
HP Code Coverage Tool
Reference Manual for
HP Integrity NonStop
NS-Series Servers
Abstract

This manual describes the Code Coverage Tool for HP Integrity NonStop NS-Series
servers. It addresses application developers who use C/C++, pTAL, or COBOL to
create application components for NonStop servers, and who wish either to evaluate
the code coverage provided by test cases or to understand what parts of an application
are used, or most heavily used, under a representative workload.

Product Version

Code Coverage Tool H06

Supported Release Version Updates (RVUs)

This publication supports H06.07 and all subsequent H-series RVUs until otherwise
indicated by its replacement publication.

Part Number Published
542684-001 August 2006

Document History
Part Number Product Version Published
542684-001 Code Coverage Tool H06 August 2006

HP Code Coverage Tool
Reference Manual for HP
Integrity NonStop NS-Series
Servers
Glossary Index Figures Tables
What’s New in This Manual v
Manual Information v
New and Changed Information v

About This Manual vii
Notation Conventions vii

1. Introduction to the HP Code Coverage Tool
Features of the Tool 1-1
Required Hardware and Software 1-2
Usage Overview 1-2
Topics This Manual Covers 1-5

2. Installing the Code Coverage Tool
Copying the Code Coverage Tool to Your Workstation 2-1

Installing codecov 2-1
Installing profmrg 2-1

3. Building the Application
Task Overview 3-1
Prepare to Compile 3-1

Selecting Source Files 3-1
Understanding Code Coverage Concepts 3-2
Usage Considerations 3-2
Cleaning Up From Previous Runs 3-2

Build the Application 3-3
Compiling the Source Files 3-3
Verify the Output 3-3
Linking the Object Files 3-3
HP Enterprise Toolkit (ETK) Considerations 3-4

Example 3-4
 Hewlett-Packard Company—542684-001
i

Contents 4. Running the Application
4. Running the Application
Task Overview 4-1
Prepare the Application for Testing 4-1

Preparing Test Cases 4-1
Insulating the Application 4-1

Run the Application 4-2
Verify Output 4-2
Example 4-2

5. Converting Raw Data Files to DPI Files
Task Overview 5-1
Prepare profmrg Input Files 5-1

Assembling Raw Data Files 5-2
Saving DPI Files from Previous Runs 5-2
Including DPI Files from Previous Runs 5-2
Where to Put the Input Files 5-3

Run profmrg 5-3
Verify Output 5-4

The Output DPI File 5-4
profmrg Use of Standard Error and Output Files 5-5

Example 5-5

6. Running the Code Cover Utility
Task Overview 6-1
Prepare to Run codecov 6-2

Providing for Source File Retrieval 6-2
Preparing the SPI File 6-3
Preparing the DPI File 6-3
Cleaning Up from Previous Runs 6-4

Run codecov 6-4
Verify Output 6-6

The Code Coverage Report 6-7
codecov Use of Standard Error and Output Files 6-7

Example 6-8
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
ii

Contents 7. Interpreting the Code Coverage Report
7. Interpreting the Code Coverage Report
Opening the Code Coverage Report 7-1
Code Coverage Display for a Source File 7-1

Execution Counts in the Source Display 7-2
Representation of #include Files 7-3
Understanding Color Coding in the Code Coverage Report 7-4

8. Usage Scenario
Build the Application 8-3
Run the Application 8-4
Produce the DPI File 8-4
Measure Code Coverage 8-5
Evaluate the Code Coverage Report 8-5

9. Usage Considerations
Compilation Issues 9-1
Application Performance 9-1

Glossary

Index

Figures
Figure 1-1. Code Coverage Task Overview 1-4
Figure 3-1. Compiling the Application to Generate Instrumented Object Files 3-1
Figure 4-1. Producing the Raw Data for Code Coverage Analysis 4-1
Figure 5-1. Using profmrg to Combine Raw Data Files 5-1
Figure 6-1. Running the Code Cover Utility to Create the Code Coverage

Report 6-1
Figure 7-1. Coverage Summary 7-1
Figure 7-2. Coverage Display for a Source File 7-2
Figure 7-3. Source Code Display Including Execution Counts 7-3
Figure 8-1. Strategic Use of Code Coverage Technology 8-2

Tables
Table 3-1. Compiler Options Related to Code Coverage 3-3
Table 7-1. Color Coding 7-4
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
iii

Contents
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
iv

What’s New in This Manual
Manual Information

HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers

Abstract

This manual describes the Code Coverage Tool for HP Integrity NonStop NS-Series
servers. It addresses application developers who use C/C++, pTAL, or COBOL to
create application components for NonStop servers, and who wish either to evaluate
the code coverage provided by test cases or to understand what parts of an application
are used, or most heavily used, under a representative workload.

Product Version

Code Coverage Tool H06

Supported Release Version Updates (RVUs)

This publication supports H06.07 and all subsequent H-series RVUs until otherwise
indicated by its replacement publication.

Document History

New and Changed Information
This is a new manual.

Part Number Published
542684-001 August 2006

Part Number Product Version Published
542684-001 Code Coverage Tool H06 August 2006
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
v

What’s New in This Manual New and Changed Information
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
vi

About This Manual
Notation Conventions
Hypertext Links

Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

This requirement is described under Backup DAM Volumes and Physical Disk
Drives on page 3-2.

General Syntax Notation
This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS. Uppercase letters indicate Guardian keywords and reserved
words. Type these items exactly as shown. Items not enclosed in brackets are
required. For example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words. Type these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
vii

About This Manual General Syntax Notation
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
 [-num]
 [text]

K [X | D] address

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list can be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…
[-] {0|1|2|3|4|5|6|7|8|9}…
An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be typed as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must type as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no
spaces are permitted between the period and any other items:

$process-name.#su-name
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
viii

About This Manual Notation for Messages
Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…

!i and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o. In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; !i,o

!i:i. In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

Notation for Messages
This list summarizes the notation conventions for the presentation of displayed
messages in this manual.

Bold Text. Bold text in an example indicates user input typed at the terminal. For example:

ENTER RUN CODE

?123

CODE RECEIVED: 123.00

The user must press the Return key after typing the input.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
ix

About This Manual Change Bar Notation
lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-register

process-name

[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be
displayed, of which one or none might actually be displayed. The items in the list can
be arranged either vertically, with aligned brackets on each side of the list, or
horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

proc-name trapped [in SQL | in SQL file system]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list can be arranged
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

obj-type obj-name state changed to state, caused by
{ Object | Operator | Service }

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { OK | Failed }

% Percent Sign. A percent sign precedes a number that is not in decimal notation. The
% notation precedes an octal number. The %B notation precedes a binary number.
The %H notation precedes a hexadecimal number. For example:

%005400

%B101111

%H2F

P=%p-register E=%e-register

Change Bar Notation
Change bars are used to indicate substantive differences between this manual and its
preceding version. Change bars are vertical rules placed in the right margin of
changed portions of text, figures, tables, examples, and so on. Change bars highlight
new or revised information. For example:
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
x

About This Manual Change Bar Notation
The message types specified in the REPORT clause are different in the COBOL85
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for
old message types. In the CRE, the message type SYSTEM includes all
messages except LOGICAL-CLOSE and LOGICAL-OPEN.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
xi

About This Manual Change Bar Notation
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
xii

1 Introduction to the HP Code
Coverage Tool

This manual describes the Code Coverage Tool for HP Integrity NonStop NS-series
servers. It addresses application developers who use C/C++, pTAL, or COBOL to
create application components for NonStop Servers, and who wish either to evaluate
the code coverage provided by test cases or to understand what parts of an application
are used, or most heavily used, under a representative workload.

Features of the Tool
The code generator used by COBOL, pTAL, and C/C++ compilers on NS-series
servers now has the capability to create instrumented object files. Such object files
contain extra code that records which functions and blocks are executed, and how
many times each is executed. The Code Coverage Tool uses this information to
produce a report indicating what code in a program file or DLL was actually executed
during one or more invocations. The code coverage report is a set of HTML files
that you can view with any standard HTML browser.

