
Data Definition
Language (DDL)
Reference Manual
Abstract

This publication describes the DDL language syntax and the DDL dictionary database.
The audience includes application programmers and database administrators.

Product Version

DDL D40
DDL H01

Supported Release Version Updates (RVUs)

This publication supports J06.03 and all subsequent J-series RVUs, H06.03 and all
subsequent H-series RVUs, and G06.26 and all subsequent G-series RVUs, until
otherwise indicated by its replacement publications.

Part Number Published

529431-003 May 2010

Document History
Part Number Product Version Published

529431-002 DDL D40, DDL H01 July 2005

529431-003 DDL D40, DDL H01 May 2010

Legal Notices
 Copyright 2010 Hewlett-Packard Development Company L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S.
Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java is a U.S. trademark of Sun Microsystems, Inc.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks and IT DialTone and The
Open Group are trademarks of The Open Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the
Open Software Foundation, Inc.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED
HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in
connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. This documentation and the software to
which it relates are derived in part from materials supplied by the following:

© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.
© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc.
© 1987, 1988, 1989, 1990, 1991 Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991,
1992 International Business Machines Corporation. © 1988, 1989 Massachusetts Institute of
Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989,
1990, 1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986,
1989, 1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.

This software and documentation are based in part on the Fourth Berkeley Software Distribution
under license from The Regents of the University of California. OSF acknowledges the following
individuals and institutions for their role in its development: Kenneth C.R.C. Arnold,
Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980,
1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents of the University of California.

Printed in the US

Data Definition Language (DDL)
Reference Manual
Glossary Index Examples Figures Tables
Legal Notices

What’s New in This Manual xix
Manual Information xix
New and Changed Information xix

About This Manual xxi
Audience xxii
Prerequisite Manuals xxii
Related Manuals xxiii
Notation Conventions xxiii

1. Introduction to DDL
Compiling and Translating Data Definitions 1-3
Using DDL Definitions 1-4
Creating a Dictionary 1-5
Creating a Database 1-7
Generating Source Code 1-9
Maintaining a Dictionary 1-12
Examining a Dictionary 1-14

2. DDL Language Elements
Names 2-1

Syntax 2-2
Restrictions 2-2

File Names 2-3
Local File Names 2-3
Network File Names 2-4

Locale Names 2-4
Numbers 2-5
Strings 2-5
National Literals 2-6
Keywords 2-6
 Hewlett-Packard Company—529431-003
i

Contents 2. DDL Language Elements (continued)
2. DDL Language Elements (continued)
Reserved Words 2-11
Special Characters 2-12
Comments 2-12

Dictionary Comments 2-13
Compiler Listing Comments 2-15

Statements 2-16
Commands 2-18

3. Running the DDL Compiler
RUN DDL Command 3-1
Running the DDL Compiler Noninteractively 3-3
Running the DDL Compiler Interactively 3-4
Completion Codes 3-5

4. Named Constants
CONSTANT 4-1

Numeric Constants 4-3
Product Version Constants 4-4
Existing Constants 4-5
C 4-5
COBOL 4-6
Pascal (D-series Systems Only) 4-6
TACL 4-7
TAL 4-8
Examples 4-8

Standard SPI Constants 4-9

5. Definitions and Records
DEFINITION 5-1

Order of Clauses 5-2
Definition Length 5-2
Field Definition 5-4
Group Definition 5-5
Reference Definition 5-7
Error Handling 5-8

RECORD 5-8
File-Creation Syntax 5-10
Creation-Attribute Syntax 5-12
Record Structure Syntax 5-15
Data Definition Language (DDL) Reference Manual—529431-003
ii

Contents 5. Definitions and Records (continued)
5. Definitions and Records (continued)
Record Reference Syntax 5-16
Key Assignment Syntax 5-17
Error Handling 5-18
Examples 5-19

Syntax Elements 5-21
Clauses 5-21
Other Elements 5-23

6. Definition Attributes
AS 6-3
DISPLAY 6-4
EDIT-PIC 6-5
EXTERNAL 6-6
FILLER 6-7
HEADING 6-9
HELP 6-10
JUSTIFIED 6-11
KEYTAG 6-12
LN 6-13
MUST BE 6-15
NULL 6-19
OCCURS 6-20
OCCURS DEPENDING ON 6-23
PICTURE 6-25

National Data Items 6-28
C 6-28
COBOL 6-29
FORTRAN 6-30
Pascal (D-series Systems Only) 6-30
pTAL and TAL 6-30
TACL 6-31

REDEFINES 6-31
C 6-32
COBOL 6-33
FORTRAN 6-33
Pascal (D-series Systems Only) 6-34
pTAL or TAL 6-35
TACL 6-36
Data Definition Language (DDL) Reference Manual—529431-003
iii

Contents 6. Definition Attributes (continued)
6. Definition Attributes (continued)
SPI-NULL 6-37
SQLNULLABLE 6-39
TACL 6-44
TYPE 6-48

Specifying TYPE data-type 6-51
Specifying TYPE def-name 6-66
Specifying TYPE * 6-67

UPSHIFT 6-69
USAGE 6-70
VALUE 6-75
66 RENAMES 6-79
88 Condition-Name 6-81
89 Enumeration 6-84

7. SPI Tokens
Defining SPI Tokens 7-2
TOKEN-TYPE 7-2

TOKEN-TYPE Statement Output 7-5
Standard SPI TOKEN-TYPE Definitions 7-5

TOKEN-CODE 7-8
TOKEN-CODE Statement Output 7-10
Standard SPI TOKEN-CODE Definitions 7-10

TOKEN-MAP 7-13
Product Versions for Bit Fields 7-17
TOKEN-MAP Statement Output 7-18
Standard SPI Definitions in Token-Map Definitions 7-19

8. Dictionary-Manipulation Statements
DELETE 8-1
EXIT 8-4
OUTPUT 8-5
OUTPUT UPDATE 8-7
SHOW USE OF 8-11

9. DDL Compiler Commands
ANSICOBOL 9-7
C 9-8
Data Definition Language (DDL) Reference Manual—529431-003
iv

Contents 9. DDL Compiler Commands (continued)
9. DDL Compiler Commands (continued)
C00CALIGN 9-12
CCHECK 9-12
CDEFINEUPPER 9-14
CFIELDALIGN_MATCHED2 9-14
CIFDEF, CIFNDEF, and CENDIF 9-18
CLISTIN 9-20
CLISTOUT 9-21
COBCHECK 9-23
COBLEVEL 9-25
COBOL 9-26
COLUMNS 9-29
COMMENTS 9-29
CPRAGMA 9-32
CTOKENMAP_ASDEFINE 9-32
CUNDEF 9-36
C_DECIMAL 9-37
C_MATCH_HISTORIC_TAL 9-40
DDL 9-42
DEFLIST 9-45
DICT 9-47
DICTN 9-49
DICTR 9-51
DO_PTAL_ON 9-52
EDIT 9-53
ERRORS 9-55
EXPANDC 9-56
FIELDALIGN_SHARED8 9-58
FILLER 9-59
FORCHECK 9-62
FORTRAN 9-63
FORTRANUNDERSCORE 9-66
FUP 9-67
HELP 9-70
LINECOUNT 9-70
LIST 9-71
NCLCONSTANT 9-72
NEWFUP_FILEFORMAT 9-75
NOFILEFORMAT 9-77
Data Definition Language (DDL) Reference Manual—529431-003
v

Contents 9. DDL Compiler Commands (continued)
9. DDL Compiler Commands (continued)
OLDFUP_FILEFORMAT 9-79
OUT 9-82
OUTPUT_SENSITIVE 9-83
PAGE 9-86
PASCAL (D-Series Systems Only) 9-86
PASCALBOUND (D-Series Systems Only) 9-89
PASCALCHECK (D-Series Systems Only) 9-90
PASCALNAMEDVARIANT (D-Series Only) 9-91
REPORT 9-92
RESET 9-94
SAVE 9-94
SECTION 9-96
SETLOCALENAME 9-97
SETSECTION 9-98
SOURCE 9-99
SPACING 9-101
TACL 9-101
TACLGEN 9-104
TAL 9-105
TALALLOCATE 9-108
TALBOUND 9-109
TALCHECK 9-110
TALUNDERSCORE 9-111
TEDIT 9-112
TIMESTAMP 9-113
VALUES 9-115
WARN 9-116
WARNINGS 9-116

10. Dictionary Maintenance
Generating a schema From a Dictionary 10-1
Adding Dictionary Objects 10-2
Deleting Dictionary Objects 10-4

Deleting Unreferenced Objects 10-4
Deleting Referenced Objects 10-5

Modifying Dictionary Objects 10-8
Modifying Unreferenced Objects 10-9
Modifying Referenced Objects 10-10
Data Definition Language (DDL) Reference Manual—529431-003
vi

Contents 10. Dictionary Maintenance (continued)
10. Dictionary Maintenance (continued)
Making Major Modifications 10-13
Changing Dictionary Security 10-14
Moving a Dictionary 10-14

Moving a Nonaudited Dictionary 10-15
Moving an Audited Dictionary 10-16

Purging a Dictionary 10-18
Increasing Dictionary File Size 10-19
Rebuilding a Dictionary 10-20

Rebuilding a Nonaudited Dictionary 10-20
Rebuilding an Audited Dictionary 10-21

Converting a Dictionary 10-22

A. DDL Messages

B. Sample Schemas
Sample Database Schema B-1

Host-Language Source Code B-1
Database Schema Listing B-2

Sample SPI Schema B-6
DDL Commands to Create an SPI Schema B-8
Selected ZSPIDDL Statements B-8
ASSNDDL Statements B-10

C. DDL Data Translation

D. Dictionary Database Structure
Dictionary Components D-1

Objects D-1
Elements D-2
Text Items D-2

Dictionary Files D-3
DICTALT (Alternate Key File) D-4
DICTCDF (Constant Definition File) D-4
DICTDDF (Dictionary Definition File) D-6
DICTKDF (Key Definition File) D-8
DICTMAP (Token Map File) D-13
DICTOBL (Object Build List) D-15
DICTODF (Object Definition File) D-37
DICTOTF (Object Text File) D-41
Data Definition Language (DDL) Reference Manual—529431-003
vii

Contents D. Dictionary Database Structure (continued)
D. Dictionary Database Structure (continued)
DICTOUF (Object Usage File) D-45
DICTOUK (Object Usage Key File) D-47
DICTRDF (Record Definition File) D-47
DICTTKN (Token Code File) D-56
DICTTYP (Token Type File) D-58
DICTVER (Token Map Field Version File) D-61

Definition and Record Storage in the Dictionary D-63
DICTDDF (Dictionary Definition File) D-64
DICTODF (Object Definition File) D-64
DICTOBL (Object Build List) D-65
DICTOTF (Object Text File) D-65
DICTRDF (Record Definition File) D-66
DICTKDF (Key Definition File) D-67
Dictionary Structure Link Diagram D-68

E. Dictionary Reports
Using Enform Plus Queries for Dictionary Reports E-1
Producing Dictionary Reports E-3

Compiling the Dictionary Schema E-4
Requesting Reports E-5

F. Syntax Summary
RUN DDL Command F-2
CONSTANT Statement F-2
DEFINITION Statement F-2

Field Definition F-3
Group Definition F-4
Reference Definition F-5

DELETE Statement F-5
EXIT Statement F-5
OUTPUT Statement F-6
OUTPUT UPDATE Statement F-6
RECORD Statement F-6
SHOW USE OF Statement F-8
TOKEN-CODE Statement F-9
TOKEN-MAP Statement F-9
TOKEN-TYPE Statement F-10
DEFINITION and RECORD Statement Clauses F-10
Data Definition Language (DDL) Reference Manual—529431-003
viii

Contents F. Syntax Summary (continued)
F. Syntax Summary (continued)
AS Clause F-11
DISPLAY Clause F-11
EDIT-PIC Clause F-11
EXTERNAL Clause F-11
FILLER Clause F-11
HEADING Clause F-11
HELP Clause F-11
JUSTIFIED Clause F-11
KEYTAG Clause F-12
LN Clause F-12
MUST BE Clause F-12
NULL Clause F-12
OCCURS Clause F-12
OCCURS DEPENDING ON Clause F-12
PICTURE Clause F-13
REDEFINES Clause F-13
SPI-NULL Clause F-13
SQLNULLABLE Clause F-13
TACL Clause F-14
TYPE Clause F-14
UPSHIFT Clause F-14
USAGE Clause F-15
VALUE Clause F-15
66 RENAMES Clause F-15
88 Condition-Name Clause F-16
89 Enumeration Clause F-16

Commands F-16

G. Pathmaker and DDL

H. DDL Alignment Rules for C
C00CALIGN Alignment Rules H-2
NOC00CALIGN Alignment Rules H-3
C_MATCH_HISTORIC_TAL Alignment Rules H-3
FIELDALIGN_SHARED8 Alignment Rules H-4
Data Definition Language (DDL) Reference Manual—529431-003
ix

Contents Glossary
Glossary

Index

Examples
Example 2-1. DDL Names 2-2
Example 2-2. DDL Strings 2-5
Example 2-3. dictionary Comment 2-12
Example 2-4. DDL Compiler Listing Comments 2-13
Example 2-5. User-Defined Dictionary Comments 2-13
Example 2-6. User-Defined Dictionary Comments 2-14
Example 2-7. User-Defined Compiler Listing Comment on Line by Itself 2-15
Example 2-8. User-Defined Compiler Listing Comments Between Clauses 2-15
Example 3-1. Running the DDL Compiler Noninteractively 3-3
Example 3-2. Interactive DDL Session: Adding Structures to Existing

Dictionary 3-4
Example 3-3. Interactive DDL Session: Adding Structures to New Dictionary 3-4
Example 3-4. Interactive DDL Session: Writing From a Dictionary to a File 3-5
Example 4-1. CONSTANT Statements 4-8
Example 4-2. Numeric Constant Defined by Existing Constant—Same Type 4-9
Example 4-3. Numeric Constant Defined by Existing Constant—New Type 4-9
Example 4-4. Numeric Constants With Compatible Types 4-9
Example 4-5. Numeric Constants With Incompatible Types 4-9
Example 5-1. Field Definitions 5-5
Example 5-2. Group Definitions 5-6
Example 5-3. Reference Definitions 5-7
Example 5-4. Definitions Referenced in RECORD Statements 5-19
Example 5-5. Record Defined by Existing Definition 5-19
Example 5-6. Record With Unique Alternate Key 5-19
Example 5-7. Qualifying Alternate Key Fields Whose Names Are the Same 5-20
Example 5-8. Creating an Alternate Key File 5-20
Example 6-1. AS Clause 6-3
Example 6-2. Constant Names That Specify DISPLAY Formats 6-4
Example 6-3. EDIT-PIC Clause 6-6
Example 6-4. FILLER Clause 6-7
Example 6-5. FILLER Clauses Translated to C and Pascal Source Code 6-8
Example 6-6. Multiline Heading in Enform Plus 6-9
Example 6-7. Multiline Heading That Uses a Named Constant 6-9
Example 6-8. HELP Clause 6-11
Data Definition Language (DDL) Reference Manual—529431-003
x

Contents Examples (continued)
Examples (continued)
Example 6-9. Using a Constant for Frequently Used Help Text 6-11
Example 6-10. KEYTAG Clause 6-12
Example 6-11. DDL Locale Name and Components 6-13
Example 6-12. LN Clause 6-15
Example 6-13. MUST BE Clause 6-18
Example 6-14. Defining MUST BE Values as Constants 6-18
Example 6-15. NULL Clause 6-20
Example 6-16. Specifying NULL Value With a Constant 6-20
Example 6-17. OCCURS Clause 6-22
Example 6-18. Repeating a Group With an OCCURS Clause 6-22
Example 6-19. Constant as OCCURS Value 6-22
Example 6-20. OCCURS DEPENDING ON Clause 6-24
Example 6-21. PICTURE Clauses Describing ASCII Character Fields 6-27
Example 6-22. PICTURE Clauses Describing Binary Fields 6-27
Example 6-23. REDEFINES Clause 6-32
Example 6-24. REDEFINES Clause With C Output 6-32
Example 6-25. REDEFINES Clause With FORTRAN Output 6-33
Example 6-26. REDEFINES Clause With Pascal Output 6-35
Example 6-27. REDEFINES Clause With TACL Output 6-36
Example 6-28. SPI-NULL Clause For a Single Field 6-38
Example 6-29. SPI-NULL Clause For a Group of Fields 6-38
Example 6-30. Inherited and Overridden SPI-NULL Values 6-39
Example 6-31. Field Defined With SPI-NULL and VALUE Clauses 6-39
Example 6-32. SQLNULLABLE Clause 6-42
Example 6-33. SQL-Nullable Output for C 6-42
Example 6-34. SQL-Nullable Output for COBOL 6-42
Example 6-35. SQL-Nullable Output for FORTRAN 6-43
Example 6-36. SQL-Nullable Output for Pascal (D-series Systems Only) 6-43
Example 6-37. SQL-Nullable Output for pTAL or TAL 6-43
Example 6-38. SQL-Nullable Output for TACL 6-44
Example 6-39. TACL Clause 6-46
Example 6-40. TACL Clause at Group Level 6-46
Example 6-41. Inheriting TACL Clause From Referenced Definition 6-47
Example 6-42. Overriding Inheriting TACL Clause 6-47
Example 6-43. TYPE data-type Clauses 6-51
Example 6-44. C BINARY 64 and BINARY 64 UNSIGNED (H06.03 and Later

RVUs) 6-52
Example 6-45. TAL BINARY 64 and BINARY 64 UNSIGNED 6-53
Data Definition Language (DDL) Reference Manual—529431-003
xi

Contents Examples (continued)
Examples (continued)
Example 6-46. Specifying Product Version Numbers 6-55
Example 6-47. Bit Field Output for C 6-57
Example 6-48. Bit Field Output for C 6-57
Example 6-49. Bit Field Output for COBOL 6-59
Example 6-50. Bit Field Output for FORTRAN 6-60
Example 6-51. Bit Field Output for Pascal 6-62
Example 6-52. Bit Field Output for Pascal 6-62
Example 6-53. Bit Field Output for TACL 6-63
Example 6-54. Bit Field Output for pTAL and TAL 6-65
Example 6-55. Bit Field Output for pTAL and TAL 6-66
Example 6-56. TYPE def-name and TYPE * Clauses 6-67
Example 6-57. Equivalent to Example 6-56 on page 6-67 6-68
Example 6-58. UPSHIFT Clause 6-69
Example 6-59. USAGE COMPUTATIONAL Clause 6-71
Example 6-60. USAGE IS INDEX Output for COBOL 6-74
Example 6-61. USAGE IS PACKED-DECIMAL Output for COBOL 6-74
Example 6-62. Assigning Initial Values With VALUE Clauses 6-78
Example 6-63. Overriding and Suppressing VALUE Clauses 6-78
Example 6-64. Enumeration Values in VALUE Clauses 6-78
Example 6-65. National-Literal Values in VALUE Clauses 6-79
Example 6-66. SQL-Literal Values in VALUE Clauses 6-79
Example 6-67. RENAMES Clause 6-80
Example 6-68. Condition-Name Clauses 6-83
Example 6-69. Condition-Name Values as Constants 6-83
Example 6-70. Condition-Names as Enumeration Values 6-83
Example 6-71. Enumeration Clause Output for C 6-86
Example 6-72. Enumeration Clause Output for FORTRAN 6-87
Example 6-73. Enumeration Clause Output for Pascal (D-series Systems

Only) 6-87
Example 6-74. Enumeration Clause Output for TACL 6-88
Example 6-75. Enumeration Clause Output for pTAL or TAL 6-89
Example 7-1. Standard SPI Token Definition for Simple Token With 16-Bit Integer

Values 7-6
Example 7-2. Possible Subsystem Token Types 7-6
Example 7-3. COBOL Source Code Generated for Example 7-2 on page 7-6 7-7
Example 7-4. TAL Source Code Generated for Example 7-2 on page 7-6 7-7
Example 7-5. TACL Source Code Generated for Example 7-2 on page 7-6 7-7
Example 7-6. C Source Code Generated for Example 7-2 on page 7-6 7-7
Data Definition Language (DDL) Reference Manual—529431-003
xii

Contents Examples (continued)
Examples (continued)
Example 7-7. Pascal Source Code Generated for Example 7-2 on page 7-6 7-8
Example 7-8. Definition of Standard Return Token 7-11
Example 7-9. Possible Subsystem Token Codes 7-11
Example 7-10. COBOL Source Code Generated for Example 7-9 on

page 7-11 7-11
Example 7-11. TAL Source Code Generated for Example 7-9 on page 7-11 7-12
Example 7-12. TACL Source Code Generated for Example 7-9 on page 7-11 7-12
Example 7-13. C Source Code Generated for Example 7-9 on page 7-11 7-12
Example 7-14. Pascal Source Code Generated for Example 7-9 on page 7-11 7-12
Example 7-15. Extensible Structured Token 7-20
Example 7-16. COBOL Source Code Generated for Example 7-15 on

page 7-20 7-20
Example 7-17. pTAL or TAL Source Code Generated for Example 7-15 on

page 7-20 7-20
Example 7-18. TACL Source Code Generated for Example 7-15 on page 7-20 7-20
Example 7-19. C Source Code Generated for Example 7-15 on page 7-20 7-21
Example 7-20. Pascal Source Code Generated for Example 7-15 on

page 7-20 7-21
Example 7-21. Extending an Extensible Token 7-21
Example 7-22. Specifying Product Version Numbers for Bit Fields 7-22
Example 7-23. pTAL or TAL Output for Example 7-22 on page 7-22 7-23
Example 7-24. Incorrect Use of SPI-NULL Value for Bit Fields 7-25
Example 7-25. Incorrect Use of Product Version Numbers for Bit Fields 7-25
Example 7-26. Incorrect Use of Version Numbers for Bit Fields 7-26
Example 8-1. Deleting a Record Interactively 8-3
Example 8-2. Deleting a Record Interactively 8-3
Example 8-3. Deleting a Record Interactively 8-3
Example 8-4. Deleting an SPI Token Type That SPI Token Codes References 8-3
Example 8-5. EXIT Statement in Interactive DDL Session 8-4
Example 8-6. OUTPUT RECORD Statement 8-6
Example 8-7. OUTPUT * Statement 8-7
Example 8-8. OUTPUT Statements 8-7
Example 8-9. OUTPUT UPDATE Statement 8-9
Example 8-10. Contents of myfile After Example 8-9 on page 8-9 8-9
Example 8-11. OUTPUT UPDATE Deleting a Constant and Objects That Refer to

It 8-10
Example 8-12. SHOW USE OF Nesting Levels 8-12
Example 8-13. SHOW USE OF Listing Sequence 8-13
Example 9-1. ANSICOBOL Command 9-7
Data Definition Language (DDL) Reference Manual—529431-003
xiii

Contents Examples (continued)
Examples (continued)
Example 9-2. NOANSICOBOL Command 9-8
Example 9-3. C Command 9-10
Example 9-4. CCHECK Command 9-13
Example 9-5. CFIELDALIGN_MATCHED2 and C00CALIGN Commands 9-16
Example 9-6. CFIELDALIGN_MATCHED2 Command 9-17
Example 9-7. CIFNDEF, CIFDEF and CENDIF commands 9-19
Example 9-8. CLISTIN and NOCLISTIN Commands 9-20
Example 9-9. CLISTOUT, NOCLISTOUT and CLISTOUTDETAIL Commands 9-22
Example 9-10. COBCHECK and NOCOBCHECK Commands 9-24
Example 9-11. COBLEVEL Command 9-25
Example 9-12. COBOL Command 9-27
Example 9-13. COBOL Command 9-28
Example 9-14. COMMENTS Command 9-30
Example 9-15. COMMENTS Command 9-31
Example 9-16. CTOKENMAP_ASDEFINE Command 9-33
Example 9-17. CUNDEF Command 9-36
Example 9-18. C_DECIMAL and NOC_DECIMAL Commands 9-37
Example 9-19. C_MATCH_HISTORIC_TAL Command 9-41
Example 9-20. DDL Command 9-44
Example 9-21. DEFLIST Command 9-46
Example 9-22. DO_PTAL_ON and DO_PTAL_OFF Commands 9-52
Example 9-23. EDIT Command 9-54
Example 9-24. ERRORS Command 9-55
Example 9-25. EXPANDC Command 9-56
Example 9-26. FIELDALIGN_SHARED8 Command 9-58
Example 9-27. FILLER Command 9-61
Example 9-28. FORCHECK Command 9-63
Example 9-29. FORTRAN Command 9-65
Example 9-30. FUP Command 9-68
Example 9-31. HELP Command With Full Command Name 9-70
Example 9-32. HELP Command With Partial Command Name 9-70
Example 9-33. LINECOUNT Command 9-71
Example 9-34. LINECOUNT Command 9-71
Example 9-35. LIST and NOLIST Commands 9-72
Example 9-36. NCLCONSTANT Command 9-74
Example 9-37. NEWFUP_FILEFORMAT Command 9-75
Example 9-38. NOFILEFORMAT Command 9-78
Example 9-39. OLDFUP_FILEFORMAT Command 9-80
Data Definition Language (DDL) Reference Manual—529431-003
xiv

Contents Examples (continued)
Examples (continued)
Example 9-40. OUT Command 9-82
Example 9-41. OUTPUT_SENSITIVE Command 9-83
Example 9-42. PAGE Command 9-86
Example 9-43. PASCAL Command 9-88
Example 9-44. PASCALBOUND Command 9-90
Example 9-45. PASCALCHECK Command 9-91
Example 9-46. REPORT Command 9-93
Example 9-47. RESET Command 9-94
Example 9-48. SAVE Command 9-96
Example 9-49. SETLOCALENAME Command 9-98
Example 9-50. SETSECTION Command 9-99
Example 9-51. SOURCE Command 9-100
Example 9-52. SPACING Command 9-101
Example 9-53. TACL Command 9-104
Example 9-54. TAL Command 9-107
Example 9-55. TALALLOCATE Command 9-108
Example 9-56. TALBOUND Command 9-110
Example 9-57. TALCHECK Command 9-111
Example 9-58. TALUNDERSCORE Command 9-112
Example 9-59. TEDIT Command 9-113
Example 9-60. TIMESTAMP Command 9-114
Example 9-61. VALUES and NOVALUES Commands 9-115
Example 9-62. WARN and NOWARN Commands 9-116
Example 9-63. WARNINGS Command 9-117
Example 10-1. Generating a schema From a Dictionary 10-2
Example 10-2. Adding a New Record to a Dictionary 10-3
Example 10-3. Deleting an Unreferenced Object From a Dictionary 10-5
Example 10-4. Objects That Reference Other Objects 10-5
Example 10-5. Deleting a Referenced Object From a Dictionary 10-7
Example 10-6. Modifying an Unreferenced Object 10-9
Example 10-7. Modifying an Unreferenced Object 10-10
Example 10-8. Objects That Reference Other Objects 10-11
Example 10-9. Modifying a Reference Object 10-12
Example 10-10. Changing Dictionary Security 10-14
Example 10-11. Moving a Nonaudited Dictionary 10-15
Example 10-12. Moving an Audited Dictionary 10-17
Example 10-13. Listing and Purging Dictionary Files 10-18
Example 10-14. Purging Dictionary Files With the NOSAVE Command 10-18
Data Definition Language (DDL) Reference Manual—529431-003
xv

Contents Examples (continued)
Examples (continued)
Example 10-15. Increasing a Dictionary’s File Size 10-20
Example 10-16. Rebuilding a Nonaudited Dictionary 10-21
Example 10-17. Determining If a Dictionary is Audited 10-21
Example 10-18. Converting a Dictionary From One Product Version to

Another 10-23
Example 10-19. Changing a Dictionary Description 10-23
Example B-1. Creating an SPI Schema B-8
Example B-2. ZSPIDDL Statements B-9
Example D-1. Objects D-2
Example D-2. Object With Multiple Elements D-15
Example D-3. SOURCE-DEF Field D-33
Example D-4. Sample Dictionary Schema for a Definition and a Record D-63
Example E-1. Requesting All 16 Dictionary Reports E-5
Example E-2. Requesting Selected Dictionary Reports E-6
Example H-1. C00CALIGN Alignment With Character Inside Structure H-2
Example H-2. C00CALIGN Alignment With Character Outside Structure H-2

Figures
Figure 1-1. DDL Compiler Overview 1-3
Figure 1-2. Creating a Dictionary 1-6
Figure 1-3. Creating Database Files 1-8
Figure 1-4. Generating Source Code 1-10
Figure 1-5. Maintaining a Dictionary 1-13
Figure 1-6. Examining a Dictionary 1-15
Figure 9-1. SECTION Command 9-97
Figure B-1. Database Schema Listing B-2
Figure B-2. Sample DDL File ASSNDDL B-10
Figure D-1. DICTCDF (Constant Definition File)—G-Series D-5
Figure D-2. DICTCDF (Constant Definition File)—H-Series D-5
Figure D-3. DICTDDF (Dictionary Definition File)—G-Series D-7
Figure D-4. DICTDDF (Dictionary Definition File)—H-Series D-7
Figure D-5. DICTKDF (Key Definition File)—G-Series D-9
Figure D-6. DICTKDF (Key Definition File)—H-Series D-10
Figure D-7. DICTMAP (Token Map File)—G-Series D-13
Figure D-8. DICTMAP (Token Map File)—H-Series D-14
Figure D-9. DICTOBL (Object Build List)—G-Series D-16
Figure D-10. DICTOBL (Object Build List)—H-Series D-21
Figure D-11. DICTODF (Object Definition File)—G-Series D-37
Data Definition Language (DDL) Reference Manual—529431-003
xvi

Contents Figures (continued)
Figures (continued)
Figure D-12. DICTODF (Object Definition File)—H-Series D-39
Figure D-13. DICTOTF (Object Text File)—G-Series D-41
Figure D-14. DICTOTF (Object Text File)—H-Series D-42
Figure D-15. DICTOUF (Object Usage File)—G-Series D-45
Figure D-16. DICTOUF (Object Usage File)—H-Series D-46
Figure D-17. DICTRDF (Record Definition File)—G-Series D-48
Figure D-18. DICTRDF (Record Definition File)—H-Series D-50
Figure D-19. DICTTKN (Token Code File)—G-Series D-56
Figure D-20. DICTTKN (Token Code File)—H-Series D-57
Figure D-21. DICTTYP (Token Type File)—G-Series D-58
Figure D-22. DICTTYP (Token Type File)—H-Series D-59
Figure D-23. DICTVER (Token Map Field Version File)—G-Series D-61
Figure D-24. DICTVER (Token Map Field Version File)—H-Series D-62
Figure D-25. Main Links Among Dictionary Files D-68
Figure E-1. Creating a Dictionary for DDSCHEMA E-5
Figure E-2. Running DDQUERYS to Produce Reports E-6

Tables
Table 2-1. DDL File Names 2-4
Table 2-2. DDL Special Characters 2-12
Table 2-3. DDL Statements That Define or Replace Objects 2-17
Table 2-4. DDL Statements That Display Objects 2-17
Table 3-1. DDL Compiler Completion Codes 3-5
Table 4-1. Ranges of Numeric Constant Values 4-3
Table 5-1. File Attributes for DDL and FUP 5-11
Table 6-1. Definition and Record Clauses 6-1
Table 6-2. Display Format Examples 6-4
Table 6-3. Supported Locale Names 6-14
Table 6-4. Figurative Constants 6-17
Table 6-5. Symbolic Literals 6-17
Table 6-6. Lengths of TACL Data Types 6-45
Table 7-1. DDL Data Structures Generated for Token Maps 7-18
Table 7-2. Structure of a Bit Map 7-24
Table 8-1. Dictionary-Manipulation Statements 8-1
Table 9-1. Dictionary Commands 9-2
Table 9-2. Compilation Commands 9-2
Table 9-3. C Source Output Commands 9-2
Table 9-4. COBOL Source Output Commands 9-3
Data Definition Language (DDL) Reference Manual—529431-003
xvii

Contents Tables (continued)
Tables (continued)
Table 9-5. FORTRAN Source Output Commands 9-3
Table 9-6. File Utility Program (FUP) Source Output Commands 9-4
Table 9-7. Pascal Source Output Commands (D-Series Systems Only) 9-4
Table 9-8. pTAL and TAL Output Commands 9-4
Table 9-9. TACL Source Output Commands 9-5
Table 9-10. DDL Other Source Output Commands 9-5
Table 9-11. Listing Commands 9-6
Table 9-12. Other DDL Commands 9-6
Table 10-1. Dictionary File Extent Sizes 10-19
Table A-1. DDL Message Types A-1
Table C-1. Sample DDL/C Data Translation Table C-1
Table C-2. Sample DDL/COBOL Data Translation Table C-3
Table C-3. Sample DDL/FORTRAN Data Translation Table C-5
Table C-4. Sample DDL/Pascal Data Translation Table C-7
Table C-5. Sample DDL/TACL Data Translation Table C-9
Table C-6. Sample DDL/pTAL and TAL Data Translation Table C-11
Table D-1. Text IDs Assigned to Text Items D-3
Table D-2. DICTCDF (Constant Definition File) Fields D-6
Table D-3. DICTDDF (Dictionary Definition File) Fields D-8
Table D-4. DICTKDF (Key Definition File) Fields D-11
Table D-5. KEY-CLASS Codes D-12
Table D-6. DICTMAP (Token Map File) Fields D-14
Table D-7. DICTOBL (Object Build List) Fields D-25
Table D-8. VALUE-TEXT Codes D-32
Table D-9. TACL-TYPE Codes D-32
Table D-10. OBJ-CLASS Codes D-33
Table D-11. STRUCTURE Codes D-33
Table D-12. SQL DATETIME Element Sizes D-35
Table D-13. SQL INTERVAL Element Sizes D-36
Table D-14. DICTODF (Object Definition File) Fields D-39
Table D-15. OBJ-TYPE Values D-40
Table D-16. DICTOTF (Object Text File) Fields D-44
Table D-17. TEXT-TYPE Codes D-45
Table D-18. DICTOUF (Object Usage File) Fields D-46
Table D-19. OBJECT-TYPE Codes D-47
Table D-20. DICTRDF (Record Definition File) Fields D-53
Table D-21. FILE-TYPE Codes D-55
Table D-22. FILE-DURATION Values D-55
Data Definition Language (DDL) Reference Manual—529431-003
xviii

Contents Tables (continued)
Tables (continued)
Table D-23. DICTTKN (Token Code File) Fields D-57
Table D-24. DICTTYP (Token Type File) Fields D-60
Table D-25. TOKEN-OCCURS-VALUE Values D-61
Table D-26. DICTVER (Token Map Field Version File) Fields D-62
Table E-1. Dictionary Report Queries E-2
Table G-1. DDL Features That Differ in the Pathmaker Environment G-1
Data Definition Language (DDL) Reference Manual—529431-003
xix

Contents
Data Definition Language (DDL) Reference Manual—529431-003
xx

What’s New in This Manual

Manual Information
Data Definition Language (DDL) Reference Manual

Abstract

This publication describes the DDL language syntax and the DDL dictionary database.
The audience includes application programmers and database administrators.

Product Version

DDL D40
DDL H01

Supported Release Version Updates (RVUs)

This publication supports J06.03 and all subsequent J-series RVUs, H06.03 and all
subsequent H-series RVUs, and G06.26 and all subsequent G-series RVUs, until
otherwise indicated by its replacement publications.

Document History

New and Changed Information
Changes to the 529431-003 manual:

• Added J-series information to Supported Release Version Updates (RVUs).

• Added a note about DDL2 object on 1-3 and 5-1.

• Added a caution on 5-1.

Changes to the 529431-001 manual
This is a new manual.

Part Number Published

529431-003 May 2010

Part Number Product Version Published

529431-002 DDL D40, DDL H01 July 2005

529431-003 DDL D40, DDL H01 May 2010
Data Definition Language (DDL) Reference Manual—529431-003
xxi

What’s New in This Manual Changes to the 529431-001 manual
Data Definition Language (DDL) Reference Manual—529431-003
xxii

About This Manual
This manual describes the Data Definition Language (DDL), an HP product for defining
data objects and for translating object definitions to source code for programming
languages and for other products on HP NonStop™ systems.

DDL data objects include:

• Constants
• Field definitions
• Group definitions
• Records
• Subsystem Programmatic Interface (SPI) token codes
• SPI token maps
• SPI token types

The DDL compiler can translate an object definition to source code for one or more of
these HP products:

• HP C for NonStop Systems
• HP COBOL for NonStop Systems
• HP FORTRAN for NonStop Systems
• HP NonStop NET/MASTER Network Control Language (NCL)
• HP Pascal for NonStop Systems (D-series systems only)
• HP Portable Transaction Application Language (pTAL)
• HP Tandem Advanced Command Language (TACL)
• HP Transaction Application Language (TAL)
• File Utility Program (FUP)

In addition, the DDL compiler can generate its own source code from object definitions
in a dictionary and produce reports on the contents of a dictionary.

This manual gives:

• An overview of DDL

• Instructions for using the DDL compiler

• Syntax descriptions, usage guidelines, and examples for all DDL statements and
commands

Topics:

• Audience on page xxiv

• Prerequisite Manuals on page xxiv

• Related Manuals on page xxv

• Notation Conventions on page xxv
Data Definition Language (DDL) Reference Manual—529431-003
xxiii

About This Manual Audience
Audience
This manual is for application programmers and database administrators.

Application programmers can use DDL to:

• Add data definitions to Pathmaker catalogs
• Define data objects and translate them to host-language source code
• Define SPI message tokens

Database administrators can use DDL to:

• Generate FUP commands for creating databases

• Provide file type and access information for Enform Plus reports about databases

• Define Enscribe, HP NonStop SQL/MP, and HP NonStop SQL/MX databases

Prerequisite Manuals
For all readers:

• Guardian User’s Guide
• Enscribe Programmer’s Guide
• TACL Reference Manual

For application programmers:

• Guardian Programmer’s Guide

• Introduction to Data Management

• HP manuals for the “host languages” to which you want the DDL compiler to
translate object definitions:

° C/C++ Programmer’s Guide
° COBOL Manual for TNS and TNS/R Programs
° COBOL Manual for TNS/E Programs
° FORTRAN Reference Manual
° NET/MASTER Network Control Language (NCL) Reference Manual
° Pascal Reference Manual (D-series systems only)
° pTAL Reference Manual
° TACL Reference Manual
° TAL Reference Manual

Note. For information about using DDL to define Enscribe, HP NonStop SQL/MP, or
HP NonStop SQL/MP databases, see the SQL/MP Reference Manual and the SQL/MX
Reference Manual.
Data Definition Language (DDL) Reference Manual—529431-003
xxiv

About This Manual Related Manuals
If you plan to use DDL to define SPI tokens:

• Distributed Name Service (DNS) Management Programming Manual
• DSM Template Services Manual
• SPI Programming Manual

Related Manuals
In addition to some of the prerequisite manuals, this manual refers to information in
these HP manuals:

• Enform Plus Reference Manual
• Event Management Service (EMS) Analyzer Manual
• File Utility Program (FUP) Reference Manual
• Software Internationalization Guide
• SQL/MP Reference Manual
• SQL/MX Reference Manual
• Pathmaker Programming Guide
• Guardian Procedure Calls Reference Manual
• Guardian Procedure Errors and Messages Manual
• TMF Management Programming Manual

Notation Conventions
• Hypertext Links on page xxv

• General Syntax Notation on page xxvi

• Notation for Messages on page xxviii

• Notation for Management Programming Interfaces on page xxix

• Change Bar Notation on page xxx

Hypertext Links
Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

This requirement is described under Backup DAM Volumes and Physical Disk
Drives on page 3-2.
Data Definition Language (DDL) Reference Manual—529431-003
xxv

About This Manual General Syntax Notation
General Syntax Notation
This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words. Type
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words. Type these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
 [-num]
 [text]

K [X | D] address

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list can be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }
Data Definition Language (DDL) Reference Manual—529431-003
xxvi

About This Manual General Syntax Notation
| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…

[-] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be typed as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must type as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no
spaces are permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] LINE
 [, attribute-spec]…

!i and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o
Data Definition Language (DDL) Reference Manual—529431-003
xxvii

About This Manual Notation for Messages
!i,o. In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; !i,o

!i:i. In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

Notation for Messages
This list summarizes the notation conventions for the presentation of displayed
messages in this manual.

Bold Text. Bold text in an example indicates user input typed at the terminal. For example:

ENTER RUN CODE

?123

CODE RECEIVED: 123.00

The user must press the Return key after typing the input.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.

lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-register

process-name
Data Definition Language (DDL) Reference Manual—529431-003
xxviii

About This Manual Notation for Management Programming Interfaces
[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be
displayed, of which one or none might actually be displayed. The items in the list can
be arranged either vertically, with aligned brackets on each side of the list, or
horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

proc-name trapped [in SQL | in SQL file system]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list can be arranged
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

obj-type obj-name state changed to state, caused by
{ Object | Operator | Service }

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { OK | Failed }

% Percent Sign. A percent sign precedes a number that is not in decimal notation. The %
notation precedes an octal number. The %B notation precedes a binary number. The
%H notation precedes a hexadecimal number. For example:

%005400

%B101111

%H2F

P=%p-register E=%e-register

Notation for Management Programming Interfaces
This list summarizes the notation conventions used in the boxed descriptions of
programmatic commands, event messages, and error lists in this manual.

UPPERCASE LETTERS. Uppercase letters indicate names from definition files. Type these
names exactly as shown. For example:

ZCOM-TKN-SUBJ-SERV
Data Definition Language (DDL) Reference Manual—529431-003
xxix

About This Manual Change Bar Notation
lowercase letters. Words in lowercase letters are words that are part of the notation,
including DDL keywords. For example:

token-type

!r. The !r notation following a token or field name indicates that the token or field is
required. For example:

ZCOM-TKN-OBJNAME token-type ZSPI-TYP-STRING. !r

!o. The !o notation following a token or field name indicates that the token or field is
optional. For example:

ZSPI-TKN-MANAGER token-type ZSPI-TYP-FNAME32. !o

Change Bar Notation
Change bars are used to indicate substantive differences between this manual and its
preceding version. Change bars are vertical rules placed in the right margin of changed
portions of text, figures, tables, examples, and so on. Change bars highlight new or
revised information. For example:

A change bar (as shown to the right of this paragraph) indicates a substantive
difference between this edition of the manual and the preceding edition. Change
bars highlight new or revised information.
Data Definition Language (DDL) Reference Manual—529431-003
xxx

1 Introduction to DDL
The Data Definition Language (DDL) enables you to define data objects in Enscribe
files and to translate these object definitions to source code for programming
languages and other HP products.

The DDL language has statements to define data objects and commands to control
how the statements are compiled. DDL data objects include:

• Constants
• Definitions (for single fields and groups of fields)
• Records
• Subsystem Programmatic Interface (SPI) token codes
• SPI token maps
• SPI token types

The DDL compiler compiles object definitions and generates any requested output
from the compiled definitions. Depending on which commands you enter, the DDL
compiler builds a dictionary from the definitions, translates the definitions to FUP
commands, or generates object-definition source code in one or more programming
languages.

A dictionary acts as a repository for the DDL definitions. It helps to maintain
consistency so that the same data, regardless of where it is used, is described in the
same way. Although commonly used to describe data in a database, a dictionary can
be used to describe other types of data. For example, Transfer applications (only on G-
series systems) generally use DDL to define and maintain units-of-work. An application
can have more than one dictionary, or the application can maintain all of its data in a
single dictionary. The only restriction is that only one dictionary can reside on a
subvolume.

Subsystems that define SPI messages in a Distributed Systems Management (DSM)
environment must define the SPI message tokens with DDL, optionally add them to a
dictionary, and compile the definitions to C, COBOL, Pascal (on D-series systems),
pTAL, TACL, or TAL code.

This section provides an overview of DDL functionality, including compiling and
translating data definitions, using DDL definitions, creating a dictionary, creating a
database, generating source code, maintaining a dictionary, and examining a
dictionary.
Data Definition Language (DDL) Reference Manual—529431-003
1-1

Introduction to DDL
Topics:

• Compiling and Translating Data Definitions on page 1-3

• Using DDL Definitions on page 1-4

• Creating a Dictionary on page 1-5

• Creating a Database on page 1-7

• Generating Source Code on page 1-9

• Maintaining a Dictionary on page 1-12

• Examining a Dictionary on page 1-14
Data Definition Language (DDL) Reference Manual—529431-003
1-2

Introduction to DDL Compiling and Translating Data Definitions
Compiling and Translating Data Definitions
The main functions of the DDL compiler are:

• Compiling statements that define data objects
• Translating compiled definitions to source code for host languages and FUP

The DDL compiler also generates reports on the contents of a dictionary. All DDL
statements and commands are passed as input to the DDL compiler input can be from
a file or directly from a terminal. In either case, the DDL compiler checks the syntax
and semantics of all statements and commands.

The DDL compiler translates the statements that define DDL objects to internal data
definition format. If a dictionary is open for read and write access, the DDL compiler
writes the compiled objects to the dictionary.

If output is requested, the DDL output generator retrieves the compiled object
definitions from the dictionary (if open), translates the definitions to the appropriate
source code, and writes the translated definitions to all open source code files and
devices.

Figure 1-1 on page 1-3 is an overview of the DDL compiler.

Note. Starting H06.20/J06.09 RVUs, DDL is available with the DDL2 object file and the DDL
object file. You can use either of the object files and create definitions. However, the DDL
object file and the DDL2 object file are not compatible with each other. Therefore, when
migrating from one DDL object file to another, you must generate the schema from the existing
dictionary.

Figure 1-1. DDL Compiler Overview

VST001.vsd

Source
File

Dictionary

PascalTAL FORTRAN

C

FUP

COBOL TACL

DDL

Listing Report

5> DDL

Compiler Output
Generator

DDL
Data Definition Language (DDL) Reference Manual—529431-003
1-3

Introduction to DDL Using DDL Definitions
Using DDL Definitions
You use DDL statements to define, modify, delete, and display data in a dictionary. You
use DDL commands to create and open DDL dictionaries and to generate files
containing FUP commands, data definition source code in different languages, and
report specifications. You can use DDL to perform these functions:

• Create a schema

A DDL schema is composed of DDL statements that define the DDL objects. You
can create a schema in an EDIT file and submit the file (called the schema file) to
the DDL compiler, or you can run the DDL compiler and enter the definitions
interactively.

• Create a dictionary

A dictionary is a DDL database that contains the objects defined in a schema.
When you run the DDL compiler to compile the schema, you can direct the DDL
compiler to store the object definitions from the schema in the open dictionary.

• Create a database

You can direct the DDL compiler to generate FUP commands from the record
definitions in a schema or dictionary and to write these commands to an EDIT file.
You can edit the commands, if needed, and then submit the command file to FUP
to create your database files.

• Generate source code for programming languages

You can direct the DDL compiler to translate the DDL object definitions from a
schema or dictionary to C, COBOL, FORTRAN, Pascal (on D-series systems),
pTAL, TACL, or TAL source code and to write the code to an EDIT file (called a
source code file). You can edit this code, if needed, and then add it to your
application program.

• Create messages

You can use DDL to define messages for interprocess communication and store
the message definitions in a dictionary. Having stored the messages, you can
translate them to the appropriate programming language or languages.

If you use SPI messages for interprocess communication in a DSM environment,
you define the SPI message tokens with DDL and translate them to C, COBOL,
Pascal (on D-series systems), pTAL, TACL, or TAL source code. SPI uses the
token definitions to build the SPI messages.

• Maintain a dictionary

You can use DDL commands and statements to add new object definitions to a
dictionary, to delete or change existing definitions, and to build a schema from the
dictionary and write the schema to an EDIT file. You can generate an entire backup
schema, or you can write only selected sections of the dictionary to a DDL schema
file.
Data Definition Language (DDL) Reference Manual—529431-003
1-4

Introduction to DDL Creating a Dictionary
• Examine a dictionary

You can request a schema report that describes each object definition in a schema
or dictionary, or that describes selected definitions. You can also use a set of
Enform Plus queries provided by HP to produce more complex reports on all the
objects in a dictionary, their structure, how they are linked, which objects are
referenced by other objects, and so forth. You can, if you choose, modify the
supplied queries or write your own.

Creating a Dictionary
A dictionary is a database consisting of 14 prenamed and predefined files. Because
the files have fixed names, you can have only one dictionary on any subvolume. A
dictionary can be created either by running the DDL compiler or by running Pathmaker,
a NonStop Transaction Services/MP (NonStop TS/MP) application systems generator.

When you run the DDL compiler, you must open the dictionary with the DICT or DICTN
command. This command creates a dictionary, if one does not already exist, or opens
an existing dictionary. You can pass the DICT or DICTN command to the compiler as a
parameter in the RUN DDL command.

When you add a Pathmaker project, The Pathmaker program creates a dictionary for
you. The dictionary the Pathmaker program creates is part of a larger database that
contains application design information. The Pathmaker program enters application
design information to the dictionary.

Both Pathmaker dictionaries and dictionaries created from the DDL compiler can be
written to by more than one user at the same time.

Once a dictionary is created, you can enter object definitions in it. If you have a lot of
complex definitions, you probably want to present them in a schema file rather than
entering them interactively.

The schema statements can be submitted to the DDL compiler as an input file in a
noninteractive session or submitted with a SOURCE command in an interactive
session. (You can also enter statements directly in an interactive session.) In each
case, the DDL compiler compiles the object definition statements and, if a dictionary is
open, writes the objects to the dictionary.

Unless suppressed by a NOLIST command, the DDL compiler automatically produces
a compiler listing. By default, the listing is sent to the home terminal of the DDL
compilation process. You can specify a different listing destination in the OUT run
option of the RUN DDL command or in an OUT command.

A dictionary is not actively integrated with the database files or source code it
describes. If you change a dictionary, the DDL compiler does not automatically change
the associated database or source code. Conversely, if you change a database or
source code directly, the associated dictionary is not affected.
Data Definition Language (DDL) Reference Manual—529431-003
1-5

Introduction to DDL Creating a Dictionary
Figure 1-2 on page 1-6 shows the steps for building a schema and compiling it into a
dictionary:

1. Run a text editor program and enter DDL statements and, optionally, DDL
commands into an EDIT file. This file contains your schema (it is your schema file).

2. Run the DDL compiler using the schema file as the input file, or run the DDL
compiler interactively, submitting the schema file with a SOURCE command. In
either case, use the DICT or DICTN command to open the dictionary on a
specified volume and subvolume or on the default volume and subvolume.
Optionally, you can specify a print device to receive the compiler listing.

Figure 1-2. Creating a Dictionary

PS TEXT EDIT

DDL

Source
Schema

Dictionary

Schema
Listing

 10> TEDIT schema

 DEF. . .
 .
 .
 .
 RECORD. . .
 .
 .

 11> DDL / IN schema / DICT

 or

 11> DDL DICT
 !?OUT $S.#printer
 !?SOURCE schema
 !EXIT

1

2

Build schema in EDIT file

Compile schema and create dictionary

VST002.vsd
Data Definition Language (DDL) Reference Manual—529431-003
1-6

Introduction to DDL Creating a Database
Creating a Database
You use DDL RECORD statements to define database files. If you specify a FUP
command in a schema file or interactively, the DDL compiler opens a FUP file,
translates each subsequent RECORD statement to FUP file creation commands, and
writes the commands to the open FUP file.

The FUP command file is an EDIT file. If you want to add to the FUP commands
generated by the DDL compiler, you can close the FUP file and then modify it with a
text editor. For example, you can create a partitioned file by adding the PART
parameter to the FUP code. For information on file attributes that you cannot specify in
DDL, see the File Utility Program (FUP) Reference Manual.

When you finish editing the file creation commands, you can run the FUP program
using the FUP command file as the input file. FUP creates the files according to the file
attributes originally specified in the DDL RECORD statements. For a full description of
the FUP program and its commands, see the File Utility Program (FUP) Reference
Manual.

You can also generate FUP file-creation commands from records previously stored in a
dictionary. To do this, open the dictionary and a FUP file, and use an OUTPUT
statement to select record definitions from the dictionary for translation to FUP file
creation commands.

Figure 1-3 on page 1-8 shows the steps for creating database files from DDL record
definitions stored in a dictionary:

1. Run the DDL compiler interactively, open the dictionary, and open the FUP
command file. Enter the OUTPUT RECORD statement, specifying records defined
in the dictionary. The DDL compiler reads the record definitions from the dictionary
and writes file creation commands for each specified record to the open FUP file.

2. (Optional Step). Exit from the DDL compiler and run the EDIT program to make
any changes you want to the FUP commands in the FUP file; or stay in the DDL
compiler, close the FUP file, use the EDIT command to modify the FUP file, and
then exit from the DDL compiler.

3. Run FUP with the FUP command file as the input file. FUP creates the database
files from the commands in the command file.

The files in a Guardian environment database are managed by the Enscribe record
manager. For more information about file structures and access methods, see the
Enscribe Programmer’s Guide.
Data Definition Language (DDL) Reference Manual—529431-003
1-7

Introduction to DDL Creating a Database
Figure 1-3. Creating Database Files

Dictionary

FUP
Command

File

Edited
FUP

Command
File

DDL

PS TEXT
EDIT

FUP

Database

 12> DDL DICT
 !?FUP fupfile
 !OUTPUT RECORD *.
 !EXIT

1 Generate FUP command
file from dictionary

13> TEDIT fupfile
 .
 .
 .

2

14> FUP / IN fupfile
 /

3 Create database files

Edit FUP command
file. (optional step)

VST003.vsd
Data Definition Language (DDL) Reference Manual—529431-003
1-8

Introduction to DDL Generating Source Code
Generating Source Code
The DDL compiler can generate source code for definitions and records in any of the
languages DDL supports: C, COBOL, FORTRAN, Pascal (on D-series systems), pTAL,
TACL, or TAL. In addition, the DDL compiler can generate source code for constants
and SPI token types, token codes, and token maps in C, COBOL, Pascal (on D-series
systems), pTAL, TACL, or TAL. The DDL objects, once translated to source code, are
used for a variety of application functions. DDL objects can describe the data in a
database and the data local to an application; messages used for interprocess
communication; units of work for the Transfer Delivery System (only on G-series
systems); and SPI tokens used to build SPI messages.

For the DDL compiler to generate source code, the appropriate language source code
file must be open. To open a language source code file, you can include one or more
C, COBOL, FORTRAN, Pascal (on D-series systems), pTAL, TACL, or TAL commands
in the schema. When the DDL compiler compiles the schema, it opens a file for each
specified language, translates the subsequent object definition statements to source
code for those languages, and writes the code to the language files.

You can also generate source code from an existing dictionary. To do this, you can add
a language command to your schema and recompile the entire schema. Typically,
however, you run the DDL compiler interactively, open the dictionary and a language
source code file, and use the OUTPUT statement to specify the object definitions you
want generated in the source language. This technique is particularly useful for writing
selected definitions to the language source code file.

Figure 1-4 on page 1-10 shows two techniques for generating language source code.
These techniques are:

1. Generate source code for the entire schema.

Enter the commands to open a dictionary and a language source code file in the
schema before entering the definitions. Then run the DDL compiler to compile the
schema. the DDL compiler builds the dictionary and then generates source code in
any open language source code file.

2. Generate source code for selected definitions.

Run the DDL compiler interactively; open the dictionary and a language source
code file with the appropriate command; use an OUTPUT statement to specify the
definitions you want the DDL compiler to translate to source code. The DDL
compiler generates the code for the specified definitions and writes it to the open
language source code file. Close the language source code file before doing any
more interactive processing.
Data Definition Language (DDL) Reference Manual—529431-003
1-9

Introduction to DDL Generating Source Code
Figure 1-4. Generating Source Code

 15> DDL / IN schema
 /

1
Generate source code

(entire schema)

 16> DDL DICT
 !?COBOL cobfile
 !OUTPUT RECORD rec1 rec2.
 !OUTPUT DEF def1 def2.
 !EXIT

2 Generate source code (selected
records and definitions)

DDL

DDL

Source
Schema

COBOL
Source
Code

Dictionary

Dictionary

COBOL
Source
Code

 ? DICT
 ? COBOL
 cobfile
 DEF . . .
 .
 .
 .
 RECORD . . .

VST004.vsd
Data Definition Language (DDL) Reference Manual—529431-003
1-10

Introduction to DDL Generating Source Code
TNS and Native Compilers
The native compilers align data for optimal performance on TNS/R and TNS/E systems
by default. This default alignment is different and incompatible with the default
alignment generated by the TNS compilers.

Because of this data alignment incompatibility, the D40 DDL compiler was enhanced to
generate source code that produces the same data alignment, regardless of whether
the TNS compilers or native compilers are used. To ensure the same data alignment,
the D40 DDL compiler emits fieldalign shared2 pragmas for C and FIELDALIGN
SHARED2 directives for TAL and pTAL.

Host-language source code files used by native programs and shared with TNS
programs must be generated using a version D40 or later DDL compiler. Host-
language source code files supplied by HP have already been generated by the correct
version of the DDL compiler.

If your native programs do not share host-language source code files with TNS
programs, you can direct the DDL compiler to align data optimally for the native TNS/R
or TNS/E environment. To do so, specify the command FIELDALIGN_SHARED8 on
page 9-58 when storing data in a dictionary. While DDL source code files generated
with SHARED8 alignment can be used by TNS and native programs, the performance
of TNS programs is degraded.
Data Definition Language (DDL) Reference Manual—529431-003
1-11

Introduction to DDL Maintaining a Dictionary
Maintaining a Dictionary
After a dictionary is created, change is inevitable. You might need to add new objects
or to change or delete existing objects. DDL schema files help you perform these
maintenance functions.

The DDL compiler can generate schema statements from the dictionary and write
these statements to a DDL schema file. In its simplest role, a DDL schema file provides
a backup schema for DDL dictionaries created from the DDL compiler. Suppose the
dictionary but not the original schema has been changed, or suppose the original
schema is lost. In either case, the DDL compiler can generate a new schema that
accurately reflects the current dictionary and write this schema to a DDL schema file.

Do not attempt to back up a dictionary that is part of a Pathmaker catalog using this
technique. Pathmaker dictionaries contain application design information that is not in
generated DDL schemas.

The DDL compiler can compile the entire DDL schema file into a new dictionary just as
it compiled the original schema. The DDL compiler can also compile selected sections
of a schema file (or of any schema) and add them to an existing dictionary.

A DDL schema file is also useful for modifying dictionary objects that are used, or
referenced, by other objects. To change or delete an object that is referenced, you
must first delete all the objects that refer to that object, change the referenced object,
and then reenter the deleted objects. The DDL compiler can generate all the source
code necessary to perform these operations and write the source code to an open DDL
schema file. To update the dictionary, you need only compile this file, first modifying it if
necessary.

Figure 1-5 on page 1-13 shows two typical maintenance operations:

1. Add a new object to the dictionary.

Define the new object in a schema file. If you add the new object definition to your
original schema, precede the definition with a SECTION command. Then run the
DDL compiler interactively, and use a SOURCE command to compile the definition
in the schema and write the new object to the dictionary.

2. Change a referenced object.

Open the dictionary and a new DDL schema file. Use an OUTPUT UPDATE
statement to identify all objects that refer to the object you want to change and
write the necessary statements to the open DDL schema file. Close the schema file
and edit the DDL file, if necessary. Then compile the source statements into the
open dictionary with a SOURCE command.
Data Definition Language (DDL) Reference Manual—529431-003
1-12

Introduction to DDL Maintaining a Dictionary
Figure 1-5. Maintaining a Dictionary

 17> DDL DICT
 !? SOURCE schema (newdef)
 ! EXIT

1 Add new definition to
dictionary

 18> DDL DICT
 !?DDL ddlsrc
 !OUTPUT UPDATE def1.
 !?NODDL
 !EDIT ddlsrc
 .
 .
 .
 *EXIT
 !? SOURCE ddlsrc
 ! EXIT

2 Change a referenced definition

DDL

DDL

Source
Schema

Dictionary

Edited
DDL

Source
Schema

 ? SECTION
 newdef
 DEF defx TYPE
 def1.

Dictionary

DDL
Source
Schema

EDIT

VST005.vsd
Data Definition Language (DDL) Reference Manual—529431-003
1-13

Introduction to DDL Examining a Dictionary
Examining a Dictionary
The DDL compiler produces a schema listing by default. In addition, the DDL compiler
can produce a schema report that provides information about the object definitions in a
schema. For each object, this report lists its type and size, its byte offset from the start
of a group definition, and any definitions referenced by other objects.

You can also generate reports on the dictionary itself. HP supplies a set of Enform Plus
queries that provide information about any dictionary. These reports are particularly
useful for anyone acting as the administrator of a database. The reports:

• Show all the components of a dictionary.

• Tell when structures were last modified, which version of the DDL compiler
produced the dictionary, which definitions are used by which other definitions, and
where they are used.

• List file definitions and the key fields used by files.

• List all display text and comments stored in the dictionary.

If you want to produce your own dictionary reports, you can use the Enform Plus
reports supplied by HP as templates, changing them or adding to them to suit your
needs.

Figure 1-6 on page 1-15 shows how to produce a DDL schema report and how to
produce dictionary reports using Enform Plus:

1. Produce schema report

Run the DDL compiler with the schema as the input file and include the REPORT
command in the RUN DDL command. Or, run the DDL compiler interactively,
compile a DDL schema file, and request the report with a REPORT command. The
dictionary need not be open. By default, the DDL compiler sends the report to its
home terminal; alternatively, you can specify a printer as the report destination. If
you need information only on selected definitions in the dictionary, you can run the
DDL compiler interactively with the REPORT command specified in the RUN DDL
command and request reports using the OUTPUT statement.

2. Produce dictionary reports

The dictionary must exist, but it need not be open. Run Enform Plus from the
volume and subvolume on which the dictionary resides using the file
$SYSTEM.SYSTEM.DDQUERYS as the input file. To select particular reports, you
can run Enform Plus interactively and specify sections (R1 to R12) of the query file.
Each section corresponds to a report.

For more information on producing dictionary reports, see Appendix E, Dictionary
Reports.
Data Definition Language (DDL) Reference Manual—529431-003
1-14

Introduction to DDL Examining a Dictionary

Figure 1-6. Examining a Dictionary

 19> DDL
 !? REPORT $S.#printer
 !? SOURCE schema
 ! EXIT

1 Produce schema report

 20> ENFORM / IN
 $ system.system
 ddquerys / DICT $system.ddl

2 Produce dictionary reports

DDL

ENFORM

Source
Schema

Dictionary

Schema
Report

 Dictionary
 Reports

VST006.vsd
Data Definition Language (DDL) Reference Manual—529431-003
1-15

Introduction to DDL Examining a Dictionary
Data Definition Language (DDL) Reference Manual—529431-003
1-16

2 DDL Language Elements
A DDL schema consists of DDL statements, DDL commands, and comments. You
must enter statements, commands, and comments according to strict syntax.

This section briefly describes the DDL language elements common to statements and
commands:

• Names on page 2-1

• File Names on page 2-3

• Locale Names on page 2-4

• Numbers on page 2-5

• Strings on page 2-5

• National Literals on page 2-6

• Keywords on page 2-6

• Reserved Words on page 2-11

• Special Characters on page 2-12

• Comments on page 2-12

• Statements on page 2-16

• Commands on page 2-18

Names
DDL names are:

• Constant names
• Definition names
• Record names
• Field names
• Group names
• Condition-name item names (level 88)
• Enumeration item names (level 89)
• Renames item names (level 66)
• Token-type names (SPI only)
• Token-code names (SPI only)
• Token-map names (SPI only)

Topics:

• Syntax on page 2-2

• Restrictions on page 2-2
Data Definition Language (DDL) Reference Manual—529431-003
2-1

DDL Language Elements Syntax
Syntax
Every DDL name:

• Begins with either a letter (A-Z or a-z) or an underscore (_)

• Has a maximum of 30 ASCII characters, which are any of:

° Letters
° Decimal digits (0-9)
° Hyphen (-)
° Underscore

• Does not end with a hyphen

Uppercase letters are not distinguished from lowercase letters, and any underscores
are part of the name.

You can make the name of a DDL elementary field unique by qualifying it with a record
name or with one or more group names; for example:

Restrictions

• DDL constant names cannot be DDL keywords (which are listed in Keywords on
page 2-6).

• Other DDL names cannot be:

° DDL reserved words (which are listed in Keywords on page 2-6)

° Reserved words in the host language for which the DDL compiler is generating
source code (which are listed in the host-language manuals in Prerequisite
Manuals on page xxiv)

If a DDL name is a host-language reserved word, the DDL compiler issues an
error message and does not generate host-language source code for the
object identified by the reserved word or containing an element identified by
the reserved word. In this way, the DDL compiler avoids generating code that
does not compile.

Qualified Field Name Example

record.field CUSTOMER.CUSTNUM

group.group.field CUSTINFO.ADDR.CITY

Example 2-1. DDL Names

A1
field-2
Employee-record-1
NEW-EMPLOYEE-NUMBER
_EMP
EMP
ZSPI-TKN-RETCODE
Data Definition Language (DDL) Reference Manual—529431-003
2-2

DDL Language Elements File Names
• If a DDL name in a RECORD statement is an Enform Plus reserved word, the DDL
compiler warns you that you cannot use that record for an Enform Plus query. For
a list of Enform Plus reserved words, see the Enform Plus Reference Manual.

• SPI variable names and other names defined by HP begin with the letter Z. To
avoid conflict with a current or future HP name, do not begin a name with the letter
Z unless you are referring to an existing SPI variable name, such as ZSPI-TKN-
RETCODE.

File Names
The DDL compiler recognizes these types of file names:

• Local File Names on page 2-3

• Network File Names on page 2-4

Local File Names
Local file names identify files on a single system (or node). If the local file name is not
in the current subvolume or volume, you must qualify the name with a specific
subvolume or volume.

volume-name

is one alphabetic character followed by up to 6 alphanumeric ASCII characters.

Default: current default volume name

subvolume-name

is one alphabetic character followed by up to 7 alphanumeric ASCII characters.

Default: current default subvolume name

file-name

is one alphabetic character followed by up to 7 alphanumeric ASCII characters.

[$volume-name.][subvolume-name.]file-name
Data Definition Language (DDL) Reference Manual—529431-003
2-3

DDL Language Elements Network File Names
Network File Names
Network file names identify files that are accessed across a network of HP NonStop
systems. Always identify a network file by a fully qualified file name that includes the
system, volume, and subvolume.

system-name

is one alphabetic character followed by up to 6 alphanumeric ASCII characters.

volume-name

is one alphabetic character followed by up to 6 alphanumeric ASCII characters.

subvolume-name

is one alphabetic character followed by up to 7 alphanumeric ASCII characters.

file-identifier

is one alphabetic character followed by up to 7 alphanumeric ASCII characters.

Locale Names
The DDL compiler recognizes locale names for internationalization support. Using the
clause LN on page 6-13, you can specify the language, territory, and character set for
a text item. See Table 6-3, Supported Locale Names, on page 6-14.

\system-name.$volume-name.subvolume-name.file-identifier

Note. The maximum number of characters in the volume name of a network file is less
than the maximum for the volume name of a local file: only 6 characters plus the dollar
sign rather than 7 characters plus the dollar sign for a local volume.

Table 2-1. DDL File Names

File Name Description

\DALLAS.$DATA.SALES.CUSTOMERNetwork file name

$DATA.SALES.CUSTOMER Fully qualified local file name

$DATA.CUSTOMER Local file name, assumes current default subvolume

SALES.CUSTOMER Local file name, assumes current default volume

CUSTOMER Local file name, assumes current default volume and
subvolume
Data Definition Language (DDL) Reference Manual—529431-003
2-4

DDL Language Elements Numbers
Numbers
The DDL compiler recognizes both decimal and octal numeric values. An octal number
is specified by a percent sign (%). An unsigned number is positive by default—a plus
(+) sign is optional. A negative number is specified with a minus sign (-). Any plus or
minus sign must immediately precede the number.

Examples:

Strings
A DDL string is any combination of ASCII or national characters within quotation
marks. The maximum length of a DDL string is 130 ASCII characters or 64 national
characters.

If you use the COLUMNS command to specify the number of significant columns in an
input line, the maximum string length is constrained by that number, columns :

The maximum number of ASCII characters is the input line length minus 2 characters
for the quotation marks. Because each national character requires 2 bytes, the
maximum number of national characters is half of the following: the input line length
minus 1 character for the letter N that precedes the string, 2 characters for the
quotation marks, and 1 character to make the string an even number of bytes.

If the string has quotation marks, you must enter each quotation mark twice to
distinguish the quotation mark character from the string delimiter. You can use either
single or double quotation marks as string delimiters.

Number Description

39 Positive decimal value

-2 Negative decimal value

+8 Positive decimal value

-%10 Negative octal value (decimal -8)

+%17 Positive octal value (decimal 15)

%100 Positive octal value (decimal 64)

Maximum ASCII characters in a string columns - 2

Maximum national characters in a string (columns - 4)/2

Example 2-2. DDL Strings

"C00"
"12.650"
"Enter a 2-character state code."
"M<(999) 999-9999>"
"Use quotes "" "" before and after the name."
'Use quotes '' '' to delimit a string.'
'alpha-string'
Data Definition Language (DDL) Reference Manual—529431-003
2-5

DDL Language Elements National Literals
National Literals

2-byte-character

must occupy two bytes internally. The first byte must not contain the binary
equivalent of a quotation mark (“).

The opening quotation mark (" or ‘) must immediately follow N or n, with no intervening
space or line break.

Keywords
A DDL keyword has a specific meaning when placed at a keyword position within a
statement. Keywords must be spelled exactly as this manual shows.

DDL keywords cannot be defined as constant names.

DDL keywords:

A B C D E F H I J K L M N O P Q R S T U V Y Z

A
ALL
ALLOWED
ARE
AS
ASCENDING
ASSIGNED
AUDIT
AUDITCOMPRESS

B
BE
BEGIN
BINARY
BIT
BLOCK
BUFFERED

{ N }{ "2-byte-character ..." }
{ n }{ ‘2-byte-character ...’ }

Note. To distinguish keywords from variables, this manual capitalizes keywords in syntax
descriptions. When you use keywords in DDL input, however, you do not need to capitalize
them. DDL keywords are not case-sensitive.
Data Definition Language (DDL) Reference Manual—529431-003
2-6

DDL Language Elements Keywords
BUFFERSIZE
BY

C
CFIELDALIGN_MATCHED2
CHARACTER
C_MATCH_HISTORIC_TAL
CODE
COMP
COMP-3
COMPLEX
COMPRESS
COMPUTATIONAL
COMPUTATIONAL-3
CONSTANT
CRTPID
CURRENT

D
DATE
DATETIME
DAY
DCOMPRESS
DEF
DEFINITION
DELETE
DEPENDING
DESCENDING
DEVICE
DISPLAY
DUPLICATES

E
EDIT-PIC
END
ENTRY-SEQUENCED
ENUM
EXIT
EXT
EXTERNAL
Data Definition Language (DDL) Reference Manual—529431-003
2-7

DDL Language Elements Keywords
F
FILE
FIELDALIGN_SHARED8
FILLER
FLOAT
FNAME
FNAME32
FOR
FRACTION

H
HEADING
HELP
HIGH-NUMBER
HIGH-VALUE
HOUR

I
ICOMPRESS
INDEX
INDEXED
INTERVAL
IS

J
JUST
JUSTIFIED

K
KEY
KEY-SEQUENCED
KEYTAG

L
LN
LOGICAL
LOW-NUMBER
LOW-VALUE
LOW-VALUES
Data Definition Language (DDL) Reference Manual—529431-003
2-8

DDL Language Elements Keywords
M
MAXEXTENTS
MINUTE
MONTH
MUST

N
N
NO
NOT
NOVALUE
NOVERSION
NULL

O
OCCURS
ODDUNSTR
OF
ON
OUTPUT

P
PACKED-DECIMAL
PHANDLE
PIC
PICTURE

Q
QUOTE
QUOTES

R
RECORD
REDEFINES
REFRESH
RELATIVE
RENAMES
RIGHT
Data Definition Language (DDL) Reference Manual—529431-003
2-9

DDL Language Elements Keywords
S
SECOND
SEQ
SEQUENCE
SERIALWRITES
SETLOCALENAME
SHOW
SPACE
SPACES
SPI-NULL
SQL
SQLNULL
SQL-NULLABLE
SSID
SUBVOL
SYSTEM

T
TACL
TALUNDERSCORE
TEMPORARY
THROUGH
THRU
TIME
TIMES
TIMESTAMP
TO
TOKEN-CODE
TOKEN-MAP
TOKEN-TYPE
TRANSID
TSTAMP
TYPE

U
UNSIGNED
UNSTRUCTURED
UPDATE
UPSHIFT
USAGE
USE
USERNAME
Data Definition Language (DDL) Reference Manual—529431-003
2-10

DDL Language Elements Reserved Words
V
VALUE
VARCHAR
VARYING
VERIFIEDWRITESVERSION

Y
YEAR

Z
ZERO
ZEROES
ZEROS

Reserved Words
DDL reserved words are a subset of DDL Keywords on page 2-6. DDL reserved words
cannot be defined as DDL data names.

DDL reserved words:

ARE
BINARY
CHARACTER
COMPLEX
END
ENUM
FILLER
FLOAT
IS
LOGICAL
OF
ON
THROUGH
THRU
TIME
TIMESTAMP
Data Definition Language (DDL) Reference Manual—529431-003
2-11

DDL Language Elements Special Characters
Special Characters

Comments
The DDL compiler supports two types of comments:

The comment in Example 2-3 on page 2-12 begins with the asterisk (*) and ends when
the line ends; that is, the entire line is a comment.

Table 2-2. DDL Special Characters

Name Character Function

Blank Separates keywords, data names, and other language
elements.

Percent Sign % Denotes an octal number.

Quote “ Used as a delimiter for various language elements.

Apostrophe ‘ Can be used in place of a quotation mark.

Exclamation
Point

! The DDL interactive prompt; separates listing comments from
statements and commands; after a file name in a DDL
command, ! clears the file.

Asterisk * Denotes dictionary comment when * is the first character of a
line; can be used as a wild-card character for dictionary
references.

Question
Mark

? Denotes a command when ? is the first character of a line.

Comma , Separates multiple commands on the same line; separates
multiple sections in a SOURCE command.

Period . Ends statements and parts of compound statements; used in
qualification of field names.

Semicolon ; Needed in previous DDL versions, but now interpreted as
blank.

Begins with: Ends with: Appears in:

Dictionary
Comments

Asterisk (*) in first
column of source line

End of source line Dictionary and all
open language
source code files

Compiler Listing
Comments

Exclamation point (!) Another exclamation
point or end of source
line

Compiler listing only

Example 2-3. dictionary Comment

* CUSTNUM is the primary key
Data Definition Language (DDL) Reference Manual—529431-003
2-12

DDL Language Elements Dictionary Comments
In Example 2-4 on page 2-13:

• The first comment begins with the exclamation point (!) and ends when the line
ends; that is, the entire line is a comment.

• The second comment begins with the first exclamation point and ends with the
second exclamation point; that is, the second comment is “!numeric key!”.

Dictionary Comments
Dictionary comments describe a field or a group of fields within a data structure. The
DDL compiler stores any dictionary comments associated with a data structure in the
dictionary with that structure if the dictionary is open and if a COMMENTS command is
specified.

DDL has two types of dictionary comments:

• User-Defined Dictionary Comments on page 2-13

• Dictionary Comments Generated by the DDL Compiler on page 2-14

Regardless of how they originate, all dictionary comments begin with an asterisk in the
first character position of an input line and continue for the remainder of the line (as in
Example 2-3 on page 2-12). Following the asterisk, a comment can consist of any
ASCII characters.

User-Defined Dictionary Comments
You can precede any CONSTANT, DEFINITION, RECORD, TOKEN-CODE, TOKEN-
MAP, or TOKEN-TYPE statement with a comment. The DDL compiler groups
consecutive dictionary comment lines together as a single comment.

In Example 2-5 on page 2-13, the three dictionary comment lines form a single
comment that the DDL compiler stores with the empnum dictionary entry.

A user-defined dictionary comment can precede a field or group description within a
DEFINITION or RECORD statement, as in Example 2-6 on page 2-14.

Example 2-4. DDL Compiler Listing Comments

! The CUSTOMER record is on page 8
DEF custnum !numeric key! PIC 9(4).

Example 2-5. User-Defined Dictionary Comments

* Employee Number definition
* empnum uniquely identifies employees
* Possible values: 0 - 9999

DEFINITION empnum PIC 9(4).
Data Definition Language (DDL) Reference Manual—529431-003
2-13

DDL Language Elements Dictionary Comments
You can put user-defined dictionary comments in:

• The Dictionary

The DDL compiler stores user-defined dictionary comments in the dictionary only if
the dictionary is open and comments are specifically requested by a COMMENTS
command. The DDL compiler stores any comments that follow a COMMENTS
command in the open dictionary. A NOCOMMENTS command causes the DDL
compiler to stop storing comments in the dictionary.

• Source Code Files

If dictionary comments are stored in the dictionary, the DDL compiler automatically
reproduces these comments in any open C, COBOL, DDL, FORTRAN, Pascal (on
D-series systems), TACL, or TAL source code file. You can suppress the writing of
dictionary comments to any of these open source code files by entering the
NOCLISTOUT command. You can resume reproducing comments with a
CLISTOUT command.

• The Compiler Listing

The DDL compiler puts all user-defined dictionary comments in its compiler listing
by default, whether or not the dictionary is open and whether or not you specify a
COMMENTS command. You can suppress the listing of dictionary comments by
issuing the NOCLISTIN command, and you can resume listing dictionary
comments by issuing a CLISTIN command.

Dictionary Comments Generated by the DDL Compiler
The DDL compiler generates dictionary comments that report the date and time the
schema was first compiled and the date and time each definition and record is
compiled. These timestamp comments are always added to the dictionary. They are
also added to any open source code files unless suppressed with the NOTIMESTAMP
command. A TIMESTAMP command causes the DDL compiler to add subsequent
timestamp comments to any open source code files.

Example 2-6. User-Defined Dictionary Comments

DEFINITION custinfo.

* This field is a unique customer identifier:
 02 custnum PIC 9(4).
* This group has the customer name in sequence:
 02 custname.
 04 last-name PIC X(12).
 04 first-name PIC X(8).
 04 initial PIC X(2).
END
Data Definition Language (DDL) Reference Manual—529431-003
2-14

DDL Language Elements Compiler Listing Comments
Compiler Listing Comments
The DDL compiler puts compiler listing comments only in its compiler listing, not in the
dictionary or in host-language source code files. Like dictionary comments, DDL has
two types of listing comments:

• User-Defined Compiler Listing Comments on page 2-15

• Production Comments on page 2-15

User-Defined Compiler Listing Comments
The DDL compiler always puts user-defined compiler listing comments in its compiler
listing. You cannot suppress these comments as you can suppress dictionary
comments.

A user-defined compiler listing comment begins with an exclamation point (!) and ends
at the next exclamation point or at the end of the input line. You can include a listing
comment on the same line as a DDL statement. You cannot include a listing comment
on the same line as a command.

A listing comment can be on a line by itself or between clauses in a statement.

In Example 2-8 on page 2-15:

• The first comment is “!employee #!”.
• The second comment is “! used by EMPLOYEE“.

Production Comments
The DDL compiler always puts production comments in the compiler listing. Production
comments follow the name of each compiled element to describe the compiler actions.
Production comments include error and warning messages.

Like user-defined listing comments, production comments occur only in the compiler
listing. You cannot suppress any production comments except warning messages,
which you can suppress by issuing a NOWARN command.

Example 2-7. User-Defined Compiler Listing Comment on Line by Itself

!Suppress the listing of dictionary comments
?NOCLISTIN

Example 2-8. User-Defined Compiler Listing Comments Between Clauses

DEFINITION empnum !employee #! PIC 9(4). ! used by EMPLOYEE
Data Definition Language (DDL) Reference Manual—529431-003
2-15

DDL Language Elements Statements
Statements
Each of the DDL statements in Table 2-3, DDL Statements That Define or Replace
Objects, on page 2-17:

• Defines or replaces an object in the open dictionary, where other DDL statements
can use it

• If a source code file is open, translates the definition of the object to the language
of the source code file and write the definition to the source code file

The DDL statements in Table 2-4, DDL Statements That Display Objects, on page 2-17
display objects that are in the open dictionary.

The statement DELETE on page 8-1 deletes specified objects from the open dictionary.

The statement EXIT on page 8-4:

• Ends the DDL session
• Closes any files that were opened in the session
• Returns control to the command interpreter

Syntax rules for DDL statements:

• Every simple statement except EXIT must end with a period.

• Every compound statement must end with END, optionally followed by a period.
These are compound statements:

° Field DEFINITION statements that include BEGIN
° Group DEFINITION statements
° RECORD statements
° TOKEN-MAP statements

• An input line can include more than one statement.

• Statements can continue on succeeding input lines without any continuation
character.
Data Definition Language (DDL) Reference Manual—529431-003
2-16

DDL Language Elements Statements
Table 2-3. DDL Statements That Define or Replace Objects

Statement Object How Other DDL Statements Can Use Object

CONSTANT on
page 4-1

Constant As a literal value

DEFINITION on
page 5-1

Elementary or group
data structure

To define:

• Other data structures
• Records
• Token types
• Token maps

RECORD on
page 5-8

Disk file record To define other records

TOKEN-CODE
on page 7-8

SPI token code of a
simple token

TOKEN-MAP
on page 7-13

SPI token code of an
extensible structured
token

TOKEN-TYPE
on page 7-2

SPI token type To define SPI token codes

Table 2-4. DDL Statements That Display Objects

Statement Description

OUTPUT on
page 8-5

Reads objects from the open dictionary and writes them to any open
DDL schema file, FUP source code file, REPORT file, or host-
language source code file

OUTPUT UPDATE
on page 8-7

Generates DDL source code that updates every referenced object in
the open dictionary and writes this code to the open DDL source code
file for subsequent compilation

SHOW USE OF
on page 8-11

Lists the objects in the open dictionary that directly or indirectly refer to
specified objects
Data Definition Language (DDL) Reference Manual—529431-003
2-17

DDL Language Elements Commands
Commands
DDL commands instruct the DDL compiler to perform specific actions. DDL commands
consist of one or more keywords. Some commands also have one or more parameters
to further control the action of the command. For syntax of individual DDL commands,
see Section 9, DDL Compiler Commands.

Rules for DDL commands:

• A command or sequence of commands can be either part of a DDL schema or a
parameter in a RUN DDL command.

• An input line that consists of a command or sequence of commands must begin
with a question mark (?).

• More than one command can be specified on an input line or in a RUN DDL
command. Multiple commands must be separated by commas. Only the first
command on an input line is preceded by a question mark.

• A command input line cannot include comments or statements.

• If a command or sequence of commands continues on the next input line, the first
character in the next line must be a question mark.

• A single command cannot end with a period or any other punctuation mark.
Data Definition Language (DDL) Reference Manual—529431-003
2-18

3 Running the DDL Compiler
You run the DDL compiler by using the RUN DDL command. You can run the DDL
compiler either interactively, entering commands and source lines from the keyboard,
or noninteractively, entering an entire schema from a file.

Running the DDL compiler interactively is recommended for functions that require only
a few statements or commands, such as modifying an existing dictionary or generating
source code from a dictionary.

Because errors are difficult to correct while you enter statements interactively, entering
an entire schema interactively is not recommended. Instead, enter the schema in an
EDIT file, where you can correct mistakes as you type. When the schema is correct,
specify the name of the EDIT file either in a DDL SOURCE command or in the IN run
option of the RUN DDL command.

When the DDL compiler stops its operation, it returns a completion code to the
command interpreter that indicates the outcome of the DDL compilation. The
completion code is accessible in the TACL variable _COMPLETION.

Topics:

• RUN DDL Command on page 3-1

• Running the DDL Compiler Noninteractively on page 3-3

• Running the DDL Compiler Interactively on page 3-4

• Completion Codes on page 3-5

RUN DDL Command
The RUN DDL command, an implied TACL RUN command, runs the DDL compiler.

run-option

is any RUN option described in the TACL Reference Manual. The RUN options of
most importance to the DDL compiler are:

IN ddl-source-file

specifies the name of a file that contains DDL statements and commands.

If you specify this option, see Running the DDL Compiler Noninteractively on
page 3-3.

If you omit this option, see Running the DDL Compiler Interactively on
page 3-4.

[RUN] DDL [/ run-option [, run-option]... /]
 [compiler-command [, compiler-command]...]
Data Definition Language (DDL) Reference Manual—529431-003
3-1

Running the DDL Compiler RUN DDL Command
OUT [listing-destination]

determines whether the DDL compiler produces a listing, and if so, where.

If you omit this option, the DDL compiler sends the listing to its home terminal.

If you specify OUT but omit listing-destination, the DDL compiler does
not produce a listing.

listing-destination

specifies the output device or disk file to which the DDL compiler writes its
listing.

If listing-destination is a disk file name, but no disk file with that
name exists, the DDL compiler creates a disk file with that name.

If listing-destination is the name of an existing file, the DDL
compiler stops abnormally with a “file create” error.

NOWAIT

returns control immediately to the command interpreter. Without NOWAIT, the
command interpreter suspends while the DDL compiler runs.

HIGHPIN { ON | OFF }

specifies the desired process identification number (PIN) range for the DDL
compilation process.

ON

runs the DDL compiler at a high PIN if the HIGHPIN bit is on in the DDL
object file and if the other conditions for running the new process at a high
PIN are met.

OFF

runs the DDL compiler at a low PIN regardless of other considerations.

Without HIGHPIN, the PIN of the DDL compilation process depends on the
HIGHPIN setting of the associated TACL process. If you access a D-series or
G-series DDL compilation process from a terminal on a system running
C-series software, the DDL compiler runs at a low PIN.

compiler-command

is any command described in Section 9, DDL Compiler Commands.
Data Definition Language (DDL) Reference Manual—529431-003
3-2

Running the DDL Compiler Running the DDL Compiler Noninteractively
Run-time defaults for the DDL compiler:

• If you do not fully qualify a file name with volume and subvolume names, the DDL
compiler qualifies the file name with the current default volume and subvolume
names.

• The DDL compiler creates all files, including dictionary files and host-language
source code files, with your default file-creation security. To change your default
file-creation security, use the TACL DEFAULT command.

Running the DDL Compiler Noninteractively
To run the DDL compiler noninteractively, specify the run option IN ddl-source-
file in the RUN DDL Command on page 3-1.

When run noninteractively, the DDL compiler:

• Accepts source input from ddl-source-file, which can contain any statements
and commands described in this manual.

