If base is zero, the leading characters of str determine the radix:

° 0X or 0x indicates a hexadecimal number.
° 0 indicates an octal number.
° 1 through 9 indicate a decimal number.

INT(32) PROC CRE_Strtol_(str, end_scan, base);
 STRING .str; ! in
 INT .end_scan; ! out
 INT base; ! in TNS only

INT(32) PROC CRE_StrtolX_(str, end_scan, base);
 STRING .EXT str; ! in
 INT(32) .EXT end_scan; ! out
 INT base; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-29

String and Memory Block Functions Strtoul
• If base is greater than 1 and less than or equal to 36, it specifies the radix of
the string of characters at str. For values of base greater than 10, the letter A
represents 10, the letter B represents 11, and so forth, through the letter Z
which represents 35. Strtol treats uppercase and lowercase alphabetic
characters in str interchangeably.

• If base is less than 0, equal to 1, or greater than 36, the Strtol functions do not
convert str. They return zero and end_scan points to the same location as
str.

Return Value
The Strtol functions return the converted value.

Considerations

• str must be terminated by a zero (null) byte to stop the scan.
• Leading white space is skipped.
• str is a string of digits, optionally preceded by a sign.
• Scanning stops if a character is encountered that is not valid for base.

Example
STRING .s[0:7] := ["21B43",0];
STRING .end;
INT(32) d;

! d gets 138051, the decimal equivalent of hex 21B43.
! @end gets @s[5]

d := CRE_Strtol_(s, @end, 16);

Strtoul
The Strtoul functions convert a string of characters to an unsigned 32-bit integer using
a specified base.

str

points to the string to convert.

INT(32) PROC CRE_Strtoul_(str, end_scan, base);
 STRING .str; ! in
 INT .end_scan; ! out
 INT base; ! in TNS only

INT(32) PROC CRE_StrtoulX_(str, end_scan, base);
 STRING .EXT str; ! in
 INT(32) .EXT end_scan; ! out
 INT base; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-30

String and Memory Block Functions Strtoul
end_scan

is the address within str where the conversion ended. The pointer returned
through end_scan points to the character immediately after the last converted
character.

base

specifies the radix of the digits at str. It must be in the range:

0 less than or equal base less than or equal to 36

• If base is zero, the leading characters of str determine the radix:

° 0X or 0x indicates a hexadecimal number.
° 0 indicates an octal number.
° 1 through 9 indicate a decimal number.

• If base is greater than 1 and less than or equal to 36, it specifies the radix of
the string of characters at str. For values of base greater than 10, the letter A
represents 10, the letter B represents 11, and so forth, through the letter Z
which represents 35. Strtoul treats uppercase and lowercase alphabetic
characters in str interchangeably.

• If base is less than 0, equal to 1, or greater than 36, the Strtoul functions do
not convert str and return zero. end_scan points to the same location as
str.

Return Value
The Strtoul functions return:

• The 32-bit converted value if the conversion is successful.

• Zero if they cannot convert the string.

• The highest value that can be represented in 32 bits if the converted value would
cause overflow.

Considerations

• Strtoul skips leading white-space characters.

• Strtoul stops scanning if it encounters a character that is not valid for base.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-31

String and Memory Block Functions Substring_Search
Substring_Search
The Substring_Search function determines whether one string is a substring of another
string. This function is not available in the native CRE library.

substr

is a pointer to the substring to scan for in str.

substr_len

is the length of substr in bytes.

str

is a pointer to the string to scan.

str_len

is the length of str in bytes.

Return Value
Substring_Search returns the position within str at which substr begins, or zero if
substr is not found within str. Note that the first character in str is at position one.

Considerations
The ends of the strings str and substr are determined by str_len and
substr_len, respectively. A zero (null) byte has no special meaning in this function.

Example
INT count;
STRING .s[0:28] := ["HP Computers Incorporated"];
STRING .subs[0:8] := ["Computers"];

! count gets 8

count := RTL_Substring_Search_(subs, 9, s, 29);

INT PROC RTL_Substring_Search_(substr, substr_len
 str, str_len);
 STRING .EXT substr; ! in
 INT substr_len; ! in
 STRING .EXT str; ! in
 INT str_len; ! in TNS only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-32

String and Memory Block Functions Memory Block Functions
Memory Block Functions
This subsection describes the memory block functions. Table 8-3 lists the memory
block functions supported by the TNS CRE. Each function described in this section
begins with the prefix RTL_ or CRE_. Refer to Using Standard Functions on page 2-56
for more information.

Table 8-4 on page 8-33 shows the Memory Block functions supported by the native
CRE library. The native CRE does not provide pTAL prototypes for these functions. It
provides only the function names, which are case-sensitive. You can use the function
prototypes in the C header files as examples when writing your own pTAL prototypes
for these functions.

Table 8-3. TNS CRE Memory Block Functions

Standard Function Name Function Action

memchr Searches for a character in a block of memory.

memcmp Compares two blocks of memory.

memcpy Copies a block of memory.

memmove Moves a block of memory.

memset Initializes a block of memory to a specified character value.

memswap Exchanges one block of memory with a second block of
memory.

repmem Replicates values through a block of memory.

Table 8-4. Native CRE Memory Block Functions

Standard Function Name Native CRE Library Function Action

memchr Searches for a character in a block of memory.

memcmp Compares two blocks of memory.

memcpy Copies a block of memory.

memmove Moves a block of memory.

memset Initializes a block of memory to a specified character value.

wmemchr Searches for a wide character in a block of memory.

wmemcmp Compares two blocks of wide-character memory.

wmemcpy Copies a block of wide-character memory.

wmemmove Moves a block of wide-character memory.

wmemset Initializes a block of wide-character memory to a specified
character value.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-33

String and Memory Block Functions Memory_Compare
Memory_Compare
The Memory_Compare functions compare two blocks of memory. These functions are
not available in the native CRE library.

buf1

is a pointer to the first block of memory.

buf2

is a pointer to the second block of memory.

num_bytes

specifies the number of bytes to compare.

Return Value
Memory_Compare returns a number that is:

< 0 if buf1 < buf2
 0 if buf1 = buf2
> 0 if buf1 > buf2

Considerations

• The Memory_Compare functions perform an unsigned byte comparison for a
maximum count of num_bytes.

• For less-than and greater-than comparisons, characters in buf1 and buf2 are
compared using the characters’ values in the ASCII collating sequence.

Example
INT i;
STRING .a1[0:7] := "12345678";
STRING .a2[0:10] := "12344678";

i := RTL_Memory_Compare_(a1, a2, 8); ! i gets 1

INT PROC RTL_Memory_Compare_(buf1, buf2, num_bytes);
 STRING .buf1; ! in
 STRING .buf2; ! in
 INT num_bytes; ! in TNS
only

INT PROC RTL_Memory_CompareX_(buf1, buf2, num_bytes);
 STRING .EXT buf1; ! in
 STRING .EXT buf2; ! in
 INT(32) num_bytes; ! in TNS
only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-34

String and Memory Block Functions Memory_Copy
Memory_Copy
The Memory_Copy functions copy a block of memory. These functions are not
available in the native CRE library.

dest

is a pointer to the destination to which the block is copied.

source

is a pointer to the beginning of the block to copy.

num_bytes

specifies the number of bytes to copy.

Return Value
The Memory_Copy functions return the address of the destination block, @dest.

Considerations
The Memory_Copy functions copy source to dest regardless of whether source
and dest overlap. See also Memory_Move on page 8-37.

Example
STRING .EXT dst := (4D '<<' 17) + 65536D;
STRING .EXT src := (4D '<<' 17);

! copies first 64K bytes of extended segment

CALL RTL_Memory_CopyX_(dst, src, 65536D);

INT PROC RTL_Memory_Copy_(dest, source, num_bytes);
 STRING .dest; ! out
 STRING .source; ! in
 INT num_bytes; ! in TNS
only

INT(32) PROC RTL_Memory_CopyX_(dest, source, num_bytes);
 STRING .EXT dest; ! out
 STRING .EXT source; ! in
 INT(32) num_bytes; ! in TNS
only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-35

String and Memory Block Functions Memory_Findchar
Memory_Findchar
The Memory_Findchar functions search for a character in a block of memory. These
functions are not available in the native CRE library.

buf

is a pointer to the block of memory to search.

char

specifies the search character. Only bits <8:15> of char are used for the search
character.

num_bytes

specifies the number of bytes to search.

Return Value
The Memory_Findchar functions return a pointer to the location in buf where char
was found. If char is not found, zero is returned.

Example
STRING .buf[0:9] := [0,1,0,2,0,3,0,4,0,5];
INT i;

i := RTL_Memory_Findchar_(buf, 2, 10); ! i gets @buf[3]
i := RTL_Memory_Findchar_(buf, 6, 10); ! i gets 0

INT PROC RTL_Memory_Findchar_(buf, char, num_bytes);
 STRING .buf; ! in
 INT char; ! in
 INT num_bytes; ! in TNS
only

INT(32) PROC RTL_Memory_FindcharX_(buf, char, num_bytes);
 STRING .EXT buf; ! in
 INT char; ! in
 INT(32) num_bytes; ! in TNS
only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-36

String and Memory Block Functions Memory_Move
Memory_Move
The Memory_Move functions move a block of memory. These functions are not
available in the native CRE library.

dest

is a pointer to the destination to which the block is moved.

source

is a pointer to the beginning of the block to move.

num_bytes

specifies the number of bytes to move.

Return Value
The Memory_Move functions return the address of the destination block, @dest.

Considerations
The Memory_Move functions ensure that data is not lost, even if the source and
destination blocks overlap.

Example
STRING .EXT dst := (4D '<<' 17) + 65536D;
STRING .EXT src := (4D '<<' 17);

! move first 64k bytes of extended segment

CALL RTL_Memory_Move_(dst, src, 65536D);

INT PROC RTL_Memory_Move_(dest, source, num_bytes);
 STRING .dest; ! out
 STRING .source; ! in
 INT num_bytes; ! in TNS
only

INT(32) PROC RTL_Memory_MoveX_(dest, source, num_bytes);
 STRING .EXT dest; ! out
 STRING .EXT source; ! in
 INT(32) num_bytes; ! in TNS
only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-37

String and Memory Block Functions Memory_Repeat
Memory_Repeat
The Memory_Repeat procedures fill a block of memory with a block of values a
specified number of times. These functions are not available in the native CRE library.

dest

is a pointer to the block of memory to fill.

values

is a pointer to the block of values to replicate into dest.

values_len

specifies the size of values in bytes.

num_rep

specifies the number of times to replicate values into dest.

Considerations
The Memory_Repeat procedures are declared as procedures, not as functions. They
do not return a value. They also ensure that data is not lost, even if the source and
destination blocks overlap.

Example
STRING .dst[0:499];
STRING .vals[0:9] := "repeat me ";
INT len := 10;
INT num := 50;

!vals is stored 50 times.

CALL RTL_Memory_Repeat_(dst, vals, len, num);

PROC RTL_Memory_Repeat_(dest, values, values_len, num_rep);
 STRING .dest; ! out
 STRING .values; ! in
 INT values_len; ! in
 INT num_rep; ! in TNS
only

PROC RTL_Memory_RepeatX_(dest, values, values_len, num_rep);
 STRING .EXT dest; ! out
 STRING .EXT values; ! in
 INT(32) values_len; ! in
 INT(32) num_rep; ! in TNS
only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-38

String and Memory Block Functions Memory_Set
Memory_Set
The Memory_Set functions initialize a block of memory to a specified character. These
functions are not available in the native CRE library.

buf

is a pointer to the block to initialize.

char

specifies the initialization character. Only bits <8:15> of char are used for the
initialization value.

num_bytes

specifies the number of bytes to initialize.

Return Value
The Memory_Set functions return the address of the block of memory, @buf.

Considerations

• A concatenated move is faster than Memory_Set.

• char must be a single character constant or a STRING variable.

Example
STRING .EXT buf := 4D '<<' 17;
INT ch := 0;

! set first 64k bytes of extended segment to 0.

CALL RTL_Memory_SetX_(buf, ch, 65536D);

INT PROC RTL_Memory_Set_(buf, char, num_bytes);
 STRING .buf; ! out
 INT char; ! in
 INT num_bytes; ! in TNS
only

INT(32) PROC RTL_Memory_SetX_(buf, char, num_bytes);
 STRING .EXT buf; ! out
 INT char; ! in
 INT(32) num_bytes; ! in TNS
only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-39

String and Memory Block Functions Memory_Swap
Memory_Swap
The Memory_Swap functions exchange one block of memory with a second block of
memory. These functions are not available in the native CRE library.

buf1

is a pointer to the first block of memory.

buf2

is a pointer to the second block of memory.

num_bytes

specifies the number of bytes to exchange.

Considerations
The Memory_Swap procedures are declared as procedures, not as functions. They do
not return a value.

Example
STRING .up[0:9] := "0123456789";
STRING .down[0:9] := "9876543210";

CALL RTL_Memory_Swap_(up, down, 10);

PROC RTL_Memory_Swap_(buf1, buf2, num_bytes);
 STRING .buf1; ! in/out
 STRING .buf2; ! in/out
 INT num_bytes; ! in TNS
only

PROC RTL_Memory_SwapX_(buf1, buf2, num_bytes);
 STRING .EXT buf1; ! in/out
 STRING .EXT buf2; ! in/out
 INT(32) num_bytes; ! in TNS
only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
8-40

9
Common Language Utility (CLU)
Library Functions

This section presents a set of Common Language Utility (CLU) library functions
provided in the CRE. This section describes functions that enable:

• COBOL and FORTRAN routines to create processes

• COBOL and FORTRAN routines to locate and identify file connectors

• COBOL, FORTRAN, TAL, and pTAL routines to save and manipulate messages
sent to a process by the process that initiated the process

CLU functions are separate and different from CRE functions:

• TNS CRE functions are located in the file CRELIB. TNS CLU functions are located
in the file CLULIB.

• TNS CRE functions are configured into the system library. TNS CLU functions
must be explicitly bound into programs that use them.

• CRE functions work only in the CRE. CLU functions work in the CRE or in certain
language-specific run-time environments.

Two CLU routines are described in this section: CLU_Process_Create_ on page 9-1
and CLU_Process_File_Name_ on page 9-12.

The CLU routines are available only to processes running in the Guardian
environment. Processes running in the OSS environment can use the CRE_Getenv_
and CRE_Putenv_ functions, described in Section 6, CRE Service Functions, to obtain
environment information.

The SMU functions are listed in Table 9-1 on page 9-18 and are described on the
pages following the table.

CLU_Process_Create_
The CLU_Process_Create_ function provides a facility that creates a process using the
conventions of the TACL RUN command.

Both the TNS CRE and the native CRE support this function. You can use this function
either in the CRE or in a COBOL or FORTRAN run-time environment.

CLU_Process_Create_ first calls the system procedure PROCESS_CREATE_,
passing through all specified parameters. If process creation is successful,
CLU_Process_Create_ sends appropriate process initialization messages, depending
upon the options specified in the parameter clu_options. Most
PROCESS_CREATE_ functionality is available; however, CLU_Process_Create_
rejects a request for no-wait process creation.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-1

Common Language Utility (CLU) Library Functions CLU_Process_Create_
The function declaration is presented first, followed by COBOL and FORTRAN
considerations. Here is the function declaration:

INT PROC CLU_Process_Create_(clu_options,
 program_file:program_file_bytes,
 library_file:library_file_bytes,
 swap_file:swap_file_bytes,
 ext_swap_file:ext_swap_file_bytes,
 priority, processor, processhandle,
 error_detail, name_option,
 name:name_bytes,
 process_descr:process_descr_maxbytes,
 nowait_tag, hometerm:hometerm_bytes,
 memory_pages, jobid, create_options,
 defines:defines_bytes, debug_options,
 pfs_size) EXTENSIBLE;

 INT clu_options; !in, optional
 STRING .EXT program_file; !in, required
 INT program_file_bytes; !in, required
 STRING .EXT library_file; !in, optional
 INT library_file_bytes; !in, optional
 STRING .EXT swap_file; !in, optional
 INT swap_file_bytes; !in, optional
 STRING .EXT ext_swap_file; !in, optional
 INT ext_swap_file_bytes; !in, optional
 INT priority; !in, optional
 INT processor; !in, optional
 INT .EXT processhandle; !out,optional
 INT .EXT error_detail; !out,optional
 INT name_option; !in, optional
 STRING .EXT name; !in, optional
 INT name_bytes; !in, optional
 STRING .EXT process_descr; !out,optional
 INT process_descr_maxbytes;!in, optional
 INT .EXT process_descr_bytes; !out,optional
 INT(32) nowait_tag; !in, optional
 STRING .EXT hometerm; !in, optional
 INT hometerm_bytes; !in, optional
 INT memory_pages; !in, optional
 INT jobid; !in, optional
 INT create_options; !in, optional
 STRING .EXT defines; !in, optional
 INT defines_bytes; !in, optional
 INT debug_options; !in, optional
 INT(32) pfs_size; !in, optional TNS, native
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-2

Common Language Utility (CLU) Library Functions CLU_Process_Create_
clu_options

if present, specifies function options. The bits in clu_options are defined as
follows:

For clu_options.<12>, if no saved Startup message exists, create one using
the creator process attributes for default volume/subvolume, IN name, and OUT
name, and supply a null string for the message parameter string value.

program_file

specifies the name of the new process program file.

program_file_bytes

is the size, in bytes, of program_file. For COBOL and FORTRAN, the compiler
implicitly computes and transmits this value to the function.

All subsequent parameters are passed through to the system procedure
PROCESS_CREATE_ as the parameters to which they correspond. See the
PROCESS_CREATE_ procedure in the Guardian Procedure Calls Reference
Manual for explanations of the purpose and effect of these parameters.

CLU_Process_Create_ scans each string input parameter; if it finds a blank (space
character), it truncates the string at that point—that is, it discards the blank and all
following characters.

Bits in
clu_options Meaning

12 PROCESS_STOP option:

0: If PROCESS_CREATE_ returns 14 (undefined
externals), stop the created process and return 14 as the
function value.

1: If PROCESS_CREATE_ returns 14 (undefined
externals), consider process creation successful. Unless a
failure occurs in a later step, return 14 as the function
value.

13:15 Send messages option:

0: Send copies of all process initialization messages saved
by the creator process (default).

1: Send a copy of the saved Startup message only—do not
send any ASSIGN or PARAM messages.

2: Send a default Startup message. The saved Startup
message is ignored.

3: Send no process initialization message. The creator
process does not open the created process because it has
nothing to communicate.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-3

Common Language Utility (CLU) Library Functions Return Value
Return Value
CLU_Process_Create_ returns one of the following values:

COBOL Considerations
You can use CLU_Process_Create_ for programs that run in the CRE or in a COBOL
run-time environment. The COBOL format for invoking this function is:

TAL

Generates more efficient code.

library-reference

is as described in the COBOL Manual for TNS and TNS/R Programs, except that it
is contained in the file CLULIB (which is usually in the $SYSTEM.SYSTEM
subvolume), rather than in a COBOL85 product file such as COBOLLIB.

clu-options

is an actual parameter that evaluates to a numerica1 value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds, such as a
COMPUTATIONAL, DISPLAY, or NATIVE numeric data item, a numeric literal, or
an expression enclosed in parentheses. If the parameter does not mathematically
evaluate to an integer, the compiler changes the result into an integer value.

Return
Value Meaning

 -4 A file management error occurred due to failure of FILE_OPEN or WRITEREAD
[X]; the error value is returned in error_detail.

 -3 A Startup message cannot be made because the IN file, OUT file, or default
volume name cannot be edited into the corresponding message field (this can
occur if the name cannot be converted to network form).

 -2 An invalid parameter value.

 -1 A required parameter is missing, or some internal logic error occurred.

 0 The operation is successful.

 > 0 An error code from PROCESS_CREATE_; the error value is returned in
error_detail.

ENTER [TAL] "CLU_Process_Create_"
 [OF library-reference]
 USING clu-options, program-file, library-file, swap-file,
 ext-swap-file, priority, processor, processhandle,
 error-detail, name-option, name, process-descr,
 process-descr-bytes, nowait-tag, hometerm, memory-pages,
 jobid, create-options, defines, debug-options, pfs-size
 [GIVING result]
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-4

Common Language Utility (CLU) Library Functions COBOL Considerations
program-file

is an alphanumeric operand containing a string value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

The compiler implicitly computes and transmits the size, in bytes, of
program-file to the function.

If a string value does not completely fill its operand, the first unused character must
be a blank (space character).

library-file

is an alphanumeric operand containing a string value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

The compiler implicitly computes and transmits the size, in bytes, of
library-file to the function.

If a string value does not completely fill its operand, the first unused character must
be a blank (space character).

swap-file

is an alphanumeric operand containing a string value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

The compiler implicitly computes and transmits the size, in bytes, of swap-file to
the function.

If a string value does not completely fill its operand, the first unused character must
be a blank (space character).

ext-swap-file

is an alphanumeric operand containing a string value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

The compiler implicitly computes and transmits the size, in bytes, of ext-
swap-file to the function.

If a string value does not completely fill its operand, the first unused character must
be a blank (space character).

priority

is an actual parameter that evaluates to a numerica1 value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds, such as a
COMPUTATIONAL, DISPLAY, or NATIVE numeric data item, a numeric literal, or
an expression enclosed in parentheses. If the parameter does not mathematically
evaluate to an integer, the compiler changes the result into an integer value.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-5

Common Language Utility (CLU) Library Functions COBOL Considerations
processor

is an actual parameter that evaluates to a numerica1 value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds, such as a
COMPUTATIONAL, DISPLAY, or NATIVE numeric data item, a numeric literal, or
an expression enclosed in parentheses. If the parameter does not mathematically
evaluate to an integer, the compiler changes the result into an integer value.

processhandle

is a table with at least ten occurrences, where an occurrence is a NATIVE-2 data
item or a COMPUTATIONAL numeric data item described with one to four 9s
preceded by an S; for example:

01 processhandle occurs 10 times.