No source code changes are needed to instrument an application. The only required
changes are in the commands used to compile and link the application. If you choose
to instrument only a subset of your application, you specify code-coverage compiler
options for only that subset of your source files.

 Compilation can occur on the Guardian, NonStop Open System Services (OSS), or
Windows platform. Execution must occur on either the Guardian or the OSS platform.
The Profile Merge Utility (profmrg) and the Code Cover Utility (codecov), used to
assemble and present the code coverage data, run on the Windows platform.

You can instrument all or part of any type of application, for instance:

• OSS processes

• Guardian processes

• Active and passive process pairs

• Mixed language processes

• Processes with embedded NonStop SQL/MP or NonStop SQL/MX

Note. The Code Coverage Tool is intended for data generation and collection in a test
environment only. The use of instrumented code is not recommended for production
environments. Applications compiled with code coverage instrumentation will experience
greatly reduced performance.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
1-1

Introduction to the HP Code Coverage Tool Required Hardware and Software
Required Hardware and Software
The Code Coverage Tool includes two products

• T0746: Code Cover Utility (codecov)

• T0747: Profile Merge Utility (profmrg)

and support for code-coverage instrumentation in H06.07 and later versions of the
following compilers:

• T0356: COBOL compiler (ECOBOL)

• T0549: C/C++ compiler for Guardian (CCOMP, CPPCOMP)

• T8164: C/C++ compiler for OSS (c89)

• T0561: pTAL compiler (EpTAL)

• T1246: Compiler backend

The codecov and profmrg products and compatible compilers are provided on the site
update tape (SUT). To use codecov and profmrg, you must first install them on a
Windows workstation, as described in Section 2, Installing the Code Coverage Tool.

Usage Overview
To measure code coverage for an application:

1. Compile application components on the NonStop server or a workstation. For parts
of the application that you wish to instrument for code coverage, use compiler
options described in Section 3, Building the Application.

The compiler generates an instrumented binary file and a static profiling
information (SPI) file.

2. Run the instrumented application on the NonStop server.

The instrumented application creates a raw data file. Each time you run the
instrumented application, a unique raw data file is created, either in the current
directory for an OSS application or in the current subvolume for a Guardian
application.

3. Run profmrg on a Windows workstation to merge all the raw data files into one
dynamic profiling information (DPI) file.

The profmrg utility consolidates all runs and therefore all raw data pertaining to
code coverage for the application. It creates the DPI file, required as input to
codecov.

4. Run codecov on a Windows workstation to produce the code-coverage report.

The codecov utility uses the SPI file, the DPI file, and the original source files to
create a report that you can view with any HTML browser.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
1-2

Introduction to the HP Code Coverage Tool Usage Overview
5. Evaluate the report, and take any appropriate action.

Figure 1-1 illustrates these steps.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
1-3

Introduction to the HP Code Coverage Tool Usage Overview

t001.vsd

 files.
Figure 1-1. Code Coverage Task Overview

vs

Source Files

Compiler
(pTAL, COBOL,

 C/C++)

Guardian, OSS
Platform

Raw Data Files

profmrg

Dynamic
Profiling Information

(DPI) File

codecov

Code Coverage Report

Static
 Profiling Information

 (SPI) File

Instrumented
 Object Files

Static
 Profiling Information

 (SPI) Files

Text
Editor

1. Compile the application.

2. Run the application.

3. Merge raw data.

4. Generate code
coverage report.

4a. Concatenate SPI
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
1-4

Introduction to the HP Code Coverage Tool Topics This Manual Covers
Topics This Manual Covers
The rest of this manual provides

• Instructions for installing the Code Coverage Tool on a workstation

• Instructions for creating instrumented object files and SPI files from source
programs in C/C++, pTAL, or COBOL

• Instructions for ensuring that a run of the application has generated the expected
raw data files

• Instructions for using the profmrg utility to create DPI files from raw data files

• Instructions for running the codecov utility on a workstation

• A description of the report generated by the codecov utility

• Usage scenarios and considerations
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
1-5

Introduction to the HP Code Coverage Tool Topics This Manual Covers
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
1-6

2
Installing the Code Coverage Tool

The Code Coverage Tool consists of two products

• T0746: Code Cover Utility (codecov)

• T0747: Profile Merge Utility (profmrg)

and support for code-coverage instrumentation in H06.07 and later versions of the
following compiler products:

• T0356: COBOL compiler (ECOBOL)

• T0549: C/C++ compiler for Guardian (CCOMP, CPPCOMP)

• T8164: C/C++ compiler for OSS (c89)

• T0561: pTAL compiler (EpTAL)

• T1246: Compiler backend

The Code Coverage Utility, the Profile Merge Utility, and the compilers are on the site
update tape (SUT). The compilers are also delivered on CDs.

Copying the Code Coverage Tool to Your
Workstation

The codecov and profmrg programs run on a Windows workstation but are delivered
on a SUT. To install these programs on your workstation, proceed as follows:

Installing codecov
1. After installing the H06.07 or later RVU, locate the file

$SYSTEM.ZCODECOV.T0746SET.

2. Copy T0746SET to your workstation.

3. Change the name of T0746SET to setup.exe.

4. Run setup.exe.

A file named Hewlett-Packard\CodeCoverage\codecov.exe is created
within the program files folder. codecov.exe is the executable codecov
program.

Installing profmrg
1. After installing the H06.07 or later RVU, locate the file $SYSTEM.ZCPS.T0747SET.

Note. You might wish to put the location of codecov.exe in your PATH variable.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
2-1

Installing the Code Coverage Tool Installing profmrg
2. Copy T0747SET to your workstation.

3. Change the name of T0747SET to setup.exe.

4. Run setup.exe.

A file named Hewlett-Packard\CodeCoverage\profmrg.exe is created
within the program files folder. profmrg.exe is the executable codecov
program.

Note. You might wish to put the location of profmrg.exe in your PATH variable.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
2-2

3 Building the Application
Task Overview

The first step in measuring code coverage is to generate instrumented object files for
all parts of the application that you want to measure. To do this, you must compile and
link the source files, specifying compiler and possibly linker options to support code
coverage analysis. In addition to instrumented object files, the compiler creates SPI
files (which you will later combine) for subsequent input to the codecov utility.

Prepare to Compile
Selecting Source Files

Locate all the files you want to instrument. Some reasons you might want to measure
only a subset of the application are that

• You have already studied some components and now want to study others. For
example, you might want to study components recently added to the application.

• The application is large and you want to economize on data space and other
resources.

• Only certain source files belong to you.

You can instrument source files written in different languages and compiled on different
platforms as part of the same application.

Figure 3-1. Compiling the Application to Generate Instrumented Object Files

vst003.vsd

Source Files pTAL, COBOL, C/C++
Compiler

Instrumented Object
Files

Static Profiling
Information (SPI)

Files
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
3-1

Building the Application Understanding Code Coverage Concepts
Understanding Code Coverage Concepts
Code coverage reports are based on a model in which the application consists of
source files, which contain functions, which contain basic blocks. A basic block is a
sequence of code that is entered only at the beginning and exited at the end. Once
code enters a basic block, it executes the entire block unless an exception is raised
within the block. The Code Coverage Tool considers a basic block to be covered if it is
entered, and also counts how many times such a block is entered during a test run.
Procedure calls within otherwise straight-line code are also considered block
boundaries. Therefore, the report tells when a procedure did not return to its caller,
because the block after the procedure call is uncovered, or has a smaller count than
the block leading up to the procedure call.

It is possible for multiple basic blocks to have the same source code location, with
some blocks covered and others not. The Code Coverage Tool considers such
locations to be partially covered. For example, if overflow_traps is enabled, and your
source code contains a statement with an expression that could overflow when
executed (but never does), then that statement would be considered partially covered
because the basic blocks generated to handle the overflow for the statement are never
executed even though the expression for the statement is executed.

Certain sequences of straight-line code can result in multiple blocks; for example, if
statements can result in multiple blocks. In some cases, multiple blocks can result from
code generated by the compiler (and thus, not visible at the source level), such as a
check for overflow.