• Compiles the statements in ddl-source-file and writes a compiler listing to
listing-destination, which you can specify in the RUN DDL command with
the run option OUT.

• Performs the actions specified by compiler commands in both the RUN DDL
command and ddl-source-file. The DDL compiler processes the commands
in the RUN command first, then processes the commands in ddl-source-file
as it encounters them.

• Stops the DDL compilation process after encountering either an end-of-file mark or
an EXIT statement in ddl-source-file, and returns control to the command
interpreter.

Assuming that a dictionary exists on the current default volume and subvolume, the
command in Example 3-1 on page 3-3 directs the DDL compiler to:

• Open the dictionary on the current default volume and subvolume.

• Open the COBOL source code file named cobsrc.

• Read statements and commands from the file ddlsrc.

• Compile the object-definition statements in ddlsrc in accordance with any
commands in ddlsrc and add the compiled objects to the dictionary.

• Generate COBOL source code from the schema in ddlsrc and write the COBOL
source code to cobsrc.

• Write the compiler listing to the file listfile.

Example 3-1. Running the DDL Compiler Noninteractively

DDL /IN ddlsrc, OUT listfile/ DICT, COBOL cobsrc
Data Definition Language (DDL) Reference Manual—529431-003
3-3

Running the DDL Compiler Running the DDL Compiler Interactively
Running the DDL Compiler Interactively
To run the DDL compiler interactively, use the RUN DDL Command on page 3-1 and
either:

• Omit the run options IN and OUT.
• Specify the same interactive terminal for both of the run options IN and OUT.

When run interactively, the DDL compiler:

• Accepts all input from its home terminal

• Sends all output to its home terminal

• Executes any commands in the RUN DDL command before prompting you for
input

• Prompts you for input with the exclamation point (!)

You can enter any command or statement described in this manual. Begin a
command with a question mark (?) and do not end it with a period (.).

• Exits interactive mode when you either enter the EXIT statement or press the
Ctrl-Y key

In Example 3-2 on page 3-4, assume that the dictionary dict exists on the current
default volume and subvolume.

Example 3-2. Interactive DDL Session: Adding Structures to Existing Dictionary

2> DDL dict Open dictionary dict.

!?COBOL cobsrc Open (or create) COBOL source code file cobsrc to receive
COBOL source code.

!?SOURCE newsrc Compile statements in schema file newsrc, add compiled objects
to dict, and write generated COBOL source code to cobsrc.

!EXIT Exit the DDL compiler, returning to the command interpreter.

Example 3-3. Interactive DDL Session: Adding Structures to New Dictionary

27> DDL dict ! If dictionary dict exists on the default subvolume, open dict
for update access and delete all the dictionary objects it
contains; otherwise, create dict on the current default
volume and subvolume.

!DEF cust-info.
! 02 name PIC X(25).
! 02 addr PIC X(40).
!END

Parse the DEFINITION statement as it is entered, ending with
END.

Compile the DEFINITION statement and write production
comments to the terminal.

!EXIT Exit the DDL compiler, returning to the command interpreter.
Data Definition Language (DDL) Reference Manual—529431-003
3-4

Running the DDL Compiler Completion Codes
Completion Codes
When the DDL compiler stops its operation, it returns a completion code to the
command interpreter that indicates the outcome of the DDL compilation.

The completion code is accessible in the TACL variable _COMPLETION.

Example 3-4. Interactive DDL Session: Writing From a Dictionary to a File

63> DDL

!?DICT $data.sales Open a dictionary on the volume $DATA and the
subvolume SALES.

!?FUP fupsrc ! Open the file fupsrc, clearing any contents.

!OUTPUT RECORD customer. Retrieve the record customer from the dictionary and
write the appropriate FUP file-creation commands for this
record to fupsrc.

!EXIT Exit the DDL compiler, returning to the command
interpreter.

Table 3-1. DDL Compiler Completion Codes

Code Meaning

0 Normal termination. If warnings but no errors occurred, and the NOWARN
command was in effect, any warnings that did occur were suppressed.

1 One or more warnings were reported, but no errors occurred.

2 One or more errors were reported (regardless of whether any warnings were
reported).

3 The DDL compiler stopped before processing all input because the number of
errors reached the limit specified in the command ERRORS on page 9-55.
Data Definition Language (DDL) Reference Manual—529431-003
3-5

Running the DDL Compiler Completion Codes
Data Definition Language (DDL) Reference Manual—529431-003
3-6

4 Named Constants
A named constant is a dictionary object that has a name, a data type, and a value. You
define named a constant in a CONSTANT statement, and you can refer to a named
constant value by name in other DDL statements.

Topics:

• CONSTANT on page 4-1

• Standard SPI Constants on page 4-9

CONSTANT
The CONSTANT statement defines a constant and adds it to the open dictionary.
When the constant is in the dictionary, other DDL statements can use the constant as a
literal value.

If a CONSTANT statement identifies a constant that is already in the dictionary and
that is not referenced by any other object, the DDL compiler replaces the existing
constant with the new constant. If the constant is referenced by another object, the
DDL compiler issues an error message and does not add the constant to the dictionary

If a previous command opened a C, COBOL, Pascal (on D-series systems), pTAL,
TACL, or TAL source code file, the DDL compiler translates any constant defined in a
CONSTANT statement to the specified language and writes it to the open source code
file.

constant-name

is the name of a constant.

num-value-clause

VALUE [IS] { { constant-number } [LN-clause]... }
 { { national-literal } }
 { { existing-constant } }

type

is the type of a numeric constant:

BINARY { [16] } [UNSIGNED]
 { 32 }

Default: BINARY 16

CONSTANT constant-name { num-value-clause [TYPE type] }
 { [TYPE type] num-value-clause }
 { value-clause }.
Data Definition Language (DDL) Reference Manual—529431-003
4-1

Named Constants CONSTANT
value-clause

VALUE [IS] { { constant-number } [LN-clause]... }
 { { "string " } }
 { { national-literal } }
 { { existing-constant } }
 { }
 { VERSION "Lnn " }

constant-number

is a signed or unsigned decimal or octal integer (see Numbers on
page 2-5) that is consistent with type (if type is specified).

"string "

is a string of from 1 to 130 ASCII characters (see Strings on page 2-5).

national-literal

is a national literal (see National Literals on page 2-6).

existing-constant

is the name of an existing constant whose value is consistent with the type
of the constant being defined.

LN-clause

specifies the locale name for value (see LN on page 6-13).

"Lnn "

is a product version string.

L

is a letter. The DDL compiler treats L as uppercase whether you
specify it as uppercase or lowercase.

nn

is a two-digit number.
Data Definition Language (DDL) Reference Manual—529431-003
4-2

Named Constants Numeric Constants
Topics:

• Numeric Constants on page 4-3

• Product Version Constants on page 4-4

• Existing Constants on page 4-5

• C on page 4-5

• COBOL on page 4-6

• Pascal (D-series Systems Only) on page 4-6

• TACL on page 4-7

• TAL on page 4-8

• Examples on page 4-8

Numeric Constants
Each type of numeric constant has a different range of valid values, as Table 4-1 on
page 4-3 shows.

The type of a numeric constant:

• Ensures that the specified value is consistent with the type, whether the type is
explicitly specified or is BINARY 16 by default. For example, the value 40,000 is
not consistent with type BINARY 16 because the value is too large, but it is
consistent with type BINARY 16 UNSIGNED. If a value is not consistent with its
type, the CONSTANT statement fails.

• Controls the types of COBOL, pTAL, and TAL data items generated for the
constant. For example, type BINARY 32 causes the DDL compiler to generate a
pTAL or TAL LITERAL with a double-word value and a COBOL NATIVE-4 two-
word value. The DDL compiler translates binary numbers as TACL TEXT values
rather than as binary data in a STRUCT so, the TYPE clause does not affect TACL
output from DDL constants.

Table 4-1. Ranges of Numeric Constant Values

Type Lowest Value Highest Value

BINARY 16 -32,768 32,767

BINARY 16 UNSIGNED 0 65,535

BINARY 32 -2,147,483,648 2,147,483,647

BINARY 32 UNSIGNED 0 4,294,967,295

BINARY 64 -9,223,372,036,854,775,808 9,223,372,036,854,775,807
Data Definition Language (DDL) Reference Manual—529431-003
4-3

Named Constants Product Version Constants
Product Version Constants
When specifying product version constants:

• You can use a product version constant only in the VERSION clause of a TOKEN-
MAP statement, in the VALUE clause of a DEFINITION statement, or in the VALUE
clause of a CONSTANT statement.

° When a VALUE clause in a DEFINITION or CONSTANT statement includes a
product version constant, the DDL compiler treats the product version constant
as a BINARY 16 integer type.

° When a VERSION clause in a TOKEN-MAP statement includes a product
version number, the SPI product version compatibility mechanism uses the
product version number to identify the structure of a particular product version
of an extensible structured token.

• When generating output from a product version constant for host-language source
code, the DDL compiler converts the product version string from the form ann to
the numeric representation of a product version number returned by the
TOSVERSION Guardian procedure.

You can compare product version numbers without decoding them.

To “decode” a product version number:

1. Obtain the letter of the product version by dividing the product version number by
256. The quotient is the ASCII decimal representation of the uppercase letter. Any
remainder is ignored.

2. Obtain the number of the product version by multiplying the quotient from Step 1 by
256 and subtracting the answer from the product version number.

For example, for product version number 17162:

1. 17162 divided by 256 = 67.04
2. 67 is the ASCII decimal representation for the letter C
3. 67 multiplied by 256 = 17152, and 17162 - 17152 = 10
4. C10 is the product version
Data Definition Language (DDL) Reference Manual—529431-003
4-4

Named Constants Existing Constants
Existing Constants
When using the name of an existing constant as the value in a CONSTANT statement:

• You can specify a DDL constant name instead of a literal value in the VALUE
clause of a CONSTANT statement whether the constant name identifies a string
constant, a numeric constant, or a product version constant.

• When the name identifies a previously defined string constant, the new value is
identical to the value of the string constant.

• When the name identifies a previously defined product version constant, the new
value is identical to the value of the product version constant.

• When an existing numeric constant is named in the definition of another DDL
numeric constant, certain rules apply:

° If the CONSTANT statement does not include a TYPE clause, the constant
being defined inherits the type of existing-constant.

° If the CONSTANT statement has a TYPE clause, its specified type overrides
the type of existing-constant.

° If a TYPE clause in the CONSTANT statement overrides the type of
existing-constant, the value of existing-constant must be
consistent with the specified type.

C
When generating C source code from CONSTANT statements:

• If you request C source-code output, by giving the C command, the DDL compiler
generates #defines for named constants.

• The DDL compiler converts any hyphen in the constant name to an underscore (_)
in the #define name.

• The DDL compiler generates uppercase letters for names that follow #define.

• For a string constant, the DDL compiler generates a #define of this form:

#define CONSTANT-NAME string-literal

• For a numeric constant, the DDL compiler generates a #define of this form:

#define CONSTANT-NAME numeric-constant

• For a product version constant, the DDL compiler generates a #define that
contains the product version number.
Data Definition Language (DDL) Reference Manual—529431-003
4-5

Named Constants COBOL
COBOL
When generating COBOL source code from CONSTANT statements:

• If you request COBOL source-code output, by giving the COBOL command, the
DDL compiler generates a level-01 data description entry for each named constant.

• For a string constant, the DDL compiler generates a string value identical to the
specified constant value.

• For a numeric constant, the DDL compiler generates a COBOL data type based on
the type of the numeric constant:

Unsigned binary constants are translated to COBOL signed data types.

• For a product version constant, the DDL compiler generates a COBOL NATIVE-2
elementary item that contains the product version number.

Pascal (D-series Systems Only)
When generating Pascal source code from CONSTANT statements:

• If you request Pascal source-code output, by giving the PASCAL command, the
DDL compiler generates Pascal constants.

• The DDL compiler converts any hyphen in the constant name to an underscore (_)
in the Pascal constant name.

• Pascal does not support the TYPE clause in the CONSTANT statement.

• For a string constant, the DDL compiler generates a Pascal FSTRING constant.

• For a numeric constant, the DDL compiler generates a Pascal numeric constant.

• For a product version constant, the DDL compiler generates the product version
number.

Constant Type COBOL Data Type

BINARY 16 NATIVE-2

BINARY 32 NATIVE-4

BINARY 64 NATIVE-8

BINARY 16 UNSIGNED NATIVE-2

BINARY 32 UNSIGNED NATIVE-4
Data Definition Language (DDL) Reference Manual—529431-003
4-6

Named Constants TACL
TACL
When generating TACL source code from CONSTANT statements:

• If you request TACL source-code output, by giving the TACL command, the DDL
compiler generates TACL TEXT variables for named constants.

• The DDL compiler converts any hyphen in the constant name to a circumflex (^) in
the TACL TEXT variable name.

• For a string constant, the DDL compiler generates a TACL TEXT variable with a
value derived from the DDL constant value.

° The value of the TACL TEXT variable differs from the DDL constant if certain
special characters are specified in the constant. The DDL compiler precedes
these special characters with a tilde (~) in the variable:

[] { } | ==

For example, the value in this CONSTANT statement includes special
characters:

CONSTANT tacl-out VALUE IS "#OUTPUT [#NEXTFILENAME]".

The resulting TACL source code is:

?Section TACL^OUT TEXT
#OUTPUT ~[#NEXTFILENAME~]

° The total number of bytes generated for a TACL string constant cannot exceed
130, including any generated tildes. If the value would be longer than 130
bytes, the DDL compiler does not generate the TACL constant.

• For a numeric constant, the DDL compiler generates a TACL TEXT variable with a
value identical to the value of the DDL constant.

• For a product version constant, the DDL compiler generates a TACL TEXT variable
that contains the product version number.

• The internal representation of a DDL constant in TACL differs from these
representations:

° The internal representation of DDL constants in pTAL, TAL, and COBOL.

° The internal representation of all other DDL objects in TACL. For a definition,
record, token code, token map, or token type, the DDL compiler generates a
TACL STRUCT with the same internal representation as pTAL or TAL source
code.

This difference does not cause problems in messages because messages contain
data structures, not constants. If you use #APPENDV to move a TACL
representation of a DDL constant to a message for a program coded in another
language, the value in the message will not match the same DDL constant in the
other language.
Data Definition Language (DDL) Reference Manual—529431-003
4-7

Named Constants TAL
TAL
When generating pTAL or TAL source code from CONSTANT statements:

• If you request pTAL or TAL source-code output by giving the TAL command, the
DDL compiler generates pTAL or TAL source code for named constants.

• The DDL compiler converts any hyphen in the constant name to a circumflex (^) in
the TAL DEFINE name.

• For a string constant, the DDL compiler generates a TAL DEFINE. Each DEFINE
specifies a value that exactly matches the constant value. TAL limits the length of a
string constant to 128 bytes, although the DDL compiler accepts string constants of
up to 130 ASCII characters.

• For a numeric constant, the DDL compiler generates a pTAL or TAL literal based
on the type of the numeric constant. A numeric constant with a value n results in a
different pTAL or TAL literal for each DDL constant type:

If the type is specified as unsigned, the DDL compiler generates the pTAL or TAL
literal in octal representation.

• For a product version constant, the DDL compiler generates a pTAL or TAL literal
that has a type equivalent to BINARY 16 UNSIGNED and that contains the product
version number.

Examples

In Example 4-2 on page 4-9, constant B inherits the type of constant A; that is,
constant B is also type BINARY 16 UNSIGNED.

Constant Type pTAL or TAL Data Type

BINARY 16 n

BINARY 32 n D

BINARY 64 n F

Example 4-1. CONSTANT Statements

CONSTANT prog-name VALUE IS "MYPROG".
CONSTANT myprog VALUE IS prog-name.
CONSTANT zspi-val-tandem-owner VALUE IS "TANDEM ".

CONSTANT hundred VALUE IS 100.
CONSTANT double-hundred VALUE 100 TYPE BINARY 32.
CONSTANT quad-num VALUE 800000 TYPE BINARY 64.
CONSTANT zspi-val-msghdrsize VALUE 6 TYPE BINARY 16
UNSIGNED.
Data Definition Language (DDL) Reference Manual—529431-003
4-8

Named Constants Standard SPI Constants
If the second CONSTANT statement includes a TYPE clause, the clause overrides the
defining constant.

In Example 4-3 on page 4-9, the type specified for constant C overrides the type
specified for constant A.

When the data types are not the same, the constant value must be compatible with
each specified data type. In Example 4-4 on page 4-9, both statements are valid; the
value 1000 is compatible with both type BINARY 16 and type BINARY 32.

In Example 4-5 on page 4-9, the value of HI-VAL is too large for type BINARY 16. The
DDL compiler issues an error message and does not execute the CONSTANT
statement.

For examples using locale names, see Appendix B, Sample Schemas.

Standard SPI Constants
Subsystems that use DSM are provided with a set of CONSTANT statements to define
standard values for use in SPI messages. For the names and descriptions of standard
SPI constants, see the SPI Programming Manual and the SPI Common Extensions
Manual.

Example 4-2. Numeric Constant Defined by Existing Constant—Same Type

CONSTANT a VALUE 200 TYPE BINARY 16 UNSIGNED.
CONSTANT a VALUE b. ! Type binary 16 unsigned

Example 4-3. Numeric Constant Defined by Existing Constant—New Type

CONSTANT a VALUE 200 TYPE BINARY 16 UNSIGNED.
CONSTANT c VALUE a TYPE BINARY 16. ! Type binary 16

Example 4-4. Numeric Constants With Compatible Types

CONSTANT thousand VALUE 1000 TYPE BINARY 32.
CONSTANT max-value VALUE thousand TYPE BINARY 16.

Example 4-5. Numeric Constants With Incompatible Types

CONSTANT fifty-thou VALUE 50000 TYPE BINARY 16 UNSIGNED.
CONSTANT hi-val VALUE fifty-thou TYPE BINARY 16.
*** ERROR *** Invalid value for value type
*** WARNING *** Errors detected - no output produced for HI-VAL
Data Definition Language (DDL) Reference Manual—529431-003
4-9

Named Constants Standard SPI Constants
Data Definition Language (DDL) Reference Manual—529431-003
4-10

5 Definitions and Records
Definitions and records are dictionary objects that describe data structures and disk-file
record structures, respectively.

DEFINITION and RECORD statements:

• Define definitions and records, respectively

• Must conform to the syntax rules in Statements on page 2-16

• Have many syntax elements in common

• Are usually specified in a schema file that is used as the IN file when the DDL
compiler is executed noninteractively

Topics:

• DEFINITION on page 5-1

• RECORD on page 5-8

• Syntax Elements on page 5-21

DEFINITION
The DEFINITION statement defines an elementary or group data structure by
specifying its name, data type, size, and other attributes.

The definition can be added to the open dictionary; referenced for defining other data
structures, record structures, token types, or token maps; and compiled into a DDL or
host-language source code file.

If a DEFINITION statement names a definition that is already in the open dictionary
and no other object refers to the definition, the DDL compiler replaces the existing
definition with the new definition. If another object refers to the existing definition, the
DDL compiler issues an error message and does not add the new definition to the
dictionary.

If a previous command opened any language source code files, the DDL compiler
translates the definition to the specified language and writes it to the open source code
files.

Note. For the DDL2 object file, if a definition is used only for the working storage, the length of
the definition or any of its fields is limited to 2,097,152 bytes. This length is limited to 32,767
bytes in the DDL object file.

Caution. The DDL and DDL2 object files are not compatible with each other. The DDL2 object
file cannot read or write to the dictionary created using the DDL object file. Similarly, the DDL
object file cannot read or write to the dictionary created using the DDL2 object file. Therefore,
you must generate the schema from the existing dictionary before deleting the dictionary.
Data Definition Language (DDL) Reference Manual—529431-003
5-1

Definitions and Records Order of Clauses
The DEFINITION statement has three forms:

Topics:

• Order of Clauses on page 5-2

• Definition Length on page 5-2

• Field Definition on page 5-4

• Group Definition on page 5-5

• Reference Definition on page 5-7

• Error Handling on page 5-8

Order of Clauses
The clauses in a DEFINITION statement can be in any order, with these exceptions:

• Any level-88 condition-name clauses and level-89 enumeration clauses must
follow the first period in a field definition or description. A single-field definition that
has one or more of these clauses must also have BEGIN before the first period
and END after the last clause.

• The level-66 RENAMES clause must immediately precede END in a group
definition.

• All clauses except level-88, level-89, and level-66 clauses must precede the first
period in a definition or description.

• END must follow all clauses in a definition. A single-field definition that includes
BEGIN must also include END; other single-field definitions cannot include END.
All group definitions must include END.

Definition Length
A definition’s length must conform to these rules:

• If a definition is used only for working storage, its length or the length of any field
within the definition is limited to 32,767 bytes.

• If a RECORD statement refers to a definition, the length of the definition is subject
to the maximum record-length limitations.

Form Description

Field Definition on page 5-4 Defines a single field

Group Definition on page 5-5 Defines a group of fields or a group of groups

Reference Definition on
page 5-7

Defines a field or group by referring to a previous definition
Data Definition Language (DDL) Reference Manual—529431-003
5-2

Definitions and Records Definition Length
• These languages further definition length:

Language Maximum Definition Length (Bytes)

FORTRAN 255

TACL 5,000

Pascal (on D-series systems) 32,766

COBOL 4,096
Data Definition Language (DDL) Reference Manual—529431-003
5-3

Definitions and Records Field Definition
Field Definition
This DEFINITION statement defines a single field.

For descriptions of clauses, see Syntax Elements on page 5-21.

DEF[INITION] def-name

 { PICTURE-clause | TYPE-clause }

 [AS-clause]

 [BEGIN]

 [DISPLAY-clause]

 [EDIT-PIC-clause]

 [EXTERNAL-clause]

 [HEADING-clause]

 [HELP-clause]

 [JUSTIFIED-clause]

 [MUST-BE-clause]

 [NULL-clause]

 [SPI-NULL-clause]

 [SQLNULLABLE-clause]

 [TACL-clause]

 [UPSHIFT-clause]

 [USAGE-clause]

 [VALUE-clause] .

 [88-condition-name-clause .] ...

 [89-enumeration-clause .] ...

 [END [.]]
Data Definition Language (DDL) Reference Manual—529431-003
5-4

Definitions and Records Group Definition
Group Definition
This DEFINITION statement defines a group of fields or a group of groups.

For descriptions of clauses, see Syntax Elements on page 5-21.

Each field or group within a group DEFINITION statement must be defined by at least
a level number and a name. The level number must precede the group or field name.
Other clauses can follow in any order.

A group DEFINITION statement can contain nested group descriptions, which must
contain at least one field description.

Every field within a group DEFINITION statement must be described with a PICTURE
or TYPE clause; a group description cannot have either clause.

Example 5-1. Field Definitions

DEF company-name TYPE CHARACTER 30 NULL 0 .

DEF custnum PIC 9(6) HEADING "Customer/Number" .

DEF status TYPE ENUM BEGIN.
 89 no-error.
 89 read-error VALUE 3.
 89 write-error.
END.

DEF[INITION] def-name

 [DISPLAY-clause]

 [EXTERNAL-clause]

 [HEADING-clause]

 [HELP-clause]

 [NULL-clause]

 [SQLNULLABLE-clause]

 [USAGE-clause]

 [VALUE-clause] .

 line-item specification ...

 [66-RENAMES-clause .] ...

END [.]
Data Definition Language (DDL) Reference Manual—529431-003
5-5

Definitions and Records Group Definition
The TYPE clause for a field within a group DEFINITION statement can refer to a field
or group definition previously stored in the open dictionary. When a field is defined by
referring to a group definition, the field effectively becomes a group.

A group’s size is the total of the lengths of its member fields plus any FILLER fields
generated by the DDL compiler.

Example 5-2. Group Definitions

DEF address.
 03 street-address.
 05 street-no PIC X(8).
 05 street PIC X(12).
 05 apt-no PIC X(4).
 03 city PIC X(14).
 03 state-cd PIC X(2).
 03 zip PIC X(5).
END.

DEF phone. DISPLAY "n<(999) 999-9999>"
 03 area-cd PIC 9(3).
 03 prefix PIC 9(3).
 03 numb PIC 9(4).
END. ! Period is optional

DEF cust-info.
 03 company-name TYPE *
 HEADING "Company".
 03 cust-address TYPE address.
 HEADING "Address".
 03 cust-phone TYPE phone.
 HEADING "Phone".
END.

DEF customer.
 03 cust-name TYPE cust-name.
 03 cust-id PIC 9(6). ! Level number must be < 04
END.
Data Definition Language (DDL) Reference Manual—529431-003
5-6

Definitions and Records Reference Definition
Reference Definition
This DEFINITION statement copies an existing definition, giving it a new name. The
new definition can be given its own attributes, which can override all copied attributes
except data type and size.

For descriptions of clauses, see Syntax Elements on page 5-21.

DEF[INITION] def-name-1 TYPE def-name-2

 [AS-clause]

 [BEGIN]

 [DISPLAY-clause]

 [EDIT-PIC-clause]

 [EXTERNAL-clause]

 [HEADING-clause]

 [HELP-clause]

 [MUST-BE-clause]

 [NULL-clause]

 [SPI-NULL-clause]

 [TACL-clause]

 [UPSHIFT-clause]

 [USAGE-clause]

 [VALUE-clause] .

 [88-condition-name-clause .] ...

 [END [.]]

Example 5-3. Reference Definitions

DEF cust-name TYPE company-name
 HEADING "Customer" .

DEF home-phone TYPE phone
 HEADING "Employee/Home Phone".
Data Definition Language (DDL) Reference Manual—529431-003
5-7

Definitions and Records Error Handling
Error Handling
When the DDL compiler encounters an error in a DEFINITION statement, it continues
processing the statement to determine if there are other errors before processing the
next statement. The DDL compiler does not add the definition to the dictionary, and if
any source code files are open, the DDL compiler does not write the definition to those
files.

An extra period in a group definition might cause the DDL compiler to not report any
additional errors until it encounters END.

RECORD
The RECORD statement defines a disk file record, specifying the record’s file name
and type. If the file is structured, the RECORD statement also identifies the key fields
and assigns a key specifier to any alternate keys.

If a dictionary is open, the DDL compiler stores the record in the dictionary. If a record
of the same name already exists, the DDL compiler replaces the existing record with
the new record.

Depending on which source code files are open, the DDL compiler writes the record to
a DDL source code file, writes source code to describe the record to a host-language
source code file, and writes the file creation commands to a FUP source code file.

record-name

is the name of the record to be added to, or replaced in, the open dictionary.

file-creation

specifies either the name or the type of the disk file that will store occurrences of
the record (see File-Creation Syntax on page 5-10).

record-structure

specifies the data structure of the record and (optionally) identifies primary and
alternate keys (see Record Structure Syntax on page 5-15).

RECORD record-name .

 [file-creation]

 { record-structure | record-reference }

 [key-assignment]

END [.]
Data Definition Language (DDL) Reference Manual—529431-003
5-8

Definitions and Records RECORD
record-reference

specifies the data structure of the record in terms of another, existing record and
(optionally) identifies primary and alternate keys (see Record Reference Syntax on
page 5-16).

key-assignment

specifies one or more fields or groups of fields as Enscribe keys, assigns key
specifiers to key fields, and specifies that a file is to be sorted on a nonkey field or
group of fields (see Key Assignment Syntax on page 5-17).

You can omit key-assignment if the record has no key fields or if you declare its
key fields with the clause KEYTAG on page 6-12.

END [.]

ends the RECORD statement.

Topics:

• File-Creation Syntax on page 5-10

• Creation-Attribute Syntax on page 5-12

• Record Reference Syntax on page 5-16

• Record Structure Syntax on page 5-15

• Key Assignment Syntax on page 5-17

• Error Handling on page 5-18

• Examples on page 5-19

Note. The DDL compiler ignores key-assignment when generating TACL source code
from a RECORD statement.
Data Definition Language (DDL) Reference Manual—529431-003
5-9

Definitions and Records File-Creation Syntax
File-Creation Syntax
In the statement RECORD on page 5-8, file-creation specifies either the name
or the type of the disk file that will store occurrences of the record.

file-name

is the name of a disk file that is to contain occurrences of the record defined in the
RECORD statement.

file-name can appear in more than one RECORD statement in the same
dictionary. To avoid file name conflicts:

• Select one record structure to generate FUP file-creation commands.
• Define other record structures as TEMPORARY or ASSIGNED.

TEMPORARY

specifies that the disk file that will store occurrences of the record is a temporary
file (created programmatically and purged when closed).

ASSIGNED

specifies that the record is a logical record with the same structure as one or more
physical records.

You can include the logical record definition in a program and assign the logical
record to a physical file with a TACL ASSIGN command before you run the
program.

creation-attribute

is an attribute of the disk file that will store occurrences of the record (see Creation-
Attribute Syntax on page 5-12).

FILE IS { ["]file-name["] } [creation-attribute] ...
 { TEMPORARY }
 { ASSIGNED }

Note. FUP output is not generated for temporary files.

Note. FUP output is not generated for assigned files.

Note. The DDL compiler ignores creation-attribute when generating TACL source
code from a RECORD statement.
Data Definition Language (DDL) Reference Manual—529431-003
5-10

Definitions and Records File-Creation Syntax
If you omit file-creation from the RECORD statement:

• The DDL compiler derives file-name from record-name : If record-name
has a hyphen (-) within its first 8 characters, file-name is all of the characters up
to the first hyphen; otherwise, file-name is the first 8 characters of record-
name. Volume and subvolume names are undefined.

• The DDL compiler assigns a file type:

If you do not specify a file type in FUP, FUP automatically creates the file as
unstructured. DDL and FUP also have different default file attributes (see Table 5-1
on page 5-11).

If the record has ... File type is ...

A primary key Key-sequenced

No keys (an unstructured file can have a SEQUENCE IS clause) Unstructured

One or more alternate keys and a SEQUENCE IS clause but no
primary key

Entry-Sequenced

One or more alternate keys but no primary key or SEQUENCE IS
clause

Relative

Table 5-1. File Attributes for DDL and FUP

File Attribute File Type

Default Value

DDL FUP

BLOCK Key-sequenced
Relative
Entry-sequenced

4096 bytes 4096 bytes

EXT All Primary: 4 pages
Secondary: 32 pages

Determined by file type
and block or buffer size
(see the File Utility
Program (FUP)
Reference Manual)

MAXEXTENTS All 100 16

NO ODDUNSTR Unstructured Odd Even
Data Definition Language (DDL) Reference Manual—529431-003
5-11

Definitions and Records Creation-Attribute Syntax
Creation-Attribute Syntax
In the File-Creation Syntax on page 5-10, creation-attribute is an attribute of
the disk file that will store occurrences of the record defined by the statement
RECORD on page 5-8.

KEY-SEQUENCED
RELATIVE
ENTRY-SEQUENCED
UNSTRUCTURED

are Enscribe file types. The first three specify structured files that can have keys.
For more information, see the Enscribe Programmer’s Guide.

AUDIT

specifies AUDIT when generating FUP source code. AUDIT designates the file as
audited by TMF. For more information, see the TMF Management Programming
Manual.

Note. The DDL compiler ignores creation-attribute when generating TACL source
code from a RECORD statement.

{ KEY-SEQUENCED | RELATIVE | ENTRY-SEQUENCED | UNSTRUCTURED }

[AUDIT]

[AUDITCOMPRESS]

[BLOCK block-length]

[[NO]BUFFERED]

[BUFFERSIZE buffer-size]

[CODE file-code]

{ COMPRESS | DCOMPRESS | ICOMPRESS }

[{ extent-size }]
[EXT { }]
[{ (pri-extent-size [, sec-extent-size]) }]

[MAXEXTENTS maximum-extents]

[NO ODDUNSTR]

[REFRESS]

[SERIALWRITES]

[VERIFYWRITES]
Data Definition Language (DDL) Reference Manual—529431-003
5-12

Definitions and Records Creation-Attribute Syntax
AUDITCOMPRESS

compresses the file’s audit trail. For more information, see the TMF Management
Programming Manual.

BLOCK block-length

specifies the block size, in bytes, for both data and index blocks in a structured file.
You can specify block-length either as an integer or as the name of a constant
in the open dictionary. The value of block-length must be one of:

• 512
• 1,024
• 2,048
• 4,096

Default: 4,096 bytes

BUFFERED

writes to your file are buffered in the disk-process cache. BUFFERED is the default
for audited files.

NOBUFFERED

writes to your file written to the disk. NOBUFFERED is the default for nonaudited
files.

BUFFERSIZE buffer-size

specifies the buffer size, in bytes, for an unstructured file. You can specify
buffer-size either as an integer or as the name of a constant in the open
dictionary. The value of buffer-size must be one of:

• 512
• 1,024
• 2,048
• 4,096

Default: 4,096 bytes

CODE file-code

assigns a file code to a file. You can specify file-code either as an integer or as
the name of a constant in the open dictionary. The value of file-code must be
in either of these ranges:

• 0 through 99
• 1,000 through 65,535

File codes 100 through 999 are reserved for use by HP.

Default: Zero
Data Definition Language (DDL) Reference Manual—529431-003
5-13

Definitions and Records Creation-Attribute Syntax
{ COMPRESS | DCOMPRESS | ICOMPRESS }

are only for key-sequenced files.

COMPRESS

turns on both index compression and data compression.

DCOMPRESS

turns on data compression.

ICOMPRESS

turns on index compression.

 { extent-size }
EXT { }
 { (pri-extent-size [, sec-extent-size]) }

sets the extent size in pages.

extent-size

specifies the total extent size. You can specify extent-size either as an
integer or as the name of a constant in the open dictionary. The value
extent-size must be an integer from 1 through 65,535.

For structured files, extent-size must be a multiple of the file’s BLOCK
value.

For unstructured files, extent-size must be a multiple of the file’s
BUFFERSIZE value.

pri-extent-size

specifies the primary extent size. You can specify pri-extent-size either
as an integer or as the name of a constant in the open dictionary. The value
pri-extent-size must be an integer from 1 through 65,535.

Default: 4 pages

sec-extent-size

specifies the secondary extent size. You can specify sec-extent-size
either as an integer or as the name of a constant in the open dictionary. The
value sec-extent-size must be an integer from 1 through 65,535.

Default: 32 pages
Data Definition Language (DDL) Reference Manual—529431-003
5-14

Definitions and Records Record Structure Syntax
MAXEXTENTS maximum-extents

sets the maximum number of extents the file can have. You can specify maximum-
extents either as an integer or as the name of a constant in the open dictionary.
The value of maximum-extents must be an integer from 1 to n, where n is
determined by the available free space in the file label.

Default: 100

NO ODDUNSTR

specifies that all unstructured files be processed as even-unstructured files.

Enscribe unstructured files can be even-unstructured or odd-unstructured. In even-
unstructured files, an odd byte count given for reading, writing, or positioning is
rounded upward. Odd-unstructured files have no upward rounding; you always
read, write, or position at the byte count you give.

REFRESH

forces the operating system to copy the file’s label to disk whenever the file’s file
control block is updated.

SERIALWRITES

specifies that writes to the mirror disk be done serially.

Default: Mirror disk writes are done in parallel.

VERIFIEDWRITES

specifies that disk writes be verified by the disk process. Disk writes are verified by
comparing the data on the disk with the data in memory.

Default: Disk writes are not verified.

Record Structure Syntax
In the statement RECORD on page 5-8, record-structure specifies the data
structure of the record and (optionally) identifies primary and alternate keys.

For descriptions of line-item specification and 66-RENAMES-clause, see
Syntax Elements on page 5-21.

A record structure must contain at least one field description. Every field description
must have a PICTURE or TYPE clause.

A record structure can contain one or more group descriptions. A group description
cannot have a PICTURE clause.

line-item specification ... [66-RENAMES-clause .] ...
Data Definition Language (DDL) Reference Manual—529431-003
5-15

Definitions and Records Record Reference Syntax
A TYPE clause for a field within a record structure can refer to a field or group
definition previously stored in a dictionary. When a field is defined by referring to a
group definition, it effectively becomes a group.

The size of a record structure is the total of the lengths of its member fields, plus any
FILLER fields generated by the DDL compiler.

Maximum record length:

• Depends on file type:

• Is limited further by these languages:

Record Reference Syntax
In the statement RECORD on page 5-8, record-reference specifies the data
structure of the record in terms of another, existing record and (optionally) identifies
primary and alternate keys.

def-name

is the name of an existing definition in the open dictionary.

When you use record reference syntax, you must declare any key fields with a key
assignment at the end of the RECORD statement. You cannot use a KEYTAG clause
to declare key fields with a reference record structure.

File Type

Maximum Length

Format 1 Format 2

Unstructured 4,096 bytes 4,096 bytes

Entry-sequenced 4,072 bytes 4,048 bytes

Relative 4,072 bytes 4,048 bytes

Key-sequenced 4,062 bytes 4,040 bytes

Language Maximum Record Length (Bytes)

FORTRAN 255

TACL 5,000

Pascal (on D-series systems) 32,766

DEF[INITION] IS def-name
Data Definition Language (DDL) Reference Manual—529431-003
5-16

Definitions and Records Key Assignment Syntax
Key Assignment Syntax
In the statement RECORD on page 5-8, key-assignment specifies specifies one or
more fields or groups of fields as Enscribe keys, assigns key specifiers to key fields,
and specifies that a file is to be sorted on a nonkey field or group of fields.

KEY key-specifier

specifies a field or group of fields as an Enscribe key and assigns a key specifier to
the key. You can specify key-specifier either as an integer from -32,768
through 32,767; as two ASCII characters enclosed in quotation marks; or as the
name of a constant in the open dictionary. The value of the constant must be either
an integer from -32,768 through 32,767 or a string of two ASCII characters.

You can omit key-specifier for a primary key, but if you include it, its value
must be 0. A nonzero value for key-specifier indicates an alternate key.

{ group-name | field-name }

is the name of a group or field used as either a primary key, an alternate key, or a
sequence field. If the name is not unique in the dictionary, the name must be
qualified to make it unique.

file-name

is the file name of the alternate key file for the specified key.

Default: Primary file name with a number appended

DUPLICATES [NOT] ALLOWED

specifies whether to allow duplicate alternate key values. Do not specify
DUPLICATES ALLOWED for a primary key field.

Default: DUPLICATES ALLOWED

Note. The DDL compiler ignores key-assignment when generating TACL source code from
a RECORD statement.

KEY key-specifier IS { group-name | field-name }

 [FILE IS ["]file-name["]]

 [DUPLICATES [NOT] ALLOWED] .] ...

 [UPDATE [NOT] ALLOWED]

 [SEQUENCE IS [ASCENDING] { group-name }]
 [[DESCENDING] { field-name } .]
Data Definition Language (DDL) Reference Manual—529431-003
5-17

Definitions and Records Error Handling
UPDATE [NOT] ALLOWED

specifies whether to allow updates for an alternate key file. This clause affects FUP
output generated for the alternate key.

Default: UPDATE ALLOWED

SEQUENCE IS [ASCENDING | DESCENDING] {group-name |field-name }

specifies that the file is to be sorted on a nonkey field or group by the application
program. Only one field or group in a record can be used for this purpose.

[ASCENDING | DESCENDING]

specifies the sort order.

Default: ASCENDING

{ group-name | field-name }

is the name of the sort field. If the name is not unique in the dictionary, the
name must be qualified to make it unique.

Only key-sequenced records can have a key-specifier with a value of 0,
indicating a primary key. Key-sequenced records must have one and only one primary
key.

A key defined with a nonzero key specifier, such as “NM” or 32000, is an alternate key.

Unstructured file records cannot have alternate keys.

For COBOL, keys must be alphanumeric; that is, the PICTURE for a key must be
either all Xs, all 9s (without a sign), or TYPE CHARACTER.

Key fields can overlap.

Error Handling
When the DDL compiler encounters an error in a RECORD statement, it continues
processing the statement to determine if there are other errors before processing the
next statement. The DDL compiler does not add the record to the dictionary, does not
write any FUP source for it, and does not write the record to any open language source
code files.
Data Definition Language (DDL) Reference Manual—529431-003
5-18

Definitions and Records Examples
Examples
The RECORD statements in Example 5-5 on page 5-19 through Example 5-8 on
page 5-20 refer to the definitions in Example 5-4 on page 5-19.

Example 5-4. Definitions Referenced in RECORD Statements

CONSTANT phone-heading VALUE IS "Phone Number".
CONSTANT phone-display VALUE IS "M<(999) 999-9999>".

DEF phone HEADING phone-heading
 DISPLAY phone-display.
 02 area-code PIC 9(3).
 02 prefix PIC 9(3).
 02 numb PIC 9(4).
END

DEF addr.
 02 address PIC X(22).
 02 city PIC X(14).
 02 state PIC X(12).
END

DEF custinfo.
 02 custnum PIC 9(4).
 02 custname PIC X(18).
 02 addr TYPE *.
END

Example 5-5. Record Defined by Existing Definition

RECORD cust.
 FILE IS "$data.sales.customer". ! File name
 KEY-SEQUENCED. ! File type
 DEF IS custinfo. ! Record structure
 KEY IS cust.custnum. ! Primary key
 KEY "nm" IS cust.custname. ! Alternate key
END.

Example 5-6. Record With Unique Alternate Key

RECORD supplier-info.
 FILE IS "$data.sales.supplier" KEY-SEQUENCED .

 02 suppnum PIC 9(4).
 02 suppname PIC X(18).
 02 addr TYPE *.

 KEY IS suppnum.
 KEY "sn" IS suppname DUPLICATES NOT ALLOWED .
END
Data Definition Language (DDL) Reference Manual—529431-003
5-19

Definitions and Records Examples
Example 5-7. Qualifying Alternate Key Fields Whose Names Are the Same

RECORD phones .
 FILE IS "\dallas.$data.sales.person"
 KEY-SEQUENCED.

 02 social-security PIC 9(9).
 02 home-phone TYPE phone.
 02 work-phone TYPE phone.

 KEY IS social-security.
 KEY "hc" IS home-phone.area-code.
 KEY "wc" IS work-phone.area-code.
END

Example 5-8. Creating an Alternate Key File

DDL Source Code:

RECORD test-1.
 FILE IS "Test1".

 02 f-1 TYPE BINARY.
 02 f-2 PIC X(10).
 02 f-3 TYPE COMPLEX.

 KEY "KY" IS f-2 FILE IS "AltKy" UPDATE NOT ALLOWED.
END.

FUP Output:

RESET
 SET ALTKEY ("KY", KEYOFF 2, KEYLEN 10, FILE 0, NO UPDATE)
 SET NO ALTCREATE
 SET ALTFILE (0, AltKy)
 SET TYPE R
 SET REC 20
 SET BLOCK 4096
 SET EXT(4, 32)
 SET MAXEXTENTS 100
CREATE Test1
 RESET
 SET TYPE K
 SET KEYLEN 12
 SET REC 16
 SET BLOCK 4096
 SET IBLOCK 4096
 SET EXT(4, 32)
 SET MAXEXTENTS 100
CREATE AltKy
Data Definition Language (DDL) Reference Manual—529431-003
5-20

Definitions and Records Syntax Elements
Syntax Elements
These syntax elements appear in one or more forms of DEFINITION and RECORD
statements:

• Clauses on page 5-21

• Other Elements on page 5-23

Clauses
This topic lists clauses with level numbers first, in numerical order, followed by other
clauses in alphabetical order.

66-RENAMES-clause

renames a previously defined field or group or set of fields or groups (see
66 RENAMES on page 6-79).

88-condition-name-clause

associates a condition name with a value, list of values, or range of values,
enabling you to refer to the value or values by the condition name (see
88 Condition-Name on page 6-81).

89-enumeration-clause

associates a name and (optionally) a display string with an enumeration value (see
89 Enumeration on page 6-84).

A single-field definition that has one or more level-89 clauses must also have
BEGIN before the first period and END after the last clause.

AS-clause

specifies a default display string for a field of type ENUM (see AS on page 6-3).

DISPLAY-clause

specifies the default format for field or group values listed in an Enform Plus report
(see DISPLAY on page 6-4).

EDIT-PIC-clause

specifies the format in which Pathmaker-generated requesters display a field’s data
on a screen (see EDIT-PIC on page 6-5).

Note. The DDL compiler ignores this clause when generating source code for languages
other than DDL and COBOL

Note. The DDL compiler ignores this clause when generating source code for languages
other than DDL and COBOL
Data Definition Language (DDL) Reference Manual—529431-003
5-21

Definitions and Records Clauses
EXTERNAL-clause

writes the EXTERNAL clause to COBOL source code files (see EXTERNAL on
page 6-6).

HEADING-clause

specifies a default field heading for values listed on Enform Plus reports or
displayed on screens generated by ENABLE and Pathmaker (see HEADING on
page 6-9).

HELP-clause

assigns help text, used by Pathmaker-generated requesters, to a group or
elementary item (see HELP on page 6-10).

JUSTIFIED-clause

writes the JUSTIFIED RIGHT clause to COBOL source code files (see JUSTIFIED
on page 6-11).

LN-clause

specifies the language, territory, and character set for a text item (see LN on
page 6-13).

MUST-BE-clause

specifies the set of valid values that can be entered in a field (see MUST BE on
page 6-15).

NULL-clause

assigns a null value to a field or group used as an alternate key (see NULL on
page 6-19).

OCCURS-clause

repeats a field or group a fixed number of times (see OCCURS on page 6-20).

OCCURS-DEPENDING-ON-clause

repeats a field or group a variable number of times, depending on the current value
of an integer variable (see OCCURS DEPENDING ON on page 6-23).

PICTURE-clause

specifies the data type and size of a field (see PICTURE on page 6-25).

REDEFINES-clause

assigns a new name and, optionally, a new structure to previously defined
definition or record (see REDEFINES on page 6-31).
Data Definition Language (DDL) Reference Manual—529431-003
5-22

Definitions and Records Other Elements
SPI-NULL-clause

specifies an SPI null value for a field or group in an SPI-extensible structured token
or for a field or group within a group definition (see SPI-NULL on page 6-37).

SQLNULLABLE-clause

specifies whether a line item is to be treated as an SQL-nullable column (see
SQLNULLABLE on page 6-39).

TACL-clause

specifies the TACL data type to which a DDL data item is to be converted when
generating TACL source code (see TACL on page 6-44).

TYPE-clause

specifies the data type and size of a field (see PICTURE on page 6-25 and TYPE
on page 6-48).

UPSHIFT-clause

upshifts ASCII characters entered in the field (see UPSHIFT on page 6-69).

USAGE-clause

either specifies computational storage allocation for a numeric group or field or
identifies a COBOL as an index (see USAGE on page 6-70).

VALUE-clause

assigns or suppresses a DDL or COBOL field or group’s initial value (see VALUE
on page 6-75).

Other Elements
This topic lists elements in alphabetical order.

BEGIN

precedes any level-88 condition-name clauses and level-89 enumeration clauses
in a DEFINITION statement for a single field. BEGIN must precede the first period
in the definition. A DEFINITION statement that includes BEGIN must also include
END and at least one level-88 or level-89 clause.

def-name

is the name of the data structure to be added to, or replaced in, the open
dictionary.
Data Definition Language (DDL) Reference Manual—529431-003
5-23

Definitions and Records Other Elements
def-name-1 TYPE def-name-2

defines a new data structure, def-name-1, by referring to a previously defined
data structure, def-name-2. Both def-name-1 and def-name-2 are DLL
names.

END [.]

ends either a group DEFINITION statement, a single-field DEFINITION statement
that includes BEGIN, or a RECORD statement.

level-number { field-name | group-name | FILLER }

specifies a field or group of fields within a group definition.

level-number

is a two-digit number from 02 through 49 that establishes the hierarchy of fields
or groups of fields within the definition or record.

Level number rules:

• The DEFINITION or RECORD statement does not have a level number; it
is implicitly at level 01.

• Each group and field within a group DEFINITION statement or a RECORD
statement has a level number to indicate its relationship to other groups
and fields within the group. A group of level nn includes all following
groups and fields with level numbers greater than nn up to the next group
or field of level nn or less.

• Level numbers need not be assigned sequentially. For instance, an
level-02 group can contain two level-05 fields with no intervening level-03
or level-04 fields.

• If a field is defined by a TYPE clause that refers to a group definition, the
field’s level number replaces the implicit level-01 number of the referenced
definition, and the level numbers of the definition’s member fields are
adjusted accordingly.

• If a field is defined by a TYPE clause that refers to a previous definition,
the level number of any element following the field must be less than or
equal to the level number of the field.

field-name

is a name that uniquely identifies a field within the enclosing group description
or definition.

group-name

is a name that uniquely identifies a group within the enclosing group
description or definition.
Data Definition Language (DDL) Reference Manual—529431-003
5-24

Definitions and Records Other Elements
FILLER

defines an unnamed field that is never referenced directly (see FILLER on
page 6-7).

line-item specification

level-number { field-name | group-name | FILLER }
{ PICTURE-clause | TYPE-clause }
[AS-clause]
[DISPLAY-clause]
[EDIT-PIC-clause]
[HEADING-clause]
[HELP-clause]
[JUSTIFIED-clause]
[LN-clause] ...
[MUST-BE-clause]
[NULL-clause]
{ OCCURS-clause | OCCURS-DEPENDING-ON-clause }
[REDEFINES-clause]
[SPI-NULL-clause]
[SQLNULLABLE-clause]
[TACL-clause]
[USAGE-clause]
[VALUE-clause] .
[88-condition-name-clause .] ...
[89-enumeration-clause .] ...

Clauses can be in any order, with this exception: definition attribute clauses must
precede 88-condition-name clauses and 89 enumeration clauses.
Data Definition Language (DDL) Reference Manual—529431-003
5-25

Definitions and Records Other Elements
Data Definition Language (DDL) Reference Manual—529431-003
5-26

6 Definition Attributes
Definition attributes are part of definitions and records, which are dictionary objects that
describe data structures and disk-file record structures. Each definition and record
includes attributes such as size, data type, and usage. The definition attributes are
defined by clauses in DEFINITION statements or in the record structure portion of
RECORD statements. Many of these clauses are similar to COBOL clauses of the
same name.

Table 6-1. Definition and Record Clauses (page 1 of 2)

Clause Function

AS * Specifies a display string for a value of type ENUM

DISPLAY * Specifies a default display format for field or group values
listed on an Enform Plus report

EDIT-PIC * Specifies the format in which Pathmaker-generated
requesters display a field’s data on a screen

EXTERNAL Writes the EXTERNAL clause to COBOL source code files

FILLER Defines an unnamed field that is never referenced directly

HEADING * Specifies a default field heading for values listed on Enform
Plus reports or displayed on screens generated by ENABLE
and Pathmaker

HELP * Assigns help text, used by Pathmaker-generated requesters,
to a group or elementary item in a DEFINITION statement.

JUSTIFIED Writes the JUSTIFIED RIGHT clause to COBOL source code
files

KEYTAG Specifies that a field or group is an Enscribe key field

LN Specifies a locale name (language, territory, and character
set) for a value in a CONSTANT statement, AS clause,
HEADING clause, VALUE clause, or 88 condition-name
clause

MUST BE * Specifies the set of valid values for a field

NULL * Assigns a null value to a field or group used as an Enscribe
alternate key

OCCURS Repeats a field or group a fixed number of times

OCCURS DEPENDING ON Repeats a field or group a variable number of times (for
COBOL and DDL source code only)

PICTURE Specifies (using COBOL notation) the data type and size of a
field

REDEFINES Assigns a new name and, optionally, a new structure to a
previously defined field or group

* The DDL compiler ignores this clause when generating host-language source code.
Data Definition Language (DDL) Reference Manual—529431-003
6-1

Definition Attributes
SPI-NULL Defines an SPI null value for a field or a group in an SPI-
extensible structured token or for a field or group within a
group definition

[NOT]SQLNULLABLE Specifies that a line item is [not] to be treated as an SQL-
nullable column

TACL Specifies the TACL data type to which a DDL data item is to
be converted when generating TACL source code

TYPE Specifies the data type and size of a data structure, either
explicitly or by referring to a previously defined data structure

UPSHIFT Upshifts ASCII characters entered in the field

USAGE Either specifies computational storage allocation for a
numeric group or field or identifies a COBOL as an index

[NO]VALUE Assigns [suppresses] a DDL or COBOL field or group’s initial
value

66 RENAMES Renames a previously defined DDL or COBOL field or group
or set of fields or groups

88 Condition-Name For COBOL source code, associates a condition name with a
value, list of values, or range of values, enabling you to refer
to the value or values by the condition name

89 Enumeration Associates a name with a specified or default enumeration
value and, optionally, specifies a display string for the value

Table 6-1. Definition and Record Clauses (page 2 of 2)

Clause Function

* The DDL compiler ignores this clause when generating host-language source code.
Data Definition Language (DDL) Reference Manual—529431-003
6-2

Definition Attributes AS
AS

The AS clause specifies a display string.

display-string

is either a string of ASCII or national characters (enclosed in quotation marks) or
the name of a constant in the open dictionary. The value of the constant must be a
string of ASCII or national characters.

LN-clause

specifies the locale name for value (see LN on page 6-13).

In Example 6-1 on page 6-3, a DDL definition uses an AS clause to specify a default
display string.

Note. The DDL compiler ignores this clause when generating host-language source code.

Context Effect

Field Definition on page 5-4 Specifies a display string for an enumeration value in a
field of type ENUM

89 Enumeration on page 6-84 Specifies a default display string for a field of type ENUM.
This default becomes the display string when the value of
the field does not match any of the values specified by
level-89 enumeration clauses in the field’s definition or
description.

AS display-string [LN-clause]...

Example 6-1. AS Clause

CONSTANT prts-obj-bolt VALUE IS 1.
CONSTANT prts-obj-nut VALUE IS 2.
CONSTANT prts-obj-pin VALUE IS 3
CONSTANT prts-obj-screw VALUE IS 4.
CONSTANT prts-obj-washer VALUE IS 5.

DEF prts-ddl-object-type TYPE ENUM BEGIN AS "Miscellaneous".
 89 prts-enm-bolt VALUE IS prts-obj-bolt AS "Bolt".
 89 prts-enm-nut VALUE IS prts-obj-nut AS "Nut".
 89 prts-enm-pin VALUE IS prts-obj-pin AS "Pin".
 89 prts-enm-screw VALUE IS prts-obj-screw AS "Screw".
 89 prts-enm-washer VALUE IS prts-obj-washer AS "Washer".
END.
Data Definition Language (DDL) Reference Manual—529431-003
6-3

Definition Attributes DISPLAY
DISPLAY

The DISPLAY clause specifies a default display format for field or group values listed
on an Enform Plus report.

display-format

is either a string (enclosed in quotation marks) or the name of a constant in the
open dictionary. The value of display-format must be a string of repeatable
edit descriptors, nonrepeatable edit descriptors, and modifiers, as described in the
Enform Plus Reference Manual.

A display format specified in a DDL DISPLAY clause can be overridden by an Enform
Plus AS clause.

The examples in Table 6-2 on page 6-4 show a commonly used format, the mask edit
descriptor.

Note. The DDL compiler ignores this clause when generating host-language source code.

DISPLAY display-format

Table 6-2. Display Format Examples

Display Format Value Displayed Value

“M<99/99/99>” 012791 01/27/91

“M<Z,ZZZ.99>” 0.00 .00

“M<Z,ZZZ.99>” 1.499 1.50

“M<$ZZ,ZZ9.99>” 5246.95 $ 5,246.95

“M<(999) 999-9999>” 4084266974 (408) 426-6974

“M<99,999>” 524695 ******* (overflow)

Example 6-2. Constant Names That Specify DISPLAY Formats

CONSTANT mdy-date-display VALUE "M<mm/dd/yy>".
CONSTANT phone-display VALUE "M<(999) 999-9999>".

DEF deliv-date PIC 9(6) DISPLAY mdy-date-display.
DEF custphone PIC 9(10) DISPLAY phone-display.
Data Definition Language (DDL) Reference Manual—529431-003
6-4

Definition Attributes EDIT-PIC
EDIT-PIC

The EDIT-PIC clause specifies the format in which Pathmaker-generated requesters
display a field’s data on a screen.

edit-picture

is either a string (enclosed in quotation marks) or the name of a constant in the
open dictionary. The value of edit-picture must conform to the field’s data
type.

The EDIT-PIC clause does not replace the PICTURE clause. EDIT-PIC specifies a
picture of a temporary item to which the value is moved for display.

If a field’s data type and the edit picture are defined as two different data elements in
the working-storage section of a COBOL program, moving the data from one picture to
the other must be possible. The edit picture for an alphanumeric field must be
alphanumeric, and the edit picture for a numeric field must be numeric.

The length of the data in an edit picture must conform to the length of the field’s data
type. To determine the data length in an edit picture, count only the digits or characters
of data, not decorations. For example, the data length of $99.99 is 4.

For alphanumeric fields, these rules about data length apply:

• The length of the data in the edit picture must be less than or equal to the length of
the field.

• The length of the data in the edit picture must be greater than 0.

For numeric fields, these rules apply:

• The length of the data to the left of the decimal point in the edit picture must be
less than or equal to the length of the field to the left of the decimal point.

• The length of the data to the right of the decimal point in the edit picture must be
less than or equal to the length of the field to the right of the decimal point.

• The length of the data in the edit picture must be greater than 0.

The maximum length of data in an EDIT-PIC clause is 32,767 bytes.

If an EDIT-PIC clause overrides an inherited edit picture, the edit picture specified in
the clause must conform to the type of the referenced definition.

If an EDIT-PIC clause contains an invalid edit picture, the DDL compiler generates an
error message and does not add the definition to the dictionary.

You cannot use an EDIT-PIC clause for data types not supported by COBOL.

Note. The DDL compiler ignores this clause when generating host-language source code.

EDIT-PIC edit-picture-string
Data Definition Language (DDL) Reference Manual—529431-003
6-5

Definition Attributes EXTERNAL
In Example 6-3 on page 6-6:

• Although the first edit picture has more characters than the elementary item, the
edit picture is valid because the extra characters leave room to display the minus
sign and currency symbol at the beginning. Also, it is valid to display fewer
characters to the right of the decimal point than the elementary item contains there.

• The data length of the second edit picture is invalid because it has too many minus
signs. An edit picture can include 1 extra character for a minus sign, but the
number of remaining minus signs must be equal to or less than the number of
digits in the elementary item.

• The data length of the third edit picture is valid because the length on each side of
the decimal point is less than or equal to the data length on that side in the
elementary item.

EXTERNAL

The EXTERNAL clause writes the EXTERNAL clause to COBOL source code files.
The COBOL source code files can be part of a copy library that is shared among
different program modules.

The EXTERNAL clause can be specified only on the object-name level.

If you specify the EXTERNAL clause in a definition statement, none of the line items in
the definition or the record can have a VALUE clause or a REDEFINES clause.

The EXTERNAL clause is not inheritable.

The EXTERNAL clause cannot be used in combination with the FILLER clause.

Example 6-3. EDIT-PIC Clause

Elementary item:S999V99.

Valid:-$$$$.9
Invalid:-----.99
Valid:---.99

Note. The DDL compiler ignores this clause when generating host-language source code.

EXTERNAL
Data Definition Language (DDL) Reference Manual—529431-003
6-6

Definition Attributes FILLER
FILLER
The FILLER clause defines an unnamed field that is never referenced directly.

A FILLER field must have its data type and size specified with a PICTURE or TYPE
clause.

A FILLER field can be repeated with an OCCURS clause.

A FILLER field is always part of a group definition or description, never a stand-alone
field.

A FILLER field cannot be referenced directly, but it can be referenced indirectly as part
of a group.

A FILLER field cannot be described with a DISPLAY, HEADING, HELP, KEYTAG,
MUST BE, NULL, REDEFINES, or UPSHIFT clause.

Any noncomputational PICTURE clause or nonnumeric TYPE clause can be used to
specify the length of a FILLER field. (In Example 6-4 on page 6-7, each FILLER field
reserves a storage area of 6 bytes.)

Pascal (on D-series systems) and C do not have FILLER clauses. For these
languages, the DDL compiler generates a unique name for each FILLER field; the
name is of the form FILLER_number. The number portion of the name is incremented
by 1 for each FILLER clause the DDL compiler encounters in the definition. For C,
number starts at 0 for each new DDL definition. For Pascal, number starts at 1 for
each new DDL definition.

If the generated name for a FILLER field would be the same as the name of an existing
field or group at the same level, the DDL compiler uses the next integer that does not
cause duplication.

Do not access the C or Pascal FILLER data items. Example 6-4 on page 6-7 shows a
DDL definition containing FILLER clauses translated to C and Pascal source code.

FILLER

Example 6-4. FILLER Clause

02 FILLER PIC X(6) .
02 FILLER TYPE CHARACTER 6 .
02 FILLER PIC 9(6) .
Data Definition Language (DDL) Reference Manual—529431-003
6-7

Definition Attributes FILLER
Example 6-5. FILLER Clauses Translated to C and Pascal Source Code

DDL Definition

DEF name-struct.
 02 first-name PIC X(10).
 02 FILLER PIC X(6).
 02 second-name PIC X(24).
 02 FILLER PIC 9(6).
END.

C Code

#pragma section name_struct
#pragma fieldalign shared2_name_struct
struct name_struct_def
{
 char first_name[10];
 char filler_0[6];
 char second_name[24];
 char filler_1[6];
};

Pascal Code

?Section NAME_STRUCT
TYPE NAME_STRUCT_DEF = RECORD
 FIRST_NAME : FSTRING[10];
 FILLER_1 : FSTRING[6];
 SECOND_NAME : FSTRING[24];
 FILLER_2 : FSTRING[6];
END;
Data Definition Language (DDL) Reference Manual—529431-003
6-8

Definition Attributes HEADING
HEADING

The HEADING clause specifies a default field heading for values listed on Enform Plus
reports or displayed on screens generated by ENABLE and Pathmaker.

report-heading

is either a string of ASCII or national characters (enclosed in quotation marks) or
the name of a constant in the open dictionary. The value of the constant must be a
string of ASCII or national characters.

LN-clause

specifies the locale name for value (see LN on page 6-13).

A slash (/) within report-heading indicates a line break in an Enform Plus heading.
A slash within report-heading indicates a line break in a Pathmaker field only if the
item format is tabular. If the item format is compressed or uncompressed, a slash
within report-heading is replaced by a blank space.

If the HEADING clause is omitted for a field or group, the field or group name is the
default heading.

A heading specified in the DDL HEADING clause can be overridden by the Enform
Plus product or suppressed by the ENABLE or Pathmaker product.

Example 6-6 on page 6-9 and Example 6-7 on page 6-9 give the same result. The
named constant in Example 6-7 on page 6-9 must be in the open dictionary.

Note. The DDL compiler ignores this clause when generating host-language source code.

HEADING report-heading [LN-clause]...

Example 6-6. Multiline Heading in Enform Plus

HEADING Clause

DEF ordernum PICTURE X(3) HEADING "Order/Number" .

Heading Displayed

Order
Number

Example 6-7. Multiline Heading That Uses a Named Constant

CONSTANT ordernum-display VALUE "Order/Number".
DEF ordernum PICTURE X(3) HEADING ordernum-display.
Data Definition Language (DDL) Reference Manual—529431-003
6-9

Definition Attributes HELP
HELP

The HELP clause assigns help text, used by Pathmaker-generated requesters, to a
group or elementary item in a DEFINITION statement.

help-text

is either a string of ASCII or national characters (enclosed in quotation marks) or
the name of a constant in the open dictionary. The value of the constant must be a
string of ASCII or national characters.

Single lines of text must not exceed 77 characters if you plan to generate a Pathmaker
application; help text must be less than or equal to 77 characters to fit on a Pathmaker
screen. If a single line of text does exceed 77 characters, you will receive a warning
message.

The ASCII quotation mark character (") can be represented within a help text string by
using two consecutive quotation marks ("").

Help text appears on DDL schema listings. Help text is displayed on the screen when
an end user requests help from NonStop Transaction Services/MP (NonStop TS/MP)
applications generated by the Pathmaker product.

Use of a comma between help text strings is optional. If you do not use a comma, you
must delimit consecutive help strings by blanks or carriage returns. (Example 6-8 on
page 6-11 shows both cases.)

Help text cannot be specified for any of these:

• Level-66 RENAMES clauses
• Level-88 condition-name clauses
• Record names
• File creation information

If a definition or record that includes help text refers to a definition that also includes
help text, the help text in the referring definition or record overrides the help text in the
referenced definition.

Note. The DDL compiler ignores this clause when generating host-language source code.

HELP help-text [[,] help-text]...
Data Definition Language (DDL) Reference Manual—529431-003
6-10

Definition Attributes JUSTIFIED
If you use the same help text frequently, you can define a constant containing the help
text and then use the constant name in the DEFINITION statement.

You can combine a help text string with a constant in the same DEFINITION statement.

JUSTIFIED

The JUSTIFIED clause writes the JUSTIFIED RIGHT clause to COBOL source code
files.

The DDL compiler accepts JUST as an abbreviation for JUSTIFIED

The JUSTIFIED clause can appear only in an alphabetic or alphanumeric elementary
item; it cannot appear in a group item.

An elementary item with a JUSTIFIED clause cannot be subordinate to a group item
with a VALUE clause.

The JUSTIFIED clause is inheritable.

Example 6-8. HELP Clause

DEF address HELP "This is a four-field",
 "address consisting of street,"
 "city, state code, and ZIP code.".
 02 street PIC X(30).
 02 city PIC X(20).
 02 state PIC X(2).
 02 zip PIC X(5).
END

Example 6-9. Using a Constant for Frequently Used Help Text

CONSTANT mdy-date-display VALUE IS "M<99/99/99>".
CONSTANT mdy-date-help VALUE IS "date format: mm/dd/yy".

DEF mdy-date PIC 9(6) DISPLAY mdy-date-display
 HELP "Enter date as", mdy-date-help.

Note. The DDL compiler ignores this clause when generating source code for languages other
than COBOL.

JUST[IFIED] RIGHT
Data Definition Language (DDL) Reference Manual—529431-003
6-11

Definition Attributes KEYTAG
KEYTAG

The KEYTAG clause specifies that the field or group is an Enscribe key field.

key-specifier

is either as an integer from -32,768 through 32,767; two ASCII characters enclosed
in quotation marks; or the name of a constant in the open dictionary. The value of
the constant must be either an integer from -32,768 through 32,767 or a string of
two ASCII characters.

You can omit key-specifier for a primary key, but if you include it, its value
must be 0. A nonzero value for key-specifier indicates an alternate key.

DUPLICATES [NOT] ALLOWED

specifies whether to allow duplicate alternate key values. Do not specify
DUPLICATES ALLOWED for a primary key field.

Default: DUPLICATES ALLOWED

If you use the KEYTAG clause to declare a record’s key fields, you can omit key-
assignment in the RECORD statement (as in Example 6-10 on page 6-12).

Key fields can overlap.

Note. The DDL compiler ignores this clause when generating TACL source code.

KEYTAG key-specifier [DUPLICATES [NOT] ALLOWED]

Example 6-10. KEYTAG Clause

CONSTANT partnum-heading VALUE IS "Part/Number".
CONSTANT partnum-display VALUE IS "M<ZZZ,ZZ9.99>".

RECORD partinfo.
 FILE IS "$data.sales.parts" KEY-SEQUENCED.

 02 partnum PIC 9(4) KEYTAG 0
 HEADING partnum-heading.
 02 partname PIC X(18) KEYTAG "pn".
 02 inventory PIC 9(3)S.
 02 location PIC X(3).
 02 price PIC 9(6)V99 DISPLAY partnum-display.
END
Data Definition Language (DDL) Reference Manual—529431-003
6-12

Definition Attributes LN
LN
The LN clause specifies a locale name (language, territory, and character set) for:

• Specified value-clause items in CONSTANT on page 4-1

• display-string in AS on page 6-3

• report-heading in HEADING on page 6-9

• Specified value items in VALUE on page 6-75

• Specified value items in 88 Condition-Name on page 6-81

language-code

is a character string forming a language symbol.

territory-code

is a two-character string forming an ISO 3166:1988 Alpha-2 code entity name.

charset

is a string forming a HP internal character set name.

constant-name

is the name of a constant, previously defined in the dictionary. The constant name
must be defined in the form
language-code[_territory-code][.charset].

{ LN"language-code[_territory-code][.charset]" }
{ constant-name }

Example 6-11. DDL Locale Name and Components

locale-name da_DK.ISO8859-1

language-code da

territory-code DK

charset ISO8859-1
Data Definition Language (DDL) Reference Manual—529431-003
6-13

Definition Attributes LN
If there is more than one literal specified with the same locale name for a text item, an
error occurs. The literal with the duplicate locale name is ignored.

Table 6-3. Supported Locale Names

Locale Name Description

POSIX

C

da_DK.ISO8859-1 Danish

de_CH.ISO8859-1 German, Switzerland

de_DE.ISO8859-1 German, Germany

el_GR.ISO8859-1 Greek

en_GB.ISO8859-1 English, UK

en_US.ISO8859-1 English, USA

es_ES.ISO8859-1 Spanish

fi_FI.ISO8859-1 Finnish

fr_BE.ISO8859-1 French, Belgium

fr_CA.ISO8859-1 French, Canada

fr_CH.ISO8859-1 French, Switzerland

fr_FR.ISO8859-1 French, France

is_IS.ISO8859-1 Icelandic

it_IT.ISO8859-1 Italian

en_JP.ISO8859-1 Japanese-English, Japan

ja_JP.AJEC Japanese, EUC

ja_JP.SJIS Japanese, SJIS

ko_KR.eucKR Korean, EUC

nl_BE.ISO8859-1 Dutch, Belgium

nl_NL.ISO8859-1 Dutch, Netherlands

no_NO.ISO8859-1 Norwegian

pt_PT.ISO8859-1 Portuguese

sv_SE.ISO8859-1 Swedish

tr_TR.ISO8859-9 Turkish

zh_TW.eucTW Taiwanese, EUC
Data Definition Language (DDL) Reference Manual—529431-003
6-14

Definition Attributes MUST BE
A text item is any text associated with an object. A text item has one of these types:

A maximum of 32 internationalization (I18N) definitions are allowed per text item. If
more than 32 I18N definitions are associated with one text item, an error occurs. The
additional I18N definitions are not added to the dictionary.

MUST BE

The MUST BE clause specifies the set of valid values that can be entered in a field.

value
value-1
value-2

is a value consistent with the data type of the field. value-1 must be less than or
equal to value-2.

Type Description

Number ASCII representation of a numeric literal in a VALUE or MUST BE clause

String Alphanumeric string in a COMMENT, DISPLAY, HEADING, HELP, MUST
BE, PICTURE, or VALUE clause

Keyword Keyword in a MUST BE or VALUE clause

Enumeration Name of a value in a level 89 enumeration clause

National National string in a MUST BE or VALUE clause

International Internationalized text items in an 88 Condition-Name, AS, HEADING, or
VALUE clause

Example 6-12. LN Clause

In CONSTANT Statement

CONSTANT Saga-Language VALUE "Icelandic" LN"is_IS.ISO8859-1"

In HEADING Clause (3)

DEFINITION custname PIC 9(4).
 HEADING "Finnish" LN"fi_FI.ISO8859-1"
 "Norwegian" LN"no_NO.ISO8859-1"
 "Danish" LN"da_DK.ISO8859-1".

Note. The DDL compiler ignores this clause when generating host-language source code.

MUST BE { value }
 { value-1 { THROUGH | THRU } value-2 }
Data Definition Language (DDL) Reference Manual—529431-003
6-15

Definition Attributes MUST BE
{ "character-string" }
{ constant-name }
{ figurative-constant }
{ national-literal }
{ number }
{ symbolic-literal }
{ value-name }

character-string

is a string of ASCII characters.

constant-name

is the name of a constant in the open dictionary. The constant value must not
be a figurative constant (see Table 6-4 on page 6-17) or symbolic literal (see
Table 6-5 on page 6-17), and must be consistent with type of any associated
level-88 data item (see 88 Condition-Name on page 6-81).

figurative-constant

is a figurative constant from Table 6-4 on page 6-17.

national-literal

is a national literal whose length is consistent with the length specified in the
PICTURE clause for the national data item.

number

is one or more digits (0 through 9), an optional plus (+) or minus (-) sign, and
an optional decimal point.

symbolic-literal

is a symbolic literal from Table 6-5 on page 6-17. Use symbolic literals only for
numeric items.

The DDL compiler replaces symbolic-literal with the appropriate literal
for COBOL output; therefore, the generated COBOL output does not contain a
MUST BE clause.

value-name

is the value-name in the clause 89 Enumeration on page 6-84.
Data Definition Language (DDL) Reference Manual—529431-003
6-16

Definition Attributes MUST BE
A MUST BE clause cannot be specified for a group item. A MUST BE clause can be
specified for individual fields within the group, as long as the group does not have an
initial value.

For a data item declared with TYPE BINARY 64 UNSIGNED, the MUST BE clause
supports a value range of only 0 to 9,223,372,036,854,775,807.

If a field described with a MUST BE clause also has a VALUE clause, the initial value
specified in the VALUE clause must satisfy the MUST BE constraints.

If a field described with a MUST BE clause also has an UPSHIFT clause, the MUST
BE values must be upshifted.

If a field described with a MUST BE clause is of type ENUM, the values in the clause
can only be level-89 enumeration names.

You can specify only one MUST BE clause for a field.

You cannot specify a MUST BE clause in a field or group definition or description that
includes a REDEFINES clause.

Table 6-4. Figurative Constants

Figurative Constant * Value

LOW-VALUE
LOW-VALUES

One or more of the lowest character in the ASCII or national
collating sequence

HIGH-VALUE
HIGH-VALUES

One or more of the highest character in the ASCII or national
collating sequence

QUOTE
QUOTES

One or more of the ASCII or national quotation mark character

SPACE
SPACES

One or more of the ASCII or national space character (blank)

ZERO
ZEROS
ZEROES

Either the numeric value 0 or one or more of the ASCII or national
zero character, depending on context

ALL literal
literal

A repeated literal. The literal can be either an ASCII character
string, a national literal, or a figurative constant other than ALL.
When the literal is a figurative constant, the word ALL is
unnecessary.

* Figurative constants in the same row are equivalent.

Table 6-5. Symbolic Literals

Symbolic Literal Value

LOW-NUMBER The minimum numeric value of the type specified for this field

HIGH-NUMBER The maximum numeric value of the type specified for this field
Data Definition Language (DDL) Reference Manual—529431-003
6-17

Definition Attributes MUST BE
You cannot specify a MUST BE clause for fields of some SQL data types (see the
SQL/MP Reference Manual and SQL/MX Reference Manual).

You cannot specify CURRENT, SYSTEM, or SQLNULL as a value for a MUST BE
clause.

Requesters generated by the Pathmaker product enforce the MUST BE constraints;
programs written by users must be coded to enforce these constraints as well.

In Example 6-13 on page 6-18, the MUST BE clause defines the acceptable ranges of
values for days in a month and months in a year.

If you specify the same MUST BE values frequently, you can define the values as
constants. You can also use the constant names in condition-name clauses associated
with the definition.

Example 6-13. MUST BE Clause

DEF date.
 02 day PIC 9(2)
 MUST BE 1 THROUGH 31.
 02 month PIC 9(2).
 MUST BE 1 THROUGH 12.
 02 year PIC 9(2).
END

Example 6-14. Defining MUST BE Values as Constants

CONSTANT sales VALUE 1.
CONSTANT shipping VALUE 2.
CONSTANT personnel VALUE 3.

DEF company.
 02 department TYPE BINARY 16
 MUST BE sales,
 shipping,
 personnel.
 88 sales VALUE sales.
 88 shipping VALUE shipping.
 88 personnel VALUE personnel.
END
Data Definition Language (DDL) Reference Manual—529431-003
6-18

Definition Attributes NULL
NULL

The NULL clause assigns a null value to a field or group used as an Enscribe alternate
key. If a record being inserted in the database has a null value in the alternate key
field, the alternate key is not added to the alternate key file.

character

is any ASCII character.

number

is any number from 0 through 255.

constant-name

is the name of a constant in the open dictionary. The constant value must be a
valid character or number value.

Any alternate key can be assigned a null value. The most common null values are
ASCII blank (%40) and binary zero. The null value used must fit in one byte.

When you generate FUP source code from the DDL definition, the FUP code specifies
alternate key file information, including the octal representation of the null value you
select.

The file system checks records as they are inserted in the file to see if the value in the
alternate key field matches the null value. The effects of using a null value are:

• When records are inserted, if the record has an alternate key with a null value, the
key is not added to the alternate key file.

• When records are updated, any alternate key with a null value is deleted from the
alternate key file.

• If a file is read sequentially by an alternate key, any record with a null value for that
alternate key is not found.

In Example 6-15 on page 6-20, if the employee does not have a spouse or
dependents, the key is not added to the alternate key file.

Note. The DDL compiler ignores this clause when generating host-language source code.

NULL { "character " | number | constant-name }
Data Definition Language (DDL) Reference Manual—529431-003
6-19

Definition Attributes OCCURS
You can also use a constant name to specify the NULL value.

OCCURS
The OCCURS clause repeats a field or group a fixed number of times.

max

specifies the number of times the field or group repeats. You can specify max
either as an integer or as the name of a constant in the open dictionary. The value
of max must be an integer from 1 through 32,767.

index-name

is the name of a field to use as an index. The maximum length of index-name is
30 ASCII characters.

Example 6-15. NULL Clause

RECORD employee.
FILE IS "employee" key-sequenced.

 02 empinfo.
 04 empid PIC 9(4).
 04 empname PIC X(22).
 04 dept PIC X(4).

 02 taxinfo NULL 0.
 04 spousename PIC X(22).
 04 dependents PIC 9(2).

KEY IS empid.
KEY "ti" is taxinfo.
END

Example 6-16. Specifying NULL Value With a Constant

CONSTANT null-0 VALUE 0.

 ...

 02 taxinfo NULL null-0.
 04 spousename PIC X(22).
 04 dependents PIC 9(2).

OCCURS max [TIMES] [INDEXED BY index-name]

Note. Use INDEXED BY index-name only for COBOL.
Data Definition Language (DDL) Reference Manual—529431-003
6-20

Definition Attributes OCCURS
These statements apply to both the OCCURS clause and the OCCURS DEPENDING
ON clause except as explained in OCCURS DEPENDING ON on page 6-23:

• OCCURS cannot be specified for the first element of a RECORD or DEFINITION
statement. OCCURS can be specified only at level number 02 or greater.

• A field that is described with an OCCURS clause or that is part of a group
described with an OCCURS clause cannot have a VALUE clause unless the
VALUE is associated with a level-88 condition-name clause.

• A field or group described with an OCCURS clause cannot be specified as a key
field in a RECORD statement.

• OCCURS clauses can be nested. COBOL allows seven levels of nested OCCURS
clauses.

• When OCCURS clauses are nested, a separate subscript is associated with each
level of nesting; the subscripts are written in order from most inclusive to least
inclusive.

• The form of the subscript depends on the language. For example, COBOL
encloses subscripts in parentheses, and pTAL or TAL encloses them in brackets.
Subscript bounds depend on the language accessing the data:

° For Pascal (on D-series systems), COBOL, and FORTRAN, the subscript
bounds are implicitly 1 and max.

° For C and TACL, the subscript bounds are implicitly 0 and max -1.

° The values of pTAL, TAL, or Pascal subscripts depend on the TALBOUND or
PASCALBOUND command. TALBOUND 0 or PASCALBOUND 0 causes the
subscript bounds to be 0 and max - 1. TALBOUND 1 or PASCALBOUND 1
causes the subscript bounds to be 1 and max.

The DDL compiler compiles the TALBOUND and PASCALBOUND setting (0 or
1 for each) to the OCCURS definition. You can change this value only by
replacing the definition.

• COBOL output for the INDEXED BY attribute is the direct translation of the
attribute.

• If you specify an index name in the OCCURS clause, do not specify USAGE IS
INDEX for the field of that name, because COBOL requires that all index names be
unique throughout a program. The DDL compiler checks for the uniqueness of an
index name you specify in the INDEXED BY attribute.

• A group can be repeated with an OCCURS clause, as in Example 6-18 on
page 6-22.
Data Definition Language (DDL) Reference Manual—529431-003
6-21

Definition Attributes OCCURS
In Example 6-17 on page 6-22, which declares storage for 52 paycheck values, one for
each week of the year:

• TAL programs with TALBOUND 1 or with no TALBOUND clause access individual
paycheck values like this:

• TAL programs with TALBOUND 0 access individual paycheck values like this:

To refer to an individual field within a group, follow the field name with a subscript. For
example, to refer to the tenth month within the dates group in Example 6-18 on
page 6-22, a COBOL program uses the subscript 10:

month(10)

PAYCHECK [1] Paycheck value for the first week

PAYCHECK [52] Paycheck value for the last week

PAYCHECK [0] Paycheck value for the first week

PAYCHECK [51] Paycheck value for the last week

Example 6-17. OCCURS Clause

DEF salary.
 02 paycheck PIC 9999V99
 OCCURS 52 TIMES.
END

Example 6-18. Repeating a Group With an OCCURS Clause

DEF paydate.
 02 dates OCCURS 12 TIMES.
 03 month PIC 99.
 03 day PIC 99.
 03 year PIC 99.
END

Example 6-19. Constant as OCCURS Value

CONSTANT pay-period VALUE IS 24.

DEF bi-monthly-paydate.
 02 paydate OCCURS pay-period TIMES.
 03 bi-month PIC 99.
 03 day PIC 99.
 03 year PIC 99.
END
Data Definition Language (DDL) Reference Manual—529431-003
6-22

Definition Attributes OCCURS DEPENDING ON
COBOL output for the INDEXED BY attribute:

OCCURS DEPENDING ON
For DDL and COBOL source code, the OCCURS DEPENDING ON clause repeats a
field or group a variable number of times, depending on the current value of an integer
variable.

For source code in other languages, the OCCURS DEPENDING ON clause repeats a
field or group the specified maximum number of times.

min

is the minimum number of times the field or group can repeat. You can specify min
either as an integer or as the name of a constant in the open dictionary. The value
of min must be an integer from 0 through 32,767.

max

is the maximum number of times the field or group can repeat. You can specify
max either as an integer or as the name of a constant in the open dictionary. The
value of max must be a positive integer greater than or equal to the value of min.

field-name

is the name of a numeric field within the same definition. The value of field-
name must be a positive integer.

index-name

is the name of a field to use as an index. The maximum length of index-name is
30 ASCII characters.

DDL Code COBOL Code

DEF xyz
 02 abc TYPE BINARY
 OCCURS 3 TIMES
 INDEXED BY ix.
END.

01 XYZ.
 02 ABC NATIVE-2
 OCCURS 3 TIMES
 INDEXED BY IX.

OCCURS min TO max TIMES DEPENDING ON field-name
 [INDEXED BY index-name]

Note. Use INDEXED BY index-name only for COBOL.
Data Definition Language (DDL) Reference Manual—529431-003
6-23

Definition Attributes OCCURS DEPENDING ON
The OCCURS DEPENDING ON clause differs from OCCURS on page 6-20 in that:

• For Pascal (on D-series systems), C, FORTRAN, pTAL, TACL, and TAL, the DDL
compiler generates source code identical to the code it generates for OCCURS
max TIMES.

• Only one OCCURS DEPENDING ON clause can be in a DEFINITION or RECORD
statement, and the clause’s subordinate fields or groups must be the last fields or
groups in that statement.

• OCCURS DEPENDING ON clauses cannot be nested; however, a subordinate
field or group can have an OCCURS clause.

• COBOL output for the INDEXED BY attribute is the direct translation of the
attribute.

• If you specify an index name in the OCCURS clause, do not specify USAGE IS
INDEX for the field of that name, because COBOL requires that all index names be
unique throughout a program. The DDL compiler checks for the uniqueness of an
index name you specify in the INDEXED BY attribute.

In Example 6-20 on page 6-24, the number of occurrences of DEP-NAME depends on
the value of NUM-DEP. NUM-DEP must contain a positive integer value.

Example 6-20. OCCURS DEPENDING ON Clause (page 1 of 2)

DEF name.
 02 last-name PIC X(12).
 02 first-name PIC X(8).
 02 midinit PIC X(2).
END

DEF addr.
 02 address PIC X(22).
 02 city PIC X(14).
 02 state PIC X(2).
 02 zip PIC 9(5).
END

DEF employee.
 02 emp-name TYPE name.
 02 emp-addr TYPE addr.
 02 num-dep TYPE BINARY 16 MUST BE 0 THRU 12.
 02 dep-name TYPE name
 OCCURS 0 TO 12 TIMES
 DEPENDING ON num-dep.
END
Data Definition Language (DDL) Reference Manual—529431-003
6-24

Definition Attributes PICTURE
PICTURE
The PICTURE clause specifies (using COBOL notation) the data type and size of a
field or of a field.

picture-string

specifies the data type and size of a field:

{ alphanumeric-string | numeric-string }

alphanumeric-string

{ A | X | 9 }...[(length)]

numeric-string

{ [S]9...[(length)[V[9...[(length)]]]] }
{ T[9...[(length)[V[9...[(length)]]]]] }
{ 9...[(length)[V[9...[(length)]]]]S }
{ 9...[(length)[V[9...[(length)]]]]T }

X

represents any ASCII character.

A

represents any lowercase or uppercase letter of the alphabet or an
ASCII blank.

DDL Code for DEPENDING ON Clause COBOL Code for DEPENDING ON Clause

DEF xyz.
 02 i TYPE BINARY
 02 abc TYPE BINARY
 OCCURS 1 to 3

TIMES
 DEPENDING ON i
 INDEXED BY ix.
END.

01 XYZ.
 02 I NATIVE-2.
 02 ABC NATIVE-2
 OCCURS 1 TO 3

TIMES
 DEPENDING ON I OF

XYZ
 INDEXED BY IX.

PIC[TURE] { "{picture-string }" }
 { {national-picture-string } }
 { }
 { {picture-string } }
 { {national-picture-string } }

Example 6-20. OCCURS DEPENDING ON Clause (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
6-25

Definition Attributes PICTURE
9

represents an ASCII digit, from 0 through 9.

length

is a one-digit to five-digit integer that specifies the number of times the
preceding symbol repeats.

You can omit length and specify the length by repeating the symbol
(X, A, or 9) once for each character position you want in the field.

S

represents a sign character in a signed numeric field.

T

represents a numeric character with an implied embedded sign.

Alone, the symbol T represents a one-byte numeric field.

V

represents an implied decimal point location in a numeric field.

national-picture-string

{ { N | n } [(length)] }
{ { N | n }... }

{ N | n }

represents a national character.

length

is a one-digit to five-digit integer that specifies the number of times the
preceding symbol repeats.