 05 filler native-2.

error-detail

is a NATIVE-2 data item or a COMPUTATIONAL numeric data item described with
five to nine 9s preceded by an S; for example:

PICTURE S9(4)

name-option

is an actual parameter that evaluates to a numerica1 value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds, such as a
COMPUTATIONAL, DISPLAY, or NATIVE numeric data item, a numeric literal, or
an expression enclosed in parentheses. If the parameter does not mathematically
evaluate to an integer, the compiler changes the result into an integer value.

name

is an alphanumeric operand containing a string value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

The compiler implicitly computes and transmits the size, in bytes, of name to the
function.

If a string value does not completely fill its operand, the first unused character must
be a blank (space character).

process-descr

is an alphanumeric data item.

The compiler implicitly computes and transmits the size, in bytes, of process-
descr to the function.

If the size of the assigned value differs from the size of the data item, the text is
truncated or extended with blanks (space characters) as necessary to fill the data
item. If the data item is described with a JUSTIFIED clause, that clause is ignored.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-6

Common Language Utility (CLU) Library Functions COBOL Considerations
process-descr-bytes

is a NATIVE-2 data item or a COMPUTATIONAL numeric data item described with
one to four 9s preceded by an S; for example:

PICTURE S9(4)

nowait-tag

is an actual parameter that evaluates to a numerica1 value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds, such as a
COMPUTATIONAL, DISPLAY, or NATIVE numeric data item, a numeric literal, or
an expression enclosed in parentheses. If the parameter does not mathematically
evaluate to an integer, the compiler changes the result into an integer value.

hometerm

is an alphanumeric operand containing a string value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

The compiler implicitly computes and transmits the size, in bytes, of hometerm to
the function.

If a string value does not completely fill its operand, the first unused character must
be a blank (space character).

memory-pages

is an actual parameter that evaluates to a numerica1 value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds, such as a
COMPUTATIONAL, DISPLAY, or NATIVE numeric data item, a numeric literal, or
an expression enclosed in parentheses. If the parameter does not mathematically
evaluate to an integer, the compiler changes the result into an integer value.

jobid

is an actual parameter that evaluates to a numerica1 value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds, such as a
COMPUTATIONAL, DISPLAY, or NATIVE numeric data item, a numeric literal, or
an expression enclosed in parentheses. If the parameter does not mathematically
evaluate to an integer, the compiler changes the result into an integer value.

create-options

is an actual parameter that evaluates to a numerica1 value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds, such as a
COMPUTATIONAL, DISPLAY, or NATIVE numeric data item, a numeric literal, or
an expression enclosed in parentheses. If the parameter does not mathematically
evaluate to an integer, the compiler changes the result into an integer value.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-7

Common Language Utility (CLU) Library Functions FORTRAN Considerations
defines

is an alphanumeric operand containing a string value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

The compiler implicitly computes and transmits the size, in bytes, of defines to
the function.

If a string value does not completely fill its operand, the first unused character must
be a blank (space character).

debug-options

is an actual parameter that evaluates to a numerica1 value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds, such as a
COMPUTATIONAL, DISPLAY, or NATIVE numeric data item, a numeric literal, or
an expression enclosed in parentheses. If the parameter does not mathematically
evaluate to an integer, the compiler changes the result into an integer value.

pfs-size

is an actual parameter that evaluates to a numerica1 value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds, such as a
COMPUTATIONAL, DISPLAY, or NATIVE numeric data item, a numeric literal, or
an expression enclosed in parentheses. If the parameter does not mathematically
evaluate to an integer, the compiler changes the result into an integer value.

result

is a numeric data item.

FORTRAN Considerations
You can use CLU_Process_Create_ for programs that run in the TNS CRE or in a
FORTRAN run-time environment.

Before you use this function, you must declare it in a CONSULT directive that specifies
an object file that contains a copy of the function. This function is contained in the file
CLULIB (which is usually in the $SYSTEM.SYSTEM subvolume), rather than in a
FORTRAN product file.

The FORTRAN format for invoking this function is as follows:

result = CLU_Process_Create_ (cluoptions, programfile,
 libraryfile, swapfile, extswapfile, priority,
 processor, processhandle, errordetail,
 nameoption, name, processdescr,
 processdescrbytes, nowaittag, hometerm,
 memorypages, jobid, createoptions, defines,
 debugoptions, pfssize)
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-8

Common Language Utility (CLU) Library Functions FORTRAN Considerations
result

is a 2-byte integer variable (INTEGER*2).

cluoptions

is an integer expression that evaluates to a numeric value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

programfile

is a character operand containing a string value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

The compiler implicitly computes and transmits the size, in bytes, of programfile
to the function.

If a string value does not completely fill its operand, the first unused character must
be a blank (space character).

libraryfile

is a character operand containing a string value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

The compiler implicitly computes and transmits the size, in bytes, of libraryfile
to the function.

If a string value does not completely fill its operand, the first unused character must
be a blank (space character).

swapfile

is a character operand containing a string value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

The compiler implicitly computes and transmits the size, in bytes, of swapfile to
the function.

If a string value does not completely fill its operand, the first unused character must
be a blank (space character).

extswapfile

is a character operand containing a string value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

The compiler implicitly computes and transmits the size, in bytes, of extswapfile
to the function.

If a string value does not completely fill its operand, the first unused character must
be a blank (space character).
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-9

Common Language Utility (CLU) Library Functions FORTRAN Considerations
priority

is an integer expression that evaluates to a numeric value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

processor

is an integer expression that evaluates to a numeric value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

processhandle

 is a 2-byte integer array with at least ten elements; for example:

 INTEGER*2 PROCESSHANDLE (10).

errordetail

is a 2-byte integer variable (INTEGER*2).

nameoption

is an integer expression that evaluates to a numeric value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

name

is a character operand containing a string value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

The compiler implicitly computes and transmits the size, in bytes, of name to the
function.

If a string value does not completely fill its operand, the first unused character must
be a blank (space character).

processdescr

is a CHARACTER variable.

The compiler implicitly computes and transmits the size, in bytes, of
processdescr to the function.

When the size of the assigned value differs from the size of the variable, the text is
truncated or extended with blanks as necessary to fill the variable.

processdescrbytes

is a 2-byte integer variable (INTEGER*2).

nowaittag

is an integer expression that evaluates to a numeric value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-10

Common Language Utility (CLU) Library Functions FORTRAN Considerations
hometerm

is a character operand containing a string value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

The compiler implicitly computes and transmits the size, in bytes, of hometerm to
the function.

If a string value does not completely fill its operand, the first unused character must
be a blank (space character).

memorypages

is an integer expression that evaluates to a numeric value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

jobid

is an integer expression that evaluates to a numeric value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

createoptions

is an integer expression that evaluates to a numeric value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

defines

is a character operand containing a string value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

The compiler implicitly computes and transmits the size, in bytes, of defines to
the function.

If a string value does not completely fill its operand, the first unused character must
be a blank (space character).

debugoptions

is an integer expression that evaluates to a numeric value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.

pfssize

is an integer expression that evaluates to a numeric value appropriate for the
PROCESS_CREATE_ parameter to which it corresponds.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-11

Common Language Utility (CLU) Library Functions CLU_Process_File_Name_
CLU_Process_File_Name_
The CLU_Process_File_Name_ function processes COBOL and FORTRAN file
connectors. The native CRE does not support this function. You can use this function
either in the TNS CRE or in a COBOL or FORTRAN run-time environment.

The function declaration is presented first, followed by COBOL and FORTRAN
considerations. Here is the function declaration:

call_type

identifies the purpose of the call. call_type must be either:

fcb_address

is the address of an FCB. The input value must be either:

The output value is the address of the located FCB. The ordering of FCBs for the
TNS CRE, however, differs from the ordering for a COBOL or FORTRAN run-time
environment; the first or next FCB might differ depending on the environment. If no
first or next FCB exists, the output is -1.

INT PROC CLU_Process_File_Name_(call_type, fcb_address,
 tdm_file_name:tdm_file_name_size,
 file_name:file_name_size, open_flag)
extensible;
 INT call_type; ! in, required
 INT(32) .EXT fcb_address; ! in/out, required
 STRING .EXT tdm_file_name; ! in/out, required
 INT tdm_file_name_size;! in, required
 STRING .EXT file_name; ! out, optional
 INT file_name_size; ! in, optional
 INT .EXT open_flag; ! out, optional
 ! TNS only

0 Retrieves current attribute information.

1 Specifies new attribute information; the specified File Control Block (FCB)
must be closed and a valid backup process must not exist.

Input Value call_type Meaning

0 0 Retrieves current information about first
FCB in run unit

FCB address obtained from a
previous call to this function

0 Retrieves current information about next
FCB in run-unit

FCB address obtained from a
previous call to this function

1 Specifies information about next FCB in
run-unit
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-12

Common Language Utility (CLU) Library Functions CLU_Process_File_Name_
tdm_file_name

• If call_type is 0, tdm_file_name is a variable to contain the retrieved
Guardian file name of the located FCB.

The retrieved file name is in external format; for example, $A.B.C or =XYZ. If
the variable is larger than the file name, the function left-justifies the name and
fills the remainder of the variable with space characters. If the variable is
smaller than the name, the function truncates the name on the right and
returns a value of -1. (Any COBOL JUSTIFIED clause in the variable
declaration is ignored.) If the current name is a DEFINE name, the function
returns its text, not the associated disk file name or device name, if any.

• If call_type is 1, tdm_file_name is a new Guardian file name to assign
to the located FCB.

Specify a valid Guardian file name in external format; for example, $A.B.C or
=XYZ. If the variable is larger than the name, you must fill the remainder of the
variable with space characters. The function ignores trailing space characters.

tdm_file_name_size

is the size, in bytes, of tdm_file_name. For TAL, you must specify this value.
For COBOL and FORTRAN, the compiler implicitly computes and transmits this
value to the function.

file_name

• If call_type is 0, file_name is a variable to contain the retrieved logical
file name of the located FCB.

• If call_type is 1, file_name is ignored.

file_name_size

is the size, in bytes, of file_name. For TAL, you must specify this value if
file_name is present. For COBOL and FORTRAN, the compiler implicitly
computes and transmits this value to the function.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-13

Common Language Utility (CLU) Library Functions Return Value
open_flag

If call_type is 0, open_flag is a variable to contain the retrieved open mode
value of the FCB. The retrieved value is one of the following:

If call_type is 1, open_flag is ignored.

Return Value
CLU_Process_File_Name_ returns one of the following values:

0 Closed The FCB is not in an open mode.

1 Locked The FCB is not in an open mode.

A COBOL variant of Closed.

2 Input The FCB is open for input operations.

4 Output The FCB is open for output operations.

5 Extend The FCB is open for output operations.

A COBOL variant of Output.

6 I-O The FCB is open for input and output operations.

Return
Value Meaning

 -2 The operation is successful, but the retrieved logical file name is truncated.

 -1 The operation is successful, but the retrieved Guardian file name is truncated.

 0 The operation is successful.

 1 A required parameter is missing.

 2 A parameter value is invalid. For example:

• call_type is neither o nor 1.
• fcb_address is neither 0 nor the address of an FCB.
• tdm_file_name_size or file_name_size is less than 0.

 3 The Guardian file name is invalid.

 4 The run-time environment is invalid (not TNS CRE or COBOL/FORTRAN run-time
environment) or has been corrupted.

 5 call_type is 1 and the FCB is open.

 6 call_type is 1 and a valid backup process exists.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-14

Common Language Utility (CLU) Library Functions COBOL Considerations
COBOL Considerations
You can use CLU_Process_File_Name_ for programs that run in the TNS CRE or in a
COBOL run-time environment. The COBOL format for invoking this function is:

TAL

Generates more efficient code.

library-reference

is as described in the COBOL Manual for TNS and TNS/R Programs, except that it
is contained in the file CLULIB (which is usually in the $SYSTEM.SYSTEM
subvolume), rather than in a COBOL85 product file such as COBOLLIB.

call-type

is an actual parameter that evaluates to 0 or 1, such as a COMPUTATIONAL,
DISPLAY, or NATIVE numeric data item, a numeric literal, or an expression
enclosed in parentheses. If the parameter does not mathematically evaluate to an
integer, the compiler changes the result into an integer value. To specify
conversion options, you can use COBOL functions INTEGER and
INTEGER_PART (D10 release or later).

fcb-address

is a NATIVE-4 data item or a COMPUTATIONAL numeric data item described with
five to nine 9s preceded by an S; for example:

PICTURE S9(9)

tdm-file-name

If call-type is 0, tdm-file-name is an alphanumeric data item to contain the
retrieved Guardian file name.

If call-type is 1, tdm-file-name is an alphanumeric value that supplies a
Guardian file name.

The compiler implicitly computes and transmits the size, in bytes, of
tdm-file-name to the function.

ENTER [TAL] "CLU_Process_File_Name_"
 [OF library-reference]
 USING call-type, fcb-address, tdm-file-name,
 file-name, open-flag
 [GIVING result]
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-15

Common Language Utility (CLU) Library Functions FORTRAN Considerations
file-name

If call-type is 0, file-name is an alphanumeric data item to contain the
retrieved logical file name.

If call-type is 1, file-name is ignored.

The compiler implicitly computes and transmits the size, in bytes, of file-name to
the function.

open-flag

is a NATIVE-2 data item or a COMPUTATIONAL numeric data item described with
one to four 9s preceded by an S; for example:

PICTURE S9(9)

result

is a numeric data item.

A file connector has a logical file name and a Guardian file name:

• The compiler obtains the logical file name of a file connector from the file name
specified in the SELECT clause of a file control entry and repeated after the FD in
the associated file description entry.

• The compiler assigns the default Guardian file name of a file connector as
described in the COBOL Manual for TNS and TNS/R Programs.

FORTRAN Considerations
You can use CLU_Process_File_Name_ for programs that run in the TNS CRE or in a
FORTRAN run-time environment.

Before you use this function, you must declare it in a CONSULT directive that specifies
an object file that contains a copy of the function. This function is contained in the file
CLULIB (which is usually in the $SYSTEM.SYSTEM subvolume), rather than in a
FORTRAN product file.

The FORTRAN format for invoking this function is as follows:

result

is a 2-byte integer variable (INTEGER*2).

calltype

is an integer expression that evaluates to 0 or 1.

result = CLU_Process_File_Name_ (calltype, fcbaddress,
 tdmfilename, filename, openflag)
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-16

Common Language Utility (CLU) Library Functions SMU Functions
fcbaddress

is a 4-byte integer variable (INTEGER*4).

tdmfilename

If calltype is 0, tdmfilename is a character variable to contain the retrieved
Guardian file name.

If calltype is 1, tdmfilename is a character value that supplies a Guardian file
name.

The compiler implicitly computes and transmits the size, in bytes, of tdmfilename
to the function.

filename

If calltype is 0, filename is a character variable to contain the retrieved logical
file name.

If calltype is 1, filename is ignored.

The compiler implicitly computes and transmits the size, in bytes, of filename to
the function.

openflag

is a 2-byte integer variable (INTEGER*2).

A file connector has a logical file name and a Guardian file name:

• The compiler obtains the logical file name of a file connector from the UNIT
directive describing unit nnn (if specified). Otherwise, the compiler constructs the
logical file name FTnnn; for example, FT010 is the default logical file name text for
unit 10.

• The compiler assigns the default Guardian file name of a file connector as
described in the FORTRAN Reference Manual.

SMU Functions
The SMU functions enable COBOL, FORTRAN, and TAL routines to manipulate saved
ASSIGN, PARAM, and startup messages that are sent to your process when it is
initiated.

All SMU functions are available in the native CRE library. The SMU functions are
described in the following pages, the last of which is followed by COBOL, FORTRAN,
and TAL considerations that apply to all the SMU functions.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-17

Common Language Utility (CLU) Library Functions SMU_Assign_CheckName_
SMU_Assign_CheckName_
The SMU_Assign_CheckName_ function checks whether a saved ASSIGN message
with a given logical file name exists. It also returns the message number of the saved
ASSIGN message.

Table 9-1. SMU Functions

Name Action

SMU_Assign_CheckName_ on
page 9-18

Checks whether an ASSIGN message with a given
logical file name exists.

SMU_Assign_Delete_ on
page 9-19

Deletes a portion or all of an ASSIGN message.

SMU_Assign_GetText_ on
page 9-21

Retrieves a portion of an ASSIGN message as text and
assigns it to a string variable.

SMU_Assign_GetValue_ on
page 9-22

Retrieves a portion of an ASSIGN message as an integer
and assigns it to an integer variable.

SMU_Assign_PutText_ on
page 9-23

Creates or replaces a portion of an ASSIGN message
with text from a string variable.

SMU_Assign_PutValue_ on
page 9-25

Creates or replaces a portion of an ASSIGN message
with a value from an integer variable.

SMU_Message_CheckNumber
_ on page 9-26

Checks whether a specific message exists.

SMU_Param_Delete_ on
page 9-27

Deletes a portion or all of the PARAM message.

SMU_Param_GetText_ on
page 9-28

Retrieves a portion of the PARAM message as text and
assigns it to a string variable.

SMU_Param_PutText_ on
page 9-29

Creates or replaces a portion of a PARAM message with
text from a string variable.

SMU_Startup_Delete_ on
page 9-30

Deletes the entire startup message.

SMU_Startup_GetText_ on
page 9-31

Retrieves a portion of the startup message as text and
assigns it to a string variable.

SMU_Startup_PutText_ on
page 9-33

Creates or replaces a portion of the startup message with
text from a string variable.

INT PROC SMU_Assign_CheckName_ (name:name_bytes)
 EXTENSIBLE;
 STRING .EXT name; ! in, required
 INT name_bytes; ! in, required TNS,native
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-18

Common Language Utility (CLU) Library Functions SMU_Assign_Delete_
name

is a logical file name of an ASSIGN message. If name includes a program name,
name must have one of the following forms (maximum 63 characters):

programname.filename

*.filename

If name does not include a program name, name must have the following form
(maximum 31 characters):

filename

name_bytes

is the size of name, in bytes, and must have a value greater than 0. For TAL, you
must supply this value; for COBOL and FORTRAN, the compiler implicitly
computes and transmits this value to the function. If name_bytes exceeds the
number of characters in name, the first unused character of name must be a
space character.

Return Value
SMU_Assign_CheckName_ returns one of the following values:

SMU_Assign_Delete_
The SMU_Assign_Delete_ function deletes a part or all of an ASSIGN message.

Return
Value Meaning

< 0 The negated message number of the first ASSIGN message whose logical file
name conflicts with the one supplied; that is, one is qualified and the other is not,
or one is qualified by ∗ and the other is qualified by a program name.

 0 The operation failed because of a logic error, such as:

• No ASSIGN message with the specified logical file name exists.
• name_bytes is not greater than 0.
• name does not follow the required format.

> 0 The operation is successful; the return value gives the message number of the
located ASSIGN message.

INT PROC SMU_Assign_Delete_ (message_number,
 portion:portion_bytes)
 EXTENSIBLE;
 INT message_number; ! in, required
 STRING .EXT portion; ! in, required
 INT portion_bytes; ! in, required TNS,native
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-19

Common Language Utility (CLU) Library Functions SMU_Assign_Delete_
message_number

is an integer expression that identifies an ASSIGN message. message_number
must be a value greater than 0.

portion

is the identifier of an ASSIGN message integer part to delete. portion is one of:

portion_bytes

is the size of portion, in bytes, and must be a value greater than 0. For TAL, you
must supply this value; for COBOL and FORTRAN, the compiler implicitly
computes and transmits this value to the function. If portion_bytes exceeds the
number of characters in portion, the first unused character of portion must be
a space character.

Return Value
SMU_Assign_Delete_ returns one of the following values:

ACCESS Access mode—0 for read-write, 1 for read-only, 2 for write-
only, and 3 for extend

BLKSIZE Block mode size

EXCLUSION Exclusion mode—0 for shared, 1 for protected, and 3 for
exclusive

FILECODE File code

PRIEXT Primary extent size

RECSIZE Record size

SECEXT Secondary extent size

TANDEMNAME Guardian file name

ALL The entire ASSIGN message

Return
Value Meaning

 0 The operation is successful.

-1 The operation failed because of a logic error, such as:

• message_number or portion_bytes has an invalid value.
• The specified ASSIGN message does not exist.
• portion does not identify a defined deletable part of an ASSIGN message.

-2 The operation failed because making changes would invalidate the backup
process.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-20

Common Language Utility (CLU) Library Functions SMU_Assign_GetText_
SMU_Assign_GetText_
The SMU_Assign_GetText_ function retrieves a part of an ASSIGN message as text
and assigns it to a string variable.

message_number

is an integer expression that identifies the ASSIGN message from which to retrieve
text. message_number must have a value greater than 0.

portion

identifies what you want to retrieve. portion is one of:

portion_bytes

is the size of portion, in bytes, and must have a value greater than 0. For TAL,
you must supply this value; for COBOL and FORTRAN, the compiler implicitly
computes and transmits this value to the function. If portion_bytes exceeds the
number of characters in portion, the first unused character of portion must be
a space character.

text

is a variable to contain the retrieved text. The function extends text with blanks
on the right side or truncates it as necessary to match the size of the variable.

INT PROC SMU_Assign_GetText_(message_number,
 portion:portion_bytes,
 text:max_text_bytes)
 EXTENSIBLE;
 INT message_number; ! in, required
 STRING .EXT portion; ! in, required
 INT portion_bytes; ! in, required
 STRING .EXT text; ! out, optional
 INT max_text_bytes; ! in, optional TNS,native

LOGICALNAME Retrieves the logical file name. If it includes a program
name, the text has the following form (maximum 63
characters):

programname.filename

If it omits a program name, the text has the following form
(maximum 31 characters):

filename

TANDEMNAME Retrieves the Guardian file name (maximum 34 characters),
which can be all blanks.

ALL Retrieves the entire ASSIGN message as a string (a
sequence of 108 characters).
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-21

Common Language Utility (CLU) Library Functions SMU_Assign_GetValue_
max_text_bytes

is the maximum size of text, in bytes, and must be a non-negative value. For
TAL, you must supply this value if text is present; for COBOL and FORTRAN, the
compiler implicitly computes and transmits this value to the function.