Using a different version of the compiler or running the compiler with different options,
such as different optimization levels, can result in different blocks being generated from
the same source code. For example, if the compiler determines that a block of source
code is never executed, it might not generate any object code for that source code.

Usage Considerations
For important information about characteristics and limitations of instrumented program
files and dynamic-link libraries (DLLs), see Compilation Issues on page 9-1.

Cleaning Up From Previous Runs
The first time you compile a program with the code-coverage option, the compiler
creates a SPI file. This SPI file is one of the input files to the codecov tool described in
Section 6, Running the Code Cover Utility. If compilation occurs in an OSS directory or
in a Windows folder, the name for the file is pgopti.spi. If compilation occurs in a
Guardian subvolume, the name for the file is pgospi. Subsequent compilations using
the codecov option within the same directory, folder, or subvolume update or add
information to this file.

To create a new SPI file instead of adding to an existing one, you can:

• Move or rename the old file.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
3-2

Building the Application Build the Application
• Compile the application in a different directory, folder, or subvolume.

Build the Application
Compiling the Source Files

Table 3-1 shows, for each supported platform and compiler, the options you specify to
achieve code coverage.

CODECOV (or codecov) Option
This option directs the compiler to create an instrumented object file and to create or
add to an existing SPI file.

Verify the Output
After compiling your program, verify that a new object file and a new or modified SPI
file exist in the compilation location:

• Naming conventions for the instrumented object file are the same as for
uninstrumented object files, so check the timestamp to verify that a new object file
was created in the OSS directory, Windows folder, or Guardian subvolume.

• On the NonStop server, the SPI file is a type 180 text file. On OSS or Windows, it
has the extension .spi. Check for a file with the name pgopti.spi in the OSS or
Windows environment, or the name pgospi in the Guardian environment.

Linking the Object Files
To link instrumented object files, you must specify the option -l pgo if invoking the
linker directly. If the linker is invoked through the compiler and you’ve specified the
CODECOV or codecov option, the compiler automatically inserts the -l pgo option.
(EpTAL does not support invoking the linker through the compiler.)

Table 3-1. Compiler Options Related to Code Coverage

Platform Compiler(s)

Option to Generate
Instrumented Object
File and SPI File

Guardian CCOMP,
CPPCOMP,
ECOBOL,
EPTAL

CODECOV

OSS,
Windows

c89, ecobol -Wcodecov

Windows eptal -codecov
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
3-3

Building the Application HP Enterprise Toolkit (ETK) Considerations
HP Enterprise Toolkit (ETK) Considerations
For each source file that is to generate instrumented object code at compile time, you
must add the appropriate compiler driver flags to the Additional box on the compiler's
General page. You can add the information at the project level, in which case it applies
to all source files in the project, or at the file level to select a subset of files to be
instrumented. Enter the flags exactly as you would enter them on the command line
invoking a compiler driver.

In addition, you must specify the dynamic-link library zpgodll as input at link time. Enter
pgo in the Dynamic and Static Libraries text box on the Linker Input property page. If
the box already specifies other libraries, append pgo to the list, using a semicolon (;)
as the separator.

Example
See Build the Application on page 8-3.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
3-4

4 Running the Application
Task Overview

In this step, you run the application with test data or a representative workload. A
program or DLL containing instrumented code generates a distinct raw data file each
time it completes execution. This raw data file is the record of what functions and basic
blocks were executed during the test run.

If an application is built by linking many source files and DLLs, the run generates one
raw data file that contains code coverage data from all instrumented components.

Prepare the Application for Testing
Preparing Test Cases

Select a set of test cases or a sample workload to use for your study.

Do not run your test in a production environment, because instrumented code runs
more slowly than uninstrumented code, and users could experience degradation in
throughput or response time.

Insulating the Application
The raw data file is placed in the default subvolume (or current working directory) when
the program or DLL is initiated. To keep the raw data files for different runs and
different applications separate:

• Run each instrumented application in a different subvolume or working directory.

• Archive raw data files that represent earlier versions of the source code. Remove
such files from the default subvolume or current working directory.

• Use a different subvolume or working directory for different runs of the same
source code if you want to compare the code coverage provided by the various

Figure 4-1. Producing the Raw Data for Code Coverage Analysis

vst004.vsd

Test Cases
or

Sample Workload
Instrumented
Application

Raw Data Files
(ZZPFnnnn, .dyn)
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
4-1

Running the Application Run the Application
runs. Use the same subvolume or working directory for different runs of the same
source code if you want to measure the code coverage provided by all runs
combined.

An existing raw data file is never overwritten. If a raw data file already exists in the
subvolume or directory, the instrumented program will create an additional file with a
different name.

Run the Application
Run the application. An instrumented application will run more slowly than it would
without instrumentation.

To produce a raw data file from an application that does not ordinarily terminate, stop
the application manually.

If any errors occur during execution of the instrumented application, they are written to
a file named ZZPELOG. After execution, you should check for the existence of this file
(it is created only if errors occurred). It can be useful to HP support personnel, should
you require their assistance in determining the cause of the errors.

Verify Output
Check the default subvolume or current working directory for one or more files with
names of the form ZZPF* in the Guardian environment or the extension .dyn in the
OSS environment.

On the NonStop server, a raw data file is a type 180 binary file.

Example
See Run the Application on page 8-4.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
4-2

5
Converting Raw Data Files to DPI
Files
Task Overview

In this step, you combine the raw data files from application runs to produce a
dynamic profiling information (DPI) file for input to the codecov utility. If you have
previously measured code coverage for the same application, you can combine the
DPI files from the previous runs with raw data files from the latest run to produce a new
DPI file.

To perform this task, you use the profmrg utility, which runs on a Windows workstation.

Prepare profmrg Input Files
The profmrg utility requires the following inputs:

• Zero or more raw data files, generated by runs of instrumented code

• Zero or more DPI files, created by previous runs of profmrg

The output of profmrg is a DPI file that combines the information from all the input files.

Although you normally use profmrg to combine new data and produce a new DPI file, it
can sometimes make sense to run profmrg with no input raw data files and no DPI
files, other than an existing DPI file that is also the output file. For example, the -dump
option, described in Run profmrg, produces a text dump of the input files.

If you are running profmrg solely to update or dump an existing DPI file, you need not
provide any other input.

Figure 5-1. Using profmrg to Combine Raw Data Files

vst005.vsd

Raw Data Files

Old DPI Files

profmrg
New DPI

File
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
5-1

Converting Raw Data Files to DPI Files Assembling Raw Data Files
The meaningfulness of the code coverage report depends on the consistency of the
SPI file, the DPI file, and the source files provided as input. Specifically, for the results
of a study to be meaningful, all inputs should reflect the same versions of the source
files. The profmrg utility performs no validation in this regard.

Assembling Raw Data Files
Names of raw data files have one of two possible forms:

• ZZPF* if the program was run in the Guardian environment, or if the program was
run in the OSS environment and the current directory is a Guardian subvolume

• *.dyn if the program was run in the OSS environment and the current directory is
an OSS directory

To use raw data files as input to profmrg, you must first use FTP or some other
mechanism to copy the files from the NonStop server to the workstation where profmrg
will run.

Saving DPI Files from Previous Runs
If you want to save the file generated by a previous version of profmrg, to prevent the
tool from replacing the existing file, you can:

• Move the existing file to a different location, or rename it. (The default name for the
DPI file is pgopti.dpi.)

• Use the -prof_dpi runtime option, described in Run profmrg, to specify a name
for the new DPI file

If a file of the same name as the output file already exists, profmrg displays a warning
message on the standard error file and replaces the file. If the file is specified for the
-a option, it is used as an input DPI file.

For additional considerations, see The Output DPI File.

Including DPI Files from Previous Runs
You can submit DPI files from previous profmrg runs, to base your code coverage
analysis on cumulative data. The -a runtime option, described in Run profmrg, lets you
specify the set of DPI files to use as input.

Do not use files from previous runs if you’ve changed the source code since those
runs. The profmrg tool does not verify that its input files reflect the same source code
versions.