You can omit length and specify the length by repeating the symbol (N
or n) once for each character position you want in the field.

Each national character occupies two bytes.

If picture-string has two or more of the symbols X, A, and 9, the DDL compiler
assumes the data type is alphanumeric (PIC X).
Data Definition Language (DDL) Reference Manual—529431-003
6-26

Definition Attributes PICTURE
Topics:

• National Data Items on page 6-28

• C on page 6-28

• COBOL on page 6-29

• FORTRAN on page 6-30

• Pascal (D-series Systems Only) on page 6-30

• pTAL and TAL on page 6-30

• TACL on page 6-31

Example 6-21. PICTURE Clauses Describing ASCII Character Fields

DEF ascii-pictures
 02 alpha-field PIC A(10). ! 10 alphabetic characters
 02 alphanum-2 PIC X(10). ! 10 alphanumeric characters
 02 alphanum-1 PIC AAX(4)9(4). ! 10 alphanumeric characters
 02 nat-field PIC N(5). ! 5 2-byte national characters
 02 unsigned PIC 9(5). ! 5 unsigned digits
 02 signed-1 PIC S9(5). ! 5 digits plus leading sign
 02 signed-1 PIC 9(5)S. ! 5 digits plus trailing sign
 02 signed-2 PIC T9(5). ! 5 digits plus embedded leading sign
 02 signed-3 PIC 9(5)T. ! 5 digits plus embedded trailing sign
 02 imp-decimal PIC 9(3)V9(2). ! 5 digits with implied decimal point
END.

Example 6-22. PICTURE Clauses Describing Binary Fields

DEF binary-pictures
 02 binary-int PIC 9(4) COMP. ! 2-byte unsigned integer
 02 binary-int-s PIC 9S(4) COMP. ! 2-byte signed integer
 02 binary-int2 PIC 9(5) COMP. ! 4-byte unsigned integer
 02 binary-int2-s PIC S9(5) COMP. ! 4-byte signed integer
 02 binary-int4 PIC 9(10) COMP. ! 8-byte unsigned integer
 02 binary-int4-s PIC S9(10) COMP. ! 8-byte signed integer
END.
Data Definition Language (DDL) Reference Manual—529431-003
6-27

Definition Attributes National Data Items
National Data Items
The only symbol you can specify in a national picture string is N or n (except for the
parentheses and a number to specify the length, or number of repetitions).

The maximum length you can specify for a national data item is half of the maximum
internal field length. For definitions, the maximum internal field length is 32,767 bytes.
For records, the maximum length depends on the file type:

PIC N(16383) specifies the maximum length allowed for a field definition.

Only COBOL output for a national data item appears as defined in DDL. For other
host-language output, the DDL compiler generates the equivalent number of
characters. For example, PIC N(10) in DDL translates to:

C
The DDL compiler translates alphanumeric and numeric PICTURE clauses, except
numeric clauses described with USAGE IS COMPUTATIONAL, to C char types. The
DDL compiler translates numeric PICTURE clauses with USAGE IS
COMPUTATIONAL to C short, long, double, and long long types.

If a field described with USAGE IS COMPUTATIONAL has a PICTURE declaration of
the form

PIC 9 ... [(length)] [V 9 ... [(length)]]

and the symbol 9 occurs 10 or more times, the item is declared as TYPE BINARY 64
UNSIGNED.

For more information, see Table C-1, Sample DDL/C Data Translation Table, on
page C-1.

File Type Record’s Maximum Internal Field Length

Entry-sequenced 4,072 bytes

Key-sequenced 4,062 bytes

Relative 4,072 bytes

Unstructured 4,096 bytes

Language Output

C char name [20]

FORTRAN CHARACTER*20

Pascal (on D-series systems) FSTRING (20)

TACL STRUCT name: BEGIN CHAR BYTE (0:19); END;

pTAL or TAL STRUCT name: BEGIN STRING BYTE [1:20]; END;
Data Definition Language (DDL) Reference Manual—529431-003
6-28

Definition Attributes COBOL
COBOL
DDL PICTURE clauses are translated to COBOL PICTURE clauses.

For a national picture string, the DDL compiler generates COBOL output as specified
in the PICTURE clause.

The maximum field length depends on data type:

• If an alphanumeric or national field is used only in working storage (not in a
record), the maximum field length is 32,767 bytes.

• If an alphanumeric or national field is defined in or referenced by a RECORD
statement, the maximum field length is the maximum record length, which depends
on file type:

The maximum length of a numeric field is 18 digits.

The symbols S and V are not counted in the 18-digit COBOL limit on numeric fields;
the symbols 9 and T are each counted as 1 digit in the 18-digit COBOL limit on
numeric fields.

The DDL symbol S is not the same as the COBOL PICTURE S:

• In DDL, the symbol S represents a digit with a separate sign. the DDL compiler
translates the symbol S to the COBOL PICTURE S and adds a COBOL SIGN
clause with a SEPARATE phrase.

• If S is the first symbol in a numeric picture string, the DDL compiler adds SIGN
LEADING SEPARATE.

• If S is the last symbol in a numeric picture string, the DDL compiler adds SIGN
TRAILING SEPARATE.

For COBOL, the symbol T represents a digit that contains an embedded sign:

• DDL translates the symbol T to PICTURE S9 and adds the COBOL SIGN clause.

• If the T is the first character in the PICTURE string, the DDL compiler adds SIGN
LEADING.

• If T is the last character, the DDL compiler adds SIGN TRAILING.

• If T is the only character in the PICTURE string, the DDL compiler translates the
PICTURE clause to a PIC S9 SIGN IS LEADING clause for COBOL.

• The symbol T is counted as one digit in a numeric field.

File Type Record’s Maximum Length

Entry-sequenced 4,072 bytes

Key-sequenced 4,062 bytes

Relative 4,072 bytes

Unstructured 4,096 bytes
Data Definition Language (DDL) Reference Manual—529431-003
6-29

Definition Attributes FORTRAN
For more information, see Table C-2, Sample DDL/COBOL Data Translation Table, on
page C-3.

FORTRAN
Most alphanumeric and numeric PICTURE clauses are translated to FORTRAN
character strings. The only exceptions are numeric fields described with USAGE IS
COMP; these fields are translated to FORTRAN integers.

The maximum length of an alphanumeric or a numeric field is 255 bytes.

For more information, see Table C-3, Sample DDL/FORTRAN Data Translation Table,
on page C-5.

Pascal (D-series Systems Only)
DDL translates alphanumeric, national, and numeric PICTURE clauses, except
numeric clauses described with USAGE IS COMP, to Pascal FSTRING types. Numeric
PICTURE clauses with USAGE IS COMP translate to Pascal integer types.

For more information, see Table C-4, Sample DDL/Pascal Data Translation Table, on
page C-7.

pTAL and TAL
Alphanumeric, national, and numeric PICTURE clauses are translated to pTAL or TAL
character strings, except for numeric fields described with USAGE IS COMP, which are
translated to pTAL or TAL binary data types.

If a field described with USAGE IS COMPUTATIONAL has a PICTURE declaration of
the form

PIC 9 ... [(length)] [V 9 ... [(length)]]

and the symbol 9 occurs 10 or more times, the item is declared as TYPE BINARY
64 UNSIGNED.

The maximum field length depends on where the field is used:

• If a numeric, national, or alphanumeric field is not defined in or referenced by a
RECORD statement, the maximum field length is 32,767 bytes.

• If a numeric, national, or alphanumeric field is defined in or referenced by a
RECORD statement, the maximum field length is the maximum record length,
which depends on file type:

File Type Record’s Maximum Length

Entry-sequenced 4,072 bytes

Key-sequenced 4,062 bytes

Relative 4,072 bytes

Unstructured 4,096 bytes
Data Definition Language (DDL) Reference Manual—529431-003
6-30

Definition Attributes TACL
For more information, see Table C-6, Sample DDL/pTAL and TAL Data Translation
Table, on page C-11.

TACL
Most alphanumeric, national, and numeric PICTURE clauses are translated to TACL
STRUCTs containing character strings. The only exception is numeric PICTURE
clauses described with USAGE IS COMP. COMP numeric fields are translated to TACL
STRUCTs containing binary data types.

If a TACL clause is specified, the resulting TACL STRUCT contains the high-level data
type specified in the TACL clause rather than the standard TACL data type generated
from a PICTURE clause.

The maximum length of a TACL STRUCT is 5,000 bytes. Any filler generated by the
DDL compiler for alignment counts towards this maximum length.

For more information, see Table C-5, Sample DDL/TACL Data Translation Table, on
page C-9.

REDEFINES
The REDEFINES clause assigns a new name and, optionally, a new structure to
previously defined field or group.

field-name

is the name of the previous field in the definition or record currently being defined.

group-name

is the name of the previous group in the definition or record currently being
defined.

Redefining structures must start at the same level as the structures they redefine.

A redefining structure must immediately follow the structure it redefines except in the
case of multiple redefines where each redefining structure refers back to the same
original structure.

A redefining field must not have a VALUE clause, a MUST BE clause, or an UPSHIFT
clause.

Because the data type of a group is always alphanumeric, an attempt to redefine a
group containing binary items can produce unpredictable results.

A redefining structure must not be larger than the structure it redefines.

Example 6-23 on page 6-32 defines storage for exempt employees and redefines it for
nonexempt employees.

REDEFINES { field-name | group-name }
Data Definition Language (DDL) Reference Manual—529431-003
6-31

Definition Attributes C
Topics:

• C on page 6-32

• COBOL on page 6-33

• FORTRAN on page 6-33

• Pascal (D-series Systems Only) on page 6-34

• pTAL or TAL on page 6-35

• TACL on page 6-36

C
For C, the DDL compiler generates source code that combines the items of a
REDEFINES clause to a union. The C structure containing such a union has one more
item level than the corresponding DDL structure containing the REDEFINES clause.
This situation causes the DDL compiler to issue a warning message unless you include
the NOWARN command. The name of the union has the form
u_first_member_name. If the union name generated by the DDL compiler is the
same as any of its siblings defined in the same group, the DDL compiler issues an
error message and does not generate output.

Example 6-23. REDEFINES Clause

DEF employee.
 02 emp-id PIC 9(4).
 02 emp-name PIC X(22).
 02 emp-type PIC X.
 02 exmpt-emp.
 04 salary PIC 9(6)V99.
 02 non-exmpt-emp REDEFINES exmpt-emp. ! Redefines salary
 04 hrly-wage PIC 9(3)V99.
 04 hrs-wrkd PIC 9(3).
 02 dept PIC 9(4).
 02 emp-sex PIC X.
 02 spouse-name PIC X(22).
END

Example 6-24. REDEFINES Clause With C Output (page 1 of 2)

DDL Input

DEF a.
 02 b PIC 9(4)
 02 c PIC 9(6).
 02 d PIC 9(6) REDEFINES c.
END
Data Definition Language (DDL) Reference Manual—529431-003
6-32

Definition Attributes COBOL
COBOL
In COBOL, a redefining structure must not be smaller than the structure it redefines.
When REDEFINES and OCCURS clauses are at the same level, then FILLER emitted
results in an incompatible structure when compared with C, pTAL, or TAL output. To
avoid this, split REDEFINES and OCCURS to separate groups. Whenever possible,
the DDL compiler pads the smaller structure with FILLER fields to make it the same
size as the structure it redefines.

FORTRAN

DDL Output (C Code)

#pragma fieldalign shared2__a
typedef struct__a
{
char b[4];
union
 {
 char c[6];
 char d[6];
 } u_c;
} a_def;

Example 6-25. REDEFINES Clause With FORTRAN Output (page 1 of 2)

DDL Input

DEF A.
 02 B PIC 9(4).
 02 C REDEFINES B.
 04 C-1 PIC 9(2).
 04 C-2 PIC 9(2).
 02 D.
 04 D-1 PIC X.
 04 D-2 PIC 9 REDEFINES D-1.
 02 E PIC 9(5).
 02 F REDEFINES E.
 04 F-1 PIC 9(3).
 04 F-2 PIC 9(2).
END.

Example 6-24. REDEFINES Clause With C Output (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
6-33

Definition Attributes Pascal (D-series Systems Only)
Pascal (D-series Systems Only)
For Pascal, the DDL compiler translates a REDEFINES clause to a variant record.

The variants within the record are the data items of the redefined structure and the
data items of the redefining structure.

The DDL compiler generates integer case labels for each variant. For each
REDEFINES clause, the integer case labeling begins at 1.

If the REDEFINES clause is not the last item in its group, the DDL compiler generates
an anonymous record to contain the variant or variants. The DDL compiler then issues
a warning. The DDL compiler generates the variant record name by prefixing a V_ to
the name of the first structure being redefined. If the DDL-generated variant record
name is the same as any of its siblings defined in the same group, the DDL compiler
issues an error message and does not generate output.

Pascal does not do any run-time checking to enforce which variant is active at any
given time.

Example 6-26 on page 6-35 shows the Pascal source code generated by the DDL
compiler for a REDEFINES clause. The DDL compiler generates an anonymous record
(V_B) for the REDEFINES B clause because this clause was not the last level-02 item
in DEF A. The DDL compiler did not generate an anonymous record for the
REDEFINES D clause because it was the last level-04 item in D, nor did the DDL
compiler generate one for REDEFINES E because it was the last level-02 item in
DEF A.

DDL Output (FORTRAN Code)

RECORD A
 CHARACTER*4 B
 RECORD C
 CHARACTER*2 C1
 CHARACTER*2 C2
 END RECORD
 EQUIVALENCE (C, B)
 RECORD D
 CHARACTER*1 D1
 CHARACTER*1 D2
 EQUIVALENCE (D2, D1)
 END RECORD
 CHARACTER*5 E
 RECORD F
 CHARACTER*3 F1
 CHARACTER*2 F2
 END RECORD
 EQUIVALENCE (F, E)
END RECORD

Example 6-25. REDEFINES Clause With FORTRAN Output (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
6-34

Definition Attributes pTAL or TAL
pTAL or TAL
In pTAL or TAL, a redefining structure can be smaller than the structure it redefines.

Example 6-26. REDEFINES Clause With Pascal Output

DDL Input

DEF A.
 02 B PIC 9(4).
 02 C REDEFINES B.
 04 C-1 PIC 9(2).
 04 C-2 PIC 9(2).
 02 D.
 04 D-1 PIC X.
 04 D-2 PIC 9 REDEFINES D-1.
 02 E PIC 9(5).
 02 F REDEFINES E.
 04 F-1 PIC 9(3).
 04 F-2 PIC 9(2).
END.

DDL Output (Pascal Code)

TYPE A_DEF = RECORD
 V_B : RECORD

 CASE INT16 OF
 01:(B : FSTRING[4]);
 02:(C : RECORD
 C_1 : FSTRING[2];
 C_2 : FSTRING[2];
 END);
 END;

 D : RECORD
 CASE INT16 OF
 01:(D_1 : CHAR);
 02:(D_2 : CHAR);
 END;

 CASE INT16 OF
 01:(E : FSTRING[5]);
 02:(F : RECORD
 F_1 : FSTRING[3];
 F_2 : FSTRING[2];
 END);
END;
Data Definition Language (DDL) Reference Manual—529431-003
6-35

Definition Attributes TACL
TACL

Example 6-27. REDEFINES Clause With TACL Output

DDL Input

DEF A.
 02 B PIC 9(4).
 02 C REDEFINES B.
 04 C-1 PIC 9(2).
 04 C-2 PIC 9(2).
 02 D.
 04 D-1 PIC X.
 04 D-2 PIC 9 REDEFINES D-1.
 02 E PIC 9(5).
 02 F REDEFINES E.
 04 F-1 PIC 9(3).
 04 F-2 PIC 9(2).
END.

DDL Output (TACL Code)

?Section A Struct
Begin
STRUCT B;
 BEGIN CHAR BYTE(0:3); END;
STRUCT C REDEFINES B;
 Begin
 STRUCT C^1;
 BEGIN CHAR BYTE(0:1); END;
 STRUCT C^2;
 BEGIN CHAR BYTE(0:1); END;
 End;
STRUCT D;
 Begin
 CHAR D^1;
 CHAR D^2 REDEFINES D^1;
 End;
STRUCT E;
 BEGIN CHAR BYTE(0:4); END;
STRUCT F REDEFINES E;
 Begin
 STRUCT F^1;
 BEGIN CHAR BYTE(0:2); END;
 STRUCT F^2;
 BEGIN CHAR BYTE(0:1); END;
 End;
End;
Data Definition Language (DDL) Reference Manual—529431-003
6-36

Definition Attributes SPI-NULL
SPI-NULL
The SPI-NULL clause specifies an SPI null value for a field or group in an SPI-
extensible structured token or for a field or group within a group definition.

character

is any ASCII character.

number

is any number from 0 through 255.

constant-name

is the name of a constant in the open dictionary. The constant value must be a
valid character or number value.

The SPI-NULL value must fit in one byte.

A field or group with an SPI null value in every byte is considered to have unspecified
data.

The SPI-NULL clause differs from the NULL clause in that:

• The SPI-NULL clause is used only to assign an SPI null value to a field or a group
of fields that will be used in an SPI extensible structured token defined by a
TOKEN-MAP statement.

• The NULL clause is used only to assign a null value to an alternate-key field
referenced in a RECORD statement.

Every field in a extensible structured token must have an SPI null value, whether
specified explicitly or implicitly by default.

For a field to contain an SPI null value, each byte of the field must contain the value
specified in the SPI-NULL clause. You use the SPI SSNULL procedure to fill the field
with the SPI null value specified in the SPI-NULL clause.

The SPI-NULL value for a bit field must be 255.

If SPI-NULL is not specified, the default SPI null value is 255; that is, SPI-NULL sets all
bits to 1.

An explicit SPI-NULL clause for a field or for a group containing the field overrides the
default SPI null value.

Note. Use the SPI-NULL clause only if you plan to use SPI messages to communicate among
processes in a Distributed Systems Management (DSM) environment.

SPI-NULL {"character " | number | constant-name }
Data Definition Language (DDL) Reference Manual—529431-003
6-37

Definition Attributes SPI-NULL
Do not specify a VALUE clause for a field or group used to define an extensible
structured token. Every field in an extensible structured token is initialized to its SPI
null value before it is used, so any initial value is overwritten.

If the field is used for other purposes, then you can specify a VALUE clause as well as
an SPI-NULL clause. In this case, the field is not initialized to its SPI null value but is
given the specified initial value. Because an initial value and an SPI null value are
never used for the same purpose, they need not be the same value.

An SPI-NULL clause specified in a group definition, or in a group description within a
group definition, is inherited by each of the fields within the group that has the clause.
A field within a group defined with an SPI-NULL clause cannot have its own SPI-NULL
clause.

When you refer to one definition from another:

• If you specify an SPI-NULL clause in the referring definition or in any group that
includes the referring definition, the specified SPI null value overrides all SPI null
values in the referenced definition.

• If you do not specify an SPI-NULL clause in the referring definition, the referring
definition inherits the SPI null value of the referenced definition.

When a definition refers to another definition and the referring definition contains one
or more SPI-NULL clauses, these clauses override any SPI-NULL clauses in the
referenced definition. If the referring definition does not have any SPI-NULL clauses, it
inherits the SPI null value or values from the referenced definition.

Example 6-28. SPI-NULL Clause For a Single Field

DEF assn-ddl-jobcode TYPE BINARY 16 SPI-NULL 0.

Example 6-29. SPI-NULL Clause For a Group of Fields

DEF assn-ddl-jobinfo SPI-NULL 1
 02 jobcode TYPE BINARY 16. ! Inherits SPI-NULL value 1.
 02 priority TYPE BINARY 16. ! Inherits SPI-NULL value 1.
END.
Data Definition Language (DDL) Reference Manual—529431-003
6-38

Definition Attributes SQLNULLABLE
If a field is sometimes used as an extensible structured token and sometimes for
another purpose, you can define the field with both an SPI-NULL clause and a VALUE
clause.

When JOBCLASS is used as an extensible structured token, the SSNULL procedure
initializes JOBCLASS to the specified SPI null value. When JOBCLASS is used for any
other purpose, the DDL compiler initializes it to the initial value specified in the VALUE
clause.

SQLNULLABLE
The SQLNULLABLE clause specifies that a line item is to be treated as an SQL-
nullable column. The NOTSQLNULLABLE clause specifies that a line item is not to be
treated as an SQL-nullable column.

In SQL, if a column is not explicitly specified as NOT NULL, it is a nullable column.
Internally, a nullable SQL column is composed of the column itself and a numeric flag
that indicates whether the column is null. The DDL compiler supports an SQL-nullable
line item in the same way: an SQL-nullable line item consists of the line item itself and
a numeric item that signals whether the item is null. Because of the presence of this
additional numeric item, an SQL-nullable item is word aligned; the internal byte size of
an SQL-nullable line item is the size specified plus 2.

Example 6-30. Inherited and Overridden SPI-NULL Values

DEF assn-ddl-jobcode SPI-NULL 0.
 02 prefix TYPE BINARY 16. ! SPI-NULL 0 (inherited)
 02 code TYPE BINARY 16. ! SPI-NULL 0 (inherited)
END

DEF assn-ddl-jobinfo.
 02 jobcode TYPE assn-ddl-jobcode. ! SPI-NULL 0 (inherited)
 02 priority TYPE BINARY 16 SPI-NULL 1. ! SPI-NULL 1 (stated)
 02 location TYPE BINARY 16. ! SPI-NULL 255 (default)
END

DEF assn-ddl-jobinfo-groups.
 02 jobinfo-1 TYPE assn-ddl-jobinfo. ! Inherits jobinfo SPI-NULL values
 02 jobinfo-2 TYPE assn-ddl-jobinfo SPI-NULL 2. ! Overrides inherited value
END

Example 6-31. Field Defined With SPI-NULL and VALUE Clauses

DEF jobclass TYPE BINARY 16 SPI-NULL 255
 VALUE 0.

[NOT]SQLNULLABLE
Data Definition Language (DDL) Reference Manual—529431-003
6-39

Definition Attributes SQLNULLABLE
Specifying SQLNULLABLE at the group level for definitions or records means that all
subordinate line items in the group are SQL-nullable, except for those individual line
items explicitly specified as NOT SQLNULLABLE. Specifying NOT SQLNULLABLE for
a group means that all its subordinate line items, except for those explicitly specified as
SQLNULLABLE, are not SQL-nullable; this condition also exists if no such specification
is made for the group.

The DDL compiler outputs an SQL-nullable line item as a group with two elementary
items in all of the supported host languages: Pascal (on D-series systems), C, COBOL,
FORTRAN, pTAL, TACL, and TAL. The name of the group is derived from the name of
the SQL-nullable line item. The names of the elementary items are indicator and valu.
The data type of indicator is the data type within the specific language that
corresponds to the DDL data type BINARY. The data type of valu is the language
output for the data type specified in the SQL-nullable line item.

The value for the null indicator is usually determined at run time. If your application
obtains Enscribe file layouts or SQL record schema from DDL, the recommended
values for the indicator item are:

The attributes SQLNULLABLE and NOT SQLNULLABLE applicable only to SQL, and
are not output for any of the supported languages, which do not recognize the
attributes in their syntax.

SQLNULLABLE or NOT SQLNULLABLE can be specified on a definition level, a group
level, or an elementary line item.

SQLNULLABLE and NOT SQLNULLABLE cannot be specified concurrently on the
same line item.

If the DDL clause NULL is specified for a line item, NOT SQLNULLABLE cannot be
specified or implied for that item.

SQLNULLABLE and NOT SQLNULLABLE cannot be specified on a line item whose
data type has been set by a previous definition, nor on a group or subgroup that
contains such a line item.

An SQL-nullable line item is a word-aligned item regardless of its data type. An implicit
filler of one byte is generated, when necessary, preceding the SQL-nullable line item.

The SQLNULLABLE or NOT SQLNULLABLE attribute is inheritable. That is, a line item
that refers to a definition that is SQL-nullable becomes SQL-nullable as well; a line
item that refers to a definition that is not SQL-nullable becomes itself not SQL-nullable.

A SQL-nullable line item can redefine another line item and can itself be redefined. If
an SQL-nullable line item is redefined, the maximum byte size of the redefining line
item is the specified size of the SQL-nullable line item plus 2.

Value Meaning

0 The value field contains meaningful data

-1 The data is null (not supplied)
Data Definition Language (DDL) Reference Manual—529431-003
6-40

Definition Attributes SQLNULLABLE
If an EDIT-PIC clause or a literal string is specified on a null line item, the length of the
string must be less than or equal to the specified size of the line item. Do not include
the added numeric field as part of the available space for the string.

If an odd-byte length is specified on an SQL-nullable line item that has an OCCURS
clause specified or implied, the internal total size of the line item is calculated by:

Occurrences specified * (a 2-byte numeric field + the byte length specified + a
1-byte padded filler)

Because an SQL-nullable line item is word-aligned, a filler is padded to align each
repetition of an SQL-nullable line item with odd-byte length. A padded filler is not
required for a repetition of an SQL-nullable line item specified with even-byte length.

The implicit filler emitted by The DDL compiler is generated explicitly in language
outputs, but not for C or Pascal.

The maximum actual internal byte size of an SQL-nullable line item is 32,767 bytes in
definitions; in records, it is:

Because of this restriction, the maximum size that can be specified on an SQL-nullable
line item is two bytes less than the numbers shown above. These two bytes are the
indicator that shows whether the line item is null.

SQLNULLABLE cannot be specified for FILLER or BIT line items; these types of items
can never be SQL-nullable. SQLNULLABLE cannot be specified on a group that
contains a FILLER or BIT line item unless that line item is explicitly declared to be NOT
SQLNULLABLE.

Neither SQLNULLABLE nor NOT SQLNULLABLE can be specified on an 88 condition-
name line item or an 89 enumeration line item.

The dictionary fields that support SQL-nullable items are described in Appendix D,
Dictionary Database Structure.

In Example 6-32 on page 6-42:

• Because DEF A has no specification regarding SQL-nullability, line items within the
group are not SQL-nullable unless individually declared to be SQL-nullable.

• Because DEF B is specified as SQLNULLABLE, line items within that group are
SQL-nullable unless individually not to be SQL-nullable.

• Semantically, A and B are equivalent.

File Type Record’s Maximum Length

Entry-sequenced 4,072 bytes

Key-sequenced 4,062 bytes

Relative 4,072 bytes

Unstructured 4,096 bytes
Data Definition Language (DDL) Reference Manual—529431-003
6-41

Definition Attributes SQLNULLABLE
Example 6-32. SQLNULLABLE Clause

DEF A.
 02 name PIC X(25). ! Not nullable
 02 nickname PIC X(10) VALUE SQLNULL SQLNULLABLE.
 02 salary TYPE BINARY. ! Not nullable
 02 hire-date TYPE DATE. ! Not nullable
END.

DEF B SQLNULLABLE.
 02 name PIC X(25).
 02 nickname PIC X(10) VALUE SQLNULL SQLNULLABLE.
 02 salary TYPE BINARY.
 02 hire-date TYPE DATE.
END.

Example 6-33. SQL-Nullable Output for C

DDL Type C Type

DEF B SQLNULLABLE.

02 name PIC X(25)
 NOT SQLNULLABLE.
02 nickname PIC X(10)
 VALUE SQLNULL
02 salary TYPE BINARY
 NOT SQLNULLABLE.
02 hire-date TYPE SQL DATE
 NOT SQLNULLABLE.
END.

#pragma fieldalign shared2 __b
typedef struct __b
{
 char name[25];
 struct
 {
 short indicator;
 char valu[10];
 } nickname;
 short salary;
 char hire_date[10];
 } b_def;

Example 6-34. SQL-Nullable Output for COBOL

DDL Type COBOL Type

DEF B SQLNULLABLE.
 02 name PIC X(25)
 NOT SQLNULLABLE.
 02 nickname PIC X(10)
 VALUE SQLNULL.
 02 salary TYPE BINARY
 NOT SQLNULLABLE.
 02 hire-date TYPE SQL DATE
 NOT SQLNULLABLE.
END.

01 B.
 02 NAME PIC X(25).
 02 FILLER PIC X(1).
 02 NICKNAME.
 03 INDICATOR PIC S9(4) COMP.
 03 VALU PIC X(10).
 02 SALARY PIC S9(4) COMP.
 02 HIRE-DATE PIC X(10).
Data Definition Language (DDL) Reference Manual—529431-003
6-42

Definition Attributes SQLNULLABLE
Example 6-35. SQL-Nullable Output for FORTRAN

DDL Type FORTRAN Type

DEF B SQLNULLABLE.
 02 name PIC X(25)
 NOT SQLNULLABLE.
 02 nickname PIC X(10)
 VALUE SQLNULL.
 02 salary TYPE BINARY
 NOT SQLNULLABLE.
 02 hire-date TYPE SQL DATE
 NOT SQLNULLABLE.
END.

RECORD B.
CHARACTER*25 NAME
FILLER*1
 RECORD NICKNAME.
 INTEGER*2 INDICATOR
 CHARACTER*10 VALU
 END RECORD
INTEGER*2 SALARY
CHARACTER*10 HIREDATE
END RECORD

Example 6-36. SQL-Nullable Output for Pascal (D-series Systems Only)

DDL Type Pascal Type

DEF B SQLNULLABLE
 02 name PIC X(25)
 NOT SQLNULLABLE.
 02 nickname PIC X(10)
 VALUE SQLNULL.
 02 salary TYPE BINARY
 NOT SQLNULLABLE.
 02 hire-date TYPE SQL DATE
 NOT SQLNULLABLE.
END.

TYPE B_DEF = RECORD
 NAME : FSTRING(25);
 NICKNAME : RECORD
 INDICATOR : INT16;
 VALU : FSTRING(10);
 END;
 SALARY : INT16;
 HIRE_DATE : FSTRING(10);
END;

Example 6-37. SQL-Nullable Output for pTAL or TAL

DDL Type pTAL or TAL Type

DEF B SQLNULLABLE.
 02 name PIC X(25)
 NOT SQLNULLABLE.
 02 nickname PIC X(10)
 VALUE SQLNULL.
 02 salary TYPE BINARY
 NOT SQLNULLABLE.
 02 hire-date TYPE SQL DATE
 NOT SQLNULLABLE.
END.

STRUCT B^DEF (*) FIELDALIGN
(SHARED2);
 BEGIN
 STRUCT NAME;
 BEGIN STRING BYTE[1:25]; END;
FILLER 1;
STRUCT NICKNAME;
 BEGIN
 INT INDICATOR;
 STRUCT VALU;
 BEGIN STRING BYTE[1:10]; END;
 END;
INT SALARY
STRUCT HIRE^DATE;
 BEGIN STRING BYTE[1:10]; END;
END;
Data Definition Language (DDL) Reference Manual—529431-003
6-43

Definition Attributes TACL
TACL
The TACL clause specifies the TACL data type to which a DDL data item is to be
converted when generating TACL source code.

type

is the TACL data type to which the DDL data type is to be converted.

{ CRTPID }
{ DEVICE }
{ ENUM }
{ FNAME }
{ FNAME32 }
{ PHANDLE }
{ SSID }
{ SUBVOL }
{ TRANSID }
{ TSTAMP }
{ USERNAME }

The TACL clause can be specified in a field or group DEFINITION statement.

The DDL compiler generates TACL data types only when a TACL command is
specified; however, the DDL compiler checks that the length of the DDL data item
matches the specified TACL data type whether the TACL command is specified or not.
The DDL compiler issues an error message when the lengths do not match.

If the TACL clause is omitted, the DDL compiler translates the field or group to a TACL
STRUCT that corresponds to the DDL data type. For a table showing the standard
data-type translations for TACL, see Table C-5 on page C-9.

Example 6-38. SQL-Nullable Output for TACL

DDL Type TACL Type

DEF B SQLNULLABLE.
 02 name PIC X(25)
 NOT SQLNULLABLE.
 02 nickname PIC X(10)
 VALUE SQLNULL.
 02 salary TYPE BINARY
 NOT SQLNULLABLE.
 02 hire-date TYPE SQL DATE
 NOT SQLNULLABLE.
END.

?Section B Struct
 Begin
STRUCT NAME;
 BEGIN CHAR BYTE(0:24); END;
FILLER 1;
STRUCT NICKNAME;
 Begin
 INT INDICATOR;
 STRUCT VALU;
 BEGIN CHAR BYTE(0:9); END;
 End;
INT SALARY
STRUCT HIRE^DATE;
 BEGIN CHAR BYTE(0:9); END;
End;

TACL type
Data Definition Language (DDL) Reference Manual—529431-003
6-44

Definition Attributes TACL
If a TACL data type is associated with a DDL data item defined with an OCCURS
clause, each occurrence of the DDL data item must be the same length as the
associated TACL data type.

The DDL compiler aligns on word boundaries all DDL data items associated with TACL
data types.

If fields or groups associated with TACL data types are nested, all but the outermost
TACL data type is ignored. Thus, if a TACL data type is specified for a group and a
TACL data type is also specified for a field within the group, the DDL compiler uses
only the group’s TACL data type, ignoring the field’s TACL data type.

If a DDL data item is defined by referring to an existing definition:

• When the referring definition does not include a TACL clause, it inherits any TACL
data type specified in the referenced definition.

• When the referring definition includes a TACL clause, the specified TACL data type
overrides any TACL data type specified in the referenced definition.

• The DDL field or group of fields must be the same length as the TACL high level
data type. The length in bytes of each high-level TACL data type is shown in
Table 6-6 on page 6-45.

Table 6-6. Lengths of TACL Data Types

TACL Type Byte Length

CRTPID 8

DEVICE 8

ENUM 2

FNAME 24

FNAME32 32

PHANDLE 20

SSID 12

SUBVOL 16

TRANSID 8

TSTAMP 8

USERNAME 16
Data Definition Language (DDL) Reference Manual—529431-003
6-45

Definition Attributes TACL
A TACL clause at the group level overrides any TACL clauses specified for fields within
the group.

If a definition or record is defined by referring to an existing definition and does not
specify a TACL clause, the referring object assumes any TACL clause in the
referenced definition. In Example 6-41 on page 6-47, the DEFINITION statement
inherits the TACL data type specified for group FNAME-DEF in Example 6-40 on
page 6-46.

Example 6-39. TACL Clause

DEFINITION Statement With TACL Clause

?TACL
DEF term-id TYPE CHARACTER 8 TACL CRTPID.

Structure Generated for DEFINITION Statement with TACL Clause

?Section TERM^ID Struct
Begin
CRTPID TERM^ID;
End;

DEFINITION Statement Without TACL Clause

?TACL
DEF term-id TYPE CHARACTER 8.

Structure Generated for DEFINITION Statement Without TACL Clause

?Section TERM^ID Struct
Begin
CHAR BYTE (0:7)

End

Example 6-40. TACL Clause at Group Level

DDL Input

DEF fname-def TACL FNAME.
 02 volume TYPE CHARACTER 8 TACL CRTPID.
 02 subvol TYPE CHARACTER 8.
 02 file TYPE CHARACTER 8.
END

DDL Output (TACL Code)

?Section TERM^ID Struct
Begin
CRTPID TERM^ID; ! High-level TACL type: CRTPID
End;
Data Definition Language (DDL) Reference Manual—529431-003
6-46

Definition Attributes TACL
If the referring object is defined with a TACL clause, the referring TACL data type
overrides any referenced TACL data type. In Example 6-42 on page 6-47, the TACL
clause in the DEFINITION statement overrides the TACL clause in the definition of
TERM-ID.

Example 6-41. Inheriting TACL Clause From Referenced Definition

DDL Input

?TACL
DEF fname-2 TYPE fname-def.

DDL Output (TACL Code)

?Section FNAME^2 Struct
Begin
FNAME FNAME^2;
End;

Example 6-42. Overriding Inheriting TACL Clause

DDL Input

?TACL
DEF trans-id TYPE term-id TACL TRANSID.

DDL Output (TACL Code)

?Section TRANS^ID Struct
Begin
TRANSID TRANS^ID;
End;
Data Definition Language (DDL) Reference Manual—529431-003
6-47

Definition Attributes TYPE
TYPE
The TYPE clause specifies the data type and size of a data structure, either explicitly
or by referring to a previously defined data structure.

data-type

explicitly declares the data type of the data structure:

{ CHARACTER length }
{ }
{ BINARY { 8 } [UNSIGNED] }
{ { [16 [, scale]] } }
{ { 32 [, scale] } }
{ { 64 [, scale] } }
{ }
{ FLOAT { [32] } }
{ { 64 } }
{ }
{ COMPLEX }
{ }
{ LOGICAL { 1 } }
{ { [2] } }
{ { 4 } }
{ }
{ ENUM }
{ }
{ SQL-data-type }
{ }
{ BIT bit-length [UNSIGNED] [ENUM enum-name] }

CHARACTER length

represents a character string of length characters. The maximum values
of length are:

TYPE { data-type | def-name | * }

Language Maximum Value Number of Characters

FORTRAN 255 bytes 255 ASCII characters or
127 national characters

TACL 5,000 bytes for an entire structure 5,000 ASCII characters or
2,500 national characters

COBOL
pTAL
TAL

Available address space, or, for part of a record, the record
length
Data Definition Language (DDL) Reference Manual—529431-003
6-48

Definition Attributes TYPE
BINARY { 8 } [UNSIGNED]
 { [16 [, scale]] }
 { 32 [, scale] }
 { 64 [, scale] }

represents a two’s complement binary number, whose size can be
specified as 8, 16, 32, or 64 bits.

scale

is an integer that specifies the position of an implied decimal point.

A scale of n multiplies the number by 10 to the power of -n ; a scale
of -n multiplies the number by 10 to the power of n. The value of
scale depends on the BINARY item size:

UNSIGNED

declares an item of type BINARY as a positive binary integer.

FLOAT { [32] }
 { 64 }

represents a signed real number in binary scientific notation.

Note. Use scale only for COBOL, pTAL, and TAL.

BINARY Size scale Size

16 -4 to 4

32 -9 to 9

64 -18 to 18 (for COBOL, -17 to 18)

BINARY Type Lowest Value Highest Value

16 -32,768 32,767

16 UNSIGNED 0 65,535

32 -2,147,483,648 2,147,483,647

32 UNSIGNED 0 4,294,967,295

64 -9,223,372,036,854,775,808 9,223,372,036,854,775,807

64 UNSIGNED* 0 18,446,744,073,709,551,615

* Use BINARY 64 UNSIGNED only for C, pTAL, and TAL—the DDL compiler issues an error
message if you use BINARY 64 UNSIGNED for any other language.

Note. Use FLOAT only for Pascal (on D-series systems), C, FORTRAN, pTAL,
and TAL.

FLOAT Type Length

32 (default) 4 bytes

64 8 bytes
Data Definition Language (DDL) Reference Manual—529431-003
6-49

Definition Attributes TYPE
COMPLEX

represents an 8-byte binary complex number.

LOGICAL { 1 }
 { [2] }
 { 4 }

represents a logical data type.

The value of a logical data type is considered false if it is 0 and true if it is
nonzero.

ENUM

represents an enumeration data type.

SQL-data-type

is an SQL data type that DDL supports (see the SQL/MP Reference
Manual and SQL/MX Reference Manual).

BIT bit-length [UNSIGNED] [ENUM enum-name]

represents the bit maps of the item.

bit-length

is an integer from 1 through 15 that specifies the size of the bit fields.

UNSIGNED

declares an item of type BIT as a positive number.

Note. Use COMPLEX only for C and FORTRAN.

Note. Use LOGICAL only for Pascal (on D-series systems), C, FORTRAN, pTAL,
and TAL.

LOGICAL Type Length

1* 1 byte

2 (default) 2 bytes

4 4 bytes

* Use LOGICAL 1 only for Pascal (on D-series systems) and C.

Note. Use ENUM only for Pascal (on D-series systems), C, FORTRAN, pTAL,
and TAL.
Data Definition Language (DDL) Reference Manual—529431-003
6-50

Definition Attributes Specifying TYPE data-type
ENUM enum-name

specifies the enumeration definition that contains the values to use for
the BIT item. The enumeration definition must be in the open
dictionary, and the enumeration values in the enumeration definition
must fit within the number of bits specified for the item, excluding any
sign bit.

def-name

is the name of a previously defined data structure.

*

refers to a previously defined data structure that has the same name as the
referring data structure.

In the TYPE clause, you can declare the type and size of an object, group, or field by
one of these methods:

• Specifying TYPE data-type on page 6-51

• Specifying TYPE def-name on page 6-66

• Specifying TYPE * on page 6-67

Specifying TYPE data-type
data-type is one of:

• BINARY on page 6-52

• ENUM on page 6-53

• LOGICAL on page 6-54

• BIT on page 6-54

• The SQL data types in the SQL/MP Reference Manual or SQL/MX Reference
Manual

Example 6-43. TYPE data-type Clauses

DEF type-clause-example.
 02 chr TYPE CHARACTER 8. ! 8 alphanumeric characters
 02 bin-16 TYPE BINARY 16. ! Signed integer
 02 bin-16-u TYPE BINARY 16 UNSIGNED. ! Signed integer
 02 bin-16-s TYPE BINARY 16,2 ! Signed integer, 2 decimal positions
 02 bin-32 TYPE BINARY 32. ! Signed double integer
 02 bin-64 TYPE BINARY 64,16 ! Signed 4-word integer, 16 dec. positions
 02 flt TYPE FLOAT. ! Signed 32-byte real number
 02 flt-64 TYPE FLOAT 64. ! Signed 64-byte real number
 02 cmplx TYPE COMPLEX. ! 8-byte complex binary number
 02 logicl TYPE LOGICAL. ! 2-byte logical item
END
Data Definition Language (DDL) Reference Manual—529431-003
6-51

Definition Attributes Specifying TYPE data-type
BINARY

• C

BINARY 16, 32, and 64 data types are translated to types short, long, and long
long, respectively. Any scale factor is ignored.

For H06.03 and later RVUs, the HP C and HP C++ compilers support the data type
unsigned long long, which corresponds to the DDL data type BINARY 64
UNSIGNED.

The value of an item of type BINARY 64 UNSIGNED cannot be in octal form.

• COBOL

BINARY 16, 32, and 64 data types are translated to NATIVE-2, NATIVE-4, and
NATIVE-8 data types, respectively.

If scale is specified, the BINARY data type is translated to PIC [S]9(n)V9(n)
COMP if the scale is positive, or to PIC [S]9(n)P(n) COMP if the scale is negative.
The PICTURE clause includes S unless UNSIGNED is specified.

UNSIGNED does not affect generation of COBOL code for a BINARY data type
when scale is not specified.

• Pascal (D-series Systems Only)

BINARY 16, 32, and 64 data types are translated to INT16, INT32, and INT64,
respectively. Types BINARY 16 UNSIGNED and BINARY 32 UNSIGNED are
translated to Pascal types CARDINAL and INT32, respectively. Pascal does not
support scaling; any scale factor is ignored.

• TACL

BINARY 16, 32, and 64 data types are translated to INT, INT2, and INT4,
respectively. An UNSIGNED clause is ignored for TYPE BINARY 32, but is
translated to UINT for TYPE BINARY 16. Any specified scale is ignored.

Example 6-44. C BINARY 64 and BINARY 64 UNSIGNED (H06.03 and Later RVUs)

DDL Code C Code

def def1 type binary 64 unsigned. typedef unsigned long long def1_def;

def def2.
 02 f1 type binary 64
 02 f2 type binary 64 unsigned.
end.

typedef struct __def2
 {
 long long f1;
 unsigned long long f2;
 } def2_def;

def def3 pic 9(10) comp. typedef unsigned long long def3_def;

def def4 type binary 64,-18 unsigned. typedef unsigned long long def4_def;
Data Definition Language (DDL) Reference Manual—529431-003
6-52

Definition Attributes Specifying TYPE data-type
• pTAL or TAL

For pTAL or TAL, the BINARY 16, 32, and 64 data types are translated to INT,
INT(32), and FIXED data types, respectively. If UNSIGNED is specified, it is
ignored in the TAL data type. Scale is ignored for BINARY 16 and BINARY 32; for
BINARY 64, scale becomes the fpoint value of a FIXED data type.

The value of an item of type BINARY 64 UNSIGNED cannot be in octal form.

ENUM

• C

ENUM data type is translated to an enumeration type with the level-89 items
included as literals in the C type.

• COBOL

ENUM is translated to a NATIVE-2 item followed by level-88 items for the level-89
clauses.

• FORTRAN

ENUM is unsupported, and the DDL compiler generates an INTEGER*2 followed
by comments containing the level-89 items.

• Pascal (D-series Systems Only)

ENUM is translated to constants followed by a type declaration of an INT16 item.
When a type ENUM item is an elementary item of a group, the DDL compiler
translates the ENUM item to an INT16 item and the level-89 clauses to constants
preceding the group definition.

• TACL

ENUM is translated to an ENUM with the level 89 items preceding the ENUM as
TACL TEXT items.

Example 6-45. TAL BINARY 64 and BINARY 64 UNSIGNED

DDL Code TAL Code

def def1 type binary 64 unsigned. FIXED DEF1;

def def2.
 02 f1 type binary 64
 02 f2 type binary 64 unsigned.
end.

STRUCT DEF2^DEF (*) FIELDALIGN
(SHARED2);
BEGIN
 FIXED F1;
 FIXED F2;
END;

def def3 pic S9(10) comp. FIXED DEF3;

def def4 pic 9(10) comp. FIXED DEF4;

def def5 type binary 64,-18 unsigned. FIXED (-18) DEF5;
Data Definition Language (DDL) Reference Manual—529431-003
6-53

Definition Attributes Specifying TYPE data-type
• pTAL or TAL

ENUM is translated to an INT with the level-89 items preceding the INT as literals.
If you do not want to use an INT for a single-field definition, then use the
NOTALALLOCATE command to generate the definition as a TAL DEFINE. For
information about the NOTALALLOCATE command, see TALALLOCATE on
page 9-108.

LOGICAL
For Pascal (on D-series systems), type LOGICAL 1 is translated to BOOLEAN. Types
LOGICAL 2 and LOGICAL 4 are translated to INT16 and INT32, respectively.

BIT
A bit field inside a group structure that follows a nonbit field starts on a new 16-bit
word. If you specify bit fields consecutively inside the group structure, the DDL
compiler allocates the same 16-bit word for all contiguous bit fields that can fit in one
16-bit word. For the next bit field that cannot fit in the same 16-bit word, the DDL
compiler allocates the next word.

Consecutive bit fields that occupy the same word have the same byte offset but
different bit offset values in their records in the DICTOBL dictionary file.

A field that follows a bit field and has another data type starts on the next word.

A substructure containing only bit fields always starts and ends on a word boundary,
padded with implicit bit fillers when necessary. Such a substructure is always an even
number of bytes long, which is consistent with the way the C, Pascal (on D-series
systems), and TAL compilers allocate spaces for structures containing bit maps.

TAL and Pascal support bit maps outside group structures; however, these bit maps
are packed in pTAL or TAL and unpacked in Pascal. To ensure that bit maps outside
group structures are compatible between languages, the DDL compiler generates 16-
bit integer items for bit fields declared as field definitions, with warning messages in all
language outputs except Pascal.

In languages that do not support bit maps, including COBOL, FORTRAN, and TACL,
the DDL compiler generates a FILLER item for a bit map outside a group structure.
The FILLER item has a number of words equivalent to the number of words required
for such a bit field specified inside a group structure.

You can specify a bit map as a filler explicitly, the same way you specify a byte filler.
Unlike a byte filler, a bit filler always starts at a new word if the bit filler follows a nonbit
item.

Note. A variable declared as a simple bit field can be a different size than an elementary item
that is a bit field inside a structure (bit fields are packed within structures, but might or might
not be in a simple bit field). Avoid variables of simple bit fields in COBOL, FORTRAN, or TACL
(which do not support bit maps), or be certain you know what you are doing in handling such
variables.
Data Definition Language (DDL) Reference Manual—529431-003
6-54

Definition Attributes Specifying TYPE data-type
When the definition of a group structure implies bit fillers, the DDL compiler generates
the bit fillers implicitly, in the same way that the DDL compiler generates implicit byte
fillers.

The SPI-NULL value for a bit field is 255 by default. Because all bit fields and bit fillers
have the same SPI-NULL value, all bits are turned on in a byte containing bit items.

Bit fields that share the same byte must have the same product version number in a
token map. The product version number applies to the entire byte. If a bit field extends
across 2 bytes within a word, the product version number of that field applies to the
entire word.

You specify product version numbers in the TOKEN-MAP statement

For information about product version numbers for bit fillers and more examples of
specifying product versions, see the TOKEN-MAP on page 7-13.

Level-88 clauses following a bit map item are rejected by the DDL compiler, because
level-88 clauses are meaningful only in COBOL, which does not support bit maps.

The DDL compiler does not generate language output for an ENUM clause specified
with type BIT, because the DDL compiler emits the output for the enumeration when
the clause is defined as type ENUM.

An OCCURS clause cannot apply to a bit map, because no compatible structure is
available in the languages supported by DDL that have bit fields. C does not support
arrays of bit fields. Pascal allocates one word for each signed bit field in an array and
packs unsigned bit fields in an array. TAL supports only arrays of bit fields that are 1, 2,
4, or 8 bits long, packed inside an array.

A REDEFINES clause cannot apply directly to a bit map, because you cannot have an
equivalent bit map item in TAL or a union of bit map items in C. A substructure
containing bit maps can redefine another data item as long as such a REDEFINES
clause follows DDL rules.

Bit fields in a record cannot be used as keys.

Example 6-46. Specifying Product Version Numbers

DEF bit-ddl-ex-a.
 02 bits-8 Type BIT 8.
 02 bits-3 Type BIT 3.
 02 bits-2 Type BIT 2.
 02 bits-10 Type BIT 10.
 02 bits-1 Type BIT 1.
 END.

TOKEN-MAP bit-map-ex-a VALUE 1 DEF bit-ddl-ex-a.
 VERSION "D20" FOR bits-8.
 VERSION "D30" FOR bits-3 THRU bits-2.
 VERSION "D40" FOR bits-10 THRU bits-1.
 END.
Data Definition Language (DDL) Reference Manual—529431-003
6-55

Definition Attributes Specifying TYPE data-type
The DDL compiler generates:

• Bit Maps for C on page 6-56

• Bit Maps for COBOL on page 6-58

• Bit Maps for FORTRAN on page 6-60

• Bit Maps for Pascal (D-series Systems Only) on page 6-61

• Bit Maps for TACL on page 6-63

• Bit Maps for pTAL and TAL on page 6-65

Bit Maps for C
If bit-length is greater than 1, the output for field definition is SHORT or UNSIGNED
SHORT. Group definition output is short fieldname:bit-length or unsigned
fieldname:bit-length.

If bit-length is 1, the output for a bit map is unsigned short.

The DDL compiler does not generate C output for implicit bit fillers and therefore does
not generate any C code for an implicit byte filler at the end of the substructure.

The output for an explicit byte filler is a bit field whose name is of the form filler_n ; that
is, the output is the same as for other FILLER items. If any item at the same level as
the bit filler has the same generated filler name, then the filler name ends with the next
integer that does not cause the conflict. Do not try to access bit filler data items or
reference the name of a bit filler.

Avoid defining level-89 clauses with the same name in different items. In C, two
distinctive literals cannot have the same name, whether the literals are numeric
constants or are in an enumeration item. When generating output for C, the DDL
compiler does not check for level-89 clauses of the same name.

For a list of C data types that the TYPE data-type clause generates, see Table C-1,
Sample DDL/C Data Translation Table, on page C-1.
Data Definition Language (DDL) Reference Manual—529431-003
6-56

Definition Attributes Specifying TYPE data-type
In Example 6-47 on page 6-57, a simple variable of type bit_1_def has a different
size from the field bits_0 in a variable having the type bit_struct_def.

Example 6-47. Bit Field Output for C

DDL Type C Type

DEF Bit-1 TYPE BIT 1

DEF New-Bit-1 TYPE Bit-1

DEF Bit-10 TYPE BIT 10
 UNSIGNED.

DEF Bit-Map.
 2 Bits-8 TYPE BIT 8.
 2 Bits-3 TYPE BIT 3 UNSIGNED.
 2 Bits-10 TYPE BIT 10.
End.

DEF Bit-Struct.
 2 Bits-0 TYPE Bit-1.
 2 Bits-1-To-10 TYPE Bit-10.
End.

typedef unsigned short bit_1_def;

typedef bit_1_def new_bit_1_def;

typedef unsigned short bit_10_def;

#pragma fieldalign shared2 __bit_map
typedef struct __bit_map
 {
 short bits_8:8;
 unsigned short bits_3:3;
 short bits_10:10;
 } bit_map_def;

#pragma fieldalign shared2 __bit_struct
typedef struct
 {
 unsigned short bits_0:1;
 unsigned short bits_1_to_10:10;
 } bit_struct_def;

Example 6-48. Bit Field Output for C (page 1 of 2)

DDL Type C Type

DEF Bit-Fillers

 2 Field-1 TYPE CHARACTER 3.
 2 Filler TYPE BIT 4.
 2 Bit-Field-1 TYPE BIT 5.
 2 Filler TYPE BINARY.
 2 Field-2 TYPE BINARY 32.
 End.

#pragma fieldalign shared2 __bit_fillers
typedef struct
 {
 char field_1[3];
 short filler_0:4;
 short bit_field_1:5;
 short filler_1[2];
 long field_2;
 } bit_fillers_def;

DEF Enum-Spec Begin
 TYPE ENUM.
 89 Val-1 Value 1.
 89 Val-2 Value 3.
 89 Val-3 Value 0.
 End.

enum
 {
 val_1 = 1,
 val_2 = 3,
 val_3 = 0
Data Definition Language (DDL) Reference Manual—529431-003
6-57

Definition Attributes Specifying TYPE data-type
Bit Maps for COBOL
The output for a bit map declared as a field definition is NATIVE-2. the DDL compiler
ignores bit-length.

The output for a bit map declared in a group structure is FILLER. Both named bit fields
and filler bit fields have the same number of words as the bit map.

For a list of COBOL data types that the TYPE data-type clause generates, see
Table C-2, Sample DDL/COBOL Data Translation Table, on page C-3.

DEF Bits-With-Enums.

 02 Bit-Field-1 TYPE BIT 8
 ENUM Enum-Spec.
 02 Bit-Field-2 TYPE BIT 4.
 End.

typedef short enum_spec_def;
#pragma fieldalign shared2
__bits_with_enums
typedef struct __bits_with_enums
 {
 short bit_field_1:8;
 short bit_field_2:4;
 } bits_with_enums_def;

DEF Reused-Bits.

 02 Data-Item Type Binary.
 02 Bits-Layout-1
 Redefines Data-Item.
 03 F-11 TYPE BIT 5.
 03 F-12 TYPE BIT 6.
 03 F-13 TYPE BIT 4.
 02 Bits-Layout-2
 Redefines Data-Item.
 03 F-21 TYPE BIT 4.
 03 F-22 TYPE BIT 3.
 End.

#pragma fieldalign shared2 __reused_bits
typedef struct __reused_bits
 {
 union
 {
 short data_item;
 struct
 {
 short f_11:5;
 short f_12:6;
 short f_13:4;
 } bits_layout_1;
 struct
 {
 short f_21:4;
 short f_22:3;
 } bits_layout_2;
 } u_data_item;
 } reused_bits_def;

Example 6-48. Bit Field Output for C (page 2 of 2)

DDL Type C Type
Data Definition Language (DDL) Reference Manual—529431-003
6-58

Definition Attributes Specifying TYPE data-type
Example 6-49. Bit Field Output for COBOL

DDL Type COBOL Type

DEF Bit-1 TYPE BIT 1.

DEF New-Bit-1 TYPE Bit-1.

DEF Bit-10 TYPE BIT 10 UNSIGNED.

01 BIT-1 NATIVE-2.

01 NEW-BIT-1 NATIVE-2.

01 BIT-10 NATIVE-2.

DEF Bit-Map.
 2 Bits-8 TYPE BIT 8.
 2 Bits-3 TYPE BIT 3 UNSIGNED.
 2 Bits-10 TYPE BIT 10.
 End.

01 BIT-MAP.
 02 FILLER NATIVE-2.
 02 FILLER NATIVE-2.

DEF Bit-Struct.
 2 Bits-0 TYPE Bit-1.
 2 Bits-1-To-10 TYPE Bit-10.
 End.

01 BIT-STRUCT.
 02 FILLER NATIVE-2.

DEF Bit-Fillers.
 2 Field-1 Type Character 3.
 2 Filler Type Bit 4.
 2 Bit-Field-1 Type Bit 5.
 2 Filler Type Binary 16.
 2 Field-2 Type Binary 32.
 End.

01 BIT-FILLERS.
 02 FIELD-1 PIC X(3).
* the following filler is implicit
 02 FILLER PIC X(1).
* the following filler is bit maps
 02 FILLER NATIVE-2.
* the following filler is explicit
 02 FILLER NATIVE-2.
 02 FIELD-2 NATIVE-4.

DEF Enum-Spec Begin
 TYPE ENUM.
 89 Val-1 Value 1.
 89 Val-2 Value 3.
 89 Val-3 Value 0.
 End.

01 ENUM-SPEC NATIVE-2.
 88 VAL-1 VALUE IS 1.
 88 VAL-2 VALUE IS 3.
 88 VAL-3 VALUE IS 0.

DEF Bits-With-Enums.
 02 Bit-Field-1 TYPE BIT 8
 ENUM Enum-Spec.
 02 Bit-Field-2 TYPE BIT 4.
 End.

01 BITS-WITH-ENUMS.
 02 FILLER NATIVE-2.

DEF Reused-Bits.
 02 Data-Item Type Binary.
 02 Bits-Layout-1
 Redefines Data-Item.
 03 F-11 TYPE BIT 5.
 03 F-12 TYPE BIT 6.
 03 F-13 TYPE BIT 4.
 02 Bits-Layout-2
 Redefines Data-Item.
 03 F-21 TYPE BIT 4.
 03 F-22 TYPE BIT 3.
 End.

01 REUSED-BITS.
 02 DATA-ITEM NATIVE-2.
 02 BITS-LAYOUT-1
 REDEFINES DATA-ITEM
 03 FILLER NATIVE-2.
 02 BITS-LAYOUT-2
 REDEFINES DATA-ITEM
 03 FILLER NATIVE-2.
Data Definition Language (DDL) Reference Manual—529431-003
6-59

Definition Attributes Specifying TYPE data-type
Bit Maps for FORTRAN
The output for a bit map declared as a field definition is INTEGER*2. the DDL compiler
ignores bit-length.

The output for a bit map declared in a group structure is FILLER. Both named bit fields
and filler bit fields have the same number of words as the bit map.

For a list of FORTRAN data types that the TYPE data-type clause generates, see
Table C-3, Sample DDL/FORTRAN Data Translation Table, on page C-5.

Example 6-50. Bit Field Output for FORTRAN (page 1 of 2)

DDL Type FORTRAN Type

DEF Bit-1 TYPE BIT 1

DEF New-Bit-1 TYPE Bit-1.

DEF Bit-10 TYPE BIT 10 UNSIGNED.

INTEGER*2 BIT1

INTEGER*2 NEWBIT1

INTEGER*2 BIT10

DEF Bit-Map.
 2 Bits-8 TYPE BIT 8.
 2 Bits-3 TYPE BIT 3 UNSIGNED.
 2 Bits-10 TYPE BIT 10.
 End.

RECORD BITMAP
 FILLER*2
 FILLER*2
END RECORD

DEF Bit-Struct.
 2 Bits-0 TYPE Bit-1.
 2 Bits-1-To-10 TYPE Bit-10.
 End.

RECORD BITSTRUCT
FILLER*2
END RECORD

DEF Bit-Fillers.
 2 Field-1 Type Character 3.
 2 Filler Type Bit 4.
 2 Bit-Field-1 Type Bit 5.
 2 Filler Type Binary 16.
 2 Field-2 Type Binary 32.
 End.

 RECORD BITFILLERS
 CHARACTER*3 FIELD1
C the following filler is implicit
 FILLER*1
C the following filler is bit maps
 FILLER*2
C the following filler is explicit
 FILLER*2
 INTEGER*4 FIELD2
 END RECORD

DEF Enum-Spec Begin
 TYPE ENUM.
 89 Val-1 Value 1.
 89 Val-2 Value 3.
 89 Val-3 Value 0.
 End.

INTEGER*2 ENUMSPEC
C VAL-1 = 1
C VAL-2 = 3
C VAL-3 = 0

DEF Bits-With-Enums.
 02 Bit-Field-1 TYPE BIT 8
 ENUM Enum-Spec.
 02 Bit-Field-2 TYPE BIT 4.
 End.

RECORD BITSWITHENUMS
 FILLER*2
END RECORD
Data Definition Language (DDL) Reference Manual—529431-003
6-60

Definition Attributes Specifying TYPE data-type
Bit Maps for Pascal (D-series Systems Only)
The output for a bit map declared as a field definition is INT (bit-length) or
UNSIGNED (bit-length). The Pascal compiler allocates the whole 16-bit word for
the bit fields and treats the unused leading bits as bit fillers.

The output for a bit map declared in a group definition or record is
INT (bit-length) or UNSIGNED (bit-length) inside a packed record.

The output for a bit filler is a bit field whose name is of the form FILLER_n ; that is, the
output is the same as for other FILLER items. If any item at the same level as the bit
filler has the same generated filler name, then the filler name ends with the next integer
that does not cause the conflict. Do not try to access bit filler data items or reference
the name of a bit filler.

Avoid defining level-89 clauses with the same name in different items. In Pascal, two
distinctive literals cannot have the same name, whether the literals are numeric
constants or are in an enumeration item. When generating output for Pascal, the DDL
compiler does not check for level-89 clauses of the same name.

For a list of Pascal data types that the TYPE data-type clause generates, see
Table C-4, Sample DDL/Pascal Data Translation Table, on page C-7.

DEF Reused-Bits.
 02 Data-Item Type Binary.
 02 Bits-Layout-1
 Redefines Data-Item.
 03 F-11 TYPE BIT 5.
 03 F-12 TYPE BIT 6.
 03 F-13 TYPE BIT 4.
 02 Bits-Layout-2
 Redefines Data-Item.
 03 F-21 TYPE BIT 4.
 03 F-22 TYPE BIT 3.
 End.

RECORD REUSEDBITS
 INTEGER*2 DATAITEM
 RECORD BITSLAYOUT1
 FILLER*2
 END RECORD
 EQUIVALENCE (BITSLAYOUT1,DATAITEM)
 RECORD BITSLAYOUT2
 FILLER*2
 END RECORD
 EQUIVALENCE (BITSLAYOUT2,DATAITEM)

Example 6-50. Bit Field Output for FORTRAN (page 2 of 2)

DDL Type FORTRAN Type
Data Definition Language (DDL) Reference Manual—529431-003
6-61

Definition Attributes Specifying TYPE data-type
In Example 6-51 on page 6-62, a simple variable of type BIT_1_DEF has a different
size from the field BITS_0 in a variable of the record type BIT_STRUCT_DEF.

Example 6-51. Bit Field Output for Pascal

DDL Type Pascal Type

DEF Bit-1 TYPE BIT 1.

DEF New-Bit-1 TYPE Bit-1.

DEF Bit-10 TYPE BIT 10 UNSIGNED.

TYPE BIT_1_DEF = INT(1);

TYPE NEW_BIT_1_DEF = BIT_1_DEF;

TYPE BIT_10_DEF = UNSIGNED(10);

DEF Bit-Map.
 2 Bits-8 TYPE BIT 8.
 2 Bits-3 TYPE BIT 3 UNSIGNED.
 2 Bits-10 TYPE BIT 10.
 End.

TYPE BIT_MAP_DEF = PACKED RECORD
 BITS_8 : INT(8);
 BITS_3 : UNSIGNED(3);
 FILLER_1 : INT(5);
 BITS_10 : INT(10);
 FILLER_2 : INT(6);
 END;

DEF Bit-Struct.
 2 Bits-0 TYPE Bit-1.
 2 Bits-1-To-10 TYPE Bit-10.
 End.

TYPE BIT_STRUCT_DEF = PACKED RECORD
 BITS_0 : BIT_1_DEF;
 BITS_1_TO_10 : BIT_10_DEF;
 FILLER_1 : INT(5);
 END;

DEF Bit-Fillers.
 2 Field-1 Type Character 3.
 2 Filler Type Bit 4.
 2 Bit-Field-1 Type Bit 5.
 2 Filler Type Binary 16.
 2 Field-2 Type Binary 32.
 End.

TYPE BIT_FILLERS_DEF = PACKED RECORD
 FIELD_1 : FSTRING(3);
 { the following is implicit }
 FILLER_1 : CHAR;
 FILLER_2 : INT(4);
 BIT_FIELD_1 : INT(5);
 { the following is implicit }
 FILLER_3 : INT(7);
 FILLER_4 : INT16;
 FIELD_2 : INT32;
 END;

Example 6-52. Bit Field Output for Pascal (page 1 of 2)

DDL Type Pascal Type

DEF Enum-Spec Begin
 TYPE ENUM.
 89 Val-1 Value 1.
 89 Val-2 Value 3.
 89 Val-3 Value 0.
 End.

CONST VAL_1 = 1;
CONST VAL_2 = 3;
CONST VAL_3 = 0;
TYPE ENUM_SPEC_DEF = INT16;

DEF Bits-With-Enums.
 02 Bit-Field-1 TYPE BIT 8
 ENUM Enum-Spec.
 02 Bit-Field-2 TYPE BIT 4.
 End.

TYPE BITS_WITH_ENUMS_DEF = PACKED RECORD
 BIT_FIELD_1 : INT(8);
 BIT_FIELD_2 : INT(4);
 FILLER_1 : INT(4);
 END;
Data Definition Language (DDL) Reference Manual—529431-003
6-62

Definition Attributes Specifying TYPE data-type
Bit Maps for TACL
The output for a bit map declared as a field definition is INT or UINT. The DDL compiler
ignores bit-length.

The output for a bit map declared in a group structure is FILLER. Both named bit fields
and filler bit fields have the same number of words as the bit map.

For a list of TACL data types that the TYPE data-type clause generates, see
Table C-5, Sample DDL/TACL Data Translation Table, on page C-9.

DEF Reused-Bits.
 02 Data-Item Type Binary.
 02 Bits-Layout-1
 Redefines Data-Item.
 03 F-11 TYPE BIT 5.
 03 F-12 TYPE BIT 6.
 03 F-13 TYPE BIT 4.
 02 Bits-Layout-2
 Redefines Data-Item.
 03 F-21 TYPE BIT 4.
 03 F-22 TYPE BIT 3.
 End.

TYPE REUSED_BITS_DEF = RECORD
CASE INT16 OF
01: (DATA_ITEM : INT16);
02: (BITS_LAYOUT_1 :
 PACKED RECORD
 F_11 : INT(5);
 F_12 : INT(6);
 F_13 : INT(4);
 FILLER_1 : INT(1);
 END);
03: (BITS_LAYOUT_2 :
 PACKED RECORD
 F_21 : INT(4);
 F_22 : INT(3);
 FILLER_2 : INT(9);
 END);
END;

Example 6-53. Bit Field Output for TACL (page 1 of 2)

DDL Type TACL Type

DEF Bit-1 TYPE BIT 1. ?Section BIT^1 Struct
Begin
 INT BIT^1;
End;

DEF New-Bit-1 TYPE Bit-1. ?Section NEW^BIT^1 Struct
Begin
 INT NEW^BIT^1;
End;

DEF Bit-10 TYPE BIT 10 UNSIGNED. ?Section BIT^10 Struct
Begin
 UINT BIT^10;
 End;

Example 6-52. Bit Field Output for Pascal (page 2 of 2)

DDL Type Pascal Type
Data Definition Language (DDL) Reference Manual—529431-003
6-63

Definition Attributes Specifying TYPE data-type
DEF Bit-Map.
 2 Bits-8 TYPE BIT 8.
 2 Bits-3 TYPE BIT 3 UNSIGNED.
 2 Bits-10 TYPE BIT 10.
 End.

?Section BIT^MAP Struct
Begin
 FILLER 2;
 FILLER 2;
 End;

DEF Bit-Struct.
 2 Bits-0 TYPE Bit-1.
 2 Bits-1-To-10 TYPE Bit-10.
 End.

?Section BIT^STRUCT Struct
Begin
 FILLER 2;
 End;

DEF Bit-Fillers.
 2 Field-1 Type Character 3.
 2 Filler Type Bit 4.
 2 Bit-Field-1 Type Bit 5.
 2 Filler Type Binary 16.
 2 Field-2 Type Binary 32.
 End.

?Section BIT^FILLERS Struct
Begin
 STRUCT FIELD^1;
 BEGIN CHAR BYTE(0:2); END;
 FILLER 1;
 FILLER 2;
 FILLER 2;
 INT2 FIELD^2;
 End;

DEF Enum-Spec Begin
 TYPE ENUM.
 89 Val-1 Value 1.
 89 Val-2 Value 3.
 89 Val-3 Value 0.
 End.

?Section VAL^1 Text
1
?Section VAL^2 Text
3
?Section VAL^3 Text
0
?Section ENUM^SPEC Struct
Begin
 ENUM ENUM^SPEC;
 End;

DEF Bits-With-Enums.
 02 Bit-Field-1 TYPE BIT 8
 ENUM Enum-Spec.
 02 Bit-Field-2 TYPE BIT 4.
 End.

?Section BITS^WITH^ENUMS Struct
Begin
 FILLER 2;
 End;

DEF Reused-Bits.
 02 Data-Item Type Binary.
 02 Bits-Layout-1
 Redefines Data-Item.
 03 F-11 TYPE BIT 5.
 03 F-12 TYPE BIT 6.
 03 F-13 TYPE BIT 4.
 02 Bits-Layout-2
 Redefines Data-Item
 03 F-21 TYPE BIT 4.
 03 F-22 TYPE BIT 3.
 End.

?Section REUSED^BITS Struct
Begin
 INT DATA^ITEM;
 STRUCT BITS^LAYOUT^1
 REDEFINES DATA^ITEM;
 Begin
 FILLER 2;
 End;
 STRUCT BITS^LAYOUT^2
 REDEFINES DATA^ITEM;
 Begin
 FILLER 2;
 End;
End;

Example 6-53. Bit Field Output for TACL (page 2 of 2)

DDL Type TACL Type
Data Definition Language (DDL) Reference Manual—529431-003
6-64

Definition Attributes Specifying TYPE data-type
Bit Maps for pTAL and TAL
The output for a bit map declared as a field definition is INT. The DDL compiler ignores
bit-length.

The output for a bit map declared in a group definition or a record is UNSIGNED (bit-
length) in a STRUCT template.

The output for a bit filler is BIT_FILLER bit-length in a STRUCT template.

Avoid defining level-89 clauses with the same name in different items. In pTAL and
TAL, two distinctive literals cannot have the same name, whether the literals are
numeric constants or are in an enumeration item. When generating output for these
languages, the DDL compiler does not check for level-89 clauses of the same name.

For a list of pTAL and TAL data types that the TYPE data-type clause generates,
see Table C-6, Sample DDL/pTAL and TAL Data Translation Table, on page C-11.

In Example 6-54 on page 6-65, the simple variable BIT^1 has a different size from the
field BITS^0 in a variable having the structure BIT^STRUCT^DEF.

Example 6-54. Bit Field Output for pTAL and TAL

DDL Type pTAL or TAL Type

DEF Bit-1 TYPE BIT 1.

DEF New-Bit-1 TYPE Bit-1.

DEF Bit-10 TYPE BIT 10 UNSIGNED.

INT BIT^1;

INT NEW^BIT^1;

INT BIT^10;

DEF Bit-Map.
 2 Bits-8 TYPE BIT 8.
 2 Bits-3 TYPE BIT 3 UNSIGNED.
 2 Bits-10 TYPE BIT 10.
 End.

STRUCT BIT^MAP^DEF (*) FIELDALIGN (SHARED2);
 BEGIN
 UNSIGNED(8) BITS^8;
 UNSIGNED(3) BITS^3;
 BIT_FILLER 5;
 UNSIGNED(10) BITS^10;
 BIT_FILLER 6;
 END;

DEF Bit-Struct.
 2 Bits-0 TYPE Bit-1.
 2 Bits-1-To-10 TYPE Bit-10.
 End.

STRUCT BIT^STRUCT^DEF (*) FIELDALIGN(SHARED2);
BEGIN
 UNSIGNED(1) BITS^0;
 UNSIGNED(10) BITS^1^TO^10;
 BIT_FILLER 5;
END;

DEF Bit-Fillers.
 2 Field-1 Type Character 3.
 2 Filler Type Bit 4.
 2 Bit-Field-1 Type Bit 5.
 2 Filler Type Binary 16.
 2 Field-2 Type Binary 32.
 End.

STRUCT BIT^FILLERS^DEF (*) FIELDALIGN(SHARED2);
BEGIN
 STRUCT FIELD^1;
 BEGIN STRING BYTE[1:3]; END;
 FILLER 1;
 BIT_FILLER 4;
 UNSIGNED(5) BIT^FIELD^1;
 BIT_FILLER 7;
 FILLER 2;
 INT(32) FIELD^2;
END;
Data Definition Language (DDL) Reference Manual—529431-003
6-65

Definition Attributes Specifying TYPE def-name
Specifying TYPE def-name
Specifying TYPE def-name refers to an existing definition that has a different name
from the object, group, or field that you are defining.

The DDL compiler reads def-name from the dictionary and then places the entire
definition at the level of the referring data element.

The level number of a data element immediately following the TYPE def-name data
element and in the same DEFINITION statement must be equal to or less than the
level number of the TYPE def-name data element.

If you use HEADING, DISPLAY, or VALUE in a definition that refers to another
definition, the new heading, display format, or initial value replaces the original
heading, display format, or initial value−but only if the original value was at the
outermost level in the referenced definition.

Example 6-55. Bit Field Output for pTAL and TAL

DDL Type pTAL or TAL Type

DEF Enum-Spec Begin
 TYPE ENUM.
 89 Val-1 Value 1.
 89 Val-2 Value 3.
 89 Val-3 Value 0.
 End.

LITERAL VAL^1 = 1,
 VAL^2 = 3,
 VAL^3 = 0;
INT ENUM^SPEC;

DEF Bits-With-Enums.
 02 Bit-Field-1 TYPE BIT 8
 ENUM Enum-Spec.
 02 Bit-Field-2 TYPE BIT 4.
 End.

STRUCT BITS^WITH^ENUMS^DEF (*) FIELDALIGN
(SHARED2);
BEGIN
 UNSIGNED(8) BIT_FIELD_1;
 UNSIGNED(4) BIT_FIELD_2;
 BIT_FILLER 4;
END;

DEF Reused-Bits.
 02 Data-Item Type Binary.
 02 Bits-Layout-1
 Redefines Data-Item.
 03 F-11 TYPE BIT 5.
 03 F-12 TYPE BIT 6.
 03 F-13 TYPE BIT 4.
 02 Bits-Layout-2
 Redefines Data-Item.
 03 F-21 TYPE BIT 4.
 03 F-22 TYPE BIT 3.
 End.

STRUCT REUSED^BITS^DEF (*) FIELDALIGN
(SHARED2);
BEGIN
 INT DATA^ITEM;
 STRUCT BITS^LAYOUT^1 = DATA^ITEM;

 BEGIN
 UNSIGNED(5) F^11;
 UNSIGNED(6) F^12;
 UNSIGNED(4) F^13;
 BIT_FILLER 1;
 STRUCT BITS^LAYOUT^2 = DATA^ITEM;
 BEGIN
 UNSIGNED(4) F^21;
 UNSIGNED(3) F^22;
 BIT_FILLER 9;
 END;
END;
Data Definition Language (DDL) Reference Manual—529431-003
6-66

Definition Attributes Specifying TYPE *
If you use NULL or UPSHIFT in a definition that refers to another definition, the
referring definition inherits the null value and upshift attribute from the referenced
definition.

You can use TYPE def-name to specify the length of a FILLER field. The FILLER
field assumes the total length of the referenced definition.

If you add comments, the new comments replace the original comments in a definition
referenced by another definition. CLISTOUTDETAIL lists the original comments along
with the new ones. For more information, see the CLISTOUT on page 9-21.

Specifying TYPE *
Specifying TYPE * refers to an existing definition that has the same name as the
object, group, or field that you are defining.

The DDL compiler reads the definition with the same name as the subject of the TYPE
* clause from the dictionary and then places the entire referenced definition at the level
of the referring object.

The level number of a data element immediately following the TYPE * element in the
same DEFINITION statement must be equal to or less than the level number of the
TYPE * data element.

Any HEADING, DISPLAY, NULL, or VALUE clauses in the referring data element
override any equivalent clauses in the referenced data element−but only if the clauses
are at the outermost level of the referenced definition.

If you add comments, the new comments replace the original comments in a definition
referenced by another definition. CLISTOUTDETAIL lists the original comments along
with the new ones. For more information, see the CLISTOUT on page 9-21.

Example 6-56. TYPE def-name and TYPE * Clauses (page 1 of 2)

Definitions in Dictionary

DEF name.
 02 last-name PIC X(10).
 02 first-name PIC X(20).
END
DEF ordernum PIC 9(3) HEADING
 "Order #".
DEF orddate TYPE SQL DATETIME YEAR TO DAYHEADING
 "OrderDate".
DEF ordinterval TYPE SQL INTERVAL MONTH 2 HEADING "Order
 Interval".
DEF deldate TYPE SQL DATE HEADING"Delivery
 Date".
Data Definition Language (DDL) Reference Manual—529431-003
6-67

Definition Attributes Specifying TYPE *
If the TYPE clauses in the orderinfo definition in Example 6-56 on page 6-67 were
replaced by the structures they represent, the definition look like Example 6-57 on
page 6-68.

The definition orderinfo, referenced by TYPE *, keeps its name in the orderinfo
record, but its implicit level-01 is changed to 02, and a new heading overrides its
original heading.

New headings specified for ordernum, orderdt, and delivdate override the
heading declared in orddate and deldate.

Definition That Refers to Dictionary Definitions

DEF orderinfo.
 02 employee TYPE name.
 02 ordernum TYPE * HEADING
 "Order/Number".
 02 orderdt TYPE orddate HEADING "Order Date".
 02 orderint TYPE ordintervalHEADING "Order
 Interval".
 02 delivdate TYPE deldate HEADING "Deliv Date".
 02 salesman PIC 9(4) HEADING "Salesman #".
 02 custnum PIC 9(4) HEADING "Customer #".
END

Example 6-57. Equivalent to Example 6-56 on page 6-67

DEF orderinfo.
 02 employee.
 03 last-name PIC X(10).
 03 first-name PIC X(20).
 02 ordernum PIC 9(3) HEADING "Order
 Number".
 02 orderdt TYPE SQL DATETIME YEAR TO DAY HEADING "Order
 Date".
 02 orderint TYPE SQL INTERVAL MONTH 2 HEADING "Order
 Interval".
 02 delivdate TYPE SQL DATE HEADING "Deliv
 Date".
 02 salesman PIC 9(4) HEADING "Salesman
 #".
 02 custnum PIC 9(4) HEADING "Customer
 #".
END

Example 6-56. TYPE def-name and TYPE * Clauses (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
6-68

Definition Attributes UPSHIFT
UPSHIFT
The UPSHIFT clause upshifts ASCII characters entered in the field.

Requesters generated by the Pathmaker product translate lowercase characters
entered in this field to uppercase characters; user-written programs must be coded to
enforce UPSHIFT.

You cannot use the UPSHIFT clause for numeric or computational fields. If a definition
or description for such a field contains UPSHIFT, the DDL compiler sends an error
message and does not enter the definition or record in the dictionary.

UPSHIFT can be associated only with elementary items in RECORD or DEFINITION
statements.

A field can have a MUST BE clause and an UPSHIFT clause. If these clauses are
used together, the MUST BE string must be upshifted.

A field can have both a VALUE clause and an UPSHIFT clause. If these clauses are
used together, you must specify any alphabetic characters in the VALUE clause as
uppercase.

An UPSHIFT clause cannot be specified in a definition or record that includes the
REDEFINES clause.

If a definition refers to a definition that includes the UPSHIFT clause, the referring
definition inherits the UPSHIFT attribute.

You cannot specify the upshift clause for a national data item.

UPSHIFT

Example 6-58. UPSHIFT Clause

DEF name.
 02 first PIC X(20)
 UPSHIFT .
 02 middle PIC X(15)
 UPSHIFT .
 02 last PIC X(20)
 UPSHIFT .
END
Data Definition Language (DDL) Reference Manual—529431-003
6-69

Definition Attributes USAGE
USAGE
The USAGE clause either specifies computational storage allocation for a numeric
group or field or identifies a COBOL as an index.

COMP[UTATIONAL]

specifies that the field or group is a numeric item that is to be stored as a
computational value.

INDEX

specifies that a field is to be used as an index for COBOL only.

COMP[UTATIONAL]-3

specifies that the field or group is a numeric item that is stored in decimal form, but
one digit takes one half-byte. The sign is stored separately as the rightmost half-
byte, regardless of whether S is specified in the PICTURE declaration. See
Example 6-59 on page 6-71.

PACKED-DECIMAL

Specifies that the field or group is a numeric item that is stored in decimal form, but
one digit takes one-half byte. The sign is stored separately as the rightmost half
byte, regardless of whether S is specified in the PICTURE declaration.

[USAGE [IS]] { COMP[UTATIONAL] }
 { INDEX }
 { COMP[UTATIONAL]-3 }
 (PACKED-DECIMAL }

Note. Use PACKED-DECIMAL only for COBOL.
Data Definition Language (DDL) Reference Manual—529431-003
6-70

Definition Attributes USAGE
For the PACKED-DECIMAL data type and a PICTURE 9999 declaration, the number
+1234 is stored like this:

All fields declared as TYPE BINARY are COMPUTATIONAL items by default.

A field can be declared as COMPUTATIONAL if the associated PICTURE declaration
is of the form:

PIC [S] 9 ... [(length)] [V 9 ... [(length)]]

The symbol 9 can occur a maximum of 18 times in a picture for an item declared as
COMPUTATIONAL. If the symbol 9 occurs more than 10 times, the picture must
include the symbol S.

Example 6-59. USAGE COMPUTATIONAL Clause

DDL
!?DICT
!DEF EMP.
!02 F1 PIC 9999 PACKED-DECIMAL VALUE 1234.
!END.
!?COBOL
!OUTPUT *.

$ADE101 JYOTI 4> DDL
DDL Compiler T9100ABQ - (15NOV99) SYSTEM \BOMBAY
COPYRIGHT TANDEM COMPUTERS INCORPORATED 1978, 1979, 1981, 1982, 1986-1999
!?DICT
 Audited dictionary created on subvol $ADE101.JYOTI.
 Dictionary opened on subvol $ADE101.JYOTI for update access.
!DEF EMP.
!02 F1 PIC 9999 PACKED-DECIMAL VALUE 1234.
!END.
 Definition EMP size is 3 bytes.
 Definition EMP added to dictionary.
!?COBOL
* SCHEMA PRODUCED DATE - TIME : 8/01/2000 - 11:20:29
 Output source for COBOL is opened on $ZTN1.#PTPJHYV
!OUTPUT *.
 Loading Definition EMP
?SECTION EMP,TANDEM
* Definition EMP created on 08/01/2000 at 11:20
01 EMP.
 02 F1 PIC 9999 COMP-3
 VALUE 1234.
COBOL output produced for EMP.

0 0 0 0 0 0 0 1

0 1

1 byte

0 0 1 0 0 0 1 1

2 3

1 byte

0 1 0 0 1 1 1 1

4 F (sign)

1 byte

VST007.vsd
Data Definition Language (DDL) Reference Manual—529431-003
6-71

Definition Attributes USAGE
When a group is declared as COMPUTATIONAL, each member of the group is also
COMPUTATIONAL. All elements of the group must either be declared TYPE BINARY
or have a picture compatible with TYPE BINARY. Reference definitions (TYPE * or
TYPE def-name) are accepted if they refer to an element declared as
COMPUTATIONAL or TYPE BINARY.

For TAL and FORTRAN source code, the DDL compiler translates the
COMPUTATIONAL clause to the type and scale appropriate to the language. The data
type for translation is based on the number of 9s in the PICTURE:

See TYPE on page 6-48 for the TAL and FORTRAN data types that correspond to the
BINARY types.

For TACL source code, the DDL compiler translates COMP data types to binary data
types corresponding to the data types generated for TAL, unless scale is specified; the
DDL compiler ignores scale when generating TACL binary data types.

If the PICTURE of a COMPUTATIONAL item includes the symbol V, the DDL compiler
calculates the appropriate scale.

For COBOL source code, translation is not needed unless the usage is computational
by default; that is, the item is described as TYPE BINARY.

For C source code, the DDL compiler translates COMP data types to short, unsigned
short, long, unsigned long, or double C data types.

For Pascal source code (on D-series systems), the DDL compiler translates COMP
data types to INT16, CARDINAL, INT32, or INT64.

Appendix C, DDL Data Translation, has tables showing the host-language data types
generated from the DDL COMP data types.

You can specify INDEX only for a field definition or a field description.

COBOL output for USAGE IS INDEX is the direct translation of the DDL source code,
without generation of the storage specification or of any COBOL attributes supported
by DDL for the field definition or description.

The DDL compiler verifies the size of the field against the target language before
generating the COBOL output for the field. To match the COBOL storage allocation for
index names, the field must be a 4-byte computational item.

You cannot specify INDEX for a noncomputational picture storage or character type.

A reference definition can refer to a field defined with INDEX, but the DDL compiler
does not generate COBOL output for the USAGE IS INDEX clause from the reference
definition.

Number of 9s Type

1 to 4 BINARY 16

5 to 9 BINARY 32

10 to 18 BINARY 64
Data Definition Language (DDL) Reference Manual—529431-003
6-72

Definition Attributes USAGE
You cannot specify a USAGE clause for a national data item.

A field can be declared as COMP-3 if the associated PICTURE declaration is of the
form:

PIC [S] 9.....[(length)] [v 9.....[(length)]]

The symbol “9” can occur a maximum of 18 times in a PICTURE clause for an item
declared as COMP-3.

When a group is declared as COMP-3, each member is also COMP-3. All elements of
the group must have a PICTURE declaration compatible with COMP-3.

A COMP-3 item can refer to another item (TYPE * or TYPE def-name) provided the
referenced item has been declared as COMP-3. If the referenced definition is a group
item, then either the item itself or all of its constituent elements must have been
declared as COMP-3.

The number of bytes required by a data item that has been declared with USAGE as
COMP-3, COMPUTATIONAL-3, or PACKED-DECIMAL, depends upon the number of
9s specified in the picture clause of that item.