Return Value
SMU_Assign_GetText_ returns one of the following values:

SMU_Assign_GetValue_
The SMU_Assign_GetValue_ function retrieves a part of an ASSIGN message as an
integer and assigns it to a numeric variable.

message_number

is an integer expression that identifies the ASSIGN message from which to retrieve
a value. message_number must have a value greater than 0.

portion

is the identifier of an ASSIGN message integer part to retrieve. portion is one of:

Return
Value Meaning

 0 The operation is successful. The retrieved Tandem file name is all blanks.

> 0 The operation is successful. The return value gives the length, in bytes, of the
retrieved text before truncation or padding.

 -1 The operation failed because of a logic error, such as:

• message_number, portion_bytes, or max_text_bytes has an
invalid value.

• The specified ASSIGN message does not exist.
• portion does not identify a defined textual part of an ASSIGN message or

identifies a nonexistent part.

INT PROC SMU_Assign_GetValue_ (message_number,
 portion:portion_bytes, value)
 EXTENSIBLE;
 INT message_number; ! in, required
 STRING .EXT portion; ! in, required
 INT portion_bytes; ! in, required
 INT .EXT value; ! out, optional TNS,native

ACCESS Access mode —0 for read-write, 1 for read-only, 2 for write-only,
and 3 for extend

BLKSIZE Block mode size

EXCLUSION Exclusion mode —0 for shared, 1 for protected, and 3 for
exclusive
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-22

Common Language Utility (CLU) Library Functions SMU_Assign_PutText_
portion_bytes

is the size of portion, in bytes, and must be a value greater than 0. For TAL, you
must supply this value; for COBOL and FORTRAN, the compiler implicitly
computes and transmits this value to the function. If portion_bytes exceeds the
number of characters in portion, the first unused character of portion must be
a space character.

value

is a variable to contain the retrieved value.

Return Value
Values returned by SMU_Assign_GetValue _ are:

SMU_Assign_PutText_
The SMU_Assign_PutText_ function creates or replaces a text part of an ASSIGN
message with text obtained from a string variable.

FILECODE File code

PRIEXT Primary extent size

RECSIZE Record size

SECEXT Secondary extent size

Return
Value Meaning

 0 The operation is successful.

-1 The operation failed because of a logic error, such as:

• message_number or portion_bytes has an invalid value.
• The specified ASSIGN message does not exist.
• portion does not identify a defined integer part of an ASSIGN message or

identifies a nonexistent part.

INT PROC SMU_Assign_PutText_(message_number,
 portion:portion_bytes,
 text:text_bytes)
 EXTENSIBLE;
 INT message_number; ! in, required
 STRING .EXT portion; ! in, required
 INT portion_bytes; ! in, required
 STRING .EXT text; ! in, required
 INT text_bytes; ! in, required TNS,native
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-23

Common Language Utility (CLU) Library Functions SMU_Assign_PutText_
message_number

is an integer expression that identifies the ASSIGN message in which to replace
text. message_number must be a value greater than 0.

portion

is the identifier of a message part. portion is one of:

portion_bytes

is the size of portion, in bytes, and must be a value greater than 0. For TAL, you
must supply this value; for COBOL and FORTRAN, the compiler implicitly
computes and transmits this value to the function. If portion_bytes exceeds the
number of characters in portion, the first unused character of portion must be
a space character.

text

is new text for the specified message part. The text format must be appropriate for
the message part:

text_bytes

is the size of text, in bytes, and must have a non-negative value. For TAL, you
must supply this value; for COBOL and FORTRAN, the compiler implicitly
computes and transmits this value to the function.

If the specified ASSIGN message exists, the function assigns text as the specified
message part. If the ASSIGN message does not exist and the message part is the
logical file name, the function creates an ASSIGN message, assigns text as the
logical name part, and marks all other message parts as not present. In either case,
the function truncates any trailing blanks in the supplied text before assigning it.

LOGICALNAME Creates or replaces the logical file name.

TANDEMNAME Creates or replaces the Guardian file name.

LOGICALNAME If a program name is included, the logical file name must be
in one of the following formats (maximum 63 characters):

programname.filename

*.filename

If program name is omitted, the logical file name must be in
the following format (maximum 31 characters):

filename

TANDEMNAME The Guardian file name must be in external format
(maximum 34 characters) and can be all blanks. The
function does not fill in any missing file name components.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-24

Common Language Utility (CLU) Library Functions SMU_Assign_PutValue_
Return Value:

• SMU_Assign_PutText_ returns one of the following values:

SMU_Assign_PutValue_
The SMU_Assign_PutValue_ function creates or replaces an integer part of an
ASSIGN message with the value obtained from an integer variable.

message_number

is an integer expression that identifies the ASSIGN message in which to replace a
value. message_number must have a value greater than 0.

portion

is the identifier of the ASSIGN message integer part to create or replace. portion
is one of:

Return
Value Meaning

 0 The operation is successful. text contains a null string.

> 0 The operation is successful. The return value gives the length, in bytes, of the
assigned text after blank truncation.

 -1 The operation failed because of a logic error, such as:

• message_number, portion_bytes, or text_bytes has an invalid
value.

• The specified ASSIGN message does not exist and either portion is
not LOGICALNAME or the new logical file name conflicts with the logical
file name of an existing ASSIGN message.

• portion does not identify a defined textual part of an ASSIGN message
or identifies a nonexistent part.

• text has an invalid value for the specified part.

 -2 The operation failed because making changes would invalidate the backup
process.

 -3 The environment has insufficient allocatable space to complete the operation.

INT PROC SMU_Assign_PutValue_ (message_number,
 portion:portion_bytes, value)
 EXTENSIBLE;
 INT message_number; ! in, required
 STRING .EXT portion; ! in, required
 INT portion_bytes; ! in, required
 INT value; ! in, required TNS,native

ACCESS Access mode—0 for read-write, 1 for read-only, 2 for write-only,
and 3 for extend

BLKSIZE Block mode size
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-25

Common Language Utility (CLU) Library Functions SMU_Message_CheckNumber_
portion_bytes

is the size of portion, in bytes, and must be a value greater than 0. For TAL, you
must supply this value; for COBOL and FORTRAN, the compiler implicitly
computes and transmits this value to the function. If portion_bytes exceeds the
number of characters in portion, the first unused character of portion must be
a space character.

value

is a new value for the message part specified in portion. The new value must be
appropriate for the message part it creates or replaces.

Return Value
SMU_Assign_PutValue_ returns one of the following values:

SMU_Message_CheckNumber_
The SMU_Message_CheckNumber_ function determines whether a message exists or
reports the number of the highest-numbered saved ASSIGN message.

EXCLUSION Exclusion mode—0 for shared, 1 for protected, and 3 for
exclusive

FILECODE File code

PRIEXT Primary extent size

RECSIZE Record size

SECEXT Secondary extent size

Return
Value Meaning

 0 The operation is successful.

-1 The operation failed because of a logic error, such as:

• message_number or portion_bytes has an invalid value.
• The specified ASSIGN message does not exist.
• portion does not identify a defined integer part of an ASSIGN message.
• value is invalid for the specified part.

-2 Making changes would invalidate the backup process.

-3 The environment has insufficient allocatable space to complete the operation.

INT PROC SMU_Message_CheckNumber_ (message_number)
 EXTENSIBLE;
 INT message_number; ! in, required TNS,native
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-26

Common Language Utility (CLU) Library Functions SMU_Param_Delete_
message_number

is an integer expression that identifies the message to check. message_number
can be one of the following values:

Return Value
SMU_Message_CheckNumber_ returns one of the following values:

SMU_Param_Delete_
The SMU_Param_Delete_ function deletes part or all of a PARAM message.

portion

specifies what you want to delete. portion is either:

portion_bytes

is the size of portion, in bytes, and must be a value greater than 0. For TAL, you
must supply this value; for COBOL and FORTRAN, the compiler implicitly
computes and transmits this value to the function. If portion_bytes exceeds the
number of characters in portion, the first unused character of portion must be
a space character.

-3 Checks for the presence of a saved PARAM message

-1 Checks for the presence of a saved startup message

 0 Returns the highest message number in the set of saved ASSIGN messages

>0 Checks for the presence of a saved ASSIGN message

Value Meaning

 -3 The specified PARAM message exists.

 -1 The specified startup message exists.

 0 The specified message does not exist.

> 0 The specified ASSIGN message exists.

INT PROC SMU_Param_Delete_(portion:portion_bytes)
 EXTENSIBLE;
 STRING .EXT portion; ! in, required
 INT portion_bytes; ! in, required TNS,native

A parameter
name

Deletes the specified parameter and its associated
parameter value.

ALL Deletes the entire PARAM message.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-27

Common Language Utility (CLU) Library Functions SMU_Param_GetText_
Return Value
SMU_Param_Delete_ returns one of the following values:

SMU_Param_GetText_
The SMU_Param_GetText_ function obtains a part of the PARAM message as text and
assigns it to a string variable.

portion

specifies what you want to retrieve. portion is one of:

portion_bytes

is the size of portion, in bytes, and must be a value greater than 0. For TAL, you
must supply this value; for COBOL and FORTRAN, the compiler implicitly
computes and transmits this value to the function. If portion_bytes exceeds the
number of characters in portion, the first unused character of portion must be
a space character.

text

is a variable to contain the retrieved text. The function extends the text with blanks
on the right side or truncates it as necessary to fit the size of the variable.

Return
Value Meaning

 0 The operation is successful.

-1 The operation failed because portion-bytes has an invalid value.

-2 The operation failed because making changes would invalidate the backup
process.

INT PROC SMU_Param_GetText_(portion:portion_bytes,
 text:max_text_bytes)
 EXTENSIBLE;
 STRING .EXT portion; ! in, required
 INT portion_bytes; ! in, required
 STRING .EXT text; ! out, optional
 INT max_text_bytes; ! in, optional TNS,native

A parameter
name

Retrieves the text associated with the specified parameter
name (maximum 255 characters).

ALL Retrieves the entire PARAM message as a string (a
sequence of bytes).
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-28

Common Language Utility (CLU) Library Functions SMU_Param_PutText_
max_text_bytes

is the maximum size of text, in bytes, and must be a non-negative value. For
TAL, you must supply this value, if text is present; for COBOL and FORTRAN,
the compiler implicitly computes and transmits this value to the function.

Return Value
SMU_Param_GetText_ returns one of the following values:

SMU_Param_PutText_
The SMU_Param_PutText_ function creates or replaces part of a PARAM message.

portion

is the name of the parameter you want to create or replace.

portion_bytes

is the size of portion, in bytes, and must be a value greater than 0. For TAL, you
must supply this value; for COBOL and FORTRAN, the compiler implicitly
computes and transmits this value to the function. If portion_bytes exceeds the
number of characters in portion, the first unused character of portion must be
a space character.

text

is the new text to assign. The function truncates trailing spaces before assigning
the text. text can have at most 255 characters excluding any trailing blanks.

Return
Value Meaning

> 0 The operation is successful. The return value gives the length, in bytes, of the
retrieved text before truncation or padding.

 -1 The operation failed because of a logic error, such as:

• portion_bytes or max_text_bytes has an invalid value.
• The specified PARAM message does not exist.
• portion identifies a parameter name that does not exist in the PARAM

message.

INT PROC SMU_Param_PutText_(portion:portion_bytes,
 text:text_bytes)
 EXTENSIBLE;
 STRING .EXT portion; ! in, required
 INT portion_bytes; ! in, required
 STRING .EXT text; ! in, optional
 INT text_bytes; ! in, optional TNS,native
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-29

Common Language Utility (CLU) Library Functions SMU_Startup_Delete_
text_bytes

is the size of text, in bytes, and must be a non-negative value. For TAL, you must
supply this value, if text is present; for COBOL and FORTRAN, the compiler
implicitly computes and transmits this value to the function.

If the specified parameter name exists, the function assigns text as the associated
parameter value. If the parameter name does not exist, the function creates the
parameter (or PARAM message if necessary) and assigns text as the associated
parameter value.

Return Value
SMU_Param_PutText_ returns one of the following values:

SMU_Startup_Delete_
The SMU_Startup_Delete_ function deletes the entire startup message.

portion

is the following value:

Return
Value Meaning

 0 The operation is successful. A null string is assigned.

> 0 The operation is successful. The return value gives the length, in bytes, of the
assigned text after blank truncation.

 -1 The operation failed because of a logic error, such as:

• portion_bytes or text_bytes has an invalid value.

• text contains more than 255 characters after blank truncation.

• portion contains a name that does not follow PARAM name rules.

• The total length of the new PARAM message exceeds the maximum length
permitted.

 -2 The operation failed because making changes would invalidate the backup
process.

 -3 The environment has insufficient allocatable space to complete the operation.

INT PROC SMU_Startup_Delete_(portion:portion_bytes)
 EXTENSIBLE;
 STRING .EXT portion; ! in, required
 INT portion_bytes; ! in, required TNS,native

ALL Deletes the entire startup message.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-30

Common Language Utility (CLU) Library Functions SMU_Startup_GetText_
portion_bytes

is the size of portion, in bytes, and must be a value greater than 0. For TAL, you
must supply this value; for COBOL and FORTRAN, the compiler implicitly
computes and transmits this value to the function. If portion_bytes exceeds the
number of characters in portion, the first unused character of portion must be
a space character.

You cannot delete parts of a startup message, but you can use SMU_Startup_PutText_
to set a STRING message part to a null string. The resultant message image has an
empty parameter string (one with no text) followed by two null characters.

Return Value
SMU_Startup_Delete_ returns one of the following values:

SMU_Startup_GetText_
The SMU_Startup_GetText_ function obtains a specified part of the startup message
as text and assigns it to a string variable.

portion

identifies what you want to retrieve. portion is one of:

Return
Value Meaning

 0 The operation is successful.

-1 The operation failed because of a logic error, such as:

• portion_bytes has an invalid value.
• portion does not specify a defined deletable part of the startup message.

-2 The operation failed because making changes would invalidate the backup
process.

INT PROC SMU_Startup_GetText_(portion:portion_bytes,
 text:max_text_bytes)
 EXTENSIBLE;
 STRING .EXT portion; ! in, required
 INT portion_bytes; ! in, required
 STRING .EXT text; ! out, optional
 INT max_text_bytes; ! in, optional TNS,native

IN Retrieves the IN file name in external format (maximum 34
characters). The file name can be all blanks.

OUT Retrieves the OUT file name in external format (maximum 34
characters). The file name can be all blanks.

STRING Retrieves the parameter string, not including trailing null characters
(maximum 528 characters).
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-31

Common Language Utility (CLU) Library Functions SMU_Startup_GetText_
portion_bytes

is the size of portion, in bytes, and must be a value greater than 0. For TAL, you
must supply this value; for COBOL and FORTRAN, the compiler implicitly
computes and transmits this value to the function. If portion_bytes exceeds the
number of characters in portion, the first unused character of portion must be
a space character.

text

is a variable to contain the retrieved text. The function extends the text with blanks
on the right side or truncates it as required to match the size of the variable.

max_text_bytes

is the maximum size of text, in bytes, and must be a non-negative value. For
TAL, you must supply this value, if text is present; for COBOL and FORTRAN,
the compiler implicitly computes and transmits this value to the function.

Return Value
SMU_Startup_GetText_ returns one of the following values:

VOLUME Retrieves the default volume part. If it includes a system name, the
text appears as follows (maximum 25 characters):

\system.$volume.subvolume

If it omits a system name, the text appears as follows (maximum 17
characters):

$volume.subvolume

ALL Retrieves the entire startup message as a string (a sequence of
bytes).

Return
Value Meaning

> 0 The operation is successful. The return value gives the length, in bytes, of the
retrieved text before truncation or padding.

 -1 The operation failed because of a logic error, such as:

• portion_bytes or max_text_bytes has an invalid value.
• The specified startup message does not exist.
• portion does not identify a defined textual part of the startup message.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-32

Common Language Utility (CLU) Library Functions SMU_Startup_PutText_
SMU_Startup_PutText_
The SMU_Startup_PutText_ function creates or replaces a part of the startup message
with text obtained from a string variable.

portion

is the name of the startup message part you want to create or replace. portion
is one of:

portion_bytes

is the size of portion, in bytes, and must be a value greater than 0. For TAL, you
must supply this value; for COBOL and FORTRAN, the compiler implicitly
computes and transmits this value to the function. If portion_bytes exceeds the
number of characters in portion, the first unused character of portion must be
a space character.

text

is the new text to assign to the startup message part. The text must have a format
appropriate for the message part. text is one of:

INT PROC SMU_Startup_PutText_(portion:portion_bytes,
 text:text_bytes)
 EXTENSIBLE;
 STRING .EXT portion; ! in, required
 INT portion_bytes; ! in, required
 STRING .EXT text; ! in, required
 INT text_bytes; ! in, required TNS,native

IN IN file name

OUT OUT file name

STRING Parameter string

VOLUME Default volume

IN The text must be a Guardian file name (maximum 34 characters).
The file name can be all blanks. The function does not fill in any
missing components.

OUT The text must be a Guardian file name (maximum 34 characters).
The file name can be all blanks. The function does not fill in any
missing components.

STRING The text is the new parameter string, not including trailing null
characters (maximum 528 characters).
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-33

Common Language Utility (CLU) Library Functions SMU Function Considerations
text_bytes

is the size of text, in bytes, and must be a non-negative value. For TAL, you must
supply this value; for COBOL and FORTRAN, the compiler implicitly computes and
transmits this value to the function.

If the startup message exists, the function assigns text as the message part. If the
startup message does not exist, the function creates it, assigns text as the message
part, and assigns default values to the other message parts. In either case, the function
truncates any trailing blanks in the supplied text before assigning it.

Return Value
SMU_Startup_PutText_ returns one of the following values:

SMU Function Considerations
The remainder of this section gives SMU function considerations for COBOL,
FORTRAN, TAL, and pTAL.

VOLUME The text is the new default volume part. If it includes a system
name, the text must have the following format (maximum 25
characters):

\system.$volume.subvolume

If it does not include a system name, the text must have the
following format (maximum 17 characters):

$volume.subvolume

Return
Value Meaning

 0 The operation is successful; a null string is assigned.

> 0 The operation is successful. The return value gives the length, in bytes, of the
assigned text after blank truncation.

 -1 The operation failed because of a logic error, such as:

• portion_bytes or text_bytes has an invalid value.

• portion does not identify a defined textual part of the startup message.

• The text is invalid for the message part (invalid volume, invalid file name, or a
parameter string longer than 528 characters).

 -2 The operation failed because making changes would invalidate the backup
process.

 -3 The environment has insufficient allocatable space to complete the operation.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-34

Common Language Utility (CLU) Library Functions COBOL Considerations
COBOL Considerations
You can use the SMU functions in the TNS CRE, in a COBOL run-time environment, or
in the native CRE. Rules for using the pre-D20 SMU functions (and the ENV directive)
are given in the COBOL Manual for TNS and TNS/R Programs. The current SMU
functions in this section differ from the pre-D20 SMU functions only in minor ways.
These differences are described in the following paragraphs.

You invoke one of the current SMU functions as follows:

TAL

specifies that the function is written in TAL.

function-name

is the name of a new SMU function, enclosed in quotation marks; for example:

ENTER TAL "SMU_Param_GetText_"

library-reference

is as described in the COBOL manuals, except that library-reference is
contained in file CLULIB (which is usually in the $SYSTEM.SYSTEM subvolume),
rather than in a product file such as COBOLLIB. CLULIB contains copies of all pre-
D20 and current SMU functions.

parameter

is one of the SMU function parameters in this section. (The cplist parameter of
pre-D20 SMU functions is not a part of the current SMU functions.)

portion

is an alphanumeric data item that specifies the message part you want to
retrieve or change. The compiler implicitly computes and transmits the size, in
bytes, of portion to the function.

text

is an alphanumeric data item for retrieving text or for specifying new text. The
compiler implicitly computes and transmits the size, in bytes, of text to the
function. Any JUSTIFIED clause of the data item is ignored, and text is
truncated or extended to fit the data item.

ENTER [TAL] function-name [OF library-reference]
 USING parameter [, parameter] ...
 [GIVING result]
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-35

Common Language Utility (CLU) Library Functions COBOL Considerations
value

is a NATIVE-2 data item or a COMPUTATIONAL numeric data item described
with one-to-four 9s preceded by an S; for example:

PICTURE S9(4)

message_number

is any actual COBOL parameter that evaluates to a number in the range
-32768 through 32767, as permitted by a particular function.
message_number can be a COMPUTATIONAL, DISPLAY, or NATIVE numeric
data item, a numeric literal, or an expression enclosed in parentheses. If the
parameter does not mathematically evaluate to an integer, the compiler
changes the result into an integer value. To specify conversion options, you
can use COBOL functions INTEGER and INTEGER_PART.

name

is an alphanumeric data item that specifies a logical file name. The compiler
implicitly computes and transmits the size, in bytes, of name to the function.

result

is a numeric data item as described in the COBOL Manual for TNS and TNS/R
Programs for the pre-D20 SMU functions.

COBOL Examples
The following pairs of examples show how each new SMU function corresponds to a
pre-D20 SMU function:

ENTER TAL "SMU_Assign_Delete_"
 USING message-number, portion GIVING result
ENTER "DeleteAssign"
 USING portion, cplist, message-number GIVING result

ENTER TAL "SMU_Assign_GetText_"
 USING message-number, portion, text GIVING result
ENTER "GetAssignText"
 USING portion, text, message-number GIVING result

ENTER TAL "SMU_Assign_GetValue_"
 USING message-number, portion, value GIVING result
ENTER "GetAssignValue"
 USING portion, value, message-number GIVING result

ENTER TAL "SMU_Assign_PutText_"
 USING message-number, portion, text GIVING result
ENTER "PutAssignText"
 USING portion, text, cplist, message-number GIVING result

ENTER TAL "SMU_Assign_PutValue_"
 USING message-number, portion, value GIVING result
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-36

Common Language Utility (CLU) Library Functions FORTRAN Considerations
ENTER "PutAssignValue"
 USING portion, value, cplist, message-number GIVING result

ENTER TAL "SMU_Param_Delete_" USING portion GIVING result
ENTER "DeleteParam" USING portion, cplist GIVING result

ENTER TAL "SMU_Param_GetText_"
 USING portion, text GIVING result
ENTER "GetParamText"
 USING portion, text GIVING result

ENTER TAL "SMU_Param_PutText_"
 USING portion, text GIVING result
ENTER "PutParamText"
 USING portion, text, cplist GIVING result

ENTER TAL "SMU_Startup_Delete_" USING portion GIVING result
ENTER "DeleteStartup" USING portion, cplist GIVING result

ENTER TAL "SMU_Startup_GetText_"
 USING portion, text GIVING result
ENTER "GetStartupText"
 USING portion, text GIVING result

ENTER TAL "SMU_Startup_PutText_"
 USING portion, text GIVING result
ENTER "PutStartupText"
 USING portion, text, cplist GIVING result

ENTER TAL "SMU_Assign_CheckName_" USING name GIVING result
ENTER "CheckLogicalName" USING name GIVING result

ENTER TAL "SMU_Message_CheckNumber_"
 USING message-number GIVING result
ENTER "CheckMessage"
 USING message-number GIVING result

FORTRAN Considerations
You can use the SMU functions in either the TNS CRE or in a FORTRAN run-time
environment. Rules for using the pre-D20 SMU functions (and the ENV directive) are
given in the FORTRAN Reference Manual. The current SMU functions in this section
differ from the pre-D20 SMU functions only in minor ways. These differences are
described in the following paragraphs.