Note. If you plan to use the -a option to specify the set of DPI files to use, be sure to verify in
advance that each of those files exists.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
5-2

Converting Raw Data Files to DPI Files Where to Put the Input Files
Where to Put the Input Files
The profmrg utility looks for all the input files and creates the output file relative to
some folder. By default, profmrg uses the current folder, but you can change the
location with the -prof_dir option of the profmrg command, as described in Run
profmrg.

The profmrg utility automatically uses, as input, any file whose name has the form
ZZPF* or *.dyn. To exclude a file from processing, rename it or remove it from the
folder profmrg will use.

Run profmrg
To run profmrg, use a command line of the form:

where options can be any set of options from the following list. Options must be in
lowercase.

-a dpi_file_list

specifies the DPI files to use as input. The list can consist of any number of file
names, separated by spaces. There is no rule for the format of a filename; for
example, it need not contain the string .dpi. If the -prof_dir option is also
present in the command, then each name specified for the -a option is
concatenated with the name given in the -prof_dir option.

The -a option must be the last option on the command line. Any options specified
after it are ignored.

-dump

produces a text dump of the contents of the input files. The profmrg utility writes
the dump to the standard output file (stdout). You can redirect it to any convenient
location.

The -dump option produces text output even if profmrg does not re-create the DPI
file. (For a discussion of cases in which profmrg does not re-create the DPI file,
see The Output DPI File.) Therefore, this option is useful for gathering information
about an existing DPI file.

-help

displays brief descriptions of syntax options.

profmrg options

Note. A filename specified in a profmrg command option must not begin with a slash(/).
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
5-3

Converting Raw Data Files to DPI Files Verify Output
Do not specify any other options on the command line. When you specify the -
help option, any other options on the command line are either ignored or produce
command syntax error messages.

-nologo

suppresses the banner that profmrg would otherwise display.

-prof_dir directory

specifies the name of a folder relative to which profmrg looks for its input files and
creates its output file. By default, profmrg uses the current folder. Filenames
specified in the -prof_dpi and -a options are concatenated with the directory
name specified in this option.

-prof_dpi filename

specifies the name of the DPI file that profmrg creates, overriding the default name
pgopti.dpi. There is no rule for the format of the filename; for example, it need not
contain the string .dpi. If the -prof_dir option is also present in the command,
the filename is concatenated with the name given in the -prof_dir option.

Verify Output
The desired output from profmrg is a DPI file. Verify that such a file has been
produced. Also, check the standard error file for status messages and the standard
output file if you requested a dump with the -dump option.

The Output DPI File
The profmrg utility creates an output DPI file whose name is pgopti.dpi, unless you
specify a different name with the -prof_dpi option.

Usually, if profmrg finds an existing DPI file with the same name as the output file, it re-
creates the DPI file, on the assumption that doing so will result in the latest usage
information. However, in certain cases, profmrg decides that an existing DPI File would
have the same content if re-created; in such cases, profmrg leaves the existing file
alone. Specifically, this behavior arises if the existing DPI file is newer than the input
raw data files, and no other DPI files are specified as input. In other words, profmrg
assumes that the existing DPI file was created from the same set of input files and is
not just some other file that happened to be copied to the same location.

On the other hand, if you specify the -a option, profmrg does re-create the output DPI
file, even if the existing file was newer than all the raw data files and DPI files provided
as input. In other words, profmrg does not assume that DPI files specified with -a are
already reflected in an existing DPI file in the input folder.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
5-4

Converting Raw Data Files to DPI Files profmrg Use of Standard Error and Output Files
profmrg Use of Standard Error and Output Files
The profmrg utility writes all its output to the standard error file (stderr), except that
output from the -dump option is written to standard output (stdout).

If profmrg does not recognize an option on the command line, it displays a message to
that effect and a brief syntax message. Similarly, if an option that requires a parameter
is the last token on the command line, profmrg displays an error message and a brief
syntax message.

Following any such messages is a banner consisting of one line that displays the name
and VPROC of the tool, and a second line stating the copyright. For example:

If a raw data file has the wrong format--for instance, if some other type of file has a
name that resembles a DPI file name--profmrg writes a warning message to the
standard error file and ignores the invalid input file. A warning message also results if a
DPI file specified with the -a option is invalid.

Example
See Produce the DPI File on page 8-4.

profmrg - T0747
Copyright 2006 Hewlett-Packard Company.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
5-5

Converting Raw Data Files to DPI Files Example
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
5-6

rage
6 Running the Code Cover Utility
Task Overview

In this step, you run the Code Cover Utility (codecov), making available as input:

• The source files you compiled, as described in Section 3, Building the Application

• The SPI file you created, as described in Section 3, Building the Application

• The DPI file you created, as described in Section 5, Converting Raw Data Files to
DPI Files

The Code Coverage Tool generates the code coverage report in a set of HTML files
you can view with any standard browser. The report includes color-coded, annotated,
source code listings that distinguish among various kinds of covered and uncovered
code. Command options let you specify which colors are used for which purposes. For
a full discussion of the report, see Section 7, Interpreting the Code Coverage Report.

Figure 6-1. Running the Code Cover Utility to Create the Code Coverage Report

vst006.vsd

codecov

Source Files
(on Guardian, OSS,

Windows)

SPI File

DPI File

Code Cove
Report
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
6-1

Running the Code Cover Utility Prepare to Run codecov
Prepare to Run codecov
The meaningfulness of the code coverage report depends on the consistency of the
SPI file, the DPI file, and the source files provided as input. Specifically, for the results
of a study to be meaningful, all inputs should reflect the same versions of the source
files. The codecov utility performs no validation in this regard.

Providing for Source File Retrieval
You need not specify source file names explicitly to the codecov utility, because the
files are listed in the SPI and DPI files. You must, however, ensure that the files are in
the locations reflected in the SPI and DPI files and are accessible on disk or over the
network.

Part of the function of codecov is to retrieve and examine the source files to be
included in the analysis, wherever those source files happen to be. The filename listed
in a SPI or DPI file indicates to codecov whether the source file is on the Guardian,
OSS, or Windows platform. If a source file name found in the SPI file is a Guardian or
OSS file name, codecov uses an FTP session to fetch a copy of the source file to the
workstation. To enable this behavior, you specify the -host and -login options on
the codecov command line. You may also specify the -passwd option to provide the
password in advance; otherwise, you will be prompted (on the standard output file) to
type the password (on the standard input file.) The password must be the one
associated with the name specified in the -login option. For security reasons,
codecov does not echo the password when you type it.

You can have a mix of source files:

• On different NonStop servers in the same network

• In the Guardian or OSS environment

• On the workstation where codecov is running

However, all source files fetched from the NonStop server must be in the same
network as the machine specified with the -host option. Also, Guardian source files
must be of code 101 or 180. Be sure to set up any required permissions or remote
passwords to allow codecov access to your source files.

If codecov is unable to fetch a particular source file, it writes a warning message, and
the code coverage report excludes data about that file.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
6-2

Running the Code Cover Utility Preparing the SPI File
Preparing the SPI File
The codecov utility requires a single SPI file. The default name for the SPI file is:

• pgopti.spi if the program was compiled on Windows

• pgopti.spi if the program was compiled in the OSS environment and the current
directory is an OSS directory

• pgospi if the program was compiled in the Guardian environment

• pgospi if the program was compiled in the OSS environment and the current
directory is a Guardian subvolume

You can use the -spi option to specify a different name. codecov always looks for the
SPI file in the current folder; move the file from the compilation folder to the
workstation, renaming it if necessary.

The SPI file is a text file that contains information about the various source files. For
each source file, the file includes information about the functions in that source file.If
your application is compiled in multiple directories or subvolumes and therefore more
than one SPI file exists for it, you must manually concatenate the files into one SPI file
for input to codecov. The codecov utility ignores any duplicate information.

Creating a single SPI file from multiple SPI files is not complex. SPI files are text files,
and all you need to do is concatenate them. However, when a SPI file is created on the
Guardian platform, it is somewhat cumbersome to edit because it is a code 180 file
and, in general, cannot be converted to an edit file, because the lines are too long. For
convenience, move SPI files to the OSS or Windows platform and concatenate them
there.