When a DDL item contains any PACKED-DECIMAL field (declared with a USAGE
clause COMP-3, COMPUTATIONAL-3, or PACKED-DECIMAL value), then DDL only
supports the generation of output for COBOL.

Although source code can be produced for computational items in each language,
problems can occur when data is stored in such items. Consider a field described as:

PIC 9(7) COMP.

A COBOL program can enter only 7 digits in the field, but a TAL program can enter a
much larger value in the INT(32) field generated from the description. Problems can
occur if this larger value is accessed by the COBOL program.

You can avoid such problems in COBOL by using TYPE BINARY n, instead of PIC and
COMP, in the DDL source code. A BINARY data type translates to a COBOL NATIVE-
2, NATIVE-4, or NATIVE-8 data type.

Example 6-60 on page 6-74 shows the COBOL output that the DDL compiler
generates for fields defined with USAGE IS INDEX. Error messages result when the
size of the field definition or description does not match the storage allocation for index
names in the target language.
Data Definition Language (DDL) Reference Manual—529431-003
6-73

Definition Attributes USAGE
When the DDL compiler receives a request for the items in Example 6-61 on page 6-74
in languages other than COBOL, the DDL compiler issues an error message and does
not generate the source output.

Example 6-60. USAGE IS INDEX Output for COBOL

DDL COBOL

DEF abc TYPE BINARY 32
 USAGE IS INDEX.

DEF xyz TYPE BINARY
 USAGE IS INDEX.

DEF tst TYPE abc.

DEF grp.
 02 item-1 TYPE xyz.

 02 item-2 PIC 9(10).
END.

01 ABC USAGE IS INDEX.

Invalid - ERROR

01 TST NATIVE-4.

01 GRP.
 02 ITEM-1 NATIVE-2.

 02 ITEM-2 PIC 9(10).

Example 6-61. USAGE IS PACKED-DECIMAL Output for COBOL

DDL COBOL

DEF def1 PIC 9(4) COMP-3. 01 def1 PIC 9(4) COMP-3.

DEF def2 PIC 9(4) COMPUTATIONAL-3. 01 def2 PIC 9(4) COMP-3.

DEF def3 PIC 9(4) PACKED-DECIMAL. 01 def3 PIC 9(4) COMP-3.

DEF grp1 COMP-3.
 02 fld1 PIC 99.
 02 fld2 PIC 99.
END.

01 grp1 USAGE IS COMP-3
 02 fld1 PIC 99.
 02 fld2 PIC 99.

DEF grp2.
 02 g1 TYPE grp1.
END.

01 grp2.
 02 g1.
 03 fld1 PIC 99 COMP-3.
 03 fld2 PIC 99 COMP-3.

DEF grp3.
 02 h1 TYPE grp1 COMP-3
END.

01 grp3.
 02 h1 USAGE is COMP-3.
 03 fld1 pic 99.
 03 fld2 pic 99.
Data Definition Language (DDL) Reference Manual—529431-003
6-74

Definition Attributes VALUE
VALUE
For DDL and some COBOL source code, the VALUE clause assigns an initial value to
a field or group and the NOVALUE clause suppresses any VALUE clause in an item
referenced by a TYPE clause.

For other languages and some COBOL source code:

value

is a literal value stored in the associated definition or record:

{ { "character-string" } [LN clause]... }
{ { constant-name } }
{ { national-literal } }
{ { number } }
{ }
{ figurative-constant }
{ sql-datetime-literal }
{ sql-interval-literal }
{ symbolic-literal }
{ value-name }

character-string

is a string of ASCII characters.

constant-name

is the name of a constant in the open dictionary. The constant value must not
be a figurative constant (see Table 6-4 on page 6-17) or symbolic literal (see
Table 6-5 on page 6-17), and must be the same type as the associated data
item.

national-literal

is a national literal whose length is consistent with the length specified in the
PICTURE clause for the national data item.

Language DDL compiler ...

C Translates initial values to comments

COBOL Translates initial values to comments if a value is declared
for a data type that COBOL does not support

FORTRAN Translates initial values to comments

Pascal (on D-series systems) Ignores the VALUE clause

pTAL or TAL Translates initial values to comments

TACL Ignores the VALUE clause

{ VALUE [IS] value }
{ NOVALUE }
Data Definition Language (DDL) Reference Manual—529431-003
6-75

Definition Attributes VALUE
number

is 1 or more digits (0 through 9), an optional leading plus or minus sign, and an
optional decimal point.

LN-clause

specifies the locale name for value (see LN on page 6-13).

figurative-constant

is a figurative constant from Table 6-4 on page 6-17.

sql-datetime-literal

is a DATETIME, DATE, TIME, or TIMESTAMP value in ANSI, USA, or
EUROPEAN format. For details, see the SQL/MP Reference Manual or
SQL/MX Reference Manual.

sql-interval-literal

is a character string that conforms to the rules for a NonStop SQL/MP interval
literal. For details, see the SQL/MP Reference Manual or SQL/MX Reference
Manual.

symbolic-literal

is a symbolic literal from Table 6-5 on page 6-17. Use symbolic literals only for
numeric items.

The DDL compiler replaces symbolic-literal with the appropriate literal
for COBOL output.

value-name

is the value-name in the clause 89 Enumeration on page 6-84.

NOVALUE

suppresses any VALUE clauses in a definition referenced by another definition.

An initial value must be compatible with the data type of the field or group for which it is
declared.

An initial value declared at the group level must be alphanumeric.

A numeric value must be in the range of values specified by the receiving PICTURE
string.

If used with MUST BE, an initial value must be in the range of values specified by the
MUST BE string.

Note. Use NOVALUE only for a field or group defined with a TYPE clause.
Data Definition Language (DDL) Reference Manual—529431-003
6-76

Definition Attributes VALUE
If a field is described as signed (the PICTURE clause includes the symbol S), you can
include a sign in the numeric value. The sign must be leading in all cases, regardless
of whether the PICTURE clause specifies a leading or trailing sign. An initial value
cannot be:

• Used with a REDEFINES or OCCURS entry
• Composed of a null character string ("")

The only figurative constant that can be used to assign a value to a numeric data type
is ZERO (or ZEROS or ZEROES).

A field can have both a VALUE clause and an UPSHIFT clause. If these clauses are
used together, you must specify any alphabetic characters in the VALUE clause as
uppercase.

If an initial value is specified at a group level, no other initial value can be specified
within the group.

If a DEFINITION statement that includes an initial value is referenced by a statement
that also includes an initial value, the DDL compiler overrides the referenced value with
the value in the referring statement.

When you specify a constant name in a VALUE clause, the constant value must be a
valid value for the data item and of the same type. A numeric constant can be used
only with numeric-type data items, a string constant can be used only with character-
type data items, and a national literal can be used only with national data items.

If you specify an initial value for a national data item, the value must be a national
literal or a figurative constant.

The length of the national literal must agree with the length specified in the PICTURE
clause for the national data item.

If you specify a datetime-literal or an interval-literal for a character
field, the DDL compiler treats the literal as a regular character string. In such a case,
the DDL compiler does not check the syntax and semantics of the string.

If you specify a datetime-literal or an interval-literal for a numeric field,
the DDL compiler returns an error.

VALUE ZERO and VALUE ZEROES cannot be specified for some SQL data types
(see the SQL/MP Reference Manual and SQL/MX Reference Manual).

SYSTEM is valid only for elementary fields of any type. If the type was previously
defined, the definition must be a field definition.

When the VALUES clause is specified and the DDL compiler is generating source code
for C, FORTRAN, pTAL, or TAL, the compiler translates any initial values to comments.

When the DDL compiler is generating Pascal (on D-series systems) or TACL source
code, it ignores the VALUES clause.

For C and Pascal, a NOVALUES clause on a group definition has no effect on
subgroups defined by reference to other groups.
Data Definition Language (DDL) Reference Manual—529431-003
6-77

Definition Attributes VALUE
SQLNULL is valid only for SQL-nullable elementary line items (that is, SQL items that
are not specified as NOT NULL). If the type was previously defined, the definition must
be an SQL-nullable field definition.

The values SYSTEM, CURRENT, and SQLNULL cannot be specified in a MUST BE
clause, an 88 condition-name clause, or an 89 enumeration clause

If you specify a MUST BE clause and VALUE SYSTEM for the same item, the DDL
compiler does not check the value SYSTEM against the specified MUST BE constraint.
Similarly, if you specify a MUST BE clause and VALUE SQLNULL for the same item,
the DDL compiler does not check the value SQLNULL against the specified MUST BE
constraint.

The initial values assigned in Example 6-62 on page 6-78 are overridden and
suppressed by the statements in Example 6-63 on page 6-78.

Example 6-62. Assigning Initial Values With VALUE Clauses

DEF price PIC 9(5)V99 VALUE IS ZERO.

DEF name VALUE SPACES.
 02 last PIC X(20).
 02 first PIC X(12).
 02 midinit PIC X(2).
END

Example 6-63. Overriding and Suppressing VALUE Clauses

DEF base-price TYPE price
 VALUE is 20.00. ! Overrides initial value

DEF cust-name TYPE name
 NOVALUE. ! Suppresses initial value

Example 6-64. Enumeration Values in VALUE Clauses

DEF prts-ddl-object-type TYPE ENUM BEGIN AS "Miscellaneous".
 88 bolt VALUE prts-enm-bolt.
 88 nut VALUE prts-enm-nut.
 88 pin VALUE prts-enm-pin.
 88 screw VALUE prts-enm-screw.
 88 washer VALUE prts-enm-washer.
 89 prts-enm-bolt VALUE IS prts-obj-bolt AS "Bolt".
 89 prts-enm-nut VALUE IS prts-obj-nut AS "Nut".
 89 prts-enm-pin VALUE IS prts-obj-pin AS "Pin".
 89 prts-enm-screw VALUE IS prts-obj-screw AS "Screw".
 89 prts-enm-washer VALUE IS prts-obj-washer AS "Washer".
END.
Data Definition Language (DDL) Reference Manual—529431-003
6-78

Definition Attributes 66 RENAMES
66 RENAMES

For DDL and COBOL source code, the level-66 RENAMES clause renames a
previously defined field or group or set of fields or groups.

For other languages:

Example 6-65. National-Literal Values in VALUE Clauses

DEF sample-type PIC NN.

DEF language-info.
 02 language TYPE sample-type VALUE N"ab".
END.

Example 6-66. SQL-Literal Values in VALUE Clauses

DEF birthday TYPE SQL DATETIME year to day.

DEF family-birthday.
 02 father TYPE birthday VALUE "1945-12-12".
 02 mother TYPE birthday VALUE "1948-08-14".
 02 sister TYPE birthday VALUE "1980-01-13".
END.

DEF job-schedule.
 02 task1 TYPE SQL INTERVAL day 2 VALUE "12".
 ! An interval of 12 days
 02 task2 TYPE SQL INTERVAL minute TO second VALUE "5:30".
 ! An interval of 5 minutes and 30 seconds
END.

Note. The DDL compiler ignores this clause when generating source code for languages other
than DDL and COBOL.

Language DDL compiler ...

C Translates a field with a RENAMES clause to a comment

FORTRAN Ignores the RENAMES clause

Pascal (on D-series systems) Ignores the RENAMES clause

TACL Ignores the RENAMES clause

66 renames-name RENAMES
 { field-name [{ THROUGH } field-name] }
 { [{ THRU }] }
 { }
 { group-name [{ THROUGH } group-name] }
 { [{ THRU }] }
Data Definition Language (DDL) Reference Manual—529431-003
6-79

Definition Attributes 66 RENAMES
66

is the level number of the RENAMES clause.

renames-name

is a unique name.

field-name

is the name of a previously defined field in the dictionary. If field-name is not
unique, qualify it with group-name and def-name.

group-name

is the name of a previously defined group in the dictionary. If group-name is not
unique, qualify it with group-name and def-name.

A RENAMES clause does not redefine the characteristics of the field or group it
renames; thus, no other clauses can be used with RENAMES.

If field and group names need to be qualified to make them unique, use the DDL (not
COBOL) rules for qualifying names. For instance, to refer to the field STREET in the
group ADDRESS in the definition EMPLOYEE, use:

employee.address.street ! DDL qualification

Do not use:

street of address of employee ! COBOL qualification

If the THROUGH option is used, the definition of the first named field or group must
precede that of the second named field or group.

In Example 6-67 on page 6-80, ORDER-DETAIL renames the definition ODETAIL.

Example 6-67. RENAMES Clause

DEF odetail.
 02 primkey.
 03 ordernum TYPE *.
 03 partnum TYPE *.
 02 quantity PIC 9(3).
 66 order-detail RENAMES primkey THRU quantity.
END
Data Definition Language (DDL) Reference Manual—529431-003
6-80

Definition Attributes 88 Condition-Name
88 Condition-Name

For DDL and COBOL source code, a level-88 condition-name clause associates a
condition name with a value, list of values, or range of values, enabling you to refer to
the value or values by the condition name.

88

is the level number of the condition-name clause.

condition-name

is a unique name.

value

{ { "character-string" } [LN clause] }
{ { constant-name } }
{ { national-literal } }
{ { number } }
{ }
{ figurative-constant }
{ sql-datetime-literal }
{ sql-interval-literal }
{ symbolic-literal }
{ value-name }

character-string

is a string of ASCII characters.

constant-name

is the name of a constant in the open dictionary. The constant value must not
be a figurative constant (see Table 6-4 on page 6-17) or symbolic literal (see
Table 6-5 on page 6-17), and must be a valid condition-name value.

national-literal

is a national literal whose length is consistent with the length specified in the
PICTURE clause for the national data item.

Note. The DDL compiler ignores this clause when generating source code for languages other
than DDL and COBOL.

88 condition-name { VALUE [IS] }
 { VALUES [ARE] }

 { value } [, value]
 { } []
 { value { THROUGH } value } [, value { THROUGH } value]
 { { THRU } } [{ THRU }] ...
Data Definition Language (DDL) Reference Manual—529431-003
6-81

Definition Attributes 88 Condition-Name
number

is 1 or more digits (0 through 9), an optional plus or minus sign, and an
optional decimal point.

LN-clause

specifies the locale name for value (see LN on page 6-13).

figurative-constant

is any figurative constant listed with the clause VALUE on page 6-75.

sql-datetime-literal

is a DATETIME, DATE, TIME, or TIMESTAMP value in ANSI, USA, or
EUROPEAN format. For details, see the SQL/MP Reference Manual or
SQL/MX Reference Manual.

sql-interval-literal

is a character string that conforms to the rules for a NonStop SQL/MP interval
literal. For details, see the SQL/MP Reference Manual or SQL/MX Reference
Manual.

symbolic-literal

is any symbolic literal listed with the clause VALUE on page 6-75.

value-name

is the value-name in the clause 89 Enumeration on page 6-84.

The syntax for a DDL level-88 clause differs from a COBOL level-88 clause only in its
punctuation; DDL requires commas between values or sets of values, whereas
COBOL does not.

The rules for the VALUE clause apply to the VALUE portion of a level-88 clause.

One or more condition-name clauses can follow the definition attribute clauses in a
field definition or description. Condition-name clauses cannot directly follow a group
definition or description.

Values of different condition names can overlap, so it is possible for several condition
names to have the same value.

A single-field definition that has one or more level-88 clauses must also have BEGIN
before the first period and END after the last clause.

In Example 6-68 on page 6-83, the values in ADDR-CODE are associated with
condition names.
Data Definition Language (DDL) Reference Manual—529431-003
6-82

Definition Attributes 88 Condition-Name
A COBOL program can use the construct in Example 6-68 on page 6-83 to determine
the appropriate customer address: for example:

IF shipping PERFORM A00-send-ship-list.

Example 6-68. Condition-Name Clauses

DEF cust-addr-cd.
 02 addr-code TYPE BINARY 16.
 88 corp-hdq VALUE 01.
 88 shipping VALUE 02, 03.
 88 billing VALUE 04 THRU 07.
 88 sales VALUE 11 THRU 13, 15.
END

Example 6-69. Condition-Name Values as Constants

CONSTANT corp-hdq VALUE 01.
CONSTANT shipping1 VALUE 02.
CONSTANT shipping2 VALUE 03.
CONSTANT billing1 VALUE 04.
CONSTANT billing2 VALUE 05.
CONSTANT billing3 VALUE 06.
CONSTANT billing4 VALUE 07.
CONSTANT sales1 VALUE 11.
CONSTANT sales2 VALUE 12.
CONSTANT sales3 VALUE 13.
CONSTANT sales7 VALUE 17.

DEF cust-addr-cd.
 02 addr-code TYPE BINARY 16.
 88 corp-hdq VALUE corp-hdq.
 88 shipping VALUE shipping1 THRU shipping2.
 88 billing VALUE billing1 THRU billing4.
 88 sales VALUE sales1 THRU sales3, sales7.
END

Example 6-70. Condition-Names as Enumeration Values

DEF prts-ddl-object-type TYPE ENUM BEGIN AS "Miscellaneous".
 88 bolt VALUE prts-enm-bolt.
 88 nut VALUE prts-enm-nut.
 88 pin VALUE prts-enm-pin.
 88 screw VALUE prts-enm-screw.
 88 washer VALUE prts-enm-washer.
 89 prts-enm-bolt VALUE IS prts-obj-bolt AS "Bolt".
 89 prts-enm-nut VALUE IS prts-obj-nut AS "Nut".
 89 prts-enm-pin VALUE IS prts-obj-pin AS "Pin".
 89 prts-enm-screw VALUE IS prts-obj-screw AS "Screw".
 89 prts-enm-washer VALUE IS prts-obj-washer AS "Washer".
END.
Data Definition Language (DDL) Reference Manual—529431-003
6-83

Definition Attributes 89 Enumeration
89 Enumeration
In a field of type ENUM, a level-89 enumeration clause associates a name and
(optionally) a display string with an enumeration value.

89

is the level number of the enumeration clause.

value-name

is a name that uniquely identifies the enumeration value.

VALUE { value | constant-name }

specifies a value to associate with value-name. You can specify value-name
either as an integer or as the name of a constant in the open dictionary. The value
of value-name must be an integer from -32,768 through 32,767.

Enumeration clauses for the same field cannot specify the same value.

Default values:

• For the first enumeration clause: zero
• For any subsequent enumeration clause: 1 more than the previous value

AS-clause

specifies a display string that represents the enumeration value (see AS on
page 6-3).

Default display string: value-name

A single-field definition that has one or more level-89 enumeration clauses must also
have BEGIN before the first period and END after the last clause.

One or more level-89 clauses can follow the definition attribute clauses in a field
definition or description. Level-89 clauses cannot directly follow a group definition or
description.

89 value-name [VALUE value] [AS-clause]
Data Definition Language (DDL) Reference Manual—529431-003
6-84

Definition Attributes 89 Enumeration
For C, the level-89 enumeration clauses for a field of type ENUM are translated to
literals included in a C enumeration type. If the type of a single-field definition is ENUM,
the DDL compiler generates a typedef enum. If the type of a field in a group definition
is ENUM, the DDL compiler generates an enum embedded in a typedef:

enum
 {
 value-name1 = enumeration-value1,
 value-name2 = enumeration-value2,
 ...
 };
typedef short def-name_def;

If the type of a field in a group definition is ENUM, the DDL compiler generates a
separate enumeration outside a typedef struct:

enum
 {
 value-name1 = enumeration-value1,
 value-name2 = enumeration-value2,
 ...
 };
typedef struct __group-name
 {
 char first-element;
 short enumeration-element
 } group-name_def;

Because the C compiler is case sensitive, the DDL compiler generates all lowercase
letters for C source code.

For COBOL, the level-89 enumeration clauses for a field of type ENUM are translated
to level-88 items. These items follow the source code for the ENUM field, a NATIVE-2
clause.

For FORTRAN, the level-89 enumeration clauses for a field of type ENUM are
translated to comments. These comments follow the source code for the ENUM field,
an INTEGER*2 type declaration.

For Pascal (on D-series systems), the level-89 enumeration clauses for a field of type
ENUM are translated to constants. These constants precede the type declaration for
the definition or record within the same section.

For pTAL or TAL, the level-89 enumeration clauses for a field of type ENUM are
translated to LITERALs. If the type of a single-field definition is ENUM, and you do not
specify NOTALALLOCATE, the DDL compiler generates LITERALs followed by an INT
for the definition; for example:

LITERAL ENUMERATION-NAME1 = ENUMERATION-VALUE1,
 ENUMERATION-NAME2 = ENUMERATION-VALUE2,
 ... ;
INT DEF-NAME;

If the type of a field in a group definition is ENUM, the DDL compiler generates
LITERALs followed by a STRUCT template.
Data Definition Language (DDL) Reference Manual—529431-003
6-85

Definition Attributes 89 Enumeration
For TACL, the level-89 enumeration clauses for a field of type ENUM are translated to
SECTION directives of type TEXT followed by an ENUM for the item with which the
level-89 clauses are associated:

?Section ENUMERATION-NAME1 Text
 ENUMERATION-VALUE1
?Section ENUMERATION-NAME2 Text
 ENUMERATION-VALUE2
 ...
?Section DEF-NAME Struct
 Begin
 ENUM DEF-NAME;
 End;

Example 6-71. Enumeration Clause Output for C

DDL Type C Type

DEF status TYPE ENUM BEGIN.

 89 no-error.
 89 read-error.
 89 write-error VALUE 6.
END.

#pragma section status
enum
 {
 no_error = 0,
 read_error = 1,
 write_error = 6
 };
typedef short status_def;

DEF old-status TYPE status
 VALUE no-error.

typedef status_def old_status_def;
/*value is no_error*/

DEF cpu.
 2 state TYPE ENUM.
 89 stop.
 89 pause.
 89 running.
END.

#pragma section cpu
 enum
 {
 stop = 0,
 pause = 1,
 running = 2
 };
#pragma fieldalign shared2 __cpu
typedef struct __cpu
 {
 short state;
 } cpu_def;

DEF system-state.

 2 cpu0 TYPE cpu.
 2 cpu1 TYPE cpu.
END.

#pragma section system state
#pragma fieldalign shared2 __system_state
typedef struct __system_state
 {
 cpu_def cpu0;
 cpu_def cpu1;
 } system_state_def;
Data Definition Language (DDL) Reference Manual—529431-003
6-86

Definition Attributes 89 Enumeration
Example 6-72. Enumeration Clause Output for FORTRAN

DDL Type FORTRAN Type

DEF status TYPE ENUM BEGIN.
 89 no-error.
 89 read-error.
 89 write-error VALUE 3.
END.

DEF old-status TYPE status
 VALUE no-error.

DEF cpu.
 2 state TYPE ENUM.
 89 stop.
 89 pause.
 89 running.
END.

DEF system-state.
 2 cpu0 TYPE cpu.
 2 cpu1 TYPE cpu.
END.

 INTEGER*2 STATUS
C NO-ERROR = 0
C READ-ERROR = 1
C WRITE-ERROR = 3

 INTEGER*2 OLDSTATUS
C Initial value is NO-ERROR

 RECORD CPU
 INTEGER*2 STATE
C STOP = 0
C PAUSE = 1
C RUNNING = 2
 END RECORD

RECORD SYSTEMSTATE
 RECORD CPU0
 INTEGER*2 STATE
 END RECORD
 RECORD CPU1
 INTEGER*2 STATE
 END RECORD
END RECORD

Example 6-73. Enumeration Clause Output for Pascal (D-series Systems Only)

DDL Type Pascal Type

DEF status TYPE ENUM BEGIN.
 89 no-error.
 89 read-error VALUE 3.
 89 write-error.
END.

DEF old-status TYPE status
 VALUE no-error.

DEF cpu.
 2 state TYPE ENUM.
 89 stop.
 89 pause.
 89 running VALUE 4.
END.

DEF system-state.
 2 cpu0 TYPE cpu.
 2 cpu1 TYPE cpu.
END.

CONST NO_ERROR = 0;
CONST READ_ERROR = 3;
CONST WRITE_ERROR = 4;
TYPE STATUS_DEF = INT16;

TYPE OLD_STATUS_DEF = STATUS_DEF;

CONST STOP = 0;
CONST PAUSE = 1;
CONST RUNNING = 4;
TYPE CPU_DEF = RECORD
 STATE : INT16;
END;

TYPE SYSTEM_STATE_DEF = RECORD
 CPU0 : CPU_DEF;
 CPU1 : CPU_DEF;
END;
Data Definition Language (DDL) Reference Manual—529431-003
6-87

Definition Attributes 89 Enumeration
Example 6-74. Enumeration Clause Output for TACL

DDL Type TACL Type

DEF status TYPE ENUM BEGIN.
 89 no-error.
 89 read-error.
 89 write-error VALUE 6.
END.

?Section NO^ERROR Text
0
?Section READ^ERROR Text
1
?Section WRITE^ERROR Text
6
?Section STATUS STRUCT
Begin
ENUM STATUS;
End;

DEF old-status TYPE status
 VALUE no-error.

DEF cpu.
 2 state TYPE ENUM.
 89 stop.
 89 pause.
 89 running.
END.

?Section OLD^STATUS Struct
Begin
ENUM OLD^STATUS;
End;

?Section STOP Text
0
?Section PAUSE Text
1
?Section RUNNING Text
2
?Section CPU Struct
Begin
ENUM STATE;
End;

DEF system-state.
 2 cpu0 TYPE cpu.
 2 cpu1 TYPE cpu.
END.

?Section SYSTEM^STATE Struct
Begin
STRUCT CPU0;
 Begin
 ENUM STATE;
 End;
STRUCT CPU1;
 Begin
 ENUM STATE;
 End;
End;
Data Definition Language (DDL) Reference Manual—529431-003
6-88

Definition Attributes 89 Enumeration
Example 6-75. Enumeration Clause Output for pTAL or TAL

DDL Type pTAL or TAL Type

DEF status TYPE ENUM BEGIN.
 89 no-error.
 89 read-error.
 89 write-error VALUE 6.
 89 status-error.
END.

LITERAL NO^ERROR = 0,
 READ^ERROR = 1,
 WRITE^ERROR = 6,
 STATUS^ERROR = 7;
 INT STATUS;

DEF old-status TYPE status
 VALUE no-error.

DEF cpu.
 2 state TYPE ENUM.
 89 stop.
 89 pause.
 89 running.
END.

INT OLD^STATUS^DEF;
Value is NO^ERROR

LITERAL STOP = 0,
 PAUSE = 1,
 RUNNING = 2;
STRUCT CPU^DEF (*) FIELDALIGN (SHARED2);
 BEGIN
 INT STATE;
 END;

DEF system-state.
 2 cpu0 TYPE cpu.
 2 cpu1 TYPE cpu.
END.

STRUCT SYSTEM^STATE^DEF(*) FIELDALIGN
(SHARED2);
 BEGIN
 STRUCT CPU0;
 END.
 BEGIN
 INT STATE;
 END;
 STRUCT CPU1;
 BEGIN
 INT STATE;
 END;
 END;
Data Definition Language (DDL) Reference Manual—529431-003
6-89

Definition Attributes 89 Enumeration
Data Definition Language (DDL) Reference Manual—529431-003
6-90

7 SPI Tokens
SPI tokens are the smallest accessible units in an SPI message buffer. You can use
token definitions provided by HP, and you can define your own tokens using DDL. HP
supplies standard token definitions in C, COBOL, Pascal (on D-series systems), TACL,
pTAL, and TAL. When you define your own tokens, you first define the tokens with the
DDL statements described in this section and then generate token definitions in a host
language, using the source output commands described in Section 9, DDL Compiler
Commands.

You need the statements described in this section only if you plan to write your own
subsystem using Subsystem Programmatic Interface (SPI) messages in a Distributed
Systems Management (DSM) environment.

If you are writing a management application that communicates with HP subsystems
using SPI messages, you use the token definitions supplied by HP. In such a case, this
section can help you understand the DDL excerpts in the manuals that describe SPI
programmatic interfaces.

This section describes the statements that define token types, token codes, and token
maps. For information about building and using SPI messages, see the Distributed
Name Service (DNS) Management Programming Manual.

Topics:

• Defining SPI Tokens on page 7-2

• TOKEN-TYPE on page 7-2

• TOKEN-CODE on page 7-8

• TOKEN-MAP on page 7-13
Data Definition Language (DDL) Reference Manual—529431-003
7-1

SPI Tokens Defining SPI Tokens
Defining SPI Tokens
An SPI token has two parts:

• An identifying code
• A token value

A token value is referenced by its token code rather than by its position in the buffer or
by its address.

There are two forms of SPI tokens:

Tokens are defined by these dictionary objects:

TOKEN-TYPE
The TOKEN-TYPE statement defines a token type and adds the definition to the open
dictionary.

If a TOKEN-TYPE statement identifies a token type that already exists in the open
dictionary and that is not referenced by another object, the DDL compiler replaces the
existing token type with the new token type. If the existing token type is referenced by
another object, the DDL compiler issues an error message and does not add the new
token type to the dictionary.

If the appropriate source code files are open, the DDL compiler generates C, COBOL,
Pascal (on D-series systems), pTAL, TACL, or TAL token-type structures when it
executes the TOKEN-TYPE statement.

Token Form Values Defined By Identifying Code

Simple Single fields or fixed
structures

Token type (which
determines data type and
size)

Token code

Extensible
structured

Extensible (new fields
can be added to the
token in subsequent
product versions to
provide new features)

The standard token type
that all extensible
structured tokens have

Token map

Object Definition Statement That Defines Object

Token type Data type and size of one or more
tokens

TOKEN-TYPE on page 7-2

Token code Identifying code of a simple token TOKEN-CODE on page 7-8

Token map Identifying code of an extensible
structured token

TOKEN-MAP on page 7-13
Data Definition Language (DDL) Reference Manual—529431-003
7-2

SPI Tokens TOKEN-TYPE
type-name

is the name of a token type.

VALUE [IS] token-data-type

identifies a token type. You can specify token-data-type either as an integer
or as the name of a constant in the open dictionary. The value of token-data-
type must be a positive integer from 1 through 254 that SPI has defined as a
token-data-type identifier. (HP supplies a set of predefined constants, defined in
the file ZSPIDEF.ZSPIDDL.)

DEF [IS] def-name [OCCURS number TIMES]

defines the structure and length of the token by referring to an existing definition in
the open dictionary. The total length of the token must be less than or equal to 254
bytes.

def-name

is the name of an existing definition in the open dictionary.

number

specifies the number of occurrences of the definition that defines the token.
You can specify number either as a positive integer or as the name of a
constant in the open dictionary. The value of the constant must be a positive
integer.

Default: 1

OCCURS { VARYING [DEF [IS] def-name] }
 { 0 TIMES }

OCCURS VARYING [DEF [IS] def-name]

indicates that the length of the token varies. This clause sets the token length
to its maximum of 255 bytes.

TOKEN-TYPE type-name

 VALUE [IS] token-data-type

 { DEF [IS] def-name [OCCURS number TIMES] }
 { }
 { OCCURS { VARYING [DEF [IS] def-name] } }
 { { 0 TIMES } }
Data Definition Language (DDL) Reference Manual—529431-003
7-3

SPI Tokens TOKEN-TYPE
DEF [IS] def-name

documents the token structure, not altering the host-language output, but
enabling SPI-buffer-display software to interpret the fields of tokens defined
using the token type.

OCCURS 0 TIMES

indicates that the token length is 0 (there is no token value).

Every simple token in an SPI message has a token type to define its data type and
length. You must specify the token type of a simple token in a TOKEN-TYPE
statement.

You cannot specify the token type of an extensible structured token because SPI
defines the token type of all extensible structured tokens as the DDL token type ZSPI-
TYP-MAP.

The token data type specified in the VALUE clause of the TOKEN-TYPE statement
must be a token data type that has been defined by SPI. If you specify the token data
type as a number, this number must be the value of a predefined token-data-type
constant. The token-data-type constants are defined in the file ZSPIDEF.ZSPIDDL.
Always refer to one of these constants for the token-data-type value.

The length of a simple token is determined by one of:

• A definition referenced in a DEF IS clause, optionally repeated by an OCCURS
number TIMES clause

• An OCCURS VARYING clause

• An OCCURS 0 TIMES clause

Topics:

• TOKEN-TYPE Statement Output on page 7-5

• Standard SPI TOKEN-TYPE Definitions on page 7-5
Data Definition Language (DDL) Reference Manual—529431-003
7-4

SPI Tokens TOKEN-TYPE Statement Output
TOKEN-TYPE Statement Output
If you request C, COBOL, Pascal (on D-series systems), pTAL, TACL, or TAL source
code, the DDL compiler generates compatible data structures for the requested
language. The SPI routines can use these token-type data structures to identify a
token and its type.

The data structures the DDL compiler generates for token types in each language are:

The DDL compiler replaces any hyphen in a DDL name with a circumflex (^) in a TAL
LITERAL name or in a TACL STRUCT name, and with an underscore (_) in a C
#define name or in a Pascal defined constant name.

Standard SPI TOKEN-TYPE Definitions
SPI defines a set of standard token types. The names of standard SPI token types
have the format:

Zsss-TYP-name

In this format, the letter Z indicates that the token type is defined by HP, sss is a
subsystem name or is SPI for a standard SPI name, and name identifies the token
type.

The file ZSPIDEF.ZSPIDDL on the disk volume chosen for your system contains the
DDL definitions of the standard SPI token types. To use the standard SPI definitions,
compile this file into your dictionary, using the DDL SOURCE command. For a
complete description of the standard SPI token types, see the SPI Programming
Manual and the SPI Common Extensions Manual.

You can use the standard token types where applicable, or you can define your own
token types. When you define a token type specifically for your own subsystem, do not
begin its name with the letter Z; this ensures that your token-type name will not be the
same as a current or future name supplied by HP.

Language Data Structure

C #define TYPE_NAME value

COBOL 01 type-name NATIVE-2 VALUE IS value

Pascal (on D-series systems) CONST type-name = value

TACL ? Section type^name Struct
 BEGIN
 INT value
 END;

pTAL or TAL Literal type^name = value
Data Definition Language (DDL) Reference Manual—529431-003
7-5

SPI Tokens Standard SPI TOKEN-TYPE Definitions
The definition zspi-ddl-int specifies the structure of all simple tokens of the token
type zspi-typ-int in Example 7-1 on page 7-6:

DEF zspi-ddl-int TYPE BINARY 16 SPI-NULL 0.

These definitions are in the file ZSPIDEF.ZSPIDDL.

Example 7-2 on page 7-6 defines two token types you might use for your own
subsystem:

• The first token type, assn-typ-status, is defined by reference to the standard
definition in Example 7-1 on page 7-6. This token type is identical to the token type
zspi-typ-int except for its name. You can use zspi-typ-int instead of
defining your own token type, but redefining a standard token type allows you to
give it a name that is meaningful to your subsystem.

• The second token-type, assn-typ-variable-token, contains a varying
number of two-word integers. The DEF IS clause is included for documentation
only; it does not determine the token length of the token type. Because the token
type is defined as variable-length with OCCURS VARYING, the token length is set
to 255 by default. The token’s structure is equivalent to this definition:

DEF assn-ddl-variable-token.
 02 size TYPE BINARY 16.
 02 data-table TYPE BINARY 32
 OCCURS 1 TO 100 TIMES DEPENDING ON size.
END

From the definitions in Example 7-2 on page 7-6, the DDL compiler generates the
source code in Example 7-3 on page 7-7 through Example 7-7 on page 7-8.

Example 7-1. Standard SPI Token Definition for Simple Token With 16-Bit Integer
Values

TOKEN-TYPE zspi-typ-int ! Token name
 VALUE IS zspi-tdt-int ! Token data type
 DEF IS zspi-ddl-int. ! Token definition

Example 7-2. Possible Subsystem Token Types

TOKEN-TYPE assn-typ-status
 VALUE IS zspi-tdt-int
 DEF IS zspi-ddl-int.

TOKEN-TYPE assn-typ-variable-token
 VALUE IS zspi-tdt-int2 ! 2-word integer token data type
 OCCURS VARYING
 DEF IS assn-ddl-variable-token. ! For documentation only
Data Definition Language (DDL) Reference Manual—529431-003
7-6

SPI Tokens Standard SPI TOKEN-TYPE Definitions
The DDL compiler generates the token-type value in Example 7-3 on page 7-7 by left-
shifting the token length in the second (low-order) byte and combining it with the token
data type in the first (high-order) byte.

The generated values in Example 7-4 on page 7-7 are identical to the values
generated for COBOL or TACL source-code output from the same TOKEN-TYPE
statements.

The generated values in Example 7-5 on page 7-7 are identical to the values
generated for pTAL, TAL, or COBOL source-code output from the same TOKEN-TYPE
statements.

Example 7-3. COBOL Source Code Generated for Example 7-2 on page 7-6

01 ZSPI-TYP-INT NATIVE-2 VALUE IS 514.
01 ASSN-TYP-STATUS NATIVE-2 VALUE IS 514.
01 ASSN-TYP-VARIABLE-TOKEN NATIVE-2 VALUE IS 1023.

Example 7-4. TAL Source Code Generated for Example 7-2 on page 7-6

Literal ZSPI^TYP^INT = 2 '<<' 8 + 2;
Literal ASSN^TYP^STATUS = 2 '<<' 8 + 2;
Literal ASSN^TYP^VARIABLE^TOKEN = 3 '<<' 8 + 255;

Example 7-5. TACL Source Code Generated for Example 7-2 on page 7-6

?Section ZSPI^TYP^INT Struct
BEGIN
UINT TOKEN^TYPE VALUE 514;
END;

?Section ASSN^TYP^STATUS Struct
BEGIN
UINT TOKEN^TYPE VALUE 514;
END;

?Section ASSN^TYP^VARIABLE^TOKEN Struct
BEGIN
UINT TOKEN^TYPE VALUE 1023;
END;

Example 7-6. C Source Code Generated for Example 7-2 on page 7-6

#pragma section zspi_typ_int
#define ZSPI_TYP_INT 514U

#pragma section assn_typ_status
#define ASSN_TYP_STATUS 514U

#pragma section assn_typ_variable_token
#define ASSN_TYP_VARIABLE_TOKEN 1023U
Data Definition Language (DDL) Reference Manual—529431-003
7-7

SPI Tokens TOKEN-CODE
The generated values in Example 7-6 on page 7-7 are identical to the values
generated for COBOL, TAL, or TACL source-code output from the same TOKEN-TYPE
statements.

The generated values in Example 7-7 on page 7-8 are identical to the values
generated for COBOL, pTAL, TAL, TACL, or C source-code output from the same
TOKEN-TYPE statements.

TOKEN-CODE
The TOKEN-CODE statement defines a token code for a particular simple token and
stores the definition in the open dictionary.

If the TOKEN-CODE statement identifies a token code that already exists in the open
dictionary, the DDL compiler replaces the existing token code with the new token code.

If the appropriate source code files are open, the DDL compiler generates C, COBOL,
Pascal (on D-series systems), pTAL, TACL, or TAL token-code structures when it
executes the TOKEN-CODE statement.

token-name

is the name of a simple token.

Example 7-7. Pascal Source Code Generated for Example 7-2 on page 7-6

?Section ZSPI_TYP_INT
CONST ZSPI_TYP_INT = 514;

?Section ASSN_TYP_STATUS
CONST ASSN_TYP_STATUS = 514;

?Section ASSN_TYP_VARIABLE_TOKEN
CONST ASSN_TYP_VARIABLE_TOKEN = 1023;

TOKEN-CODE token-name

 VALUE [IS] token-number

 TOKEN-TYPE [IS] type-name

 [SSID subsystem-id]

 [HEADING label]

 [DISPLAY display-format]
Data Definition Language (DDL) Reference Manual—529431-003
7-8

SPI Tokens TOKEN-CODE
VALUE [IS] token-number

identifies a simple token. You can specify token-number either as an integer or
as the name of a constant in the open dictionary. The value of token-number
must be an integer in the range -32768 through 32767.

For subsystems that you write, token-number must be in the range from 1
through 9998. Numbers outside this range are reserved by HP or are previously
defined by SPI.

type-name

is the name of a token type in the open dictionary.

SSID subsystem-id

identifies the subsystem to which the token belongs. You can specify subsystem-
id either as an ASCII character string (enclosed in quotation marks) or as the
name of a constant in the open dictionary. The value of subsystem-id must
conform to the valid external format for a subsystem ID, which consists of 1 to 8
alphanumeric characters and hyphens specifying the subsystem owner, a period, a
subsystem number or name, another period, and a product version number; for
example:

"TANDEM.43.1245"
"TANDEM.XYZ.0"

If subsystem-id is invalid, the DDL compiler rejects the token.

If you omit the SSID clause, DSM Template Services does not keep track of the
information in the TOKEN-CODE statement’s HEADING and DISPLAY clauses.

HEADING label

specifies a label that identifies the token in DSM Template Services. DSM
Template Services uses only the first 40 characters of the heading. You can specify
label either as an ASCII character string (enclosed in quotation marks) or as the
name of a constant in the open dictionary. The value of label must be an ASCII
character string.

Default label: token-name

DISPLAY display-format

specifies the display format for the token. You can specify display-format
either as an ASCII character string (enclosed in quotation marks) or as the name of
a constant in the open dictionary. The value of display-format must be a
format code described in the DSM Template Services Manual.

Default display format: display format for the data type specified in the definition
Data Definition Language (DDL) Reference Manual—529431-003
7-9

SPI Tokens TOKEN-CODE Statement Output
A token code is a 2-word structure that consists of a token type defined in a prior
TOKEN-TYPE statement and the token number specified in the TOKEN-CODE
statement.

Every token code is implicitly or explicitly qualified by an SPI subsystem ID. Two
tokens of the same token type but qualified by different subsystem IDs can have
identical token numbers and still be differentiated by SPI.

Within a subsystem, tokens must be differentiated by their token numbers.

Topics:

• TOKEN-CODE Statement Output on page 7-10

• Standard SPI TOKEN-CODE Definitions on page 7-10

TOKEN-CODE Statement Output
If you request C, COBOL, Pascal (on D-series systems), pTAL, TACL, or TAL source
code, the DDL compiler generates compatible data structures for the requested
language. The SPI routines use these token-code data structures to identify a token
and its data type.

The data structures the DDL compiler generates for token codes in each language are:

The DDL compiler replaces any hyphen in a DDL name with a circumflex (^) in a pTAL
or TAL LITERAL name or in a TACL STRUCT name, and with an underscore (_) in a C
#define name or a Pascal defined constant name.

Standard SPI TOKEN-CODE Definitions
SPI supplies a set of standard token codes to satisfy needs that are common to most
programmatic interfaces. The standard token-code names have the format:

Zsss-TKN-name

In this format, the letter Z indicates that the token code is defined by HP, sss is a
subsystem name or a standard SPI name, and name is the token name.

Language Data Structure

C #define TOKEN_NAME value

COBOL 01 token-name NATIVE-4 VALUE IS value

Pascal (on D-series systems) CONST token_name = value;

TACL ?Section token^name Struct
 BEGIN
 INT2 TOKEN^CODE VALUE value;
 END;

pTAL or TAL Literal token^name = value;
Data Definition Language (DDL) Reference Manual—529431-003
7-10

SPI Tokens Standard SPI TOKEN-CODE Definitions
The file ZSPIDEF.ZSPIDDL on the disk volume chosen for your system contains the
DDL definitions of the standard token codes. To use the standard SPI definitions,
compile this file into your dictionary, using the DDL SOURCE command. For a
complete description of the standard SPI token codes, see the SPI Programming
Manual and the SPI Common Extensions Manual.

The definition of ZSPI-TKN-RETCODE and the standard token-type definition to which
it refers, ZSPI-TYP-ENUM, are in the file ZSPIDEF.ZSPIDDL.

When writing your own subsystem, you often need to define your own token codes. For
example, you might need tokens to pass status information to and from your
subsystem. Example 7-9 on page 7-11 shows the TOKEN-CODE statements to define
two such token codes and the TOKEN-TYPE statement to define their token type.

In Example 7-9 on page 7-11, the token type is the same in both TOKEN-CODE
statements. Any number of tokens can be of the same token type.

From the definitions in Example 7-9 on page 7-11, the DDL compiler generates the
source code in Example 7-10 on page 7-11 through Example 7-14 on page 7-12.

The DDL compiler generates the value of the token code in Example 7-10 on
page 7-11 from the values specified for the token data type in the referenced TOKEN-
TYPE statement and for the token number in the VALUE clause of the TOKEN-CODE
statement—the two token codes differ only in their token numbers. The DDL compiler
performs an unsigned left-shift on each of these values to generate the single COBOL
NATIVE-4 value shown in the example.

Note. When you define a token code specifically for your own subsystem, do not begin its
name with the letter Z; this ensures that your token-code name is not the same as any current
or future name supplied by HP.

Example 7-8. Definition of Standard Return Token

TOKEN-CODE zspi-tkn-retcode VALUE IS 0
 TOKEN-TYPE IS zspi-typ-enum.

Example 7-9. Possible Subsystem Token Codes

TOKEN-TYPE assn-typ-status VALUE IS zspi-tdt-enum
 DEF IS zspi-ddl-enum.

TOKEN-CODE assn-tkn-my-status VALUE IS 101
 TOKEN-TYPE IS assn-typ-status.

TOKEN-CODE assn-tkn-stat-reply VALUE IS 102
 TOKEN-TYPE IS assn-typ-status.

Example 7-10. COBOL Source Code Generated for Example 7-9 on page 7-11

01 ASSN-TKN-MY-STATUS NATIVE-4 VALUE IS 184680549.
01 ASSN-TKN-STAT-REPLY NATIVE-4 VALUE IS 184680550.
Data Definition Language (DDL) Reference Manual—529431-003
7-11

SPI Tokens Standard SPI TOKEN-CODE Definitions
The value of the pTAL or TAL representation of the token code is in Example 7-11 on
page 7-12 identical to the value generated for COBOL source-code output from the
same TOKEN-CODE statement.

The generated value in Example 7-12 on page 7-12 is identical to the value of a pTAL
or TAL literal or a COBOL data item generated from the same TOKEN-CODE
statement.

The value of the TOKEN-CODE statement generated in Example 7-13 on page 7-12 is
the same as that generated for COBOL, pTAL, TAL, or TACL.

The value of the TOKEN-CODE statement generated in Example 7-14 on page 7-12 is
the same as that generated for the other host languages.

Example 7-11. TAL Source Code Generated for Example 7-9 on page 7-11

Literal ASSN^TKN^MY^STATUS = 11D '<<' 24 + 2D '<<' 16 + 101D;
Literal ASSN^TKN^STAT^REPLY = 11D '<<' 24 + 2D '<<' 16 + 102D;

Example 7-12. TACL Source Code Generated for Example 7-9 on page 7-11

?Section ASSN^TKN^MY^STATUS Struct
BEGIN
 INT2 TOKEN^CODE VALUE 184680549;
END

?Section ASSN^TKN^STAT^REPLY Struct
BEGIN
 INT2 TOKEN^CODE VALUE 184680550;
END

Example 7-13. C Source Code Generated for Example 7-9 on page 7-11

#pragma section assn_tkn_my_status
#define ASSN_TKN_MY_STATUS 184680549LU

#pragma section assn_tkn_stat_reply
#define ASSN_TKN_STAT_REPLY 184680550LU

Example 7-14. Pascal Source Code Generated for Example 7-9 on page 7-11

?Section ASSN_TKN_MY_STATUS
CONST ASSN_TKN_MY_STATUS = 184680549;

?Section ASSN_TKN_STAT_REPLY
CONST ASSN_TKN_STAT_REPLY = 184680550;
Data Definition Language (DDL) Reference Manual—529431-003
7-12

SPI Tokens TOKEN-MAP
TOKEN-MAP
The TOKEN-MAP statement defines a token map and stores the definition in the open
dictionary.

If a TOKEN-MAP statement identifies a token map that already exists in the open
dictionary, the DDL compiler replaces the existing token map with the new token map.

If the appropriate source code file is open, the DDL compiler generates C, COBOL,
Pascal (on D-series systems), pTAL, TACL, or TAL token-map structures when it
executes the TOKEN-MAP statement.

map-name

is the name of an extensible structured token.

VALUE [IS] token-number

identifies a simple token. You can specify token-number either as an integer or
as the name of a constant in the open dictionary. The value of token-number
must be an integer in the range -32768 through 32767.

For subsystems that you write, token-number must be in the range from 1
through 9998. Numbers outside this range are reserved by HP or are previously
defined by SPI.

TOKEN-MAP map-name

 VALUE [IS] token-number

 DEF [IS] def-name

 [SSID subsystem-id]

 [HEADING label]

 { { VERSION { number } } }
 { { { "Lnn " } } }
 { { { constant-name } } }
 { { } }
 { { NONVERSION } }
 { }
 { FOR { field-name [{ THROUGH } field-name] } }
 { { [{ THRU }] } }
 { { } }
 { { group-name [{ THROUGH } group-name] } }
 { { [{ THRU }] }. } ...

 END [.]
Data Definition Language (DDL) Reference Manual—529431-003
7-13

SPI Tokens TOKEN-MAP
def-name

specifies the definition (in the open dictionary) that defines the fields in the
extensible structured token.

SSID subsystem-id

identifies the subsystem to which the token belongs. You can specify subsystem-
id either as an ASCII character string (enclosed in quotation marks) or as the
name of a constant in the open dictionary. The value of subsystem-id must
conform to the valid external format for a subsystem ID, which consists of 1 to 8
alphanumeric characters and hyphens specifying the subsystem owner, a period, a
subsystem number or name, another period, and a product version number; for
example:

"TANDEM.43.1245"
"TANDEM.XYZ.0"

If subsystem-id is invalid, the DDL compiler rejects the token.

If you omit the SSID clause, DSM Template Services does not keep track of the
information in the TOKEN-CODE statement’s HEADING and DISPLAY clauses.

HEADING label

specifies a label that identifies the token in DSM Template Services. DSM
Template Services uses only the first 40 characters of the heading. You can specify
label either as an ASCII character string (enclosed in quotation marks) or as the
name of a constant in the open dictionary. The value of label must be an ASCII
character string.

Default label: token-name

{ VERSION { number } }
{ { "Lnn " } }
{ { constant-name } }
{ }
{ NONVERSION }

specifies whether or not a field or group of fields in the definition is associated with
a product version number. Every elementary field must be defined with either a
VERSION or a NOVERSION clause. If VERSION or NOVERSION is specified for
a group, the clause applies to each field within that group. You can specify only
one product version number for a field.

number

is an integer in the range 1 through 65,535.
Data Definition Language (DDL) Reference Manual—529431-003
7-14

SPI Tokens TOKEN-MAP
Lnn

is a product version string.

L

is a letter. The DDL compiler treats L as uppercase whether you
specify it as uppercase or lowercase.

nn

is a two-digit number.

constant-name

is the name of a constant in the open dictionary. The constant name must be a
valid number or Lnn value.

FOR { field-name [{ THROUGH } field-name] } }
 { [{ THRU }] } }
 { } }
 { group-name [{ THROUGH } group-name] } }
 { [{ THRU }] }.} ...

specifies one or more fields or groups within the definition identified by def-name.

field-name

is the name of a field within the definition.

group-name

is the name of a group within the definition.

A token map is a special type of token code used to identify an extensible structured
token to which new fields can be added in subsequent product versions. You identify a
token map by its token-name.

You do not specify the token type of a token map. The token type of every token map,
ZSPI-TYP-MAP, is defined by SPI; it consists of the token data type ZSPI-TDT-MAP
and a token length of 255.

You define the structure of the extensible structured token by referring to an existing
definition, def-name, in the TOKEN-MAP statement.

You must specify a VERSION or NOVERSION clause in the TOKEN-MAP statement
for every field or group of fields in the referenced definition.

• The product version number in a VERSION clause specifies the subsystem
product version in which the field or group of fields was introduced.

• A NOVERSION clause is used for fields whose presence is indicated by the value
of another field in the structure−an is-present field.
Data Definition Language (DDL) Reference Manual—529431-003
7-15

SPI Tokens TOKEN-MAP
When VERSION or NOVERSION is specified for a group:

• Every field in the group inherits the product version specified for the group.
• No field within the group can have a VERSION or NOVERSION clause.

If you specify a VERSION or NOVERSION clause for a range of fields or groups, you
must not specify a VERSION or NOVERSION clause for any field or group within the
range; this can result in a field having more than one product version.

An extensible structured token must be extended only by adding new fields to the end
of the token. As new fields are added, new VERSION or NOVERSION clauses must
be added to the token map for the new fields in the extensible structured token.

For more information on using product versions in extensible structured tokens, see
the SPI Programming Manual and the SPI Common Extensions Manual.

Every field in the referenced definition must have an SPI null value to which the field is
initialized by SPI before actual values are placed in the field. SPI null values indicate
the presence or absence of a value in the field. A field with an SPI null value is
effectively not present. The SPI null value can be:

• Explicitly specified with the clause SPI-NULL on page 6-37.

• Derived from the SPI null value of a group definition that contains the elementary
item.

• Implicitly specified by default; the default value for SPI-NULL is 255.

The null value specification for a group of bit fields that share the same byte or word is
generated as one contiguous block having an SPI-NULL value of 255 following the
product version number.

You can specify a REDEFINES clause in the definition of an extensible structured
token, but redefined fields have the same SPI null value as the fields they overlay.

If you include comments in your token map definition, the DDL compiler issues a
warning message and does not save the comments.

SPI considers a field to contain an SPI null value if every byte in the field contains the
SPI null value for the field. You use the SSNULL operating system procedure to set
each field of the structure to its specified SPI null value. For a description of the
SSNULL procedure, see the Distributed Name Service (DNS) Management
Programming Manual.

For the SPI null value to indicate the presence or absence of a value in its associated
field, the SPI null value must not be a legitimate value for the field. If every possible
value of a field is legitimate, then an SPI null value cannot be used to indicate the
presence or absence of a value. In such a case, you have two alternatives:

• Indicate the presence or absence of a non-null value in the field by an is-
present field. An is-present field is a Boolean field that can be set to -1 to
indicate that the field has a value (is present), or set to 0 to indicate the field value
is null (is not present). The field must still have an explicit or implicit null value.
Data Definition Language (DDL) Reference Manual—529431-003
7-16

SPI Tokens Product Versions for Bit Fields
• Make the field larger. For example, if a field is a 16-bit integer and all 16-bit values
are valid for the field, you can define the field as a 32-bit integer. Lengthening the
field enables you to choose an SPI null value that creates a value in the 32-bit
integer that is not one of the valid values for the 16-bit integer.

For more information on using product versions in extensible structured tokens, see
the SPI Programming Manual and the SPI Common Extensions Manual.

Topics:

• Product Versions for Bit Fields on page 7-17

• TOKEN-MAP Statement Output on page 7-18

• Standard SPI Definitions in Token-Map Definitions on page 7-19

Product Versions for Bit Fields
Bit fields that share the same byte must have the same product version number in the
token map. The product version number applies to the entire byte. If a bit field extends
across two bytes within a word, the product version number of that field applies to the
entire word.

The product version number for a bit filler depends on the filler’s position in a word and
the length of the filler.

• If a bit filler or group of contiguous bit fillers is less than a byte long and is
contained within one of the two bytes of a word, the filler or group of fillers
assumes the same product version number as all other bit fields in the containing
byte.

• If a bit filler or group of contiguous bit fillers is a byte long or longer and fills either
the upper or lower byte of a word, the filler or group of fillers is a NOVERSION
field. The remaining part of the bit filler or fillers, if any, assumes the same product
version number as all other bit fields in the byte that contains the remaining part.

• If a bit filler extends across two bytes of the same word but does not fill up either
byte, the part of the bit filler on either side of the byte boundary assumes the same
product version number as all other bit fields in the byte that contains the filler.

The DDL compiler allocates words for bit fields according to these rules:

• A bit field inside a group structure that follows a nonbit field item starts on a new
16-bit word. If you specify bit fields consecutively inside the group structure, the
DDL compiler allocates the same 16-bit word for all contiguous bit fields that can fit
in the word. For the next bit field that cannot fit in the same 16-bit word, the DDL
compiler allocates the next word.

• Consecutive bit fields that occupy the same word have the same byte offset value
but different bit offset values in their records in the DICTOBL file. An elementary
item of another data type that follows a bit field item starts on the next word.
Data Definition Language (DDL) Reference Manual—529431-003
7-17

SPI Tokens TOKEN-MAP Statement Output
• A substructure containing only bit fields always starts and ends on a word
boundary, padded with implicit bit fillers when necessary. Such a substructure is
always an even number of bytes long, which conforms to how the C, Pascal (on D-
series systems), pTAL, and TAL compilers allocate space for structures containing
bit maps.

TOKEN-MAP Statement Output
If you request C, COBOL, Pascal (on D-series systems), pTAL, TACL, or TAL source-
code output, the DDL compiler generates compatible data structures for the token map
for the requested language. The SPI routines use these data structures to construct
and access the specified extensible structured token.

The DDL compiler replaces any hyphen in the DDL map name with a circumflex (^) in
a pTAL, TAL, or TACL map name, and an underscore (_) in a C or Pascal (on D-series
systems) map name.

Table 7-1. DDL Data Structures Generated for Token Maps

Language Data Structure

C static int map_name = {v1,v2,...,vn};

For the C data structure, each element in the static integer array is the
value of one word in the token map.

COBOL 01 map-name.
 02 FILLER NATIVE-2 VALUE v1.
 02 FILLER NATIVE-2 VALUE v2.
 ...
 02 FILLER NATIVE-2 VALUE vn.
END

For the COBOL data structure, each FILLER element specifies the value of
one word in the token map.

Pascal
(on D-series
systems)

VAR map_name : ARRAY [1..n] OF INT16 := [v1, v2,
..., vn];

For the Pascal data structure, each element in the integer array is the value
of one word in the token map.
Data Definition Language (DDL) Reference Manual—529431-003
7-18

SPI Tokens Standard SPI Definitions in Token-Map Definitions
For a description of how to use these definitions in a subsystem that accepts SPI
programmatic commands, see the Distributed Name Service (DNS) Management
Programming Manual.

Standard SPI Definitions in Token-Map Definitions
SPI does not provide standard definitions for token maps; subsystems must define
their own token maps. When you define a token map, do not prefix the map-name with
the letter Z; this ensures that your token-map name will not be the same as a current or
future name supplied by HP.

SPI does provide a standard token type for all token maps. The standard token type for
token maps is ZSPI-TYP-MAP, which consists of the standard token data type ZSPI-
TDT-MAP and a token length of 255. You never refer to these definitions when you
define a token map.

Each field in an extensible structured token must have a size, a type, and an SPI null
value. It is generally good practice to specify the field type by referring to one of the
standard SPI definitions. The names of these definitions have the form:

ZSPI-DDL-name

In this form, name uniquely identifies the definition.

The file ZSPIDEF.ZSPIDDL on the disk volume chosen for your system contains the
DDL definitions for any standard SPI definitions you need. To refer to the standard
definitions, compile this file into your dictionary, using the DDL SOURCE command.

TACL ?Section map^name Struct
 BEGIN
 INT2 CODE VALUE v1v2;
 INT MAP (0:n-3) VALUE v3, ..., vn;
 END;

For the TACL data structure, the first STRUCT variable is a double-word
integer specifying the token code in the first 2 words of the token map. The
rest of the STRUCT is an integer array containing one value for each
remaining word in the token map.

pTAL or TAL DEFINE map^name = [v1, v2, ..., vn]#;
 LITERAL map^name^WLN = n;

For the pTAL or TAL data structure, each constant in the DEFINE list
specifies the value of one word in the token map. The LITERAL
map^name^WLN specifies the total number of words in the token map.

Table 7-1. DDL Data Structures Generated for Token Maps

Language Data Structure
Data Definition Language (DDL) Reference Manual—529431-003
7-19

SPI Tokens Standard SPI Definitions in Token-Map Definitions
Example 7-15 on page 7-20 describes an extensible structured token with three fields
and a total byte length of 12. Each field is defined by reference to a definition in the
standard SPI definition file ZSPIDEF.ZSPIDDL. The referenced definition determines
the data type of the field and specifies a default SPI null value for that field. The SPI
null value “X” explicitly specified for the field LOCATION overrides the standard SPI
null value for ZSPI-DDL-CHAR8, which is a set of empty quotes (“ ”). The token map
assigns product version “C00” to each of these fields−any subsystem of product
version C00 or later can access the entire structured token.

From the definitions in Example 7-15 on page 7-20, the DDL compiler generates the
source code in Example 7-16 on page 7-20 through Example 7-20 on page 7-21.

Example 7-15. Extensible Structured Token

DEF assn-ddl-jobinfo. ! Defines fields in extensible structure
 02 jnumber TYPE zspi-ddl-int.
 02 priority TYPE zspi-ddl-int.
 02 location TYPE zspi-ddl-char8 SPI-NULL "X".
END.

CONSTANT assn-tnm-jobinfo VALUE IS 3.
TOKEN-MAP jobinfo-map VALUE IS assn-tnm-jobinfo
 DEF is assn-ddl-jobinfo.
VERSION "C00" FOR jnumber THRU location.
END

Example 7-16. COBOL Source Code Generated for Example 7-15 on page 7-20

01 JOBINFO-MAP.
 02 FILLER NATIVE-2 VALUE 2303. ! Token type ZSPI-TYPE-MAP
 02 FILLER NATIVE-2 VALUE 3. ! Token number
 02 FILLER NATIVE-2 VALUE 12. ! Token byte length
 02 FILLER NATIVE-2 VALUE 17152. ! Product version "C00"
 02 FILLER NATIVE-2 VALUE 1024.
 02 FILLER NATIVE-2 VALUE 2136.
END.

Example 7-17. pTAL or TAL Source Code Generated for Example 7-15 on
page 7-20

DEFINE JOBINFO^MAP = [2303, 3, 12, 17152, 1024, 2136]#;.
LITERAL JOBINFO^MAP^WLN = 6; ! Number of words in token map

Example 7-18. TACL Source Code Generated for Example 7-15 on page 7-20

?Section JOBINFO^MAP Struct
BEGIN INT2 CODE VALUE 150929411; ! Value generated from token code
INT MAP (0:3) VALUE 12 17152 1024 2136; ! Values for rest of map
Data Definition Language (DDL) Reference Manual—529431-003
7-20

SPI Tokens Standard SPI Definitions in Token-Map Definitions
Example 7-21 on page 7-21 shows the DEFINITION and TOKEN-MAP statements
when the JOBINFO token is extended to add new fields associated with product
version “C10.”

Example 7-21 on page 7-21 assumes that every possible value of the integer field
jobclass is legitimate so that an SPI null value cannot be used to indicate its
presence or absence. In this case, the Boolean jobclass-is-present field
indicates whether there is a jobclass value. When this technique is used, a product
version is specified for jobclass-is-present and NOVERSION is specified for
jobclass. NOVERSION removes the jobclass field from consideration when
determining its product version; SPI assumes that the product version number of
jobclass-is-present indicates the correct product version for jobclass.

For a description of using an is-present field, see the Distributed Name Service
(DNS) Management Programming Manual.

Example 7-19. C Source Code Generated for Example 7-15 on page 7-20

#pragma section jobinfo_map
static int jobinfo_map[] = {2303,3,12,17152,1024,2136};

Example 7-20. Pascal Source Code Generated for Example 7-15 on page 7-20

?Section JOBINFO_MAP
VAR JOBINFO_MAP : Array [1..6] of INT16 := [2303,3,12,17152,
 1024,2136];

Example 7-21. Extending an Extensible Token

DEF assn-ddl-jobinfo. ! Defines fields in extensible structure
 02 jnumber TYPE zspi-ddl-int.
 02 priority TYPE zspi-ddl-int.
 02 location TYPE zspi-ddl-char8 SPI-NULL "X".
 02 jobclass-is-present TYPE zspi-ddl-boolean.
 02 jobclass TYPE zspi-ddl-int.
 02 jobusername TYPE zspi-ddl-username.
END

TOKEN-MAP assn-map-jobinfo VALUE IS assn-tnm-jobinfo
 DEF IS assn-ddl-jobinfo.
 VERSION "C00" FOR jnumber THRU location.
 VERSION "C10" FOR jobclass-is-present.
 NOVERSION FOR jobclass.
 VERSION "C10" FOR jobusername.
END
Data Definition Language (DDL) Reference Manual—529431-003
7-21

SPI Tokens Standard SPI Definitions in Token-Map Definitions
Example 7-22. Specifying Product Version Numbers for Bit Fields

DEF bits-layout-x.
 02 x-1 Type BIT 5.
 02 x-filler Type BIT 3.
 02 x-2 Type BIT 7.
 END

TOKEN-MAP map-bits-x VALUE is 1 DEF is bits-layout-x.
 VERSION "D40" FOR x-1 THRU x-2.
 END

DEF bits-layout-y.
 02 y-1 Type BIT 4.
 02 y-2 Type BIT 8.
 02 y-3 Type BIT 6.
 END

TOKEN-MAP map-bits-y VALUE is 32740 DEF is bits-layout-y.
 VERSION 10000 FOR y-1 THRU y-2.
 VERSION 15000 FOR y-3.
 END.

DEF bit-ddl-ex-a.
 02 bits-8 Type BIT 8.
 02 bits-3 Type BIT 3.
 02 bits-2 Type BIT 2.
 02 bits-10 Type BIT 10.
 02 bits-1 Type BIT 1.
 END.

TOKEN-MAP bit-map-ex-a VALUE 1 DEF bit-ddl-ex-a.
 VERSION "D20" FOR bits-8.
 VERSION "D30" FOR bits-3 THRU bits-2.
 VERSION "D40" FOR bits-10 THRU bits-1.
 END.

DEF bit-ddl-ex-c.
 02 char-3 Type CHARACTER 3 SPI-NULL 255.
 02 bits-8 Type BIT 8.
 02 bits-3 Type BIT 3.
 02 FILLER Type BIT 10.
 02 bits-2 Type BIT 2.
 02 bits-5 Type BIT 5.
 02 FILLER Type BIT 4.
 02 bits-4 Type BIT 4.
 02 bits-7 Type BIT 7.
 END.

TOKEN-MAP bit-map-ex-c VALUE 111 DEF bit-ddl-ex-c.
 VERSION "C00" FOR char-3 THRU bits-3.
 VERSION "C10" FOR bits-2.
 VERSION "C20" FOR bits-5 THRU bits-4.
 NOVERSION FOR bits-7.
 END.
Data Definition Language (DDL) Reference Manual—529431-003
7-22

SPI Tokens Standard SPI Definitions in Token-Map Definitions
Example 7-23. pTAL or TAL Output for Example 7-22 on page 7-22 (page 1 of 2)

?SECTION BITS^LAYOUT^X
STRUCT BITS^LAYOUT^X^DEF (*);
 BEGIN
 UNSIGNED(5) X^1;
 UNSIGNED(3) X^FILLER;
 UNSIGNED(7) X^2;
 BIT_FILLER 1;
 END;

?SECTION MAP^BITS^X
DEFINE MAP^BITS^X = [2303, 1, 2, 17152, 767]#;
LITERAL MAP^BITS^X^WLN = 5;

?SECTION BITS^LAYOUT^Y
STRUCT BITS^LAYOUT^Y^DEF (*);
 BEGIN
 UNSIGNED(4) Y^1;
 UNSIGNED(8) Y^2;
 BIT_FILLER 4;
 UNSIGNED(6) Y^3;
 BIT_FILLER 10;
 END;

?SECTION MAP^BITS^Y
DEFINE MAP^BITS^Y = [2303,32740,4,10000,767,1,15000,511,1,0,
 511]#;
LITERAL MAP^BITS^Y^WLN = 11;

?SECTION BIT^DDL^EX^A
STRUCT BIT^DDL^EX^A^DEF (*);
 BEGIN
 UNSIGNED(8) BITS^8;
 UNSIGNED(3) BITS^3;
 UNSIGNED(2) BITS^2;
 BIT_FILLER 3;
 UNSIGNED(10) BITS^10;
 UNSIGNED(1) BITS^1;
 BIT_FILLER 5;
 END;

?SECTION BIT^MAP^EX^A
DEFINE BIT^MAP^EX^A = [2303,1,4,17152,511,1,17162,511,1,
 17172,767]#;
LITERAL BIT^MAP^EX^A^WLN = 11;
Data Definition Language (DDL) Reference Manual—529431-003
7-23

SPI Tokens Standard SPI Definitions in Token-Map Definitions
Table 7-2 on page 7-24 shows a further breakdown of the token map BIT^MAP^EX^C.

?SECTION BIT^DDL^EX^C
STRUCT BIT^DDL^EX^C^DEF (*);
 BEGIN
 STRUCT CHAR^3;
 BEGIN STRING BYTE [0:2]; END;
 FILLER 1;
 UNSIGNED(8) BITS^8;
 UNSIGNED(3) BITS^3;
 BIT_FILLER 5;
 BIT_FILLER 10;
 UNSIGNED(2) BITS^2;
 BIT_FILLER 4;
 UNSIGNED(5) BITS^5;
 BIT_FILLER 4;
 UNSIGNED(4) BITS^4;
 BIT_FILLER 3;
 UNSIGNED(7) BITS^7;
 BIT_FILLER 9;
 END;

?SECTION BIT^MAP^EX^C
DEFINE BIT^MAP^EX^C = [2303,111,12,17152,1023,1,0,511,1,
 17152,767,1,0,511,1,17162,511,1,17172,
 767,1,0,767]#;
LITERAL BIT^MAP^EX^C^WLN = 23;

Table 7-2. Structure of a Bit Map

Value in Word Byte 1 Byte 2 Meaning of Value

2303 8 255 Token type

111 0 111 Token number

12 0 12 Byte length of structure

17152 C 00 Product version C00 for first field

1023 3 255 Null value for char-3

1 0 1 New product version specification follows

0 0 0 NOVERSION

511 1 255 Null value for byte FILLER

1 0 1 New product version specification follows

17152 C 00 Product version “C00”

767 2 255 Null value for bits-8 and bits-3

1 0 1 New product version specification follows

0 0 0 NOVERSION

511 1 255 Null value for bit FILLER

Example 7-23. pTAL or TAL Output for Example 7-22 on page 7-22 (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
7-24

SPI Tokens Standard SPI Definitions in Token-Map Definitions
In Example 7-25 on page 7-25, NOVERSION is incorrect for field z-2 because the
DDL compiler puts z-2 in the same byte as field z-1, and bit fields in the same byte
must have the same product version number.

1 0 1 New product version specification follows

17162 C 10 Product version C10

511 1 255 Null value for bits-2

1 0 1 New product version specification follows

17172 C 20 Product version C20

767 2 255 Null value for bits-5 and bits-4

1 0 1 New product version specification follows

0 0 0 NOVERSION

767 2 255 Null value for bits-7 and bit FILLER

Example 7-24. Incorrect Use of SPI-NULL Value for Bit Fields

DEF bits-layout-z.
 02 z-1 Type BIT 4 SPI-Null 0.
 02 z-2 Type BIT 3 SPI-Null 1.
 02 z-3 Type BIT 10.
 02 z-4 Type BIT 4.
 END.
*** ERROR *** SPI-NULL value on a bit field must be 255 - Z-1
*** ERROR *** SPI-NULL value on a bit field must be 255 - Z-2

Example 7-25. Incorrect Use of Product Version Numbers for Bit Fields

DEF bits-layout-z.
 02 z-1 Type BIT 4 SPI-Null 255.
 02 z-2 Type BIT 3 SPI-Null 255.
 02 z-3 Type BIT 10.
 02 z-4 Type BIT 4.
 END.

TOKEN-MAP map-bits-z VALUE is 20 DEF is bits-layout-z.
 VERSION "C00" FOR z-1.
 NOVERSION FOR z-2.
 VERSION "C10" FOR z-3 THRU z-4.
 END.
*** ERROR *** Inconsistent VERSION within byte - Z-2

Table 7-2. Structure of a Bit Map

Value in Word Byte 1 Byte 2 Meaning of Value
Data Definition Language (DDL) Reference Manual—529431-003
7-25

SPI Tokens Standard SPI Definitions in Token-Map Definitions
In Example 7-26 on page 7-26, the field bits-2 cannot have a product version
number because the DDL compiler puts bits-2 in the same byte as bits-3, for
which NOVERSION is specified:

Example 7-26. Incorrect Use of Version Numbers for Bit Fields

DEF bit-ddl-ex-b.
 02 bits-8 Type BIT 8.
 02 bits-3 Type BIT 3 SPI-NULL 255.
 02 bits-2 Type BIT 2.
 02 bits-10 Type BIT 10.
 02 bits-1 Type BIT 1 SPI-NULL 255.
 END.

TOKEN-MAP bit-map-ex-b VALUE 1 DEF bit-ddl-ex-b.
 VERSION "C00" FOR bits-8.
 NOVERSION FOR bits-3.
 VERSION "C10" FOR bits-2.
 VERSION "C20" FOR bits-10 THRU bits-1.
 END.
*** ERROR *** Inconsistent VERSION within byte - BITS-2
Data Definition Language (DDL) Reference Manual—529431-003
7-26

8
Dictionary-Manipulation Statements

DELETE
The DELETE statement deletes specified objects from the open dictionary.

constant-name

is the name of a constant in the open dictionary. You can specify constant-name
up to 50 times.

def-name

is a name that uniquely identifies an existing definition in the open dictionary. You
can specify def-name up to 50 times.

record-name

is a name that uniquely identifies an existing record in the open dictionary. You can
specify record-name up to 50 times.

Table 8-1. Dictionary-Manipulation Statements

Statement Function

DELETE on page 8-1 Deletes specified objects from the open dictionary

EXIT on page 8-4 Ends the DDL session, closes any files that were opened in the
session, and returns control to the command interpreter

OUTPUT on page 8-5 Reads objects from the open dictionary and writes them to any
open DDL schema file, FUP source code file, REPORT file, or
host-language source code file

OUTPUT UPDATE on
page 8-7

Generates DDL source code that updates every referenced object
in the open dictionary and writes this code to the open DDL source
code file for subsequent compilation

SHOW USE OF on
page 8-11

Lists the objects in the open dictionary that directly or indirectly
refer to specified objects

DELETE { CONSTANT constant-name ... }
 { DEF[INITION] def-name ... }
 { RECORD record-name ... }
 { TOKEN-CODE token-name ... }
 { TOKEN-MAP map-name ... }
 { TOKEN-TYPE type-name ... }
Data Definition Language (DDL) Reference Manual—529431-003
8-1

Dictionary-Manipulation Statements DELETE
token-name

is a name that uniquely identifies an existing token code in the open dictionary. You
can specify token-name up to 50 times.

map-name

is a name that uniquely identifies an existing token map in the open dictionary. You
can specify map-name up to 50 times.

type-name

is a name that uniquely identifies an existing token type in the open dictionary. You
can specify type-name up to 50 times.

Before using the DELETE statement, open the dictionary on the appropriate
subvolume with the DICT command.

The DELETE statement deletes a DDL object only from the dictionary; it does not
delete the corresponding entries from any DDL, FUP, or language source code files.

Before you can delete an object that is referenced by other objects, you must first
delete all the objects that refer to it.

Deleting an object that is referenced by another object is more complicated than
deleting an object that is not referenced. For example, deleting a definition can be
more complicated than deleting a record because a record is never referenced by
another record or by a definition. Similarly, deleting a constant or a token type can be
more complicated than deleting a token map or a token code because token maps and
token codes are never referenced by another object.

Deleting a constant is particularly complicated because constants are usually
referenced by a number of different objects.

When deleting a constant, a definition, or a token map, use the SHOW USE OF
statement to display all the objects that refer to the object you want to delete. You can
use an OUTPUT UPDATE statement to produce DDL source code that can be used to
delete the objects that refer to an object you want to delete.

If you do not use the OUTPUT UPDATE statement, you must delete every object that
refers to a specified object before you can delete that object. This includes not only
direct references, in which object B refers to object A directly, but also indirect
references, in which, for example, object B refers to object A and object C refers to
object A by referring to object B.
Data Definition Language (DDL) Reference Manual—529431-003
8-2

Dictionary-Manipulation Statements DELETE
Example 8-2 on page 8-3 deletes a definition called zip-cd that is referenced by two
other definitions (addr and custinfo), one of which (addr) is referenced by two
records (customer and supplier).

You can enter this code interactively (as in Example 8-2 on page 8-3) or you can place
the code in a file and use the SOURCE command to pass the code to the DDL
compiler, as in Example 8-3 on page 8-3.

To delete an SPI token type that is referenced by SPI token codes, first delete the
token codes, as in Example 8-4 on page 8-3.

Example 8-1. Deleting a Record Interactively

03> VOLUME $data.sales Go to subvolume with dictionary.

04> DDL Run DDL compiler.

!?DICT Open dictionary.

!DELETE RECORD employee. Delete record.

Example 8-2. Deleting a Record Interactively

!?DICT $data.sales Open dictionary in its subvolume.

!DELETE RECORD customer supplier. Delete records that refer to addr.

!DELETE DEF addr custinfo. Delete definitions that refer to zip-cd.

!DELETE DEF zip-cd. Delete zip-cd.

Example 8-3. Deleting a Record Interactively

05> DDL

!?SOURCE del-file DICT command and DELETE statements are in del-file

!EXIT

Example 8-4. Deleting an SPI Token Type That SPI Token Codes References

06> VOLUME $spi.tokens
07> DDL DICT
!DELETE TOKEN-CODE assn-tkn-my-status, assn-tkn-stat-reply.
!DELETE TOKEN-TYPE assn-typ-status.
!EXIT
Data Definition Language (DDL) Reference Manual—529431-003
8-3

Dictionary-Manipulation Statements EXIT
EXIT
The EXIT statement ends the DDL session, closes any files that were opened in the
session, and returns control to the command interpreter.

When you run the DDL compiler interactively, an EXIT statement stops the DDL
compiler and returns control to the command interpreter.

When you run the DDL compiler noninteractively, an EXIT statement within the schema
stops the DDL compiler at that point and returns control to the command interpreter.
Use of the EXIT statement within a schema is optional, because reaching the end of
the file performs the same function.

EXIT closes any files that were opened in the session.

Entering Ctrl-y at the terminal has the same effect as an end-of-file mark. If you type
Ctrl-y at the DDL prompt, the DDL compiler displays EOF! and ends the session.

EXIT [.]

Example 8-5. EXIT Statement in Interactive DDL Session

10> VOLUME $data.sales Go to subvolume with dictionary.

11> DDL Run DDL compiler.

!?DICT Open dictionary.

!?FUP fupsrc Open FUP source code file.

!OUTPUT RECORD customer Write record to fupsrc.

!EXIT Return to command interpreter.
Data Definition Language (DDL) Reference Manual—529431-003
8-4

Dictionary-Manipulation Statements OUTPUT
OUTPUT
The OUTPUT statement reads objects from the open dictionary and writes them to any
open DDL schema file, FUP source code file, REPORT file, or host-language source
code file.

constant-name

is the name of a constant in the open dictionary. You can specify constant-name
up to 50 times.

def-name

is a name that uniquely identifies an existing definition in the open dictionary. You
can specify def-name up to 50 times.

record-name

is a name that uniquely identifies an existing record in the open dictionary. You can
specify record-name up to 50 times.

token-name

is a name that uniquely identifies an existing token code in the open dictionary. You
can specify token-name up to 50 times.

map-name

is a name that uniquely identifies an existing token map in the open dictionary. You
can specify map-name up to 50 times.

OUTPUT { CONSTANT { constant-name ... } }
 { { * } }
 { }
 { DEF[INITION] { def-name ... } }
 { { * } }
 { }
 { RECORD { record-name ... } }
 { { * } }
 { }
 { TOKEN-CODE { token-name ... } }
 { { * } }
 { }
 { TOKEN-MAP { map-name ... } }
 { { * } }
 { }
 { TOKEN-TYPE { type-name ... } }
 { { * } }
 { }
 { * } .
Data Definition Language (DDL) Reference Manual—529431-003
8-5

Dictionary-Manipulation Statements OUTPUT
type-name

is a name that uniquely identifies an existing token type in the open dictionary. You
can specify type-name up to 50 times.

*

specifies either all objects of the given type or, when no type is specified, all
objects.

OUTPUT is used to write DDL objects from the open dictionary to any open DDL, FUP,
REPORT or language source code files.

OUTPUT cannot be used to generate output for Pathmaker objects. Pathmaker objects
(servers, services, requesters, and screens) are added to and deleted from a dictionary
by the Pathmaker product, not by the DDL compiler.

If a DDL source code file is open, the OUTPUT statement causes DDL to retrieve the
specified objects from the open dictionary and generate DDL statements to define the
objects in the specified DDL source code file.

Any objects written to a DDL source code file with the OUTPUT statement are listed on
the DDL compiler listing.

If C, COBOL, Pascal (on D-series systems), pTAL, TACL, or TAL source code files are
open, the OUTPUT statement retrieves any of the specified objects (constant,
definition, record, token code, token map, or token code) from the open dictionary and
generates the appropriate source code in each open source code file.

If FORTRAN source code files are open, the OUTPUT statement retrieves the
specified definitions and records from the open dictionary and generates the
appropriate source code in each open source code file.

If a FUP source code file is open, the OUTPUT statement retrieves the data structure
and file attributes for any specified records from the dictionary and writes FUP file
creation commands to the open FUP file.

In Example 8-6 on page 8-6, an OUTPUT RECORD statement causes the DDL
compiler to retrieve the data structure and file attributes of the record order-info
from the open dictionary and write the resulting source to open COBOL source code
files and FUP source code files.

If you have changed your dictionary and want to ensure that your source code files
correspond exactly to the changed dictionary, use an OUTPUT * statement.

Example 8-6. OUTPUT RECORD Statement

!?DICT $data.sales Open dictionary.

!?COBOL $data.sales.cobsrc Open COBOL source code file.

!?FUP $data.sales.fupsrc Open FUP source code file.

!OUTPUT RECORD order-info. Write source for order-info.
Data Definition Language (DDL) Reference Manual—529431-003
8-6

Dictionary-Manipulation Statements OUTPUT UPDATE
The statements in Example 8-8 on page 8-7 cause the DDL compiler to generate
COBOL data descriptions for all constants in the dictionary, one token type, and two
token codes. These descriptions are written to the open COBOL source code file,
spitkn.

Rather than specify a list of the particular constants needed by the token type and
token code, Example 8-8 on page 8-7 generates source code for all the constants in
the dictionary.

OUTPUT UPDATE
The OUTPUT UPDATE statement generates DDL source code that updates every
referenced object in the open dictionary and writes this code to the open DDL source
code file for subsequent compilation.

constant-name

is the name of a constant in the open dictionary. You can specify constant-name
up to 50 times.

Example 8-7. OUTPUT * Statement

15>DDL Run DDL compiler.

!?DICT Open dictionary.

!?DDL ddlsrc Open and clear DDL source code file.

!OUTPUT *. Write all entries from dictionary to ddlsrc.

!?NODDL Close DDL source code file.

!?FUP fupsrc Open and clear FUP source code file.

!OUTPUT RECORD *. Write all records from dictionary to fupsrc.

Example 8-8. OUTPUT Statements

16> DDL DICT $spi.tokens
!?COBOL spitkn
!OUTPUT CONSTANT *.
!OUTPUT TOKEN-TYPE assn-typ-status.
!OUTPUT TOKEN-CODE assn-tkn-my-status, assn-tkn-stat-reply.
!EXIT

OUTPUT UPDATE { CONSTANT constant-name ... }
 { [DEF[INITION]] def-name ... }
 { TOKEN-TYPE type-name ... } .
Data Definition Language (DDL) Reference Manual—529431-003
8-7

Dictionary-Manipulation Statements OUTPUT UPDATE
def-name

is a name that uniquely identifies an existing definition in the open dictionary. You
can specify def-name up to 50 times.

type-name

is a name that uniquely identifies an existing token type in the open dictionary. You
can specify type-name up to 50 times.

The OUTPUT UPDATE statement is useful only when you want to modify or delete an
object that might be referenced by one or more other dictionary objects.

The dictionary and a DDL source code file must both be open before you specify
OUTPUT UPDATE.

Pathmaker objects (servers, services, requesters, and screens) that refer to the
specified definition are ignored by OUTPUT UPDATE. If a Pathmaker object refers to a
definition that has changed, the Pathmaker product makes the changes to the
Pathmaker object, issuing an error message if appropriate.

OUTPUT UPDATE searches the dictionary for all DDL objects that refer to an object
specified in the statement. The DDL compiler then generates source code that can be
used to delete any objects that refer to the specified object, to update the definition of
the specified object, and to redefine the referring objects. The DDL compiler writes this
source code to the previously opened DDL source code file.

The DDL compiler generates these sections of source code for each object specified in
the OUTPUT UPDATE statement:

To update a specified object, close the DDL source-update file and edit the second
section of the file to make the changes you want to the object definition. Then, use the
SOURCE command to compile the entire DDL source-update file.

To delete a specified object, close the DDL source-update file and use the SOURCE
command to compile only the first section. This instructs the DDL compiler to delete all
referring objects. Then use a DELETE statement to delete the specified object.

Assume that your dictionary contains the objects defined in the database schema from
Appendix B, Sample Schemas, and that you want to change the size of the zip-cd
definition from 5 to 9 digits. Because other definitions and records refer either directly
or indirectly to zip-cd, you cannot simply change its definition.

To change the definition of zip-cd and the records and definitions that refer to it, use
OUTPUT UPDATE as in Example 8-9 on page 8-9.

Section Contents

1 DELETE statements to delete any objects that directly or indirectly refer to
the specified object

2 A statement to redefine the specified object

3 and greater One section for each statement needed to rebuild the objects deleted in
the first section−those objects that refer to the specified object
Data Definition Language (DDL) Reference Manual—529431-003
8-8

Dictionary-Manipulation Statements OUTPUT UPDATE
Example 8-9. OUTPUT UPDATE Statement

20>DDL dict Run DDL compiler, opening dictionary in current subvolume.

!?DDL myfile Open DDL source code file.

!OUTPUT UPDATE zip-cd. Write update source to myfile.

!?NODDL Close myfile before editing it.

!?EDIT myfile

... Change definition of zip-cd.

*EXIT Exit from the editor.

!?SOURCE myfile Compile the contents of myfile into the dictionary.

Example 8-10. Contents of myfile After Example 8-9 on page 8-9 (page 1 of 2)

?Section ZIP-CD-DELETES ! First section deletes all
Delete Record SUPPLIER. ! objects that refer to
Delete Record CUSTOMER. ! ZIP-CD.
Delete Definition SUPPINFO.
Delete Definition CUSTINFO.
Delete Definition ADDR.

?Section ZIP-CD ! Second section defines new
Definition ZIP-CD PIC "9(9)". ! ZIP-CD with new length.