Before you reference a current SMU function, you must declare it in a GUARDIAN or
CONSULT directive that specifies an object file that contains a copy of the function.
The current SMU functions are contained in CLULIB (usually in $SYSTEM.SYSTEM),
rather than in a FORTRAN product file. CLULIB also contains all the pre-D20 SMU
functions.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-37

Common Language Utility (CLU) Library Functions FORTRAN Considerations
You invoke the current SMU functions as follows:

result

is an integer variable as described in the FORTRAN Reference Manual for the old
SMU functions.

functionname

is the name of a current SMU function.

parameter

is one of the SMU function parameters in this section. (The cplist parameter of
pre-D20 SMU functions is not a part of the new SMU functions.)

portion

is a character expression that specifies the message part you want to retrieve
or change. The compiler implicitly computes and transmits the size, in bytes, of
portion to the function.

text

is a character variable for new or retrieved text. The compiler implicitly
computes and transmits the size, in bytes, of text to the function.

value

is an integer variable.

message_number

is an integer expression that evaluates to a number in the range -32768
through 32767, as permitted by a particular function.

name

is character expression that specifies a logical file name. The compiler
implicitly computes and transmits the size, in bytes, of name to the function.

FORTRAN Examples
The following pairs of examples show how each current SMU function corresponds to
a pre-D20 SMU function:

result = SMU_Assign_Delete_ (messagenumber, portion)
result = DeleteAssign (portion, cplist, messagenumber)

result = SMU_Assign_GetText_ (messagenumber, portion, text)
result = GetAssignText (portion, text, messagenumber)

result = functionname (parameter [, parameter] ...)
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-38

Common Language Utility (CLU) Library Functions TAL Considerations
result = SMU_Assign_GetValue_ (messagenumber, portion, value)
result = GetAssignValue (portion, value, messagenumber)

result = SMU_Assign_PutText_ (messagenumber, portion, text)
result = PutAssignText (portion, text, cplist, messagenumber)

result = SMU_Assign_PutValue_ (messagenumber, portion, value)
result = PutAssignValue (portion, value, cplist,
 messagenumber)

result = SMU_Param_Delete_ (portion)
result = DeleteParam (portion, cplist)

result = SMU_Param_GetText_ (portion, text)
result = GetParamText (portion, text)

result = SMU_Param_PutText_ (portion, text)
result = PutParamText (portion, text, cplist)

result = SMU_Startup_Delete_ (portion)
result = DeleteStartup (portion, cplist)

result = SMU_Startup_GetText_ (portion, text)
result = GetStartupText (portion, text)

result = SMU_Startup_PutText_ (portion, text)
result = PutStartupText (portion, text, cplist)

result = SMU_Assign_CheckName_ (name)
result = CheckLogicalName (name)

result = SMU_Message_CheckNumber_ (messagenumber)
result = CheckMessage (messagenumber)

TAL Considerations
TAL routines can use the new SMU functions if the TAL routines are part of a program
that can run in the TNS CRE or part of a program that can run in a COBOL or
FORTRAN run-time environment. TAL routines cannot use the old SMU functions.

The file CLUDECS, which is usually in the $SYSTEM.SYSTEM subvolume, contains
the new SMU function declarations.

All other usage considerations applicable to TAL are included in the function
descriptions in this section.

EpTAL Considerations
EpTAL-compiled routines can use the current SMU functions if the EpTAL routines are
part of a program that can run in the TNS/E native CRE (for example, a program that
has its main routine written in C instead of pTAL). EpTAL-compiled routines cannot use
the pre-D20 SMU functions.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-39

Common Language Utility (CLU) Library Functions pTAL Considerations
The file CLURDECS, which is usually in the $SYSTEM.SYSTEM subvolume, contains
the current SMU function declarations.

All other usage considerations applicable to EpTAL are included in the function
descriptions in this section.

pTAL Considerations
pTAL routines can use the current SMU functions if the pTAL routines are part of a
program that can run in the TNS/R native CRE (for example, a program that has its
main routine written in C instead of pTAL). pTAL routines cannot use the pre-D20 SMU
functions.

The file CLURDECS, which is usually in the $SYSTEM.SYSTEM subvolume, contains
the current SMU function declarations.

All other usage considerations applicable to pTAL are included in the function
descriptions in this section.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
9-40

10
Run-Time Diagnostic Messages

This section lists in numerical order the run-time diagnostic messages that you can see
in your log file when you run a program that uses the Common Run-Time Environment
(CRE). This section covers the following topics:

• Error Effects and Recovery on page 10-1
• Format of Messages in This Section on page 10-2
• Trap and Signal Messages on page 10-3
• CRE Service Function Messages on page 10-6
• Heap-Management Messages on page 10-12
• Math Function Messages on page 10-15
• Function Parameter Messages on page 10-17
• Input/Output Messages on page 10-18
• COBOL Messages on page 10-25
• FORTRAN Messages on page 10-25
• Native CRE Messages on page 10-25
• Mapping Message Numbers Between Run-Time Environments on page 10-26

The messages in this section are grouped according to logical functions. Messages
associated with math functions are in a subsection, FORTRAN messages are in a
separate subsection, and so forth. However, any routine or run-time library in your
program can use any of the messages in this section. Thus, math function messages
can be generated by routines that are not math functions but for which the message
text is applicable.

The language-specific messages for COBOL and FORTRAN are current as of the time
this manual was released. If you cannot find a particular error message, refer to the
appropriate language reference manual or softdoc.

Error Effects and Recovery
The CRE is the only part of a process that invokes system procedures to report the
messages described in this section. The CRE reports messages for either of the
following reasons:

• It detected an error while performing its own tasks as a resource manager.
• A routine in a program or run-time library requested that it display a message.

For messages that the CRE reports on its own behalf, the descriptions of error effects
and possible recovery methods are as descriptive as possible. For more details, refer
to other sections of this manual or to one or more of the following manuals:

• Guardian Programmer’s Guide
• Open Systems Services Programmer’s Guide
• Guardian Procedure Calls Reference Manual
• TACL Reference Manual
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-1

Run-Time Diagnostic Messages Format of Messages in This Section
• Spooler Programmer’s Guide

For messages that the CRE reports on behalf of routines that call it, the descriptions
are less precise because the effect on your program and possible recovery actions are
language and application dependent. For more information on errors that are reported
by individual languages, refer to the language reference manual for the routine that
caused the error.

Format of Messages in This Section
This subsection describes the format of the messages the CRE writes to the log file.
Elements surrounded by square brackets (“[” and “]”) are not included in all messages.

process_name

identifies the process in which the error occurred.

nnn

is the CRE message number of the message described in this section.

message

is the text associated with message number nnn.

additional_information

if present, gives more detail about message. For example, if an error occurs when
accessing a file, additional_information might be the file-system error
number for the error that occurred.

optional_text

if present, provides additional information about the error. For example, it might
show the FORTRAN unit number, or the state of a COBOL file: open, closed, and
so forth. The optional_text helps you identify the cause of the error message.

top_of_stack

shows the name of the procedure that invoked the run-time library routine in which
the error was detected, the offset within the procedure, and the number of the code
segment in which the procedure’s code is located.

 process_name - *** Run-time Error nnn ***
 process_name - message [(additional_information)]
[process_name - optional_text]
 process_name - From: top_of_stack
 process_name - : : : :
 process_name - bottom_of_stack
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-2

Run-Time Diagnostic Messages Trap and Signal Messages
bottom_of_stack

shows the name of the first procedure—the main procedure—of the process in
which the error occurred, the offset within the procedure, and the number of the
code segment in which procedure’s code is located. The stack trace includes all
procedures between top_of_stack and bottom_of_stack.

The following examples show messages that the CRE might write to the log file:

• If a program passes a negative value to a square root function, the CRE writes a
message such as the following to the log file:

\NODE.$Z012:3 - *** Run-time Error 049 ***
\NODE.$Z012:3 - Square root domain fault
\NODE.$Z012:3 - From: DRAWIT + %513, UC.00
\NODE.$Z012:3 - CIRCLE + %21, UC.00
\NODE.$Z012:3 - MYPROG + %7, UC.00

• If a program tries to open standard input but the file does not exist, the CRE writes
a message such as the following to the log file:

\NODE.$Z012:3 - *** Run-time Error 059 ***
\NODE.$Z012:3 - Standard input file error (11)
\NODE.$Z012:3 - From: READREC +%54, UC.00
\NODE.$Z012:3 NEXTREC + %15, UC.00
\NODE.$Z012:3 - COMPUTE + %214, UC.00
\NODE.$Z012:3 - MYPROG + %7, UC.00

Note that the error message includes the number of the file-system error number
(11).

• If a COBOL program cannot create a new file, the CRE writes a message such as
the following to the log file. Note that the message includes an informational line
that shows the FD-name of the file, the external Guardian file name, and the file’s
status (closed):

\NODE.$Z012:3 - *** Run-time Error 153 ***
\NODE.$Z012:3 - Create of new file failed with error 153
\NODE.$Z012:3 - File FD-IN-FILE = $vol.subvol.file, closed
\NODE.$Z012:3 - From: NEWFILE + %66, UC.00
\NODE.$Z012:3 - PM-ADMIN + %71, UC.00
\NODE.$Z012:3 - MYPROG + %7, UC.00

Trap and Signal Messages
The TNS CRE reports the messages in this subsection if a trap occurs and your
program has neither disabled traps nor enabled its own trap handler. The native CRE
reports the messages in this subsection if a signal is raised and your program does not
have its own signal handler for the signal that was raised. The CRE or run-time library
terminates your program.

The CRE treats trap 4, arithmetic fault, as a program logic error, not a trap. If your
program has disabled overflow traps, the TNS CRE returns control to your run-time
library. The native CRE raises a SIGFPE signal instead. See the language-specific
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-3

Run-Time Diagnostic Messages Trap and Signal Messages
manuals for the routines in your program for additional detail. The Guardian
Programmer’s Guide describes traps and signals.

1

The CRE trap processing function was called with an unknown trap number.

2

An address was specified that was not within either the virtual code area or the virtual
data area allocated to the process.

3

An attempt was made to:

• Execute a code word that is not an instruction.
• Execute a privileged instruction by a nonprivileged process.
• Reference an illegal extended address.

4

In the TNS environment, the overflow bit in the environment-register, ENV.<10>, was
set to 1. In the native environment, a SIGFPE was raised. In either environment, the
fault occurs for one of the following reasons:

• The result of a signed arithmetic operation could not be represented with the
number of bits available for the particular data type.

• An division operation was attempted with a zero divisor.

5

A stack overflow fault occurs if:

• An attempt was made to execute a procedure or subprocedure whose local or
sublocal data area extends into the upper 32K of the user data area.

Unknown trap

Illegal address reference

Instruction failure

Arithmetic fault

Stack overflow
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-4

Run-Time Diagnostic Messages Trap and Signal Messages
• There was not enough remaining virtual data space for a system procedure to
execute.

• The native environment exceeded the maximum stack space available.

The amount of virtual data space available is G[0] through G[32767].

System procedures require approximately 350 words of user-data stack space to
execute.

6

The new time limit specified in the latest call to SETLOOPTIMER has expired.

7

An unrecoverable, read error occurred while the program was trying to bring in a page
from virtual memory.

8

This fault occurs for one of the following reasons:

• A page fault occurred, but there were no physical memory pages available for
overlay.

• Disk space could not be allocated while the program is using extensible segments.

9

An uncorrectable memory error occurred.

10

The operating system reported a trap 5.

Process loop-timer timeout

Memory manager read error

Not enough physical memory

Uncorrectable memory error

Interface limit exceeded
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-5

Run-Time Diagnostic Messages CRE Service Function Messages
CRE Service Function Messages
The CRE writes the messages in this subsection if an error occurs during its own
processing or if it receives a request from a run-time library to report a specific
message.

11

Cause. CRE or run-time library data is invalid.

Effect. The CRE invokes PROCESS_STOP_, specifying the ABEND variant and the
text “Corrupted environment.”

Recovery. In the TNS environment, the program might have written data in the upper
32K words of the user data segment. The upper 32K words are reserved for TNS CRE
and run-time library data.

In the native environment, the run-time environment has been corrupted. You might
have written data over run-time data structures.

Check the program’s logic. Use Inspect, Native Inspect, or Visual Inspect to help
isolate the problem or consult your system administrator.

12

Cause. The CRE or a run-time library detected a logic error within its own domain. For
example, although each data item it is using is valid, the values of the data items are
mutually inconsistent.

Effect. The CRE invokes PROCESS_STOP_, specifying the ABEND variant and the
text “Logic error.”

Recovery. In the TNS environment, the program might have written data in the upper
32K words of the user data segment. The upper 32K words are reserved for TNS CRE
and run-time library data.

In the native environment, the run-time environment has been corrupted. You might
have written data over run-time data structures.

Check the program’s logic. Use Inspect, Native Inspect, or Visual Inspect to help
isolate the problem or consult your system administrator.

Corrupted environment

Logic error
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-6

Run-Time Diagnostic Messages CRE Service Function Messages
13

Cause. The pointer at location G[0] of the program’s user data segment to its primary
data structure—the Master Control Block (MCB)—does not point to the MCB. Both the
CRE and run-time libraries can report this error.

In the native environment, this error can occur if the MCB run-time data structure has
been corrupted.

Effect. The CRE attempts to restore the pointer at G[0] and to write a message to the
standard log file. However, because its environment might be corrupted, the CRE
might not be able to log a message. In that case, it calls PROCESS_STOP_,
specifying the ABEND variant, and the text “Corrupted Environment”.

Recovery. Check the program’s logic to see if it overwrote the MCB pointer at G[0].
Use a symbolic debugger appropriate for the type of code to help isolate the problem.
See Using the Inspect, Native Inspect, and Visual Inspect Symbolic Debuggers With
CRE Programs on page 2-62 for details of how to determine where the program
overwrites G[0].

14

Cause. The CRE backup process received an operating system message that it had
become the primary process but it had not yet received all of its initial checkpoint
information from its predecessor primary process.

Effect. The CRE invokes PROCESS_STOP_, specifying the ABEND variant and the
text “Premature takeover.”

Recovery. If the takeover occurred because of faulty program logic, correct the
program’s logic. If the takeover occurred for other reasons, such as a hardware failure,
you might want to rerun the program. Do not rerun the program if doing so will
duplicate operations already performed, such as updating a database a second time.

15

Cause. A list of checkpoint item descriptors that the CRE maintains for process pairs
was invalid.

Effect. The CRE terminates the program.

Recovery. The list of items to checkpoint is maintained in the program’s address
space. Check the program’s logic. The program might have overwritten the checkpoint

MCB pointer corrupt

Premature takeover

Checkpoint list inconsistent
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-7

Run-Time Diagnostic Messages CRE Service Function Messages
list. Use a symbolic debugger appropriate for the type of code to help isolate the
problem.

16

Cause. The CRE did not have enough room to store all of the checkpoint information
required by the program.

Effect. Program behavior is language and application dependent.

Recovery. Increase the checkpoint list object’s size. See the language manual for the
routine that allocates your checkpoint list.

17

Cause. The CRE or a run-time library could not obtain heap space for all of its data.

Effect. If the request came from the CRE, it terminates the program. Otherwise,
program behavior is language and application dependent.

Recovery. You might be able to increase the amount of control space available to your
program by reducing the number of files your program has open at the same time or by
decreasing the size of buffers allocated to open files.

18

Cause. A module could not obtain sufficient extended stack space for its local data.

Effect. Program behavior is language and application dependent.

Recovery. Increase the extended stack’s size. See the language manual for the
routine that caused the extended stack overflow for details on increasing the size of the
extended stack.

20

Cause. A string, expected to be a valid file name, could not be manipulated as a
Guardian external file name.

Effect. If the file name came from the CRE, the program is terminated. Otherwise,
program behavior is language and application dependent.

Checkpoint list exhausted

Cannot obtain control space

Extended Stack Overflow

Cannot utilize filename
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-8

Run-Time Diagnostic Messages CRE Service Function Messages
Recovery. Check that the file names in the program are valid Guardian file names.

21

Cause. During program initialization, the CRE could not read all of the messages
(start-up message, PARAM message, ASSIGN messages, and so forth) it expected
from the file system. error is the file-system error number the CRE received when it
couldn’t read an initialization message.

Effect. The CRE terminates the program.

Recovery. Consult your system administrator.

22

Cause. The CRE could not obtain the name of the program file from the operating
system.

Effect. The CRE terminates the program.

Recovery. Consult your system administrator.

23

Cause. The CRE could not determine the physical file name associated with
program_name.logical_name.

Effect. The CRE terminates the program.

Recovery. Correct the program_name.logical_name and rerun your program.
See the HP Tandem Advanced Command Language (TACL) Reference Manual for
general information on ASSIGN commands. See the reference manual for your
program’s main routine for more information on using ASSIGNs.

Cannot read initialization messages (error)

Cannot obtain program filename

Cannot determine filename (error)
program_name.logical_name
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-9

Run-Time Diagnostic Messages CRE Service Function Messages
24

Cause. ASSIGN values in your TACL environment conflict with each other. For
example:

ASSIGN A, $B1.C.D
ASSIGN *.A, $B2.C.D

The first ASSIGN specifies that the logical name A can appear in no more than one
program file. The second assign specifies that the name A can appear in an arbitrary
number of program files. The CRE cannot determine whether to use the file C.D on
volume $B1 or on volume $B2.

Effect. The CRE terminates the program.

Recovery. Correct the ASSIGNs in your TACL environment. See the HP Tandem
Advanced Command Language (TACL) Reference Manual for more information on
using ASSIGNs.

25

Cause. Your TACL environment specifies an ASSIGN such as:

ASSIGN A, $B1.C.D

but the program contains more than one logical file named A.

Effect. The CRE terminates the program.

Recovery. Correct the ASSIGNs in your TACL environment. See the HP Tandem
Advanced Command Language (TACL) Reference Manual for more information on
using ASSIGNs.

26

Cause. A PARAM specifies a value that is not defined by the CRE. For example, the
value for a DEBUG PARAM must be either ON or OFF:

PARAM DEBUG [ON]
 [OFF]

The CRE reports this error if a DEBUG PARAM has a value other than ON or OFF.
error, if present, is a file-system error.

Conflict in application of ASSIGN
program_name.logical_name

Ambiguity in application of ASSIGN
logical_name

Invalid PARAM value text (error)
PARAM name 'value'
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-10

Run-Time Diagnostic Messages CRE Service Function Messages
Effect. The CRE terminates the program.

Recovery. Modify the PARAM text and rerun your program. See the HP Tandem
Advanced Command Language (TACL) Reference Manual for more information on
using PARAMs.

27

Cause. A PARAM specifies a value that is ambiguous in the current context. For
example, the PARAM specification:

PARAM PRINTER-CONTROL A

is ambiguous if the program contains more than one logical file named A.

Effect. The CRE terminates the program.

Recovery. Correct the PARAM in your TACL environment. See the HP Tandem
Advanced Command Language (TACL) Reference Manual for more information on
using PARAMs.

28

Cause. The run-time library for a module that is written in language is not available
to the program.

Effect. The CRE terminates the program.

Recovery. Consult your system administrator.

29

Cause. The language compiler used features that are not supported by the
language run-time library that the program used.

Effect. The CRE terminates the program.

Recovery. Use a compiler and run-time library that are compatible. You might need to
consult your system administrator.

Ambiguity in application of PARAM
PARAM name 'value'

Missing language run-time library -- language

Program incompatible with run-time library -- language
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-11

Run-Time Diagnostic Messages Heap-Management Messages
Heap-Management Messages
The CRE or run-time libraries report the messages in this subsection if they detect an
error while accessing the heap.

30

Cause. A heap-management routine was called with an invalid error number.

Effect. The CRE terminates the program.

Recovery. Refer to the reference manual that corresponds to the language in which
the routine that requests heap space is written. You might need to consult your system
administrator.

31

Cause. Your program, or the run-time library for one of the modules in your program,
requested more space on the heap than is currently available.

Effect. Program behavior is language and application dependent.

Recovery. Refer to the reference manual that corresponds to the language in which
the routine that requests heap space is written. You might need to consult your system
administrator.

32

Cause. The CRE or a run-time library found invalid data in the user heap or in the
heap control block.

Your program might be writing information over the heap or heap control block. An
invalid pointer or indexing operation could cause this error.

“Process heap size is 0” appears when your program or a run-time library requested
space, but the process has no user heap.

Effect. Program behavior is language and application dependent.

Recovery. In the TNS environment, the program might have written data in the upper
32K words of the user data segment or in the extended segment. The upper 32K
words of the user data area are reserved for CRE and run-time library data. In a small-

Unknown heap error

Cannot obtain data space

Invalid heap or heap control block
Process heap size is 0
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-12

Run-Time Diagnostic Messages Heap-Management Messages
memory model, the heap is allocated in the lower 32K words of the user data segment.
In a large memory model, the heap is allocated in an extended memory segment.
Check the program’s logic. Use Inspect or Visual Inspect to help isolate the problem or
consult your system administrator.