Preparing the DPI File
Identify the latest DPI file produced as output from profmrg. The default name for the
DPI file is pgopti.dpi; you can use the -dpi option to specify a different name. The
codecov utility always looks for the DPI file in the current folder.

The DPI file contains the names of source files whose code was actually executed
during the test run. If a given source file name occurs in the SPI file but not the DPI file,
codecov deduces that none of the code in that source file was covered, and the code
coverage report reflects that conclusion. Similarly, if a source file name occurs in the
DPI file but not in the SPI file, codecov ignores the profile information about that file,
because the report includes information only for source files listed in the SPI file.

These assumptions make it necessary for corresponding source file names in the SPI
files and DPI files to match. They should automatically match, unless you moved or
renamed them between the time you compiled them, producing a SPI file, and the time
you ran them, producing a raw data file (from which profmrg produces the DPI file).
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
6-3

Running the Code Cover Utility Cleaning Up from Previous Runs
Cleaning Up from Previous Runs
The HTML files containing the code coverage report are created in the folder where
you run codecov. (For information about how the files are organized, see The Code
Coverage Report.)

New files overwrite existing files of the same names. If you have previously run
codecov in the current folder, archive the old code coverage report before you
continue.

Run codecov
To run codecov, use a command line of the form:

where options can be any set of options from the following list. Options must be in
lowercase.

-bcolor color

specifies the name or hexadecimal code of the HTML color used in reports to show
uncovered basic blocks within a function for which some basic blocks were
covered and some were not. The default value is #ffff99, which is yellow.

-ccolor color

specifies the name or hexadecimal code of the HTML color used in reports to show
the basic blocks that were covered (that is, executed during the test run). The
default value is #ffffff, which is white (no color).

-counts

causes execution counts to be included in the code coverage report. A basic block
executed once has a count of 1, a basic block executed twice has a count of 2, and
so on.

-dpi filename

specifies the name of the DPI file, overriding the default name pgopti.dpi.

-fcolor color

specifies the name or hexadecimal code of the HTML color used in reports to show
functions that were uncovered (never called). The default is #ffcccc, which is pink.

-h or -help

causes codecov to stop processing the command line, print out a syntax
description of all options that it supports, and terminate.

codecov options
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
6-4

Running the Code Cover Utility Run codecov
-host string

provides a host address to use for access to a NonStop server. The codecov utility
uses the name when fetching source files from the NonStop server. The string
could be a DNS name--for example, orgdiv.arn.acorp.com--or an IP address in
dotted decimal format. You must specify this option if the application includes
source files on NonStop servers.

-login string

provides a login name for access to a NonStop server. The codecov utility uses
this name when fetching source files from the NonStop server. You must specify
this option if the application includes source files on NonStop servers. The name
must be a valid login name on the machine specified by the -host option.

-maddr email

specifies a destination for email sent from the code coverage report. The codecov
utility places a link at the bottom of each screen of the report. When you click the
link, a window for sending email appears, with the address specified by the
-maddr option. If you omit this option, the mail is sent to nobody.

-mname message

specifies the text of the link used to invoke the mail window. If you omit the
-mname option but include the -maddr option, the text of the link is the same as
the address specified in the -maddr option. If neither option is present, so that
-maddr defaults to nobody, then -mname defaults to Nobody.

-nopartial

specifies that, if multiple basic blocks are generated for a single source position,
codecov should consider them all to be covered if any one of them was covered. In
the report, such code appears in the color for covered code rather than partially
covered code.

-nopmeter

suppresses the progress meter, which codecov would normally write to the
standard output file during its operation. The progress meter reports the
percentage of functions analyzed so far. For example, if a program had only four
functions, codecov would print 25%, 50%, 75%, and finally 100%. If a program
contains ten or more functions, codecov prints the percentage each time it
completes analysis of one-tenth of the functions, so the progress meter is updated
at most ten times. Progress messages appear on the same line unless interrupted
by other messages, such as warning messages about source files that codecov
cannot find.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
6-5

Running the Code Cover Utility Verify Output
-passwd string

specifies the password for the user name given in the -login option. If codecov
must fetch source files from the NonStop server and the -passwd option is not
present on the command line, codecov prompts for the password.

-pcolor color

specifies the name or hexadecimal code of the HTML color used in reports to show
partially covered code. If the -nopartial option is present on the command line,
the -pcolor option is meaningless. The default value is #fafad2, which is light
brown.

-prj title

specifies a title to be included at the top of the top-level HTML file in the code
coverage report. For example, if you specified the value CallDistribution, the
full title printed at the top of the report would read “Coverage Summary of
CallDistribution.” If you omit this option, the top-level HTML file bears the title
Coverage Summary.

-spi filename

specifies the name of the SPI file, overriding the default name. The default name
is:

• pgopti.spi if the program was compiled on Windows

• pgopti.spi if the program was compiled in the OSS environment and the current
directory is an OSS directory

• pgospi if the program was compiled in the Guardian environment

• pgospi if the program was compiled in the OSS environment and the current
directory is a Guardian subvolume

-ucolor color

specifies the name or hexadecimal code of the HTML color used in reports to show
source for which no code was generated. Examples are comments, statements
that include header files, and variable declarations. The default value is #ffffff,
which is white (no color)

Verify Output
The primary output from codecov is a set of HTML files constituting the code coverage
report. Verify the existence of those files, and check the standard output file for status
messages
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
6-6

Running the Code Cover Utility The Code Coverage Report
The Code Coverage Report
The code coverage report consists of a hierarchy of HTML files. The top-level file is
named CODE_COVERAGE.HTML and is created in the same folder where codecov
runs. All the other HTML files are in a subfolder named CodeCoverage. These files
also have uppercase names with the extension .HTML. Any existing files of the same
names are overwritten.

Among the HTML files that codecov creates are some that correspond to individual
source files.

Hyperlinks among the files within the CodeCoverage folder use simple pathnames.
The top-level file, CODE_COVERAGE.HTML, uses hyperlinks to point to these other
files. The hyperlinks have the format

This convention makes it easy to move the entire set of files to another location,
placing the top-level file in one directory or folder, and the other files in a subdirectory
or subfolder named Code_Coverage. Windows, OSS, and UNIX all support this
naming convention.

codecov Use of Standard Error and Output Files
The codecov utility sends all its output--messages, help syntax, password prompts,
and so on--to the standard output file (stdout), except that it writes two banner lines to
the standard error file (stderr). The banner consists of one line that displays the name
and VPROC of the tool, and a second line stating the copyright.

When codecov processes the command line, it detects an error if an option requires a
parameter of a certain form and the parameter is invalid. The utility also detects an
error if an option that requires a parameter is the last token on the command line. In
such cases, codecov emits an error message and terminates.

If you specify an option that codecov does not recognize, codecov ignores the option
and continues processing the command. Therefore, if results are different from what
you expect, check your command line for typographical errors.

If you specify the same option several times, with different parameters, the last
instance on the command line supersedes earlier instances.

WARNING. The relation between source file names and HTML file names is not guaranteed to
be the same in future versions of this product.

Code_Coverage/filename.HTML

Note. Observe that codecov uses the standard output file for status messages, whereas
profmrg uses the standard error file.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
6-7

Running the Code Cover Utility Example
Example
See Measure Code Coverage on page 8-5.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
6-8

7
Interpreting the Code Coverage
Report
Opening the Code Coverage Report

To examine the code coverage report, use a browser to open the file named
CODE_COVERAGE.HTML. It displays a top-level summary of the code coverage for
all relevant source files, as in the following example:

The coverage summary indicates how many files, functions, and basic blocks were
covered or uncovered. The number of files is the number that the report covers. It
includes files that were listed in the SPI file and that codecov was able to find when it
ran. When the report says that a file or function is covered, it means that at least some
part of the file or function was covered, not necessarily that it was completely covered.

Below the coverage summary are lists of covered and uncovered files, with counts of
covered or uncovered functions and basic blocks for each file.