?Section ADDR. ! Subsequent sections contain
Definition ADDR. ! definitions to rebuild
 02 ADDRESS PIC "X(22)". ! deleted objects.
 02 CITY PIC "X(14)".
 02 STATE PIC "X(12)".
 02 ZIP TYPE ZIP-CD.
 End.

?Section CUSTINFO.
Definition CUSTINFO.
 02 CUSTNUM TYPE *.
 02 CUSTNAME TYPE NAME.
 02 ADDR TYPE *.
 End.

?Section SUPPINFO.
Definition SUPPINFO.
 02 SUPPNUM TYPE *.
 02 SUPPNAME TYPE NAME.
 02 ADDR TYPE *.

 End.
Data Definition Language (DDL) Reference Manual—529431-003
8-9

Dictionary-Manipulation Statements OUTPUT UPDATE
Example 8-11 on page 8-10 deletes the constant mdy-date-display and all the
objects that refer to that constant.

?Section CUSTOMER.
Record CUSTOMER.
 File is "$data.sales.customer" Key-sequenced.
 Audit.

 Definition is CUSTINFO.

 Key is CUSTNUM duplicates not allowed.
 Key "cn" is CUSTNAME.
 End.

?Section SUPPLIER.
Record SUPPLIER.
 File is "$data.sales.supplier" Key-sequenced.
 Audit.

 Definition is SUPPINFO.

 Key is SUPPNUM duplicates not allowed.
 Key "su" is SUPPNAME.
 End.

Note. The order in which the objects are deleted and added is important. Any other order can
cause the DDL compiler to issue an error message.

Example 8-11. OUTPUT UPDATE Deleting a Constant and Objects That Refer to It

20>DDL dict

!?DDL ddlout

!OUTPUT UPDATE CONSTANT mdy-date-display.

!?NODDL

!?SOURCE ddlout (mdy-date-display-deletes) Execute DELETE statements
generated by OUTPUT UPDATE
statement

!DELETE CONSTANT mdy-date-display Delete mdy-date-display

!EXIT

Example 8-10. Contents of myfile After Example 8-9 on page 8-9 (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
8-10

Dictionary-Manipulation Statements SHOW USE OF
SHOW USE OF
The SHOW USE OF statement lists the objects in the open dictionary that directly or
indirectly refer to specified objects.

constant-name

is the name of a constant in the open dictionary. You can specify constant-name
up to 50 times.

def-name

is a name that uniquely identifies an existing definition in the open dictionary. You
can specify def-name up to 50 times.

type-name

is a name that uniquely identifies an existing token type in the open dictionary. You
can specify type-name up to 50 times.

The dictionary must be open for SHOW USE OF to execute successfully.

If you want to modify or delete a referenced object, you can use the SHOW USE OF
statement to list all references to the object you plan to modify or delete; however, HP
recommends using OUTPUT UPDATE to make such changes.

SHOW USE OF generates a listing that shows which objects use the specified objects.
Objects can refer to other objects:

SHOW USE OF { CONSTANT constant-name [, constant-name]... }
 { [DEF[INITION]] def-name [, def-name]... }
 { TOKEN-TYPE type-name [, type-name]... }

Object Can refer to ...

Constant Other constants

Definition Other definitions
Constants

Record Definitions
Constants

Token type Definitions
Constants

Token code Token types

Token map Definitions
Constants
Data Definition Language (DDL) Reference Manual—529431-003
8-11

Dictionary-Manipulation Statements SHOW USE OF
The SHOW USE OF listing includes a number to indicate the nesting level of the
objects it displays. Any objects that refer directly to a specified object are at nesting
level 1; any objects that refer directly to an object at level 1 are at nesting level 2; and
so forth.

If more than one object refers to a specified object, the listing is sequenced first by the
order in which objects are specified in the SHOW USE OF statement, second by the
order in which referring objects are in the dictionary, and third by the nesting level.

For the definitions in Example 8-12 on page 8-12 and Example 8-13 on page 8-13, see
the sample schema in Appendix B, Sample Schemas.

Example 8-12. SHOW USE OF Nesting Levels

!?DICT Open dictionary.

!SHOW USE OF DEF zip-cd Display objects that refer to the definition zip-cd (for
the definition of zip-cd and the objects that refer to it,
see the sample schema in Appendix B, Sample
Schemas).

(1) Definition ZIP-CD
(2) Definition ADDR
(3) Definition CUSTINFO

(2) Definition ADDR
(3) Definition SUPPINFO

used by Definition ADDR
used by Definition CUSTINFO
used by Record CUSTOMER

used by Definition SUPPINFO
used by Record SUPPLIER

Nesting levels for ZIP-CD:

ZIP-CD

ADDR

CUSTINFO SUPPINFO

CUSTOMER SUPPLIER

(1)

(2)

(3)

VST811.vsd
Data Definition Language (DDL) Reference Manual—529431-003
8-12

Dictionary-Manipulation Statements SHOW USE OF
Example 8-13. SHOW USE OF Listing Sequence

?DICT
SHOW USE OF DEF custnum, name.

(1) Definition CUSTNUM used by Definition CUSTINFO
(2) Definition CUSTINFO used by Record CUSTOMER

(1) Definition CUSTNUM used by Definition ORDERINFO
(2) Definition ORDERINFO used by Record ORDERS

(1) Definition NAME used by Definition CUSTINFO
(2) Definition CUSTINFO used by Record CUSTOMER

(1) Definition NAME used by Definition EMPINFO
(2) Definition EMPINFO used by Record EMPLOYEE

(1) Definition NAME used by Definition PARTSINFO
(2) Definition PARTSINFO used by Record PARTS

(1) Definition NAME used by Definition SUPPINFO
(2) Definition SUPPINFO used by Record SUPPLIER
Data Definition Language (DDL) Reference Manual—529431-003
8-13

Dictionary-Manipulation Statements SHOW USE OF
Data Definition Language (DDL) Reference Manual—529431-003
8-14

9 DDL Compiler Commands
DDL compiler commands instruct the DDL compiler to perform specific actions.

Commands can be:

• Placed anywhere in a DDL source code file
• Passed to the DDL compiler as part of the RUN DDL command
• Entered at your terminal when you run DDL interactively

For rules governing how you enter DDL commands, see Commands on page 2-18.

These tables list the commands according to the general functions they perform:

• Table 9-1, Dictionary Commands, on page 9-2

• Table 9-2, Compilation Commands, on page 9-2

• Source Output Commands:

° Table 9-3, C Source Output Commands, on page 9-2

° Table 9-4, COBOL Source Output Commands, on page 9-3

° Table 9-5, FORTRAN Source Output Commands, on page 9-3

° Table 9-6, File Utility Program (FUP) Source Output Commands, on page 9-4

° Table 9-7, Pascal Source Output Commands (D-Series Systems Only), on
page 9-4

° Table 9-8, pTAL and TAL Output Commands, on page 9-4

° Table 9-9, TACL Source Output Commands, on page 9-5

° Table 9-10, DDL Other Source Output Commands, on page 9-5

• Table 9-11, Listing Commands, on page 9-6

• Table 9-12, Other DDL Commands, on page 9-6

In the tables’ command descriptions:

Many commands have a second form that begins with NO. You can set and reset
these commands as necessary.

Symbol Means

(A) Acts immediately

(S) Sets a condition flag that controls subsequent action
Data Definition Language (DDL) Reference Manual—529431-003
9-1

DDL Compiler Commands
.

Table 9-1. Dictionary Commands

Command Description

[NO]DICT Opens [closes] a dictionary (A)
Starts [stops] writing object definitions to the dictionary (S)

DICTN Creates and opens a nonaudited dictionary
or opens an existing dictionary (A)

Writes subsequent object definitions to the dictionary (S)

DICTR Opens an existing dictionary for read-only access (A)

[NO]SAVE Saves [purges] the open dictionary when that dictionary is closed (S)

Table 9-2. Compilation Commands

Command Description

COLUMNS Specifies the number of significant columns (character positions) on
DDL input lines (S)

[NO]COMMENTS Includes [excludes] subsequent user-defined dictionary comments in
[from] the open dictionary (S)

ERRORS Specifies the number of errors allowed before compilation stops (S)

SECTION Names a section of a DDL schema (without affecting the section
headings in host-language source code files) (S)

SOURCE Compiles all or part a specified DDL schema (A)

WARNINGS Specifies the number of warnings allowed before compilation stops (S)

Table 9-3. C Source Output Commands (page 1 of 2)

Command Description

[NO]C Opens [closes] a C source code file (A)

Starts [stops] writing translated DDL object definitions to
the C source code file (S)

[NO]C00CALIGN Generates C code according to C00 [pre-C00] alignment
rules (S)

[NO]CCHECK Performs [suppresses] C syntax checks on subsequent
DDL object definitions without generating code (S)

[NO]CDEFINEUPPER Generates C #define names in uppercase [lowercase]
letters (S)

CFIELDALIGN_MATCHED2 Generates C structures that are compatible with pTAL
and TAL structures (S)

CIFDEF, CIFNDEF, and CENDIF Generate the compiler directives #ifdef, #ifndef, and
#endif, respectively (A)

[NO]CPRAGMA Includes [excludes] #pragma-generating code (S)
Data Definition Language (DDL) Reference Manual—529431-003
9-2

DDL Compiler Commands
[NO]CTOKENMAP_ASDEFINE Generates TOKEN MAP output as #define statements
[a static int array] (S)

CUNDEF Generates a #undef compiler directive (A)

[NO]C_DECIMAL Generates decimal [char] output for subsequent C
simple numeric items (S)

[NO]C_MATCH_HISTORIC_TAL Generates [suppresses] C data structures that are
equivalent to pTAL, TAL, and COBOL data structures

[NO]EXPANDC Generates a C referenced type definition inline [as a
structure name] (A)

Table 9-4. COBOL Source Output Commands

Command Description

[NO]ANSICOBOL Generates COBOL output in ANSI [TANDEM] format (S)

[NO]COBCHECK Performs [suppresses] COBOL syntax checks on subsequent DDL
object definitions without generating code (S)

COBLEVEL Specifies a level-numbering scheme for COBOL output (S)

[NO]COBOL Opens [closes] a COBOL source code file (A)

Starts [stops] writing translated DDL object definitions to the COBOL
source code file (S)

[NO]VALUES Includes [excludes] initial values from DEFINITION and RECORD
statements in [from] DDL or COBOL source code (S)

Table 9-5. FORTRAN Source Output Commands

Command Description

[NO]FORCHECK Performs [suppresses] FORTRAN syntax checks on
subsequent DDL object definitions without
generating code (S)

[NO]FORTRAN Opens [closes] a FORTRAN source code file (A)

Starts [stops] writing translated DDL object definitions
to the FORTRAN source code file (S)

[NO]FORTRANUNDERSCORE Replaces with underscores [deletes] hyphens in DDL
names for FORTRAN output (S)

Table 9-3. C Source Output Commands (page 2 of 2)

Command Description
Data Definition Language (DDL) Reference Manual—529431-003
9-3

DDL Compiler Commands
Table 9-6. File Utility Program (FUP) Source Output Commands

Command Description

[NO]FUP Opens [closes] a FUP source code file (A)

Starts [stops] writing translated DDL object
definitions to the FUP source code file (S)

NEWFUP_FILEFORMAT Specifies file format 2 for all FUP source code files
and all FUP alternate key files (S)

OLDFUP_FILEFORMAT Specifies file format 1 for all FUP source code files
and all FUP alternate key files (S)

NOFILEFORMAT Specifies no file format for all FUP source code files
and all FUP alternate key files (S)

Table 9-7. Pascal Source Output Commands (D-Series Systems Only)

Command Description

[NO]PASCAL (D-Series Systems
Only)

Opens [closes] a Pascal source code file (A)

Starts [stops] writing translated DDL object definitions
to the Pascal source code file (S)

PASCALBOUND (D-Series Systems
Only)

Sets the lower bound for Pascal arrays (S)

[NO]PASCALCHECK (D-Series
Systems Only)

Performs [suppresses] Pascal syntax checks on
subsequent data descriptions without generating
code (S)

[NO]PASCALNAMEDVARIANT (D-
Series Only)

Generates the REDEFINES clause in the last
element as a named [anonymous] variant record in
Pascal output (S)

Table 9-8. pTAL and TAL Output Commands

Command Description

DO_PTAL_ON[OFF] Generates code that cannot [can] be compiled by older pTAL or
TAL compilers that do not recognize FIELDALIGN clauses (S)

[NO]TAL Opens [closes] a pTAL or TAL source code file (A)

Starts [stops] writing translated DDL object definitions to the
pTAL or TAL source code file (S)

[NO]TALALLOCATE Causes [suppresses] memory allocation in pTAL or TAL for
single-field definitions when the TAL command is in effect (S)

TALBOUND Sets the lower bound for pTAL or TAL arrays (S)

[NO]TALCHECK Performs [suppresses] pTAL or TAL syntax checking on
subsequent data descriptions without generating code (S)

[NO]TALUNDERSCORE Replaces hyphens with underscores [circumflexes] in DDL
names for pTAL or TAL output (S)
Data Definition Language (DDL) Reference Manual—529431-003
9-4

DDL Compiler Commands
Table 9-9. TACL Source Output Commands

Command Description

[NO]TACL Opens [closes] a TACL source code file (A)

Starts [stops] writing translated DDL object definitions
to the TACL source code file (S)

TACLGEN Specifies a TACL source code generation product
version

Table 9-10. DDL Other Source Output Commands

Command Description

[NO]DDL Opens [closes] a DDL schema file (A)

Starts [stops] writing DDL object definitions to the
DDL schema file (S)

FIELDALIGN_SHARED8 Stores data structures in the dictionary with
SHARED8 alignment (S)

FILLER Specifies the algorithm for generating filler bytes for
source code (S)

[NO]NCLCONSTANT Opens [closes] an NCL source code file (A)

Starts [stops] writing translated DDL constant
definitions to the NCL source code file (S)

[NO]OUTPUT_SENSITIVE Generates case-sensitive [case-insensitive] output
(S)

SETLOCALENAME Specifies the language, territory, and character set
for output of text items (S)

SETSECTION Determines SECTION headings for all open source
code files except TACL source code files (A) (S)

[NO]TIMESTAMP Includes [excludes] data and time comments in [from]
source code listings (S)

[NO]VALUES Includes [excludes] initial values from DEFINITION
and RECORD statements in [from] DDL or COBOL
source code (S)
Data Definition Language (DDL) Reference Manual—529431-003
9-5

DDL Compiler Commands
Table 9-11. Listing Commands

Command Description

[NO]CLISTIN Includes [excludes] subsequent user-defined comments in [from] the
compiler listing (S)

[NO]DEFLIST Includes in [excludes from] the compiler listing a description of each
definition that is referenced by a DEFINITION or RECORD statement (S)

LINECOUNT Specifies the number of lines for each page for all source code files (S)

[NO]LIST Includes [excludes] subsequent DDL source lines in [from] the compiler
listing (S)

OUT Specifies the destination for compiler output (source lines, warnings, and
error messages) (A)

PAGE Writes the next line of the compiler listing at the top of the next page (A)

Optionally specifies a page title (S)

[NO]REPORT Opens [closes] a report file (A)

Starts [stops] writing a schema report to the report file (S)

SPACING Specifies the number of blank lines to insert between lines of a printed
report (S)

[NO]WARN Includes [excludes] warnings in [from] the compiler listing (S)

Table 9-12. Other DDL Commands

Command Description

EDIT Suspends compilation, starts an EDIT process, opens the specified file,
executes the specified commands, closes the file, and resumes compilation
when the EDIT process stops (A)

HELP Briefly describes a specified command or all commands (A)

RESET Stops compiling the current statement and returns to the state before
compilation of that statement began (A)

TEDIT Suspends compilation, starts a PS Text Edit process, opens the specified
file, executes the specified commands, closes the file, and resumes
compilation when the TEDIT process stops (A)
Data Definition Language (DDL) Reference Manual—529431-003
9-6

DDL Compiler Commands ANSICOBOL
ANSICOBOL
The [NO]ANSICOBOL command generates COBOL output in ANSI [TANDEM] format.

Default: NOANSICOBOL

ANSICOBOL

generates COBOL output in ANSI format.

NOANSICOBOL

generates COBOL output in TANDEM format.

ANSI and TANDEM formats are described in the COBOL Manual for TNS and TNS/R
Programs and the COBOL Manual for TNS/E Programs.

In Table 9-1 on page 9-2, the DDL compiler opens a COBOL source code file,
COBSRC, and adds the definition for NAME to that file.

In Example 9-2 on page 9-8, the DDL compiler opens a COBOL source code file,
COBSRC1, and adds the definition for name to that file.

[NO]ANSICOBOL

Example 9-1. ANSICOBOL Command

DDL Input

?ANSICOBOL
?COBOL COBSCR
DEF name.
 02 last-name PIC X(12).
 02 first-name PIC X(8).
 02 midinit PIC X(2).
END.

DDL Output (COBOL Code)

 * SCHEMA PRODUCED DATE - TIME : 9/14/2004 - 18:22:07
?SECTION NAME,ANSI
 * Definition NAME created on 09/14/2004 at 18:22
 01 NAME.
 02 LAST-NAME PIC X(12).
 02 FIRST-NAME PIC X(8).
 02 MIDINIT PIC X(2).
Data Definition Language (DDL) Reference Manual—529431-003
9-7

DDL Compiler Commands C
C
The [NO]C command:

• Opens [closes] a C source code file
• Starts [stops] writing translated DDL object definitions to the C source code file

Default: NOC

C

closes any open C source code file, opens c-source-file, translates
subsequent DDL objects defined by statements or specified in OUTPUT
statements to C source code statements, and writes the C source code statements
to c-source-file.

c-source-file

is the name of the C source code file to be created, if necessary, and opened. The
file must be one of:

• EDIT file
• Unstructured file
• Sequential device (such as a terminal, spooler, or process)

If the file exists but is not one of these types, the DDL compiler issues an error
message and does not open the file.

If c-source-file is an EDIT file, and it exceeds 99,999 lines, the DDL compiler
issues FILE ERROR - filename - Edit file line number too large (537) on
page A-17.

Example 9-2. NOANSICOBOL Command

DDL Input

?NOANSICOBOL
?COBOL COBSCR1
?OUTPUT DEF name.

DDL Output (COBOL Code)

* SCHEMA PRODUCED DATE - TIME : 9/14/2004 - 18:07:27
?SECTION NAME,TANDEM
* Definition NAME created on 09/14/2004 at 18:07
 01 NAME.
 02 LAST-NAME PIC X(12).
 02 FIRST-NAME PIC X(8).
 02 MIDINIT PIC X(2).

{ C [c-source-file [!]] }
{ NOC }
Data Definition Language (DDL) Reference Manual—529431-003
9-8

DDL Compiler Commands C
Default: home terminal

!

purges the contents of c-source-file before opening it, if it exists. If
c-source-file does not exist, the exclamation point has no effect.

Without the exclamation point, the DDL compiler appends the new C source code
statements to the end of c-source-file, and does not replace any existing
objects.

NOC

closes any open C source code file and stops translating DDL object definitions to
C source code statements.

For the data types that the DDL compiler generates for C source code, see Table C-1
on page C-1.

The compiler can translate DDL objects specified in an OUTPUT statement only if the
dictionary containing these objects is open.

Each DDL object translated to C source code is written to the C source code file in a
separate section that has the same name as the DDL object it contains. To suppress
the generation of individual section headings with the SETSECTION command.

With the exception of the TOKEN-MAP statement, the DDL compiler does not generate
C data definitions that allocate space. Instead, the DDL compiler generates C
typedefs for scalar types and structure templates for multiple-element DDL records.

The DDL compiler replaces any hyphen in a DDL name with an underscore (_) before
writing the name to the C source code file.

The DDL compiler appends the characters _def to the tag for all C typedefs and
structures generated by the DDL compiler; therefore, the maximum length for the name
of a DDL definition or record that is going to be translated to C is 27 ASCII characters,
not the standard DDL length of 30 characters.

All C identifiers generated by the DDL compiler are in lowercase letters, except #define
names, which are in uppercase letters by default. You can use the
NOCDEFINEUPPER command to specify lowercase letters for #define names.

The C source code for a definition or record compiled with EXPANDC contains the
fillers added by the DDL compiler as specified by the alignment algorithm in effect
when the definition or record was compiled.

The DDL compiler performs all of the syntax checks listed under the CCHECK
command before writing the C source output. If the DDL compiler finds a syntax error,
it does not write the source output for the object with the error; it does write source
output for an object if only a warning is issued.

All C arrays have a lower bound of 0.
Data Definition Language (DDL) Reference Manual—529431-003
9-9

DDL Compiler Commands C
When generating C source code, the DDL compiler ignores these clauses:

• DISPLAY
• HEADING
• HELP
• INDEXED BY
• MUST BE
• NULL
• OCCURS DEPENDING ON
• TACL
• UPSHIFT
• USAGE IS INDEX
• 88 condition-name

In some cases, the DDL compiler ignores the NOVALUES clause. (For more
information, see VALUES on page 9-115.)

In Example 9-3 on page 9-10, the DDL compiler retrieves the record CUSTOMER and
the objects that the record refers to, directly and indirectly, from the open dictionary.
Then the DDL compiler translates the record and the referenced objects to C source
code and appends the source code to the open C file, $DATA.SALES.CSRC. For the
definition of the CUSTOMER record and the objects it refers to, see Appendix B,
Sample Schemas.

Example 9-3. C Command (page 1 of 2)

DDL Input

27> DDL
!?DICT
!?C $data.sales.csrc
!OUTPUT CONSTANT custnum-heading.
!OUTPUT DEF custnum zip-cd name addr custinfo.
!OUTPUT RECORD customer.
!EXIT
Data Definition Language (DDL) Reference Manual—529431-003
9-10

DDL Compiler Commands C
DDL Output (C Code)

/* SCHEMA PRODUCED DATE - TIME :11/02/1995 14:49:35 */
#pragma section custnum_heading
/* Constant CUSTNUM-HEADING created on 11/02/1995 at 14:37 */
#define CUSTNUM_HEADING "Customer/Number"
#pragma section custnum
/* Definition CUSTNUM created on 11/02/1995 at 14:37 */
typedef char custnum_def[4];
#pragma section zip_cd
/* Definition ZIP-CD created on 11/02/1995 at 14:37 */
typedef char zip_cd_def[5];
#pragma section name
/* Definition NAME created on 11/02/1995 at 14:37 */
#pragma fieldalign shared2 __name
typedef struct
{
 char last_name[12];
 char first_name[8];
 char midinit[2];
} name_def;
#pragma section addr
/* Definition ADDR created on 11/02/1995 at 14:37 */
#pragma fieldalign shared2 __name
typedef struct
{
 char address[22];
 char city[14];
 char state[2];
 zip_cd_def zip;
} addr_def;
#pragma section custinfo
/* Definition CUSTINFO created on 11/02/1995 at 14:37 */
typedef struct
{
 custnum_def custnum;
 name_def custname;
 addr_def addr;
} custinfo_def;
#pragma section customer
/* Record CUSTOMER created on 11/02/1995 at 14:37 */
typedef custinfo_def customer_def;

Example 9-3. C Command (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
9-11

DDL Compiler Commands C00CALIGN
C00CALIGN
The [NO]C00CALIGN command generates C code according to C00 [pre-C00]
alignment rules.

Default: C00CALIGN

C00CALIGN

generates C code according to C00 alignment rules.

NOC00CALIGN

generates C code according to pre-C00 alignment rules.

When using rules prior to C00, all substructures must be word aligned and an even
number of bytes in length.

When using earlier rules, substructures that contain only byte data can be byte aligned
or odd length.

The C00CALIGN and CFIELDALIGN_MATCHED2 commands cannot be in effect at
the same time. The DDL compiler uses the value of the last command that was
specified (C00CALIGN, NOC00CALIGN, or CFIELDALIGN_MATCHED2). See
Example 9-5 on page 9-16.

For more information about alignment rules, see Appendix H, DDL Alignment Rules
for C.

CCHECK
The [NO]CCHECK command performs [suppresses] C syntax checks on subsequent
DDL object definitions without generating code.

Default: CCHECK if a C source code file is open, otherwise NOCCHECK

CCHECK

performs C syntax checks as though C source code were being produced.

NOCCHECK

suppresses C syntax checks.

If a C source code file is open, the compiler performs the C checks whether or not
CCHECK is set.

[NO]C00CALIGN

[NO]CCHECK
Data Definition Language (DDL) Reference Manual—529431-003
9-12

DDL Compiler Commands CCHECK
You can stop C syntax checking by specifying NOCCHECK; you can restart checking
with a subsequent CCHECK.

The DDL compiler does not perform the lengthy testing performed by the C compiler.
The DDL compiler tests the DDL statements to ensure that they follow the rules
specified by C:

• A name cannot be longer than 31 ASCII characters. A name might become longer
because the DDL compiler appends _def to the name of a definition or record.

• C reserved words cannot be DDL names.

If you compile DDL data structures for C, you must maintain word alignment
throughout. Be sure that all members of a structure containing character or filler items
have an even number of characters, and that a substructure within a structure starts on
a word boundary. Odd-length character fields must be followed by fields that are
naturally word aligned. If you use the C_MATCH_HISTORIC_TAL or
CFIELDALIGN_MATCHED2 command, these restrictions change. For more
information, see CFIELDALIGN_MATCHED2 on page 9-14.

When CCHECK is in effect, the DDL compiler issues this message for each DDL
object that passes the syntax check:

C CHECK completed for name

In the message, name is the name of the object checked by CCHECK.

Example 9-4. CCHECK Command

?CCHECK
DEFINITION orderinfo.
 02 ordernum PIC 9(3)
 HEADING ordernum-heading.
 02 orderdate TYPE mdy-date.
 02 deldate TYPE mdy-date.
 02 salesperson TYPE empnum
 HEADING salesperson-
heading.
 02 custnum TYPE *.
END
Definition ORDERINFO size is 23 bytes.
Definition ORDERINFO added to dictionary.
WARNING C OUTPUT DIAGNOSTICS:
ERRORStructure alignment in C is incompatible with
 DDL orderdate
?NOCCHECK
Data Definition Language (DDL) Reference Manual—529431-003
9-13

DDL Compiler Commands CDEFINEUPPER
CDEFINEUPPER
The [NO]CDEFINEUPPER command generates C #define names in uppercase
[lowercase] letters.

Default: CDEFINEUPPER

CDEFINEUPPER

generates C #define names in uppercase letters.

NOCDEFINEUPPER

generates C #define names in lowercase letters.

CFIELDALIGN_MATCHED2
The CFIELDALIGN_MATCHED2 command generates C structures that are compatible
with pTAL and TAL structures.

C output is generated starting on an odd byte for:

• A structure that contains a substructure beginning on an odd-byte boundary

• A structure that contains a substructure ending on an odd-byte boundary, followed
by a user-defined item that the DDL compiler would allocate starting on that odd
byte

The DDL compiler allocates data starting on an odd byte for character data only.

The CFIELDALIGN_MATCHED2 command allows members of a structure to be
assigned a byte or word address consecutively. If the remaining byte in a two-byte
word is not large enough for the next member, then the DDL compiler assigns the next
word aligned address. This guideline also applies to substructures that are declared
inline, using the first member of the substructure.

The DDL compiler word-aligns substructures that refer to other group definitions, and
makes their length even.

An item following a referenced struct must be word aligned. If the referenced struct
has an odd byte length, the DDL compiler adds a filler to the dictionary after the
reference to the struct.

The DDL compiler word-aligns substructures declared by template with a typedef or
structure tag. The DDL compiler adds a filler if needed to word align a referenced
definition.

[NO]CDEFINEUPPER

CFIELDALIGN_MATCHED2
Data Definition Language (DDL) Reference Manual—529431-003
9-14

DDL Compiler Commands CFIELDALIGN_MATCHED2
The C source code for a struct generated with CFIELDALIGN_MATCHED2 set is
preceded by the statement:

#pragma fieldalign shared2 __struct-name

where __struct-name is the name of the struct.

When generating C source with MATCHED2 alignment, the DDL compiler allows
substructures to start on an odd-byte boundary. Without matched2 alignment, C
substructures must start on a word boundary.

The DDL source code for a definition or record compiled with matched2 alignment is
preceded by the command CFIELDALIGN_MATCHED2.

Pascal (on D-series systems) does not support the CFIELDALIGN_MATCHED2
command.

The C00CALIGN and CFIELDALIGN_MATCHED2 commands cannot be in effect at
the same time. The DDL compiler uses the value of the last command that was
specified (C00CALIGN, NOC00CALIGN, or CFIELDALIGN_MATCHED2). C00CALIGN
is the default.

To reset the CFIELDALIGN_MATCHED2 command, specify one of:

• The C00CALIGN command, which generates default C output.

• The NOC00CALIGN command, which does not generate C output for certain
structures. For more information, see C00CALIGN on page 9-12.

When you set CFIELDALIGN_MATCHED2, the DDL compiler ignores any FILLER
specification. Instead, the DDL compiler uses an extended FILLER 1 algorithm, adding
fillers as described previously. For more information about FILLER 1, see FILLER on
page 9-59.

To suppress the #pragma fieldalign matched2 statements, set the NOCPRAGMA
command.

When compiling a definition or record with matched2 alignment, all referenced
definitions must have been compiled with matched2 alignment; otherwise, the DDL
compiler returns an error.

For more information about alignment rules, see Appendix H, DDL Alignment Rules
for C.
Data Definition Language (DDL) Reference Manual—529431-003
9-15

DDL Compiler Commands CFIELDALIGN_MATCHED2
Example 9-5. CFIELDALIGN_MATCHED2 and C00CALIGN Commands

C Structure

struct s1
{
 struct
 {
 char c[3];
 } ss2;
 char y;
} s1;

Alignment of s1 with CFIELDALIGN_MATCHED2

Members of s1 can start on odd-byte boundaries.

Alignment of s1 with C00CALIGN

All structures and substructures must begin and end on even-byte boundaries.

0 1

1 word

2 3

1 word

Byte

c [0] c [1] c [2] y

VST008.vsd

0 1

1 word

Byte

c [0] c [1]

2 3

1 word

c [2] filler

4 5

1 word

y

VST009.vsd

filler
Data Definition Language (DDL) Reference Manual—529431-003
9-16

DDL Compiler Commands CFIELDALIGN_MATCHED2
Example 9-6. CFIELDALIGN_MATCHED2 Command

C Structure

struct s3
{
 char x;
 struct
 {
 char c[3];
 } ss4;
 char y;
} s3;

Alignment of s3 with Default Alignment

All structures and substructures must begin and end on even-byte boundaries.

Alignment of s3 with CFIELDALIGN_MATCHED2:

Members of the structure can start on odd-byte boundaries.

Byte

4 5

1 word

filler

6 7

1 word

y

VST010.vsd

filler

0 1

1 word

x c [1]

2 3

1 word

c [2]

filler c [0]

0 1

1 word

Byte

c [0] c [1]

2 3

1 word

c [2]

4 5

1 word

y

VST011.vsd

fillerx
Data Definition Language (DDL) Reference Manual—529431-003
9-17

DDL Compiler Commands CIFDEF, CIFNDEF, and CENDIF
CIFDEF, CIFNDEF, and CENDIF
The CIFDEF, CIFNDEF, and CENDIF commands generate the compiler directives
#ifdef, #ifndef, and #endif, respectively, for C output.

identifier_name

is the name of the identifier affected by the command.

The DDL compiler does not store identifier-name in the dictionary.

Each CIFNDEF or CIFDEF command have a corresponding CENDIF command.

After closing a C source code file, the DDL compiler checks whether the CIFNDEF and
CIFDEF commands match the CENDIF commands. If not, the DDL compiler issues a
warning.

Before generating C output for CENDIF command, the DDL compiler checks for the
corresponding CIFDEF or CIFNDEF command. If the DDL compiler does not find the
corresponding command, then it issues a warning and does not produce output for the
CENDIF command.

You can nest CIFNDEF and CIFDEF commands

{ CIFNDEF } identifier_name
{ CIFDEF }

CENDIF
Data Definition Language (DDL) Reference Manual—529431-003
9-18

DDL Compiler Commands CIFDEF, CIFNDEF, and CENDIF
Example 9-7. CIFNDEF, CIFDEF and CENDIF commands

10> DDL

!?C CSRC
!?CIFNDEF EMP
!CONSTANT EMP VALUE "JYOTI".
!?CIFDEF EMP
!CONSTANT EMP VALUE "RAM".
!?NOC

!?C CSRC
Output source for C is opened on $ADE101.BUG.CSRC
!?CIFNDEF EMP
!CONSTANT EMP VALUE "JYOTI".
Constant EMP defined.
C output produced for EMP.
!?CIFDEF EMP
!CONSTANT EMP VALUE "RAM".
Constant EMP defined.
C output produced for EMP.
!?CENDIF
!?CENDIF
!?NOC
Output source for C is closed.

The 'C' source code file csrc contains the following.

/* SCHEMA PRODUCED DATE - TIME : 3/10/2000 - 19:39:53 */
#ifndef EMP
#pragma section emp
* Constant EMP created on 03/10/2000 at 19:40 */
#define EMP "JYOTI"
#ifdef EMP
#pragma section emp
/* Constant EMP created on 03/10/2000 at 19:41 */
#define EMP "RAM"
#endif
#endif
Data Definition Language (DDL) Reference Manual—529431-003
9-19

DDL Compiler Commands CLISTIN
CLISTIN
The [NO]CLISTIN command includes [excludes] subsequent user-defined dictionary
comments in [from] the compiler listing.

Default: CLISTIN

CLISTIN

includes subsequent user-defined dictionary comments in the compiler listing.

NOCLISTIN

excludes subsequent user-defined dictionary comments from the compiler listing.

You can suppress comments on the output listing with NOCLISTIN and subsequently
resume listing comments with CLISTIN.

Regardless of the setting of CLISTIN, the compiler listing always includes any
production comments. The DDL compiler generates production comments to provide
such information as the total length of records and definitions and to document such
compiler actions as adding a record to the dictionary.

CLISTIN and NOCLISTIN work independently of the COMMENTS and
NOCOMMENTS commands that control output of comments to the dictionary and of
the CLISTOUT and NOCLISTOUT commands that control reproduction of comments
on source code files.

[NO]CLISTIN

Example 9-8. CLISTIN and NOCLISTIN Commands (page 1 of 2)

DDL Input

*Comment for AA.
DEF aa PIC X(24).

List commands by default.

?NOCLISTIN
*Comment for BB
DEF bb PIC X(10).

Stop listing comments.

?CLISTIN
*Comment for CC
DEF cc PIC 9(6).

Start listing comments again.
Data Definition Language (DDL) Reference Manual—529431-003
9-20

DDL Compiler Commands CLISTOUT
CLISTOUT
The CLISTOUT command includes user-defined dictionary comments in (or excludes
them from) source code files.

Default: CLISTOUT

CLISTOUT

includes user-defined dictionary comments in source code files.

CLISTOUTDETAIL

includes in source code files any user-defined dictionary comments on referenced
definitions that immediately precede the referring definition or record.

NOCLISTOUT

excludes user-defined dictionary comments from source code files.

CLISTOUT and CLISTOUTDETAIL reproduce comments only if the command
COMMENTS on page 9-29 is also specified.

CLISTOUT reproduces comments on any open C, COBOL, DDL, FORTRAN, FUP,
Pascal (on D-series systems), pTAL, or TAL source code file.

You can suppress comments with NOCLISTOUT and then enable them with a
subsequent CLISTOUT.

CLISTOUT does not reproduce comments for referenced objects. To reproduce
comments associated with definitions referenced by another definition or by a record,
specify CLISTOUTDETAIL.

DDL Compiler Listing

*Comment for AA
DEF aa PIC X(24).
Definition AA size is 24 bytes.

Comment from source code file

Production comment

?NOCLISTIN
DEF bb PIC X(10).
Definition BB size is 10 bytes. Production comment

?CLISTIN
*Comment for CC
DEF cc PIC 9(6).
Definition CC size is 24 bytes.

Comment from source code file

Production comment

{ [NO]CLISTOUT | CLISTOUTDETAIL }

Example 9-8. CLISTIN and NOCLISTIN Commands (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
9-21

DDL Compiler Commands CLISTOUT
CLISTOUTDETAIL causes the DDL compiler to reproduce any comments previously
associated with a referenced definition. If a definition or record refers to a definition that
has a comment and CLISTOUTDETAIL is in effect, the DDL compiler reproduces the
comment in the source code just before the referenced definition. CLISTOUTDETAIL
does not reproduce comments for definitions referenced by a token map or a token
type.

Even if NOCLISTOUT is specified, a DDL timestamp comment, preceded by an
asterisk, is included before every definition and record in a source code file. You can
suppress this comment with a NOTIMESTAMP command (see the TIMESTAMP on
page 9-113).

Example 9-9. CLISTOUT, NOCLISTOUT and CLISTOUTDETAIL Commands

DDL Input

?DICT
?COMMENTS
?COBOL cobsrc
?NOTIMESTAMP
?NOCLISTOUT
*Comment for aa
DEF aa PIC X(8).
?CLISTOUT
*Comment for bb
DEF bb PIC 9(6).
?CLISTOUTDETAIL
*Comment for yy
DEF yy
 02 y1 TYPE aa.
 02 y2 TYPE bb.
END
?NOCLISTOUT

Add comments to dictionary.

Suppress timestamp.
Suppress comments.

Start including comments again.

Include comments for aa and bb as well as yy.

Stop including comments.

DDL Output (COBOL Code)

?SECTION AA,TANDEM
 01 AA PIC X(8).
?SECTION BB,TANDEM
* comment for bb
 01 BB PIC 9(6).
?SECTION YY,TANDEM
* comment for yy
 01 YY.
* comment for aa
 02 Y1 PIC X(8).
* comment for bb
 02 Y2 PIC 9(6).
Data Definition Language (DDL) Reference Manual—529431-003
9-22

DDL Compiler Commands COBCHECK
COBCHECK
The [NO]COBCHECK command performs [suppresses] COBOL syntax checks on
subsequent DDL object definitions without generating code.

Default: COBCHECK if a COBOL source code file is open, otherwise NOCOBCHECK

COBCHECK

performs COBOL syntax checks as though COBOL source code were being
produced.

NOCOBCHECK

suppresses COBOL syntax checks.

If a COBOL source code file is open, the compiler performs the COBOL checks
whether or not COBCHECK is set.

You can stop COBOL syntax checking by specifying a NOCOBCHECK command; you
can restart checking with a subsequent COBCHECK.

The DDL compiler does not perform the lengthy syntax testing performed by the
COBOL compiler. The DDL compiler tests the DDL statements to ensure that they
follow the rules specified by COBOL:

• The number of alphabetic characters in the PICTURE literal cannot exceed 30
ASCII characters.

• The maximum numeric PICTURE size is 18 words.

• An elementary or group field with either an OCCURS or OCCURS DEPENDING
ON clause cannot be redefined by another field or group.

• An elementary or group field with a REDEFINES clause cannot be larger than the
field or group it redefines.

• COBOL reserved words cannot be used as DDL names.

• The object does not contain any of these unsupported types:

° TYPE BINARY 8
° TYPE FLOAT
° TYPE COMPLEX
° TYPE LOGICAL

• A TYPE BINARY 64 declaration cannot specify a scale factor of -18 (or less); the
range is restricted to -17 through 18.

• A data item must not have the same name as a group or record that can be used
to qualify the data item.

[NO]COBCHECK
Data Definition Language (DDL) Reference Manual—529431-003
9-23

DDL Compiler Commands COBCHECK
• No more than 3 levels of nested OCCURS can be in a COBOL data-description
entry.

• An item specified as a key in a RECORD statement must be alphanumeric. To use
a numeric field as a key, enclose it within a group and specify the group as the key;
a group’s data type is assumed to be alphanumeric regardless of the data types of
its member fields.

When COBCHECK is in effect, the DDL compiler issues this message for each DDL
object statement that passes the syntax check:

COBOL CHECK completed for name

Example 9-10. COBCHECK and NOCOBCHECK Commands

?COBCHECK
RECORD customer.
FILE IS "$data.sales.customer" KEY-SEQUENCED.
 02 custnum PIC S9(4) KEYTAG 0.
 02 custname PIC X(18) KEYTAG "cn".
 02 custaddr TYPE addr.
END
Record CUSTOMER size is 70 bytes.
*** WARNING *** COBOL OUTPUT DIAGNOSTICS:
*** ERROR *** Non-alphanumeric key element - CUSTNUM
?NOCOBCHECK
Data Definition Language (DDL) Reference Manual—529431-003
9-24

DDL Compiler Commands COBLEVEL
COBLEVEL
The COBLEVEL command specifies a level-numbering scheme for COBOL output.

base

is the starting level number.

Default: 1

increment

is the number of levels to skip.

Default: 1

The formula for calculating COBLEVEL level numbers is:

cobol-level := base + (increment * (level - 1))

Here, level is the level number of the item within the dictionary; it can be any value
from 0 to 49.

The COBLEVEL level numbers are used only for COBOL output; the DDL compiler
does not keep these level numbers in the dictionary. If you need to rebuild your
COBOL source code files and want to keep the COBLEVEL level numbers, you must
specify the COBLEVEL command before issuing the OUTPUT statement.

COBLEVEL [base [, increment]]

Example 9-11. COBLEVEL Command

DDL Input

?COBLEVEL 5,3
DEF aa.
02 bb.
03 cc PIC X.
END

DDL Output (COBOL Code)

05 AA.
 08 BB.
 11 CC PIC X.
Data Definition Language (DDL) Reference Manual—529431-003
9-25

DDL Compiler Commands COBOL
COBOL
The [NO]COBOL command:

• Opens [closes] a COBOL source code file

• Starts [stops] writing translated DDL object definitions to the COBOL source code
file

Default: NOCOBOL

COBOL

closes any open COBOL source code file, opens cobol-source-file,
translates subsequent DDL objects defined by statements or specified in OUTPUT
statements to COBOL source code statements, and writes the COBOL source
code statements to cobol-source-file.

cobol-source-file

is the name of the COBOL source code file to be created, if necessary, and
opened. The file must be one of:

• EDIT file
• Unstructured file
• Sequential device (such as a terminal, spooler, or process)

If the file exists but is not one of these types, the DDL compiler issues an error
message and does not open the file.

If cobol-source-file is an EDIT file, and it exceeds 99,999 lines, the DDL
compiler issues FILE ERROR - filename - Edit file line number too large (537) on
page A-17.

Default: home terminal

!

purges the contents of cobol-source-file before opening it, if it exists. If
cobol-source-file does not exist, the exclamation point has no effect.

Without the exclamation point, the DDL compiler appends the new COBOL source
code statements to the end of cobol-source-file.

NOCOBOL

closes any open COBOL source code file and stops translating DDL object
definitions to COBOL source code statements.

{ COBOL [cobol-source-file [!]] }
{ NOCOBOL }
Data Definition Language (DDL) Reference Manual—529431-003
9-26

DDL Compiler Commands COBOL
For the data types that the DDL compiler generates for COBOL, see Table C-2 on
page C-3.

The compiler can translate DDL objects specified in an OUTPUT statement only if the
dictionary containing these structures is open.

Only one COBOL source code file can be open at a time. If you use the COBOL
command when you already have a COBOL source code file open, the DDL compiler
closes the current source code file before opening the new source code file.

The specified COBOL source code file can be an EDIT file, an unstructured file, or a
sequential device such as a terminal, a spooler, or a process. If the file exists but is not
one of these types, the DDL compiler issues an error message and does not open the
file.

If the COBOL source code file already exists and the exclamation point is omitted, the
DDL compiler appends the generated source code to the end of the file’s original
contents. The DDL compiler does not replace any existing structures.

Each DDL object translated to COBOL source code is written to the source code file in
a separate section with the same name as the DDL object it contains. You can
suppress the default section headings with the SETSECTION command.

The DDL compiler performs all of the syntax checks listed under the COBCHECK
command before writing source output. If it finds a syntax error, the DDL compiler
issues an error message and does not write the source output for the DDL object
statement with the error; it does write source output for the DDL object if only a
warning is issued.

In Example 9-12 on page 9-27, the DDL compiler opens a COBOL source code file,
COBSRC, on the subvolume $data.sales and adds the definition for name to that
file. COBOL does not recognize the UPSHIFT clause and is not included in the
COBOL source code.

Example 9-12. COBOL Command (page 1 of 2)

DDL Input

?COBOL $data.sales.cobsrc
DEF name.
 02 last-name PIC X(12)
 UPSHIFT.
 02 first-name PIC X(8)
 UPSHIFT.
 02 midinit PIC X(2)
 UPSHIFT.
END
Data Definition Language (DDL) Reference Manual—529431-003
9-27

DDL Compiler Commands COBOL
In Example 9-13 on page 9-28, the DDL compiler retrieves the record, CUSTOMER,
from the open dictionary, translates it to COBOL source code, and appends the source
code to the open COBOL file.

For the DDL definition of the CUSTOMER record, see the sample database schema in
Appendix B, Sample Schemas.

DDL Output (COBOL Code)

?SECTION NAME,TANDEM
 01 NAME.
 02 LAST-NAME PIC X(12).
 02 FIRST-NAME PIC X(8).
 02 MIDINIT PIC X(2).

Example 9-13. COBOL Command

DDL Input

28> DDL
!?DICT $data.sales
!?COBOL $data.sales.cobsrc
!?OUTPUT RECORD customer.
!EXIT

Run DDL compiler.
Open dictionary.

Append customer record to COBSRC.

DDL Output (COBOL Code)

?SECTION CUSTOMER,TANDEM
 01 CUSTOMER.
 02 CUSTNUM PIC X(4).
 02 CUSTNAME.
 03 LAST-NAME PIC X(12).
 03 FIRST-NAME PIC X(8).
 03 MIDINIT PIC XX.
 02 CUSTADDR.
 03 ADDRESS PIC X(22).
 03 CITY PIC X(14).
 03 STATE PIC X(2).
 03 ZIP PIC 9(5).

Example 9-12. COBOL Command (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
9-28

DDL Compiler Commands COLUMNS
COLUMNS
The COLUMNS command specifies the number of significant columns (character
positions) on DDL input lines.

num

is an integer from 12 through 132 that specifies the number of significant columns
(character positions) on DDL input lines.

Default: 132

Changing the value of COLUMNS also changes the maximum string length for DDL.

COMMENTS
The [NO]COMMENTS command includes [excludes] subsequent user-defined
dictionary comments in [from] the open dictionary.

Default: NOCOMMENTS

COMMENTS

includes subsequent user-defined dictionary comments in the open dictionary.

NOCOMMENTS

excludes subsequent user-defined dictionary comments from the open dictionary.

After comments have been stored in the dictionary, they can be selectively passed to
any open DDL, REPORT, or host-language source code files with the CLISTOUT
command.

The comments associated with an object can be more than one line long.

Any comments that immediately precede the definition of an object are associated with
that object.

Any comments that immediately precede the definition of an element in a group
definition or record are associated with that element.

For more information on comments, see CLISTOUT on page 9-21, and Comments on
page 2-12.

COLUMNS num

[NO]COMMENTS
Data Definition Language (DDL) Reference Manual—529431-003
9-29

DDL Compiler Commands COMMENTS
In Example 9-14 on page 9-30, the two comment lines preceding the group definition of
NAME are stored as a single comment associated with NAME in the open dictionary,
and three starred comment lines are each associated with an element within the group
definition NAME. The comments are also written to the open COBOL source code file
COBSRC (preceding NAME and CUSTNAME), where they are inherited by the
definition CUSTNAME, which refers to NAME.

In Example 9-15 on page 9-31, a comment on a TOKEN-TYPE statement is inherited
in the C, COBOL, Pascal (on D-series systems), TACL, and pTAL or TAL source code
generated for the token type.

Example 9-14. COMMENTS Command

DDL Input

?DICT
?COBOL cobsrc
?COMMENTS
?CLISTOUT
?NOTIMESTAMP
* An expanded name in the following sequence:
* Last name, First name, Middle initial
DEF name.
* Last name
 02 last-name PIC X(12).
* First name
 02 first-name PIC X(8).
* Middle initial
 02 midinit PIC X(2).
END

DEF custname TYPE name.

DDL Output (COBOL Code)

* An expanded name in the following sequence:
* Last name, First name, Middle initial
 01 NAME.
* Last name
 02 LAST-NAME PIC X(12).
* First name
 02 FIRST-NAME PIC X(8).
* Middle initial
 02 MIDINIT PIC X(2).
* An expanded name in the following sequence:
* Last name, First name, Middle initial
 01 CUSTNAME.
* Last name
 02 LAST-NAME PIC X(12).
* First name
 02 FIRST-NAME PIC X(8).
* Middle initial
 02 MIDINIT PIC X(2).
Data Definition Language (DDL) Reference Manual—529431-003
9-30

DDL Compiler Commands COMMENTS
Example 9-15. COMMENTS Command

DDL Input

?DICT
?COBOL
?TAL
?TACL
?COMMENTS
?CLISTOUT
?NOTIMESTAMP
*Token type for enumerated tokens
TOKEN-TYPE zspi-typ-enum VALUE IS zspi-tdt-enum
 DEF IS zspi-ddl-enum.

DDL Output (C Code)

/* Token type for enumerated tokens */
#pragma section zspi_typ_enum
#define ZSPI_TYP_ENUM 2818u

DDL Output (COBOL Code)

*Token type for enumerated tokens

 01 ZSPI-TYP-ENUM NATIVE-2 VALUE IS 2818.

DDL Output (Pascal Code—D-Series Systems Only)

{ Token type for enumerated tokens }
?Section ZSPI_TYP_ENUM
CONST ZSPI_TYP_ENUM = 2818;

DDL Output (TACL Code)

?Section ZSPI-TYP-ENUM Struct

==Token type for enumerated tokens
BEGIN
UINT ZSPI^TYP^ENUM IS 2818;
END;

DDL Output (pTAL or TAL Code)

!Token type for enumerated tokens
Literal ZSPI^TYP^ENUM = 11 '<' 8 + 2;
Data Definition Language (DDL) Reference Manual—529431-003
9-31

DDL Compiler Commands CPRAGMA
CPRAGMA
The [NO]CPRAGMA command includes [excludes] #pragma-generating code in C
output.

Default: CPRAGMA

CPRAGMA

includes #pragma-generating code in C output.

NOCPRAGMA

encloses #pragma-generating code within the C comment characters. This allows
you to use the C code on systems whose C compilers do not support #pragmas.

CTOKENMAP_ASDEFINE
The CTOKENMAP_ASDEFINE command generates TOKEN MAP output as #define
statements [a static int array] in an open C source code file.

Default: NOCTOKENMAP_ASDEFINE

CTOKENMAP_ASDEFINE

generates the C output of every subsequent TOKEN-MAP as a #define.

NOCTOKENMAP_ASDEFINE

generates the C output of every subsequent TOKEN-MAP as a static int array.

If the C output of a TOKEN-MAP as a #define exceeds one line, a continuation
character “\” is appended to the end of all lines except the last one as required by the
C syntax for a #define.

The rules governing CDEFINEUPPER and NOCDEFINEUPPER also apply to the C
output of a TOKEN-MAP as a #define.

The CTOKENMAP_ASDEFINE and NOCTOKENMAP_ASDEFINE directives only
affect the C output of a TOKEN-MAP. The output in any other language is unaffected.
The generation of TOKEN-CODE and TOKEN-TYPE remain unchanged in all
languages.

Caution. The memory layout of the other machine might be different from the layout on a
HP NonStop system.

[NO]CPRAGMA

[NO]CTOKENMAP_ASDEFINE
Data Definition Language (DDL) Reference Manual—529431-003
9-32

DDL Compiler Commands CTOKENMAP_ASDEFINE
Example 9-16. CTOKENMAP_ASDEFINE Command (page 1 of 4)

$ADE101 JYOTI1 51> DDL
DDL Compiler T9100ABQ - (15NOV99) SYSTEM \BOMBAY
COPYRIGHT TANDEM COMPUTERS INCORPORATED 1978, 1979, 1981, 1982, 1986-1999
!?DICT
Audited dictionary created on subvol $ADE101.JYOTI1.
Dictionary opened on subvol $ADE101.JYOTI1 for update access.

!?C
/* SCHEMA PRODUCED DATE - TIME : 8/02/2000 - 15:03:17 */
Output source for C is opened on $ZTN1.#PTPJHZ4
!?CTOKENMAP_ASDEFINE
!DEF EMP.
!02 F1 PIC XX.
!END.

Definition EMP size is 2 bytes.
Definition EMP added to dictionary.
#pragma section emp
/* Definition EMP created on 08/02/2000 at 15:03 */
#pragma fieldalign shared2 __emp
typedef struct __emp
{
 char f1[2];
} emp_def;

#define emp_def_Size 0
C output produced for EMP.
!TOKEN-MAP MAP1 VALUE 1 DEF EMP.
!VERSION "C00" FOR F1.
!END.
Token Map MAP1 defined.
Token Map MAP1 added to dictionary.
#pragma section map1
/* Token Map MAP1 created on 08/02/2000 at 15:03 */
#define MAP1 { 2303, 1, 2, 17152, 767 }
C output produced for MAP1.

!TOKEN-MAP MAP2 VALUE 20 DEF EMP.
!VERSION "C00" FOR F1.
!END.
Token Map MAP2 defined.
Token Map MAP2 added to dictionary.
#pragma section map2
/* Token Map MAP2 created on 08/02/2000 at 15:04 */
#define MAP2 { 2303, 20, 2, 17152, 767 }
C output produced for MAP2.

!DEF EMP1.
!02 F2 PIC X(500).
!END.
Definition EMP1 size is 500 bytes.
Definition EMP1 added to dictionary.
#pragma section emp1
/* Definition EMP1 created on 08/02/2000 at 15:05 */
#pragma fieldalign shared2 __emp1
typedef struct __emp1
{
 char f2[500];
} emp1_def;
Data Definition Language (DDL) Reference Manual—529431-003
9-33

DDL Compiler Commands CTOKENMAP_ASDEFINE
#define emp1_def_Size 0
C output produced for EMP1.
!TOKEN-MAP MAP3 VALUE 150 DEF EMP1.
!VERSION "C00" FOR F2.
!END.
Token Map MAP3 defined.
Token Map MAP3 added to dictionary.
#pragma section map3
/* Token Map MAP3 created on 08/02/2000 at 15:05 */
#define MAP3 { 2303, 150, 500, 17152, -1, -2561 }
C output produced for MAP3.

!?CDEFINEUPPER
!OUTPUT *.
Loading Definition EMP
#pragma section emp
/* Definition EMP created on 08/02/2000 at 15:03 */
#pragma fieldalign shared2 __emp
typedef struct __emp
{
 char f1[2];
} emp_def;

#define emp_def_Size 0
C output produced for EMP.
Loading Token-Map MAP1
#pragma section map1
/* Token Map MAP1 created on 08/02/2000 at 15:03 */
#define MAP1 { 2303, 1, 2, 17152, 767 }
C output produced for MAP1.

Loading Token-Map MAP2
#pragma section map2
/* Token Map MAP2 created on 08/02/2000 at 15:04 */
#define MAP2 { 2303, 20, 2, 17152, 767 }
C output produced for MAP2.
Loading Definition EMP1
#pragma section emp1
/* Definition EMP1 created on 08/02/2000 at 15:05 */
#pragma fieldalign shared2 __emp1
typedef struct __emp1
{
 char f2[500];
} emp1_def;
#define emp1_def_Size 0
C output produced for EMP1.

Loading Token-Map MAP3
#pragma section map3
/* Token Map MAP3 created on 08/02/2000 at 15:05 */
#define MAP3 { 2303, 150, 500, 17152, -1, -2561 }
C output produced for MAP3.
!?NOCDEFINEUPPER
!OUTPUT *.
Loading Definition EMP
#pragma section emp
/* Definition EMP created on 08/02/2000 at 15:03 */
#pragma fieldalign shared2 __emp
typedef struct __emp
{
 char f1[2];
} emp_def;
#define emp_def_Size 0
C output produced for EMP.

Example 9-16. CTOKENMAP_ASDEFINE Command (page 2 of 4)
Data Definition Language (DDL) Reference Manual—529431-003
9-34

DDL Compiler Commands CTOKENMAP_ASDEFINE
Loading Token-Map MAP1
#pragma section map1
/* Token Map MAP1 created on 08/02/2000 at 15:03 */
#define map1 { 2303, 1, 2, 17152, 767 }
C output produced for MAP1.

Loading Token-Map MAP2
#pragma section map2
/* Token Map MAP2 created on 08/02/2000 at 15:04 */
#define map2 { 2303, 20, 2, 17152, 767 }
C output produced for MAP2.

Loading Definition EMP1
#pragma section emp1
/* Definition EMP1 created on 08/02/2000 at 15:05 */
#pragma fieldalign shared2 __emp1
typedef struct __emp1
{
 char f2[500];
} emp1_def;
#define emp1_def_Size 0
C output produced for EMP1.

Loading Token-Map MAP3
#pragma section map3
/* Token Map MAP3 created on 08/02/2000 at 15:05 */
#define map3 { 2303, 150, 500, 17152, -1, -2561 }
C output produced for MAP3.

!?NOCTOKENMAP_ASDEFINE
!OUTPUT *.
Loading Definition EMP
#pragma section emp
/* Definition EMP created on 08/02/2000 at 15:03 */
#pragma fieldalign shared2 __emp
typedef struct __emp
{
 char f1[2];
} emp_def;
#define emp_def_Size 0
C output produced for EMP.

Loading Token-Map MAP1
#pragma section map1
/* Token Map MAP1 created on 08/02/2000 at 15:03 */
static short map1[] = { 2303, 1, 2, 17152, 767 };
C output produced for MAP1.

Loading Token-Map MAP2
#pragma section map2
/* Token Map MAP2 created on 08/02/2000 at 15:04 */
static short map2[] = { 2303, 20, 2, 17152, 767 };
C output produced for MAP2.

Loading Definition EMP1
#pragma section emp1
/* Definition EMP1 created on 08/02/2000 at 15:05 */
#pragma fieldalign shared2 __emp1
typedef struct __emp1
{
 char f2[500];
} emp1_def;
#define emp1_def_Size 0
C output produced for EMP1.

Example 9-16. CTOKENMAP_ASDEFINE Command (page 3 of 4)
Data Definition Language (DDL) Reference Manual—529431-003
9-35

DDL Compiler Commands CUNDEF
CUNDEF
The CUNDEF command generates a #undef compiler directive for C output.

identifier_name

is the name of the identifier affected by the #undef directive.

The DDL compiler generates a #undef statement in C output without checking
whether the identifier name was previously defined.

 It is your responsibility to use proper identifiers with the CUNDEF command.

Loading Token-Map MAP3
#pragma section map3
/* Token Map MAP3 created on 08/02/2000 at 15:05 */
static short map3[] = { 2303, 150, 500, 17152, -1, -2561 };
C output produced for MAP3.
!

CUNDEF identifier_name

Example 9-17. CUNDEF Command (page 1 of 2)

DDL Input

11> DDL
!?C CSRC
!CONSTANT EMP VALUE "JYOTI".
!?CIFDEF EMP
!?CUNDEF EMP
!?CENDIF
!?NOC

!?C CSRC
Output source for C is opened on $ADE101.BUG.CSRC
!CONSTANT EMP VALUE "JYOTI".
Constant EMP defined.
C output produced for EMP.

!?CIFDEF EMP
!?CUNDEF EMP
!?CENDIF
!?NOC
Output source for C is closed.

Example 9-16. CTOKENMAP_ASDEFINE Command (page 4 of 4)
Data Definition Language (DDL) Reference Manual—529431-003
9-36

DDL Compiler Commands C_DECIMAL
C_DECIMAL
The [NO]C_DECIMAL command generates decimal [char] output for subsequent C
simple numeric items.

Default: NOC_DECIMAL

C_DECIMAL

generates decimal output for subsequent C simple numeric items.

NOC_DECIMAL

generates char output for subsequent C simple numeric items.

The C_DECIMAL command is used to produce decimal values in C output for simple
numeric fields.

For computational numeric fields, the DDL compiler ignores the effect of the
C_DECIMAL command.

DDL Output (C Code)

/* SCHEMA PRODUCED DATE - TIME : 3/10/2000 - 20:05:28 */
#pragma section emp
/* Constant EMP created on 03/10/2000 at 20:05 */
#define EMP "JYOTI"
#ifdef EMP
#undef EMP
#endif

[NO]C_DECIMAL

Example 9-18. C_DECIMAL and NOC_DECIMAL Commands (page 1 of 3)

12> DICT
!DEF EMP.
!02 ITEM1 PIC 9(5).
!02 ITEM2 PIC 9(6).
!END.

Example 9-17. CUNDEF Command (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
9-37

DDL Compiler Commands C_DECIMAL
!?C
!OUTPUT *.
!?C_DECIMAL
!OUTPUT *.
!?NOC_DECIMAL
!OUTPUT *.
!DEF EMP1.
!02 ITEM1 PIC 9(5).
!02 ITEM2 PIC 9(5) COMP.
!END.
!?C_DECIMAL
!OUTPUT DEF EMP1.

!?DICT
Audited dictionary created on subvol $ADE101.BUG.
Dictionary opened on subvol $ADE101.BUG for update access.
!DEF EMP.
!02 ITEM1 PIC 9(5).
!02 ITEM2 PIC 9(6).
!END.
Definition EMP size is 11 bytes.
Definition EMP added to dictionary.

!?C
 /* SCHEMA PRODUCED DATE - TIME : 3/06/2000 17:14:32 */
Output source for C is opened on $ZTN0.#PTS3ZAW
!OUTPUT *.
Loading Definition EMP
#pragma section emp
/* Definition EMP created on 03/06/2000 at 17:13 */
#pragma fieldalign shared2 __emp
typedef struct __emp
{
char item1[5];
char item2[6];
} emp_def;
C output produced for EMP.

!?C_DECIMAL
!OUTPUT *.
Loading Definition EMP
#pragma section emp
/* Definition EMP created on 03/06/2000 at 17:13 */
#pragma fieldalign shared2 __emp
typedef struct __emp
{
decimal item1[5];
decimal item2[6];
} emp_def;
C output produced for EMP.

Example 9-18. C_DECIMAL and NOC_DECIMAL Commands (page 2 of 3)
Data Definition Language (DDL) Reference Manual—529431-003
9-38

DDL Compiler Commands C_DECIMAL
!?NOC_DECIMAL
!OUTPUT *.
Loading Definition EMP
#pragma section emp
/* Definition EMP created on 03/06/2000 at 17:13 */
#pragma fieldalign shared2 __emp
typedef struct __emp
{
char item1[5];
char item2[6;
} emp_def;

C output produced for EMP.
!DEF EMP1.
!02 ITEM1 PIC 9(5).
!02 ITEM2 PIC 9(5) COMP.
!END.
Filler emitted at level 2 after ITEM1
Definition EMP1 size is 10 bytes.
Definition EMP1 added to dictionary.
#pragma section emp1

/* Definition EMP1 created on 03/06/2000 at 17:24 */
#pragma fieldalign shared2 __emp1
typedef struct __emp1
{
char item1[5];
unsigned long item2;
} emp1_def;
C output produced for EMP1.

!?C_DECIMAL
!OUTPUT DEF EMP1.
Loading Definition EMP1
#pragma section emp1
/* Definition EMP1 created on 03/06/2000 at 17:24 */
#pragma fieldalign shared2 __emp1
typedef struct __emp1
{
decimal item1[5];
unsigned long item2;
} emp1_def;
C output produced for EMP1.
!

Example 9-18. C_DECIMAL and NOC_DECIMAL Commands (page 3 of 3)
Data Definition Language (DDL) Reference Manual—529431-003
9-39

DDL Compiler Commands C_MATCH_HISTORIC_TAL
C_MATCH_HISTORIC_TAL
The [NO]C_MATCH_HISTORIC_TAL command generates [suppresses] C data
structures that are equivalent to pTAL, TAL, and COBOL data structures.

Default: NOC_MATCH_HISTORIC_TAL

C_MATCH_HISTORIC_TAL

generates C data structures that start on odd bytes (equivalent to TAL and COBOL
data structures) for:

• Any structure that contains a substructure beginning on an odd byte boundary

• Any structure that contains a substructure ending on an odd-byte boundary,
followed by a user-defined item that the DDL compiler would allocate starting
on the odd byte

The DDL compiler allocates data starting on an odd byte for character data only.

The source code for a generated struct is preceded by the statement:

#pragma fieldalign shared2 __struct-name

NOC_MATCH_HISTORIC_TAL

resets the option.

The C_MATCH_HISTORIC_TAL command does not affect the dictionary.

The C_MATCH_HISTORIC_TAL command allows members of structures to be aligned
to a byte or word boundary. If the remaining byte in a two-byte word is not large
enough for the next member, then the DDL compiler assigns the next word aligned
address. This guideline also applies to substructures that are declared inline, using the
first member of the substructure.

The DDL compiler word-aligns substructures declared by template with a typedef or
structure tag. The DDL compiler adds a filler if needed to word-align a referenced
definition.

The DDL compiler word-aligns substructures that refer to other group definitions to
make their length even.

The C source code for a struct generated with matched2 alignment set is preceded by
the statement:

#pragma fieldalign matched2 __struct-name

where __struct-name is the name of the struct.

To suppress the #pragma fieldalign matched2 statements, set the
NOCPRAGMA command.

[NO]C_MATCH_HISTORIC_TAL
Data Definition Language (DDL) Reference Manual—529431-003
9-40

DDL Compiler Commands C_MATCH_HISTORIC_TAL
Example 9-19 on page 9-41 shows the C source generated for the given DDL source
with C_MATCH_HISTORIC_TAL in effect which allows substructures to start and end
on odd-byte boundaries. If the C_MATCH_HISTORIC_TAL command is not in effect, C
source will not be generated for def f because substructure j starts on an odd-byte
boundary. The DDL compiler emits a filler at level 2 after k because the following data
items will not fit in the remaining byte.

Example 9-19. C_MATCH_HISTORIC_TAL Command (page 1 of 2)

DDL Input

def a.
 02 b type character 1.
 02 c type character 1.
 02 d type character 1.
end.

def e type character 1.

def f.
 02 g type binary 16.
 02 h.
 03 i type e.
 03 j type a.
 02 k type character 1.
 02 l type binary 16.
end.
Data Definition Language (DDL) Reference Manual—529431-003
9-41

DDL Compiler Commands DDL
DDL
The [NO]DDL command:

• Opens [closes] a DDL schema file

• Starts [stops] writing subsequent DDL object definitions to the open DDL schema
file

Default: NODDL

DDL Output (C Code)

/* SCHEMA PRODUCED DATE - TIME :10/13/1995 13:23:16 */
#pragma section a
/* Definition A created on 10/13/1995 at 13:23 */
#pragma fieldalign shared8 __a
typedef struct __a
{
 char b;
 char c;
 char d;
 char filler_0;
} a_def;
#pragma section e
/* Definition E created on 10/13/1995 at 13:23 */
typedef char e_def;
#pragma section f
/* Definition F created on 10/13/1995 at 13:23 */
#pragma fieldalign shared8 __f
typedef struct __f
{
 short g;
 struct
 {
 e_def i;
 char filler_0;
 a_def j;
 } h;
 char k;
 char filler_1;
 short l;
} f_def;

{ DDL [ddl-source-file [!]] }
{ NODDL }

Example 9-19. C_MATCH_HISTORIC_TAL Command (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
9-42

DDL Compiler Commands DDL
DDL

closes any open DDL source code file, opens ddl-source-file, translates
subsequent DDL objects defined by statements or specified in OUTPUT
statements to DDL source code statements, and writes the DDL source code
statements to ddl-source-file.

ddl-source-file

is the name of the DDL source code file to be created, if necessary, and opened.
The file must be one of:

• EDIT file
• Unstructured file
• Sequential device (such as a terminal, spooler, or process)

If the file exists but is not one of these types, the DDL compiler issues an error
message and does not open the file.

If ddl-source-file is an EDIT file, and it exceeds 99,999 lines, the DDL
compiler issues FILE ERROR - filename - Edit file line number too large (537) on
page A-17.

Default: home terminal

!

purges the contents of ddl-source-file before opening it, if it exists. If
ddl-source-file does not exist, the exclamation point has no effect.

Without the exclamation point, the DDL compiler appends the new DDL source
code statements to the end of ddl-source-file.

NODDL

closes any open DDL source code file and stops translating DDL object definitions
to DDL source code statements.

The compiler can translate DDL objects specified in an OUTPUT statement only if the
dictionary containing these structures is open.

Only one DDL source code file can be open at a time. If you use the DDL command
when you already have a source code file open, the DDL compiler closes the current
source code file before opening the new source code file.

If the DDL source code file already exists and the exclamation point is omitted, the
DDL compiler appends the DDL object definitions to the end of the file’s original
contents. The DDL compiler does not replace any existing structures in the DDL
source code file.
Data Definition Language (DDL) Reference Manual—529431-003
9-43

DDL Compiler Commands DDL
The specified DDL source code file must be an EDIT file, an unstructured file, or a
sequential device such as a terminal, a spooler, or a process. If the file exists but is not
one of these types, the DDL compiler issues an error message and does not open the
file.

Each DDL object translated to DDL source is written to the source code file in a
separate section that has the same name as the DDL structure it contains. You can
suppress the individual section headings with the SETSECTION command.

For dictionaries created from the DDL compiler, the DDL source is almost identical to
the original schema at the time the dictionary was created, and can be used to rebuild
a dictionary.

If the file \DALLAS.$DATA.SALES.DDLSRC already exists, the exclamation point in the
following line of code directs the DDL compiler to purge the contents of the file before
opening it. If the file does not exist, the DDL compiler creates a new file with the
specified name.

?DDL \dallas.$data.sales.ddlsrc !

In Example 9-20 on page 9-44, the compiler writes all the definitions and records from
the open dictionary to the DDL source code file, DDLSRC, first purging any data in that
file. Assume that the dictionary:

• Does not contain Pathmaker information.

• Contains one record, CUSTOMER, and all definitions necessary to build that
record.

The DDL source code file can be used to reconstruct the dictionary on another
subvolume:

Caution. Do not attempt to rebuild a dictionary installed by the Pathmaker product from DDL
source code; Pathmaker application design information will be lost.

Example 9-20. DDL Command (page 1 of 2)

DDL Input

29> DDL
!?DICT $data.sales
!?DDL ddlsrc !
!OUTPUT *.

Open existing dictionary.
Clear and open DDL source code file
Write all definitions and records to DDL source code file.
Data Definition Language (DDL) Reference Manual—529431-003
9-44

DDL Compiler Commands DEFLIST
DEFLIST
The DEFLIST command includes in (or excludes from) the compiler listing a
description of each definition that is referenced by a DEFINITION or RECORD
statement.

Default: NODEFLIST

DDLSRC

?Section NAME
Definition NAME.
 02 LAST-NAME Pic "X(12)"
 UPSHIFT.
 02 FIRST-NAME Pic "X(8)"
 UPSHIFT.
 02 MIDINIT Pic "X(2)"
 UPSHIFT.
 End

?Section ADDR
Definition ADDR.
 02 ADDRESS Pic "X(22)".
 02 CITY Pic "X(14)".
 02 STATE Pic "X(2)".
 02 ZIP-CODE Pic "9(5)".
 End

?Section CUSTNUM
Definition CUSTNUM Pic "X(4)".

?Section CUSTOMER
Record CUSTOMER.
 File is "CUSTOMER" Key-sequenced.
 02 CUSTNUM Type *.
 02 CUSTNAME Type NAME.
 02 CUSTADDR Type ADDR.
 Key is CUSTNUM Duplicates not allowed.
 Key "CN" is CUSTNAME.
 End

Reconstructing the Dictionary on Another Subvolume

>30
!?DICT $data.backup !
!?SOURCE ddlsrc
!EXIT

Open and clear dictionary.
Write source to dictionary.

[NO]DEFLIST

Example 9-20. DDL Command (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
9-45

DDL Compiler Commands DEFLIST
DEFLIST

includes in the compiler listing the level number, name, size, and byte offset of
definitions referenced by a DEFINITION or RECORD statement.

NODEFLIST

excludes from the the compiler listing the level number, name, size, and byte offset
of definitions referenced by a DEFINITION or RECORD statement.

DEFLIST can be useful when a referenced definition is included in generated source
code files.

The DEFLIST description appears in either of these formats:

level-number field-name (offset:length) [min:max]

level-number field-name (offset:length)

depending on whether a minimum and maximum (or total) number of occurrences
have been defined.

For users of SPI, DEFLIST can help you understand ZSPI-DDL-PARM-ERR.Z-
OFFSET, the definition that provides the byte offset within a structure that is in error.
DEFLIST shows where the error is.

In Example 9-21 on page 9-46, assume that the record CUSTOMER indirectly refers to
three definitions−CUSTNUM, NAME, and ADDR−through the definition CUSTINFO.
(These definitions are in the sample database schema in Appendix B, Sample
Schemas.)

Variable Value

level-number Level number assigned to the field in the referring structure.

field-name Name of the included field or group.

offset Starting byte position of the field or group within the referring
structure.

length Length of the field in bytes.

min Minimum number of occurrences for OCCURS DEPENDING ON or
the total number for OCCURS.

max Maximum number of occurrences for OCCURS DEPENDING ON or
the total number for OCCURS.

Example 9-21. DEFLIST Command (page 1 of 2)

Definition in Dictionary

DEF variable-table.
 02 table-size TYPE BINARY 16.
 02 data-table TYPE BINARY 32
 OCCURS 1 TO 100 TIMES DEPENDING ON table-size.
END
Data Definition Language (DDL) Reference Manual—529431-003
9-46

DDL Compiler Commands DICT
DICT
The DICT command:

• Opens [closes] a dictionary
• Starts [stops] writing object definitions to the dictionary

Default: NODICT

DICT

closes any open dictionary, opens a dictionary on dict-subvol-name (creating
it if it does not exist), and writes subsequent object definitions to that dictionary.

DEFLIST Command Output

!?DEFLIST
!?OUTPUT DEF variable-table

Loading Definition VARIABLE-TABLE Table starts at byte 0 with a maximum
length of 402 bytes

Including 01 VARIABLE-TABLE (0:42) Element starts at byte 0 and has a length
of 2 bytes

Including 02 TABLE-SIZE (2:4)[1:100] Element starts at byte 2, has a length of
4 bytes, and occurs 1 to 100 times

!?DEFLIST
!OUTPUT RECORD customer

Include descriptions of referenced
definitions in the listing

Loading Record CUSTOMER

Including: 01 CUSTINFO (0:69)
Including: 02 CUSTNUM (0:4)
Including: 03 LAST-NAME (4:12)
Including: 03 FIRST-NAME (16:8)
Including: 03 MIDINIT (24:2)
Including: 02 ADDR (26:43)
Including: 03 ADDRESS (26:22)
Including: 03 CITY (48:14)
Including: 03 STATE (62:2)
Including: 03 ZIP-CODE (64:5)

69 bytes starting at 0
4 bytes starting at 0
12 bytes starting at 4
8 bytes starting at 16
2 bytes starting at 24
43 bytes starting at 26
22 bytes starting at 26
2 bytes starting at 62
5 bytes starting at 64

{ DICT [dict-subvol-name] [!] }
{ NODICT }

Note. The DDL compiler creates an audited dictionary only if the subvolume is audited. A
dictionary on a nonaudited subvolume is also nonaudited.

Example 9-21. DEFLIST Command (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
9-47

DDL Compiler Commands DICT
dict-subvol-name

is the name of the dictionary subvolume, which has this form:

[\node-name.][$volume-name.][subvolume-name]

!

purges existing dictionary files in dict-subvol-name and creates new dictionary
files there. The new dictionary files have the same extent sizes, MAXEXTENTS
value, security, and ownership as the purged dictionary files had.

If dict-subvol-name has no dictionary files, the exclamation point has no
effect.

NODICT

closes any open dictionary.

The dictionary consists of 14 files with predefined file names. For this reason, any
given subvolume can contain only one dictionary.

If the specified subvolume does not exist, the DDL compiler creates and opens the
dictionary on the new subvolume. If the subvolume exists, but does not contain a
dictionary, the DDL compiler creates and opens a dictionary on the specified
subvolume.

If a dictionary already exists on the specified subvolume, the DDL compiler opens the
dictionary for update access. More than one user can open the dictionary for
concurrent update access.

If a dictionary already exists, you can either:

• Purge the dictionary and re-create it by specifying an exclamation point after the
subvolume name.

• Add new DDL objects to the existing dictionary by omitting the exclamation point.

For a Pathmaker dictionary, DICT! deletes only DDL objects, not Pathmaker objects
(services, servers, requesters, and screens); Pathmaker objects can be modified or
deleted only within the Pathmaker environment. If the Pathmaker dictionary is an
earlier product version than your dictionary, the DDL compiler does not delete any
Pathmaker objects.

Syntax Element Default

dict-subvol-name Current system, volume, and subvolume

node-name Current system

volume-name Current volume

subvolume-name Current subvolume

Note. If you do not have purge access to the original dictionary files, the DDL compiler
does not execute the command DICT !.
Data Definition Language (DDL) Reference Manual—529431-003
9-48

DDL Compiler Commands DICTN
The file security of the dictionary files is the default file security of whoever compiles
the DDL source that creates the dictionary.

Only one dictionary can be open at a time. If you use the DICT command when you
already have a dictionary open, the DDL compiler closes the current dictionary before
opening the specified dictionary.

After a DICT or DICTN command creates a dictionary, using DICT or DICTN to open
the dictionary has no effect on whether the dictionary is audited or not. Either
command can open the dictionary, but the audited state of the dictionary does not
change.

If an existing dictionary that you open with the DICT command is nonaudited, the DDL
compiler issues a warning message.

To open a dictionary on the volume $DATA and subvolume SALES, enter:

?DICT $data.sales

If there is no dictionary on $DATA.SALES, the DDL compiler creates and then opens
the dictionary.

To execute the DDL compiler interactively and then clear and open the dictionary on
the current subvolume, you can enter:

31>DDL
?DICT !

Alternatively, you can include the DICT command when you run the DDL compiler:

32>DDL DICT

You can create a dictionary either by using the DICT command or by running the
Pathmaker application systems generator. When you add a Pathmaker project, the
Pathmaker software creates a dictionary for you.

More than one user can write to a dictionary at the same time, whether the Pathmaker
tool or the DDL compiler created the dictionary.

DICTN
The DICTN command:

• Creates and opens a nonaudited dictionary or opens an existing dictionary
• Writes subsequent object definitions to the open dictionary

Caution. The TMF cannot monitor nonaudited files. The integrity of a nonaudited dictionary on
an audited disk might be jeopardized if corruptions of the disk occur.

DICTN [dict-subvol-name] [!]
Data Definition Language (DDL) Reference Manual—529431-003
9-49

DDL Compiler Commands DICTN
dict-subvol-name

is the name of the dictionary subvolume, which has this form:

[\node-name.][$volume-name.][subvolume-name]

!

purges existing dictionary files in dict-subvol-name and creates new dictionary
files there. The new dictionary files have the same extent sizes, MAXEXTENTS
value, security, and ownership as the purged dictionary files had.

If dict-subvol-name has no dictionary files, the exclamation point has no
effect.

If the dictionary is audited or was created by an older DDL product version, the DDL
compiler deletes the dictionary and re-creates it as a nonaudited dictionary, provided
the dictionary is not part of a Pathmaker catalog. The DDL compiler issues a warning
message if it cannot re-create the dictionary as a nonaudited dictionary.

When used on an audited dictionary created for a Pathmaker application, this
command purges only DDL files; it does not purge Pathmaker objects. If the dictionary
is part of an older product version of the Pathmaker catalog, the DDL compiler cannot
purge any objects from the dictionary.

The dictionary consists of 14 files with predefined file names. For this reason, any
given subvolume can contain only one dictionary.

If the specified subvolume does not exist, the DDL compiler creates and opens the
dictionary on the new subvolume.

If the subvolume exists but does not contain a dictionary, the DDL compiler creates
and opens a dictionary on the specified subvolume.

If a dictionary already exists on the specified subvolume, the DDL compiler opens the
dictionary for update access. More than one user can open the dictionary for
concurrent update access.

Syntax Element Default

dict-subvol-name Current system, volume, and subvolume

node-name Current system

volume-name Current volume

subvolume-name Current subvolume

Note. If you do not have purge access to the original dictionary files, the DDL compiler
does not execute the command DICT !.
Data Definition Language (DDL) Reference Manual—529431-003
9-50

DDL Compiler Commands DICTR
If a dictionary already exists, you can either:

• Purge the dictionary and re-create it by specifying an exclamation point after the
subvolume name.

• Add new DDL objects to the dictionary by omitting the exclamation point.

For a Pathmaker dictionary, DICTN! deletes only the dictionary, not Pathmaker objects
(services, servers, requesters, and screens); Pathmaker objects can be modified or
deleted only within the Pathmaker environment.

The file security of the dictionary files is the default file security of whoever compiles
the DDL source code.

Only one dictionary can be open at a time. If you use the DICTN command when you
already have a dictionary open, the DDL compiler closes the current dictionary before
opening the specified dictionary.

After a DICTN or DICT command creates a dictionary, using DICTN or DICT to open
the dictionary has no effect on whether the dictionary is audited or not. Either
command can open the dictionary, but the audited state of the dictionary does not
change.

If an existing dictionary that you open with the DICTN command is audited, the DDL
compiler issues a warning message.

If an audited dictionary exists on $DATA.SALES, this command causes the DDL
compiler to delete the dictionary and create a nonaudited dictionary on the subvolume:

?DICTN $data.sales !

DICTR
The DICTR command opens an existing dictionary for read-only access.

dict-subvol-name

is the name of the dictionary subvolume, which has this form:

[\node-name.][$volume-name.][subvolume-name]

If dict-subvol-name has no dictionary, the DDL compiler issues a warning
message and continues.

DICTR [dict-subvol-name]

Syntax Element Default

dict-subvol-name Current system, volume, and subvolume

node-name Current system

volume-name Current volume

subvolume-name Current subvolume
Data Definition Language (DDL) Reference Manual—529431-003
9-51

DDL Compiler Commands DO_PTAL_ON
If you use the DICTR command when you already have a dictionary open, the DDL
compiler closes the current dictionary before opening the specified dictionary.

The DDL compiler ignores the NOSAVE command when a dictionary is opened with
DICTR.

DO_PTAL_ON
The DO_PTAL_ON[OFF] command generates code that cannot [can] be compiled by
older pTAL or TAL compilers that do not recognize FIELDALIGN clauses.

Default: DO_PTAL_ON

DO_PTAL_ON

includes a FIELDALIGN clause for each structure in pTAL or TAL output.
Compilers that do not recognize the FIELDALIGN clause cannot compile the
resulting code.

DO_PTAL_OFF

also includes a FIELDALIGN clause for each structure in pTAL or TAL output, but
encloses each FIELDALIGN clause within IF PTAL compiler directives. Compilers
that do not recognize the FIELDALIGN clause can compile the resulting code.

{ DO_PTAL_ON | DO_PTAL_OFF }

Example 9-22. DO_PTAL_ON and DO_PTAL_OFF Commands (page 1 of 2)

DDL Input

DEF FIRST
02 FLD1 PIC X.
02 SUB.
 03 FLD2 PIC X.
END.

DDL Output with DO_PTAL_ON

! SCHEMA PRODUCED DATE - TIME : 3/10/1995 15:26:30
?SECTION FIRST
?PAGE
! Definition FIRST created on 3/10/1995 at 15:26
STRUCT FIRST^DEF (*) FIELDALIGN (SHARED2);
 BEGIN
 STRING FLD1;
 STRUCT SUB;
 BEGIN
 STRING FLD2;
 END;
 END;
Data Definition Language (DDL) Reference Manual—529431-003
9-52

DDL Compiler Commands EDIT
EDIT
The EDIT command:

• Suspends compilation
• Starts an EDIT process
• Opens the specified file, executes the specified commands, and closes the file
• Resumes compilation when the EDIT process stops

You can use EDIT only in an interactive DDL session.

edit-file-name

is the name of an EDIT file.

Default: The most recent edit-file-name specified in the current DDL
session, if any. If none, you are prompted for a file name.

edit-parameter

is an EDIT command.

Default: The most recent edit-file-name specified in the current DDL
session, if any. If none, you are prompted for an EDIT command.

Issuing the EDIT command within a DDL session is like issuing the EDIT command
from the command interpreter. The EDIT prompt is the same, and you can use all the
same functions.

DDL Output with DO_PTAL_OFF

! SCHEMA PRODUCED DATE - TIME : 3/10/1995 15:26:30
?SECTION FIRST
?PAGE
! Definition FIRST created on 3/10/1995 at 15:26
STRUCT FIRST^DEF (*)
?IF PTAL
FIELDALIGN (SHARED2)
?ENDIF PTAL
;
 BEGIN
 STRING FLD1;
 STRUCT SUB;
 BEGIN
 STRING FLD2;
 END;
 END;

EDIT [edit-file-name [; edit-parameter] ...]

Example 9-22. DO_PTAL_ON and DO_PTAL_OFF Commands (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
9-53

DDL Compiler Commands EDIT
When you stop an EDIT process by issuing the EXIT command, control returns to the
DDL compiler.

You must close any source code file before editing it. For instance, if you have opened
a COBOL source code file, entered some text in this file, and then want to view it with
the text editor, you must issue the NOCOBOL command before you issue the EDIT
command.

When you specify edit-file-name in the EDIT command, the DDL compiler
passes that name to the current EDIT process and also stores the name. If you omit
edit-file-name from the next EDIT command in the same session, the DDL
compiler passes the stored name to the new EDIT process.

When you specify edit-parameter in the EDIT command, the DDL compiler
passes that parameter to the EDIT process. The DDL compiler also stores the
parameter.

If you omit edit-file-name from the next EDIT command, the DDL compiler
passes any parameter saved from the last EDIT command to the new EDIT process.

If you specify edit-file-name in the next EDIT command, the DDL compiler
discards any previously stored parameter.

Example 9-23. EDIT Command (page 1 of 2)

33>DDL DICT

!?DDL ddlfil Open DDLFIL.

!RECORD sum. Add a record.

...

!?NODDL Close DDLFIL.

!?EDIT ddlfil; LIST ALL Start an EDIT process, list DDLFIL.

CURRENT FILE IS $DATA.PARTS.DDLFIL
 1 Record SUM.
 2 File is $DATA.SALES.SUM Unstructured
 3 Def is SUM-DEF.
 4 End

* FIX 3 Fix a record.

 3 Def is SUM-DEF.
 iR
 3 Def is RSUM-DEF.
 cr
* EXIT

!?SOURCE ddlfil Add the record to the dictionary.