If this error occurs in the native environment, use Native Inspect or Visual Inspect to
help isolate the problem. In the case of “Process heap size is 0,” specify the existence
of a user heap when building your program.

33

Cause. The address of a block of memory to return to the heap was zero.

Effect. Program behavior is language and application dependent.

Recovery. Correct the program to pass the correct address.

34

Cause. The address of a block of memory to return to the heap did not point to a block
allocated from the heap.

Effect. Program behavior is language and application dependent.

Recovery. Correct the program to return the correct pointer value.

35

Cause. The CRE or a run-time library found invalid information at location
32-bit_octal_address of the heap.

Effect. Program behavior is language and application dependent.

Recovery. The program might have written data over the heap. In a small-memory
model, the heap is allocated in the lower 32K words of the user data segment, just
below the run-time stack. In a large memory model, the heap is allocated in an
extended memory segment. Check the program’s logic. Use Inspect or Visual Inspect
to help isolate the problem or consult your system administrator.

If this error occurs in the native environment, check the program’s logic. Use Native
Inspect or Visual Inspect to help isolate the problem or consult your system
administrator.

Released space address is 0

Released space not allocated

Heap corrupted (32-bit_octal_address)
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-13

Run-Time Diagnostic Messages Function Parameter Message
36

Cause. The request you made is not compatible with the heap that you referenced.

Effect. Program behavior is language and application dependent.

Recovery. Consult your system administrator.

37

Cause. An address passed as a heap marker does not point to a mark.

Effect. Program behavior is language and application dependent.

Recovery. In the TNS environment, ensure that the program passed the correct
address of a mark. If it did, the heap might be corrupted. Check the program’s logic.
CRE and run-time library data is stored in the upper 32K words of the user data
segment and in the primary extended data segment. The program might have
overwritten CRE or run-time library data. Use Inspect or Visual Inspect to help isolate
the problem. You might need to consult your system administrator.

If this error occurs in the native environment, check the program’s logic. Use Native
Inspect or Visual Inspect to help isolate the problem or consult your system
administrator.

Function Parameter Message
Run-time libraries report the message in this subsection if an error is detected in a
parameter passed to a function.

40

Cause. A function detected a problem with its parameters.

Effect. Program behavior is language and application dependent.

Recovery. Correct the parameter you are passing.

Invalid operation for heap

Mark address or space corrupt

Invalid function parameter
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-14

Run-Time Diagnostic Messages Math Function Messages
Math Function Messages
Run-time libraries report the messages in this subsection if an error is detected in a
math function.

41

Cause. An arithmetic overflow or underflow occurred while evaluating an arithmetic
function.

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass values to the arithmetic functions that do not
cause overflow.

42

Cause. The parameter passed to the arccos function was not in the range:

-1.0 less than or equal to parameter less than or equal to 1.0

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass a valid value to the arccos function.

43

Cause. The parameter passed to the arcsin function was not in the range:

-1.0 less than or equal to parameter less than or equal to 1.0

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass a valid value to the arcsin function.

44

Cause. Both of the parameters to an arctan2 function were zero. At least one of the
parameters must be nonzero.

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass the correct value to the arctan2 function.

Range fault

Arccos domain fault

Arcsin domain fault

Arctan domain fault
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-15

Run-Time Diagnostic Messages Math Function Messages
46

Cause. The parameter passed to a logarithm function was less than or equal to zero.
The parameter to a logarithm function must be greater than zero.

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass a valid value to the logarithm function.

47

Cause. The value of the second parameter to a modulo function was zero. The
second parameter to a modulo function must be nonzero.

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass a nonzero value to the modulo function.

48

Cause. Parameters to a Power function were not acceptable. Given the expression

x
y

the following parameter combinations produce this message:

x = 0 and y is less than or equal to 0
x < 0 and y is not an integral value

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass values that do not violate the above
combinations.

49

Cause. The parameter to a square root function was a negative number. The
parameter must be greater than or equal to zero.

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass a nonnegative value to the square root
function.

Logarithm function domain fault

Modulo function domain fault

Exponentiation domain fault

Square root domain fault
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-16

Run-Time Diagnostic Messages Function Parameter Messages
Function Parameter Messages
The CRE or run-time libraries report the messages in this subsection if there is a
problem with the parameters passed to a function.

55

Cause. A required parameter is missing or too many parameters were passed.

Effect. Program behavior depends on the function that was called and the language in
which it is written.

Recovery. Correct the program to pass a valid parameter.

56

Cause. The value passed as a procedure parameter was invalid.

Effect. Program behavior depends on the function that was called and the language in
which it is written.

Recovery. Correct the program to pass a valid parameter value.

57

Cause. The value passed as a procedure parameter is not acceptable in the context in
which it is passed. For example, the number of bytes in a write request is greater than
the number of bytes per record in the file.

Effect. Program behavior depends on the function that was called and the language in
which it is written.

Recovery. Correct the program to pass a valid parameter.

Missing or invalid parameter

Invalid parameter value

Parameter value not accepted
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-17

Run-Time Diagnostic Messages Input/Output Messages
Input/Output Messages
The CRE or run-time libraries report the messages in this subsection if an error occurs
when calling an I/O function.

59

Cause. The file system reported an error when a routine tried to access the standard
input file. error is a file-system error number.

“Unable to open <filename>” appears when the C run-time library cannot open the
standard input file during program initialization. <filename> shows the name for
which the open operation failed.

Effect. The CRE can report this error when it closes your input file. All other instances
are language and application dependent.

Recovery. If the error was caused by a read request from your program, correct your
program. You might need to ensure that your program handles conditions that are
beyond your control such as losing a path to the device. Also refer to error handling in
this manual and in the language manual for the routine in your program that detected
the error.

If the error was caused by a read request from the CRE, consult your system
administrator.

If the error was caused during program initialization, specify an acceptable input file
when executing your program.

60

Cause. The file system reported an error when the CRE called a file system procedure
to access standard output. error is the file-system error number.

“Unable to open <filename>” appears when the C run-time library cannot open the
standard output file during program initialization. <filename> shows the name for
which the open operation failed.

Effect. The CRE can report this error when it closes your output file. All other
instances are language and application dependent.

Recovery. If the error was caused by a write request from your program, correct your
program. You might need to ensure that your program handles conditions that are
beyond your control such as losing a path to the device. Also refer to error handling in

Standard input file error (error)
Unable to open <filename>

Standard output file error (error)
Unable to open <filename>
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-18

Run-Time Diagnostic Messages Input/Output Messages
this manual and in the language manual for the routine in your program that detected
the error.

If the error was caused by a write request from the CRE, consult your system
administrator.

If the error was caused during program initialization, specify an acceptable output file
when executing your program.

61

Cause. The file system reported an error when the CRE called a file system procedure
to access the standard log file. error is the file system error number.

“Unable to open filename” appears when the C run-time library cannot open the
standard log file during program initialization. filename shows the name for which the
open operation failed.

Effect. The CRE terminates your program.

Recovery. Consult your system administrator.

If the error was caused during program initialization, specify an acceptable log file
when executing your program.

62

Cause. A value that is expected to be a Guardian file number is not the number of an
open file.

Effect. Program behavior is language and application dependent.

Recovery. Consult your system administrator.

63

Cause. A parameter was not the number of a shared (standard) file where one was
expected.

Effect. Program behavior is language and application dependent.

Recovery. Consult your system administrator.

Standard log file error (error)
Unable to open filename

Invalid GUARDIAN file number

Undefined shared file
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-19

Run-Time Diagnostic Messages Input/Output Messages
64

Cause. A request to open a file failed because the file device is not supported.

Effect. Program behavior is language and application dependent.

Recovery. Consult your system administrator.

65

Cause. A parameter to an open operation was not a meaningful value. For example,
the CRE_File_Open_ sync_receive_depth parameter must be a nonnegative
number. This message might be reported if the sync_receive_depth parameter is
negative.

Effect. Program behavior is language and application dependent.

Recovery. Consult your system administrator.

66

Cause. The CRE received a request to access a device that it does not support.

Effect. Program behavior is language and application dependent.

Recovery. Consult your system administrator.

67

Cause. The value of the access parameter to an open operation was not valid in the
context in which it was used. For example, it is invalid to open a spool file for input.

Effect. Program behavior is language and application dependent.

Recovery. Consult your system administrator.

File not open

Invalid attribute value

Unsupported file device

Access mode not accepted
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-20

Run-Time Diagnostic Messages Input/Output Messages
68

Cause. The value of the no_wait parameter to an open operation was not valid in the
context in which it was used. For example, it is invalid to specify a nonzero value for
no_wait for a device that does not support nowait operations.

Effect. Program behavior is language and application dependent.

Recovery. Consult your system administrator.

69

Cause. The value of the sync_receive_depth parameter to an open operation was
not valid in the context in which it was used. For example, it is not valid to specify a
sync_receive_depth greater than one for a standard file.

Effect. Program behavior is language and application dependent.

Recovery. Consult your system administrator.

70

Cause. The value of an open operation options parameter was not valid in the
context in which it was used.

Effect. Program behavior is language and application dependent.

Recovery. Consult your system administrator.

71

Cause. A routine requested a connection to a standard file that was already open, and
the attributes of the new open request conflict with the attributes specified when the file
was first opened.

Effect. Program behavior is language and application dependent.

Recovery. If your program supplied the attribute values, correct and rerun your
program. Otherwise, consult your system administrator.

Nowait value not accepted

Syncdepth not accepted

Options not accepted

Inconsistent attribute value
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-21

Run-Time Diagnostic Messages Input/Output Messages
75

Cause. A routine was not able to obtain buffer space.

Effect. Program behavior is language and application dependent.

Recovery. Program recovery is language and application dependent.

76

Cause. A value that was expected to be a Guardian external file name is not in the
correct format.

Effect. Program behavior is language and application dependent.

Recovery. If you supplied an invalid file name, correct the file name and rerun your
program. Otherwise, consult your system administrator.

77

Cause. A call to EDITREADINIT failed. error, if present, gives the reason for the
failure. Possible values of error are:

Effect. Program behavior is language and application dependent. See the Guardian
Procedure Calls Reference Manual for more information.

Recovery. Recovery is language and application dependent.

78

Cause. A call to EDITREAD failed. error, if present, gives the reason for the failure.
Possible values of error are:

Effect. Program behavior is language and application dependent.

Recovery. See the Guardian Procedure Calls Reference Manual for more information.

Cannot obtain buffer space

Invalid external filename (error)

EDITREADINIT failed (error)

EDITREAD failed (error)
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-22

Run-Time Diagnostic Messages Input/Output Messages
79

Cause. A call to OPENEDIT_ failed. error, if present, is the error returned by
OPENEDIT_. A negative number is a format error. A positive number is a file-system
error number.

Effect. Program behavior is language and application dependent.

Recovery. See the Guardian Procedure Calls Reference Manual for more information.

80

Cause. An initialization operation to a spooler collector failed. error, if present, is the
file-system error number returned by the SPOOLSTART system procedure.

Effect. Program behavior is language and application dependent.

Recovery. See the Spooler Programmer’s Guide for more information.

81

Cause. A routine detected an end-of-file condition.

Effect. Program behavior is language and application dependent.

Recovery. Correct your program to allow for an end-of-file condition or ensure that
your program can determine when all of the data has been read.

82

Cause. An operating system routine returned file-system error nnn. This error is
usually reported as a result of an event that is beyond control of your program such as
a path or system is not available.

Effect. Program behavior is language and application dependent.

Recovery. Consult your system administrator.

OpenEdit failed (error)

Spooler initialization failed (error)

End of file

Guardian I/O error nnn
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-23

Run-Time Diagnostic Messages Input/Output Messages
83

Cause. The program attempted an operation on a file whose type or current status is
unsuitable for execution of that operation. For example, a COBOL program calls a file
manipulation utility for a file that is using Fast I/O. (error), if present, is a file-system
error number.

Effect. Program behavior is language and application dependent.

Recovery. Change the program so that it does not attempt the operation on an
unsuitable file.

90

Cause. Routines written in two different languages—for example, COBOL and
FORTRAN—attempted to open a connection to a file using the same logical name.
This error is not reported for standard files.

Effect. Program behavior is language and application dependent.

Recovery. Modify your program to use different logical names or coordinate logical
names between the two routines so that they do not open the same logical file at the
same time.

91

Cause. A FORTRAN routine attempted to open a spooler but the spooler was already
open with attributes that conflict with those in the current open. This error is reported
only for an open to standard output and only if one or more of the following are true:

• The spooling levels of the two opens are different.

• The new open specifies any level-2 arguments.

Effect. If the rejected request was initiated from a FORTRAN I/O statement that
includes either an IOSTAT or ERR parameter, control is returned to the FORTRAN
routine. Otherwise, the FORTRAN run-time library terminates the program.

Recovery. Coordinate how routines in your program use standard output.

Operation incompatible with file type or status (error)

Open conflicts with open by other language

Spooler job already started
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-24

Run-Time Diagnostic Messages COBOL Messages
COBOL Messages
See the appropriate manual for the compiler for a description of the messages
produced and for more information on CRE error handling for COBOL:

• COBOL Manual for TNS and TNS/R Programs
• COBOL Manual for TNS/E Programs

FORTRAN Messages
The FORTRAN run-time library reports messages if an error occurs while a FORTRAN
module is running. The FORTRAN run-time library terminates the program unless the
error occurred on certain statements that specify the ERR parameter and or a status
parameter (for example, IOSTAT or BACKUPSTATUS). Refer to the FORTRAN
Reference Manual for additional error-handling information.

Native CRE Messages

275

Cause. errno is defined in the user’s object file. The native CRE reports this error if
errno has been defined in the object file, and it is not the same errno defined by the
native CRE shared run-time library instance data item errno.

Effect. The run-time library terminates your program.

Recovery. Make sure the only defined errno in a program is the one defined in the
native CRE shared run-time library.

276

Cause. environ is defined in the user’s object file. The native CRE reports this error
if environ has been defined in the object file, and it is not the same environ defined
by the native CRE shared run-time library instance data item environ.

Effect. The run-time library terminates your program.

Recovery. Make sure the only defined environ in a program is the one defined in the
native CRE shared run-time library.

Ambiguity in application of errno

Ambiguity in application of environ
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-25

Run-Time Diagnostic Messages Mapping Message Numbers Between Run-Time
Environments
Mapping Message Numbers Between
Run-Time Environments

The tables in this subsection show the correspondence between the message
numbers written to standard log when a program runs in language-specific run-time
environment to when a program runs in the CRE. The text in the column titled “Original
Message Text” shows the message text emitted by the original language-specific
run-time libraries.

Table 10-1. C Message Mapping

C Message
Number

CRE
message
Number Original Message Text

1 31 insufficient heap space for argv

2 31 insufficient heap space for env

3 31 insufficient heap space for assigns

4 31 insufficient user heap space

5 31 internal memory allocation error number

6 59 unable to open standard input, errno = number

7 60 unable to open standard output, errno = value

8 61 unable to open standard error, errno = value

34 out of param space

n/a large-model run-time heap redefinition not supported

n/a illegal HEAP PARAM is ignored

n/a run-time heap redefined using HEAP PARAM

n/a **** fatal C library internal heap error****

**** fatal user heap error ****

11 run-time data has been overwritten

12 run-time library internal consistency error

Table 10-2. COBOL85 Message Mapping (page 1 of 6)

COBOL85
Message
Number

CRE
Message
Number Original Message Text

001 125 OCCURS DEPENDING ON data item out of range

002 126 Extended address parameter passed where byte or word
address expected

003 127 CALL references an active program

004 128 Reference modifier out of range
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-26

Run-Time Diagnostic Messages Mapping Message Numbers Between Run-Time
Environments
005 129 Improper context for RELEASE statement

006 130 Improper context for RETURN statement

007 131 S location at end of paragraph not equal to that at beginning

008 132 SORT or MERGE statement executed while SORT or MERGE
active

009 133 Subscript out of range

010 134 GO TO statement not initialized

011 135 ACCEPT or DISPLAY requested for an unsupported device

012 17 Space allocation for ACCEPT or DISPLAY failed

013 136 Input-output error nnn on ACCEPT or DISPLAY device

014 25 File not uniquely identified in ASSIGN command

015 26 PARAM argument not recognized or not permitted

016 137 Called program not found

017 138 CANCEL references an active program

018 139 Cancelled program not found

019 142 RELEASE operation failed - SORTMERGE message follows

020 143 RETURN operation failed - SORTMERGE message follows

021 144 SORT or MERGE operation failed before end - SORTMERGE
message follows

022 145 SORT or MERGE operation failed at start - SORTMERGE

023 29 Run unit not compatible with COBOL85 library

024 150 Alternate key not present in file

025 151 DUPLICATES specification in SELECT does not match file

026 152 OPEN on a non-disk file that is specified with alternate

027 153 Create of new file failed with error nnn

028 154 Sequential DELETE must follow successful READ

029 155 DELETE positioning failed with error nnn

030 156 DELETE repositioning failed with error nnn

031 157 Wrong open mode for DELETE

032 158 DELETE operation failed with error nnn

033 77 OPEN on an EDIT file and EDITREADINIT failed with code -n

034 159 OPEN on an EDIT file and wrong open mode

035 160 OPEN on an EDIT file described with a record size that is too
big

Table 10-2. COBOL85 Message Mapping (page 2 of 6)

COBOL85
Message
Number

CRE
Message
Number Original Message Text
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-27

Run-Time Diagnostic Messages Mapping Message Numbers Between Run-Time
Environments
036 161 OPEN EXTEND positioning failed with error nnn

037 162 OPEN on a nonexistent file that is not OPTIONAL

038 163 OPEN page eject failed with error nnn

039 164 OPEN rewind failed with error nnn

040 165 OPEN requested for an unsupported device other illegal device

041 166 OPEN requested for a locked file

042 167 OPEN requested for an open file

043 168 LINAGE file not on printer or process

044 169 LOCK or UNLOCK operation failed with error nnn

045 170 MULTIPLE FILE TAPE file not on tape

046 171 OPEN positioning for MULTIPLE FILE TAPE failed

047 172 OPEN on a nonexistent file and alternate keys specified

048 75 Buffer space allocation failed

049 173 Indexed file not defined as ORGANIZATION INDEXED

050 174 OPEN INPUT when file not on input device

051 175 Operation other than OPEN on file that is not open

052 176 File is not opened for timed I/O

053 177 OPEN OUTPUT when file not on output device

054 178 Relative file not defined as ORGANIZATION RELATIVE

055 179 Sequential file not defined as ORGANIZATION SEQUENTIAL

056 180 Non-disk or unstructured file and not sequential organization

057 181 OPEN operation failed with error nnn

058 182 Primary key offset in program does not match file

059 183 Primary key size in program does not match file

060 184 Purge of file during OPEN failed with error nnn

061 185 Purge data from file during OPEN failed with error nnn

062 78 EDITREAD failed with code -n

063 186 READ operation failed with error nnn

064 187 READ WITH LOCK on file with read ahead

065 188 READ positioning failed with error nnn

066 189 Sequential READ requested when current position is undefined

067 190 Wrong open mode for READ

068 191 Reel swap failed with error nnn

Table 10-2. COBOL85 Message Mapping (page 3 of 6)

COBOL85
Message
Number

CRE
Message
Number Original Message Text
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-28

Run-Time Diagnostic Messages Mapping Message Numbers Between Run-Time
Environments
069 192 Sequential REWRITE must follow successful READ

070 193 REWRITE positioning failed with error nnn

071 194 REWRITE repositioning failed with error nnn

072 195 Wrong open mode for REWRITE

073 196 Sequential REWRITE permitted only with same record size

074 197 REWRITE operation failed with error nnn

075 n/a CLOSE LOCK while same file open elsewhere in run unit

076 198 START operation failed with error nnn

077 199 START positioning failed with error nnn

078 200 Wrong open mode for START

079 201 System node not available or does not exist

080 202 LOCKFILE, UNLOCKFILE or UNLOCKRECORD on file that is
not open

081 203 OPEN on unstructured file described without fixed length
records

082 204 Writing end of file failed with error nnn

083 205 Writing end of reel failed with error nnn

084 206 WRITE operation failed with error nnn

085 207 WRITE failed because file full

086 208 WRITE positioning failed with error nnn

087 209 WRITE repositioning failed with error nnn

088 210 Line skipping failed with error nnn

089 211 Wrong open mode for WRITE

090 212 Wrong length record specified for WRITE or REWRITE

091 n/a Descriptions for the same external file differ

092 213 OPEN EXTEND for file not on extend device

093 214 OPEN I-O for file not on input-output device

094 215 Wrong or missing LABELS attribute

095 216 Wrong or missing USE attribute

096 217 Wrong or missing RECFORM attribute

097 218 Wrong or missing RECLEN attribute

098 219 Wrong or missing BLOCKLEN attribute

099 220 Wrong or missing FILESEQ attribute

Table 10-2. COBOL85 Message Mapping (page 4 of 6)

COBOL85
Message
Number

CRE
Message
Number Original Message Text
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-29

Run-Time Diagnostic Messages Mapping Message Numbers Between Run-Time
Environments
100 221 Wrong or missing DEVICE attribute

101 222 A DEFINE procedure failed with error nnn

102 223 DEFINE required for LABEL RECORDS STANDARD

103 n/a Blocking not permitted for odd length records

104 80 Spooler initialization failed with error nnn

105 n/a No space for PARAM EXECUTION-LOG file block

106 26 External file name in PARAM EXECUTION-LOG is invalid

107 n/a File referenced in PARAM EXECUTION-LOG is on an invalid
device

108 140 Record referenced in RELEASE statement not in SD in SORT
or MERGE statement

109 141 File referenced in RETURN statement not in SD in SORT or
MERGE statement

110 79 OpenEdit failed with error nnn

111 224 PositionEdit failed with error nnn

112 225 Size of unstructured file opened EXTEND not multiple of
record size

113 226 File attributes don’t match and file not opened OUTPUT or has
alt keys

114 227 Loadclose failed with internal error mmm, GUARDIAN error
nnn

115 228 Allocatesegment for fast i/o failed with error return nnn

116 229 Loadopen failed with internal error mmm, GUARDIAN error
nnn

117 230 Loadwrite failed with internal error mmm, GUARDIAN error nnn

118 231 Initnewdatablock (Fast I-O) failed

119 232 An illegal operation was attempted on a fast i/o file

120 n/a The file-name in PARAM PRINTER-CONTROL is not a legal
COBOL file-name

121 1 thru 9 A hardware/software trap occurred - the type follows

122 233 OPEN OUTPUT SHARED and other process has disk open

123 75 Buffer allocation failed on SORT or MERGE

124 234 The CLOSE operation failed with Guardian error nnn

125 n/a An ENV COMMON routine called from an ENV OLD program

127 146 Parameter mismatch for CALL identifier

Table 10-2. COBOL85 Message Mapping (page 5 of 6)

COBOL85
Message
Number

CRE
Message
Number Original Message Text
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-30

Run-Time Diagnostic Messages Mapping Message Numbers Between Run-Time
Environments
128 83 Operation incompatible with the file type or status (error)

129 83 Operation incompatible with file type or status

130 40 Invalid function parameter

131 11 or 13 Corrupted environment

Table 10-3. FORTRAN Message Mapping

FORTRAN
Message
Number

CRE
message
Number Original Message Text

256 256 BAD UNIT

257 257 BAD PARAMETER

267 267 BUFFER OVERFLOW

270 270 FORMAT LOOPBACK

271 271 EDIT ITEM MISMATCH

272 272 ILLEGAL INPUT CHARACTER

273 273 ILLEGAL FORMAT

274 274 NUMERIC OVERFLOW

*The messages in this table appear in the FORTRAN Reference Manual but were are not displayed by the
FORTRAN run-time library. If you use the CRE with your FORTRAN program, the CRE message numbers and
associated text are displayed.