When you click a filename in the list of covered or uncovered files, the browser
displays information about that particular file.

Code Coverage Display for a Source File
The code coverage display for a source file is divided into left and right halves, as in
the following example:

Figure 7-1. Coverage Summary
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
7-1

Interpreting the Code Coverage Report Execution Counts in the Source Display
The left half lists the functions that were completely uncovered and the functions that
were at least partially covered. For each function that was at least partially covered, the
display tells how many basic blocks were or were not covered. In these lists, the
names of C++ functions are mangled.

To sort the information by function name or coverage amount and switch between
ascending and descending order, click the word function or coverage in the list of
covered functions .

The right half of the display contains a color-coded source listing, as shown in
Figure 7-2. This source listing is created by copying in the source file itself, so function
names are not mangled here. Sequential line numbers (not edit line numbers) are
shown alongside the source code. If you select a function name on the left side of the
display, the listing on the right side scrolls until the start of that function is at the top of
the window. You can use the usual scroll keys to move around this window or the ctrl-F
key sequence to search for words.

The colors on this display are the ones you specified when you ran codecov, or the
default values, as described in Run codecov on page 6-4.

Execution Counts in the Source Display
If you specify the -counts option in the codecov command (as described in Run
codecov on page 6-4), a count of how many times a particular basic block was entered

Figure 7-2. Coverage Display for a Source File
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
7-2

Interpreting the Code Coverage Report Representation of #include Files
appears under the code directly beneath the source position where the block begins.
The count is immediately preceded by a circumflex (^). If more than one basic block is
generated for the code at a source position, the number of generated basic blocks and
the number of executed basic blocks follow the execution count. For example, if two
basic blocks were generated at that place and only one was executed, you'll see 1/2 as
part of the information presented, as in the following example:

Representation of #include Files
When an entire function is pulled into a compilation from an #include file, the SPI file
lists that function under the name of the source file that contains the function, not under
the name of the main file for the compilation. Therefore, it is possible to compile a
single source file for code coverage and obtain a report that lists several source files:
the compiled file and each file from which functions were imported with #include
statements. Examples of program elements that might be included in this way are C++
templates and member functions whose bodies are in the class declarations.

In contrast, when an #include statement brings in only a part of some larger function,
the SPI file does not include any information about the included source file (although
the included source file could be listed in the SPI file for some other reason).

Figure 7-3. Source Code Display Including Execution Counts

if ((n==1) || (==2))
^ 10(1/2)
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
7-3

Interpreting the Code Coverage Report Understanding Color Coding in the Code Coverage
Report
Understanding Color Coding in the Code Coverage Report
Table 7-1 summarizes the colors used in the code coverage report.

In general, the recommended way to use color coding in reports is simply to get a
general view of which code was covered (executed) and which code was not. You can
then determine whether more testing is needed to cover those portions of the code that
were not executed. For example, you might look for large pink or yellow areas,
indicating uncovered portions of code, then develop additional tests to execute that
code.

Getting more detailed information from color coding can be more difficult. To accurately
interpret the colors that appear in a code coverage report, you should understand the
basic concepts discussed under Understanding Code Coverage Concepts on
page 3-2.

In general, all code within a block is given the same color. If the block was executed at
least once, that block was “covered”, so it has no color (by default). If a block was
never executed, it is either yellow or pink.

Different Colors Within the Same Block
However, there are exceptions to the generalization that all code within a block is given
the same color. In some cases, the coloring changes in the middle of a line. This
occurs because there might be several different blocks on the same line, and the
compiler and codecov are not always precise in determining where the blocks begin
and end. In some cases, a line, or part of a line, will inherit a color from the preceding
block.

Thus, the colors in the report do not always convey the correct information. But you
can better understand the report by observing where the colors change. The new color
after the change might be correct for the entire line, or even for previous lines, even
though those lines have a different color in the report.

Table 7-1. Color Coding
Default Color Meaning
yellow Indicates uncovered basic blocks in a function for which some basic

blocks were covered and others were not.

white (no color) Indicates basic blocks that were covered.

pink Indicates functions that were uncovered.

light brown Indicates partially covered code.

white (no color) Indicates source for which no code was generated.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
7-4

Interpreting the Code Coverage Report Understanding Color Coding in the Code Coverage
Report
As an example of how color coding can be misleading, consider the following code
sequence. The example shows the color coding that would appear in the report.

In this example, procedure a is called and has an unconditional return in the second
line. Thus, the two lines following the return are uncovered, and you would expect
them to be colored yellow. In fact, only the last line (the closing brace) is yellow. The
compiler did not generate code for the call to c, so there are no blocks on that line.
Accordingly, the call to c is not colored (the same as the two preceding lines), because
codecov believed that the block containing the return statement also included the
call to c, and gave it the same color. The report shows the call to c as covered even
though it actually was not.

For another example, consider the following code sequence:

Now assume that the first assignment was never executed and the second assignment
was executed. As expected, the report shows the first assignment as uncovered
(yellow). However, the report also shows the else statement as yellow, even though it
was executed. That happens because the compiler generated no blocks on the else,
so that line “inherited” the color from the previous line.

These same considerations for individual lines also apply to entire functions. Consider
a sequence consisting of two functions. Assume that the first function was completely
uncovered (pink in the report) and that the second function has portions that were
covered and other portions that were uncovered. You would expect the covered
portions to have no color, and the uncovered portions to be yellow. However, some of
the pink from the first function might appear at the beginning of the second function. In
particular, if comments appear at the beginning of a function, those comments inherit
the color of the previous function (if any) and not the color of the function to which they
apply.

Using the -counts Option
Using the -counts option can help you understand where the basic blocks begin and
end. The -counts option causes block execution counts to be included in the report.

void a() {
 return;
 c();
}

if (*p=='\001")
 answer = DATAL;
else
 answer = DATAM;
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
7-5

Interpreting the Code Coverage Report Understanding Color Coding in the Code Coverage
Report
The count, specifically, the caret (^), appears directly under the point where codecov
“thinks” the block begins. For example:

This procedure was executed, so it should have been uncolored. However, the int at
the beginning of the line is shown as partially covered (light brown).The report also
indicates that the first block generated for the line starts with gethost, and was
executed twice. You might expect that the entire line would be given the same color
(no color). However, the color coding for this line shows the portion of the line starting
with gethost as uncolored; int has a color inherited from previous lines.

As explained in Understanding Code Coverage Concepts on page 3-2, control flow
structures, such as if and return statements, can result in multiple blocks.
Moreover, multiple blocks can have the same source code location, with some blocks
covered and others not. These source code locations are considered to be “partially
covered.” You can eliminate this potential source of confusion by specifying the
-nopartial option, which specifies that if multiple basic blocks are generated for a
single source position, codecov should consider them all to be covered if any one of
them was covered.

When -nopartial is specified, you can still use the -counts option to obtain
information about blocks. Consider the following example of a partial codecov output:

The count of 14 below the call to Func indicates that the while loop was executed 14
times. Since that is the only point within the loop that shows a count, that means that
the entire body of the loop generated a single block. However, the notation 28(3)
indicates that three other blocks were generated for the line containing the while
statement, and collectively, those three blocks were executed 28 times and that each
block was executed at least once. (When just a single value, such as (3), and not two
values separated by a slash, such as (1/3), is shown in parentheses, that means that
either all blocks were executed or none were executed.) You cannot determine from
these values how many times each block was executed.

int gethostsex (void) {
 ^ 2

while (i < 14)
 ^28(3)
{
 Func(i);
 ^14
 ++9i;
}

HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
7-6

Interpreting the Code Coverage Report Understanding Color Coding in the Code Coverage
Report
For another example, consider the following partial codecov output:

In this example, the notation (1/2) indicates that two blocks were generated for the
if statement, and only one of them was covered; the covered block was executed 10
times, and the other block was not executed.

Using the -ucolor Option
The -ucolor option specifies the color to use for source code for which no object code
was generated. However, as shown in the preceding examples, codecov always
assumes that a block ends just before the next block begins and, therefore, does not
know which source code has no object code. In actual practice, the -ucolor option is
useful only for lines at the beginning of each source file, preceding the first block.