!?EDIT Use the previous file and parameter.

CURRENT FILE IS $DATA.PARTS.DDLFIL
 1 Record SUM.
 2 File is $DATA.SALES.SUM Unstructured
 3 Def is RSUM-DEF.
 4 End
Data Definition Language (DDL) Reference Manual—529431-003
9-54

DDL Compiler Commands ERRORS
ERRORS
The ERRORS command specifies the number of errors allowed before compilation
stops.

Default: Compilation continues until the end of the source code file regardless of the
number of errors

max-errors

is a number from 1 through 32,767 that specifies the maximum number of
compilation errors allowed before the DDL compiler stops compiling the source
code file.

Default: 1

When compilation stops because the specified number of errors is reached, the DDL
compiler closes the open dictionary and any open files, issues session statistics, and
stops.

The specified maximum number of errors applies only to errors that occur after the
appearance of the ERRORS command. For example, if two errors occur before an
ERRORS 3 command appears, the fifth error to occur (the third error after the
command appeared) stops compilation.

This command directs the DDL compiler to stop compiling when it encounters the third
compilation error.

?ERRORS 3

If the DDL compiler encounters a third compilation error, the DDL compiler issues the
error message for the third error followed by the fatal error message:

Too Many Errors - Compilation Terminating.

* EXIT Stop the EDIT process.

!EXIT Exit DDL.

ERRORS [max-errors]

Example 9-24. ERRORS Command

?SECTION start
...

Compile regardless of errors

?SECTION rest-of-schema
?ERRORS 1
...

Stop compiling source if any error is encountered

Example 9-23. EDIT Command (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
9-55

DDL Compiler Commands EXPANDC
EXPANDC
The [NO]EXPANDC command generates a C referenced type definition inline [as a
structure name].

Default: NOEXPANDC

EXPANDC

generates a referenced type definition inline.

NOEXPANDC

generates a referenced type definition as a structure name.

A referenced definition type is a type of a line item and is a definition defined prior to
the line item that references it.

In C applications, a structure being referenced by a line item is not always in the same
module. Further, the structure being referenced can refer to yet another structure that
might be in another module. Without inline expansion, a dependency chain or modules
must be developed to ensure proper resolution of references.

The EXPANDC command does not apply to type ENUM, because the C compiler
requires each enumerator to be unique. For ENUM types, the DDL compiler outputs a
referenced type definition as a structure name. The DDL compiler generates a C
enumerator for each level-89 clause in a type ENUM definition.

[NO]EXPANDC

Example 9-25. EXPANDC Command (page 1 of 2)

DDL Definition

C Output

With NOEXPANDC With EXPANDC

def a pic x (10). typedef char a_def[10];
#pragma fieldalign shared2 __b

Same as NOEXPANDC

def b.
 2 b1 type binary.
 2 b2 pic x(10).
 2 b3 occurs 5 times.
 3 b31 type binary.
 3 b32 pic x(10).
end

typedef struct __b
{
 short b1;
 char b2[10];
 struct
 {
 short b31;
 char b32[10];
 } b3[5];
} b_def;

Same as NOEXPANDC

def c type a. typedef a_def c_def; typedef char c_def[10];

#pragma fieldalign
shared2 __d
Data Definition Language (DDL) Reference Manual—529431-003
9-56

DDL Compiler Commands EXPANDC
DDL Definition

C Output

With NOEXPANDC With EXPANDC

def d type b. typedef b_def d_def; typedef struct __d
 short b1;
 char b2[10];
 struct
 {
 short b31;
 char b32[10];
 } b3[5];
} d_def;

def e.
 2 e1 type c.
 2 e2 type d
 Occurs 15 times.
end.

#pragma fieldalign shared2 __e
typedef struct __e
{
 c_def e1;
 d_def e2[15];
} e_def;

#pragma fieldalign
shared2 __e
typedef struct __e
{
 char e1[10];
 struct
 {
 short b1;
 char b2[10];
 struct
 {
 short b31;
 char b32[10];
 } b3[5];
 } e2[15];
} e_def;

def f.
 2 f1 pic x(100).
 2 f2 redefines f1.
 3 f3 type b.
3 f4 pic x(10).
end.

#pragma fieldalign shared2 __f
typedef struct __f
{
 union
 {
 char f1[100];
 struct
 {
 b_def f3;
 char f4[10];
 } f2;
 } u_f1;
} f_def;

#pragma fieldalign
shared2 __f
typedef struct __f
{
 union
 {
 char f1[100];
 struct
 {
 struct
 {
 short b1;
 char b2[10];
 struct
 {
 short
b31;
 char
b32[10];
 } b3[5];
 } f3;
 char f4[10];
 } f2;
 } u_f1;
} f_def;

Example 9-25. EXPANDC Command (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
9-57

DDL Compiler Commands FIELDALIGN_SHARED8
FIELDALIGN_SHARED8
The FIELDALIGN_SHARED8 command stores data structures in the dictionary with
SHARED8 alignment.

Use the FIELDALIGN_SHARED8 command to generate TAL (pTAL) or C source code
that will produce optimal performance on a RISC processor.

The FIELDALIGN_SHARED8 command causes the DDL compiler to generate explicit
filler fields:

• To align an item according to its width
• At the end of a structure to make its length a multiple of its alignment
• To prevent bit fields less than 16 bits from straddling a 2-byte boundary

FIELDALIGN_SHARED8

Example 9-26. FIELDALIGN_SHARED8 Command (page 1 of 2)

DDL Input

?FIELDALIGN_SHARED8
 def a.
 02 b type character 1.
 02 c type character 1.
 02 d type character 1.
 end.

 def e type character 1.

 def f.
 02 g type binary 16.
 02 h.
 03 i type e.
 03 j type a.
 02 k type character 1.
 02 l type binary 16.
 end.

/* SCHEMA PRODUCED DATE - TIME :10/13/1995 13:23:16 */
#pragma section a
/* Definition A created on 10/13/1995 at 13:23 */
#pragma fieldalign shared8 __a
typedef struct __a
{
 char b;
 char c;
 char d;
 char filler_0;
} a_def;
Data Definition Language (DDL) Reference Manual—529431-003
9-58

DDL Compiler Commands FILLER
FILLER
The FILLER command specifies the algorithm for generating filler bytes for source
code.

Default: FILLER 1

1

specifies filler algorithm 1, which is recommended for new dictionaries.

0

specifies filler algorithm 0, which is provided for compatibility with dictionaries
created by versions of DDL prior to the B00 software product version.

The DDL compiler compiles source code in several phases. In each phase DDL
evaluates records and definitions to see if filler bytes are necessary to make sure the
next field or group starts on a word boundary.

Where filler bytes are necessary, the DDL compiler inserts FILLER fields according to
the specified algorithm. Because the compiler uses the filler algorithm during each
phase of compilation, the compiler might insert FILLER fields during one phase of
compilation and remove the same FILLER fields during the next phase. The DDL
compiler continues inserting and removing FILLER fields according to the specified
filler algorithm until the source code is generated.

DDL Output (C Code)

#pragma section e
/* Definition E created on 10/13/1995 at 13:23 */
typedef char e_def;
#pragma section f
/* Definition F created on 10/13/1995 at 13:23 */
#pragma fieldalign shared8 __f
typedef struct __f
{
 short g;
 struct
 {
 e_def i;
 char filler_0;
 a_def j;
 } h;
 char k;
 char filler_1;
 short l;
} f_def;

FILLER { 1 | 0 }

Example 9-26. FIELDALIGN_SHARED8 Command (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
9-59

DDL Compiler Commands FILLER
The DDL compiler removes only filler bytes generated by the DDL compiler; it never
removes user-specified filler bytes.

When the CFIELDALIGN_MATCHED2 command is set, the DDL compiler uses a
modified, extended FILLER 1. In this case, the DDL compiler ignores any FILLER 0
specification.

If FILLER 0 is specified, the DDL compiler generates filler bytes according to this
algorithm:

• If a field or group described with a REDEFINES clause does not start on a word
boundary, the DDL compiler inserts 1 byte of filler before the field or group being
redefined, even if the redefined field is the first element in a group.

• If a single-item field or a group not described with a REDEFINES clause does not
start on a word boundary, the DDL compiler inserts one byte of filler before the field
or group.

• If the first element in a group not described with a REDEFINES clause does not
start on a word boundary, the DDL compiler inserts one byte of filler before the
group.

• If a group described with an OCCURS clause has both an odd number of bytes
and an element that does not start on a word boundary, the DDL compiler inserts 1
byte of filler after the last element in the group. The filler bytes have the same level
number as the first element in the group. (The DDL compiler can remove this byte
of filler in a subsequent compilation phase.)

• If the first element of a group not described with a REDEFINES clause is a byte of
filler generated by the DDL compiler and the group does not start on a word
boundary, the DDL compiler inserts another filler byte before the group. In a
subsequent compilation phase, the DDL compiler removes the filler byte from
within the group.

FILLER 1 works exactly like FILLER 0 except that FILLER 1 has an additional rule that
keeps user-defined TYPE definitions intact wherever they are used. The rest of the
algorithm for FILLER 1 is this:

• For a group defined by a TYPE clause, the DDL compiler determines whether the
group the clause refers to starts on a word boundary.

• If the group referenced starts on a word boundary, the DDL compiler does not
insert any filler bytes for the referring group.

• If the group referenced does not start on a word boundary and is not described
with a REDEFINES clause, the DDL compiler inserts a filler byte before the
referring group.

• If the group referenced does not start on a word boundary but is described with a
REDEFINES clause, the DDL compiler inserts a filler byte before the group being
redefined.
Data Definition Language (DDL) Reference Manual—529431-003
9-60

DDL Compiler Commands FILLER
In Example 9-27 on page 9-61, when FILLER 1 is specified, the structure of TEST1 is
the same in both CASE1 and CASE2. A COBOL program containing these data
structures can successfully execute the COBOL statement:

MOVE TEST1 OF CASE1 to TEST1 OF CASE2.

Example 9-27. FILLER Command

DDL Input (Definition Statements)

DEF test1.
02 a PIC XX.
02 b PIC S9(4) COMP.
END

DEF case1.
02 c PIC X.
02 test1 TYPE *.
END

DEF case2.
02 test1 TYPE *.
02 c PIC X.
END

DDL Output (COBOL Code) with FILLER 1

01 CASE1.
 02 C PIC X.
 02 FILLER PIC X(1).
 02 TEST1.
 03 A PIC XX.
 03 B PIC S9(4) COMP.

01 CASE2.
 02 TEST1.
 03 A PIC XX.
 03 B PIC S9(4) COMP.
 02 C PIC X.

DDL Output (COBOL Code) with FILLER 0

01 CASE1.
 02 C PIC X.
 02 TEST1.
 03 A PIC XX.
 03 FILLER PIC X(1).
 03 B PIC S9(4) COMP.

01 CASE2.
 02 TEST1.
 03 A PIC XX.
 03 B PIC S9(4) COMP.
 02 C PIC X.
Data Definition Language (DDL) Reference Manual—529431-003
9-61

DDL Compiler Commands FORCHECK
When FILLER 0 is specified, the structure of TEST1 in CASE1 differs from the
structure of TEST1 in CASE2. A COBOL program containing these data structures can
not successfully execute the preceding MOVE statement.

FORCHECK
The [NO]FORCHECK command performs [suppresses] FORTRAN syntax checks on
subsequent DDL object definitions without generating code.

Default: FORCHECK if a FORTRAN source code file is open, otherwise
NOFORCHECK

FORCHECK

performs the FORTRAN syntax checks as though FORTRAN source code were
being produced.

NOFORCHECK

suppresses FORTRAN syntax checks.

If a FORTRAN source code file is open, the compiler performs the FORTRAN checks
whether or not FORCHECK is set.

You can stop FORTRAN syntax checking with a NOFORCHECK command; you can
restart checking with a subsequent FORCHECK.

The DDL compiler does not make all the lengthy syntax tests that the FORTRAN
compiler makes. The DDL compiler tests the DDL statements to ensure that they follow
the rules specified by FORTRAN:

• An elementary field must not be larger than 255 bytes.

• An element must not be described as TYPE CHARACTER 8; this data type is not
supported in FORTRAN.

Caution. Mixing FILLER 1 and FILLER 0 can cause the DDL compiler to generate unusable
code. Using the preceding CASE1 as an example, if you add the definition to a dictionary while
FILLER 0 is in effect and later output the definition with FILLER 1 (the default) in effect, the
DDL compiler generates COBOL source code with two added fillers (one preceding TEST1
and the other within it, as in both of the CASE1 examples), causing the computational item to
begin in the middle of a word. This is incorrect for either FILLER option. Results are similar for
languages other than COBOL.

[NO]FORCHECK
Data Definition Language (DDL) Reference Manual—529431-003
9-62

DDL Compiler Commands FORTRAN
When FORCHECK is in effect, the DDL compiler issues the following message for
each DEFINITION or RECORD statement that passes the syntax check:

FORTRAN CHECK completed for name

FORTRAN
The [NO]FORTRAN command:

• Opens [closes] a FORTRAN source code file

• Starts [stops] writing translated DDL object definitions to the FORTRAN source
code file

Default: NOFORTRAN

FORTRAN

closes any open FORTRAN source code file, opens fortran-source-file,
translates subsequent DDL objects defined by statements or specified in OUTPUT
statements to FORTRAN source code statements, and writes the FORTRAN
source code statements to fortran-source-file.

fortran-source-file

is the name of the FORTRAN source code file to be created, if necessary, and
opened. The file must be one of:

• EDIT file
• Unstructured file
• Sequential device (such as a terminal, spooler, or process)

If the file exists but is not one of these types, the DDL compiler issues an error
message and does not open the file.

Example 9-28. FORCHECK Command

?FORCHECK
RECORD long.
FILE IS "$data.sales.long" KEY-SEQUENCED.
 02 lfield PIC X(256).
 02 sfield PIC X KEYTAG 0.
END
Record LONG size is 257 bytes.
*** WARNING *** FORTRAN OUTPUT DIAGNOSTICS.
*** ERROR *** Fortran element with size greater than 255 - LFIELD
?NOFORCHECK

{ FORTRAN [fortran-source-file [!]] }
{ NOFORTRAN }
Data Definition Language (DDL) Reference Manual—529431-003
9-63

DDL Compiler Commands FORTRAN
If fortran-source-file is an EDIT file, and it exceeds 99,999 lines, the DDL
compiler issues FILE ERROR - filename - Edit file line number too large (537) on
page A-17.

Default: home terminal

!

purges the contents of fortran-source-file before opening it, if it exists. If
fortran-source-file does not exist, the exclamation point has no effect.

Without the exclamation point, the DDL compiler appends the new FORTRAN
source code statements to the end of fortran-source-file.

NOFORTRAN

closes any open FORTRAN source code file and stops translating DDL object
definitions to FORTRAN source code statements.

For the data types that the DDL compiler generates for FORTRAN source code, see
Table C-3 on page C-5.

The specified FORTRAN source code file must be an EDIT file, an unstructured file, or
a sequential device such as a terminal, a spooler, or a process. If the file exists but is
not one of these types, the DDL compiler issues an error message and does not open
the file.

Only one FORTRAN source code file can be open at a time. If you use the FORTRAN
command when you already have a FORTRAN source code file open, the DDL
compiler closes the current source code file before opening the new source code file.

The only DDL objects that can be translated to FORTRAN source code are definitions
and records.

The compiler can translate definitions and records specified in an OUTPUT statement
only if the dictionary containing these objects is open.

If the FORTRAN source code file already exists and the exclamation point is omitted,
the DDL compiler appends the DDL objects to the end of the file’s original contents.
The DDL compiler does not replace any existing structures.

Each DDL object translated to FORTRAN source code is written to the FORTRAN
source code file in a separate section that has the same name as the DDL object it
contains. You can suppress the individual section headings with the SETSECTION
command.

The DDL compiler translates a DDL group definition or record to a FORTRAN record
structure preceded by a comment line that identifies the record structure as a DDL
definition.
Data Definition Language (DDL) Reference Manual—529431-003
9-64

DDL Compiler Commands FORTRAN
Unless the command FORTRANUNDERSCORE on page 9-66 is in effect, the DDL
compiler discards any hyphens in a DDL name before writing the name to FORTRAN
source code.

FORTRAN does not support unsigned numbers. If you specify an unsigned number,
the DDL compiler translates it to a FORTRAN signed integer.

FORTRAN does not accept FILLER fields greater than 255 single-byte characters. the
DDL compiler can add filler characters to ensure that structures start on word
boundaries; if such padding generates more than 255 filler characters, the DDL
compiler breaks them into smaller fields before writing the FORTRAN source code.

The DDL compiler performs all of the syntax checks listed under the FORCHECK
command before writing source output. If the compiler finds a syntax error, it does not
write the source output for the DDL object with the error; it does write source output for
a DDL object if only a warning is issued.

The DDL compiler ignores the RENAMES clause when generating FORTRAN source
output.

In Example 9-29 on page 9-65, the DDL compiler retrieves the definition of the record
CUSTOMER from the open dictionary, translates it to FORTRAN source code, and
writes it to the file \DALLAS.$DATA.SALES.FORSRC. If this file already exists, the
DDL compiler appends the entry for CUSTOMER to the file. For the definition of the
CUSTOMER record, see the sample database schema in Appendix B, Sample
Schemas. FORTRAN does not recognize the UPSHIFT clause, but is included as a
comment.

Note. The DDL compiler translates objects named A-B and AB to data structures that have the
same name in FORTRAN (unless FORTRANUNDERSCORE has been specified).

Example 9-29. FORTRAN Command (page 1 of 2)

DDL Input

?DICT
?FORTRAN \dallas.$data.sales.forsrc
OUTPUT RECORD customer.
Data Definition Language (DDL) Reference Manual—529431-003
9-65

DDL Compiler Commands FORTRANUNDERSCORE
FORTRANUNDERSCORE
The [NO]FORTRANUNDERSCORE command replaces with underscores [deletes]
hyphens in DDL names for FORTRAN output.

Default: NOFORTRANUNDERSCORE

FORTRANUNDERSCORE

replaces each hyphen (-) with an underscore (_) in DDL names for FORTRAN
output.

NOFORTRANUNDERSCORE

deletes hyphens from DDL names for FORTRAN output.

Versions of the FORTRAN compiler from the C10 and later software product versions
allow underscores in source code names.

DDL Output (FORTRAN Code)

?SECTION CUSTOMER
?PAGE
C Definition CUSTOMER created on 06/11/1987 at 12:55
 RECORD CUSTOMER
 CHARACTER*4 CUSTNUM
 RECORD CUSTNAME
 CHARACTER*12 LASTNAME
C Upshift
 CHARACTER*8 FIRSTNAME
C Upshift
 CHARACTER*2 MIDINIT
C Upshift
 END RECORD
 RECORD ADDR
 CHARACTER*22 ADDRESS
 CHARACTER*14 CITY
 CHARACTER*2 STATE
 CHARACTER*5 ZIP
 END RECORD
 END RECORD

[NO]FORTRANUNDERSCORE

Example 9-29. FORTRAN Command (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
9-66

DDL Compiler Commands FUP
FUP
The [NO]FUP command:

• Opens [closes] a FUP source code file
• Starts [stops] writing translated DDL object definitions to the FUP source code file

Default: NOFUP

FUP

closes any open FUP source code file, opens fup-source-file, translates
subsequent DDL objects defined by statements or specified in OUTPUT
statements to FUP source code statements, and writes the FUP source code
statements to fup-source-file.

fup-source-file

is the name of the FUP source code file to be created, if necessary, and opened.
The file must be one of:

• EDIT file
• Unstructured file
• Sequential device (such as a terminal, spooler, or process)

If the file exists but is not one of these types, the DDL compiler issues an error
message and does not open the file.

Default: home terminal

!

purges the contents of fup-source-file before opening it, if it exists. If
fup-source-file does not exist, the exclamation point has no effect.

Without the exclamation point, the DDL compiler appends the new FUP source
code statements to the end of fup-source-file.

NOFUP

closes any open FUP source code file and stops translating DDL object definitions
to FUP source code statements.

The specified FUP source code file must be an EDIT file, an unstructured file, or a
sequential device such as a terminal, a spooler, or a process. If the file exists but is not
one of these types, the DDL compiler issues an error message and does not open the
file.

{ FUP [fup-source-file [!] }
{ NOFUP }
Data Definition Language (DDL) Reference Manual—529431-003
9-67

DDL Compiler Commands FUP
Only one FUP source code file can be open at a time. If you use the FUP command
when you already have a FUP source code file open, the DDL compiler closes the
current source code file before opening the new source code file.

If the FUP source code file source code file already exists and the exclamation point is
omitted, the DDL compiler appends the new FUP file-creation commands to the end of
the file. The DDL compiler does not replace any existing commands in the file.

You can change any file-creation command after it is written to the FUP source code
file by closing the file and then editing it using the EDIT program. You might need to
edit either of these attributes:

If you specify a file attribute with a value equal to the default in FUP, the DDL compiler
will not specify the attribute in the generated FUP source code.

DDL names alternate key files by appending a number, starting with 0, to the data file
name. If necessary, the DDL compiler truncates the file name so that the composite
name does not exceed eight ASCII characters. Thus, if a file named LONGFILE has 11
unique alternate keys, the DDL compiler generates 11 alternate key files named
LONGFIL0, LONGFIL1, and so forth through LONGFIL0.

Example 9-30 on page 9-68 shows an interactive session in which FUP source code is
generated from a record in the dictionary.

Attribute Reason for Change

File names The file names generated for ALTFILE and CREATE commands
might be unacceptable.

Alternate-key files The DDL compiler generates one file for all keys that are not unique
and one file for each unique alternate key. You can change this
mapping of keys to files.

Example 9-30. FUP Command (page 1 of 2)

DDL Input

34> DDL DICT Run DDL and open dictionary.

!?FUP fupsrc ! Open FUPSRC; if file exists, purge existing data.

!OUTPUT RECORD customer. Get record from dictionary, write FUP file-creation
commands to FUPSRC.

?NOFUP Close FUPSRC.

!EXIT Exit DDL.
Data Definition Language (DDL) Reference Manual—529431-003
9-68

DDL Compiler Commands FUP
DDL Output (FUPSRC Content)

< SECTION CUSTOMER
RESET
 SET ALTKEY ("cn", KEYOFF 4, KEYLEN 22, FILE 0)
 SET NO ALTCREATE
 SET ALTFILE (0, $data.sales.custome0)
 SET TYPE K
 SET KEYLEN 4
 SET REC 69
 SET BLOCK 4096
 SET IBLOCK 4096
 SET AUDIT
 SET MAXEXTENTS 100
 SET EXT(4, 32)
CREATE $data.sales.customer
 RESET
 SET TYPE K
 SET KEYLEN 28
 SET REC 28
 SET BLOCK 4096
 SET IBLOCK 4096
 SET EXT(4, 32)
 SET AUDIT
 SET MAXEXTENTS 100
CREATE $data.sales.custome0

Command to Create CUSTOMER file and its Alternate Key File CUSTOME0

35> FUP/IN fupsrc/

Example 9-30. FUP Command (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
9-69

DDL Compiler Commands HELP
HELP
The HELP command briefly describes a specified command or all commands.

command

is the name, or the beginning of the name, of a DDL command.

If you specify the first one or more characters of a command, the DDL compiler
returns information about the first command (in alphabetic order) that matches the
string of characters.

Default: all DDL commands

LINECOUNT
The LINECOUNT command specifies the number of lines for each page for all source
code files.

Default: LINECOUNT 56

number

is the number of lines per page on a report or listing. If number is outside the
range from 1 through 56, the LINECOUNT command has no effect.

The LINECOUNT command is meaningful only when the listing or report destination is
a line printer.

Example 9-33 on page 9-71 sets the number of lines per page for the compiler listing
pages to 60 lines.

HELP [command]

Example 9-31. HELP Command With Full Command Name

36> DDL
!?HELP SAVE
 SAVE - Don't purge dictionary when it is closed
!

Example 9-32. HELP Command With Partial Command Name

37> DDL
!?HELP C
 COBOL - Open COBOL source output on specified file

LINECOUNT number
Data Definition Language (DDL) Reference Manual—529431-003
9-70

DDL Compiler Commands LIST
Example 9-34 on page 9-71 sets the number of lines per page for a schema report to
24.

LIST
The LIST command includes [excludes] subsequent DDL source lines in [from] the
compiler listing.

Default: LIST

LIST

includes subsequent DDL source lines in the compiler listing.

NOLIST

excludes subsequent DDL source lines from the compiler listing.

You can specify the DDL listing destination either:

• With the OUT run option of the RUN DDL Command on page 3-1

• With the command OUT on page 9-82

The NOLIST command does not suppress the listing of error and warning messages.
Messages are listed regardless of the LIST command setting. If NOLIST is in effect
and an error is encountered, the line containing the error is listed.

The NOLIST command does not suppress production comments. Production
comments describe such things as the total length of records and definitions and also
describe actions taken by the compiler such as adding a record to the dictionary.

Example 9-33. LINECOUNT Command

37> DDL/IN myschema,OUT $S.#printer/LINECOUNT 60

Example 9-34. LINECOUNT Command

38> DDL
!?REPORT $S.#printer
!?LINECOUNT 24
!?SOURCE myschema
!EXIT

[NO]LIST
Data Definition Language (DDL) Reference Manual—529431-003
9-71

DDL Compiler Commands NCLCONSTANT
NCLCONSTANT
The [NO]NCLCONSTANT command:

• Opens [closes] an NCL source code file

• Starts [stops] writing translated DDL constant definitions to the NCL source code
file

Default: NONCLCONSTANT

NCLCONSTANT

closes any open NCL source code file, opens NCL-source-file, translates
subsequent DDL constants defined by statements or specified in OUTPUT
statements to NCL source code statements, and writes the NCL source code
statements to NCL-source-file.

NCL-source-file

is the name of the NCL source code file to be created, if necessary, and opened.
The file must be one of:

• EDIT file
• Unstructured file
• Sequential device (such as a terminal, spooler, or process)

If the file exists but is not one of these types, the DDL compiler issues an error
message and does not open the file.

Default: home terminal

Example 9-35. LIST and NOLIST Commands

*beginning of source code file
...

List source lines by default.

?NOLIST
...

Starting with this command, stop listing source
lines.

?LIST
...

Resume listing source lines.

*end of source code file

{ NCLCONSTANT [NCL-source-file [!]] }
{ NONCLCONSTANT }
Data Definition Language (DDL) Reference Manual—529431-003
9-72

DDL Compiler Commands NCLCONSTANT
!

purges the contents of NCL-source-file before opening it, if it exists. If
NCL-source-file does not exist, the exclamation point has no effect.

Without the exclamation point, the DDL compiler appends the new NCL source
code statements to the end of NCL-source-file.

NONCLCONSTANT

closes any open NCL source code file and stops translating DDL constant
definitions to NCL source code statements.

When NCLCONSTANT is in effect, The DDL compiler translates only DDL Constant
objects. DDL record, definition, token type, token code, and token map objects are not
translated. The DDL compiler issues a warning message when attempting to output a
nonconstant in NCL.

A DDL constant name can have up to 30 ASCII characters. As a result, the maximum
number of characters for an NCL constant name generated by the DDL compiler is 30.

The value of a DDL string constant can be from 1 to 130 ASCII characters, not
including the beginning and ending quotation; therefore, the NCL value for a string
generated by the DDL compiler can have up to 130 ASCII characters. The legal range
of values for numeric constants depends on the TYPE clause specified in the
statement CONSTANT on page 4-1.

The DDL compiler replaces any hyphen (-) in a DDL Constant name with an
underscore (_) before writing the name to the NCL source code file.

All NCL constant names generated by the DDL compiler appear in uppercase
characters.

The specified NCL source code file must be an EDIT file. If the source code file exists
but is not an EDIT file, the DDL compiler issues an error message, does not open the
file, and does not output any NCL source.

Only one NCL source code file can be open at a time. If you specify the
NCLCONSTANT command when you already have an NCL source code file open, the
DDL compiler closes the current source code file before opening the new source code
file.

If the NCL source code file already exists and you omit the exclamation point, the DDL
compiler appends the Constant objects to the end of the original contents of the file.
The DDL compiler does not replace any existing objects.

The DDL compiler can translate DDL Constant objects specified in an OUTPUT
statement only if the dictionary containing these objects is open.
Data Definition Language (DDL) Reference Manual—529431-003
9-73

DDL Compiler Commands NCLCONSTANT
Example 9-36. NCLCONSTANT Command

DDL Input

?NCLCONSTANT $vol.subvol.myncl !
constant val-1 value 1.
constant VAL-2 value 2.
constant val-abc value "abc".
constant Val-3 value 3.

! for the following definition, DDL generates a warning
! message and does not translate def-1 to NCL
definition def-1. 02 a pic x(10). end.
constant val-4 value 4.

?NONCLCONSTANT
constant val-5 value 5.
constant val-6 value 6.

?NCLCONSTANT $vol.subvol.myncl
constant val-7 value 7.
constant val-8 value 8.
constant large-val value 32768 type binary 32.

DDL Output ($vol.subvol.myncl Content)

/* SCHEMA PRODUCED DATE - TIME :12/01/1992 10:43:29 */
/* Constant VAL-1 created on 12/01/1992 at 10:54 */
%%define VAL_1 1
/* Constant VAL-2 created on 12/01/1992 at 10:54 */
%%define VAL_2 2
/* Constant VAL-ABC created on 12/01/1992 at 10:54 */
%%define val_abc "abc"
/* Constant VAL-3 created on 12/01/1992 at 10:54 */
%%define val_3 3
/* Constant VAL-4 created on 12/01/1992 at 10:54 */
%%define val_4 4
/* Constant VAL-7 created on 12/01/1992 at 10:54 */
%%define val_7 7
/* Constant VAL-8 created on 12/01/1992 at 10:54 */
%%define val_8 8
/* Constant LARGE-VAL created on 12/01/1992 at 10:54 */
%%define large_val 32768
Data Definition Language (DDL) Reference Manual—529431-003
9-74

DDL Compiler Commands NEWFUP_FILEFORMAT
NEWFUP_FILEFORMAT
The NEWFUP_FILEFORMAT command specifies file format 2 for all FUP source code
files and all FUP alternate key files.

Default: NOFILEFORMAT on page 9-77

The format specification of a file for a record will not be stored in the DDL dictionary. If
the user compiles the records with a particular format command (using the
OLDFUP_FILEFORMAT, NEWFUP_FILEFORMAT, or NOFILEFORMAT command)
and stores the records in the dictionary, then the user must use the same commands
while requesting FUP output of those records.

The format specification for both alternate key and main file is the same (file format 2 in
this case).

The DDL compiler does not allow you to define record length more than the maximum
allowed length for the particular type of file.

For format 2 files, the maximum allowed record length (assuming the block size as
4096 bytes) is.

If you attempt to define a record size greater than the above specified record sizes the
DDL compiler issues an error message.

In Example 9-37 on page 9-75, the DDL compiler generates a statement in FUP
source code files to create a format 2 file.

{ NEWFUP_FILEFORMAT | OLDFUP_FILEFORMAT | NOFILEFORMAT }

File type Record size (format 2 file)

Unstructured 4096 Bytes

Entry-sequenced 4048 Bytes

Relative 4048 Bytes

Key-Sequenced 4040 Bytes

Example 9-37. NEWFUP_FILEFORMAT Command (page 1 of 3)

20> DDL
?DICT
?NEWFUP_FILEFORMAT
DEF EMP.
02 EMP-NAME PIC X(20).
02 EMP-ID PIC 9(4) COMP.
02 EMP-SALARY PIC 9(6)V9(2).
END.
Data Definition Language (DDL) Reference Manual—529431-003
9-75

DDL Compiler Commands NEWFUP_FILEFORMAT
?FUP
RECORD EMPL.
FILE IS "EMPLOYEE".
DEF IS EMP.
KEY IS EMPL.EMP-ID.
KEY "MN" IS EMPL.EMP-NAME.
END.

?DICT
Audited dictionary created on subvol $ADE101.MANUAL.
Dictionary opened on subvol $ADE101.MANUAL for update access.
?NEWFUP_FILEFORMAT
DEF EMP.
02 EMP-NAME PIC X(20).
02 EMP-ID PIC 9(4) COMP.
02 EMP-SALARY PIC 9(6)V9(2).
END.
Definition EMP size is 30 bytes.
Definition EMP added to dictionary.

!?FUP
< SCHEMA PRODUCED DATE - TIME : 3/02/2000 17:59:53
 Output source for FUP is opened on $ZTNT.#PTVWAT5
!RECORD EMPL.
!FILE IS EMPLOYEE.
!DEF IS EMP.
!KEY IS EMPL.EMP-ID.
!KEY "MN" IS EMPL.EMP-NAME.
!END.
Record EMPL size is 30 bytes.
Record EMPL added to dictionary.

< SECTION EMPL
< Record EMPL created on 03/02/2000 at 18:00
RESET
SET FORMAT 2
SET ALTKEY ("MN", KEYOFF 0, KEYLEN 20, FILE 0)
SET NO ALTCREATE
SET ALTFILE (0, EMPLOYE0)
SET TYPE K
SET KEYOFF 20
SET KEYLEN 2
SET REC 30
SET BLOCK 4096
SET IBLOCK 4096
SET EXT(4, 32)
SET MAXEXTENTS 100
CREATE EMPLOYEE

Example 9-37. NEWFUP_FILEFORMAT Command (page 2 of 3)
Data Definition Language (DDL) Reference Manual—529431-003
9-76

DDL Compiler Commands NOFILEFORMAT
NOFILEFORMAT
The NOFILEFORMAT command specifies no file format for all FUP source code files
and all FUP alternate key files.

Default: NOFILEFORMAT

No format is specified for both alternate key and main files.

The NOFILEFORMAT command allows the user to generate FUP output without any
format specification.

The DDL compiler does not allow you to define a record length that is more than the
maximum allowed length for the particular type of file.

For files with no format specification, the maximum allowed record length (assuming
the block size as 4096 bytes) is.

If you attempt to define a record size that is greater than the above specified record
sizes the DDL compiler issues an error message.

RESET
SET FORMAT 2
SET TYPE K
SET KEYLEN 24
SET REC 24
SET BLOCK 4096
SET IBLOCK 4096
SET EXT(4, 32)
SET MAXEXTENTS 100
CREATE EMPLOYE0
FUP output produced for EMPL.

{ NOFILEFORMAT | NEWFUP_FILEFORMAT | OLDFUP_FILEFORMAT }

File type Record size (<2GB file)

Unstructured 4096 Bytes

Key-Sequenced 4062 Bytes

Entry-sequenced 4072 Bytes

Relative 4072 Bytes

Example 9-37. NEWFUP_FILEFORMAT Command (page 3 of 3)
Data Definition Language (DDL) Reference Manual—529431-003
9-77

DDL Compiler Commands NOFILEFORMAT
Example 9-38. NOFILEFORMAT Command (page 1 of 2)

20> DDL
!?DICT
!?NOFILEFORMAT
!DEF EMP.
!02 EMP-NAME PIC X(20).
!02 EMP-ID PIC 9(4) COMP.
!02 EMP-SALARY PIC 9(6)V9(2).
!END.

!?FUP
!RECORD EMPL.
!FILE IS "EMPLOYEE".
!DEF IS EMP.
!KEY IS EMPL.EMP-ID.
!KEY "MN" IS EMPL.EMP-NAME.
!END.

!?DICT
Dictionary opened on subvol $ADE101.MANUAL for update access.
!DEF EMP.
!02 EMP-NAME PIC X(20).
!02 EMP-ID PIC 9(4) COMP.
!02 EMP-SALARY PIC 9(6)V9(2).
!END.
Definition EMP size is 30 bytes.
Definition EMP added to dictionary.

!?FUP
< SCHEMA PRODUCED DATE - TIME : 3/02/2000 - 18:52:42
Output source for FUP is opened on $ZTNT.#PTVWAT5
!?NOFILEFORMAT
!RECORD EMPL.
!FILE IS "EMPLOYEE".
!DEF IS EMP.
!KEY IS EMPL.EMP-ID.
!KEY "MN" IS EMPL.EMP-NAME.
!END.
Record EMPL size is 30 bytes.
Record EMPL added to dictionary.
Data Definition Language (DDL) Reference Manual—529431-003
9-78

DDL Compiler Commands OLDFUP_FILEFORMAT
OLDFUP_FILEFORMAT
The OLDFUP_FILEFORMAT command specifies file format 1 for all FUP source code
files and all FUP alternate key files.

Default: NOFILEFORMAT on page 9-77

The format specification of a file for a record is not stored in the dictionary. If the user
compiles the records with a particular format command (using the
OLDFUP_FILEFORMAT, NEWFUP_FILEFORMAT, or NOFILEFORMAT command)
and stores the records in the dictionary, the user must use the same commands while
requesting FUP output of those records.

The format specification for both the alternate key and the main file is the same (format
1 in this case).

< SECTION EMPL
< Record EMPL created on 03/02/2000 at 19:10
RESET
SET ALTKEY ("MN", KEYOFF 0, KEYLEN 20, FILE 0)
SET NO ALTCREATE
SET ALTFILE (0, EMPLOYE0)
SET TYPE K
SET KEYOFF 20
SET KEYLEN 2
SET REC 30
SET BLOCK 4096
SET IBLOCK 4096
SET EXT(4, 32)
SET MAXEXTENTS 100
CREATE EMPLOYEE

RESET
SET TYPE K
SET KEYLEN 24
SET REC 24
SET BLOCK 4096
SET IBLOCK 4096
SET EXT(4, 32)
SET MAXEXTENTS 100
CREATE EMPLOYE0
FUP output produced for EMPL.

{ OLDFUP_FILEFORMAT | NEWFUP_FILEFORMAT | NOFILEFORMAT }

Example 9-38. NOFILEFORMAT Command (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
9-79

DDL Compiler Commands OLDFUP_FILEFORMAT
The DDL compiler does not allow the user to define a record length greater than the
maximum allowed length. For format 1 files, the maximum allowed record length
(assuming the block size is 4096 bytes) is.

If you attempt to define a record size greater than the above specified record sizes the
DDL compiler issues an error message.

In Example 9-39 on page 9-80, the DDL compiler generates a statement in FUP
source code files to create a format 1 file.

File type Record size (format 1 file)

Unstructured 4096 bytes

Entry-sequenced 4072 bytes

Relative 4072 bytes

Key-Sequenced 4062 bytes

Example 9-39. OLDFUP_FILEFORMAT Command (page 1 of 2)

20> DDL
?DICT
?OLDFUP_FILEFORMAT
DEF EMP.
02 EMP-NAME PIC X(20).
02 EMP-ID PIC 9(4) COMP.
02 EMP-SALARY PIC 9(6)V9(2).
END.

?FUP
RECORD EMPL.
FILE IS "EMPLOYEE".
DEF IS EMP.
KEY IS EMPL.EMP-ID.
KEY "MN" IS EMPL.EMP-NAME.
END.

?DICT!
Audited dictionary created on subvol $ADE101.MANUAL.
Dictionary opened on subvol $ADE101.MANUAL for update access.
DEF EMP.
02 EMP-NAME PIC X(10).
02 EMP-ID PIC 9(6) COMP.
02 EMP-SALARY PIC 9(7)V9(2).
END.
Definition EMP size is 23 bytes.
Definition EMP added to dictionary.
Data Definition Language (DDL) Reference Manual—529431-003
9-80

DDL Compiler Commands OLDFUP_FILEFORMAT
?FUP
< SCHEMA PRODUCED DATE - TIME : 3/01/2000 - 21:26:19
Output source for FUP is opened on $ZTNT.#PTVWAMU
?OLDFUP_FILEFORMAT
RECORD EMPL.
FILE IS "EMPLOYEE".
DEF IS EMP.
KEY IS EMPL.EMP-ID.
KEY "MN" IS EMPL.EMP-NAME.
END.
Record EMPL size is 23 bytes.
Record EMPL added to dictionary.

< SECTION EMPL
< Record EMPL created on 03/01/2000 at 21:26
RESET
SET FORMAT 1
SET ALTKEY ("MN", KEYOFF 0, KEYLEN 10, FILE 0)
SET NO ALTCREATE
SET ALTFILE (0, EMPLOYE0)
SET TYPE K
SET KEYOFF 10
SET KEYLEN 4
SET REC 23
SET BLOCK 4096
SET IBLOCK 4096
SET EXT(4, 32)
SET MAXEXTENTS 100
CREATE EMPLOYEE

RESET
SET FORMAT 1
SET TYPE K
SET KEYLEN 16
SET REC 16
SET BLOCK 4096
SET IBLOCK 4096
SET EXT(4, 32)
SET MAXEXTENTS 100
CREATE EMPLOYE0

Example 9-39. OLDFUP_FILEFORMAT Command (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
9-81

DDL Compiler Commands OUT
OUT
The OUT command specifies the destination for compiler output (source lines,
warnings, and error messages).

listing-destination

is a file name or output device.

Default: destination specified in the OUT run option of the RUN DDL Command on
page 3-1

The OUT command can be used anywhere within a DDL source code file. Different
portions of the listing can be written to different destinations.

If you use the OUT command in an interactive session to change the output device to a
device other than your terminal, the session ceases to be interactive. As a result, you
cannot use the EDIT command until a subsequent OUT command changes the output
device back to your terminal.

If the listing destination you specify is an existing file, the DDL compiler appends the
listing to the end of the existing file.

OUT [listing-destination]

Example 9-40. OUT Command

*beginning of source code file
...

List source lines on listing destination from the
RUN DDL command.

?OUT $S.#printer
...

List source lines and error messages on
$S.#printer and list error messages on the listing
destination from the RUN DDL command.

?OUT
...
*end of source code file

Stop listing on $S.#printer and return to the RUN
DDL command listing destination.
Data Definition Language (DDL) Reference Manual—529431-003
9-82

DDL Compiler Commands OUTPUT_SENSITIVE
OUTPUT_SENSITIVE
The [NO]OUTPUT_SENSITIVE command generates case-sensitive [case-insensitive]
output.

Default: NOOUTPUT_SENSITIVE

OUTPUT_SENSITIVE

generates all source code files in case-sensitive form; that is, lowercase will remain
lowercase and uppercase will remain uppercase.

NOOUTPUT_SENSITIVE

generates all source code files in a case-insensitive form. Overrides the
OUTPUT_SENSITIVE command if that command is in effect.

The OUTPUT_SENSITIVE command allows the user to define all definitions, records,
and constants in case-sensitive format. All lowercase remains lowercase and all
uppercase remains uppercase.

In order to get case-sensitive output for a particular definition, record, or constant, the
OUTPUT_SENSITIVE command must be used before adding that definition, record, or
constant to the dictionary.

If a definition, record, or constant is defined using the OUTPUT_SENSITIVE (or
NOOUTPUT_SENSITIVE) command, then the user must use the same definition while
requesting output for that definition, record, or constant.

[NO]OUTPUT_SENSITIVE

Example 9-41. OUTPUT_SENSITIVE Command (page 1 of 3)

> DDL
! ?DICT
! ?C
! ?TAL
! ?NOOUTPUT_SENSITIVE
! DEF kiSHOy.
! 02 cuTNAME PIC X(10).
! 02 cdT-ID PIC 9(6) .
! END.
Data Definition Language (DDL) Reference Manual—529431-003
9-83

DDL Compiler Commands OUTPUT_SENSITIVE
!?DICT
Audited dictionary created on subvol $ADE101.BUG.
Dictionary opened on subvol $ADE101.BUG for update access.
!?C
/* SCHEMA PRODUCED DATE - TIME : 3/06/2000 - 13:19:47 */
Output source for C is opened on $ZTN0.#PTS3Z89
!?TAL
! SCHEMA PRODUCED DATE - TIME : 3/06/2000 - 13:19:55
Output source for TAL is opened on $ZTN0.#PTS3Z89
!?NOOUTPUT_SENSITIVE
!DEF kiSHOy.
!02 cuTNAME PIC X(10).
!02 cdT-ID PIC 9(6) .
!END.
Definition KISHOY size is 16 bytes.
Definition KISHOY added to dictionary.

#pragma section kishoy
/* Definition KISHOY created on 03/06/2000 at 13:20 */
#pragma fieldalign shared2 __kishoy
typedef struct __kishoy
{
char cutname[10];
char cdt_id[6];
} kishoy_def;
#define kishoy_def_Size 0

C output produced for KISHOY.
?SECTION KISHOY
?PAGE
! Definition KISHOY created on 03/06/2000 at 13:20
STRUCT KISHOY^DEF (*) FIELDALIGN (SHARED2);
BEGIN
STRUCT CUTNAME;
BEGIN STRING BYTE [1:10]; END;
STRUCT CDT^ID;
BEGIN STRING BYTE [1:6]; END;
END;

Example 9-41. OUTPUT_SENSITIVE Command (page 2 of 3)
Data Definition Language (DDL) Reference Manual—529431-003
9-84

DDL Compiler Commands OUTPUT_SENSITIVE
TAL output produced for KISHOY.
!?OUTPUT_SENSITIVE
!DEF emp.
!02 emp-NAME PIC X(10).
!02 emp-ID PIC 9(6) COMP.
!END.
Definition emp size is 14 bytes.
Definition emp added to dictionary.
#pragma section emp
/* Definition emp created on 03/06/2000 at 13:29 */
#pragma fieldalign shared2 __emp
typedef struct __emp
{
char emp_NAME[10];
unsigned long emp_ID;
} emp_def;
#define emp_def_Size 0

C output produced for emp.
?SECTION emp
?PAGE
! Definition emp created on 03/06/2000 at 13:29
STRUCT emp^DEF (*) FIELDALIGN (SHARED2);
BEGIN
STRUCT emp^NAME;
BEGIN STRING BYTE [1:10]; END;
INT(32) emp^ID;
END;
TAL output produced for emp.

Example 9-41. OUTPUT_SENSITIVE Command (page 3 of 3)
Data Definition Language (DDL) Reference Manual—529431-003
9-85

DDL Compiler Commands PAGE
PAGE
The PAGE command writes the next line of the compiler listing at the top of the next
page and (optionally) specifies a page title.

listing-title

is an ASCII character string of at most 132 characters.

The PAGE command can be placed anywhere in the DDL source listing.

When the DDL compiler encounters a PAGE command, it stops listing on the current
page, issues a page-ejection character to the listing destination, and resumes listing at
the top of the next page.

If a title is specified, the DDL compiler lists that title at the top of every subsequent
page until it encounters another PAGE command with a different listing title.

Each subsequent listing page has the title DEFINITIONS until the DDL compiler
encounters another PAGE command with a new title.

PASCAL (D-Series Systems Only)
The [NO]PASCAL command:

• Opens [closes] a Pascal source code file

• Starts [stops] writing translated DDL object definitions to the Pascal source code
file

Default: NOPASCAL

PASCAL

closes any open Pascal source code file, opens pascal-source-file,
translates subsequent DDL objects defined by statements or specified in OUTPUT
statements to Pascal source code statements, and writes the Pascal source code
statements to pascal-source-file.

PAGE ["listing-title "]

Example 9-42. PAGE Command

?PAGE "DEFINITIONS"

{ PASCAL [pascal-source-file { !]] }
{ NOPASCAL }
Data Definition Language (DDL) Reference Manual—529431-003
9-86

DDL Compiler Commands PASCAL (D-Series Systems Only)
pascal-source-file

is the name of the Pascal source code file to be created, if necessary, and opened.
The file must be one of:

• EDIT file
• Unstructured file
• Sequential device (such as a terminal, spooler, or process)

If the file exists but is not one of these types, the DDL compiler issues an error
message and does not open the file.

If pascal-source-file is an EDIT file, and it exceeds 99,999 lines, the DDL
compiler issues FILE ERROR - filename - Edit file line number too large (537) on
page A-17.

Default: home terminal

!

purges the contents of pascal-source-file before opening it, if it exists. If
pascal-source-file does not exist, the exclamation point has no effect.

Without the exclamation point, the DDL compiler appends the new Pascal source
code statements to the end of pascal-source-file.

NOPASCAL

closes any open Pascal source code file and stops translating DDL object
definitions to Pascal source code statements.

The specified Pascal source code file must be an EDIT file, an unstructured file, or a
sequential device such as a terminal, a spooler, or a process. If the file exists but is not
one of these types, the DDL compiler issues an error message and does not open the
file.

Only one Pascal source code file can be open at a time. If you use the Pascal
command when you already have a Pascal source code file open, the DDL compiler
closes the current source code file before opening the new source code file.

If the Pascal source code file already exists and the exclamation point is omitted, the
DDL compiler appends the DDL objects to the end of the file’s original contents. The
DDL compiler does not replace any existing objects.

The compiler can translate DDL objects specified in an OUTPUT statement only if the
dictionary containing these objects is open.

Each DDL object translated to Pascal source code is written to the Pascal source code
file in a separate section that has the same name as the DDL object it contains. You
can suppress the generation of individual section headings with the SETSECTION
command.

The DDL compiler replaces any hyphen in a DDL name with an underscore (_) before
writing the name to the Pascal source code file.
Data Definition Language (DDL) Reference Manual—529431-003
9-87

DDL Compiler Commands PASCAL (D-Series Systems Only)
The DDL compiler replaces any field reference dot character (.) in a primary or
alternate-key name by an underscore before writing the name to the Pascal source
code file.

Before writing a name to a Pascal source code file, the DDL compiler:

• Appends _DEF to every group definition name and record name (but not to any
field definition name)

• Appends _KEY to every primary-key name and alternate-key name

As a result, the maximum length for the name of a DDL group definition, record, or key
that is to be written to Pascal is 27 ASCII characters, not the standard DDL name
length of 30 characters.

For the data types that the DDL compiler generates for Pascal source code, see
Table C-4 on page C-7.

The DDL compiler performs all of the syntax checks listed under the PASCALCHECK
command before writing the Pascal source output. If the DDL compiler finds a syntax
error, it does not write the source output for the object with the error; it does write
source output for an object if only a warning is issued.

When generating Pascal source code, the DDL compiler ignores these clauses:

• DISPLAY
• HEADING
• HELP
• MUST BE
• NULL
• OCCURS DEPENDING ON
• TACL
• UPSHIFT
• VALUE
• 66 RENAMES
• 88 condition-name

In Example 9-43 on page 9-88, the DDL compiler retrieves the record CUSTOMER
from the open dictionary, translates it to Pascal source code, and appends the source
code to the open Pascal file. For the DDL definition of the CUSTOMER record, see the
sample database schema in Appendix B, Sample Schemas.

Example 9-43. PASCAL Command

DDL Input

39> DDL
!?DICT
!?Pascal $data.sales.passrc
!OUTPUT RECORD customer.
!EXIT
Data Definition Language (DDL) Reference Manual—529431-003
9-88

DDL Compiler Commands PASCALBOUND (D-Series Systems Only)
PASCALBOUND (D-Series Systems Only)
The PASCALBOUND command sets the lower bound for Pascal arrays.

Default: PASCALBOUND 1

0

assigns any subsequent Pascal arrays a lower bound of 0.

1

assigns any subsequent Pascal arrays a lower bound of 1.

The DDL compiler stores the value of the lower bound in the dictionary with the field or
group definition.

You can use the PASCALBOUND command as often as you need to set different
bounds for different arrays.

The DDL compiler uses the value in the PASCALBOUND command when writing an
element to the dictionary. After an element is in the dictionary, changing the
PASCALBOUND value has no effect on the Pascal output for that element. To change
the PASCALBOUND value for an entered element, you must replace the element in
the dictionary.

Pascal arrays are declared for fields and groups described with an OCCURS clause,
for fields described as TYPE CHARACTER, and for all fields described with an
alphanumeric picture.

If you specify PASCALBOUND 0, the array bounds are:

[0:number - 1]

DDL Output (CUSTOMER Record in PASSRC)

?Section CUSTOMER
{ Definition for CUSTOMER Record }
{ Contains customer information for each customer }
TYPE CUSTOMER_DEF = RECORD
{FILE IS "$data.sales.customer" KEY-SEQUENCED.}
 CUSTNUM : CUSTNUM_DEF;
 CUSTNAME : NAME_DEF;
 ADDR : ADDR_DEF;
END;
CONST CUSTOMER_CUSTNUM_KEY = 0;
CONST CUSTOMER_CUSTNAME_KEY = 25454;

PASCALBOUND { 0 | 1 }

Example 9-43. PASCAL Command
Data Definition Language (DDL) Reference Manual—529431-003
9-89

DDL Compiler Commands PASCALCHECK (D-Series Systems Only)
In the array bounds, number is the number of occurrences of a field described with an
OCCURS clause, or the number of characters in a field described with an
alphanumeric PICTURE or a TYPE CHARACTER clause.

If you specify PASCALBOUND 1, the array bounds are:

[1:number]

PASCALCHECK (D-Series Systems Only)
The [NO]PASCALCHECK command performs [suppresses] Pascal syntax checks on
subsequent data descriptions without generating code.

Default: PASCALCHECK if a Pascal source code file is open, otherwise
NOPASCALCHECK

PASCALCHECK

performs Pascal syntax checks as though Pascal source code were being
produced.

NOPASCALCHECK

suppresses Pascal syntax checks.

You can stop Pascal syntax checking by specifying NOPASCALCHECK; you can
restart checking with a subsequent PASCALCHECK.

The DDL compiler does not perform the lengthy testing performed by the Pascal
compiler. The DDL compiler tests the DDL statements to ensure that they follow these
Pascal rules:

• A name cannot be longer than 31 ASCII characters. A name might become longer
because the DDL compiler appends _DEF or _KEY to the end of the name of a
definition, record, or key.

• Pascal reserved words cannot be DDL names.

• A Pascal named substructure that contains word data must be word aligned.

Example 9-44. PASCALBOUND Command

?PASCAL
...

Open Pascal source code file.
PASCALBOUND is 1 by default.

?PASCALBOUND 0
DEF test0 PIC X(10).

Change PASCALBOUND to 0.

?PASCALBOUND 1
DEF test1 PIC X(10).

Return to default setting

[NO]PASCALCHECK
Data Definition Language (DDL) Reference Manual—529431-003
9-90

DDL Compiler Commands PASCALNAMEDVARIANT (D-Series Only)
When PASCALCHECK is in effect, DDL issues the following message for each DDL
object that passes the syntax check:

PASCAL CHECK completed for name

In this message, name is the name of the object checked by PASCALCHECK.

PASCALNAMEDVARIANT (D-Series Only)
The [NO]PASCALNAMEDVARIANT command generates the REDEFINES clause in
the last element as a named [anonymous] variant record in Pascal output.

Default: NOPASCALNAMEDVARIANT

PASCALNAMEDVARIANT

generates the REDEFINES clause in the last element as a named variant record in
Pascal output.

NOPASCALNAMEDVARIANT

generates the REDEFINES clause in the last element as an anonymous variant
record in Pascal output.

Example 9-45. PASCALCHECK Command

?PASCALCHECK
DEF TRANSPORT.
 02 CASE PIC X(10).
 02 ORIGIN PIC X(10).
 02 DESTIN PIC X(10).
 02 LABEL PIC X(10).
 02 PACKED PIC X(10).
END.

Start syntax checking.

Definition TRANSPORT size is 50 bytes.
Definition TRANSPORT added to dictionary.
 *** WARNING *** PASCAL OUTPUT DIAGNOSTICS:
 *** ERROR *** Reserved word - CASE
 *** ERROR *** Reserved word - LABEL
 *** ERROR *** Reserved word - PACKED
 *** WARNING *** Errors detected - no output for TRANSPORT

?NOPASCALCHECK Stop syntax checking.

[NO]PASCALNAMEDVARIANT
Data Definition Language (DDL) Reference Manual—529431-003
9-91

DDL Compiler Commands REPORT
REPORT
The [NO]REPORT command:

• Opens [closes] a report file
• Starts [stops] writing a schema report to the report file

Default: NOREPORT

REPORT

closes any open report file, opens report-destination, and writes a schema
report to that file.

report-destination

is the name of the file or output device to which the report is sent.

Default: home terminal

!

purges the contents of report-destination before opening it, if it exists. If
report-destination does not exist, the exclamation point has no effect.

Without the exclamation point, the DDL compiler appends the new schema report
to the end of report-destination.

NOREPORT

closes the report file.

The REPORT command produces a schema report when the DDL compiler compiles
the schema; REPORT can be placed in a RUN DDL command or in the schema itself.

The report on each DDL object is written to a separate report page.

For each field in the schema, the report provides this information:

• Level number
• Name
• Offset in bytes from the start of a group or record
• Data type
• Size

If the field is defined by reference, the report also provides the source definition.

If the report destination you specify is an existing file, the DDL compiler appends the
report to the contents of the file.

{ REPORT [report-destination [!]] }
{ NOREPORT }
Data Definition Language (DDL) Reference Manual—529431-003
9-92

DDL Compiler Commands REPORT
To produce a schema report on the output device $S.#PRINTER, you can enter the
noninteractive command:

40> DDL/IN myschema/DICT, REPORT $S.#printer

You can generate the same report interactively:

41> DDL DICT
!?REPORT $S.#printer
!?SOURCE myschema
!EXIT

If any object is defined by reference to another object, the name of the referenced
object appears under the heading “Source Definition.”

You do not need the schema to produce a report. You can have the DDL compiler
generate the information from the open dictionary, as in Example 9-46 on page 9-93.

Example 9-46. REPORT Command

DDL Input

42> DDL

!?DICT Open the dictionary.

!?REPORT rptsrc ! Open the report file.

!OUTPUT DEF name.
!EXIT

Send the definition to RPTSRC.

DDL Output (Report in RPTSRC)

Dictionary Subvol: $BOOKS1.DDL

Definition NAME created.

 Num LV Element Name Offset Data Type & Size
Source Definition

 001 01 NAME 0 Group 22
 002 02 LAST-NAME 0 Character 12
 003 02 FIRST-NAME 12 Character 8
 004 02 MIDINIT 20 Character 2

 Definition size is 22 bytes.
Data Definition Language (DDL) Reference Manual—529431-003
9-93

DDL Compiler Commands RESET
RESET
The RESET command stops compiling the current statement and returns to the state
before compilation of that statement began.

Use RESET only in interactive sessions. (It functions in the noninteractive mode, but is
more useful in the interactive mode.)

Use RESET whenever an error or series of errors makes it difficult to continue
compilation.

SAVE
The [NO]SAVE command saves [purges] the open dictionary when the dictionary is
closed.

Default: SAVE

SAVE

saves the open dictionary when the dictionary is closed.

RESET

Example 9-47. RESET Command

43> DDL
!?DICT
!DEF aa.
! 02 bb PIC X(4).
! 03 cc PIC 9(6). Wrong level number

*** ERROR *** Invalid lexical level

!?RESET
!DEF aa.
! 02 bb PIC X(4).
! 02 cc PIC 9(6).
! 02 dd.
! 03 dl PIC X(12).
! 03 ff PIC XX.
END

Reset DDL parser and continue

[NO]SAVE
Data Definition Language (DDL) Reference Manual—529431-003
9-94

DDL Compiler Commands SAVE
NOSAVE

purges the contents of the open dictionary when the dictionary is closed unless the
dictionary either:

• Was opened for read-only access with the command DICTR on page 9-51

• Is part of a Pathmaker project

The open dictionary closes in any of these situations:

• The NODICT command executes (see DICT on page 9-47)

• The DICT command opens another dictionary

• Compilation stops

If an existing dictionary is opened for update and NOSAVE is in effect when the
dictionary is closed, the contents of the dictionary are purged. The NOSAVE command
is ignored if the dictionary is part of a Pathmaker project.

If the DDL compiler encounters an error while processing a statement that describes a
DDL object, it does not add that object to the dictionary. If the dictionary is saved
(either by default or because of an explicit SAVE command), it does not contain all the
DDL objects specified in the schema.

You can use the NOSAVE, ERRORS, and SAVE commands to ensure that a dictionary
is saved only if the entire schema is compiled without errors in one of two ways:

• Put a NOSAVE command and an ERRORS 1 command at the beginning of the
schema.

• Put a SAVE command at the end of the schema.

If the DDL compiler encounters an error, compilation stops while NOSAVE is in effect,
and the dictionary is not saved. The dictionary is saved only if compilation completes
with no errors; thus, the dictionary either contains all the requested objects or it is
purged.

In Example 9-48 on page 9-96, ERRORS 1 directs the DDL compiler to cease
processing the schema when it encounters the first error. While NOSAVE is in effect, it
directs the compiler to purge the dictionary when compilation stops. The SAVE
command is executed only if compilation reaches the SAVE line with no errors.
Data Definition Language (DDL) Reference Manual—529431-003
9-95

DDL Compiler Commands SECTION
SECTION
The SECTION command names a section of a DDL schema (without affecting the
section headings in host-language source code files).

section-name

is the name of a section.

A section is defined as all the source lines following a SECTION command, up to and
including the last line before the next SECTION command or the end of the DDL
schema.

You can divide a DDL schema into any number of sections.

You can use the SOURCE command to include selected sections of a DDL schema
file.

When specified in a SOURCE command, sections with the same name are grouped
together during compilation.

The SECTION command only names sections in a schema. You can use the
SETSECTION command to specify or suppress section names in host-language
source-code output.

The source code file in Figure 9-1 on page 9-97 has two sections: SALES-FILES and
EMPLOYEE-FILES. The EMPLOYEE-FILES section is made up of two portions of the
schema separated by the SALES-FILES section.

Example 9-48. SAVE Command

44> DDL

!?ERRORS 1
!?NOSAVE
!?DICT $data.sales

First line of DDL schema

... Body of DDL schema

!?SAVE
!EXIT

Last line of DDL schema

SECTION section-name
Data Definition Language (DDL) Reference Manual—529431-003
9-96

DDL Compiler Commands SETLOCALENAME
SETLOCALENAME
The SETLOCALENAME command specifies the language, territory, and character set
for output of text items.

locale-name

specifies a language, territory, and character set for a text item.

Default: default system locale

When a programming language file is generated, the value associated with the
specified locale will be output for each text item.

If multiple SETLOCALENAME commands are issued, the last one issued is in effect.

The SETLOCALENAME command can be set anytime. Different locales can be used
when generating a programming language source program.

If there is not a text item with a locale name that matches the one given in the
SETLOCALENAME command, an error occurs.

If there is more than one literal specified with the same locale name for a text item, an
error occurs. The literal with the duplicate locale name is ignored.

Example 9-49 on page 9-98 shows the use of the SETLOCALENAME command to
generate output for text items in French.

Figure 9-1. SECTION Command

SETLOCALENAME [locale-name]

* first line of DDL source schema
?SECTION employee-files
 .
 .
 .
?SECTION sales-files
 .
 .
 .
?SECTION employee-files
 .
 .
 .
* last line of DDL source schema

Sales files section employee files section

VST925.vsd
Data Definition Language (DDL) Reference Manual—529431-003
9-97

DDL Compiler Commands SETSECTION
SETSECTION
The SETSECTION command determines SECTION headings for all open source code
files except TACL source code files.

Default: SETSECTION without section-name

SETSECTION section-name

immediately generates a SECTION heading with the name section-name on all
open source code files except TACL source code files, and generates no other
SECTION headings.

Remains in effect until another SETSECTION command appears or the DDL
session ends.

SETSECTION

generates a separate SECTION heading, with the object name as the section
name, for each subsequent DDL object in the open source code file except TACL
source code files.

Remains in effect until a SETSECTION section-name command appears or the
DDL session ends.

If SETSECTION is not specified or if SETSECTION is specified without section-
name, the DDL compiler precedes each DDL object in the open source code files with
a SECTION heading that uses the DDL object name as the section name.

The SETSECTION command affects only host-language source code files (except
TACL source code files) and DDL source code files opened by the DDL command.

Example 9-49. SETLOCALENAME Command

DDL Input

? DICT !
? COBOL COBSRC !
? SETLOCALENAME no_NO.ISO8859-1
CONSTANT custnum-heading VALUE "Finnish" LN"fi_FI.ISO8859-1"
 "Norwegian" LN"no_NO.ISO8859-1"
 "Danish" LN"da_DK.ISO8859-1".

DDL Output (COBOL Code)

* SCHEMA PRODUCED DATE - TIME : 11/16/1994 16:17:21
?SECTION CUSTNUM-HEADING TANDEM
* Constant CUSTNUM-HEADING created on 11/16/1994 at 16:17
 01 CUSTNUM-HEADING PIC X(7), VALUE IS "Norwegian".

SETSECTION [section-name]
Data Definition Language (DDL) Reference Manual—529431-003
9-98

DDL Compiler Commands SOURCE
If you give a SETSECTION command with a name, and then open a host-language
source code file, no SECTION commands are written to the file. The SECTION
command for the given name is not written because the file was not open at the time.
Also, the SETSECTION command inhibits any SECTION commands for individual
objects.

SETSECTION does not specify sections in the DDL schema being compiled. You use
the SECTION command to specify section names in a schema in order to selectively
compile source sections with the SOURCE command.

Example 9-50 on page 9-99 generates two source-code sections: one for constants
and one for definitions.

SOURCE
The SOURCE command compiles all or part a specified DDL schema.

source-name

is the name of the file that contains the schema file to be compiled.

Example 9-50. SETSECTION Command

DDL Input

?SETSECTION constants
CONSTANT custnum-heading VALUE "Customer/Number".
CONSTANT mdy-date-display VALUE "mm/dd/yy".
CONSTANT phone-display VALUE "M(999) 999-9999".
...
 ?SETSECTION defs
DEF deliv-date PIC 9(6) DISPLAY mdy-date-display.
DEF custnum PIC 9(4) HEADING custnum-heading.
DEF custphone PIC 9(10) DISPLAY phone-display.
...

DDL Output (COBOL Code)

?Section CONSTANTS,Tandem
 01 CUSTNUM-HEADING PIC X(15), VALUE IS "Customer/Number".
 01 MDY-DATE-DISPLAY PIC X(11), VALUE IS "M99/99/99".
 01 PHONE DISPLAY PIC X(17), VALUE IS "M(999) 999-9999".
 ...
 ?Section DEFS,Tandem
 01 CUSTNUM PIC 9(4).
 01 CUSTPHONE PIC 9(10).
 01 DELIV-DATE PIC 9(6).
 ...

SOURCE source-name [(section-name [, section-name] ...)]
Data Definition Language (DDL) Reference Manual—529431-003
9-99

DDL Compiler Commands SOURCE
section-name

is the name of a section within the schema file. (Section names are specified with
the command SECTION on page 9-96.)

If you specify one or more sections, the DDL compiler compiles only the specified
sections.

If you do not specify sections, the DDL compiler compiles the entire schema.

A schema file is an EDIT file that contains DDL statements and commands; it can be
either a file created with the EDIT program or a DDL source code file created with the
DDL command.

If you specify more than one section, the sections are compiled in the order they occur
in the source code file.

A single SOURCE command can extend over more than one input line. The first line
begins with SOURCE, and each subsequent line begins with a question mark.

schema files can be nested; that is, schema A can contain a SOURCE command
specifying schema B, and schema B can contain a SOURCE command specifying
schema C.

If the DDL compiler is compiling a schema file and it encounters a SOURCE command
in that file, the DDL compiler:

1. Suspends compilation of the current file.

2. Opens the file specified in the SOURCE command and compiles either the entire
file or the specified sections.

3. Includes the compiled file (or sections) in the current file at the point where it
encounters the SOURCE command.

4. Resumes compiling the current file.

In Example 9-51 on page 9-100, the DDL compiler opens a new DDL source code file
called NEWSRC. The DDL compiler first compiles all of FILE1 and writes it to
NEWSRC; then compiles SECT-1 and SECT-3 of FILE2 and appends them to the
contents of NEWSRC; and lastly, compiles SECT-1 and SECT-5 of FILE3 and appends
them to the end of NEWSRC.

Example 9-51. SOURCE Command

45> DDL
!?DICT
!?DDL newsrc
!?SOURCE file1
!?SOURCE file2 (sect-1, sect-3)

!?SOURCE file3 (sect-1,!
 sect-5)
!EXIT

Continuation line
Data Definition Language (DDL) Reference Manual—529431-003
9-100

DDL Compiler Commands SPACING
SPACING
The SPACING command specifies the number of blank lines to insert between lines of
a printed report.

Default: SPACING 0

{ 0 | 1 | 2 }

is the number of blank lines to insert between lines of a printed report.

The SPACING command controls spacing only on a printed report; it does not affect
spacing in a report file or on a terminal display.

You can use the SPACING command as often as you want to within a DDL schema or
in a DDL session.

In Example 9-52 on page 9-101, the SPACING command double spaces between lines
of a DDL schema report printed on a line printer.

TACL
The [NO]TACL command:

• Opens [closes] a TACL source code file

• Starts [stops] writing translated DDL object definitions to the TACL source code file

Default: NOTACL

TACL

closes any open TACL source code file, opens tacl-source-file, translates
subsequent DDL objects defined by statements or specified in OUTPUT
statements to TACL source code statements, and writes the TACL source code
statements to tacl-source-file.

SPACING { 0 | 1 | 2 }

Example 9-52. SPACING Command

46> DDL DICT
!?REPORT $S.#printer Select a printer for the report

!?SPACING 1
!OUTPUT DEF name.
!EXIT

Specify double spacing
Select a definition to print

{ TACL [tacl-source-file [!] }
{ NOTACL }
Data Definition Language (DDL) Reference Manual—529431-003
9-101

DDL Compiler Commands TACL
tacl-source-file

is the name of the TACL source code file to be created, if necessary, and opened.
The file must be one of:

• EDIT file
• Unstructured file
• Sequential device (such as a terminal, spooler, or process)

If the file exists but is not one of these types, the DDL compiler issues an error
message and does not open the file.

Default: home terminal

!

purges the contents of tacl-source-file before opening it, if it exists. If
tacl-source-file does not exist, the exclamation point has no effect.

Without the exclamation point, the DDL compiler appends the new TACL source
code statements to the end of tacl-source-file.

NOTACL

closes any open TACL source code file and stops translating DDL object definitions
to TACL source code statements.

The specified TACL source code file must be an EDIT file, an unstructured file, or a
sequential device such as a terminal, a spooler, or a process. If the file exists but is not
one of these types, the DDL compiler issues an error message and does not open the
file.

Only one TACL source code file can be open at a time. If you use the TACL command
when you already have a TACL source code file open, the DDL compiler closes the
current source code file before opening the new source code file.

If the TACL source code file already exists and the exclamation point is omitted, the
DDL compiler appends the DDL objects to the end of the file’s original contents. The
DDL compiler does not replace any existing structures.

The compiler can translate DDL objects specified in an OUTPUT statement only if the
dictionary containing these objects is open.

Each DDL object translated to TACL source code is written to the TACL source code
file in a separate section that has the same name as the DDL object it contains. You
cannot suppress the generation of individual section headings in TACL source code
with the SETSECTION command.

Any DDL object defined in a DDL CONSTANT, DEFINITION, RECORD, TOKEN-
CODE, TOKEN-MAP, or TOKEN-TYPE statement can be translated to TACL data
structures.

The DDL compiler replaces any hyphen in a DDL object name with a circumflex (^)
before writing the name to the TACL source code file.
Data Definition Language (DDL) Reference Manual—529431-003
9-102

DDL Compiler Commands TACL
The DDL compiler translates each DDL object (except constants) to one or more TACL
structures; the DDL compiler translates constants to TACL text variables.

For the data types that the DDL compiler generates for TACL source code, see
Table C-5 on page C-9.

When translating a definition or record, the DDL compiler generates a TACL structure
corresponding to the data type of each field or group of fields in the definition or record,
unless the field or group is defined with a TACL clause.

If a field definition or a field or group description includes a TACL clause, the DDL
compiler generates a TACL structure with the high-level TACL data type specified in
the TACL clause.

The DDL compiler performs these checks before generating TACL source code:

• Checks whether a definition or record contains a data type not supported by TACL;
if so, the DDL compiler issues a warning.

• Checks whether a definition, record, or token map generates a TACL structure with
more than 5,000 bytes; if so, the DDL compiler issues an error message and does
not generate the object.

• Checks whether a CONSTANT generates a TACL text variable with a value greater
than 130 ASCII characters, including any tildes (~) emitted by the DDL compiler; if
so, the DDL compiler issues an error message and does not generate the object.

In Example 9-53 on page 9-104, the DDL compiler retrieves the record CUSTOMER
from the open dictionary, translates it to TACL source code, and writes the source code
to the file \DALLAS.$DATA.SALES.TACLSRC. If this file already exists, the DDL
compiler appends the entry for CUSTOMER to the file. For the definition of the
CUSTOMER record, see the sample database schema in Appendix B, Sample
Schemas.
Data Definition Language (DDL) Reference Manual—529431-003
9-103

DDL Compiler Commands TACLGEN
TACLGEN
The TACLGEN command specifies a TACL source code generation product version.

Default: TACLGEN 0

0

specifies the current product version of TACL.

Because the DDL compiler generates only one product version of TACL code at the
current time, the TACLGEN command does not affect output.

Example 9-53. TACL Command

DDL Input

?DICT
?TACL \dallas.$data.sales.taclsrc
OUTPUT RECORD customer.

DDL Output (TACL Code)

?Section CUSTOMER Struct
Begin
STRUCT CUSTNUM;
 BEGIN CHAR BYTE(0:3); END;
STRUCT CUSTNAME;
 Begin
 STRUCT LAST^NAME;
 BEGIN CHAR BYTE(0:11); END;
 STRUCT FIRST^NAME;
 BEGIN CHAR BYTE(0:7); END;
 STRUCT MIDINIT;
 BEGIN CHAR BYTE(0:1); END;
 End;
STRUCT ADDR;
 Begin
 STRUCT ADDRESS;
 BEGIN CHAR BYTE(0:21); END;
 STRUCT CITY;
 BEGIN CHAR BYTE(0:13); END;
 STRUCT STATE;
 BEGIN CHAR BYTE(0:1); END;
 STRUCT ZIP;
 BEGIN CHAR BYTE(0:4); END;
 End;
End;

TACLGEN 0
Data Definition Language (DDL) Reference Manual—529431-003
9-104

DDL Compiler Commands TAL
TAL
The [NO]TAL command:

• Opens [closes] a pTAL or TAL source code file

• Starts [stops] writing translated DDL object definitions to the pTAL or TAL source
code file

Default: NOTAL

TAL

closes any open pTAL or TAL source code file, opens tal-source-file,
translates subsequent DDL objects defined by statements or specified in OUTPUT
statements to pTAL or TAL source code statements, and writes the pTAL or TAL
source code statements to tal-source-file.

tal-source-file

is the name of the pTAL or TAL source code file to be created, if necessary, and
opened. The file must be one of:

• EDIT file
• Unstructured file
• Sequential device (such as a terminal, spooler, or process)

If the file exists but is not one of these types, the DDL compiler issues an error
message and does not open the file.

If tal-source-file is an EDIT file, and it exceeds 99,999 lines, the DDL
compiler issues FILE ERROR - filename - Edit file line number too large (537) on
page A-17.

Default: home terminal

!

purges the contents of tal-source-file before opening it, if it exists. If
tal-source-file does not exist, the exclamation point has no effect.

Without the exclamation point, the DDL compiler appends the new pTAL or TAL
source code statements to the end of tal-source-file.

NOTAL

closes any open pTAL or TAL source code file and stops translating DDL object
definitions to TACL source code statements.

{ TAL [tal-source-file [!] }
{ NOTAL }
Data Definition Language (DDL) Reference Manual—529431-003
9-105

DDL Compiler Commands TAL
The specified pTAL or TAL source code file must be an EDIT file, an unstructured file,
or a sequential device such as a terminal, a spooler, or a process. If the file exists but
is not one of these types, the DDL compiler issues an error message and does not
open the file.

Only one pTAL or TAL source code file can be open at a time. If you use the TAL
command when you already have a pTAL or TAL source code file open, the DDL
compiler closes the current source code file before opening the new source code file.

If the pTAL or TAL source code file already exists and the exclamation point is omitted,
the DDL compiler appends the DDL objects to the end of the file’s original contents.
The DDL compiler does not replace any existing objects.

The compiler can translate DDL objects specified in an OUTPUT statement only if the
dictionary containing these objects is open.

Each DDL object translated to pTAL or TAL source code is written to the pTAL or TAL
source code file in a separate section that has the same name as the DDL object it
contains. You can suppress the generation of individual section headings with the
SETSECTION command.

The DDL compiler translates complex objects, such as group definitions and group
records, to pTAL or TAL STRUCT template declarations. The DDL compiler translates
simple objects, such as field definitions and records containing only one field and no
groups, to simple pTAL or TAL variables or to pTAL or TAL STRUCT declarations,
rather than to STRUCT template declarations. (But see TALALLOCATE on
page 9-108.)

Unless the command TALUNDERSCORE on page 9-111 is in effect, the DDL compiler
replaces any hyphen in a DDL name with a circumflex (^) before writing the name to
the pTAL or TAL source code file.

Before writing a name to a pTAL or TAL source code file, the DDL compiler:

• Appends ^DEF to every group definition name and record name (but not to any
field definition name)

• Appends ^WLN to every SPI TOKEN-MAP name

• Appends ^KEY to every primary-key name and alternate-key name

As a result, the maximum length for the name of a DDL group definition, record, token
map, or key that is to be written to pTAL or TAL is 27 ASCII characters, not the
standard DDL name length of 30 characters.

The pTAL or TAL source code for a definition or record compiled with the
CFIELDALIGN_MATCHED2 command contains the fillers added by the DDL compiler
as specified by the alignment algorithm in effect when the definition or record was
compiled.

For the data types that the DDL compiler generates for pTAL or TAL source code, see
Table C-6 on page C-11.
Data Definition Language (DDL) Reference Manual—529431-003
9-106

DDL Compiler Commands TAL
The DDL compiler performs all of the syntax checks listed under the TALCHECK
command before writing the pTAL or TAL source output. If the DDL compiler finds a
syntax error, it does not write the source output for the object with the error; it does
write source output for an object if only a warning is issued.

The lower bound for pTAL or TAL arrays can be set with the TALBOUND command.

In Example 9-54 on page 9-107, the DDL compiler opens the dictionary, opens and
then clears the file \DALLAS.$DATA.SALES.TALSRC, retrieves the record
CUSTOMER from the open dictionary, translates it to pTAL or TAL source code, and
then writes it to the open pTAL or TAL source code file. For the definition of the
CUSTOMER record, see the sample database schema in Appendix B, Sample
Schemas.

Example 9-54. TAL Command

47> DDL
!?DICT
!?TAL \dallas.$data.sales.talsrc !
!OUTPUT RECORD customer.
?SECTION CUSTOMER
?PAGE
STRUCT CUSTOMER^DEF (*);
 BEGIN
 STRUCT CUSTNUM;
 BEGIN STRING BYTE [1:4]; END;
 STRUCT CUSTNAME;
 BEGIN
 STRUCT LAST^NAME;
 BEGIN STRING BYTE [1:12]; END;
 !Upshift
 STRUCT FIRST^NAME;
 BEGIN STRING BYTE [1:8]; END;
 !Upshift
 STRUCT MIDINIT;
 BEGIN STRING BYTE [1:2]; END;
 !Upshift
 END;
STRUCT ADDR;
 BEGIN
 STRUCT ADDRESS;
 BEGIN STRING BYTE [1:22]; END;
 STRUCT CITY;
 BEGIN STRING BYTE [1:14]; END;
 STRUCT STATE;
 BEGIN STRING BYTE [1:2]; END;
 STRUCT ZIP-CODE;
 BEGIN STRING BYTE [1:5]; END;
 END;
END;
LITERAL CUSTOMER^CUSTNUM^KEY = %000000;
LITERAL CUSTOMER^CUSTNAME^KEY = %061556; !"cn"
Data Definition Language (DDL) Reference Manual—529431-003
9-107

DDL Compiler Commands TALALLOCATE
TALALLOCATE
The [NO]TALALLOCATE command causes [suppresses] memory allocation in pTAL or
TAL for single-field definitions when the TAL command is in effect.

Default: TALALLOCATE

TALALLOCATE

allocates memory for single-field definitions when the TAL command is in effect.

NOTALALLOCATE

suppresses memory allocation when the TAL command is in effect, causing the
DDL compiler to translate single-field definitions to pTAL or TAL DEFINEs or
STRUCT templates.

[NO]TALALLOCATE

Example 9-55. TALALLOCATE Command

DDL Type pTAL or TAL Type

?TALALLOCATE
DEF status TYPE ENUM BEGIN.
 89 no-error.
 89 read-error.
 89 write-error VALUE 6.
END.

LITERAL NO^ERROR = 0,
 READ^ERROR = 1,
 WRITE^ERROR = 6;
INT STATUS;

DEF letter Pic "X". STRING LETTER;

DEF number Pic "9(5)". STRUCT NUMBER;
BEGIN STRING BYTE [1:5]; END;

?NOTALALLOCATE
DEF status TYPE ENUM BEGIN.
 89 no-error.
 89 read-error.
 89 write-error VALUE 6.
END.

LITERAL NO^ERROR = 0,
 READ^ERROR = 1,
 WRITE^ERROR = 6;
DEFINE STATUS = INT #;

DEF letter Pic "X". DEFINE LETTER = STRING #;

DEF number Pic "9(5)". STRUCT NUMBER (*);
BEGIN STRING BYTE [1:5]; END;
Data Definition Language (DDL) Reference Manual—529431-003
9-108

DDL Compiler Commands TALBOUND
TALBOUND
The TALBOUND command sets the lower bound for pTAL or TAL arrays.

Default: TALBOUND 1

0

assigns any subsequent pTAL or TAL arrays a lower bound of 0.

1

assigns any subsequent pTAL or TAL arrays a lower bound of 1.

The DDL compiler stores the value of the lower bound in the dictionary with the field or
group definition.

You can use the TALBOUND command as often as needed to set different bounds for
different arrays.

The DDL compiler uses the value specified by the TALBOUND command when it
writes an element to the dictionary. After an element is in the dictionary, changing the
TALBOUND value has no effect on the pTAL or TAL output for that element. To change
the TALBOUND value for an entered element, you must replace the element in the
dictionary.

pTAL or TAL arrays are declared for fields and groups described with an OCCURS
clause, for fields described as TYPE CHARACTER, and for all fields described with an
alphanumeric PICTURE.

If you specify TALBOUND 0, the array bounds are:

[0:number - 1]

In the array bounds, number is the number of occurrences of a field described with an
OCCURS clause, or the number of characters in a field described with an
alphanumeric PICTURE or a TYPE CHARACTER clause. If you specify TALBOUND 1,
the array bounds are:

[1:number]

TALBOUND { 0 | 1 }
Data Definition Language (DDL) Reference Manual—529431-003
9-109

DDL Compiler Commands TALCHECK
TALCHECK
The [NO]TALCHECK command performs [suppresses] pTAL or TAL syntax checking
on subsequent data descriptions without generating code.

Default: TALCHECK if a TAL or pTAL source code file is open, otherwise NOTAL
CHECK

TALCHECK

performs pTAL or TAL syntax checks as though pTAL or TAL source code were
being produced.

NOTALCHECK

suppresses pTAL or TAL syntax checks.

If a pTAL or TAL source code file is open, the compiler performs checks whether or not
TALCHECK is set.

You can stop pTAL or TAL syntax checking by specifying NOTALCHECK; you can
restart checking with a subsequent TALCHECK.

Example 9-56. TALBOUND Command

DDL Input

?TAL
...

Open TAL source code file
TALBOUND is 1 by default

?TALBOUND 0
DEF test0 PIC X(10).

Change TALBOUND to 0

?TALBOUND 1
DEF test1 PIC X(10).

Return to default setting

DDL Output (pTAL or TAL Code)

?SECTION TEST0
STRUCT TEST0

BEGIN STRING BYTE [0:9]; END; TALBOUND 0 in source

?SECTION TEST1
STRUCT TEST1

BEGIN STRING BYTE [0:10]; END; TALBOUND 1 in source

[NO]TALCHECK
Data Definition Language (DDL) Reference Manual—529431-003
9-110

DDL Compiler Commands TALUNDERSCORE
The DDL compiler does not perform the lengthy testing performed by the pTAL or TAL
compiler. The DDL compiler tests the DDL statements to ensure that they follow the
rules specified by pTAL or TAL:

• pTAL or TAL reserved words cannot be DDL names.

• A constant value must not be greater than its defined limit.

• A name cannot be longer than 31 ASCII characters, including suffixes (such as
^DEF, ^WLN, or ^KEY).

• A REDEFINES clause cannot be at the level directly following that of a definition or
record.

When TALCHECK is in effect, the DDL compiler issues the following message for each
DDL object that passes the syntax check:

TAL CHECK completed for name

In the message, name is the name of the object checked by TALCHECK.

TALUNDERSCORE
The [NO]TALUNDERSCORE command replaces hyphens with underscores
[circumflexes] in DDL names for pTAL or TAL output.

Default: NOTALUNDERSCORE

TALUNDERSCORE

replaces each hyphen (-) with an underscore (_) in DDL names for pTAL or TAL
output.

Example 9-57. TALCHECK Command

?TALCHECK
RECORD location.
FILE IS "$data.sales.location" Key-sequenced.
 02 resident PIC X(15).
 02 loc PIC X(3).
 02 code PIC 999.
 KEY IS resident.
END
Record LOCATION size is 21 bytes.
*** WARNING *** TAL OUTPUT DIAGNOSTICS:
*** ERROR *** Reserved word - RESIDENT
*** ERROR *** Reserved word - CODE

Start syntax checking

?NOTALCHECK Stop syntax checking

[NO]TALUNDERSCORE
Data Definition Language (DDL) Reference Manual—529431-003
9-111

DDL Compiler Commands TEDIT
NOTALUNDERSCORE

replaces each hyphen (-) with a circumflex (^) in DDL names for pTAL or TAL
output.

TEDIT
The TEDIT command:

• Suspends compilation
• Starts a PS Text Edit (TEDIT) process
• Opens the specified file, executes the specified commands, and closes the file
• Resumes compilation when the TEDIT process stops

You can use TEDIT only in an interactive DDL session.

edit-file-name

is the name of an EDIT file.

Default: The most recent edit-file-name specified in the current DDL
session, if any. If none, you are prompted for a file name.

edit-parameter

is a PS Text Edit command.

Default: The most recent edit-file-name specified in the current DDL
session, if any. If none, you are prompted for a PS Text Edit command.

Issuing the TEDIT command within a DDL session is like issuing the TEDIT command
from the command interpreter; the PS Text Edit session is the same, and you can use
all the same functions.

When you stop a PS Text Edit process by issuing the EXIT command, control returns
to the DDL compiler.

Example 9-58. TALUNDERSCORE Command

DDL Input

CONSTANT This-Is-A-Literal VALUE is 99.