Table 10-2. COBOL85 Message Mapping (page 6 of 6)

COBOL85
Message
Number

CRE
Message
Number Original Message Text
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-31

Run-Time Diagnostic Messages Mapping Message Numbers Between Run-Time
Environments
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
10-32

A Data Type Correspondence
The following tables contain the return value size generated by HP language compilers
for each data type. Use this information when you need to specify values with the
Accelerator ReturnValSize option. These tables are also useful if your programs use
data from files created by programs in another language, or your programs pass
parameters to programs written in callable languages.

Refer to the appropriate NonStop SQL/MP programmer’s guide for a complete list of
SQL data type correspondence. Also note that the return value sizes given in these
tables do not correspond to the storage size of SQL data types.

If you are using the Data Definition Language (DDL) utility to describe your files, see
the Data Definition Language (DDL) Reference Manual for more information.

Note. COBOL includes COBOL 74, COBOL85, and SCREEN COBOL unless otherwise noted.

Table A-1. Integer Types, Part 1 (page 1 of 2)

Language 8-Bit Integer 16-Bit Integer 32-Bit Integer

BASIC STRING INT

INT(16)

INT(32)

C char1

unsigned char

signed char

int in the 16-bit data
model

short

unsigned

int in the 32-bit or wide
data model

long

unsigned long

COBOL Alphabetic

Numeric DISPLAY

Alphanumeric-Edited

Alphanumeric

Numeric-Edited

PIC S9(n) COMP or
PIC 9(n) COMP
without P or V,
1 < n < 4

Index Data Item2

NATIVE-23

PIC S9(n) COMP or
PIC 9(n) COMP
without P or V,
5 < n < 9

Index Data Item2

NATIVE-43

FORTRAN -- INTEGER4

INTEGER*2

INTEGER*4

1. Unsigned Integer.

2. Index Data Item is a 16-bit integer in COBOL 74 and a 32-bit integer in HP COBOL.

3. HP COBOL only.

4. INTEGER is normally equivalent to INTEGER*2. The INTEGER*4 and INTEGER*8 compiler directives
redefine INTEGER.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
A-1

Data Type Correspondence
SQL CHAR NUMERIC(1)…
NUMERIC(4)

PIC 9(1) COMP…
PIC 9(4) COMP

SMALLINT

NUMERIC(5)…
NUMERIC(9)

PIC 9(1) COMP
…PIC 9(9) COMP

INTEGER

TAL

pTAL

STRING

UNSIGNED(8)

INT

INT(16)

UNSIGNED(16)

INT(32)

Return
Value Size
(Words)

1 1 2

Table A-1. Integer Types, Part 1 (page 2 of 2)

Language 8-Bit Integer 16-Bit Integer 32-Bit Integer

1. Unsigned Integer.

2. Index Data Item is a 16-bit integer in COBOL 74 and a 32-bit integer in HP COBOL.

3. HP COBOL only.

4. INTEGER is normally equivalent to INTEGER*2. The INTEGER*4 and INTEGER*8 compiler directives
redefine INTEGER.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
A-2

Data Type Correspondence
Table A-2. Integer Types, Part 2

Language 64-Bit Integer Bit Integer of 1 to 31 Bits Decimal Integer

BASIC INT(64)

FIXED(0)

-- --

C long long -- --

COBOL PIC S9(n) COMP or
PIC 9(n) COMP
without P or V,
10 ð n ð 18

NATIVE-81

-- Numeric DISPLAY

FORTRAN INTEGER*8 -- --

SQL NUMERIC(10)…
NUMERIC(18)

PIC 9(10) COMP…
PIC 9(18) COMP
LARGEINT

-- DECIMAL (n,s)

PIC 9(n) DISPLAY

TAL

pTAL

FIXED(0), INT(64) UNSIGNED(n), 1 < n < 31 --

Return
Value Size
(Words)

4 1, 1 or 2 in TAL 1 or 2, depends on
declared pointer size

1. HP COBOL only
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
A-3

Data Type Correspondence
Table A-3. Floating, Fixed, and Complex Types

Langauge
32-Bit
Floating

64-Bit
Floating 64-Bit Fixed Point

64-Bit
Complex

BASIC REAL REAL(64) FIXED(s), 0 < s < 18 --

C float double -- --

COBOL -- -- PIC S9(n–s)v9(s) COMP or
PIC 9(n–s)v9(s) COMP,
10 < n < 18

--

FORTRAN REAL DOUBLE
PRECISION

-- COMPLEX

SQL -- -- NUMERIC (n,s)
PIC 9(n-s)v9(s) COMP

--

TAL

pTAL

REAL

REAL(32)

REAL(64) FIXED(s), -19 < s < 19 --

Return
Value Size
(Words)

2 4 4 4
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
A-4

Data Type Correspondence
Table A-4. Character Types

Language Character Character String
Varying Length
Character String

BASIC STRING STRING --

C signed char
unsigned char

pointer to char struct {
 int len;
 char val [n]
 };

COBOL Alphabetic
Numeric DISPLAY
Alphanumeric-Edited
Alphanumeric
Numeric-Edited

Alphabetic
Numeric DISPLAY
Alphanumeric-Edited
Alphanumeric
Numeric-Edited

01 name.
 03 len USAGE IS
 NATIVE-21

 03 val PIC X(n).

FORTRAN CHARACTER CHARACTER array
CHARACTER*n

--

SQL PIC X
CHAR

CHAR(n)
PIC X(n)

VARCHAR(n)

TAL

pTAL

STRING STRING array --

Return
Value Size
(Words)

1 1 or 2, depends on
declared pointer
size

1 or 2, depends on
declared pointer
size

1. HP COBOL only.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
A-5

Data Type Correspondence
Table A-5. Structured, Logical, Set, and File Types

Langauge

Byte-
Addressed
Structure

Word-Addressed
Structure

Logical
(true or
false) Boolean Set File

BASIC -- MAP buffer -- -- -- --

C -- struct -- -- -- --

COBOL -- 01-level RECORD -- -- -- --

FORTRAN RECORD -- LOGICAL1 -- -- --

SQL -- -- -- -- -- --

TAL

pTAL

Byte-
addressed
standard
STRUCT
pointer

Word-addressed
standard STRUCT
pointer

-- -- -- --

Return
Value Size
(Words)

1 or 2,
depends
on
declared
pointer
size

1 or 2, depends on
declared pointer
size

1 or 2,
depends
on
compiler
directive

1 1 1

1. LOGICAL is normally defined as 2 bytes. The LOGICAL*2 and LOGICAL*4 compiler directives redefine
LOGICAL.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
A-6

Data Type Correspondence
Table A-6. Pointer Types

Langauge
Procedure
Pointer Byte Pointer Word Pointer Extended Pointer

BASIC -- -- -- --

C function
pointer

byte pointer word pointer extended pointer

COBOL -- -- -- --

FORTRAN -- -- -- --

SQL -- -- -- --

TAL -- 16-bit pointer,
 byte-
addressed

16-bit pointer,
 word-addressed

32-bit pointer

pTAL PROCPTR 16-bit pointer,
 byte-
addressed

16-bit pointer,
 word-addressed

32-bit pointer

Return
Value Size
(Words)

1 or 2,
depends on
declared
pointer size

1 or 2,
depends on
declared
pointer size

1 or 2, depends
on declared
pointer size

1 or 2, depends on
declared pointer
size
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
A-7

Data Type Correspondence
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
A-8

Glossary
accelerate. To speed up emulated execution of a TNS object file by applying the

Accelerator on TNS/R systems or the Object Code Accelerator (OCA) on TNS/E
systems before running the object file.

accelerated mode. See TNS accelerated mode.

accelerated object code. The MIPS RISC instructions (called the TNS/R region) that result
from processing a TNS object file with the Accelerator or the Itanium instructions
(called the TNS/E region) that result from processing a TNS object file with the Object
Code Accelerator (OCA).

accelerated object file. A TNS object file that, in addition to its TNS instructions (in the
TNS region) and symbol information (in the symbol region), has been augmented
either by the Accelerator with equivalent but faster MIPS RISC instructions (in the
TNS/R region) or the Object Code Accelerator (OCA) with equivalent but faster Itanium
instructions (in the TNS/E region), or both.

Accelerator. A program optimization tool that processes a TNS object file and produces an
accelerated object file that also contains equivalent MIPS RISC instructions (called the
TNS/R region). TNS object code that is accelerated runs faster on TNS/R processors
than TNS object code that is not accelerated. See also TNS Object Code Accelerator
(OCA).

Accelerator-generated MIPS RISC instructions. See MIPS RISC instructions.

Accelerator-generated RISC instructions. See MIPS RISC instructions.

Accelerator mode. The TNS/R operational environment in which an object file containing
MIPS RISC instructions (called the TNS/R region) executes. Contrast with TNS/R
native object code.

application program interface (API). A set of services (such as programming language
functions or procedures) that are called by an application program to communicate with
other software components. For example, under Open System Services, an application
uses functions defined by ISO/IEC IS 9945-1:1990 to perform process management,
time management, and file management functions through the operating system.

ASSIGN command. A TACL command that lets you associate a logical file name with a
Guardian file name (physical file name). The Guardian file name is a fully qualified file
ID. See also file name and file ID.

Binder. A programming utility that combines one or more compilation units’ TNS object
code files to create an executable TNS object code file for a TNS program or library.
Used only with TNS object files.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Glossary-1

Glossary binding
binding. The operation of collecting, connecting, and relocating code and data blocks from
one or more separately compiled TNS object files to produce a target object file.

breakpoint. An object code location at which execution will be suspended so that you can
interactively examine and modify the process state. With symbolic debuggers,
breakpoints are usually at source line or statement boundaries.

In TNS/R or TNS/E native object code, breakpoints can be at any MIPS RISC
instruction or Itanium instruction within a statement. In a TNS object file that has not
been accelerated, breakpoints can be at any TNS instruction location. In a TNS object
file that has been accelerated, breakpoints can be only at certain TNS instruction
locations not at arbitrary instructions; some source statement boundaries are not
available. However, breakpoints can be placed at any instruction in the accelerated
code.

CLUDECS. A file, provided by the TNS CRE, that contains external declarations for CLULIB
functions.

CLURDECS. A file, provided by the native CRE, that contains external declarations for
Saved Message Utility functions, data, and data structure declarations in pTAL.

Common Language Utility (CLU) library. A collection of functions that provide common
services to two or more language products.

Common Run-Time Environment (CRE). A set of services implemented by the CRE
library that supports mixed-language programs. Contrast with language-specific run-
time environment

Common Run-Time Environment (CRE) library. A collection of functions that supports
requests for services managed by the CRE, such as I/O and heap management, math
and string functions, exception handling, and error reporting. C, COBOL, and
FORTRAN run-time libraries call CRE library functions to access resources managed
by the CRE. TAL and pTAL user routines can call CRE library functions to access
resources managed by the CRE.

HP NonStop operating system. The operating system for HP NonStop servers.

CISC. See complex instruction-set computing (CISC).

complex instruction-set computing (CISC). A processor architecture based on a large
instruction set, characterized by numerous addressing modes, multicycle machine
instructions, and many special-purpose instructions. Contrast with reduced instruction-
set computing (RISC)

connection. A path managed by the CRE from a process to a Guardian file. Each
connection is a unique path to the same Guardian file and to the same open of that file.
The CRE manages the connection. The CRE provides connection services for
standard files.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Glossary-2

Glossary CRE
CRE. See Common Run-Time Environment (CRE)

CREDECS. A file, provided by the TNS CRE, that contains external declarations for
CRELIB functions whose names begin with CRE_.

CRERDECS. A file, provided by the native CRE, that contains external declarations for
CRE function, data, and data structure declarations in pTAL.

DEFINE command. A TACL command that lets you specify a named set of attributes and
values to pass to a process.

eld utility. A utility that collects, links, and modifies code and data blocks from one or more
position-independent code (PIC) object files to produce a target TNS/E native object
file. See also Binder and nld utility.

emulate. To imitate the instruction set and address spaces of a different hardware system
by means of software. Emulator software is compatible with and runs software built for
the emulated system. For example, a TNS/R or TNS/E system emulates the behavior
of a TNS system when executing interpreted or accelerated TNS object code.

enoft utility. A utility that reads and displays information from TNS/E native object files.
See also noft utility.

execution mode. The (emulated or real) instruction set environment in which object code
runs. A TNS system has only one execution mode: TNS mode using TNS compilers
and 16-bit TNS instructions. A TNS/R system has three execution modes: TNS/R
native mode using MIPS native compilers and MIPS instructions, emulated TNS
execution in TNS interpreted mode, and emulated TNS execution in TNS accelerated
mode. A TNS/E system also has three execution modes: TNS/E native mode using
Itanium native compilers and Itanium instructions, emulated TNS execution in TNS
interpreted mode, and emulated TNS execution in TNS accelerated mode.

extended data segment. A segment that provides up to 127.5 megabytes of indirect data
storage. A process can have more that one extended data segment.

FCB. See file-control block (FCB).

file connector. An abstract entity through which a program accesses a file. It is physically
represented by the file-control block (FCB).

file-control block (FCB). A run-time data object that contains information about an open
file.

file ID. The last of the four parts of a file name; the first three parts are node name (system
name), volume name, and subvolume name.

file name. A fully qualified file ID. A file name contains four parts separated by periods:

• Node name (system name)
• Volume name
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Glossary-3

Glossary global data
• Subvolume name
• File ID

global data. Data declarations that appear before the first procedure declaration; identifiers
that are accessible to all compilations units in a binding session.

Guardian. An environment or API available for interactive or programmatic use with the
NonStop operating system. Processes that run in the Guardian environment use the
Guardian system procedure calls as their application program interface; interactive
users of the Guardian environment use the HP Tandem Advanced Command
Language (TACL) or another HP product’s command interpreter. Contrast with Open
System Services (OSS)

Guardian environment. The Guardian API, tools, and utilities.

home terminal. Usually the terminal from which a process was started.

Intel Itanium microprocessors. The series of Intel processors that support the Itanium
instruction set.

interpreted mode. See TNS interpreted mode.

Intel Itanium instructions. Register-oriented machine instructions that are native to and
directly executed by a TNS/E system. Intel Itanium instructions do not execute on TNS
and TNS/R systems. Contrast with TNS instructions and MIPS RISC instructions.

The TNS Object Code Accelerator (OCA) produces Intel Itanium instructions to
accelerate TNS object code. A TNS/E native compiler produces native-compiled Intel
Itanium instructions when it compiles source code.

Itanium word. An instruction-set-defined unit of memory. An Itanium word is 4 bytes (32
bits) wide, beginning on any 4-byte boundary in memory. Contrast with TNS word and
word. See also MIPS RISC word.

language-specific run-time environment. A set of services implemented by the run-time
library of each language. Without the CRE, C, COBOL, FORTRAN, or TAL programs
each have their own language-specific run-time environments. These language-
specific run-time environments are often incompatible with each other. Contrast with
Common Run-Time Environment (CRE)

language-specific run-time library. A collection of functions outside the CRE that supports
requests from a specific language for services such as I/O and heap management,
math and string functions, exception handling, and error reporting.

large memory model. A program attribute that specifies that a program’s heap is allocated
in the extended memory segment.

linking. The operating of examining, collecting, linking, and modifying code and data blocks
from one or more object files to produce a target object file.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Glossary-4

Glossary local data
local data. Data that you declare within a procedure; identifiers that are accessible only
from within that procedure.

lower 32K-word area. The lower half of the user data segment. The global, local, and
sublocal storage areas.

main routine. The first routine to execute when a program is run. The main routine
determines the run-time environment for a program. It is the routine declared with the
MAIN or PROGRAM keyword.

Master Control Block (MCB). A structure that holds CRE data.

MCB. See Master Control Block (MCB).

mixed-language program. A program that contains source files written in different HP
programming languages.

MIPS RISC instructions. Register-oriented 32-bit machine instructions in the MIPS-1 RISC
instruction set that are native to and directly executed on TNS/R systems. MIPS RISC
instructions do not execute on TNS systems and TNS/E systems. Contrast with TNS
instructions and Intel Itanium instructions.

Accelerator-generated MIPS RISC instructions are produced by accelerating TNS
object code. Native-compiled MIPS RISC instructions are produced by compiling
source code with a TNS/R native compiler.

MIPS RISC word. An instruction-set-defined unit of memory. A MIPS RISC word is 4 bytes
(32 bits) wide, beginning on any 4-byte boundary in memory. Contrast with TNS word
and word. See also Itanium word.

native. An adjective that can modify the following: object code, object file, process,
procedure, and mode of process execution. Native object files contain native object
code, which directly uses the MIPS instruction set or Intel Itanium processor
instructions and the corresponding conventions for register handling and procedure
calls. Native processes are those created by executing native object files. Native
procedures are units of native object code. Native-mode execution is the state of the
process when it is executing native procedures.

native-compiled Itanium instructions. See Intel Itanium instructions.

native-compiled MIPS RISC instructions. See MIPS RISC instructions.

native-compiled RISC instructions. See MIPS RISC instructions.

native mode. See TNS/R native mode or TNS/E native mode.

native-mode code. Object code that has been compiled with TNS/R native compilers to run
on TNS/R systems or with TNS/E native compilers to run on TNS/E systems.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Glossary-5

Glossary native-mode library
native-mode library. A native-compiled loadfile associated with one or more other native-
compiled loadfiles. A native-mode process can have any number of associated native-
mode libraries. See also TNS user library, TNS/R native user library, and TNS/E
library.

native-mode source code. High-level language routines that can be compiled with either
TNS/R native compilers or TNS/E native compilers. These two sets of compilers
accept the same language dialects.

native object code. See TNS/R native object code or TNS/E native object code.

native object file. See TNS/R native object file or TNS/E native object file.

native object file tool. See noft utility and enoft utility.

native process. See TNS/R native process or TNS/E native process.

native signal. See TNS/R native signal or TNS/E native signal.

nld utility. A utility that collects, links, and modifies code and data blocks from one or more
object files to produce a target TNS/R native object file. See also Binder and eld
utility.

noft utility. A utility that reads and displays information from TNS/R native object files. See
also enoft utility.

NonStop Kernel. See HP NonStop operating system

NonStop Open System Services (OSS). An application program interface (API) to the HP
NonStop operating system and associated tools and utilities. For a more complete
definition, see Open System Services (OSS)

object code accelerator (OCA). See TNS Object Code Accelerator (OCA).

object code interpreter (OCI). See TNS Object Code Interpreter (OCI).

object file. A file generated by a compiler or binder that contains machine instructions and
other information needed to construct the executable code spaces and initial data for a
process. The file may be a complete program that is ready for immediate execution, or
it may be incomplete and require binding with other object files before execution.

OCA. (1) The command used to invoke the TNS Object Code Accelerator (OCA) on a
TNS/E system.

(2) See TNS Object Code Accelerator (OCA).

OCA-accelerated object code. The Itanium instructions that result from processing a TNS
object file with the TNS Object Code Accelerator (OCA).
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Glossary-6

Glossary OCA-accelerated object file
OCA-accelerated object file. A TNS object file that has been augmented by the TNS
Object Code Accelerator (OCA) with equivalent but faster Itanium instructions. An
OCA-accelerated object file contains the original TNS object code, the OCA-
accelerated object code and related address map tables, and any Binder and symbol
information from the original TNS object file. An OCA-accelerated object file also can
be augmented by the Accelerator with equivalent MIPS RISC instructions.

open. A path from a process to a Guardian file that is managed by the file system. Each
open is a unique path created by calling the FILE_OPEN_ system procedure. See also
connection.

Open System Services (OSS). An open system environment available for interactive or
programmatic use with the HP NonStop operating system. Processes that run in the
OSS environment use the OSS application program interface; interactive users of the
OSS environment use the OSS shell for their command interpreter. Contrast with
Guardian

OSS. See Open System Services (OSS)

OSS environment. The Open System Services (OSS) API, tools, and utilities.

OSS signal. A signal model defined in the POSIX.1 specification and available to TNS
processes and native processes in the OSS environment. OSS signals can be sent
between processes.

OSS environment. The NonStop Open System Services (OSS) API, tools, and utilities.
Referred to as “personality” in marketing literature.

PARAM command. A TACL command that lets you associate an ASCII value with a
parameter name.

process. A program that has been submitted to the operating system for execution. An
instance of execution of a program.

process snapshot. The contents of a saveabend file or process snapshot file.

process snapshot file. (1) A file containing dump information needed by the system
debugging tool. In UNIX systems, such files are usually called core files or core dump
files.