.

if (n==1)||(n++2)
^10(1/2)
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
7-7

Interpreting the Code Coverage Report Understanding Color Coding in the Code Coverage
Report
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
7-8

8 Usage Scenario
The most obvious application of code coverage technology is for a quality assurance
group to determine what parts of a program were executed by some set of test runs.
The goal, in this case, is for the test suite to be as comprehensive as possible,
ensuring that the code has been well exercised before release to users.

In this scenario, one would typically rebuild the product, perform the test runs, and
generate the reports in quick succession, probably not retaining intermediate files for
very long, because the files become obsolete as soon as the source code changes. A
quality assurance group might go through this process once a month.

Figure 8-1 illustrates a typical scenario in which a group develops a software product,
establishes the code coverage provided by a set of test cases, runs an actual customer
use case or sample workload, and uses the coverage as a basis for enhancing the test
library.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
8-1

Usage Scenario

Figure 8-1. Strategic Use of Code Coverage Technology

Run Test Cases

Evaluate Code
Coverage

Run Customer
Use Cases

Compare Code
Coverage

Enhance
 Test Cases

vst011.vsd
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
8-2

Usage Scenario Build the Application
Build the Application
The application in this example is called elfdump. It is a program that dumps
information about object files on a NonStop server.

1. This display shows the build directory for the elfdump application. The application
requires three source files (which have names ending in C) and four header files
(which have names ending in H). The application will be built and executed in the
Guardian environment.

2. These command lines invoke the compiler and linker with options related to code
coverage. The codecov option causes the compiler to create an instrumented
object file. The generated SPI file will have the name PGOSPI. The -lpgo option
is required to link instrumented object files.

3. This display shows the build directory after the build. Notice the new instrumented
object files (which have names ending in O), the SPI file PGOSPI, and the lock file
PGOSPL

$DATA05.TEST 2> files

$DATA05.TEST

ELFCOMH ELFDUMPC NSKELFH PLATDEPC PLATDEPH YOSELFC

YOSELFH

cppcomp /in elfdumpc, out elfdumpl/ elfdumpo; codecov

cppcomp /in platdepc, out platdepl/ platdepo; codecov

cppcomp /in yoselfc, out yoselfl/ yoselfo; codecov

eld /out linkout/ $system.system.ccplmain elfdumpo platdepo

 yoselfo -lcrtl -lcre -lpgo -o elfdump

Note. The lock file PGOSPL is created by the compiler to ensure that concurrent compilations
do not attempt to read or write to the SPI file at the same time; access to the SPI file must be
synchronized.

$DATA05.TEST

ELFCOMH ELFDUMP ELFDUMPC ELFDUMPL ELFDUMPO LINKOUT

NSKELFH PGOSPI PGOSPL PLATDEPC PLATDEPH PLATDEPL

PLATDEPO YOSELFC YOSELFH YOSELFL YOSELFO
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
8-3

Usage Scenario Run the Application
Run the Application
1. These command lines run the application twice, each time with different input. (In

each case, $system.system.eld is the input file, but the -h and -p options cause the
runs to vary.)

2. This display shows the working directory, with the new raw data files (which have
names starting ZZPF). Each raw data file represents one run of the application.

Produce the DPI File
1. This display shows the directory containing the input files for profmrg. The SPI file

and raw data files have already been moved to the workstation from the server,
where the build and test runs occurred. The SPI file has been renamed from the
Guardian file name PGOSPI to the Windows file name pgopti.spi.

2. This command runs the profmrg utility. The output DPI file will have the default
name pgopti.dpi.

3. The following display shows the directory, which now includes the DPI file to be
submitted as input to codecov.

elfdump /out output1/ -h $system.system.eld

elfdump /out output2/ -p $system.system.eld

$DATA05.TEST

ELFCOMH ELFDUMP ELFDUMPC ELFDUMPL ELFDUMPO LINKOUT

NSKELFH OUTPUT1 OUTPUT2 PGOSPI PGOSPL PLATDEPC

PLATDEPH PLATDEPL PLATDEPO YOSELFC YOSELFH YOSELFL

YOSELFO ZZPFO9UJ ZZPFU7

$ ls

pgopti.spi zzpfo9uj zzpfu7

profmrg

$ ls

pgopti.dpi pgopti.spi zzpfo9uj zzpfu7
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
8-4

Usage Scenario Measure Code Coverage
Measure Code Coverage
1. This display shows the directory containing the input files for codecov.

2. This command runs the codecov tool, specifying the host address and login
information required to retrieve the elfdump source files from the Guardian file
system. The prompt for a password would occur in practice but is omitted from this
example. The -counts option causes execution counts to appear in the code
coverage report.

3. This display shows the input directory, which now includes the code coverage
report, in the file CODE_COVERAGE.HTML and the folder named CodeCoverage.

Evaluate the Code Coverage Report
1. This screen is a summary of code coverage for the two test runs:

$ ls

 pgopti.dpi pgopti.spi zzpfo9uj zzpfu7

codecov -counts -host 16.107.174.143 -login super.super

$ ls

CODE_COVERAGE.HTML CodeCoverage pgopti.dpi pgopti.spi

zzpfo9uj zzpfu7
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
8-5

Usage Scenario Evaluate the Code Coverage Report
2. This screen shows specific coverage information for the source file ELFDUMPC:
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
8-6

Usage Scenario Evaluate the Code Coverage Report
3. Scrolling down the right side of the detailed display, you see the source code, with
color coding to show what was covered and what was not. The following example
shows a portion of the detailed display:

Note the following:

• Most of the lines are uncolored, meaning that they were executed.

• The “2” below line 111 indicates that the procedure was called twice (once for each
execution of elfdump).

• Looking at the if statement in line 118, the first assignment is yellow, indicating
that it was not executed. The second assignment is uncolored, indicating that it
was executed. The “^ 0” under line 119 indicates that that line was executed zero
times (in neither execution of the procedure), and the “^ 2” under line 121 indicates
that that line was executed twice (once for each execution of the procedure).

• Line 120 is yellow because the compiler did not generate any code for the else
statement, so that statement inherited its color from the preceding line.

For more information about how to interpret a display like this, see Section 7,
Interpreting the Code Coverage Report
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
8-7

Usage Scenario Evaluate the Code Coverage Report
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
8-8

9 Usage Considerations
This section summarizes usage considerations for the Code Coverage Tool. Most of
these issues are discussed in other sections of this manual but are repeated here for
your convenience.

Compilation Issues
To support code coverage analysis, you must recompile existing program files or DLLs
with the appropriate compiler and linker options, described in Section 3, Building the
Application. When a source file changes, the code coverage information for that source
file is incorrect until you recompile that source file with the code coverage compiler
options and repeat the later steps to generate code coverage information.

An instrumented program file or DLL has the following characteristics:

• Some code optimizations--for example, partial redundancy elimination, function
inlining, and loop unrolling--are limited or disabled.

• Instrumented code can be much larger than noninstrumented code.

• The maximum supported size for an object file has not increased. Thus, a very
large program file, compiled with instrumentation, could exceed the supported
object size.

• The maximum supported data area for an object file has not increased.
Instrumenting a program file or DLL adds counters to the data area. The total size
of data for these counters is proportional to the size (number of functions and basic
blocks) in the instrumented code. Thus, a program file that already uses a large
data area could, when compiled with instrumentation, exceed the maximum
supported data area.

• Dynamically unloading an instrumented DLL is not supported.

• Code coverage analysis is not available for source code that is textually included
within the body of a function. This limitation exists for all languages, but this style of
source inclusion is commonly used only in COBOL programs.

• Compiling an application to produce an instrumented object file can take longer
than a conventional compilation.