DDL Output (pTAL or TAL Code) with TALUNDERSCORE

LITERAL This_Is_A_Literal = 99;

DDL Output (pTAL or TAL Code) with NOTALUNDERSCORE

LITERAL This^Is^A^Literal = 99;

TEDIT [edit-file-name [; edit-parameter] ...]
Data Definition Language (DDL) Reference Manual—529431-003
9-112

DDL Compiler Commands TIMESTAMP
You must close any source code file before editing it. For instance, if you have opened
a COBOL source code file and entered some text in it, and then you want to view the
source code file with the text editor, you must issue the NOCOBOL command before
you issue the TEDIT command.

When you specify edit-file-name in the TEDIT command, the DDL compiler
passes that name to the current PS Text Edit process and also stores the name. If you
omit edit-file-name from the next TEDIT command in the same session, the DDL
compiler passes the stored name to the new PS Text Edit process.

When you specify edit-parameter in the TEDIT command, the DDL compiler
passes that parameter to the PS Text Edit process. The DDL compiler also stores the
parameter.

If you omit edit-file-name from the next TEDIT command, the DDL compiler
passes any parameter saved from the last TEDIT or EDIT command to the new PS
Text Edit process.

If you specify edit-file-name in the next TEDIT command, the DDL compiler
discards any previously stored parameter.

TIMESTAMP
The [NO]TIMESTAMP command includes [excludes] data and time comments in [from]
source code listings.

Default: TIMESTAMP

TIMESTAMP

includes date and time comments in source code listings.

Example 9-59. TEDIT Command

48> DDL DICT

!?DDL ddlfil Open DDLFIL

!RECORD sum.
...

Add a record

!?NODDL Close DDLFIL

!?TEDIT ddlfil
...

Start a PS TEXT EDIT process

!?SOURCE ddlfil
!?TEDIT
...

Add the record to the dictionary
Use the previous file

[NO]TIMESTAMP
Data Definition Language (DDL) Reference Manual—529431-003
9-113

DDL Compiler Commands TIMESTAMP
NOTIMESTAMP

excludes date and time comments from source code listings.

The DDL compiler produces a number of starred timestamp comments on the listings
of DDL or host-language source code. A comment at the beginning of the listing tells
the date and time the schema was produced; individual comment lines preceding each
section tell when each DDL object was created.

You can suppress these timestamp comments with NOTIMESTAMP and then include
them with a subsequent TIMESTAMP.

Example 9-60 on page 9-114 shows selective listing or suppression of the timestamp
comments in a COBOL source code file.

Example 9-60. TIMESTAMP Command

DDL Input

?COBOL cobsrc
DEF aa PIC X(8).
?NOTIMESTAMP
DEF bb PIC 9(5).
 .
 .
 .
?TIMESTAMP
RECORD rec1. FILE IS $data.sales.rec1 KEY-SEQUENCED.
 02 aa TYPE *.
 02 bb TYPE *.
END

DDL Output (COBOL Code)

*SCHEMA PRODUCED DATE - TIME : 4/30/1991 12:29:35
?SECTION AA, TANDEM

Timestamp

*Definition AA created on 4/30/1991 12:29
01 AA PIC X(8).
?SECTION BB, TANDEM

Timestamp

01 BB PIC 9(5).
...
?SECTION REC1, TANDEM

No timestamp

*Definition REC1 created on 4/30/1991 12:29
01 REC1.
02 AA PIC X(8).
02 BB PIC 9(5).

Timestamp
Data Definition Language (DDL) Reference Manual—529431-003
9-114

DDL Compiler Commands VALUES
VALUES
The [NO]VALUES command includes [excludes] initial values from DEFINITION and
RECORD statements in [from] DDL or COBOL source code.

Default: VALUES

VALUES

includes initial values from DEFINITION and RECORD statements in COBOL or
DDL source code.

NOVALUES

excludes initial values from DEFINITION and RECORD statements from DDL or
COBOL source code.

The VALUES command does not affect VALUE clauses associated with level-88 items
or with CONSTANT, TOKEN-CODE, TOKEN-MAP, or TOKEN-TYPE statements.

When the VALUES command is specified and the DDL compiler is generating source
code for FORTRAN, the compiler translates any initial values to comments.

The VALUES command is useful for definitions used in the Linkage sections of COBOL
or SCREEN COBOL, where COBOL initial values are not allowed.

Example 9-61 on page 9-115 suppresses initial values for the definition NEW-NAME.

[NO]VALUES

Example 9-61. VALUES and NOVALUES Commands

DDL Input

?NOTIMESTAMP
?COBOL cobsrc

Suppress timestamp comments

DEF new-numb PIC 9(12)
 VALUE IS ZEROS.

By default, include initial values in COBSRC

?NOVALUES
DEF new-name PIC X(18)
 VALUE IS "JONES".

Suppress initial values

?VALUES Include initial values again

DDL Output (COBOL Code)

?SECTION NEW-NUMB,TANDEM
 01 NEW-NUMB PIC 9(12)
 VALUE ZEROS.
?SECTION NEW-NAME,TANDEM
 01 NEW-NAME PIC X(18).
Data Definition Language (DDL) Reference Manual—529431-003
9-115

DDL Compiler Commands WARN
WARN
The [NO]WARN command includes [excludes] warnings in [from] the compiler listing.

Default: WARN

WARN

includes warnings in the compiler listing.

NOWARN

excludes warnings from the compiler listing.

WARNINGS
The WARNINGS command specifies the number of warnings allowed before
compilation stops.

Default: Compilation continues until the end of the source code file regardless of the
number of warnings

max-warnings

is a number from 1 through 32,767 that specifies the maximum number of
warnings allowed before the DDL compiler stops compiling the source code file.

Default: 1

When compilation stops because the specified number of warnings is exceeded, the
DDL compiler closes the open dictionary and any open files, issues session statistics,
and stops.

[NO]WARN

Example 9-62. WARN and NOWARN Commands

*start of source code file
...

List warning messages by default

?NOWARN
...

Suppress warning messages for subsequent
statements

?WARN
...
*end of source code file

List warning messages for subsequent statements

WARNINGS [max-warnings]
Data Definition Language (DDL) Reference Manual—529431-003
9-116

DDL Compiler Commands WARNINGS
The specified maximum number of warnings applies only to warnings that occur after
the appearance of the WARNINGS command. For example, if two warnings occur
before a WARNINGS 5 command appears, the seventh warning to occur (the fifth
warning after the command appeared) stops compilation.

If the NOWARN command is in effect, you cannot use the WARNINGS command.

The WARNINGS command does not count the number of occurrences of conditions
that result in a warning, but instead counts the number of messages issued that begin
with *** WARNING ***. Some warning conditions can generate more than one such
message. For example:

*** WARNING *** COBOL OUTPUT DIAGNOSTICS:
*** WARNING *** Unsupported data type in element A
*** WARNING *** Unsupported data type in element B

If WARNINGS 3 was specified, compilation stops after this condition occurs.

This WARNINGS command directs the DDL compiler to stop compiling when it
encounters the third compilation warning:

?WARNINGS 3

If a third compilation warning is encountered, the DDL compiler issues the warning
message for the third warning, followed by the fatal error message:

Too Many Warnings - Compilation Terminating.

Example 9-63. WARNINGS Command

?SECTION start
...

?SECTION rest-of-schema

Compile regardless of warnings

?WARNINGS 1
...

Stop compiling if any warning is encountered
Data Definition Language (DDL) Reference Manual—529431-003
9-117

DDL Compiler Commands WARNINGS
Data Definition Language (DDL) Reference Manual—529431-003
9-118

10 Dictionary Maintenance
This section briefly describes these dictionary maintenance procedures:

• Generating a schema From a Dictionary on page 10-1

• Adding Dictionary Objects on page 10-2

• Deleting Dictionary Objects on page 10-4

• Modifying Dictionary Objects on page 10-8

• Making Major Modifications on page 10-13

• Changing Dictionary Security on page 10-14

• Moving a Dictionary on page 10-14

• Purging a Dictionary on page 10-18

• Increasing Dictionary File Size on page 10-19

• Rebuilding a Dictionary on page 10-20

• Converting a Dictionary on page 10-22

Generating a schema From a Dictionary
Some reasons to generate a new schema from the dictionary are:

• You can use the new schema as a backup for the dictionary.

• You made so many changes to definitions and records in the dictionary that the
original schema is out of date.

• You lost the original schema.

To generate a schema from a dictionary:

1. Use the DICT, DICTN, or DICTR command to open the dictionary.

2. Use the DDL command to open a DDL source code file to contain the new schema
(this DDL source code file will be the new schema file).

3. Use an OUTPUT statement to generate DDL source statements from the dictionary
objects and write them to the new schema file.

Note. Changing a dictionary does not change any database described by the dictionary, nor
do any changes to a database affect the dictionary.

Note. Do not attempt to back up a dictionary that is part of a Pathmaker catalog using the
following procedure. Pathmaker dictionaries contain application design information that is not
generated in DDL schemas.
Data Definition Language (DDL) Reference Manual—529431-003
10-1

Dictionary Maintenance Adding Dictionary Objects
Adding Dictionary Objects
Adding a new dictionary object is usually easier than modifying an existing object
because a new object cannot be referenced by an existing object.

If statements describing new objects refer to previously defined objects in the
dictionary, the dictionary must be open.

When you add a new object, you must be careful that it does not have the same name
as an existing object of the same object type. If it does have the same name, the DDL
compiler replaces the existing object with the new object. If you try to add a new object
that has the same name but is of a different type (for example, a new constant with the
same name as an existing record), the DDL compiler issues an error message and
does not replace the existing object.

You can specify the new object in an interactive DDL session, but errors are not easy
to correct in a session. So if the object requires more than a few lines of code, it is
generally easier and safer to add a new object noninteractively. To add the object, you
specify the appropriate statements in a file, open the dictionary, and compile the file.

To add new objects to the dictionary, do this:

1. Specify the new objects.

2. Use EDIT to create a source file that contains the statements that define the new
objects.

3. Open the dictionary. You can include the DICT or DICTN command to open the
dictionary in the source file, or you can specify it later when you compile the source
file.

4. Compile the source file. You can do this by running the DDL compiler interactively
and using a SOURCE command to specify the source file, or you can use the RUN
DDL command and specify the source file as the IN parameter.

Example 10-1. Generating a schema From a Dictionary

39> DDL Run the DDL compiler interactively.

!?DICT $data.sales Open the dictionary.

!?DDL $data.sales.schembak ! Open a DDL source file.

!?OUTPUT *. Generate DDL source statements from the
dictionary objects and write them to the open DDL
source file (which is now the new schema file).

!EXIT End the interactive session.
Data Definition Language (DDL) Reference Manual—529431-003
10-2

Dictionary Maintenance Adding Dictionary Objects
In Example 10-2 on page 10-3, the record DEPENDENTS contains two fields
(EMPNUM and DEPNAME) that refer to existing objects in the dictionary.

Example 10-2. Adding a New Record to a Dictionary

Add the record:

40> EDIT newsrc !; ADD
 1 RECORD dependents.
 2 FILE IS $data.sales.empdep KEY-SEQUENCED
 3 AUDIT.
 4 O2 dep-key.
 5 04 empnum TYPE *.
 6 04 depnum PIC X(4).
 7 02 depname TYPE name.
 8 02 age PIC 9(2).
 9 02 sex PIC X(2).
 10 88 female VALUE "01".
 11 88 male VALUE "02".
 12 KEY IS dep-key.
 13 END
 14 //
*EXIT

Specify a new record

View the record:

41> DDL DICT $data.sales
!?SOURCE newsrc
 1 RECORD dependents.
 2 FILE IS $data.sales.empdep KEY-SEQUENCED
 3 AUDIT.
 4 02 dep-key.
 5 04 empnum TYPE *.
 6 04 depnum PIC X(4).
 7 02 depname TYPE name.
 8 02 age PIC 9(2).
 9 02 sex PIC X(2).
 10 88 female VALUE "01".
 11 88 male VALUE "02".
 12 KEY IS dep-key.
 13 END
 Record DEPENDENTS size is 34 bytes.
 Record DEPENDENTS added to dictionary.
!EXIT
Data Definition Language (DDL) Reference Manual—529431-003
10-3

Dictionary Maintenance Deleting Dictionary Objects
Deleting Dictionary Objects
Deleting a dictionary object is comparatively easy if the object is not referenced by
other objects in the dictionary. Objects that are never referenced by other objects are:

• Records
• SPI token codes
• SPI token maps

When an object is referenced by other objects, you must first delete the referring
objects. Objects that can be referenced by other objects are:

• Constants
• Definitions
• SPI token types

Topics:

• Deleting Unreferenced Objects on page 10-4

• Deleting Referenced Objects on page 10-5

Deleting Unreferenced Objects
When you delete a record, an SPI token code, or an SPI token map, you need not be
concerned that the deletion affects other objects in the dictionary. These objects are
never referenced by other objects. Other objects that can be referenced might also be
unreferenced. You can use the SHOW USE OF command to determine whether the
object you want to delete is referenced by other objects.

To delete an object that is not referenced by any other object, use a DELETE
statement that specifies the object to be deleted. The exact procedure depends on
whether you make the deletion interactively or compile a source file containing the
DELETE statement. In either case, you must first open the dictionary from which you
are deleting the object.

To delete the object from the dictionary, do this:

1. Open the dictionary. The dictionary must be open before the DDL compiler
executes the DELETE statement.

2. Specify the DELETE statement or statements. You can specify the statement in an
interactive DDL session.

3. Compile the DELETE statement. If you enter the statement in an interactive
session, the DDL compiler compiles the statement as you enter it. If the statement
is in a source file, you can specify the file as the IN parameter of a RUN DDL
command or you can run the DDL compiler and use the SOURCE command to
specify the source file.
Data Definition Language (DDL) Reference Manual—529431-003
10-4

Dictionary Maintenance Deleting Referenced Objects
Example 10-3 on page 10-5 builds a source file containing the code to open the
dictionary and delete one record. When the DDL compiler compiles the source file, it
opens the dictionary and deletes the record DEPENDENT-INFO from the open
dictionary.

Deleting Referenced Objects
When you delete a constant, a definition, or a SPI token type that is referenced by any
other objects, you must first delete all objects that refer directly or indirectly to the
object you want to delete. You can use the SHOW USE OF statement to determine
whether the object is referenced and by which other objects.

If the object you want to delete is never referenced by another object, use the
technique in Deleting Unreferenced Objects on page 10-4. If the object you want to
delete is referenced, you must first delete the referring objects in an exact sequence.

In Example 10-4 on page 10-5, to delete the constant A, you must first delete definition
B because it refers to A; however, to delete B, you must first delete definition C
because it refers to B. Thus, the sequence of deletions is to delete C, then B, then A.
This ensures that you do not attempt to delete an object referenced by another object.

When an object is referenced by many objects, it is a tedious process to delete all the
objects that refer to it directly and indirectly and to delete them in the correct sequence.
The statement OUTPUT UPDATE on page 8-7 helps you with this task by performing
the following functions:

• It locates all constants, definitions, records, token codes, token types, and token
maps that refer to the object to be deleted.

• It writes the DELETE statements to delete the referring objects in the correct
sequence in the first section of an open DDL source file.

• It redefines the specified object, in the second section of an open DDL source file.

Example 10-3. Deleting an Unreferenced Object From a Dictionary

42> EDIT delsrc; add
 1 ?DICT $data.sales

 2 DELETE RECORD dependent-info.
 3 //
*EXIT

Remember the period

43> DDL /IN delsrc/ Send listing to your terminal

Example 10-4. Objects That Reference Other Objects

CONSTANT a VALUE IS 1.
DEF b TYPE BINARY VALUE IS a.
DEF c TYPE b.
Data Definition Language (DDL) Reference Manual—529431-003
10-5

Dictionary Maintenance Deleting Referenced Objects
• It writes the statements to rebuild the objects that referenced the specified object,
in a section for each referring object.

After executing OUTPUT UPDATE, you can use the SOURCE command to execute
the DELETE statements in the DDL source file section written by OUTPUT UPDATE.
After the objects that refer to an object are deleted, you can delete the referenced
object.

Assume you are running the DDL compiler interactively. To delete a referenced
constant, definition, or SPI token type from the dictionary, do this:

1. Open the dictionary containing the object to be deleted.

2. Open a new DDL source file for the output from OUTPUT UPDATE.

3. Use the OUTPUT UPDATE statement to write the DDL source file containing the
DELETE statements for objects that refer to the specified object.

4. Examine the DDL source file to get the section name containing the DELETE
statements; to do this:

a. Close the DDL source file with a NODDL command. If you omit this step, you
will get a FILE IN USE message when you try to edit this file.

b. Use the EDIT command to examine the DDL source file. Make a note of the
name of the section that contains the DELETE statements produced by
OUTPUT UPDATE; then exit from the editor.

5. Delete all the referring objects from the dictionary. Use the SOURCE command to
submit the DDL source file section containing the DELETE statements for these
objects to the DDL compiler. This step executes the DELETE statements,
effectively deleting the objects from the dictionary.

6. Delete the object. Use a DELETE statement to delete the object from the
dictionary.

Example 10-5 on page 10-7 shows the DDL statements and commands needed to
delete the referenced object AGE from the dictionary.
Data Definition Language (DDL) Reference Manual—529431-003
10-6

Dictionary Maintenance Deleting Referenced Objects
Example 10-5. Deleting a Referenced Object From a Dictionary (page 1 of 2)

The referenced object, age, in the dictionary:

DEF age PIC 99.

DEF employ.
 02 empnum PIC 9(4).
 02 empname PIC X(18).
 02 age TYPE *.
END

RECORD employee. FILE IS ASSIGNED.
 02 employ TYPE *.
 02 region PIC 9(4).
 02 branchnum PIC 9(4).
END

Removing age from the dictionary:

44> DDL DICT $data.sales Run the DDL compiler and open dictionary

Dictionary opened on subvol $DATA.SALES for update access

!?DDL delfile Open new DDL source file

Output source for DDL opened on $DATA.SALES.DELFILE

!OUTPUT UPDATE age. Write update statements to DELFILE

Searching for objects affected by AGE
Loading Definition AGE
DDL source output produced for AGE.
Loading Definition EMPLOY
DDL source output produced for EMPLOY.
Loading Record EMPLOYEE
DDL source output produced for EMPLOYEE.

!?NODDL delfile Close DDL file DELFILE

!?EDIT delfile; L 1/10 List DELFILE

 1 ?Section AGE-DELETES
 2 Delete Record EMPLOYEE
 3 Delete Definition EMPLOY
 4

Get name of section with DELETE
statements

 5 ?Section AGE
 6 ...
 7

Section to define AGE followed by sections
to redefine objects that refer to AGE

 8 ?Section EMPLOY
 9 ...
 10
*EXIT

!?SOURCE delfile (age-deletes) Submit section to DDL

 1 ?Section AGE-DELETES
 2 Delete Record EMPLOYEE

DDL compiler executes AGE-DELETES
Data Definition Language (DDL) Reference Manual—529431-003
10-7

Dictionary Maintenance Modifying Dictionary Objects
Modifying Dictionary Objects
Modifying an object stored in a dictionary is similar to deleting an object. If the object is
never referenced by other objects, the modification is comparatively simple. If the
object is referenced by other objects, then you must first delete and then redefine the
referring objects.

Objects that can be referenced by other objects are:

• Constants
• Definitions
• SPI token types

Objects that are never referenced by other objects are:

• Records
• SPI token codes
• SPI token maps

Topics:

• Modifying Unreferenced Objects on page 10-9

• Modifying Referenced Objects on page 10-10

 Record EMPLOYEE deleted from dictionary.
 3 Delete Definition EMPLOY
 Definition EMPLOY deleted from dictionary.
 4

!DELETE DEF age. Delete AGE definition

Definition AGE deleted from dictionary.

!EXIT Exit from DDL compiler

Objects: Added Replaced Deleted
Definitions 0 0 2
Records 0 0 1
Dictionary on subvol \SYS1.$DATA.SALES is closed.
Errors detected: 0
Warnings detected: 0

Example 10-5. Deleting a Referenced Object From a Dictionary (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
10-8

Dictionary Maintenance Modifying Unreferenced Objects
Modifying Unreferenced Objects
Records, SPI token codes, and SPI token maps are never referenced by other objects.
Other types of objects can be referenced. You can use the SHOW USE OF command
to determine whether the object you want to modify is referenced by other objects.

To modify an object not referenced by other objects, build a source file that contains
the definition of the changed object, then compile this source file into the dictionary.
You can, of course, change the original schema directly and recompile the dictionary,
but this causes unnecessary processing if your dictionary is large.

To modify the object, do this:

1. Open the dictionary. Use a DICT or DICTN command to open the dictionary
containing the object to be modified.

2. Modify the object. To avoid recompiling the entire schema, write the object
definition from the dictionary to a DDL source file using an OUTPUT statement,
close the DDL source file, and then edit the object definition in the DDL source file.

3. Compile the modified object into the open dictionary. Run the DDL compiler with
the DDL source file as the input file, or compile the source file interactively with the
SOURCE command.

4. Modify your original schema if you plan to ever use it to rebuild the dictionary.

Suppose you want to add a new alternate key field, ORDERDATE, to the record
ORDERS defined in the sample database schema in Appendix B, Sample Schemas.
The new key field is already defined in the definition ORDERINFO. To specify the key
as an alternate key in ORDER-REC, use the OUTPUT statement to write the record
definition from the open dictionary to a DDL source file. Add the new key specifier to
the record definition, and then compile the record definition back into the dictionary
with a SOURCE command, as in Example 10-6 on page 10-9.

Example 10-6. Modifying an Unreferenced Object (page 1 of 2)

45> DDL DICT $data.sales Run DDL and open dictionary

!?DDL newsrc ! Open and clear source file

!OUTPUT RECORD orders.
Loading Record ORDERS
DDL source output produced for ORDERS

Write record definition to source file

!?NODDL Close source file

!?EDIT newsrc; LA
 3 ?Section ORDERS
 6 Record ORDERS

List and edit record ORDERS
Data Definition Language (DDL) Reference Manual—529431-003
10-9

Dictionary Maintenance Modifying Referenced Objects
Alternatively, assume that ORDERDATE is not defined in ORDERINFO. In this case,
write the definition of ORDERINFO together with all the definitions and records that
refer to it to the DDL source file, as in Example 10-7 on page 10-10.

Modifying Referenced Objects
Constants, definitions, and SPI token maps can be referenced by other objects. You
can use the SHOW USE OF command to determine whether the object you want to
modify is referenced by any other objects.

Before you can modify a referenced object, you must first delete any objects that refer
to that object. After you modify the object, you must redefine the deleted objects. The
deletion and the redefinition must be done in exact sequence.

In Example 10-8 on page 10-11, to modify the constant A, you must first delete
definition C and then delete definition B in that order. After modifying constant A, you
must first redefine definition B and then redefine definition C in the reverse order. This
sequence ensures that you do not try to delete a referenced object or add an object
that refers to a nonexistent object.

 7 File is "$data.sales.orders" Key-sequenced
 8 Audit
 9 Definition is ORDERINFO.
 10
 11 Key is ORDERNUM Duplicates not allowed.
 12 Key "sn" is SALESPERSON.
 13 Key "cn" is CUSTNUM.
 14 End
 *A 13
 13 Key "cn" is CUSTNUM.

 13.1 KEY "od" is ORDERDATE.
 13.2 //
 *EXIT

Add new alternate key

 !?SOURCE newsrc
 !EXIT

Compile modified record

Example 10-7. Modifying an Unreferenced Object

46> DDL DICT
!?DDL newsrc !

!OUTPUT UPDATE orderinfo.
!?NODDL, EDIT newsrc

ORDER-REC is included in NEWSRC

...

*EXIT
!?SOURCE newsrc

Add ORDERDATE to ORDERINFO and add key field
to ORDER-REC

Example 10-6. Modifying an Unreferenced Object (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
10-10

Dictionary Maintenance Modifying Referenced Objects
When an object is referenced by many other objects, deleting and then redefining all
the referring objects is a time-consuming and error-prone process. The statement
OUTPUT UPDATE on page 8-7 helps you by performing these functions:

• Locating all the objects that refer to a specified object.

• Writing the DELETE statements to delete the referring objects to an open DDL
source file. OUTPUT UPDATE deletes the objects in sequence so that an object is
never deleted before an object that refers to it.

• Writing the statements to define the object to be modified, followed by the
statements to redefine each deleted object to the open DDL source file. OUTPUT
UPDATE redefines objects in sequence so that referenced objects are defined
before any objects that refer to them.

After executing OUTPUT UPDATE, you can edit the statement that defines the object
you are changing. When the statement is changed to your satisfaction, compile the
DDL source file into the open dictionary. The source file contains the code to delete all
referring objects and then rebuild them. If you decide to make no changes, the source
file contains the code to return your dictionary to its initial state.

You can edit and compile the source file in an interactive session, or you can perform
these functions noninteractively. Generally, you run the DDL compiler interactively to
make minor modifications.

Assume you are in an interactive DDL session. To modify a referenced object, do this:

1. Open the dictionary containing the object you want to modify.

2. Open a DDL source file to contain the statements generated by OUTPUT
UPDATE. If the file already exists, make sure it is empty before OUTPUT UPDATE
writes to it.

3. Use OUTPUT UPDATE to write the statements that delete the referring objects,
that define the object to be modified, and that redefine the deleted objects to the
open DDL source file.

4. Use the NODDL command to close the DDL source file

5. Edit the object definition in the DDL source file. You can do the editing interactively
or you can exit from the DDL compiler. If you remain interactive, you enter the
editor with the DDL EDIT command; if you exit from the DDL compiler, you run the
editor from the command interpreter.

Example 10-8. Objects That Reference Other Objects

CONSTANT a VALUE IS 1.
DEF b TYPE BINARY VALUE IS a.
DEF c TYPE b.
Data Definition Language (DDL) Reference Manual—529431-003
10-11

Dictionary Maintenance Modifying Referenced Objects
6. Compile the DDL source file. If you are still in an interactive session, use the
SOURCE command to submit the source file to the compiler. If you exited from the
DDL compiler after Step 4, run the DDL compiler from the command interpreter
specifying the DDL source file as the input file.

Suppose postal zip codes must be changed from five digits to nine digits. The sample
database schema in Appendix B, Sample Schemas, includes a definition of the object
ZIP-CD, which is referenced by three definitions (SUPPINFO, CUSTINFO, and ADDR)
and by two records (SUPPLIER and CUSTOMER). Example 10-9 on page 10-12
shows the statements and commands you can use to modify ZIP-CD.

Example 10-9. Modifying a Reference Object (page 1 of 2)

47> DDL DICT $data.sales Run the DDL compiler and open dictionary

Dictionary opened on subvol $DATA.SALES for update access

!?DDL modfile ! Open and clear DDL source MODFILE

Output source for DDL is opened on $DATA.SALES.MODFILE

!OUTPUT UPDATE zip-cd. Write update statements to MODFILE

Searching for objects affected by ZIP-CD
Loading Definition ZIP-CD
DDL source output produced for ZIP-CD.
Loading Definition ADDR
DDL source output produced for ADDR.
Loading Definition CUSTINFO
DDL source output produced for CUSTINFO.
Loading Definition SUPPINFO
DDL source output produced for SUPPINFO.
Loading Definition CUSTOMER
DDL source output produced for CUSTOMER.
Loading Definition SUPPLIER
DDL source output produced for SUPPLIER.

!?NODDL Close DDL source file

!?EDIT modfile; xvs f Edit MODFILE

?Section ZIP-CD-DELETES
Delete Record SUPPLIER.
...
Delete Definition ADDR.

Statements to delete referring objects

?Section ZIP-CD Definition to be modified

Definition ZIP-CD PIC "9(5)". Change to 9(9)

?Section ADDR
...
?Section SUPPLIER
Record SUPPLIER.
...
End

Statements to redefine deleted objects
Data Definition Language (DDL) Reference Manual—529431-003
10-12

Dictionary Maintenance Making Major Modifications
Making Major Modifications
If you have made many changes to a dictionary interactively through the DDL compiler,
HP recommends that you recompile the entire dictionary.

Rather than using the original schema, which might not reflect all changes to the
dictionary, create a new schema from the dictionary. You can generate a new schema
exactly as in Generating a schema From a Dictionary on page 10-1.

After you have a schema that accurately reflects the current dictionary, you can edit the
schema and then recompile it to build a new dictionary. If you made the changes
directly to the dictionary schema, you can compile the schema to build a new
dictionary.

In either case, be sure that all objects referenced by other objects are added first: DDL
cannot compile a referring object if the object it refers to is not already in the dictionary.

To recompile a dictionary:

1. Generate a new schema from the current dictionary using the procedure in
Generating a schema From a Dictionary on page 10-1. For example:

48> VOLUME $data.sales
49> DDL DICT
!?DDL newsrc !
!OUTPUT *.
!EXIT

2. Edit the schema, making the necessary deletions, modifications, and additions.

3. Compile the schema into a new dictionary.

If you do not need the old dictionary, you can clear it at this time and write the new
dictionary objects back into the cleared dictionary files. For example:

50> DDL /IN newsrc/DICT $data.sales !

If you want to keep the old dictionary while you test the new dictionary, you can
create the new dictionary on a different subvolume. For example:

51> DDL/IN newsrc/DICT $data.newsales

*EXIT Exit editor

!?SOURCE modfile
!EXIT

Compile changes into dictionary and exit DDL

Note. do not use the procedure for generating a new schema to modify a dictionary that is part
of a Pathmaker catalog. Pathmaker dictionaries contain application design information that is
not in generated DDL schemas.

Example 10-9. Modifying a Reference Object (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
10-13

Dictionary Maintenance Changing Dictionary Security
Changing Dictionary Security
Dictionary files are created with the default file-creation security of the user who
created them. If you are the owner of the files, you can change the security applied to
the dictionary files by the DDL compiler with the FUP SECURE command.

To change file security:

1. Use the FUP INFO command to determine the current security of the dictionary
files.

2. Use the FUP SECURE command to specify the security you want.

Suppose the dictionary on $DATA.SALES was created with a user default security of
“AAAA,” where the dictionary files can be read, written to, and purged by any other
user. Example 10-10 on page 10-14 shows how to change this security so that any
user can read or execute the dictionary files, but only the owner can write to or purge
them.

For a description of the FUP SECURE command, see the File Utility Program (FUP)
Reference Manual.

Moving a Dictionary
You can move a dictionary from one subvolume to another subvolume with a
combination of FUP commands. If you are creating a backup dictionary on the new
subvolume, keep the original dictionary. If you want only one copy of the dictionary,
purge the original dictionary after the move.

The procedure for moving a nonaudited dictionary differs from the procedure for
moving a dictionary audited by the Transaction Monitoring Facility (TMF) subsystem.

Example 10-10. Changing Dictionary Security

52> VOLUME $data.sales Go to dictionary volume and subvolume

53> FILES List dictionary files and change their security

$DATA.SALES

DICTALT DICTCDF DICTDDF DICTKDF DICTMAP DICTOBL DICTODF DICTOTF
DICTOUF DICTOUK DICTRDF DICTTKN DICTTYP DICTVER

54> FUP SECURE (DICTALT,DICTCDF,DICTDDF,DICTKDF,DICTMAP), "AOAO"
55> FUP SECURE (DICTOBL,DICTODF,DICTOTF,DICTOUF,DICTOUK), "AOAO"
56> FUP SECURE (DICTRDF,DICTTKN,DICTTYP,DICTVER), "AOAO"

Note. Do not attempt to move a dictionary that is part of a Pathmaker application catalog using
this procedure. Refer to Pathmaker documentation for instructions about how to move a
dictionary that is part of a Pathmaker application catalog.
Data Definition Language (DDL) Reference Manual—529431-003
10-14

Dictionary Maintenance Moving a Nonaudited Dictionary
Topics:

• Moving a Nonaudited Dictionary on page 10-15

• Moving an Audited Dictionary on page 10-16

Moving a Nonaudited Dictionary
To move a nonaudited dictionary:

1. Duplicate the dictionary files on another subvolume using FUP DUP commands.

2. Change the subvolume name of the alternate key file in the file label of each
dictionary file that has alternate keys using FUP ALTER commands. (You can
determine which files use alternate keys by looking for the symbol A in the TYPE
column of a FUP INFO display; then use FUP INFO, DETAIL on those files to
determine the alternate key name.)

3. Optionally, you can purge the dictionary from the old subvolume.

You can enter these commands interactively, or you can build a file containing these
commands and then execute the file.

Example 10-11 on page 10-15 moves a dictionary from $DATA.SALES to
$MKT.SALESDIC.

Suppose that the commands of Example 10-11 on page 10-15 are in the file
$DATA.SALES.DICMOVE. You can execute the commands by entering this command:

57> OBEY $data.sales.dicmove

If you no longer need the original dictionary on $DATA.SALES, you can purge the
dictionary files as in Purging a Dictionary on page 10-18.

Example 10-11. Moving a Nonaudited Dictionary

VOLUME $data.sales Default volume and subvolume

FUP DUP (DICTALT,DICTCDF,DICTDDF,DICTKDF,DICTMAP), $mkt.salesdic.*
FUP DUP (DICTOBL,DICTODF,DICTOTF,DICTOUF,DICTOUK), $mkt.salesdic.*
FUP DUP (DICTRDF,DICTTKN,DICTTYP,DICTVER), $mkt.salesdic.*

VOLUME $mkt.salesdic New default volume and subvolume

FUP ALTER DICTKDF, ALTFILE (O,DICTALT)
FUP ALTER DICTOBL, ALTFILE (O,DICTALT)
FUP ALTER DICTODF, ALTFILE (O,DICTALT)
FUP ALTER DICTOUF, ALTFILE (O,DICTALT)
FUP ALTER DICTFDF, ALTFILE (O,DICTALT)

Change alternate-key subvolume names in
the file labels of all files with alternate keys
Data Definition Language (DDL) Reference Manual—529431-003
10-15

Dictionary Maintenance Moving an Audited Dictionary
Moving an Audited Dictionary
Moving an audited dictionary requires more steps than moving a nonaudited dictionary
because of these actions of the FUP utility on audited files:

• When you FUP DUP an audited file, FUP automatically disables auditing on the file
but does not disable auditing on or change pointers to any associated alternate key
files. As a result, duplicated files that use alternate keys point to audited alternate
key files on the original subvolume. For this reason, you must use FUP ALTER to
disable auditing before using FUP DUP to duplicate files, then use FUP ALTER to
reenable auditing after duplicating the files.

• When you use FUP ALTER to disable auditing on a file that uses alternate keys,
FUP also disables auditing on the associated alternate key file. As a result, any
other files that use the same alternate key will be associated with a nonaudited
alternate key file. But you cannot use FUP ALTER to disable auditing on a file that
has a nonaudited alternate key file, so you must reenable auditing on the alternate
key file in order to disable auditing on a file using that alternate key file.

• Conversely, when you use FUP ALTER to enable auditing on a file, it automatically
enables auditing on any alternate key file used by the file. But you cannot use FUP
ALTER to enable auditing on a file that uses an audited alternate key file, so you
must disable auditing on any alternate key file before enabling auditing on a file
that uses that alternate key file.

To move an audited dictionary:

1. Disable auditing using FUP ALTER commands. Where necessary, reenable
auditing on alternate key files before disabling auditing on files that use the
alternate key files.

2. Duplicate the dictionary files on another subvolume using FUP DUP commands.

3. Change the subvolume name of the alternate key file in the file label of each
dictionary file that has alternate keys using FUP ALTER commands.

4. ENABLE auditing on the new subvolume using FUP ALTER commands. Where
necessary, disable auditing on alternate key files before enabling auditing on files
that use the alternate key files.

5. Do not audit the DICTDDF file.

6. Optionally, purge the dictionary from the old subvolume.

7. If you keep the original dictionary, you might want to re-enable auditing (see
Step 4).

While you can enter these commands interactively, it is best to create a FUP file-
creation source file containing these commands and execute that file.

Example 10-12 on page 10-17 moves an audited dictionary from $MKT.SALESDIC to
$DATA.SALES.
Data Definition Language (DDL) Reference Manual—529431-003
10-16

Dictionary Maintenance Moving an Audited Dictionary
Example 10-12. Moving an Audited Dictionary

VOLUME $mkt.salesdic Default volume and subvolume

FUP ALTER DICTCDF, NO AUDIT

FUP ALTER DICTKDF, NO AUDIT Also disables auditing on DICTALT

FUP ALTER DICTMAP, NO AUDIT

FUP ALTER DICTALT, AUDIT Re-enable auditing on DICTALT before
disabling auditing on DICTOBL, DICTODF,
and other files that use DICTALT

FUP ALTER DICTOBL, NO AUDIT
FUP ALTER DICTALT, AUDIT
FUP ALTER DICTODF, NO AUDIT
FUP ALTER DICTOTF, NO AUDIT

FUP ALTER DICTOUF, NO AUDIT Also disables auditing on DICTOUK, but no
other files use DICTOUK as an alternate-
key file

FUP ALTER DICTRDF, NO AUDIT
FUP ALTER DICTTKN, NO AUDIT
FUP ALTER DICTTYP, NO AUDIT
FUP ALTER DICTVER, NO AUDIT

FUP DUP (DICTALT,DICTCDF,DICTDDF,DICTKDF,DICTMAP), $data.sales.*
FUP DUP (DICTOBL,DICTODF,DICTOTF,DICTOUF,DICTOUK), $data.sales.*
FUP DUP (DICTRDF,DICTTKN,DICTTYP,DICTVER), $data.sales.*

VOLUME $data.sales New default volume and subvolume

FUP ALTER DICTKDF, ALTFILE (O,DICTALT)
FUP ALTER DICTOBL, ALTFILE (O,DICTALT)
FUP ALTER DICTODF, ALTFILE (O,DICTALT)
FUP ALTER DICTOUF, ALTFILE (O,DICTALT)
FUP ALTER DICTFDF, ALTFILE (O,DICTALT)

Change alternate-key subvolume names in
the file labels of all files with alternate keys

FUP ALTER DICTCDF, AUDIT

FUP ALTER DICTKDF, AUDIT Also enables auditing on DICTALT

FUP ALTER DICTMAP, AUDIT

FUP ALTER DICTALT, NO AUDIT Disable auditing on DICTALT before
enabling auditing on DICTOBL, DICTODF,
and other files that use DICTALT

FUP ALTER DICTOBL, AUDIT
FUP ALTER DICTALT, NO AUDIT
FUP ALTER DICTODF, AUDIT
FUP ALTER DICTOUF, AUDIT
FUP ALTER DICTFDF, AUDIT
FUP ALTER DICTALT, NO AUDIT
FUP ALTER DICTRDF, AUDIT
FUP ALTER DICTTKN, AUDIT
FUP ALTER DICTTYP, AUDIT
FUP ALTER DICTVER, AUDIT
Data Definition Language (DDL) Reference Manual—529431-003
10-17

Dictionary Maintenance Purging a Dictionary
Suppose that the commands of Example 10-12 on page 10-17 are in the file
$MKT.SALESDIC.DICMOVE. You can execute the commands by entering this
command:

58> OBEY $mkt.salesdic.dicmove

If you no longer need the original dictionary on $MKT.SALESDIC, you can purge the
dictionary files as in Purging a Dictionary on page 10-18. If you keep the original
dictionary, you might want to re-audit the dictionary files.

Purging a Dictionary
You can purge a dictionary by purging each dictionary file individually or, if the
dictionary is open, by entering the NOSAVE command following the DICT or DICTN
command.

To purge dictionary files individually, you must know the file names. You can see
Appendix D, Dictionary Database Structure, for the file names, or you can position
yourself on the subvolume that contains the dictionary and use a FILES command to
list the dictionary files. Dictionary file names always begin with DICT.

Example 10-13 on page 10-18 lists and then purges the dictionary files on
$DATA.SALES.:

You can purge the open dictionary with the NOSAVE command. If NOSAVE is in effect
when you exit from the DDL compiler, when another dictionary is opened, or when the
dictionary is closed using the NODICT command, the DDL compiler purges the open
dictionary. NOSAVE is ignored if the dictionary is part of a Pathmaker catalog.

Note. Do not purge a dictionary that is part of a Pathmaker catalog. Refer to Pathmaker
documentation for instructions about how to purge a dictionary that is part of a Pathmaker
application catalog.

Example 10-13. Listing and Purging Dictionary Files

59> VOLUME $data.sales
60> PURGE DICTALT,DICTCDF,DICTDDF,DICTKDF,DICTMAP,DICTOBL,DICTODF
61> PURGE DICTOTF,DICTOUF,DICTOUK,DICTRDF,DICTTKN,DICTTYP,DICTVER

Example 10-14. Purging Dictionary Files With the NOSAVE Command

62> DDL
!?DICT $data.parts
...

Open dictionary

!?NOSAVE Ignored for Pathmaker dictionaries

!?DICT $data.parts Purge the open dictionary and open a new one
Data Definition Language (DDL) Reference Manual—529431-003
10-18

Dictionary Maintenance Increasing Dictionary File Size
Increasing Dictionary File Size
The DDL compiler creates the dictionary files with primary and secondary extent sizes.

With these size limits, it is possible that one or more of the dictionary files can be filled
to capacity. If a dictionary file runs out of space, a FILE ERROR 45 (file is full) results.

You can increase dictionary file size by using the FUP ALTER MAXEXTENTS
command to increase the maximum number of file extents.

To increase the maximum number of file extents, do the following:

1. Start an interactive FUP session.

2. Use ALTER to increase the value of MAXEXTENTS.

3. Use FUP INFO file-name,DETAIL to display and verify your changes.

4. Exit from the interactive FUP session.

If you are altering only one file, you can use a single FUP command to change
MAXEXTENTS.

Table 10-1. Dictionary File Extent Sizes

Dictionary File Primary Extent Size Secondary Extent Size

DICTALT 4 pages 32 pages

DICTCDF 4 pages 32 pages

DICTDDF 4 pages 32 pages

DICTKDF 4 pages 32 pages

DICTMAP 4 pages 32 pages

DICTOBL 4 pages 32 pages

DICTODF 4 pages 32 pages

DICTOTF 4 pages 32 pages

DICTOUF 4 pages 32 pages

DICTOUK 4 pages 32 pages

DICTRDF 4 pages 32 pages

DICTTKN 4 pages 32 pages

DICTTYP 4 pages 32 pages

DICTVER 4 pages 32 pages
Data Definition Language (DDL) Reference Manual—529431-003
10-19

Dictionary Maintenance Rebuilding a Dictionary
Rebuilding a Dictionary
The procedure for rebuilding a nonaudited dictionary differs from the procedure for
rebuilding a dictionary audited by the Transaction Monitoring Facility (TMF) subsystem.

Topics:

• Rebuilding a Nonaudited Dictionary on page 10-20

• Rebuilding an Audited Dictionary on page 10-21

Rebuilding a Nonaudited Dictionary
Occasionally, a nonaudited dictionary can become corrupt and you must rebuild it. A
corrupt dictionary is one in which an entry in the dictionary files is missing or contains
the wrong value. For example, a dictionary is corrupt if there is no DICTRDF record for
a record in the dictionary. A dictionary is badly corrupted and cannot be rebuilt if one of
the dictionary files is deleted.

One way to rebuild the dictionary is to generate a schema following the procedure in
Generating a schema From a Dictionary on page 10-1. This procedure rebuilds
information about DDL objects and can be used for dictionaries created from the DDL
compiler, but not for dictionaries that are part of a Pathmaker catalog.

To rebuild a dictionary created from the DDL compiler, do the following:

1. Start an interactive DDL session.

2. Open the corrupted dictionary; open an EDIT file for DDL output.

3. Use OUTPUT * to generate a schema for all the definitions and records in the
dictionary.

4. Close the EDIT file and the corrupted dictionary.

5. Open a new dictionary on another subvolume and source in the generated
schema.

6. Exit from the DDL compiler.

Example 10-15. Increasing a Dictionary’s File Size

63> FUP ALTER DICTOTF, MAXEXTENTS 200
64> FUP INFO DICTOTF, DETAIL
$DATA.SALES.DICTOTF
 TYPE K
 CODE 203
 ...

 MAXEXTENTS 200
 ...

Verify change
Data Definition Language (DDL) Reference Manual—529431-003
10-20

Dictionary Maintenance Rebuilding an Audited Dictionary
Example 10-16 on page 10-21 rebuilds a dictionary with a schema generated from a
corrupted dictionary.

In some cases, you cannot generate a schema from a corrupted dictionary. To protect
your dictionary from such an occurrence, keep a fairly current backup schema of any
important dictionary.

Rebuilding an Audited Dictionary
Audited dictionaries rarely need to be rebuilt. The TMF subsystem protects your
dictionary from becoming corrupt by packaging changes into transactions, or units of
recovery. A transaction either modifies the dictionary, or it fails. If a transaction fails, the
TMF subsystem undoes the changes and restores the dictionary to its initial state. You
need to rebuild an audited dictionary only if the TMF system failure occurs.

In Example 10-17 on page 10-21:

• The dictionary was created on the subvolume $DATA.SALES.
• All dictionary files are audited except DICTDDF.

If you have a system failure and must rebuild the audited files, follow the procedures in
the TMF Management Programming Manual.

Example 10-16. Rebuilding a Nonaudited Dictionary

65> DDL
!?DICT $data.sales
!?DDL $data.newsales.ddlsrc
!OUTPUT *
!?NODDL
!?DICT $data.newsales
!?SOURCE $data.newsales.ddlsrc
!EXIT

Example 10-17. Determining If a Dictionary is Audited

66> FUP INFO $data.sales.*

 CODE EOF LAST MODIF OWNER RWEP TYPE REC BLOCK
$DATA.SALES
 DICTALT 201A 12288 17:06 8,47 CUCU K 38 4096
 DICTCDF 207A 12288 17:06 8,47 CUCU K 11 4096
 DICTDDF 200 30 17:06 8,47 CUCU
 DICTKDF 206A 12288 17:06 8,47 CUCU KA 94 4096
 DICTMAP 209A 12288 17:06 8,47 CUCU K 22 4096
 DICTOBL 204A 36864 17:06 8,47 CUCU KA 194 4096
 DICTODF 202A 16384 17:06 8,47 CUCU KA 86 4096
 DICTOTF 203A 12288 17:06 8,47 CUCU K 145 4096
 DICTOUF 208A 16384 17:06 8,47 CUCU KA 65 4096
 DICTOUK 208A 16384 17:06 8,47 CUCU K 98 4096
 DICTRDF 205A 12288 17:06 8,47 CUCU KA 89 4096
 DICTTKN 209A 12288 17:06 8,47 CUCU K 6 4096
 DICTTYP 209A 12288 17:06 8,47 CUCU K 24 4096
 DICTVER 209A 12288 17:06 8,47 CUCU K 19 4096
Data Definition Language (DDL) Reference Manual—529431-003
10-21

Dictionary Maintenance Converting a Dictionary
Converting a Dictionary
As of the D-series software product version, the DDL compiler supports these
dictionaries:

To have full use of a dictionary created with DDL software prior to product version D00
from a D-series product version of the DDL compiler, convert the dictionary to product
version 6 or 7.

To have full use of a dictionary created with DDL software prior to product version H01
from a D-series or G-series product version of the DDL compiler, convert the dictionary
to product version 8.

To convert a dictionary, perform the following steps:

1. Generate a schema from the existing dictionary. Use the DDL OUTPUT *
statement to generate a schema in a DDL source file (see Generating a schema
From a Dictionary on page 10-1).

2. Check the new DDL source before continuing.

3. Close the DDL source code file.

4. Clear the existing dictionary. Use the DICT ! command to clear the dictionary files
of their objects.

5. Recreate the dictionary. Use the DDL SOURCE command to create a new
dictionary from the DDL source file. Any dictionary on the subvolume used for the
conversion will be overwritten.

Example 10-18 on page 10-23 converts a product version 4 or 5 dictionary on
subvolume $DATA.SALES to a new dictionary on the same subvolume.

DDL Compiler Product Version Dictionary Product Version

C20 and C30 5

D00, D10, and D20 6

D30 and later 7

H01 8

Note. Do not attempt to convert a dictionary that is part of a Pathmaker application catalog
using this procedure. Instead, refer to Pathmaker documentation for the appropriate process.
Data Definition Language (DDL) Reference Manual—529431-003
10-22

Dictionary Maintenance Converting a Dictionary
If you run Enform Plus reports using $SYSTEM.SYSTEM.DDQUERYS against a
converted dictionary, change the dictionary description embedded in the dictionary on
$SYSTEM.DDL and install the product version of Enform Plus that corresponds to this
product version of the DDL compiler. After you upgrade the dictionary on
$SYSTEM.DDL to product version 7 or 8 (on a G-series or H-series system,
respectively) and install the D-series product version of Enform Plus, you can still use
the product version 7 or 8 dictionary to report against dictionaries that have not yet
been converted as long as you do not use D-series, G-series, or H-series dictionary
features in the reports.

Alternately, you can keep a dictionary with the earlier dictionary description in one
subvolume and the current dictionary description in another subvolume. Use the earlier
dictionary for Enform Plus reports for unconverted files and the D-series, G-series, or
H-series dictionary for Enform Plus reports on D-series, G-series, or H-series files.

To change the dictionary description, do this:

1. Move to the subvolume $SYSTEM.DDL.

2. Purge the existing dictionary files on that subvolume.

3. Run the DDL compiler to compile the dictionary schema
$SYSTEM.SYSTEM.DDLSCHEMA and print a listing of the compiled schema.

Example 10-18. Converting a Dictionary From One Product Version to Another

67> VOLUME $data.sales
68> DDL

!?DICT Open the dictionary on $DATA.SALES

!?DDL ddlsrc ! Open the DDL source file DDLSRC

!OUTPUT *. Generate dictionary schema on DDLSRC

!?NODDL Close DDLSRC and check DDLSRC before continuing

!?DICT ! Clear the dictionary on $DATA.SALES

!?SOURCE ddlsrc Generate new dictionary objects from the schema on
DDLSRC

Example 10-19. Changing a Dictionary Description

69> VOLUME $system.ddl
70> PURGE
dictalt,dictddf,dictodf,dictkdf,dictrdf,dictotf,dictobl
71> PURGE
dictcdf,dictmap,dictouf,dictouk,dicttkn,dicttyp,dictver
72> DDL /IN $system.system.ddschema, OUT $s.#printer, NOWAIT/
Data Definition Language (DDL) Reference Manual—529431-003
10-23

Dictionary Maintenance Converting a Dictionary
Data Definition Language (DDL) Reference Manual—529431-003
10-24

A DDL Messages
This appendix lists all of the DDL error and warning messages in alphabetic order. For
each message, it gives the cause, effect, and recovery procedure.

During DDL processing, you might receive a message from a sequential I/O procedure.
Sequential I/O error messages, numbered from 500 to 600, are not documented in this
manual. For information about the corrective action to take when you get such an error,
see the Guardian Procedure Errors and Messages Manual.

An alphabetic list of DDL error and warning messages follows. The messages are
alphabetized on the first word following the ***ERROR***, ***FATAL ERROR***, or
WARNING prefix.

Cause. A group described with a USAGE IS COMP clause contains a field with a data
type that cannot be computational.

Effect. The DDL compiler rejects the object.

Recovery. Change the data type of the field, or remove the USAGE IS COMP clause
from the group definition or description.

Cause. The group identified by group_name is described with a USAGE IS COMP-3,
COMPUTATIONAL-3, or PACKED-DECIMAL clause but contains a field with a data
type that is not PACKED-DECIMAL.

Table A-1. DDL Message Types

Message Type Indicates ...

WARNING An error or ambiguity that does not prevent compilation of a DDL record
or definition, but that might cause results other than those desired. The
ERRORS command does not count warnings as errors.

ERROR An error that affects the dictionary or source output from the dictionary.
Generally, when such an error occurs, the DDL compiler continues
compilation but does not add the object in error to the dictionary or to
any open source file. The ERRORS command counts errors.

FATAL ERROR An error from which the DDL compiler cannot recover. The DDL
compiler stops compiling when it detects a fatal error.

ERROR A noncomputational item was specified in group-
group-name

A non PACKED-DECIMAL item was specified in group - group_name
Data Definition Language (DDL) Reference Manual—529431-003
A-1

DDL Messages
Effect. The DDL compiler rejects the object. For example:

!DEF EMP8.
!02 FLD8 PIC 9(5).
!END.
 Definition EMP8 size is 5 bytes.
 Definition EMP8 added to dictionary.
!DEF EMP9.
!02 FLD9 TYPE EMP8 COMP-3.
!END.
*** ERROR *** A non PACKED-DECIMAL item was specified in group - FLD9
*** WARNING *** Errors detected - no output produced for EMP9
!

Recovery. Change the data type of the field, or remove the USAGE IS COMP-3,
COMPUTATIONAL-3, or PACKED-DECIMAL clause from the group definition.

Cause. This is an internal compiler error−no user error is implied.

Effect. The DDL compiler closes the dictionary and all source code files and stops
processing current source file.

Recovery. Report the error to your service provider.

Cause. The figurative constant ALL precedes a numeric literal in a VALUE or MUST
BE clause.

Effect. The DDL compiler rejects the object.

Recovery. Either remove the figurative constant ALL or replace the numeric literal with
a character literal, a national literal, or another figurative constant. Then recompile the
object.

Cause. A referenced field does not have sufficient qualification to distinguish it from
another field of the same name.

Effect. The DDL compiler rejects the object.

Recovery. Qualify the referenced field, or rename one of the fields so that no
ambiguity exists, and recompile the object.

FATAL ERROR Address to be freed not in address list

ERROR ALL must not precede a numeric literal

ERROR Ambiguous reference- object-name
Data Definition Language (DDL) Reference Manual—529431-003
A-2

DDL Messages
Cause. A definition attribute clause is specified more than once for the same field, or a
file creation attribute is specified more than once for the same record.

Effect. The DDL compiler rejects the object.

Recovery. Remove the repeated clause or file-creation attribute and recompile the
object.

Cause. The definition or description for a field of type BIT includes an OCCURS or
REDEFINES clause.

Effect. The DDL compiler rejects the object.

Recovery. Remove any OCCURS or REDEFINES clause from the bit field definition
or description, or change the type of the field, and recompile the object.

Cause. An attribute specified for a field in a RECORD statement can be specified only
in a DEFINITION statement. For example, the SPI-NULL clause cannot be in a
RECORD statement but can be in a DEFINITION statement.

Effect. The DDL compiler rejects the object.

Recovery. Remove the attribute from the RECORD statement and recompile the
object.

Cause. You specified the AUDITCOMPRESS attribute for a record but did not specify
AUDIT.

Effect. The DDL compiler rejects the object.

Recovery. Remove AUDITCOMPRESS or add AUDIT and recompile the object.

Cause. You specified a bit field as a key.

Effect. The DDL compiler rejects the object.

ERROR Attribute already specified- attribute

ERROR Attribute cannot be specified for bit fields-
attribute-name

ERROR Attribute cannot be specified for object type-
attribute-name

ERROR AUTIDCOMPRESS specified without AUDIT

ERROR Bit field cannot be used as key- element
Data Definition Language (DDL) Reference Manual—529431-003
A-3

DDL Messages
Recovery. Specify a field of a type other than bit as the key.

Cause. A block length other than 512, 1,024, 2,048, or 4,096 bytes was specified.

Effect. The DDL compiler rejects the object.

Recovery. Specify a valid block length and recompile the object.

Cause. A block length was specified for an unstructured file.

Effect. The DDL compiler rejects the object.

Recovery. Remove the block-length specification or change the file type to key-
sequenced, entry-sequenced, or relative.

Cause. The source files are nested too deeply. The DDL compiler allows
approximately 20 levels of nesting.

Effect. The DDL compiler closes the dictionary and source code files and stops
processing.

Recovery. Reduce the number of nesting levels of source files.

Cause. An invalid value was specified for BUFFERSIZE.

Effect. Effect. The DDL compiler rejects the record.

Recovery. Recovery. Change the BUFFERSIZE value to 512, 1,024, 2,048, or 4,096
and recompile.

Cause. The record definition for a structured file has a BUFFERSIZE clause;
BUFFERSIZE applies only to unstructured files.

Effect. The DDL compiler rejects the object.

Recovery. Change the file type to unstructured or change BUFFERSIZE to BLOCK
and recompile.

ERROR BLOCK must be 512, 1024, 2048, or 4096 bytes

ERROR BLOCK specified for an UNSTRUCTURED file

FATAL ERROR Buffer stack too close to data stack

ERROR BUFFERSIZE must be 512, 1024, 2048, or 4096 bytes

ERROR BUFFERSIZE specified for a structured file
Data Definition Language (DDL) Reference Manual—529431-003
A-4

DDL Messages
Cause. The name of a definition or record exceeds the limit of 31 ASCII characters
that C allows for these names.

Effect. The DDL compiler does not write the definition or record to the C source file.

Recovery. Shorten the name and recompile the definition or record.

Cause. You requested C output, but the object does not conform to C rules. A
message follows that describes the C error.

Effect. The DDL compiler does not write the object to the C source file.

Recovery. Correct the error and recompile.

Cause. The specified definition is referenced by another definition or record. The DDL
compiler cannot replace this definition without corrupting definitions or records that
refer to this definition.

Effect. The DDL compiler rejects the object.

Recovery. Use OUTPUT UPDATE to rebuild objects that refer to the corrected
definition.

ERROR C DEF or RECORD or union tag name too long

WARNING C OUTPUT DIAGNOSTICS:

ERROR Cannot replace- object already defined
Data Definition Language (DDL) Reference Manual—529431-003
A-5

DDL Messages
Cause. At least one #ifdef or #ifndef statement in C output was not closed.

Effect. The DDL compiler issues this warning message. For example:

!?DICT
Audited dictionary created on subvol $ADE101.ALPHA
Dictionary opened on subvol $ADE101.ALPHA for update access.
!?C
/*SCHEMA PRODUCED DATE - TIME : 7/21/2000 - 19:45:15 */
Output source for C is opened on $ZTN1.#PTPJHU8
!?CIFDEF EMP
#ifdef EMP
!CONSTANT EMP1 VALUE "JYOTI".
Constant EMP1 defined.
Constant EMP1 added to dictionary.
#pragma section emp1
/* Constant EMP1 created on 07/21/2000 at 19:45 */
#define EMP1 "JYOTI"
C output produced for EMP1.
?!NOC
Output source for C is closed.
WARNING CIFNDEF or CIFDEF is not ended by CENDIF for C output
!

Recovery. No recovery is necessary. Just ensure that the required number of CENDIF
statements were used.

Cause. A COBOL base in a COBLEVEL command is not a positive integer from 1
through 49.

Effect. The DDL compiler issues a warning; base level is set to 1.

Recovery. Correct the error and recompile.

Cause. An object to be written to a COBOL source file has more than 7 levels of
nested OCCURS clauses.

Effect. The DDL compiler does not write the object to the COBOL source file.

Recovery. Reduce the levels of nested OCCURS clauses and recompile the object.

WARNING CIFNDEF or CIFDEF is not ended by CENDIF in C
output.

WARNING COBOL base is not a legal positive int- value
not changed

ERROR COBOL maximum occurs nesting exceeded- nth nested
element
Data Definition Language (DDL) Reference Manual—529431-003
A-6

DDL Messages
Cause. You requested COBOL output by default or with a SETCOBOL85 command,
but the object does not conform to COBOL rules.

Effect. A message follows describing the COBOL error. The DDL compiler does not
write the object to the COBOL source file.

Recovery. If you want COBOL output, correct the object definition the conform to
COBOL rules and recompile.

Cause. A file code in a record definition is an integer from 100 through 999, the range
reserved for use by HP.

Effect. The DDL compiler continues compiling the statement.

Recovery. Change the file code to an integer from 0 through 99 or from 1,000 through
65,535 and recompile the statement.

Cause. The COLUMNS command specified fewer than 12 or more than 132 columns.

Effect. The DDL compiler does not change the number of significant columns in an
input line.

Recovery. Reissue the COLUMNS command with a value from 12 to 132.

Cause. You issued a command or statement that attempts to update a dictionary
created by a product version of the DDL compiler prior to the C00 software product
version. For example, you entered an OUTPUT UPDATE statement for a dictionary
created prior to C00.

Effect. The DDL compiler does not execute the statement.

Recovery. Convert dictionary to the current product version and reenter command.

WARNING COBOL85 OUTPUT DIAGNOSTICS:

WARNING CODE withing range reserved by TANDEM, 100-999

WARNING COLUMNS must be between 12 and 132- value not
changed

WARNING Command not supported for old dictionary
versions
Data Definition Language (DDL) Reference Manual—529431-003
A-7

DDL Messages
Cause. You have entered a command that does not apply to the particular object type;
for example, OUTPUT UPDATE specifies RECORD, or SHOW USE OF specifies
TOKEN-CODE, as the object type.

Effect. The DDL compiler does not execute the command.

Recovery. Use a different command for the particular object type.

Cause. A field description that you attempted to compile contains one or more
dictionary comments. A field description begins with a level number and ends with the
next period (.).

Effect. The DDL compiler does not enter the comment or comments in the dictionary.

Recovery. Specify the comment or comments before the entire field description and
recompile the object.

Cause. You have defined a computational item within a group defined with a VALUE
clause. For example, the following definition is invalid:

Def a.
 02 b value zeros.
 03 c pic 9 comp.
End

An initial value at the group level must be alphanumeric.

Effect. The DDL compiler rejects the object.

Recovery. Change the data type of the computational item, or remove the VALUE
clause from the group.

Cause. The data type of an item described with a USAGE IS COMP clause is not a
computational data type.

Effect. The DDL compiler rejects the object.

ERROR Command not supported for specified object type

WARNING Comment lines within element definition cannort
be saved

ERROR COMP item found within VALUE

ERROR COMP item must be binary or of the form PIC
[S]9(n) [V9(n)]
Data Definition Language (DDL) Reference Manual—529431-003
A-8

DDL Messages
Recovery. Correct the error and recompile. For more information about computational
items, see USAGE on page 6-70.

Cause. The data type of the referenced item identified by element_name is
described with a USAGE IS COMP clause but is not a computational data type.

Effect. The DDL compiler rejects the object.

Recovery. Correct the error and recompile. For more information about computational
items, see USAGE on page 6-70.

Cause. The data type of an item described with a USAGE IS COMP-3,
COMPUTATIONAL-3, or PACKED-DECIMAL clause is not PACKED-DECIMAL.

Effect. The DDL compiler rejects the object. For example:

!def emp pic x PACKED-DECIMAL.
 ^
*** ERROR *** COMP-3 data item must be of the form PIC [S]9(n)[V9(n)]
Last diagnostic on page 1
*** WARNING *** Errors detected - no output produced for EMP
!

Recovery. Correct the error and recompile.

Cause. The data type of the item identified as element_name is described with a
USAGE IS COMP-3, COMPUTATIONAL-3, or PACKED-DECIMAL clause but is not a
PACKED-DECIMAL item.

Effect. The DDL compiler rejects the object. For example:

!def emp1 pic 9(5).
 Definition EMP1 size is 5 bytes.
 Definition EMP1 added to dictionary.
!def emp2.
!02 fld2 type emp1 comp-3.
*** ERROR *** COMP-3 specified with reference item which is not COMP-3 - FLD2
!

Recovery. Correct the error and recompile.

ERROR COMP specified with reference item which is not
COMP- element_name

ERROR COMP-3 data item must be of the form PIC
[S]9(n)[V9(n)]

ERROR COMP-3 specified with reference item which is not
COMP-3 - element_name
Data Definition Language (DDL) Reference Manual—529431-003
A-9

DDL Messages
Cause. The record definition of an entry-sequenced, relative, or unstructured file
contains a COMPRESS, DCOMPRESS, or ICOMPRESS clause. These clauses apply
only to key-sequenced files.

Effect. The DDL compiler rejects the object.

Recovery. Change the file structure to key sequenced, or remove the COMPRESS,
DCOMPRESS, or ICOMPRESS clause.

Cause. A CONSTANT statement has a value that is incompatible with its data type.
For example, the value is too large for the size indicated by the data type, or is
alphabetic when the data type is numeric, or is a signed value when the data type is
unsigned.

Effect. The DDL compiler rejects the constant.

Recovery. Change either the data type or the specified value of the constant.

Cause. A CONSTANT statement has a value that is greater than the 130 ASCII
character limit set for the DDL compiler.

Effect. The DDL compiler does not generate Pascal code for the constant or for any
object that refers to the constant.

Recovery. Shorten the constant value and regenerate the Pascal constant or object
that refers to the constant.

Cause. A CONSTANT statement has a value greater than 128 ASCII characters, and
TAL source code is requested.

Effect. The DDL compiler does not generate TAL code for the constant or for any
object that refers to the constant.

Recovery. Shorten the constant value and regenerate the TAL constant or object that
refers to the constant.

ERROR COMPRESS, DCOMPRESS, or ICOMPRESS on a non KEY-
SEQUENCED file

ERROR CONSTANT data type is incompatible with
referenced value

ERROR CONSTANT in Pascal exceeds DDL’s 130-byte limit-
constant-name

ERROR CONSTANT’s representation exceeds TAL’s 128-byte
limit- constant-name
Data Definition Language (DDL) Reference Manual—529431-003
A-10

DDL Messages
Cause. A CONSTANT statement has either a value greater than 130 ASCII characters
or a value that was made greater by the DDL compiler emitting a tilde (~) preceding
the special TACL characters [] { } | ==, and TACL code is requested.

Effect. The DDL compiler does not generate TACL code for the constant or for any
object that refers to the constant.

Recovery. Shorten the constant value and regenerate the TACL constant or object
that refers to the constant.

Cause. You specified an SQL DATETIME or SQL INTERVAL item within a group that
contains a VALUE clause.

Effect. The DDL compiler rejects the group.

Recovery. Remove the VALUE clause or the SQL DATETIME or SQL INTERVAL item
from the group, and then recompile.

Cause. The record definition of a key-sequenced file contains a DCOMPRESS clause
that makes the block size of the record 1 byte longer than specified in the BLOCK
clause.

Effect. The DDL compiler rejects the object.

Recovery. Specify a smaller record size, or remove the DCOMPRESS clause.

Cause. The record definition of a key-sequenced file contains a DCOMPRESS clause,
but the specified primary key does not have offset 0.

Effect. The DDL compiler rejects the object.

Recovery. Specify a primary key that has offset 0, or remove the DCOMPRESS
clause.

ERROR CONSTANT’s TACL representation exceeds DDL’s
130-byte limit- constant-name

ERROR DATETIME or INTERVAL item found within group with
VALUE clause

ERROR DCOMPRESS made record one byte too long for block

ERROR DCOMPRESS specified but primary key has nonzero
offset
Data Definition Language (DDL) Reference Manual—529431-003
A-11

DDL Messages
Cause. You are attempting to run the DDL compiler on an unsupported product
version of the operating system.

Effect. The DDL process does not start.

Recovery. Consult your system manager.

Cause. An internal error has occurred. No user error is implied.

Effect. The DDL compiler closes the dictionary and source code files and stops
processing.

Recovery. Consult your system manager.

Cause. The DDL slap bit is not set.

Effect. The DDL compiler stops processing.

Recovery. Consult your system manager.

Cause. You requested DDL output, but the object does not conform to DDL rules.

Effect. A message follows describing the DDL error. The DDL compiler does not write
the object to the DDL source file.

Recovery. Correct the error and recompile.

Cause. A definition or record generates a C structure that is greater than 32,767
bytes.

Effect. The DDL compiler does not generate C output for the specified definition or
record.

Recovery. Shorten the definition or record and regenerate the C source code.

FATAL ERROR DDL cannot run on this version of GUARDIAN

FATAL ERROR DDL internal error

FATAL ERROR DDL microcode not installed on this cpu

WARNING DDL OUTPUT DIAGNOSTICS:

ERROR DEF or RECORD exceeds C 32767-byte limit-
object-name
Data Definition Language (DDL) Reference Manual—529431-003
A-12

DDL Messages
Cause. A definition or record generates a Pascal type definition that is greater than
32,766 bytes.

Effect. The DDL compiler does not generate Pascal output for the specified definition
or record.

Recovery. Shorten the definition or record and regenerate the Pascal source code.

Cause. A definition or record generates a TACL structure that is greater than 5,000
bytes. The entire TACL structure, not just individual fields, must be less than or equal
to 5,000 bytes.

Effect. The DDL compiler does not generate TACL output for the specified definition
or record.

Recovery. Shorten the definition or record and regenerate the TACL source code.

Cause. A definition named in a TOKEN-MAP or a TOKEN-TYPE statement cannot be
found in the dictionary.

Effect. The DDL compiler rejects the token map or token type.

Recovery. Correct the definition name or add the referenced definition to the
dictionary, then recompile the token map or token type.

Cause. You have specified a definition name or record name that has already been
used for another object.

Effect. The DDL compiler rejects the duplicate object.

Recovery. Change the name of the definition or record and recompile the statement.

Cause. The field currently being defined tried to refer to itself.

Effect. The DDL compiler rejects the object.

ERROR DEF or RECORD exceeds Pascal 32766-byte limit-
object-name

ERROR DEF or RECORD exceeds Pascal 32766-byte limit-
object-name

ERROR DEFINITION not found

ERROR Definition or record name already used

ERROR Definition type reference is recursive
Data Definition Language (DDL) Reference Manual—529431-003
A-13

DDL Messages
Recovery. Take out the reference to the field and recompile the statement.

Cause. The DEPENDING ON element has a VALUE clause in which the specified
value is not within the range specified by the OCCURS clause.

Effect. The DDL compiler rejects the object.

Recovery. Specify a valid value and recompile.

Cause. You moved the dictionary from another subvolume, but did not alter the key
files to reflect this.

Effect. The DDL compiler closes the dictionary and source code files and stops
processing.

Recovery. Follow the procedure Moving a Dictionary on page 10-14.

Cause. The DDL compiler was unable to convert the dictionary. To determine the
cause, see the preceding error message in your output listing.

Effect. The dictionary is not converted.

Recovery. Correct the error and rebuild the dictionary.

Cause. Data stored in the dictionary is in an inconsistent state, or some of the
dictionary files are missing.

Effect. The DDL compiler closes the dictionary and source code files and stops
processing.

Recovery. Purge the dictionary files manually and rebuild the dictionary from a saved
source.

ERROR DEPENDING ON element not within OCCURS range

FATAL ERROR Dict has been moved and key files were not
FUP ALTERed

ERROR Dictionary conversion failed

FATAL ERROR DICTIONARY IS CORRUPT- purge and restart
Data Definition Language (DDL) Reference Manual—529431-003
A-14

DDL Messages
Cause. Some of the dictionary files have been purged, but not all of them. The
remaining files might not have been purged because they were in use, or there was a
security violation on the files.

Effect. You cannot use the dictionary with part of the files missing.

Recovery. Determine the status of the individual files and purge them manually when
possible.

Cause. You entered a DICTR command, but no dictionary exists on the specified
volume and subvolume.

Effect. The DDL compiler does not open the specified dictionary.

Recovery. Reissue the DICTR command specifying the correct volume and
subvolume.

Cause. You placed a DICT command within a group definition or a RECORD
statement, and dictionary is already open.

Effect. The DICT command is ignored, and the open dictionary remains open.

Recovery. Place the DICT command between statements and retry.
.

Cause. You attempted to convert a current dictionary.

Effect. The DDL compiler closes the dictionary and stops processing.

Recovery. No recovery is necessary.

Cause. A COBOL, DDL, FORTRAN, FUP, TACL, TAL, C, or Pascal command
specified a file that is not in EDIT format.

Effect. The DDL compiler does not produce the requested source code.

ERROR Dictionary is only partially purged in subvol-
subvolume-name

WARNING Dictionary not found

WARNING Dictionary opened- cannot reopen while defining
an object

WARNING Dictionary version is current, no conversion is
done

ERROR Disk file exists but is not an EDIT file
Data Definition Language (DDL) Reference Manual—529431-003
A-15

DDL Messages
Recovery. Reissue the COBOL, DDL, FORTRAN, FUP, TACL, TAL, C, or Pascal
command, specifying an EDIT file.

Cause. A literal with the same locale name has already been associated with the text
item.

Effect. The DDL compiler rejects the object.

Recovery. Ensure that each locale name for a text item is unique.

Cause. An enumeration clause for a field specifies the same value as another
enumeration clause for the field.

Effect. The DDL compiler rejects the object.

Recovery. Specify a different enumeration value and recompile.

Cause. You specified an EDIT command in a DDL source file or session in which an
OUT command, or the OUT run-option, has specified the source code file to be a file
other than an interactive terminal. You can use EDIT only in an interactive session: a
session in which the input/output file is an interactive terminal.

Effect. The DDL compiler issues a warning and ignores the EDIT command.

Recovery. Remove the EDIT command and recompile if necessary.

Cause. The EDIT or T4/30/10EDIT process did not receive a startup message
because of the file error identified by file-error.

Effect. The DDL compiler cannot start the EDIT process.

Recovery. Reissue the EDIT command. If the problem persists, see your system
manager

ERROR Duplicate text item for locale locale-name

ERROR Duplicate VALUE on Level 89 item- field-name

WARNING Editors only work from DDL when in interactive
mode

WARNING EDIT did not recieve the startup message- File
error file-error
Data Definition Language (DDL) Reference Manual—529431-003
A-16

DDL Messages
Cause. The EDIT process cannot be started because of the file error identified by
file-error.

Effect. The DDL compiler cannot start the EDIT process.

Recovery. Reissue the EDIT command. If the problem persists, see your system
manager.

Cause. The source output file, filename, is an EDIT file and the source output
exceeded 99,999 lines.

Effect. The source output file is incomplete.

Recovery.

1. Purge the incomplete source output file.

2. Use these FUP commands to create a file for source output:

SET TYPE E
SET EXT (large-number,large-number)
SET MAXEXTENTS large-number
CREATE filename

3. Use the file that you created in Step 2 as the source output file in one of these
source output commands:

• C on page 9-8

• COBOL on page 9-26

• DDL on page 9-42

• FORTRAN on page 9-63

• PASCAL (D-Series Systems Only) on page 9-86

• TAL on page 9-105

Cause. The edit picture specified in an EDIT-PIC clause is not valid for the data type
of the field being defined.

Effect. The DDL compiler rejects the object.

WARNING EDIT file could not be opened- File error
file-error

FILE ERROR - filename - Edit file line number too large (537)

ERROR Edit picture inconsistent with data Type
Data Definition Language (DDL) Reference Manual—529431-003
A-17

DDL Messages
Recovery. Specify a valid edit picture in the clause and resubmit the statement to the
DDL compiler.

Cause. A file error indicated by file-error occurred during creation of the EDIT
process. No user error is implied.

Effect. The DDL compiler cannot start the EDIT process.

Recovery. Reissue the EDIT command. If the problem persists, consult your system
manager.

Cause. A NEWPROCESS error occurred during creation of the EDIT process. No
user error is implied.

Effect. The DDL compiler cannot start the EDIT process.

Recovery. Reissue the EDIT command. If problem persists, consult your system
manager.

Cause. Usually, this is a system error.

Effect. The DDL compiler stops the EDIT process.

Recovery. Consult your system manager.

Cause. The DDL compiler was asked to generate output for the source language
language_name (which is neither C nor TAL) and the DDL item contains the
BINARY 64 UNSIGNED field identified by element_name.

WARNING EDIT process could not be created- File error
file-error

WARNING EDIT process could not be created- Newprocess
error newprocess-error

WARNING EDIT stopped or abnormally ended during
execution

ERROR Element contains BINARY 64 UNSIGNED data type -
element_name
ERROR BINARY 64 UNSIGNED is not supported in
language_name
Data Definition Language (DDL) Reference Manual—529431-003
A-18

DDL Messages
Effect. The DDL compiler issues error messages and does not generate output for the
requested language. For example:

!?Cobol
! def def1 type binary 64 unsigned.
*** WARNING *** COBOL 85 OUTPUT DIAGNOSTICS:
*** ERROR *** Element contains BINARY 64 UNSIGNED data type – DEF1
*** ERROR *** BINARY 64 UNSIGNED data type is not supported in COBOL

Recovery. Recovery is not possible. Remove the BINARY 64 UNSIGNED data item
from the definition or record.

Cause. The DDL compiler was asked to generate output for a source language other
than COBOL and the DDL item contains the PACKED-DECIMAL field identified by
element_name.

Effect. The DDL compiler issues error messages and does not generate output for the
requested language. For example:

!?tal
! SCHEMA PRODUCED DATE - TIME : 8/01/2000 - 15:05:22
 Output source for TAL is opened on $ZTN1.#PTPJHYV
!def emp pic 9999 PACKED-DECIMAL.
 Definition EMP size is 3 bytes.
 Definition EMP added to dictionary.
 *** WARNING *** TAL OUTPUT DIAGNOSTICS:
 *** ERROR *** Element contains PACKED-DECIMAL data type - EMP
 *** ERROR *** PACKED-DECIMAL data type is not supported in TAL
 *** ERROR *** Errors detected - no output produced for EMP

Recovery. Recovery is not possible. Remove the COMP-3, COMPUTATIONAL-3, or
PACKED-DECIMAL data item from the definition or record.

Cause. The element being redefined is not an element in the same group as the
redefining element.

Effect. The DDL compiler rejects the object.

Recovery. Put the element in the same group and recompile.

Cause. An element has a REDEFINES clause redefining an element that also has a
REDEFINES clause, and the first element refers to a different field than the second
element

Effect. The DDL compiler rejects the object.

ERROR Element contains PACKED-DECIMAL data type -
element_name

ERROR Element being redefined not found in this group

ERROR Element being redefined redefines another element
Data Definition Language (DDL) Reference Manual—529431-003
A-19

DDL Messages
Recovery. Change the REDEFINES clause in the first element to refer to the same
field as does the REDEFINES clause in the second element.

Cause. An element at the same lexical level as this element, and within the same
group, has the same name.

Effect. The DDL compiler rejects the object.

Recovery. Change one of the names and recompile.

Cause. A TACL clause is specified for an item whose length does not agree with the
TACL data type. For more information about TACL data type lengths, see TACL on
page 6-44.

Effect. The DDL compiler rejects the object.

Recovery. Change the length of the item, or remove the TACL clause, and recompile.

Cause. The DDL compiler encountered a product version of a dictionary that the
current product version of the DDL compiler cannot access.

Effect. The DDL compiler stops processing.

Recovery. Consult your system manager.

Cause. You used an Enform Plus reserved word as a record, group, or field name.

Effect. The DDL compiler continues processing the statement.

Recovery. Change the name and recompile for Enform Plus access. If Enform Plus is
not to be used, recompilation is not necessary.

ERROR Element name already used in or qualifies this
group- element-name

ERROR Element/group size does not match the size of the
TACL type- name

FATAL ERROR Encountered an unsupported version of the
dictionary

WARNING ENFORM reserved word- word
Data Definition Language (DDL) Reference Manual—529431-003
A-20

DDL Messages
Cause. The enumeration definition specified for a bit field has a value or values that
do not fit in the bit field.

Effect. The DDL compiler rejects the object that includes the bit field.

Recovery. Do one of the following:

• Change the values in the enumeration definition to fit the specified number of bits.

• Specify enough bits to contain the largest value in the enumeration definition.

• Specify an enumeration definition whose values fit in the bit field.

• Omit the ENUM clause from the type specification; then recompile the object that
contains the bit field.

Cause. The DDL compiler encountered an error while trying to abort a transaction in
an audited dictionary. Transactions are aborted when a change to the dictionary is
begun but cannot be completed.

Effect. The DDL compiler closes the dictionary and source code files and stops
processing.

Recovery. Your dictionary might be corrupt; consult your system manager.

Cause. The DDL compiler encountered an error while trying to begin a transaction in
an audited dictionary. A transaction begins when the dictionary files must be updated.

Effect. The DDL compiler closes the dictionary and source code files and stops
processing.

Recovery. If the problem persists, consult your system manager.

Cause. The DDL compiler encountered a file error while trying to end a transaction in
an audited dictionary. A transaction ends when all related files are updated.

Effect. The DDL compiler closes the dictionary and source code files and stops
processing.

Recovery. If the problem persists, consult your system manager.

ERROR ENUM values out of range for bit field-
field-name

FATAL ERROR Error aborting a transaction

FATAL ERROR Error beginning a transaction

FATAL ERROR Error ending a transaction
Data Definition Language (DDL) Reference Manual—529431-003
A-21

DDL Messages
Cause. The DDL compiler detected one or more errors while processing the statement
for object-name.

Effect. The DDL compiler rejects the object.

Recovery. Correct the error or errors and recompile.

Cause. The ERRORS command specifies an integer that is not in the range 1 through
32767.

Effect. The DDL compiler ignores the ERRORS command.

Recovery. Specify a valid value in the ERRORS command and recompile.

Cause. A SOURCE command contains multiple input lines, but the second and
following input lines do not start with ?.

Effect. The DDL compiler might process subsequent input lines incorrectly.

Recovery. Put ? at start of each SOURCE input line and recompile.

Cause. A value for EXT is not a multiple of the block size; the default block size is
4096 bytes.

Effect. The DDL compiler rejects the object.

Recovery. Change the EXT value to a multiple of BLOCK. For example, if BLOCK =
4096, 4 is a valid value for EXT, but 3 is not.

Cause. A value for EXT is not a multiple of the buffer size; the default buffer size is
4096 bytes.

Effect. The DDL compiler rejects the object.

WARNING Errors detected- no output produced for
object-name

WARNING ERRORS is not a legal positive integer- value
not changed

WARNING Expecting continuation of source command

ERROR EXT is not a multiple of BLOCK

ERROR EXT is not a multiple of BUFFERSIZE
Data Definition Language (DDL) Reference Manual—529431-003
A-22

DDL Messages
Recovery. Change the EXT value to a multiple of BUFFERSIZE. For example, if
BUFFERSIZE = 4096, 4 is a valid value for EXT, but 3 is not.

Cause. A value for EXT is equal to or less than 0; the extent size must be a positive
integer.

Effect. The DDL compiler rejects the object.

Recovery. Correct the extent size and recompile.

Cause. You specified an EXTERNAL clause for a DEFINITION statement and the
clause was not on the object name level.

Effect. The DDL compiler does not execute the DEFINITION statement.

Recovery. Specify the EXTERNAL clause on the object name level and recompile.

Cause. The DDL compiler generated a C union because the DDL compiler
encountered a REDEFINES clause. The C structure containing such a union has one
more item level than the corresponding DDL structure containing the REDEFINES
clause.

Effect. The DDL compiler still generates source code for C.

Recovery. No recovery is necessary.

Cause. The DDL compiler generated an anonymous Pascal record because the DDL
compiler encountered a REDEFINES clause. The record is anonymous because it has
a name but no type. The DDL compiler generated the record name by prefixing a V_ to
the name of the first structure being redefined.

Effect. The DDL compiler still generates source code for Pascal.

Recovery. No recovery is necessary.

ERROR EXT must be a positive integer

ERROR External clause must be on object name level

WARNING Extra level of reference introduced in C’s
union- object-name

WARNING Extra level of reference introduced in Pascal’s
variant- object-name
Data Definition Language (DDL) Reference Manual—529431-003
A-23

DDL Messages
Cause. The field inside the DEFINITION used in the TOKEN-MAP statement has an
OCCURS DEPENDING ON clause.

Effect. The DDL compiler rejects the object.

Recovery. Remove the OCCURS DEPENDING ON clause for the field and recompile.

Cause. A fully qualified file name was specified as a dictionary subvolume in a DICT,
DICTN, or DICTR command.

Effect. The DDL compiler ignores the file name and opens the dictionary on the
specified subvolume.

Recovery. No recovery is necessary.

Cause. The DDL compiler looked for a file name, but did not find it because of an
incorrect command.

Effect. The DDL compiler skips the command.

Recovery. Correct the command and recompile.

Cause. The key assignment clause for a primary key includes a file name. You can
specify a file name in the KEY IS clause only for an alternate key.

Effect. The DDL compiler uses the file name specified in the file creation part of the
record statement and ignores the file name specified in the key assignment clause.

Recovery. No recovery is necessary because a primary key does not require a
separate file.

Cause. A FILLER field is described with a DISPLAY clause.

Effect. The DDL compiler rejects the object.

Recovery. Remove the DISPLAY clause and recompile.

ERROR Field has variable OCCURS-
Line.LineItem.LocalName

WARNING File name ignored when opening dictionary

WARNING File name not specified

WARNING File name specified for primary key is ignored

ERROR Filler cannot have a DISPLAY clause
Data Definition Language (DDL) Reference Manual—529431-003
A-24

DDL Messages
Cause. A FILLER field is described with a HEADING clause.

Effect. The DDL compiler rejects the object.

Recovery. Remove the HEADING clause and recompile.

Cause. A FILLER field is described with a HELP clause.

Effect. The DDL compiler rejects the object.

Recovery. Remove the HELP clause and recompile.

Cause. A FILLER field is described with a KEYTAG clause.

Effect. The DDL compiler rejects the record.

Recovery. Remove the KEYTAG clause and recompile.

Cause. A FILLER field is described with a MUST BE clause.

Effect. The DDL compiler rejects the object.

Recovery. Remove the MUST BE clause and recompile.

Cause. A FILLER field is described with a NULL clause.

Effect. The DDL compiler rejects the object.

Recovery. Remove the NULL clause and recompile.

Cause. A FILLER field is described with a REDEFINES clause.

Effect. The DDL compiler rejects the object.

Recovery. Remove the REDEFINES clause and recompile.

ERROR Filler cannot have a HEADING clause

ERROR Filler cannot have a HELP clause

ERROR Filler cannot have a KEYTAG clause

ERROR Filler cannot have a MUST BE clause

ERROR Filler cannot have a NULL clause

ERROR Filler cannot have a REDEFINES clause
Data Definition Language (DDL) Reference Manual—529431-003
A-25

DDL Messages
Cause. A FILLER field is described with a TACL clause.

Effect. The DDL compiler rejects the object.

Recovery. Remove the TACL clause and recompile.

Cause. A FILLER field is described with an EXTERNAL clause.

Effect. The DDL compiler rejects the object.

Recovery. Remove the EXTERNAL clause and recompile.

Cause. A FILLER field is described with an UPSHIFT clause.

Effect. The DDL compiler rejects the object.

Recovery. Remove the UPSHIFT clause and recompile.

Cause. A FILLER field is described with one or more USER clauses.

Effect. The DDL compiler rejects the object.

Recovery. Remove the USER clauses and recompile.

Cause. A FILLER field has no PICTURE or TYPE clause to specify its length.

Effect. The DDL compiler rejects the object.

Recovery. Add a PICTURE or TYPE clause to the field description and recompile.