(2) A file containing the state of a running process at a specific moment, regardless of
whether the process terminated abnormally.

See also saveabend file.

program file. An executable object file. See open

pTAL. Portable Transaction Application Language. A machine-independent system
programming language based on Transaction Application Language (TAL). The pTAL
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Glossary-7

Glossary pTAL compiler
language excludes architecture-specific TAL constructs and includes new constructs
that replace the architecture-specific constructs. Contrast with TAL.

pTAL compiler. An optimizing native-mode compiler for the pTAL language.

public dynamic-link library (public DLL). Optional native-mode executable code modules
available to all native user processes. A TNS/E public library that is specified in the
public library registry, supplied by HP or, optionally, a user.

reduced instruction-set computing (RISC). A processor architecture based on a
relatively small and simple instruction set, a large number of general-purpose registers,
and an optimized instruction pipeline that supports high-performance instruction
execution. Contrast with complex instruction-set computing (CISC)

RISC. See reduced instruction-set computing (RISC).

RISC instructions. MIPS RISC instructions. See also MIPS RISC instructions.

RISC word. An instruction-set-defined unit of memory. A RISC word is a MIPS RISC word.
Contrast with TNS word and word. See also Itanium word and MIPS RISC word.

RTL. See run-time library (RTL).

RTLDECS. A file, provided by the TNS CRE, that contains external declarations for CRELIB
functions whose names begin with RTL_.

RTLRDECS. A file, provided by the native CRE, that contains external declarations for RTL
functions, data, and data structure declarations in pTAL.

run-time environment. The services provided by run-time library functions and data objects
(data blocks and pointers) to a program at run-time.

run-time library (RTL). A collection of functions that supports requests for services such as
I/O and heap management, math and string functions, exception handling, and error
reporting.

saveabend file. A file containing dump information needed by the system debugging tool.
(In UNIX systems, such files are usually called core files or core dump files.) A
saveabend file is a special case of a save file. See also save file and process snapshot
file.

save file. A file created by the system in response to a command from a debugger. A save
file contains enough information about a running process at a given time to restart the
process at the same point in its execution. A save file contains an image of the
process, data for the process, and the status of the process at the time the save file
was created.

A save file can be created through an Inspect SAVE command at any time. A save file
called a saveabend file can be created by when a process’s SAVEABEND attribute is
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Glossary-8

Glossary Saved Message Utility
set and the process terminates abnormally. Other debuggers can create a save file but
refer to the result as a process snapshot file. See also process snapshot file.

Saved Message Utility. See SMU functions

shared file. A standard file that your program can open multiple times. Each time your
program opens the file, it is granted a connection to the same Guardian file open.
Shared files are managed by the CRE. The CRE supports three shared files: standard
input, standard output, and standard log.

shared run-time library (SRL). An object file that the operating system links to a program
file at run time. See also Transaction Application Language (TAL) and TNS/R native
shared run-time library (TNS/R native SRL)

signal. The method by which an environment notifies a process of an event. Signals are
used to notify a process when an error that is not related to input or output has
occurred. See also OSS signal, TNS State Library for TNS/E, TNS/E native signal, and
TNS/R native signal.

signal handler. A procedure that is executed when a signal is received by a process.

single-language program. program in which all routines are written in the same
programming language.

small memory model. A program attribute that specifies that the program’s heap is
allocated in the user data segment.

SMU functions. Saved Message Utility (SMU) functions provided by the Common
Language Utility Library of the CRE. COBOL, FORTRAN, and TAL routines can call
SMU functions to manipulate saved startup, ASSIGN, and PARAM messages.

SRL. See shared run-time library (SRL)

standard file. A file that your program can use with little or no need to establish file
parameters. The CRE supports three standard files—standard input, standard output,
and standard log—that correspond to the files STDIN, STDOUT, and STDERR in a C
programming environment.

standard input. A file from which a program can read sequential records. Each program
defines how standard input is used according to the needs of the application. Standard
input is analogous to the file STDIN in C.

standard log. A file to which a program can write sequential records. The records written to
standard log are usually informational, warning, or error messages that describe
exceptional conditions in a program. Standard log is analogous to the file STDERR
in C.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Glossary-9

Glossary standard output
standard output. A file to which a program can write sequential records. The program
defines how standard output is used according to the needs of the application.
Standard output is analogous to the file STDOUT in C.

sublocal data. Data that you declare within a subprocedure; identifiers that are accessible
only from within that subprocedure.

system procedure. A procedure supplied as part of the operating system.

TAL. See Transaction Application Language (TAL)

TNS. Denotes fault-tolerant HP computers that:

• Support the NonStop operating system
• Are based on microcoded complex instruction-set computing (CISC) technology.

TNS systems run the TNS instruction set. Contrast with TNS/R and TNS/E.

TNS accelerated mode. A TNS emulation environment on a TNS/R or TNS/E system in
which accelerated TNS object files are run. TNS instructions have been previously
translated into optimized sequences of MIPS or Itanium instructions. TNS accelerated
mode runs much faster than TNS interpreted mode. Accelerated or interpreted TNS
object code cannot be mixed with or called by native-mode object code. See also TNS
Object Code Accelerator (OCA). Contrast with TNS/R native mode and TNS/E native
mode.

TNS C compiler. The C compiler that generates TNS object files. Contrast with TNS/R
native C compiler and TNS/E native C compiler.

TNS code segment. One of up to 32 128-kilobyte areas of TNS object code within a TNS
code space. Each segment contains the TNS instructions for up to 510 complete
routines. Each TNS code segment contains its own procedure entry point (PEP) and
external procedure entry point (XEP) tables. It may also contain read-only data.

TNS code segment identifier. A seven-bit value in which the most significant two bits
encode a code space (user code, user library, system code, or system library) and the
five remaining bits encode a code segment index in the range 0 through 31.

TNS compiler. A compiler in the TNS development environment that generates 16-bit TNS
object code following the TNS conventions for memory, stacks, 16-bit registers, and
call linkage. The TNS C compiler is an example of such a compiler. Contrast with
TNS/R native compiler and TNS/E native compiler.

TNS Emulation Library. A public dynamic-link library (DLL) on a TNS/E system containing
the TNS Object Code Interpreter (OCI), millicode routines used only by accelerated
mode, and millicode for switching among interpreted, accelerated, and native
execution modes.

TNS emulation software. The set of tools, libraries, and system services for running TNS
object code on TNS/E systems and TNS/R systems. On a TNS/E system, the TNS
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Glossary-10

Glossary TNS fixup
emulation software includes the TNS Object Code Interpreter (OCI), the TNS Object
Code Accelerator (OCA), and various millicode libraries. On a TNS/R system, the TNS
emulation software includes the TNS Object Code Interpreter (OCI), the Accelerator,
and various millicode libraries.

TNS fixup. A task performed at process startup time when executing a TNS object file. This
task involves building the procedure entry point (PEP) table and external entry point
(XEP) table and patching PCAL and XCAL instructions in a TNS object file before
loading the file into memory.

TNS instructions. Stack-oriented, 16-bit machine instructions that are directly executed on
TNS systems by hardware and microcode. TNS instructions can be emulated on
TNS/E and TNS/R systems by using millicode, an interpreter, and either translation or
acceleration. Contrast with MIPS RISC instructions and Intel Itanium instructions.

TNS interpreted mode. A TNS emulation environment on a TNS/R or TNS/E system in
which individual TNS instructions in a TNS object file are directly executed by
interpretation rather than permanently translated into MIPS or Itanium instructions.
TNS interpreted mode runs slower than TNS accelerated mode. Each TNS instruction
is decoded each time it is executed, and no optimizations between TNS instructions
are possible. TNS interpreted mode is used when a TNS object file has not been
accelerated for that hardware system, and it is also sometimes used for brief periods
within accelerated object files. Accelerated or interpreted TNS object code cannot be
mixed with or called by native-mode object code. See also TNS Object Code
Interpreter (OCI). Contrast with TNS accelerated mode, TNS/R native mode, and
TNS/E native mode.

TNS library. A single, optional, TNS-compiled loadfile associated with one or more
application loadfiles. If a user library has its own global or static variables, it is called a
TNS shared run-time library (TNS SRL). Otherwise it is called a user library.

TNS mode. Synonym for TNS interpreted mode.

TNS object code. The TNS instructions that result from processing program source code
with a TNS compiler. TNS object code executes on TNS, TNS/E, and TNS/R systems.

TNS Object Code Accelerator (OCA). A program optimization tool that processes a TNS
object file and produces an accelerated file for a TNS/E system. OCA augments a TNS
object file with equivalent Itanium instructions. TNS object code that is accelerated
runs faster on TNS/E systems than TNS object code that is not accelerated. See also
Accelerator and TNS Object Code Interpreter (OCI).

TNS Object Code Interpreter (OCI). A program that processes a TNS object file and
emulates TNS instructions on a TNS/E system without preprocessing the object file.
See also TNS Object Code Accelerator (OCA).

TNS object file. An object file created by a TNS compiler or the Binder. A TNS object file
contains TNS instructions. TNS object files can be processed by the Accelerator or by
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Glossary-11

Glossary TNS procedure label
the TNS Object Code Accelerator (OCA) to produce to produce accelerated object
files. A TNS object file can be run on TNS, TNS/R, and TNS/E systems.

TNS procedure label. A 16-bit identifier for an internal or external procedure used by the
TNS object code of a TNS process. The most-significant 7 bits are a TNS code
segment identifier: 2 bits for the TNS code space and 5 bits for the TNS code segment
index. The least-significant 9 bits are an index into the target segment's procedure
entry-point (PEP) table. On a TNS/E system, all shells for calling native library
procedures are segregated within the system code space. When the TNS code space
bits of a TNS procedure label are %B10, the remaining 14 bits are an index into the
system's shell map table, not a segment index and PEP index.

TNS process. A process whose main program object file is a TNS object file, compiled
using a TNS compiler. A TNS process executes in interpreted or accelerated mode
while within itself, when calling a user library, or when calling into TNS system libraries.
A TNS process temporarily executes in native mode when calling into native-compiled
parts of the system library. Object files within a TNS process might be accelerated or
not, with automatic switching between accelerated and interpreted modes on calls and
returns between those parts.

Contrast with TNS/R native process and TNS/E native process.

TNS shared run-time library (TNS SRL). An SRL available to TNS processes in the OSS
environment on G-series systems. A TNS process can have only one TNS SRL. A
TNS SRL is implemented as a special user library that allows shared global data.

TNS signal. A signal model available to TNS processes in the Guardian environment.

TNS user library. A user library available to TNS processes in the Guardian environment.

TNS State Library for TNS/E. A library of routines to access and modify the TNS state of a
TNS process running on TNS/E.

TNS word. An instruction-set-defined unit of memory. A TNS word is 2 bytes (16 bits) wide,
beginning on any 2-byte boundary in memory. See also Itanium word, MIPS RISC
word, and word.

TNS/E. Denotes fault-tolerant HP computers that support the HP NonStop operating system
and that are based on the Intel Itanium processor-based architecture. TNS/E systems
run the Itanium instruction set and can run TNS object files by interpretation or after
acceleration. TNS/E systems include all HP systems that use NSAL-x processors.
Contrast with TNS and TNS/R.

TNS/E library. A TNS/E native-mode library. TNS/E libraries are always dynamic-link
libraries (DLLs); there is no native shared runtime library (SRL) format.

TNS/E native C compiler. The C compiler that generates TNS/E object files. Contrast with
TNS C compiler and TNS/R native C compiler.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Glossary-12

Glossary TNS/E native compiler
TNS/E native compiler. A compiler in the TNS/E development environment that generates
TNS/E native object code, following the TNS/E native-mode conventions for memory,
stack, registers, and call linkage. The TNS/E native C compiler is an example of such a
compiler. Contrast with TNS compiler and TNS/R native compiler.

TNS/E native mode. The primary execution environment on a TNS/E system, in which
native-compiled Itanium object code executes, following TNS/E native-mode compiler
conventions for data locations, addressing, stack frames, registers, and call linkage.
Contrast with TNS interpreted mode and TNS accelerated mode. See also TNS/R
native mode.

TNS/E native object code. The Itanium instructions that result from processing program
source code with a TNS/E native compiler. TNS/E native object code executes only on
TNS/E systems, not on TNS systems or TNS/R systems.

TNS/E native object file. An object file created by a TNS/E native compiler that contains
Itanium instructions and other information needed to construct the code spaces and
the initial data for a TNS/E native process.

TNS/E native process. A process initiated by executing a TNS/E native object file. Contrast
with TNS process and TNS/R native process.

TNS/E native signal. A signal model available to TNS/E native processes in both the
Guardian and Open System Services (OSS) environments. TNS/E native signals are
used for error exception handling.

TNS/E native user library. A user library available to TNS/E native processes in both the
Guardian and Open System Services (OSS) environments. A TNS/E native user library
is implemented as a TNS/E native dynamic-link library (DLL).

TNS/R. Denotes fault-tolerant HP computers that:

• Support the NonStop operating system
• Are based on 32-bit reduced instruction-set computing (RISC) technology.

TNS/R systems run the MIPS-1 RISC instruction set and can run TNS object files by
interpretation or after acceleration. TNS/R systems include all HP systems that use
NSR-x processors. Contrast with TNS and TNS/E.

TNS/R native C compiler. The C compiler that generates TNS/R object files. Contrast with
TNS C compiler and TNS/E native C compiler.

TNS/R native compiler. A compiler in the TNS/R development environment that generates
TNS/R native object code, following the TNS/R native-mode conventions for memory,
stack, 32-bit registers, and call linkage. The TNS/R native C compiler is an example of
such a compiler. Contrast with TNS compiler and TNS/E native compiler.

TNS/R native mode. The primary execution environment on a TNS/R system, in which
native-compiled MIPS object code executes, following TNS/R native-mode compiler
conventions for data locations, addressing, stack frames, registers, and call linkage.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Glossary-13

Glossary TNS/R native object code
Contrast with TNS interpreted mode and TNS accelerated mode. See also TNS/E
native mode.

TNS/R native object code. The MIPS RISC instructions that result from processing
program source code with a TNS/R native compiler. TNS/R native object code
executes only on TNS/R systems, not on TNS systems or TNS/E systems.

TNS/R native object file. An object file created by a TNS/R native compiler that contains
MIPS RISC instructions and other information needed to construct the code spaces
and the initial data for a TNS/R native process.

TNS/R native process. A process initiated by executing a TNS/R native object file. Contrast
with TNS process and TNS/E native process.

TNS/R native signal. A signal model available to TNS/R native processes in both the
Guardian and Open System Services (OSS) environments. TNS/R native signals are
used for error exception handling.

TNS/R native user library. A user library available to TNS/R native processes in both the
Guardian and Open System Services (OSS) environments. A TNS/R native user library
is implemented as a special private TNS/R native shared run-time library (TNS/R
native SRL).

TNS/R native shared run-time library (TNS/R native SRL). A shared run-time library
(SRL) available to TNS/R native processes in both the Guardian and Open System
Services (OSS) environments. TNS/R native SRLs can be either public or private. A
TNS/R native process can have multiple public SRLs but only one private SRL.

Transaction Application Language (TAL). A systems programming language with many
features specific to stack-oriented TNS systems.

upper 32K-word area. The upper half of the user data segment. TAL routines can use
pointers to allocate this area for your data; however, if you use the CRE, the upper
32K-word area is not available for your data.

user data segment. An automatically allocated segment that provides modifiable, private
storage for the variables of your process.

user library. (1) An object code file that the operating system links to a program file at run
time. A program can have only one user library. See also TNS user library, TNS/R
native user library, and TNS/E native user library.

(2) A library loadfile associated with a program so that it emulates the user library
feature of the operating system on TNS systems. For position-independent code
programs on TNS/R and TNS/E systems, the user library is a dynamic-link library. It is
treated as if it were the first library in the program's libList; thus it is searched first for
symbols required by the program. However, a user library does not appear in the
program's libList; instead, its name is recorded internally in the program's loadfile. A
program can be associated with at most one user library; the association can be
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Glossary-14

Glossary word
specified using the linker at link time or in a later change command, or at run time
using the process creation interfaces. (The /LIB …/ option to the RUN command in
TACL uses these interfaces.)

word. An instruction-set-defined unit of memory that corresponds to the width of registers
and to the most common and efficient size of memory operations. A TNS word is
2 bytes (16 bits) wide, beginning on any 2-byte boundary in memory. A MIPS RISC
word is 4 bytes (32 bits) wide, beginning on any 4-byte boundary in memory. An
Itanium word is also 4 bytes (32 bits) wide, beginning on any 4-byte boundary in
memory.
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Glossary-15

Glossary word
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Glossary-16

Index
A | B | C | D | E | F | G | H | I | L | M | N | O | P | R | S | T | U | V | W | Z

Special Characters

A
Advantages of the CRE 1-8
Arccos 7-4
Arcsin 7-5
Arctan 7-5
Arctan2 7-6
Arithmetic overflow 7-1
ARMTRAP 2-51
ASCII to numeric function

Atof 8-3
Atoi 8-3
Atol 8-3

ASSIGN message
changing 9-23, 9-25
creating 9-23, 9-25
deleting 9-19
finding greatest message number 9-26
parts 5-6
retrieving 9-21, 9-22

Atof 8-3
Atoi 8-3
Atol 8-3

B
Binder

INFO command 3-7
language-consistency checking 3-9
parameter checking 3-8
return-value checking 3-8

Binding
CLUL functions 5-2
CRELIB 3-8
examples 3-8
for minimal size 3-8

Binding (continued)
for program portability 3-8
for the CRE 3-5
mixed-language programs 3-8
rules 3-6
run-time libraries 3-7

Bit manipulation 7-24

C
C

binding 3-5
fopen_std_file routine 2-28
main routine 2-10
messages 10-26
program initialization 2-12, 2-13
program termination 2-16
requesting heap space 2-40, 2-43
run-time environment 1-1
run-time library 3-7
stdfiles directive 2-13
traps 2-52
using the CRE 3-4
$RECEIVE and 2-36

c89 utility 4-1
C8LIB 3-7
Catastrophic error, CRE handling of 2-49
Changing

environment information 5-8
environment values 5-7

Circumventing the CRE 2-67
CLIB 3-7
CLU library

see Common Language Utility library
CLUDECS 1-4, 5-2, 5-3
CLURDECS 1-4, 5-3
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Index-1

Index C
CLU_Process_Create_ function 9-1
CLU_Process_File_Name_ function 5-2,
9-1, 9-12
COBOL

binding 3-5
locating file connectors 9-1
main routine 2-10
messages 10-26/10-31
program initialization 2-12, 2-13
program termination 2-16
requesting heap space 2-40, 2-43
run-time environment 1-1
run-time library 3-7
SMU functions 9-1
traps 2-53
using the CRE 3-4
$RECEIVE and 2-35

COMMON Binder group 3-5
Common Language Utility library

see also Saved Message Utility
compared to CRE 9-1
compared to the CRE 5-1
function

binding 5-2
CLU_Process_File_Name_ 9-1,
9-12
compiling 5-2
definition 5-1

native CRE and 2-6
Compiling

ENV directive 3-4
for a language-specific run-time
environment 3-4
for the CRE 3-4
for the native CRE 4-1

Connection 2-17, 2-18
Converting applications 3-1
Cos 7-7
Cosh 7-7

CRE
advantages of using 1-8
basic control block 3-5
circumventing 2-67
compared to Common Language Utility
library 9-1
compared to the Common Language
Utility library 5-1
compiling for 1-7
data block

CRE_GLOBALS 3-5
CRE_HEAP 3-5
master control block 3-5
MCB 3-5

initialization
see also TAL_CRE_INITIALIZER_
procedure
errors 2-14
in general 2-9
tasks 2-10

language support 1-8
master control block 3-5
messages

see Messages
resources 2-1
run-time heap 3-5
service functions 6-1
services 2-1
termination 2-7, 2-8, 2-15
trap handler 2-50

CRE service messages 10-6/10-11
CREDECS 6-1

in general 1-4, 6-1
using 3-4, 4-3

CRELIB
functions, sourcing-in 3-4, 4-3
in general 3-8

CRERDECS 1-4, 2-8, 6-1
CRE/RTL 1-3
CRE_ prefixes 2-57, 2-58
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Index-2

Index D
CRE_File_Close_ 6-5
CRE_File_Control_ 6-6
CRE_File_Input_ 6-8
CRE_File_Message_ 6-9
CRE_File_Open_ 6-11
CRE_File_Output_ 6-20
CRE_File_Retrycheck_ 6-22
CRE_File_Setmode_ 6-23
CRE_Getenv_ 5-9, 6-1
CRE_GLOBALS 3-5
CRE_HEAP 3-5
CRE_Log_GetPrefix_ 6-45
CRE_Log_Message_ 6-25
CRE_Putenv_ 5-9, 6-2
CRE_Receive_Open_Close_ 6-31
CRE_Receive_Read_ 6-38
CRE_Receive_Write_ 6-41
CRE_Spool_Start_ 6-27
CRE_Stacktrace_ 6-45
CRE_Terminator_ 6-42
CRE_Terminator_ procedure 2-16

D
Data blocks 3-5
Data types A-1
Decimal conversion function

Decimal_to_Int 7-26
Int_to_Decimal 7-27

Decimal_to_Int 7-26
Declarations file 3-4, 4-3
Default signal handler 2-3
DEFINE command, OSS 2-45
DEFINE command, TACL product 2-45
delete() function 2-43
Deleting environment information 5-9

E
EMBEDDED Binder environment
option 3-5
EMS events 2-2

emulate A-3
ENV directive 1-7, 3-4, 4-1

Binder groups 3-5
default values 3-3, 4-1

ENV pragma
see ENV directive

environ array 2-12, 5-9
Environment

environ array 5-9
function

CRE_Getenv_ 5-9, 6-1
CRE_Putenv_ 5-9, 6-2

information
changing 5-8
deleting 5-9
getting 5-7

values, changing 5-7
Erase on free, heap management
attribute 2-46
Error

catastrophic, CRE handling of 2-49
CRE initialization 2-14
CRE termination 2-16
math standard function 2-48
program logic 2-48