Application Performance
The code coverage tool is intended for data generation and collection in a test
environment only. The use of instrumented code is not recommended for production
environments. Applications compiled with the code coverage instrumentation will run
much more slowly than noninstrumented code.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
9-1

Usage Considerations Application Performance
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
9-2

Glossary
basic block. A sequence of code that is entered only at the beginning and exited at the

end. Once code enters a block, it executes the entire block unless an exception is
raised within the block. Although the terms “basic block” and “block” are often used
interchangeably, “block” is more generic and usually refers to any block (or sequence)
of instructions.

code coverage. Information about which parts of the source code of a program file were
executed during runs of the program file.

covered. Executed during a test run. A block is covered if it was entered in the course of a
test run.

DPI file. Dynamic profiling information file, default name pgopti.dpi. This file is produced by
profmrg from raw data file(s), existing DPI files, or both, and used as input by codecov.

instrumented code. Code into which the compiler inserted additional instructions to provide
information about how the code behaved at runtime, such as which source lines were
executed.

partially covered. Partially executed during a test run. When multiple basic blocks have the
same source code location, with some blocks covered and others not, that location is
said to be partially covered.

raw data files. Files produced by instrumented object code when it runs on the NonStop
server and moved to the workstation for use as input by profmrg. These files have
default names of the following form:

• ZZPF* if the program was run in the Guardian environment

• ZZPF* if the program was run in the OSS environment and the current directory is
a Guardian subvolume

• *.dyn if the program was run in the OSS environment and the current directory is
an OSS directory.

SPI file. Static profiling information file, having the name pgospi in the Guardian
environment and pgopti.spi in the OSS and Windows environments. This file is
produced by compilations and used as input by codecov.

uncovered. Never executed during a test run.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
Glossary-1

Glossary uncovered.
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
Glossary-2

Index
B
Block

defined Glossary-1
introduced 3-2

C
Code Cover Utility

installing 2-1
running 6-1

Code coverage
concepts 3-2
defined Glossary-1
report 1-1

display for individual source file 7-1
execution counts in 7-2
filenames 6-7
interpreting 7-1
title displayed on 6-6

codecov
command syntax 6-4
compiler option 3-3

CODECOV compiler option 3-3
CodeCoverage folder 6-7
CODE_COVERAGE.HTML 6-7, 7-1
Color coding in report 6-1, 7-4
Compilation issues 9-1
Compiler(s)

list of supported 1-2, 2-1
options in support of code
coverage 3-3

Compiling the application 3-1
task overview 3-1

Concatenating SPI files 6-3
Coverage summary 7-1
Covered

block, color code for 6-4
defined Glossary-1

Covered (continued)
files listed in code coverage report 7-1
what it means for a block to be 3-2

D
Directory

run each instrumented application in a
different 4-1
used by profmrg 5-4

DLL
dynamic unloading not supported 9-1

DPI File
created by profmrg 5-4
generating 5-1
introduced 1-2
list as input to profmrg 5-3
specifying name to codecov 6-4

Dynamic profiling information (DPI) file
see DPI file

E
Embedded SQL, instrumentation supported
for 1-1
Execution counts

displayed in code coverage report 7-2
option to include 6-4

F
Features, overview of 1-1
Filename

identifies platform for source file
retrieval 6-2
slash invalid as initial character 5-3

G
Guardian process, instrumentation
supported for 1-1
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
Index-1

Index H
H
Host address for codecov access to
NonStop Server 6-5
HTML files constituting code coverage
report 6-7

I
Include files 7-3
Inlining of function calls disabled 9-1
Installing the Code Coverage Utility 2-1
Instrumented code, defined Glossary-1
Instrumented program files and DLLs,
characteristics and restrictions 9-1

L
Linking the object files 3-3
Login name for codecov access to NonStop
Server 6-5

M
Mail address used by codecov 6-5
Mail window

destination address 6-5
link text for 6-5

Mixed language process, instrumentation
supported for 1-1

N
NonStop process pair, instrumentation
supported for 1-1

O
OSS process, instrumentation supported
for 1-1

P
Partially covered

block shown as covered if you specify -
nopartial 6-5

Partially covered (continued)
color code for block 6-6, 7-6
defined Glossary-1
what it means for a block to be 3-2

Password
for codecov access to NonStop
Server 6-6

Performance 9-1
of instrumented code 4-1

pgopti.spi, pgospi 3-2
Platform

compilation 1-1
Product numbers

codecov and profmrg 1-2, 2-1
profmrg

command syntax 5-3
input files for 5-1
usage diagram 5-1

Progress meter 6-5

R
Raw data file

copying to workstation 5-2
defined Glossary-1
file type and name 4-2

Retrieval of source files from NonStop
Server 6-2

S
Site Update Tape (SUT) 1-2
Source files

choosing those to instrument 3-1
displaying coverage data for 7-1
retrieval from NonStop Server 6-2

SPI File
introduced 1-2
name specified to codecov 6-6

Standard error and output files
codecov use of 6-7
profmrg use of 5-5
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
Index-2

Index T
Static profiling information (SPI) file
default name of 3-2
defined Glossary-1
file type and name 3-3
introduced 1-2
structure of 6-3

Steps for using Code Coverage Tool 1-2
Subvolume

run each instrumented application in a
different 4-1

T
Task overview 1-2

compiling the application 3-1
converting raw data files to DPI
files 5-1
diagram 1-4
producing raw data files for coverage
analysis 4-1
running Code Cover Utility 6-1

Title
on code coverage report 6-6

U
Uncovered block

color code for 6-4
defined Glossary-1

Usage
considerations 9-1
scenario 8-1

Special Characters
#include files 7-3
-a option 5-3
-bcolor option 6-4
-ccolor option 6-4
-counts option 6-4
-dpi option 6-4
-dump option 5-3

-fcolor option 6-4
-h option 6-4
-help option 5-3, 6-4
-host option 6-5
-l pgo linker option 3-3
-login option 6-5
-maddr option 6-5
-mname option 6-5
-nologo option 5-4
-nopartial option 6-5
-nopmeter option 6-5
-passwd option 6-6
-pcolor option 6-6
-prj option 6-6
-prof_dir option 5-4
-prof_dpi option 5-4
-spi option 6-6
-ucolor option 6-6
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
Index-3

Index Special Characters
HP Code Coverage Tool Reference Manual for HP Integrity NonStop NS-Series Servers—542684-001
Index-4

	What’s New in This Manual
	About This Manual
	1 Introduction to the HP Code Coverage Tool
	Features of the Tool
	Required Hardware and Software
	Usage Overview
	Topics This Manual Covers

	2 Installing the Code Coverage Tool
	Copying the Code Coverage Tool to Your Workstation
	Installing codecov
	Installing profmrg

	3 Building the Application
	Task Overview
	Prepare to Compile
	Selecting Source Files
	Understanding Code Coverage Concepts
	Usage Considerations
	Cleaning Up From Previous Runs

	Build the Application
	Compiling the Source Files
	Verify the Output
	Linking the Object Files
	HP Enterprise Toolkit (ETK) Considerations

	Example

	4 Running the Application
	Task Overview
	Prepare the Application for Testing
	Preparing Test Cases
	Insulating the Application

	Run the Application
	Verify Output
	Example

	5 Converting Raw Data Files to DPI Files
	Task Overview
	Prepare profmrg Input Files
	Assembling Raw Data Files
	Saving DPI Files from Previous Runs
	Including DPI Files from Previous Runs
	Where to Put the Input Files

	Run profmrg
	Verify Output
	The Output DPI File
	profmrg Use of Standard Error and Output Files

	Example

	6 Running the Code Cover Utility
	Task Overview
	Prepare to Run codecov
	Providing for Source File Retrieval
	Preparing the SPI File
	Preparing the DPI File
	Cleaning Up from Previous Runs

	Run codecov
	Verify Output
	The Code Coverage Report
	codecov Use of Standard Error and Output Files

	Example

	7 Interpreting the Code Coverage Report
	Opening the Code Coverage Report
	Code Coverage Display for a Source File
	Execution Counts in the Source Display
	Representation of #include Files
	Understanding Color Coding in the Code Coverage Report

	8 Usage Scenario
	Build the Application
	Run the Application
	Produce the DPI File
	Measure Code Coverage
	Evaluate the Code Coverage Report

	9 Usage Considerations
	Compilation Issues
	Application Performance

	Glossary
	Index