Error messages
see Messages

Event management service 2-2
Exception-handling function

CRE_Log_GetPrefix_ 6-45
CRE_Stacktrace_ 6-45

EXECUTION-LOG, PARAM
program initialization and 2-33
standard input and 2-29, 2-30
standard log and 2-33, 2-34

EXECUTION-LOG, PARAM
standard output and 2-31/2-32

Exp 7-8
Extended stack 2-39
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Index-3

Index F
F
Fault tolerance, CRE

See Process Pairs
File connectors

identifying 5-2
locating 5-2
native CRE and 2-6
processing 9-1, 9-12

File sharing
see Sharing standard files

File-sharing function
CRE_File_Close_ 6-5
CRE_File_Control_ 6-6
CRE_File_Input_ 6-8
CRE_File_Message_ 6-9
CRE_File_Open_ 6-11
CRE_File_Output_ 6-20
CRE_File_Retrycheck_ 6-22
CRE_File_Setmode_ 6-23
CRE_Log_Message_ 6-25
CRE_Receive_Open_Close_ 6-31
CRE_Receive_Read_ 6-38
CRE_Receive_Write_ 6-41
CRE_Spool_Start_ 6-27

File_Close_ 6-5
File_Control_ 6-6
File_Input_ 6-8
File_Message_ 6-9
File_Open_ 6-11
File_Output_ 6-20
File_Retrycheck_ 6-22
File_Setmode_ 6-23
fopen_std_file, C library function 2-28
FORTLIB 3-7
FORTRAN

binding 3-5
HIGHCONTROL directive 3-5
locating file connectors 9-1
main routine 2-10

FORTRAN (continued)
messages 10-25/10-31
program initialization 2-12, 2-13
program termination 2-16
requesting heap space 2-40, 2-43
run-time environment 1-1
run-time library 3-7
SMU functions 9-1
standard log 2-33
traps 2-54
using the CRE 3-4
$RECEIVE and 2-35

FORTSYS 3-7
free() function 2-43
FULL Binder environment option 3-5
Function parameter message 10-14
Function parameter messages 10-17
Function, standard, using 2-56

G
Get environment variable 6-1
getenv 5-9
Getting environment information 5-7
Guardian environment

see OSS environment, compared to
Guardian environment

H
HEAP 2-38
Heap

sharing 2-39, 2-42
space, requesting 2-40, 2-43
statistics 2-40, 2-41

HEAP data block
Heap management attributes 2-44
Heap management messages 10-12/10-14
Heap managers, native 2-43
HEAP, PARAM not supported 1-8, 2-40
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Index-4

Index I
I
INFILE in startup message 2-29
Initialization in CRE 2-10
Input/output messages 10-18/10-24
Inspect, using with the CRE 2-62
Int_to_Decimal 7-27
I/O

with the CRE 2-19
without the CRE 2-17

L
Language support 1-8
Language-specific run-time environment

definition 1-1
Language-specific run-time libraries

definition 1-1
LIBRARY Binder environment option 3-5
LIBSPACE Binder environment option 3-5
Ln 7-8
Log10 7-9
Logic errors, CRE handling of 2-48
Log_GetPrefix_ 6-45
Log_Message_ 6-25
Lower 7-10

M
Main routine

designating 2-9
standard files 2-28

malloc() function 2-43
Manipulation function for 64-bit data

bit manipulation 7-24
Remainder 7-25

Master control block 3-5
Math function

Arccos 7-4
Arcsin 7-5
Arctan 7-5
Arctan2 7-6

Math function (continued)
arithmetic overflow handling and 7-1
Cos 7-7
Cosh 7-7
errors 2-48
Exp 7-8
Ln 7-8
Log10 7-9
Lower 7-10
Mod 7-11
Normalize 7-12
Odd 7-13
Positive_Diff 7-13
Power 7-15
Power2 7-16
Random_Next 7-17
Random_Set 7-17
Round 7-17
Sign 7-18
Sin 7-19
Sinh 7-19
Split 7-20
Sqrt 7-20
Tan 7-21
Tanh 7-21
Truncate 7-22
Upper 7-22

Math function messages 10-15/10-16
MCB 3-5
MCB pointer 2-37, 2-42, 2-64
Memory handling errors with heap
manager 2-44
Memory organization

in general 2-37, 2-42
in the OSS environment compared to
Guardian environment 2-3
native CRE 2-41
TNS CRE 2-37
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Index-5

Index N
Memory-block function
Memory_Compare_ 8-34
Memory_Copy_ 8-35
Memory_Findchar_ 8-36
Memory_Move_ 8-37
Memory_Repeat_ 8-38
Memory_Set_ 8-39
Memory_Swap_ 8-40

Memory_Compare_ 8-34
Memory_Copy_ 8-35
Memory_Findchar_ 8-36
Memory_Move_ 8-37
Memory_Repeat_ 8-38
Memory_Set_ 8-39
Memory_Swap_ 8-40
Messages

C 10-26
CRE service 10-6/10-11
format of 10-2
FORTRAN 10-25/10-31
function parameter 10-14, 10-17
heap management 10-12/10-14
input/output 10-18/10-24
mapping message numbers between
run-time environments 10-26
mapping original to CRE
numbers 10-26
math function 10-15/10-16
parts 5-6, 5-7
trap 10-3/10-5

Mixed-environment programming 1-8
Mixed-language programming 1-8, 2-8
Mod 7-11

N
Native CRE

arithmetic overflow handling 7-1
CRE_GETENV_ 6-2
CRE_PUTENV_ 6-3
decimal conversion functions and 7-25

Native CRE (continued)
file-sharing functions 6-4
memory block functions 8-33
RTLRDECS file 7-1
run-time diagnostic messages 10-25
SMU functions 9-17
standard math functions 7-3
string functions 8-3

NATIVE CRE/RTL 1-3
NEUTRAL Binder group 3-5
new() function 2-43
Normalize 7-12

O
Odd 7-13
OLD Binder group 3-5
OLD binder group 3-5
OSS environment

compared to Guardian environment
in general 2-2/2-6
memory organization 2-3
process pairs 2-6
program initialization 2-4
shared message utility routines 2-6
standard files 2-2
standard functions 2-5
traps and exceptions 2-3
$RECEIVE and 2-3

error reporting and 2-54
memory organization and 2-37, 2-41
process pairs and 2-59
program initialization and 2-9
program termination and 2-15
sharing standard files and 2-17
signals and 2-3, 2-48
spooler collectors and 2-36
traps and exceptions and 2-48
$RECEIVE and 2-34

OUTFILE in startup message 2-29
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Index-6

Index P
P
PARAM command

EXECUTION-LOG
program initialization and 2-33

SAVE-ENVIRONMENT
environ array and 5-9
using 5-7

PARAM message
see also PARAM command
changing 9-29
creating 9-29
deleting 9-27
parts 5-7
retrieving 9-28

Positive_Diff 7-13
Power 7-15
Power2 7-16
Process pairs 2-59

C 2-60
CRE control of 2-59
in general 2-59
in the OSS environment compared to
Guardian environment 2-6
language support for 2-60
native CRE and 2-6
requirements for using 2-59
status codes 2-61

Program initialization
in general 2-9
in the OSS environment compared to
Guardian environment 2-4
native CRE 2-4, 2-13
TNS CRE 2-4, 2-10

Program logic errors, CRE handling of 2-48
Program termination

compared to Guardian environment
program termination 2-4

in general 2-15

Program termination (continued)
in the OSS environment compared to
Guardian environment 2-4

Programs, mixed environment 1-8
pTAL

compiling modules for native CRE 4-2
linking for the native CRE 4-3
traps 2-54
using with the CRE 2-8

PTALLIB 2-8
pTAL_CRE_INITIALIZER_ procedure 2-15
Put environment variable 6-2
putenv 5-9

R
Random_Next 7-17
Random_Set 7-17
Receive function

CRE_Receive_Open_Close_ 6-31
CRE_Receive_Read_ 6-38
CRE_Receive_Write_ 6-41

Receive_Open_Close_ 6-31
Receive_Read_ 6-38
Receive_Write_ 6-41
Remainder 7-25
Round 7-17
RTLDECH 2-45
RTLDECS 1-4, 7-1
RTLDECS, using 3-4, 4-3
RTLRDECS 1-4, 2-45
RTL_ prefixes 2-57, 2-58
Run-time environment

determining 3-7
selecting 1-7

Run-time libraries 3-7

S
SAVE compiler directive 5-5
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Index-7

Index S
Saved Message Utility
see also Common Language Utility
library
description 5-3, 9-17
environment information 5-7
environment values 5-7
functions

SMU_Assign_CheckName_ 9-18
SMU_Assign_Delete_ 9-19
SMU_Assign_GetText_ 9-21
SMU_Assign_GetValue_ 9-22
SMU_Assign_PutText_ 9-23
SMU_Assign_PutValue_ 9-25
SMU_Message_CheckNumber_ 9-
26
SMU_Param_Delete_ 9-27
SMU_Param_GetText_ 9-28
SMU_Param_PutText_ 9-29
SMU_Startup_Delete_ 9-30
SMU_Startup_GetText_ 9-31
SMU_Startup_PutText_ 9-33

messages
content 5-6
saving 5-5

services provided by 5-5
using from COBOL 5-5
using from FORTRAN 5-5
using from TAL 5-5

Saved Message Utility routines
in the OSS environment compared to
Guardian environment 2-6

SAVE-ENVIRONMENT, PARAM
environ array and 5-9
using 5-7

Saving messages for SMU functions 5-5
Service functions, calling 6-1
Sharing standard files 2-17
Sign 7-18
Signals 2-3, 2-48
Sin 7-19

Sinh 7-19
Sixty-four-bit logical operation

bit manipulation 7-24
Remainder 7-25

SMU functions
see Saved Message Utility, functions

SMU_Assign_CheckName_ function 9-18
SMU_Assign_Delete_ Function 9-19
SMU_Assign_GetText_ function 9-21
SMU_Assign_GetValue_ function 9-22
SMU_Assign_PutText_ function 9-23
SMU_Assign_PutValue_ function 9-25
SMU_Message_CheckNumber_
function 9-26
SMU_Param_Delete_ function 9-27
SMU_Param_GetText_ function 9-28
SMU_Param_PutText_ function 9-29
SMU_Startup_Delete_ function 9-30
SMU_Startup_GetText_ function 9-31
SMU_Startup_PutText_ function 9-33
Sourcing-in CRELIB functions 3-4, 4-3
Split 7-20
Spooler collector, using 2-36
Spool_Start_ 6-27
Sqrt 7-20
Stacktrace_ 6-45
Standard files

C 2-28
CRE routines 2-27
determining when open 2-28
in the OSS environment compared to
Guardian environment 2-2
overview 2-17
processes 2-28
sharing access to 2-17
standard input 2-29
standard log 2-33
standard output 2-31
terminals 2-28
with the CRE 2-18
without the CRE 2-17
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Index-8

Index S
Standard functions
in the OSS environment compared to
Guardian environment 2-5
using 2-56

Standard input 2-29
Standard log

FORTRAN and 2-33
in general 2-33

Standard output 2-31
Startup message

changing 9-33
creating 9-33
deleting 9-30
in general 2-29
retrieving 9-31

Statistics, heap 2-41
Stcarg 8-4
Stccpy 8-5
Stcd_I 8-6
Stcd_L 8-7
Stch_I 8-8
Stci_D 8-9
Stcpm 8-10
Stcpma 8-11
Stcu_D 8-12
STDERR and standard log 2-33
stdfiles C directive 2-13
STDIN, not recognized 2-30
STDOUT, not recognized 2-32
Stpblk 8-13
Stpsym 8-14
Stptok 8-15
Strcat 8-16
Strchr 8-17
Strcmp 8-18
Strcpy 8-19
Strcspn 8-20
String function

Atof 8-3
Atoi 8-3
Atol 8-3

String function (continued)
Stcarg 8-4
Stccpy 8-5
Stcd_I 8-6
Stcd_L 8-7
Stch_I 8-8
Stci_D 8-9
Stcpm 8-10
Stcpma 8-11
Stcu_D 8-12
Stpblk 8-13
Stpsym 8-14
Stptok 8-15
Strcat 8-16
Strchr 8-17
Strcmp 8-18
Strcpy 8-19
Strcspn 8-20
Strlen 8-21
Strncat 8-22
Strncmp 8-23
Strncpy 8-24
Strpbrk 8-25
Strrchr 8-26
Strspn 8-27
Strstr 8-27
Strtod 8-28
Strtol 8-29
Strtoul 8-30
Substring_Search 8-32
table of 8-1

Strlen 8-21
Strncat 8-22
Strncmp 8-23
Strncpy 8-24
Strpbrk 8-25
Strrchr 8-26
Strspn 8-27
Strstr 8-27
Strtod 8-28
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Index-9

Index T
Strtol 8-29
Strtoul 8-30
Substring_Search 8-32
System library 3-7

T
TAL

binding 3-5
ENV NEUTRAL directive 3-6
INITIALIZER system procedure 2-6
main routine 2-10
program initialization 2-12, 2-13
program termination 2-16
requesting heap space 2-40, 2-43
run-time environment 1-1
run-time library 3-7
selecting ENV directive 2-6
Sequential I/O (SIO) routines 2-6
SMU functions 9-1
TALLIB 3-7
traps 2-54
user data segment 2-6
using the CRE 3-4
using with the CRE 2-6
$RECEIVE and 2-35

TALLIB 1-4, 3-7
TAL_CRE_INITIALIZER_ 5-5
TAL_CRE_INITIALIZER_ procedure 2-7,
2-15, 3-7
Tan 7-21
Tanh 7-21
Termination function,
CRE_Terminator_ 2-16, 6-42
Terminator_ 6-42
TNS and native programs 1-8
Traps

see also Signals
arithmetic overflow 2-49
ARMTRAP 2-51
C routines 2-52

Traps (continued)
COBOL routines 2-53
CRE handling of 2-49
CRE trap handler 2-50
FORTRAN routines 2-54
hardware 2-49
in the OSS environment compared to
Guardian environment 2-3
language-specific, handling 2-52
messages 10-3/10-5
TAL 2-54

Truncate 7-22
Type suffixes 2-59

U
Upper 7-22
User heap 2-39, 2-42
User library routines 3-3

V
Visual Inspect, using with the CRE 2-62

W
White space, defined 8-1

Z
ZCREDLL 1-4
ZCRESRL 1-4

Special Characters
$RECEIVE

C routines 2-36
COBOL routines 2-35, 2-36
COBOL routines and 2-36
CRE initialization 2-10
FORTRAN routines 2-35, 2-36
FORTRAN routines and 2-36
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Index-10

Index Special Characters
$RECEIVE (continued)
in the OSS environment compared to
Guardian environment 2-3
messages received from 2-35
OSS environment and 2-34
program initialization 2-10, 2-35
reading 2-35
TAL routines 2-35, 2-36
TAL routines and 2-36
using 2-34

_ERASE_ON_FREE_ DEFINE 2-45
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Index-11

Index Special Characters
Common Run-Time Environment (CRE) Programmer’s Guide—528146-004
Index-12

	What’s New in This Guide
	Guide Information
	New and Changed Information

	About This Guide
	Audience
	Organization
	Additional Information
	Hypertext Links
	General Syntax Notation
	Notation for Messages
	Change Bar Notation

	1 Introducing the CRE
	Mixed-Language Programming Without the CRE
	What Is the CRE?
	Selecting a Run�Time Environment
	Advantages of Using the CRE

	2 CRE Services
	Comparing the CRE in the OSS and Guardian Environments
	Standard Files
	$RECEIVE
	Memory Organization
	Traps and Exceptions
	Program Initialization
	Program Termination
	Error Reporting
	Standard Functions
	CRE Services
	Process Pairs

	Writing TAL Routines That Use the TNS CRE
	Writing pTAL Routines That Use the Native CRE
	Program Initialization
	Designating a Main Routine
	TNS CRE Initialization
	Native CRE Initialization
	Initialization Errors
	Initializing the TNS CRE From TAL
	Initializing the Native CRE From pTAL

	Program Termination
	CRE_Terminator_ Procedure
	Handling Error Conditions in CRE_Terminator_

	Sharing Standard Files
	Sharing Standard Files Without Using the CRE
	Sharing Standard Files Using the CRE
	Using CRE Functions to Access the Standard Files
	Determining When Standard Files Are Opened
	Using Terminals and Process
	Program Startup Message
	Standard Input
	Standard Output
	Standard Log

	Using $RECEIVE
	$RECEIVE and Program Initialization
	Messages Received From $RECEIVE
	$RECEIVE and the Languages Supported by the CRE

	Using a Spooler Collector
	Memory Organization
	TNS CRE Memory
	Native CRE Memory

	Using the Native Heap Managers
	Undetected Logic Errors Can Exist in Code that Uses the Original Heap Manager
	Using the Overwrite Feature to Detect Logic Errors
	Using the Programmatic Heap-Management Attributes

	TNS CRE Traps and Exceptions
	Errors in Program Logic
	Hardware Traps
	Catastrophic Errors
	TNS CRE Trap Handler
	Using ARMTRAP

	Writing Messages to Standard Log
	Language-Specific Error Handling
	C Routines
	COBOL Routines
	FORTRAN Routines
	TAL Routines
	pTAL Routines

	Reporting CRE Errors in the OSS Environment
	Native CRE Signals and Exceptions
	Using CRE Services
	Using Standard Functions
	CRE and RTL Prefixes
	Type Suffixes

	Using Process Pairs
	Requirements for Using Process Pairs
	Language Support for Process Pairs
	Using C Routines in Process Pairs
	Results of Operations That Support Process Pairs

	Using the Inspect, Native Inspect, and Visual Inspect Symbolic Debuggers With CRE Programs
	Selecting a Debugger
	Locating the Corrupter of TNS CRE Pointers

	Circumventing the CRE

	3 Compiling and Binding Programs for the TNS CRE
	Compiling Programs for the CRE
	Specifying a Run-Time Environment
	Sourcing-in CRELIB Function Declarations
	CRE Data Blocks

	Binding Programs for the CRE
	Run�Time Libraries
	Sample Binder Sessions
	Bind-Time Validation for Mixed-Language Programs

	4 Compiling and Linking Programs for the Native CRE
	Using the Environment Variable for C and C++ Modules
	Sourcing In CRE External Declarations for pTAL Modules
	Linking Modules

	5 Using the Common Language Utility (CLU) Library
	What Is the CLU Library?
	Compiling and Binding or Linking Programs That Use the CLU Library
	Creating Processes
	Locating and Identifying File Connectors
	Using the Saved Message Utility Functions
	Services Provided by the Saved Message Utility
	Content of Messages
	Using SMU Routines to Manipulate Messages
	Using the environ Array

	6 CRE Service Functions
	Environment Functions
	CRE_Getenv_
	CRE_Putenv_

	File-Sharing Functions
	CRE_File_Close_
	CRE_File_Control_
	CRE_File_Input_
	CRE_File_Message_
	CRE_File_Open_
	CRE_File_Output_
	CRE_File_Retrycheck_
	CRE_File_Setmode_
	CRE_Hometerm_Open_
	CRE_Log_Message_
	CRE_Spool_Start_

	$RECEIVE Functions
	CRE_Receive_Open_Close_
	CRE_Receive_Read_
	CRE_Receive_Write_

	CRE_Terminator_
	Exception-Handling Functions
	CRE_Log_GetPrefix_
	CRE_Stacktrace_

	7 Math Functions
	Arithmetic Overflow Handling
	Standard Math Functions
	Arccos
	Arcsin
	Arctan
	Arctan2
	Cos
	Cosh
	Exp
	Ln
	Log10
	Lower
	Mod
	Normalize
	Odd
	Positive_Diff
	Power
	Power2
	Random_Set, Random_Next
	Round
	Sign
	Sin
	Sinh
	Split
	Sqrt
	Tan
	Tanh
	Truncate
	Example
	Upper

	Sixty-Four-Bit Logical Operations (Bit Manipulation Functions)
	Return Value
	Examples

	Remainder
	Return Value

	Decimal Conversion Functions
	Decimal_to_Int
	Int_to_Decimal

	8 String and Memory Block Functions
	String Functions
	Atoi, Atol, Atof
	Stcarg
	Stccpy
	Stcd_I
	Stcd_L
	Stch_I
	Stci_D
	Stcpm
	Stcpma
	Stcu_D
	Stpblk
	Stpsym
	Stptok
	Strcat
	Strchr
	Strcmp
	Strcpy
	Strcspn
	Strlen
	Strncat
	Strncmp
	Strncpy
	Strpbrk
	Strrchr
	Strspn
	Strstr
	Strtod
	Strtol
	Strtoul
	Substring_Search

	Memory Block Functions
	Memory_Compare
	Memory_Copy
	Memory_Findchar
	Memory_Move
	Memory_Repeat
	Memory_Set
	Memory_Swap

	9 Common Language Utility (CLU) Library Functions
	CLU_Process_Create_
	Return Value
	COBOL Considerations
	FORTRAN Considerations

	CLU_Process_File_Name_
	Return Value
	COBOL Considerations
	FORTRAN Considerations

	SMU Functions
	SMU_Assign_CheckName_
	SMU_Assign_Delete_
	SMU_Assign_GetText_
	SMU_Assign_GetValue_
	SMU_Assign_PutText_
	SMU_Assign_PutValue_
	SMU_Message_CheckNumber_
	SMU_Param_Delete_
	SMU_Param_GetText_
	SMU_Param_PutText_
	SMU_Startup_Delete_
	SMU_Startup_GetText_
	SMU_Startup_PutText_

	SMU Function Considerations
	COBOL Considerations
	FORTRAN Considerations
	TAL Considerations
	EpTAL Considerations
	pTAL Considerations

	10 Run-Time Diagnostic Messages
	Error Effects and Recovery
	Format of Messages in This Section
	Trap and Signal Messages
	CRE Service Function Messages
	Heap-Management Messages
	Function Parameter Message
	Math Function Messages
	Function Parameter Messages
	Input/Output Messages
	COBOL Messages
	FORTRAN Messages
	Native CRE Messages
	Mapping Message Numbers Between Run�Time Environments

	A Data Type Correspondence
	Glossary
	Index