Cause. An elementary field is larger than 255 bytes, and output to a FORTRAN
source file is requested.

ERROR Filler cannot have a TACL clause

ERROR Filler cannot have an EXTERNAL clause

ERROR Filler cannot have an UPSHIFT clause

ERROR Filler cannot have a USER clause

ERROR Filler must have a PICTURE or TYPE clause

ERROR FORTRAN element with size greater than 255 bytes-
element-name
Data Definition Language (DDL) Reference Manual—529431-003
A-26

DDL Messages
Effect. The DDL compiler does not write object containing field larger than 255 bytes
to the FORTRAN source file.

Recovery. Describe the field as two or more smaller fields and recompile.

Cause. You requested FORTRAN output, but the object does not conform to
FORTRAN syntax rules.

Effect. A message follows describing the FORTRAN error. The DDL compiler does
not write the object to the FORTRAN source file.

Recovery. Correct the error and recompile if you want FORTRAN output.

Cause. You requested FUP output, but the object does not conform to FUP rules.

Effect. A message follows describing the FUP error. The DDL compiler does not write
the object to the FUP file-creation source file.

Recovery. Correct the error and recompile.

Cause. A RECORD statement specified a block size less than 1 or greater than 4,096.

Effect. The DDL compiler uses the default block size, 4,096.

Recovery. Specify a block size from 1 to 4,096 and recompile the record.

Cause. The DDL compiler encountered a group item that exceeds the 30-level nesting
limit for Pascal.

Effect. The DDL compiler rejects the object.

Recovery. Reduce the number of nesting levels and recompile.

Cause. You specified a JUSTIFIED clause for a group.

Effect. The DDL compiler rejects the object.

WARNING FORTRAN OUTPUT DIAGNOSTICS:

WARNING FUP OUTPUT DIAGNOSTICS:

WARNING FUPBLOCKSIZE must be from 1 to 4096- value not
changed

ERROR Group item exceeds Pascal’s nesting limit for
records- group-name

ERROR Group items cannot have a JUSTIFIED clause
Data Definition Language (DDL) Reference Manual—529431-003
A-27

DDL Messages
Recovery. Remove the JUSTIFIED clause from the group definition or description,
add a JUSTIFIED clause to the description of each field in the group, and recompile.

Cause. You specified a MUST BE clause for a group.

Effect. The DDL compiler rejects the object.

Recovery. Remove the MUST BE clause from the group definition or description, add
a MUST BE clause to the description of each field in the group, and recompile.

Cause. You specified a numeric value with a VALUE clause for a group; group values
must be alphanumeric

Effect. The DDL compiler rejects the object.

Recovery. Specify an alphanumeric value and recompile.

Cause. You specified a VALUE clause for a group that contains a field described with
a MUST BE clause. If a group has an initial value, none of its field descriptions can
include a MUST BE clause.

Effect. The DDL compiler rejects the object.

Recovery. Remove the MUST BE clause and recompile.

Cause. A single line of help text exceeds 77 characters.

Effect. The DDL compiler enters the object definition in the dictionary.

Recovery. If the help text must fit on Pathmaker screens, break the text into shorter
lines and recompile. A single HELP clause can have many lines of help text, but each
line must be no more than 77 characters long.

ERROR Group items cannot have a MUST BE clause

ERROR Group level initialization VALUE must be
alphanumeric

ERROR Group with initial VALUE contains MUST BE-
group-name

WARNING HELP line exceeds 77 characters

WARNING Identifier name changed, might cause duplicate-
object-name
Data Definition Language (DDL) Reference Manual—529431-003
A-28

DDL Messages
Cause. A The DDL compiler name containing a hyphen (-) might duplicate a
FORTRAN name.

Effect. When generating FORTRAN source code, the DDL compiler might use
another identifier with the same FORTRAN name but a different DDL name.

Recovery. Avoid using a hyphen in a name for a FORTRAN object.

Cause. A definition, record, or element name has more than 30 ASCII characters.

Effect. The DDL compiler rejects the object.

Recovery. Shorten the name and recompile.

Cause. A constant is used as a value, but the constant data type is not consistent with
the data type of the object receiving the value.

Effect. The DDL compiler rejects the object.

Recovery. Check the data type and use a constant whose value is a number for a
numeric type or a string for an alphanumeric type, then recompile the object.

Cause. The product version specified in the TOKEN-MAP statement does not match
bit fields stored in the same byte.

Effect. The DDL compiler rejects the TOKEN-MAP object.

Recovery. Specify the same product version for bit fields that share the same byte. If
a bit field extends across two bytes, specify the same product version for bit fields that
share the same word.

Cause. A COBOL level-number increment in a COBLEVEL command is equal to or
less than 0.

Effect. The DDL compiler does not change the increment.

Recovery. Correct the error and recompile if you want to.

ERROR Identifier too long

ERROR Improper type of Constant for this usage

ERROR Inconsistent VERSION within byte- bit-field-name

WARNING Increment is not a legal positive int- value
not changed
Data Definition Language (DDL) Reference Manual—529431-003
A-29

DDL Messages
Cause. A field whose definition or description includes a USAGE IS INDEX clause is
not 2 or 4 bytes, is not a single field, or is not a computational item.

Effect. The DDL compiler rejects the field or the object that includes the field.

Recovery. Remove the USAGE IS INDEX clause, or change the field definition to
meet the requirements for using this clause, and recompile the object.

Cause. A field described with the USAGE IS INDEX clause is the wrong size for
COBOL output.

Effect. The DDL compiler does not produce the requested output for the object.

Recovery. Change the size of the index field, specify an index field of the correct size,
or request the output appropriate for the field size.

Cause. A definition or record description includes an INDEXED BY attribute without an
OCCURS or OCCURS DEPENDING ON clause.

Effect. The DDL compiler rejects the object.

Recovery. Add an OCCURS or OCCURS DEPENDING ON clause, or remove the
INDEXED BY attribute, and recompile the object.

Cause. An initial value for a group exceeds the combined size of the fields within the
group.

Effect. The DDL compiler rejects the object.

Recovery. Change the initial value or the combined field size and recompile.

Cause. An initial value for a field is outside the range specified for that field in a MUST
BE clause.

ERROR INDEX must be a 1 or 2 word single item and
computational

WARNING INDEX must be 1 word for COBOL 74 and 2 words
for COBOL85- index-name

ERROR INDEXED BY is invalid without OCCURS clause-
object-name

ERROR Initial VALUE exceeds size of group name

ERROR Initial VALUE violates MUST BE constraint
Data Definition Language (DDL) Reference Manual—529431-003
A-30

DDL Messages
Effect. The DDL compiler rejects the object.

Recovery. Change the MUST BE range or the VALUE clause and recompile.

Cause. A group with a VALUE clause contains a field that also has a VALUE clause.

Effect. The DDL compiler rejects the object.

Recovery. Remove the VALUE clause from the field description and recompile.

Cause. An input line contains more than 132 ASCII characters.

Effect. The DDL compiler truncates the line to 132 characters.

Recovery. Break the line into several shorter lines and reenter them.

Cause. A numeric value is greater than 32,767 or less than -32,768.

Effect. The DDL compiler rejects the object.

Recovery. Change the value and recompile.

Cause. You requested language output other than Pascal for a bit map declared as a
single field. To ensure that bit maps outside group structures are compatible between
languages, field definitions for bit fields are generated as 16-bit integer items.

Effect. The DDL compiler takes no action beyond the warning message.

Recovery. No recovery is necessary.

Cause. You used an invalid special character.

Effect. The DDL compiler rejects the object.

Recovery. Remove the invalid character and recompile.

ERROR Initial VALUE’s conflict in group- name

WARNING Input line exceeds 132 characters; truncation
occurred

ERROR Integer conversion error- value

WARNING Integer type is generated for bit field-
field-name

ERROR Invalid character
Data Definition Language (DDL) Reference Manual—529431-003
A-31

DDL Messages
Cause. The indicated command is invalid.

Effect. The DDL compiler ignores the command.

Recovery. Correct the command and recompile if necessary.

Cause. The display format in a DISPLAY clause is incorrect. For display format rules,
see the description of the AS modifier of the LIST command in the Enform Plus
Reference Manual.

Effect. The DDL compiler rejects the object.

Recovery. Correct the display format and recompile.

Cause. The edit picture you specified in an EDIT-PIC clause does not follow the
COBOL rules for edit pictures.

Effect. The DDL compiler rejects the object.

Recovery. Specify a valid edit picture and recompile.

Cause. A command specifies an invalid file name.

Effect. The DDL compiler ignores the command.

Recovery. Correct the file name and recompile if necessary.

Cause. The FILE IS clause of a RECORD statement specifies an invalid file name

Effect. The DDL compiler rejects the object.

Recovery. Correct the file name and recompile.

WARNING Invalid compiler command- incorrect-command

ERROR Invalid display format string

ERROR Invalid EDIT picture

WARNING Invalid file name

ERROR Invalid file name
Data Definition Language (DDL) Reference Manual—529431-003
A-32

DDL Messages
Cause. A hyphen (-) is the last character of a name identifying a record, definition,
group, or field.

Effect. The DDL compiler rejects the object.

Recovery. Correct the error and recompile.

Cause. A specified level number is less than 02 or greater than 49, or an elementary
field with level n is followed by an elementary field or a group with level n +1 or
greater.

Effect. The DDL compiler rejects the object.

Recovery. Correct the level number and recompile.

Cause. The locale name is invalid.

Effect. The DDL compiler rejects the text item.

Recovery. Use a valid locale name.

Cause. You entered an invalid number; for example, %8.

Effect. The DDL compiler rejects the object containing the invalid number.

Recovery. Specify the number correctly and recompile.

Cause. In an OCCURS max TIMES clause, the value max is less than or equal to 1.

Effect. The DDL compiler rejects the object.

Recovery. Correct max and recompile.

Cause. PICTURE string does not conform to required syntax.

ERROR Invalid identifier format

ERROR Invalid lexical level

ERROR Invalid locale name

ERROR Invalid number

ERROR Invalid OCCURS value

ERROR Invalid PICTURE string
Data Definition Language (DDL) Reference Manual—529431-003
A-33

DDL Messages
Effect. The DDL compiler rejects the object.

Recovery. Correct the PICTURE string and recompile.

Cause. The first value in a specified range is greater than the second value.

Effect. The DDL compiler rejects the object containing invalid range.

Recovery. Correct the range and recompile.

Cause. A section name in a SOURCE command is invalid or is not present when
expected, or a comma is missing between section names in a SOURCE command.

Effect. The DDL compiler issues a warning and ignores the SOURCE command.

Recovery. Correct the error and recompile.

Cause. A TYPE clause specifies a size that is invalid for the particular data type.

Effect. The DDL compiler rejects the object.

Recovery. Correct the error and recompile.

Cause. The subsystem ID you specified in an SSID clause is not in the correct format
for a subsystem ID.

Effect. The DDL compiler rejects the object.

Recovery. Specify the subsystem ID correctly and recompile.

Cause. A statement violates DDL syntax rules. Specifying a DDL keyword as the
constant name in a CONSTANT statement can cause this error.

Effect. The DDL compiler rejects the object.

Recovery. Modify the statement to conform to DDL syntax rules and recompile.

ERROR Invalid range specified

WARNING Invalid section name

ERROR Invalid size for element type

ERROR Invalid SSID format

ERROR Invalid syntax- ^ under symbol where error
encountered
Data Definition Language (DDL) Reference Manual—529431-003
A-34

DDL Messages
Cause. The code in the TEXT-TYPE field of the dictionary file DICTOTF is supposed
to identify a comment, but the code is invalid for a comment.

Effect. The DDL compiler cannot use the dictionary.

Recovery. This error cannot be recovered using the DDL compiler alone. Report the
error to your service provider.

Cause. A code in the TEXT-TYPE field of the dictionary file DICTOTF is invalid for a
text type.

Effect. The DDL compiler cannot use the dictionary.

Recovery. This error cannot be recovered using the DDL compiler alone. Report the
error to your service provider.

Cause. You specified a MAXEXTENTS value that is outside the valid range. As many
as 978 maximum extents can be specified, but the actual upper limit depends on the
number of alternate keys. For more information about maximum extents, see the
Enscribe Programmer’s Guide.

Effect. The DDL compiler rejects the object.

Recovery. Specify the MAXEXTENTS value correctly and recompile.

Cause. You specified a product version in a VERSION constant or in the VERSION
clause of a TOKEN-MAP statement that is not of the form ann, in which a is a letter
and nn is a two-digit number.

Effect. The DDL compiler rejects the object.

Recovery. Specify the product version correctly and recompile.

Cause. A REDEFINES clause refers to a level 66 item.

Effect. The DDL compiler rejects the object.

FATAL ERROR Invalid text type for comment

FATAL ERROR Invalid text type in dictionary

ERROR Invalid value spedified for MAXEXTENTS

ERROR Invalid version number format

ERROR It is not possible to REDEFINE a level 66 item
Data Definition Language (DDL) Reference Manual—529431-003
A-35

DDL Messages
Recovery. Correct or remove the REDEFINES clause and recompile.

Cause. You specified a MUST BE clause for a redefining field.

Effect. The DDL compiler rejects the object.

Recovery. Remove the MUST BE or REDEFINES clause and recompile.

Cause. You specified an UPSHIFT clause for a field that does not have an alphabetic
data type; UPSHIFT is allowed only for fields described by PIC A, PIC X, TYPE
CHARACTER, TYPE *, or TYPE def-name, in which def-name or * is a definition of
an alphabetic or alphanumeric type field.

Effect. The DDL compiler rejects the object.

Recovery. Change the data type of the field or remove the UPSHIFT clause.

Cause. You specified an UPSHIFT clause within a redefinition.

Effect. The DDL compiler rejects the object.

Recovery. Remove the UPSHIFT clause from the redefining group or field and
recompile.

Cause. The DDL compiler encountered an error while attempting to access the
USERID file on $SYSTEM.SYSTEM. The DDL compiler must access this file to record
the creator user ID and modifier user ID in the dictionary.

Effect. The DDL compiler closes the dictionary and source code files and stops
processing.

Recovery. If the problem persists, consult your system manager.

ERROR Item with MUST BE found on or within REDEFINES
item- field-name

ERROR Item with UPSHIFT found on nonalphabetic data
item- field-name

ERROR Item with UPSHIFT found on or within REDEFINES
item- object-name

FATAL ERROR I/O Error accessing $System.System.UserID
Data Definition Language (DDL) Reference Manual—529431-003
A-36

DDL Messages
Cause. The JUSTIFIED clause can appear only in an alphabetic or alphanumeric
elementary item.

Effect. The DDL compiler rejects the object.

Recovery. Remove the JUSTIFIED clause and recompile.

Cause. You have specified the indicated key attribute on an alternate key
specification.

Effect. The DDL compiler rejects the object.

Recovery. Specify a different key attribute.

Cause. A dictionary was updated incorrectly.

Effect. The DDL compiler rejects the object.

Recovery. Rebuild the dictionary.

Cause. You specified a file name for an alternate key assignment in a RECORD
statement that is not unique. The file name is already specified for another alternate
key, and either or both keys are specified as unique.

Effect. The DDL compiler rejects the object.

Recovery. Specify a different file name for the alternate key.

Cause. You specified a key field for an unstructured file; unstructured files cannot
have key fields.

Effect. The DDL compiler rejects the record.

Recovery. Remove the key specification and recompile.

ERROR JUSTIFIED must be on alphabetic or alphanumeric
item

ERROR Key attribute already spedified- key-attribute

ERROR Key element invalid- Dictionary is corrupt

ERROR Key file name already used- file-name

ERROR Keys specified for unstructured file
Data Definition Language (DDL) Reference Manual—529431-003
A-37

DDL Messages
Cause. You specified a KEYTAG string with more than 2 characters.

Effect. The DDL compiler rejects the record.

Recovery. Specify a KEYTAG string no longer than 2 characters and recompile.

Cause. The same KEYTAG value occurs more than once in a RECORD statement, or
the value is equivalent in both numeric and ASCII form.

Effect. The DDL compiler rejects the record.

Recovery. Correct the error and recompile.

Cause. A field or group that is a key field has an OCCURS clause.

Effect. The DDL compiler rejects the record.

Recovery. Remove the OCCURS clause or the key specification for the field and
recompile.

Cause. A language checking command (CCHECK, COBCHECK, FORCHECK,
PASCALCHECK, or TALCHECK) follows a command (C, COBOL, FORTRAN, pTAL,
Pascal, or TAL) that requests source output.

Effect. The DDL compiler ignores the command.

Recovery. No recovery is necessary.

Cause. A group element is the last element in a RECORD or DEFINITION statement;
every group must contain at least one elementary field.

Effect. The DDL compiler rejects the object.

Recovery. Correct the error and recompile.

***KEYTAG string must not exceed 2 bytes

ERROR KEYTAG used twice- keytag value

ERROR KEYTAG with repeating group or element

WARNING Language check redundant: output already being
produced

ERROR LAst element is not elementary
Data Definition Language (DDL) Reference Manual—529431-003
A-38

DDL Messages
Cause. One or more level 88 clauses follow the definition or description of a bit field.
The DDL compiler does not allow level 88 clauses for bit maps because COBOL does
not support such structures, and level 88 items are meaningful only for COBOL.

Effect. The DDL compiler rejects the object.

Recovery. To avoid the error message, remove the level 88 clause or clauses
following the bit field and recompile the object.

Cause. A level 88 element directly follows a group element or precedes all elements.

Effect. The DDL compiler rejects the object.

Recovery. Put the level 88 element after a field description and recompile.

Cause. A level 88 value is incompatible with the type of the field that the level 88
clause describes.

Effect. The DDL compiler rejects the object.

Recovery. Correct the error and recompile.

Cause. A field definition or description whose type is not ENUM contains a level 89
clause.

Effect. The DDL compiler rejects the object.

Recovery. Remove any level 89 clauses from the field definition or description, or
change the type to ENUM, and recompile.

ERROR LEvel 88 not allowed for bit items

ERROR Level 88 or level 89 must follow elementary items
only

ERROR LEvel 88 value inconsistent with data type

ERROR Level 89 clause must follow an item with TYPE
ENUM
Data Definition Language (DDL) Reference Manual—529431-003
A-39

DDL Messages
Cause. The number in a LINECOUNT number command is not a positive integer.

Effect. The line count is unchanged.

Recovery. Correct number and recompile if necessary.

Cause. A literal name you used as a key in a record definition written to a pTAL or TAL
source file exceeds the pTAL or TAL limit on name size.

Effect. The DDL compiler changes the literal name to a comment.

Recovery. Shorten the key name and recompile.

Cause. A TALCHECK command found that a literal name used as a key in a record
definition to be written to a pTAL or TAL source file exceeds the pTAL or TAL limit on
name size.

Effect. The DDL compiler does not do anything.

Recovery. If you want the DDL compiler to write the record definition to a pTAL or TAL
source file without changing the literal name to a comment, shorten the key name and
recompile.

Cause. An object to be written to a FORTRAN source file contains both LOGICAL 2
and LOGICAL 4 data types.

Effect. The DDL compiler does not write the object containing different LOGICAL data
types to the FORTRAN source file.

Recovery. Correct the error and recompile; rebuild the dictionary if necessary.

WARNING LINECOUNT is not a legalk positive integer-
value not changed

WARNING Literal too long, commenting out literal for
key key-value

WARNING Literal too long for key key value

ERROR Logical type mixing not supported by FORTRAN-
object-name
Data Definition Language (DDL) Reference Manual—529431-003
A-40

DDL Messages
Cause. You requested Pascal source output for a record or definition that was created
with matched2 alignment.

Effect. The DDL compiler does not generate the Pascal source.

Recovery. Compile the definition without the CFIELDALIGN_MATCHED2 command.

Cause. A schema contains a SECTION command with no section name, and a
SOURCE command requests a section in that schema.

Effect. The DDL compiler ignores the SECTION command.

Recovery. Specify a name in the SECTION command and recompile if you want to.

Cause. A group description at lexical level n is followed by a group or field description
at level n or less; for example:

02 A.
02 B PIC X.

Effect. The DDL compiler rejects the object.

Recovery. Correct the level numbers and recompile.

Cause. You have entered a VALUE clause that contains more than one initial value.

Effect. The DDL compiler rejects the object.

Recovery. Remove all but one initial value and recompile.

Cause. The RECORD statement contains more than one SEQUENCE IS clause.

Effect. The DDL compiler rejects the object.

Recovery. Remove all but one SEQUENCE IS clause and recompile.

WARNING Matched2 alignment not supported in Pascal

ERROR Missing section name

ERROR Missing subfields

ERROR More than one initial VALUE specified

ERROR More than one sequence clause specified-
record-name
Data Definition Language (DDL) Reference Manual—529431-003
A-41

DDL Messages
Cause. A field in a token map has more than one product version because the field
belongs to a group that has a product version, and the field itself has a product version.

Effect. The DDL compiler closes the dictionary and source code files and stops
processing.

Recovery. Remove the product version specification from the field and recompile.

Cause. More than 32 I18N definitions were associated with a text item.

Effect. The DDL compiler rejects the text item.

Recovery. Have a maximum of 32 I18N definitions associated with a text item.

Cause. When you specified alternate keys that were not unique, you specified
different file names on different keys.

Effect. The DDL compiler continues processing, using only the first file name
encountered.

Recovery. Specify file names correctly as required by your situation.

Cause. More than one key is defined at the same offset in the record, and COBOL
does not accept a file definition in which two keys have the same offset.

Effect. If COBOL output is requested, the DDL compiler issues a COBOL error
message and suppresses COBOL output.

Recovery. Remove all but one key at the same offset and recompile.

Cause. More than one key is identified as a primary key; a key-sequenced file has
exactly one primary key.

Effect. The DDL compiler rejects the record.

Recovery. Remove all but one key and recompile.

FATAL ERROR More than one version specified- field-name

ERROR More than 32 I18N definitions

WARNING Multiple key file names specified for non-
unique keys- file-name

WARNING Multiple keys with same offset

ERROR Multiple primary keys
Data Definition Language (DDL) Reference Manual—529431-003
A-42

DDL Messages
Cause. A MUST BE clause is specified for a field of type ENUM, and the field does
not refer to another field of type ENUM.

Effect. The DDL compiler rejects the object.

Recovery. Remove the MUST BE clause, or make the ENUM field refer to another
ENUM field, and recompile.

Cause. A field name has the same name as a group, record, or definition that contains
the field, and COBOL output was requested.

Effect. The DDL compiler suppresses COBOL output.

Recovery. Change the field name so that it differs from the names that qualify it and
recompile.

Cause. A CENDIF command was used that did not match with any CIFDEF or
CIFNDEF commands used before.

Effect. The DDL compiler ignores the statement and generates a warning message.
For example:

!?dict
Dictionary opened on subvol $ADE101.ALPHA for update access.
!?C
/*SCHEMA PRODUCED DATE - TIME : 7/21/2000 - 19: 52:07 */
Output sourcefor C is opened on $ZTN1.#PTPJHU8
!?cendif
WARNING No CIFNDEF or CIFDEF is used for this CENDIF, no
output produced for CENDIF.
!

Recovery. No recovery is necessary.

Cause. A DDL command was not entered to open a DDL source file before an
OUTPUT UPDATE statement was issued.

ERROR Must Be not valid on a non-referencing
ENUMeration

ERROR Name is embedded in a group of the same name-
field-name

WARNING No CIFNDEF or CIFDEF is used for this CENDIF,
no output produced for CENDIF.

WARNING No DDL output file; no UPDATE output produced
Data Definition Language (DDL) Reference Manual—529431-003
A-43

DDL Messages
Effect. The DDL compiler does not generate DDL source update code.

Recovery. Specify the DDL command before issuing the OUTPUT UPDATE
statement and recompile.

Cause. No record or definition called object-name is in the dictionary.

Effect. The DDL compiler rejects the object.

Recovery. Correct the error and recompile.

Cause. You entered a NOSAVE command, but no dictionary is open.

Effect. The DDL compiler ignores the NOSAVE command.

Recovery. Open a dictionary using the DICT command and reissue the NOSAVE
command.

Cause. FUP output is being generated, and a file is specified in DDL as assigned or
temporary. FUP output can be generated only for permanent files. Assigned and
temporary files can be used only in C, COBOL, FORTRAN, pTAL, Pascal, or TAL
programs.

Effect. The DDL compiler does not produce FUP output.

Recovery. If you want FUP output, remove the TEMPORARY or ASSIGNED
specification and recompile; otherwise, close the FUP source code file.

Cause. You specified a JUSTIFIED clause for an elementary item that is subordinate
to a group item with a VALUE clause.

Effect. The DDL compiler rejects the object.

Recovery. Remove the JUSTIFIED clause or change the group VALUE clause and
recompile.

ERROR No definition for object-name

WARNING No dictionary is open, NOSAVE command ignored

ERROR No file name- file is assigned or temporary

ERROR No JUSTIFIED clause allowed within a group with
VALUE clause
Data Definition Language (DDL) Reference Manual—529431-003
A-44

DDL Messages
Cause. The definition or description of a field whose type is ENUM does not include
any level 89 clauses.

Effect. The DDL compiler rejects the object.

Recovery. Add one or more level 89 clauses to the field definition or description and
recompile. (In a single-field definition, BEGIN must precede the first period, and END
must follow the last clause.)

Cause. NO ODDUNSTR describes a key-sequenced, entry-sequenced, or relative file;
NO ODDUNSTR applies only to unstructured files.

Effect. The DDL compiler rejects the object.

Recovery. Change the file type to unstructured, or remove the NO ODDUNSTR
attribute, and recompile.

Cause. A FILE clause specified a key-sequenced file, but no primary key was
specified in a KEYTAG or KEY IS clause.

Effect. The DDL compiler rejects the record.

Recovery. Specify a primary key, or change the file type, and recompile.

Cause. The definition in the dictionary is corrupt, and the DDL compiler cannot make
the reference.

Effect. The DDL compiler closes the dictionary and source code files and stops
processing.

Recovery. Rebuild the dictionary.

ERROR No level 89 clauses specified for item with TYPE
ENUM- field-name

ERROR NO ODDUNSTR specified for a structured file

ERROR No primary key for key-sequenced file

FATAL ERROR No records in object build list for
referenced def
Data Definition Language (DDL) Reference Manual—529431-003
A-45

DDL Messages
Cause. You attempted to specify an EXTERNAL clause and one or more line items in
the definition or record have a REDEFINES clause.

Effect. The DDL compiler rejects the record.

Recovery. Remove the EXTERNAL clause or the REDEFINES clause and recompile.

Cause. You attempted to specify an EXTERNAL clause and one or more line items in
the definition or record have a VALUE clause.

Effect. The DDL compiler rejects the record.

Recovery. Remove the EXTERNAL clause or the VALUE clause and recompile.

Cause. You specified a numeric field as a key field when COBOL output is requested;
COBOL does not allow numeric keys.

Effect. The DDL compiler suppresses COBOL output.

Recovery. Redefine the key field as alphanumeric, or specify a different alphanumeric
field as the key, and recompile.

Cause. The source file in the SOURCE command is not found in the mentioned
subvolume.

Effect. The DDL compiler cannot start reading in the file.

Recovery. Add the file to the correct location and recompile the command.

Cause. A NOSAVE command is issued when a Pathmaker dictionary is open.
NOSAVE cannot be used for a Pathmaker dictionary.

Effect. The DDL compiler ignores the NOSAVE command.

ERROR No REDERINES clause allowed within an object with
EXTERNAL

ERROR No VALUE clause allowed within an object with
EXTERNAL

ERROR Nonalphanumeric key element- element-name

ERROR Nonexistent record (File error)

WARNING NOSAVE is not allowed on a PATHMAKER dictionary
Data Definition Language (DDL) Reference Manual—529431-003
A-46

DDL Messages
Recovery. If you want to run a test compilation using NOSAVE, you can create a test
dictionary on a subvolume unconnected with the Pathmaker project.

Cause. A NOVALUE clause describes a field that has a PICTURE or TYPE data-
type clause; NOVALUE can be used only in definitions that refer to previous
definitions with TYPE * or TYPE name clauses.

Effect. The DDL compiler rejects the object.

Recovery. Remove the NOVALUE clause and recompile.

Cause. A NULL clause describes a field that is defined by reference to an existing
definition, and the referenced definition already has a NULL clause with the same null
value.

Effect. The DDL compiler issues a warning message, and the null value of the
referenced definition is inherited by the referring definition. The DDL compiler does not
produce output for inherited attributes.

Recovery. Remove the NULL clause from the DDL schema, or change the null value
so that it differs from the referenced definition, and recompile.

Cause. A NULL clause character string is longer than 1 byte, or a NULL clause
number is greater than 255 or less than 0.

Effect. The DDL compiler rejects the object.

Recovery. Shorten the character string or correct the number and recompile.

Cause. A numeric picture size is greater than 18 digits when COBOL output is
requested.

Effect. The DDL compiler does not write the object definition to the COBOL source
file.

Recovery. Reduce the numeric picture size and recompile; rebuild the dictionary if the
object in error is referenced by another object.

ERROR NOVALUE cannot be specified unless referencing a
DEF name

WARNING NULL on referencing item ignored, NULL
inherited field-name

ERROR NULL value cannot fit in one byte

ERROR Number exceeds COBOL max of 18 digits-
element-name
Data Definition Language (DDL) Reference Manual—529431-003
A-47

DDL Messages
Cause. A dictionary was updated incorrectly.

Effect. The DDL compiler rejects the object.

Recovery. Rebuild the dictionary.

Cause. An object you attempted to create or delete is referenced by another object.

Effect. The DDL compiler does not create or delete the object.

Recovery. Delete the referring object before creating or deleting the specified object.
You can use the SHOW USE OF statement to determine which objects use the
specified object and the OUTPUT UPDATE statement to perform the deletion.

Cause. The object you attempted to create has the same name as an object that is
already in the open dictionary.

Effect. The DDL compiler rejects the object.

Recovery. Give the object a different name and recompile.

Cause. An object specified in a statement or command or referenced by another
object is not in the open dictionary.

Effect. The DDL compiler does not execute the statement or command, or the DDL
compiler rejects the referring object.

Recovery. Define the missing object and reissue the command or statement, or
recompile the referring object.

ERROR Object element invalid- Dictionary is corrupt

ERROR Object is used by some other object(s)-
object-name

ERROR Object name already exists in dictionary

ERROR Object not in dictionary- object-name
Data Definition Language (DDL) Reference Manual—529431-003
A-48

DDL Messages
Cause. The next-obj number in DICTDDF exceeds the unsigned 32-bit range. The
dictionary is full and no more objects can be added.

Effect. The DDL compiler closes the dictionary and source code files and stops
processing.

Recovery. Delete some objects from the dictionary and recompile.

Cause. An OUTPUT UPDATE or SHOW USE OF statement does not include a
keyword to specify an object type; the DDL compiler assumes the object is a definition.

Effect. The DDL compiler attempts to execute the statement for a definition.

Recovery. If the object is not a definition, specify the object type and resubmit the
statement.

Cause. You requested FORTRAN output for a constant, token code, token map, or
token type.

Effect. The DDL compiler does not generate FORTRAN code for the object.

Recovery. You can generate source code for these objects in C, COBOL, Pascal,
TACL, or TAL.

Cause. The field you specified in the DEPENDING ON phrase of an OCCURS clause
is not defined.

Effect. The DDL compiler rejects the object.

Recovery. Define the field referenced in the DEPENDING ON phrase and recompile.

Cause. The field specified in the DEPENDING ON phrase of an OCCURS clause is
not a numeric data type.

Effect. The DDL compiler rejects the object.

FATAL ERROR Object number exceeded maximum value in DDF

WARNING Object type not specified- DEF assumed

WARNING Object type not supported in FORTRAN-
object-name

ERROR OCCURS DEPENDING element not found

ERROR OCCURS DEPENDING element not integer numeric
Data Definition Language (DDL) Reference Manual—529431-003
A-49

DDL Messages
Recovery. Correct the error and recompile.

Cause. An OCCURS DEPENDING ON clause is nested within an OCCURS clause or
another OCCURS DEPENDING ON clause.

Effect. The DDL compiler rejects the object.

Recovery. Correct the error and recompile.

Cause. A definition that contains a REDEFINES clause also contains an OCCURS
DEPENDING ON clause when COBOL output is requested.

Effect. The DDL compiler suppresses COBOL output.

Recovery. Remove the REDEFINES or OCCURS DEPENDING ON clause and
recompile.

Cause. A field or group follows a field or group described with OCCURS DEPENDING
ON.

Effect. The DDL compiler rejects the object.

Recovery. Reorder the definition so that the field or group described with OCCURS
DEPENDING ON is the last field or group in the data structure.

Cause. An OCCURS clause is at the definition or record level; OCCURS can be
specified only at level number 02 or greater.

Effect. The DDL compiler rejects the object.

Recovery. Correct the error and recompile.

Cause. There is an octal number in the value clause of a data item that is defined with
BINARY 64 UNSIGNED data type. DDL does not allow octal values to be specified in
the value clause of a data item defined with BINARY 64 UNSIGNED data item.

ERROR OCCURS DEPENDING ON cannot be within an OCCURS

ERROR OCCURS DEPENDING ON found with or within
REDEFINES- name

ERROR OCCURS DEPENDING ON is not last element or group

ERROR OCCURS on first element

ERROR Octal numbers cannot be used with BINARY 64
UNSIGNED data type
Data Definition Language (DDL) Reference Manual—529431-003
A-50

DDL Messages
Effect. The DDL compiler rejects the object.

Recovery. Correct the number and recompile.

Cause. A number in octal format contains a decimal point; for example, %6.5 is not a
valid octal number.

Effect. The DDL compiler rejects the object.

Recovery. Correct the number and recompile.

Cause. The security of some dictionary files prevented the DDL compiler from deleting
the files from the dictionary.

Effect. The dictionary is not purged.

Recovery. Change the file security and manually purge the remaining dictionary files.

Cause. A field definition or description has more than one PICTURE or TYPE clause.

Effect. The DDL compiler rejects the object.

Recovery. Remove all but one PICTURE or TYPE clause and recompile.

Cause. The DDL compiler was asked to generate output for a source language other
than COBOL and the DDL item contains a PACKED-DECIMAL field.

Effect. The DDL compiler issues error messages and does not generate output for the
language identified as language_name. For example:

!?tal
! SCHEMA PRODUCED DATE - TIME : 8/01/2000 - 15:05:22
 Output source for TAL is opened on $ZTN1.#PTPJHYV
!def emp pic 9999 PACKED-DECIMAL.
 Definition EMP size is 3 bytes.
 Definition EMP added to dictionary.
 *** WARNING *** TAL OUTPUT DIAGNOSTICS:
 *** ERROR *** Element contains PACKED-DECIMAL data type - EMP
 *** ERROR *** PACKED-DECIMAL data type is not supported in TAL
 *** ERROR *** Errors detected - no output produced for EMP

ERROR Octal numbers can’t contain decimal points

ERROR Old dictionary is only partially purged in
subvol- subvolume-name

ERROR Only one TYPE clause per element allowed

ERROR PACKED-DECIMAL data type is not supported in
language_name
Data Definition Language (DDL) Reference Manual—529431-003
A-51

DDL Messages
Effect. Recovery is not possible. Remove the COMP-3, COMPUTATIONAL-3, or
PACKED-DECIMAL data item from the definition or record. Such data items are not
supported in C, FORTRAN, pTAL, PASCAL, TAL, or TACL.

Effect. The name of a definition or record exceeds the Pascal limit of 31 ASCII
characters for these names.

Effect. The DDL compiler does not write the definition or record to the Pascal source
file.

Recovery. Shorten the name and recompile the definition or record.

Cause. You requested Pascal output, but the object does not conform to Pascal
syntax rules.

Effect. A message follows describing the Pascal error. The DDL compiler does not
write the object to the Pascal source file.

Recovery. Correct the error and recompile if you want Pascal output.

Cause. A file error occurred when the DDL compiler attempted to determine if the
current subvolume is a Pathmaker subvolume.

Effect. The DDL compiler assumes that the current subvolume is a Pathmaker
subvolume.

Recovery. If the problem persists, consult your system manager.

Cause. The picture clause of the PACKED-DECIMAL data item identified by
element_name contains more than the maximum of 18 nines.

Effect. The DDL compiler rejects the object. For example:

!def emp.
!02 fld1 pic 9(19) comp-3.
 ^
*** ERROR *** PICTURE clause contains more than 18 nines - FLD1

ERROR Pascal DEF or RECORD or variant record name too
long- object-name

WARNING PASCAL OUTPUT DIAGNOSTICS:

WARNING PATHMAKER subvol check failed, assuming
PATHMAKER subvol- subvolume-name

ERROR PICTURE clause contains more than 18 nines -
element_name
Data Definition Language (DDL) Reference Manual—529431-003
A-52

DDL Messages
Recovery. Correct the error and recompile.

Cause. A PICTURE string exceeds 30 ASCII characters when COBOL output is
requested.

Effect. The DDL compiler does not write the object to the COBOL source file.

Recovery. Shorten the PICTURE string and recompile; rebuild the dictionary if the
object in error is referenced by another object.

Cause. A primary-key field is defined with DUPLICATES ALLOWED; primary keys
must be unique.

Effect. The DDL compiler rejects the object.

Recovery. Remove DUPLICATES ALLOWED and recompile.

Cause. A primary key is declared in a KEYTAG or KEY IS clause, but the FILE IS
clause declares the file as other than key-sequenced.

Effect. The DDL compiler rejects the object.

Recovery. Remove the primary key specification, or specify a different file type, and
recompile.

Cause. A level 66 item is referenced, but a qualified name was expected (for example,
the reference was made from another level 66 RENAMES clause or from an OCCURS
DEPENDING ON clause).

Effect. The DDL compiler rejects the object.

Recovery. Correct the error and recompile.

ERROR PICTURE string exceeds COBOL max of 30
characters- object-name

ERROR Primary key must be unique

ERROR Primary key specified but file is not key-
sequenced- file-name

ERROR qualified-name cannot be a Level 66 item
Data Definition Language (DDL) Reference Manual—529431-003
A-53

DDL Messages
Cause. The record entered is too large for the block size; at least one record and a
header must fit in a block.

Effect. The DDL compiler rejects the object.

Recovery. Change block size or record sizes and recompile.

Cause. The DDL compiler tried to access a dictionary object when the object was
locked. An object is locked when another user is updating the object.

Effect. The DDL compiler does not process the object.

Recovery. Wait a few minutes and try again.

Cause. A definition or record is larger than 32767 bytes.

Effect. The DDL compiler rejects the object.

Recovery. Correct the error and recompile.

Cause. The total length of a record is greater than the maximum size allowed for the
special file type:

For Format 1 files:

ERROR RECORD is too big for BLOCK

ERROR Record locked- Please try again later

ERROR Record or definition too large

ERROR Record size too big for file type

File Type Maximum Length

Unstructured 4,096 bytes

Entry-Sequenced 4,072 bytes

Relative 4,072 bytes

Key-Sequenced 4,062 bytes
Data Definition Language (DDL) Reference Manual—529431-003
A-54

DDL Messages
For Format 2 files:

Effect. The DDL compiler rejects the record.

Recovery. Correct the error and recompile.

Cause. A field or group that has an OCCURS clause is redefined by another field
when COBOL output is requested.

Effect. The DDL compiler suppresses COBOL output.

Recovery. Correct the error and recompile; rebuild the dictionary if necessary.

Cause. A redefined field or group does not immediately precede the redefining field or
group.

Effect. The DDL compiler rejects the object.

Recovery. Move the redefining field or group to follow the field or group it redefines,
then recompile.

Cause. A REDEFINES clause follows the description of a bit field or is with a bit field.

Effect. The DDL compiler rejects the object.

Recovery. Remove the REDEFINES clause or the bit field and recompile the object.

Cause. A field or group is larger than the field or group it redefines.

Effect. The DDL compiler rejects the object.

File Type Maximum Length

Unstructured 4,096 bytes

Entry-sequenced 4,048 bytes

Relative 4,048 bytes

Key-sequenced 4,040 bytes

ERROR Redefined element has OCCURS clause- element-name

ERROR Redefined element not immediately preceding

ERROR REDEFINES not allowed on or with bit fields-
element-name

ERROR REDEFINES too large
Data Definition Language (DDL) Reference Manual—529431-003
A-55

DDL Messages
Recovery. Reorder and change the descriptions so that the smaller field or group
redefines the larger one and recompile.

Cause. A field or group is smaller than the field or group it redefines. The DDL
compiler tries to pad it with filler, but is unable to pad as the filler that is required by the
OCCURS count does not produce an integral result. COBOL output is then requested.

Effect. The DDL compiler suppresses COBOL output.

Recovery. Make the redefining field or group the same size as the field or group it
redefines and recompile; rebuild the dictionary if necessary.

Cause. A reference is made to a record or definition, and the dictionary is not open.

Effect. The DDL compiler does not generate output.

Recovery. Open the dictionary and recompile.

Cause. A locale name is defined by a reference to a previously defined constant. The
referenced constant has locale information associated with it.

Effect. The DDL compiler rejects the text item.

Recovery. Only define a locale by a literal or by a previously defined constant
assigned a value without an associated locale.

Cause. An attempt was made to compile a record or definition with matched2
alignment, that referenced a definition previously compiled without matched2
alignment.

Effect. The DDL compiler does not add the new record or definition to the dictionary.

Recovery. Recompile the referenced definition with matched2 alignment or recompile
the referenced definition without matched2 alignment. Matched2 alignment is specified
with the CFIELDALIGN_MATCHED2 command.

ERROR REDEFINES too small, unable to pad with FILLER -
element-name

ERROR Reference invalid- dictionary is not open

ERROR Referenced constant may not be internationalized

ERROR Referenced Def has incompatible alignment
Data Definition Language (DDL) Reference Manual—529431-003
A-56

DDL Messages
Cause. A qualified name in this statement is not declared within the record that
qualifies it.

Effect. The DDL compiler rejects the object.

Recovery. Declare the referenced element earlier and recompile.

Cause. The ENUM clause in the type specification for a bit field refers to a definition
that is not of type ENUM.

Effect. The DDL compiler rejects the bit field definition or the group containing the bit
field description.

Recovery. Change the ENUM clause to refer to a definition of type ENUM, or omit the
ENUM clause, and recompile the object.

Cause. A renamed field is not at the outermost level, and pTAL or TAL output is
requested.

Effect. The DDL compiler does not produce pTAL or TAL output.

Recovery. Rebuild the object and recompile.

Cause. The starting or ending element of the renamed element is embedded in an
OCCURS clause.

Effect. The DDL compiler rejects the object.

Recovery. Correct the error and recompile.

Cause. In a phrase such as “A RENAMES B THRU C,” either field C starts before field
B, or field B ends after field C.

Effect. The DDL compiler rejects the object.

Recovery. Correct the error and recompile.

ERROR Referenced element is not defined

ERROR Referenced object is not type ENUM- object-type

ERROR Renamed element nested too deeply for TAL

ERROR RENAMES element has OCCURS or is within OCCURS

ERROR RENAMES elements overlap improperly
Data Definition Language (DDL) Reference Manual—529431-003
A-57

DDL Messages
Cause. The specified element name is a reserved word in C, COBOL, pTAL, Pascal,
or TAL; and C, COBOL, Pascal, or TAL output is requested.

Effect. The DDL compiler suppresses C, COBOL, pTAL, Pascal, or TAL output for the
object.

Recovery. Change the name and recompile; rebuild the dictionary if necessary.

Cause. The indicated constant name is a DDL reserved word.

Effect. The DDL compiler rejects the constant.

Recovery. Change the constant name to a name that is not a DDL reserved word and
recompile. For a list of DDL reserved words, see Keywords on page 2-6.

Cause. The specified number of decimal places exceeds the precision of the specified
data type.

Effect. The DDL compiler rejects the object.

Recovery. Correct the error and recompile.

Cause. A SOURCE command specifies a section name in a source file, but the
section name is not in the source file.

Effect. The DDL compiler takes no action.

Recovery. Correct the error and recompile.

Cause. You entered a SETCOBOL74 or SETCOBOL85 command when a COBOL
source code file is open.

Effect. The DDL compiler takes no action.

Recovery. Close the open COBOL source code file and reenter the command.

ERROR Reserved word- reserved-word

ERROR Reserved word for CONSTANT name- constant-name

ERROR Scale factor too large for data type

ERROR Section name not found in source file-
section-name

ERROR SETCOBOL cannot be specified when COBOL output
file is open
Data Definition Language (DDL) Reference Manual—529431-003
A-58

DDL Messages
Cause. A redefining field or group is shorter than the field or group it redefines, and
COBOL output is requested.

Effect. The DDL compiler generates filler to make the redefining field or group the
same size as the redefined field or group.

Recovery. No recovery is necessary.

Cause. A SPACING command specifies a value other than 0, 1, 2, or 3.

Effect. The value of SPACING is unchanged.

Recovery. This error affects only the report listing. No recovery is necessary unless
you want a report with a different spacing. Use the OUTPUT statement with a correct
SPACING command to produce the report you want.

Cause. An SPI-NULL clause is associated with a field in a group, but the group has an
SPI-NULL clause. Fields within a group inherit the group’s SPI-NULL clause.

Effect. The DDL compiler rejects the definition containing the SPI-NULL clause.

Recovery. Either remove the SPI-NULL clause from the field within the group, or
remove the SPI-NULL clause from the group definition or description and specify an
SPI-NULL clause for the field.

Cause. An SPI-NULL clause specifies a value that cannot fit in 1 byte; that is, the
number is not within the range 0 through 255.

Effect. The DDL compiler rejects the object.

Recovery. Specify an SPI null value from 0 through 255 and recompile.

WARNING Short REDEFINES encountered: FILLER emitted,
results in incompatible source structure - item-name

WARNING Spacing must be 0,1,2, or 3- value not changed

ERROR SPI-NULL conflict in group- group-name

ERROR SPI-NULL value cannot fit in one byte
Data Definition Language (DDL) Reference Manual—529431-003
A-59

DDL Messages
Cause. The value is not 255 in the SPI-NULL clause of the type specification for a bit
field.

Effect. The DDL compiler rejects the bit field definition or the group definition
containing the bit field description.

Recovery. Change the value in the SPI-NULL clause to 255, or omit the SPI-NULL
clause, and recompile the object.

Cause. A DDL definition cannot be translated to C because word alignment is not
maintained. A group data item that does not begin with a word-aligned object follows
an item that ends on an odd-byte boundary, or a group data item ends on an odd-byte
boundary and is not followed by a word-aligned object. This condition can occur only if
the C_MATCH_HISTORIC_TAL command is not in effect and the definition was
compiled without matched2 alignment.

Effect. The DDL compiler does not write the definition to the C source file.

Recovery. Change the DDL definition so that all character or FILLER items contain an
even number of characters, use the C_MATCH_HISTORIC_TAL command, or
recompile the definition with the CFIELDALIGN_MATCHED2 command set.

Cause. A DDL definition cannot be translated to Pascal because word alignment is not
maintained. A named group data item that does not begin with a word-aligned object
follows an item that ends on an odd-byte boundary, or a named group data item ends
on an odd-byte boundary and is not followed by a word-aligned object.

Effect. The DDL compiler does not write the definition to the Pascal source file.

Recovery. Change the DDL definition so that all character or FILLER items contain an
even number of characters. Recompile the definition.

ERROR SPI-NULL value on a bit field must be 255-
field-name

ERROR Structure alignment in C is incompatible with
DDL- element-name

ERROR Structure alignment in Pascal is incompatible
with DDL- element-name
Data Definition Language (DDL) Reference Manual—529431-003
A-60

DDL Messages
Cause. An odd-length string definition contains an OCCURS clause that cannot be
translated to pTAL or TAL. When generating pTAL or TAL source for a string, the DDL
compiler usually emits a struct for the string field. Because this particular string is an
odd length, the DDL compiler would have to add a filler to word-align the struct.

Effect. The DDL compiler does not write the definition to the pTAL or TAL source file.

Recovery. Change the DDL definition so make the definition even length. Recompile
the definition.

Cause. A record or definition is too large to fit in the symbol table.

Effect. The DDL compiler closes the dictionary and source code files and stops
processing.

Recovery. Reduce the complexity of the data structure by defining the object in
multiple DEFINITION or RECORD statements, and recompile the object.

Cause. You requested TACL output for an object, but the object does not conform to
TACL rules.

Effect. A message follows describing the TACL error. The DDL compiler does not
write the object to the TACL source file.

Recovery. Correct the error and recompile.

Cause. The name of a definition or token map exceeds the limit of 31 ASCII
characters pTAL or TAL allows for these names.

Effect. The DDL compiler does not write the definition or token map to the pTAL or
TAL source file.

Recovery. Shorten the name, recompile the definition or token map, and request
output to the pTAL or TAL source file.

ERROR Structure alignment in TAL is incompatible with
DDL- element-name

FATAL ERROR Symbol table is full

WARNING TACL OUTPUT DIAGNOSTICS:

ERROR TAL DEF or TOKEN MAP name too long
Data Definition Language (DDL) Reference Manual—529431-003
A-61

DDL Messages
Cause. The key name constructed by the DDL compiler exceeds the maximum
allowed length of a pTAL or TAL name. The DDL compiler constructs the name from
the names of each element in the name hierarchy and adds ^KEY to the end.

Effect. The DDL compiler changes the keytag literal to a pTAL or TAL comment.

Recovery. Change the names of elements in the record or reduce the number of
levels that make up this key.

Cause. You requested pTAL or TAL output for an object, but the object does not
conform to pTAL or TAL rules.

Effect. A message follows describing the pTAL or TAL error. The DDL compiler does
not write the object to the pTAL or TAL source file.

Recovery. Correct the error and recompile.

Cause. A TALBOUND or PASCALBOUND command has a value other than 0 or 1.

Effect. The TALBOUND or PASCALBOUND value does not change.

Recovery. Correct the error and recompile if necessary. TALBOUND or
PASCALBOUND affects only pTAL or TAL source output.

Cause. The next-text-id number in DICTDDF exceeded the unsigned 32-bit
range. The object text file in the dictionary is full and no more objects can be added.

Effect. The DDL compiler closes the dictionary and source code files and stops
processing.

Recovery. Delete objects from the dictionary and recompile.

Cause. You do not have write access to the dictionary.

Effect. The DDL compiler restricts dictionary access to read-only operations.

ERROR TAL name literal too long- commenting out

WARNING TAL OUTPUT DIAGNOSTICS:

WARNING TALBOUND ot PASCALBOUND must be 0 or 1- value
not changed

FATAL ERROR Text ID number exceeded maximum value in
DDF

ERROR THIS DICTIONARY CANNOT BE UPDATED
Data Definition Language (DDL) Reference Manual—529431-003
A-62

DDL Messages
Recovery. Consult your system manager to obtain write access to the dictionary.

Cause. You used a DICTN command to open an audited dictionary.

Effect. The DDL compiler opens the specified dictionary anyway.

Recovery. No recovery is necessary.

Cause. You used a DICT or DICTR command to open a nonaudited dictionary.

Effect. The DDL compiler opens the specified dictionary anyway.

Recovery. No recovery is necessary.

Cause. The VALUE IS clause in a TOKEN-CODE statement is already specified.

Effect. The DDL compiler rejects the token code.

Recovery. Remove one of the VALUE IS clauses and recompile.

Cause. No VALUE clause is specified in a TOKEN-CODE statement.

Effect. The DDL compiler rejects the token code.

Recovery. Specify a VALUE clause.

Cause. No TOKEN-TYPE clause is specified in a TOKEN-CODE statement.

Effect. The DDL compiler rejects the token code.

Recovery. Specify a TOKEN-TYPE clause.

Cause. The DEF IS clause in a TOKEN-MAP statement is already specified.

Effect. The DDL compiler rejects the token map.

WARNING This dictionary IS audited

WARNING This dictionary is NOT audited

ERROR TOKEN-CODE VALUE multiply defined

ERROR TOKEN-CODE VALUE not defined

ERROR TOKEN-CODE TOKEN-TYPE not specified

ERROR TOKEN-MAP DEFINITION multiply defined
Data Definition Language (DDL) Reference Manual—529431-003
A-63

DDL Messages
Recovery. Remove one of the DEF IS clauses and recompile.

Cause. No DEF clause is specified in a TOKEN-MAP statement.

Effect. The DDL compiler rejects the token map.

Recovery. Specify a DEFINITION in the open dictionary with a DEF clause.

Cause. A TOKEN-MAP statement generates a C structure that is greater than 32,767
bytes. The entire C structure, not just individual fields, must be less than or equal to
32,767 bytes.

Effect. The DDL compiler does not generate C output for the specified token map.

Recovery. Shorten the definition referenced in the TOKEN-MAP statement and
regenerate the C source code.

Cause. A TOKEN-MAP statement generates a Pascal structure that is greater than
32,766 bytes. The entire Pascal structure, not just individual fields, must be less than
or equal to 32,766 bytes.

Effect. The DDL compiler does not generate Pascal output for the specified token
map.

Recovery. Shorten the definition referenced in the TOKEN-MAP statement and
regenerate the Pascal source code.

Cause. A TOKEN-MAP statement generates a TACL structure that is greater than
5,000 bytes. The entire TACL structure, not just individual fields, must be less than or
equal to 5,000 bytes.

Effect. The DDL compiler does not generate TACL output for the specified token map.

Recovery. Shorten the definition referenced in the TOKEN-MAP statement and
regenerate the TACL source code.

ERROR TOKEN-MAP DEFINITION not specified

ERROR TOKEN-MAP exceeds C 32767-byte limit-
token-map-name

ERROR TOKEN-MAP exceeds Pascal 32766-byte limit-
token-map-name

ERROR TOKEN-MAP exceeds TACL 5000-byte limit-
token-map-name
Data Definition Language (DDL) Reference Manual—529431-003
A-64

DDL Messages
Cause. The VALUE clause in a TOKEN-MAP statement is already specified.

Effect. The DDL compiler rejects the token map.

Recovery. Remove one of the VALUE IS clauses and recompile.

Cause. No VALUE clause is specified in a TOKEN-MAP statement.

Effect. The DDL compiler rejects the token map.

Recovery. Specify a VALUE clause.

Cause. VERSION is not specified for the field inside the DEFINITION used in the
TOKEN-MAP statement.

Effect. The DDL compiler rejects the token map.

Recovery. Specify a VERSION for the field.

Cause. The OCCURS specification inside the DEF clause in a TOKEN-TYPE
statement contains a number outside the acceptable range.

Effect. The DDL compiler rejects the token type.

Recovery. Specify a correct number of occurrences.

Cause. The definition referenced in a TOKEN-TYPE statement is longer than 254
bytes. The total length of the definition is derived from the sum of the length of
individual fields in the definition, optionally repeated by an OCCURS n TIMES clause.

Effect. The DDL compiler rejects the token type.

Recovery. Shorten the referenced definition, make it a variable-length type, or use the
TOKEN-MAP statement instead; then recompile.

ERROR TOKEN-MAP VALUE multiply defined

ERROR TOKEN-MAP VALUE not defined

ERROR TOKEN-MAP VERSION not specified for
Line.LineItem.LocalName

ERROR TOKEN-TYPE can occur 1 to 254 times

ERROR TOKEN-TYPE DEFINITION exceeds 254 bytes
Data Definition Language (DDL) Reference Manual—529431-003
A-65

DDL Messages
Cause. The length of the definition referenced in a TOKEN-TYPE statement multiplied
by the OCCURS value in the statement is longer than 254 bytes.

Effect. The DDL compiler rejects the token type.

Recovery. Shorten the referenced definition, make it a variable-length type, make the
OCCURS value smaller, or use the TOKEN-MAP statement instead; then recompile.

Cause. The DEF IS clause in a TOKEN-TYPE statement is already specified.

Effect. The DDL compiler rejects the token type.

Recovery. Remove one of the DEF IS clauses and recompile.

Cause. A token type is already specified in the TOKEN-CODE statement.

Effect. The DDL compiler rejects the token code.

Recovery. Delete one of the token type specifications and recompile.

Cause. The token type specified in the TOKEN-CODE statement is not in the open
dictionary.

Effect. The DDL compiler rejects the token code.

Recovery. Use the name of an existing token type and recompile.

Cause. An OCCURS clause is already specified in the TOKEN-TYPE statement.

Effect. The DDL compiler rejects the token type.

Recovery. Delete one of the OCCURS clauses and recompile.

ERROR TOKEN-TYPE DEFINITION Length * OCCURS exceeds 254
bytes

ERROR TOKEN-TYPE DEFINITION multiply defined

ERROR TOKEN-TYPE multiply defined

ERROR TOKEN-TYPE not found

ERROR TOKEN-TYPE OCCURS multiply defined
Data Definition Language (DDL) Reference Manual—529431-003
A-66

DDL Messages
Cause. A VALUE clause is already specified in the TOKEN-TYPE statement.

Effect. The DDL compiler rejects the token type.

Recovery. Delete one of the VALUE clauses and recompile.

Cause. No VALUE clause is specified in the TOKEN-TYPE statement

Effect. The DDL compiler rejects the token type.

Recovery. Specify a VALUE clause.

Cause. The VALUE clause in a TOKEN-TYPE statement contains or represents a
token data type number that is outside the acceptable range.

Effect. The DDL compiler rejects the token type.

Recovery. Specify a correct number in the VALUE clause.

Cause. A definition or record contains more than 2,000 elements, the symbol table
maximum limit.

Effect. The DDL compiler rejects the object, closes the dictionary, and stops
processing.

Recovery. Shorten the definition or record and recompile.

Cause. The number of errors specified in the ERRORS command has been reached.

Effect. The DDL compiler closes the dictionary and source code files and stops
processing.

Recovery. Correct the errors and recompile.

ERROR TOKEN-TYPE VALUE multiply defined

ERROR TOKEN-TYPE VALUE not defined

ERROR TOKEN-TYPE VALUE must be between 0 and 255

FATAL ERROR Too many elements for symbol table

FATAL ERROR Too many errors- complilation terminating
Data Definition Language (DDL) Reference Manual—529431-003
A-67

DDL Messages
Cause. An OUTPUT, OUTPUT UPDATE, DELETE, or SHOW USE OF statement has
too many definitions or records.

Effect. The DDL compiler ignores the statement.

Recovery. Break the list of definitions or records into two or more statements.

Cause. There are more than 65,777 lines of comment text in a single record or
definition or in an element of a record or definition.

Effect. The DDL compiler enters no more comment lines in the dictionary.

Recovery. Reduce the number of comment lines to 65,777 or fewer.

Cause. A MUST BE or level 88 clause has too many values.

Effect. The DDL compiler rejects the object.

Recovery. Split the level 88 clause into two level 88 clauses with shorter values lists. If
possible, use ranges instead of listing values; for example, replace “1,2,3,4,5” with “1
through 5.”

Cause. The number of warnings specified in the WARNINGS command has been
reached.

Effect. The DDL compiler closes the dictionary and source code files and stops
processing.

Recovery. Correct the errors and recompile.

Cause. Most likely, there is a security violation on the dictionary files that you are
trying to delete.

Effect. The dictionary you were trying to delete still exists.

Recovery. Determine the status of the files and proceed accordingly.

ERROR Too many names- statement has been ignored

ERROR Too many text (common) lines

ERROR Too many values in MUST BE or VALUES clause

ERROR Too many warnings- compilation terminating

ERROR Unable to delete dictionary in subvol-
subvolume-name
Data Definition Language (DDL) Reference Manual—529431-003
A-68

DDL Messages
Cause. A text item did not have a literal with a locale name the same as specified
either with the SETLOCALENAME command, if set, or with the system default locale, if
the SETLOCALENAME was not set.

Effect. The programming source language statement will not be emitted.

Recovery. Either use SETLOCALENAME to set locale or change a locale name
associated with the text item so there is a match between the locale and a locale
name.

Cause. The DDL compiler encountered an error while trying to unlock a locked record
or file.

Effect. The DDL compiler closes the dictionary and source code files and stops
processing.

Recovery. Retry operation; if problem persists, consult your system manager.

Cause. COBOL, FORTRAN, Pascal, FUP or NCL output requested a definition,
record, constant or token statement which contains an underscore as a part of its
identifier.

Effect. The DDL compiler issues this message and does not generate output. For
example:

!?DICT
 Dictionary opened on subvol $ADE101.ALPHA for update access.
!?COBOL
*SCHEMA PRODUCED DATE - TIME : 7/21/2000 - 19:42:49
Output source for COBOL is opened on $ZTN1.#PTPJHU8
!DEF EMPLOYEE
!02 EMP_NAME PIC X(20).
!END
 Definition EMPLOYEE size is 20 bytes.
 Definition EMPLOYEE added to dictionary.
WARNING COBOL 85 OUTPUT DIAGNOSTICS:
ERROR Underscore not valid in Identifier - EMP_NAME
WARNING Errors detected - no output produced for EMPLOYEE.

Recovery. Replace underscore with a valid character.

ERROR Unable to match locale- locale-name

FATAL ERROR Unable to relinquish lock

ERROR Underscore not valid in Identifier - <identifier
name>
Data Definition Language (DDL) Reference Manual—529431-003
A-69

DDL Messages
Cause. The DDL compiler encountered an unexpected error.

Effect. The DDL compiler issues this message followed by a fatal error message.

Recovery. If the problem persists, consult your system manager.

Cause. The size of the union field is not a multiple of the alignment of the widest field
in the union. This occurs if the redefines variable in the DDL definition is an elementary
item and the size of the variable is not a multiple of the alignment of the redefining
variables

Effect. The DDL compiler does not write the definition to the C source file.

Recovery. Change the size of the redefines variable so that it is a multiple of the
alignment of the redefining variables, or add on level of indirection in the definition and
make the variable a group item.

Cause. The DDL compiler has attempted to access the indicated definition in an
existing dictionary, but does not recognize the type associated with that definition. The
most likely cause is that the product version of the DDL compiler is older than that of
the dictionary, which contains a data type not supported by the older DDL compiler.

Effect. The DDL compiler rejects the definition.

Recovery. Use a product version of the DDL compiler that is recent enough to
recognize all data types in the dictionary.

Cause. The DDL compiler has attempted to access the indicated definition in an
existing dictionary, while trying to output C or Pascal code for a definition that
references the indicated definition, but does not recognize the type associated with the
dictionary definition. The most likely cause is that the product version of the DDL
compiler is older than that of the dictionary, which contains a data type not supported
by the older DDL compiler.

Effect. The DDL compiler rejects the definition.

Recovery. Use a product version of the DDL compiler that is recent enough to
recognize all data types in the dictionary.

ERROR Unexpected DDL exception

ERROR Union Alignment in C is incompatible with DDL-
element

ERROR Unrecognized data type in element- definition

ERROR Unrecognized data type in structure- definition
Data Definition Language (DDL) Reference Manual—529431-003
A-70

DDL Messages
Cause. The value of an unsigned integer has an invalid form: either a negative
number or a decimal or octal value.

Effect. The DDL compiler rejects the object.

Recovery. Correct the error and recompile.

Cause. You specified a VALUE clause that does not contain a value.

Effect. The DDL compiler rejects the object.

Recovery. Correct the VALUE clause and recompile the object.

Cause. The data type of the element is not supported in the requested source
language. For valid data types in the requested source language, see Appendix C,
DDL Data Translation.

Effect. The DDL compiler still generates output for the requested source language to
a data type with the same size.

Recovery. Change the data type of the element and recompile.

Cause. The data type of an element in the referenced group definition is not supported
in the requested source language. For valid data types in the requested source
language, see Appendix C, DDL Data Translation.

Effect. The DDL compiler still generates output for the requested source language to
a data type with the same size.

Recovery. Change the data type of the element in the referenced group definition and
recompile.

Cause. The BIT data type is not supported in the requested source language. Only C,
pTAL, TAL, and Pascal support the BIT data type.

ERROR Unsigned integer conversion eror- object-name

ERROR Unspecified value

WARNING UNSUPPORTED data type in element

WARNING Unsupported data type in structure

WARNING Unsupported data type in word starting at
element- element-name
Data Definition Language (DDL) Reference Manual—529431-003
A-71

DDL Messages
Effect. The DDL compiler groups the bit fields that reside in the same word and
generates the output to the integer data type.

Recovery. Change the data type and recompile.

Cause. A SOURCE command does not stop with a file name or a closing parenthesis
following a list of section names, or a comma is missing after a section name.

Effect. The DDL compiler ignores the SOURCE command.

Recovery. Correct the error and recompile if necessary.

Cause. A single or double quotation mark does not have a corresponding closing
quotation mark on the same input line.

Effect. The DDL compiler rejects the object; syntax errors can result.

Recovery. Correct the error and recompile.

Cause. You are attempting to update a record that another user is updating.

Effect. The DDL compiler does not complete the update.

Recovery. Retry the operation.

Cause. Both a VALUE and a MUST BE clause describe the same field, but the initial
value is not upshifted or cannot be upshifted.

Effect. The DDL compiler rejects the object.

Recovery. Correct the error and recompile.

Cause. Both an UPSHIFT and a MUST BE clause describe the same field, but the
MUST BE range is not upshifted or cannot be upshifted.

Effect. The DDL compiler rejects the object.

ERROR Unterminated SOURCE command on last line not
processed

ERROR Unterminated string

ERROR Update conflict, retry your operation

ERROR UPSHIFT and initial VALUE conflict- value

ERROR UPSHIFT and MUST BE conflict- value
Data Definition Language (DDL) Reference Manual—529431-003
A-72

DDL Messages
Recovery. Correct the error and recompile.

Cause. An UPSHIFT clause describes a field that is defined by reference to an
existing definition, and the referenced definition already has an UPSHIFT clause.
UPSHIFT cannot be overridden in a referring definition.

Effect. The DDL compiler continues processing.

Recovery. Remove the UPSHIFT clause from the referring definition.

Cause. The FILLER command has a parameter other than 0 or 1.

Effect. The DDL compiler ignores command.

Recovery. Correct the command and reenter it.

Cause. A value other than zero was specified for the TACLGEN command.

Effect. The DDL compiler does not execute the command.

Recovery. Set the value of the TACLGEN parameter to zero.

Cause. A VALUE clause specifies a value that is outside the range of values allowed
for the COBOL data type generated from the data item.

Effect. The DDL compiler does not generate COBOL output for the data item.

Recovery. Correct the value and recompile.

Cause. A binary item has a larger value than the maximum value of the generated
COBOL picture, and COBOL output is requested.

Effect. The DDL compiler rejects the object.

Recovery. Correct the error and recompile.

WARNING UPSHIFT on referencing item ignored, UPSHIFT
inherited field-name

WARNING Valid FILLER parameters are 0 and 1. FILLER
unchanged

ERROR Valid TACLGEN parameter is 0, TACLGEN unchanged

ERROR VALUE conflicts with the COBOL data type for item

ERROR VALUE contains too many digits for PIC data-pic
Data Definition Language (DDL) Reference Manual—529431-003
A-73

DDL Messages
Cause. The value specified in a VALUE clause cannot be mapped to the declared
data type.

Effect. The DDL compiler rejects the object.

Recovery. Correct the error and recompile.

Cause. A field definition or description contains both OCCURS and VALUE clauses. A
field described with an OCCURS clause cannot have an initial value.

Effect. The DDL compiler rejects the object.

Recovery. Correct the error and recompile.

Cause. A field definition or description contains both REDEFINES and VALUE
clauses. A field described with a REDEFINES clause cannot have an initial value.

Effect. The DDL compiler rejects the object.

Recovery. Correct the error and recompile.

Cause. The field or group name following the keyword FOR in a TOKEN-MAP
VERSION clause cannot be found in the referenced definition.

Effect. The DDL compiler rejects the token map.

Recovery. Check the referenced definition. Either correct the name in the VERSION
clause, or correct the field or group name in the referenced definition; then recompile.

Cause. A field or group name in a definition referenced by a TOKEN-MAP VERSION
clause is not unique within the definition.

Effect. The DDL compiler rejects the token map.

Recovery. Check the referenced definition, and qualify the group or field name that
follows FOR in the VERSION clause to make the name unique; then recompile.

ERROR VALUE invalid or inconsistent with data type-
value

ERROR VALUE item found with or within an OCCURS name

ERROR VALUE item found with or within REDEFINES name

ERROR Version FOR name not found

ERROR Version FOR name not unique
Data Definition Language (DDL) Reference Manual—529431-003
A-74

DDL Messages
Cause. The field or group specified after THRU does not follow the field or group
specified after FOR in a TOKEN-MAP VERSION clause.

Effect. The DDL compiler rejects the token map.

Recovery. Check the definition referenced in the TOKEN-MAP statement, and correct
the VERSION clause to specify a THRU element that follows a FOR item in the
referenced definition; then recompile.

Cause. A field or group name following the keyword THRU in a TOKEN-MAP
VERSION clause cannot be found in the referenced definition.

Effect. The DDL compiler rejects the token map.

Recovery. Check the referenced definition, and correct the VERSION clause to
specify a field or group name in the referenced definition; then recompile.

Cause. A field or group name in a definition referenced by a TOKEN-MAP VERSION
clause is not unique within the definition.

Effect. The DDL compiler rejects the token map.

Recovery. Check the referenced definition, and qualify the group or field name that
follows THRU in the VERSION clause to make the name unique; then recompile.

Cause. You specified a value for the WARNINGS command that is not in the range 1
through 32767.

Effect. The DDL compiler ignores the WARNINGS command.

Recovery. Specify a valid value in the WARNINGS command and recompile.

Cause. You attempted to update a dictionary to which you do not have write access.

Effect. The DDL compiler rejects the request.

Recovery. Consult your system manager to obtain write access to the dictionary.

ERROR Version THRU element doesn’t follow FOR element

ERROR Version THRU name not found

ERROR Version THRU name not unique

ERROR WARNINGS parameter is invalid

ERROR You do not have authority to alter the dictionary
Data Definition Language (DDL) Reference Manual—529431-003
A-75

DDL Messages
Data Definition Language (DDL) Reference Manual—529431-003
A-76

B Sample Schemas

• Sample Database Schema on page B-1

• Sample SPI Schema on page B-6

Sample Database Schema
The sample database schema defines a database consisting of nine files. The
database files are defined in RECORD statements that refer to previous DEFINITION
statements for their record structures. Many of the individual and group fields within
each record also refer to previous DEFINITION statements. All DISPLAY and
HEADING values in DEFINITION statements are defined in previous CONSTANT
statements.

When the DDL compiler compiles this schema, the DDL compiler builds a dictionary
and generates two source code files:

Topics:

• Host-Language Source Code on page B-1

• Database Schema Listing on page B-2

Host-Language Source Code
A COBOL program that accesses the database can use the COBOL source code in
COBSRC as its Data division. C, FORTRAN, Pascal (on D-series systems), pTAL,
TACL, and TAL source code can also be generated for this schema. For C and TACL,
the DDL compiler issues warning messages when generating the source code. For C,
two data items (PRICE and PARTCOST) are described with PICTURE clauses that are
not supported by C. For TACL, three data items (INVENTORY, PRICE, and
PARTCOST) are described with unsupported PICTURE clauses. The DDL compiler
generates compatible C and TACL data types for these items.

For Pascal, pTAL, and TAL, there are data items that contain unsupported data types,
but these languages do not issue warning messages. For Pascal, PRICE and
PARTCOST are described with PICTURE clauses that are unsupported. For pTAL or
TAL, INVENTORY, PRICE, and PARTCOST are described with unsupported PICTURE
clauses.

Source Code File Description

FUPSRC A FUP file-creation source file that contains the FUP commands to
create each file described in the schema.

The database is created only when FUP is executed with this file as
input.

COBSRC A COBOL source file that contains COBOL data descriptions for all
the fields, groups, and records in the schema.
Data Definition Language (DDL) Reference Manual—529431-003
B-1

Sample Schemas Database Schema Listing
For FORTRAN, the DDL compiler issues warning messages for all constants;
constants are not supported by FORTRAN. The constants that describe display,
heading, and help values are not used by the source code, so this causes no
problems; the generated source code will execute successfully.

Database Schema Listing

Figure B-1. Database Schema Listing (page 1 of 5)

!***
! COMPILER COMMANDS:
!***

? ERRORS 1

? DICT !
? COMMENTS

? FUP FUPSRC !
? COBOL COBSRC85 !

!***
! CONSTANT DEFINITIONS
!***
CONSTANT custnum-heading VALUE "Customer/Number"LN en_US.ISO8859-1,
 "Cliente/Numero"LN.es_ES.ISO8859-1
 "Client/Numero"LN fr_FR.ISO8859-1.

CONSTANT suppnum-heading VALUE "Supplier/Number"LN en_US.ISO8859-1,
 "Proveedor/Numero",LN.es_ES.ISO8859-1
 "Fournisseur/Numero"LN fr_FR.ISO8859-1.

CONSTANT partnum-heading VALUE "Part/Number"LN en_US.ISO8859-1,
 "Repuesto/Numero"LN.es_ES.ISO8859-1,
 "Piece/Numero"LN fr_FR.ISO8859-1.

CONSTANT ordernum-heading VALUE "Order/Number"LN en_US.ISO8859-1,
 "Orden/Numero",LN.es_ES.ISO8859-1
 "Commande/Numero"LN fr_FR.ISO8859-1.

CONSTANT empnum-heading VALUE "Employee/Number"LN en_US.ISO8859-1
 "Empleado/Numero"LN.es_ES.ISO8859-1,
 "Employe/Numero"LN fr_FR.ISO8859-1.

CONSTANT regnum-heading VALUE "Region/Number"LN en_US.ISO8859-1,
 "Region/Numero"LN.es_ES.ISO8859-1,
 "Region/Numero"LN fr_FR.ISO8859-1.

CONSTANT branchnum-heading VALUE "Branch/Number"LN en_US.ISO8859-1,
 "Sucursal/Numero"LN.es_ES.ISO8859-1,
 "Bureau/Numero"LN fr_FR.ISO8859-1.

CONSTANT manager-heading VALUE "Manager"LN en_US.ISO8859-1,
 "Gerente",LN.es_ES.ISO8859-1
 "Chef De Service"LN fr_FR.ISO8859-1.

CONSTANT salesperson-heading VALUE "Salesperson"LN en_US.ISO8859-1,
 "Vendedor"LN.es_ES.ISO8859-1,
 "Vendeur"LN fr_FR.ISO8859-1.

CONSTANT mdy-date-display VALUE "M<99/99/99>".

CONSTANT part-cost-display VALUE "M<ZZZ,ZZ9,99>".
Data Definition Language (DDL) Reference Manual—529431-003
B-2

Sample Schemas Database Schema Listing
!***
! FIELD DEFINITIONS
!***
DEFINITION custnum PIC 9(4)
 HEADING custnum-heading.

DEFINITION suppnum PIC 9(4)
 HEADING suppnum-heading.

DEFINITION partnum PIC 9(4)
 HEADING partnum-heading.

DEFINITION ordernum PIC 9(4)
 HEADING ordernum-heading.

DEFINITION empnum PIC 9(4)
 HEADING empnum-heading.

DEFINITION regnum PIC 9(2)
 HEADING regnum-heading
 MUST BE 1 THRU 99.

DEFINITION branchnum PIC 9(2)
 HEADING branchnum-heading
 MUST BE 1 THRU 99.

DEFINITION zip-cd PIC 9(5).

!***
! GROUP DEFINITIONS
!***
DEFINITION name.
 02 last-name PIC X(12)
 UPSHIFT.
 02 first-name PIC X(8)
 UPSHIFT.
 02 midinit PIC X(2)
 UPSHIFT.
END

DEFINITION addr.
 02 address PIC X(22).
 02 city PIC X(14).
 02 state PIC X(2)
 HELP "Enter 2-character code".
 02 zip TYPE zip-cd.
END

DEFINITION mdy-date. DISPLAY mdy-date-display
 HELP "Enter date as:"
 "mm/dd/yy".
 02 month PIC 99
 MUST BE 1 THRU 12.
 02 day-of-month PIC 99
 MUST BE 1 THRU 31.
 02 year PIC 99.
END

!***
! RECORD DEFINITIONS
!***
* Definition for CUSTOMER Record
DEFINITION custinfo.
 02 custnum TYPE *.
 02 custname TYPE name.
 02 addr TYPE *.
END

Figure B-1. Database Schema Listing (page 2 of 5)
Data Definition Language (DDL) Reference Manual—529431-003
B-3

Sample Schemas Database Schema Listing
* Definition for ORDERS Record
DEFINITION orderinfo.
 02 ordernum TYPE *.
 02 orderdate TYPE mdy-date.
 02 deldate TYPE mdy-date.
 02 salesperson TYPE empnum
 HEADING salesperson-heading.
 02 custnum TYPE *.
END

* Definition for PARTS Record
DEFINITION partsinfo.
 02 partnum TYPE *.
 02 partname TYPE name.
 02 inventory PIC 9(3)S.
 02 location PIC X(3).
 02 price PIC 9(6)V9(2).
END

* Definition for SUPPLIER Record
DEFINITION suppinfo.
 02 suppnum TYPE *.
 02 suppname TYPE name.
 02 addr TYPE *.
END

* Definition for REGION Record
DEFINITION reginfo.
 02 regnum TYPE *.
 02 regname PIC X(12).
 02 location PIC X(14).
 02 manager TYPE empnum
 HEADING manager-heading.
END

* Definition for BRANCH Record
DEF branchinfo.
 02 primkey.
 03 regnum TYPE *.
 03 branchnum TYPE *.
 02 branchname PIC X(14).
 02 manager TYPE empnum
 HEADING manager-heading.
END

* Definition for EMPLOYEE Record
DEFINITION empinfo.
 02 empnum TYPE *.
 02 empname TYPE name.
 02 dept.
 03 regnum TYPE *.
 03 branchnum TYPE *.
 02 job PIC X(12).
 02 age PIC 9(2).
 02 salary PIC 9(6).
 02 vacation PIC 9(2).
END

Figure B-1. Database Schema Listing (page 3 of 5)
Data Definition Language (DDL) Reference Manual—529431-003
B-4

Sample Schemas Database Schema Listing
!***
! FILE DEFINITIONS
!***
* Contains customer information for each customer
RECORD customer.
 FILE IS "$data.sales.customer" KEY-SEQUENCED
 AUDIT
 MAXEXTENTS 100.
 DEFINITION IS custinfo.
 KEY IS customer.custnum DUPLICATES NOT ALLOWED.
 KEY "cn" IS customer.custname.
END

* Contains order information for each order
RECORD orders.
 FILE IS "$data.sales.orders" KEY-SEQUENCED
 AUDIT
 MAXEXTENTS 100.
 DEFINITION IS orderinfo.
 KEY IS orders.ordernum DUPLICATES NOT ALLOWED.
 KEY "sn" IS orders.salesperson.
 KEY "cn" IS orders.custnum.
END

* Contains each order line for each order
RECORD odetail.
 FILE IS "$data.sales.odetail" KEY-SEQUENCED
 AUDIT
 MAXEXTENTS 100.
 02 primkey.
 03 ordernum TYPE *.
 03 partnum TYPE *.
 02 quantity PIC 9(3).
 KEY IS primkey DUPLICATES NOT ALLOWED.
END

* Contains information on each part
RECORD parts.
 FILE IS "$data.sales.parts" KEY-SEQUENCED
 AUDIT
 MAXEXTENTS 100.
 DEFINITION IS partsinfo.
 KEY IS parts.partnum DUPLICATES NOT ALLOWED.
 KEY "pn" IS parts.partname.
END

* Contains a record of each part ordered from each supplier
RECORD fromsup.
 FILE IS "$data.sales.fromsup" KEY-SEQUENCED
 AUDIT
 MAXEXTENTS 100.
 02 primkey.
 03 partnum TYPE *.
 03 suppnum TYPE *.
 02 partcost PIC 9(6)V9(2)
 DISPLAY part-cost-display.
 KEY IS primkey DUPLICATES NOT ALLOWED.
END

Figure B-1. Database Schema Listing (page 4 of 5)
Data Definition Language (DDL) Reference Manual—529431-003
B-5

Sample Schemas Sample SPI Schema
Sample SPI Schema
The sample SPI schema contains the DDL commands to build a dictionary containing
the token definitions and other information needed by a subsystem that sends and
receives SPI messages. If you do not plan to use SPI messages to communicate
among processes in a Distributed Systems Management (DSM) environment, you
need not refer to this schema.

The sample SPI schema uses standard SPI definitions wherever applicable and
nonstandard definitions only where needed by the subsystem. The standard SPI
definitions are in the file ZSPIDEF.ZSPIDDL on the disk volume selected for your
system. The first step in creating the dictionary is to compile this entire file into your
dictionary using the DDL SOURCE command.

* Contains information about each supplier of parts
RECORD supplier.
 FILE IS "$data.sales.supplier" KEY-SEQUENCED
 AUDIT
 MAXEXTENTS 100.
 DEFINITION IS suppinfo.
 KEY IS supplier.suppnum DUPLICATES NOT ALLOWED.
 KEY "su" IS supplier.suppname.
END

* Contains information about company's regional offices
RECORD region.
 FILE IS "$data.sales.region" KEY-SEQUENCED
 AUDIT
 MAXEXTENTS 100.
 DEFINITION IS reginfo.
 KEY IS region.regnum DUPLICATES NOT ALLOWED.
 KEY "rn" IS region.regname.
END

* Contains information about company's branch offices
RECORD branch.
 FILE IS "$data.sales.branch" KEY-SEQUENCED
 AUDIT
 MAXEXTENTS 100.
 DEFINITION IS branchinfo.
 KEY IS branch.primkey DUPLICATES NOT ALLOWED.
END

* Contains information about each employee
RECORD employee.
 FILE IS "$data.sales.employee" KEY-SEQUENCED
 AUDIT
 MAXEXTENTS 100.
 DEFINITION IS empinfo.
 KEY IS employee.empnum DUPLICATES NOT ALLOWED.
 KEY "en" IS employee.empname.
 KEY "dp" IS employee.dept.
END

!***
! END OF SCHEMA1 DATABASE DESCRIPTION
!***

Figure B-1. Database Schema Listing (page 5 of 5)
Data Definition Language (DDL) Reference Manual—529431-003
B-6

Sample Schemas Sample SPI Schema
You do not generate COBOL, pTAL, TAL, or TACL source code for the standard SPI
definitions; HP supplies the COBOL, pTAL, TAL, or TACL source code in these files:

For this example, the DDL definitions that are not part of the standard SPI definition file
are contained in the file ASSNDDL. When you write a subsystem, the file name of the
file containing the subsystem’s DDL definitions must have this format:

ssssDDL

In the format, ssss is a code to identify the subsystem. In Figure B-1 on page B-2, the
subsystem code happens to be ASSN.

The file ASSNDDL contains the source code to define four simple tokens and one
extensible structured token. It contains all the DDL statements needed to define the
token types, token codes, and the token map. It also contains the DDL statements to
define the subsystem ID and the SPI message buffer.

When the DDL compiler compiles the source code in file ASSNDDL, it adds the
definitions in this file to the dictionary and generates three source code files:

The DDL compiler does not generate FORTRAN source code for SPI objects.

Topics:

• DDL Commands to Create an SPI Schema on page B-8

• Selected ZSPIDDL Statements on page B-8

• ASSNDDL Statements on page B-10

Language File

COBOL ZSPIDEF.ZSPICOB

pTAL or TAL ZSPIDEF.ZSPITAL

TACL ZSPIDEF.ZSPITACL

File Description

ASSNCOB A COBOL source file that contains COBOL data descriptions for the DDL
statements in ASSNDDL.

ASSNTAL A pTAL or TAL source file that contains pTAL or TAL data definitions for the
DDL statements in ASSNDDL.

ASSNTACL A TACL source file that contains TACL data definitions for the DDL
statements in ASSNDDL.
Data Definition Language (DDL) Reference Manual—529431-003
B-7

Sample Schemas DDL Commands to Create an SPI Schema
DDL Commands to Create an SPI Schema
Example B-1 on page B-8 creates a dictionary from the DDL source file containing
standard SPI definitions (ZSPIDEF.ZSPIDDL) and from the file ASSNDDL containing
subsystem-specific definitions.

The SETSECTION commands in Example B-1 on page B-8 divide the host-language
source files into sections as recommended in the Distributed Name Service (DNS)
Management Programming Manual.

Selected ZSPIDDL Statements
The DDL statements from the file ZSPIDEF.ZSPIDDL in Example B-2 on page B-9 are
either used by the DDL statements in the file ASSNDDL or used in examples in this
manual. They are included here for documentation only. Do not copy these statements
individually—use the command SOURCE ZSPIDEF.ZSPIDDL to compile the entire set
of standard DDL statements into your dictionary as shown in the preceding set of DDL
commands.

Example B-1. Creating an SPI Schema

?ERRORS 1
?DICT !
?COMMENTS

?SOURCE ZSIPDEF.ZSPIDDL On current default volume

?SETSECTION Assure default DDL sectioning

?COBOL ASSNCOB ! COBOL source for subsystem

?TAL ASSNTAL ! TAL source for subsystem

?TACL ASSNTACL ! TACL source for subsystem

?SOURCE ASSNDDL (ASSN-DEFS) Definitions specific to subsystem

?SETSECTION CONSTANTS

?SOURCE ASSNDDL (ASSN-TOKEN-INFO) Token-related definitions

?SETSECTION

?SOURCE ASSNDDL (ASSN-BUFFER) Buffer structure for subsystem

Note. Certain ZSPIDDL definitions cause the DDL compiler to issue warning messages when
it generates host-language source code. For example, the definition of ZSPI-DDL-BYTE
causes the DDL compiler to issue a warning when it generates COBOL source code. Because
COBOL does not recognize the BINARY 8 data type, the DDL compiler translates this
definition to PIC X(1). For data type translations that cause the DDL compiler to issue
warnings, see Appendix C, DDL Data Translation.
Data Definition Language (DDL) Reference Manual—529431-003
B-8

Sample Schemas Selected ZSPIDDL Statements
Example B-2. ZSPIDDL Statements

DEF zspi-ddl-int TYPE BINARY 16 SPI-NULL 0.
DEF zspi-ddl-int2 TYPE BINARY 32 SPI-NULL 0.
DEF zspi-ddl-uint TYPE BINARY 16 UNSIGNED SPI-NULL 0.
DEF zspi-ddl-enum PIC S9(4) COMP SPI-NULL 255
 TACL enum.

DEF zspi-ddl-boolean TYPE zspi-ddl-int SPI-NULL " ".
DEF zspi-ddl-byte TYPE BINARY 8 UNSIGNED SPI-NULL 0.

DEF zspi-ddl-char8.
 02 z-c PIC X(8) SPI-NULL " ".
 02 z-s REDEFINES z-c.
 03 z-i TYPE BINARY 16 OCCURS 4 TIMES.
 02 z-b REDEFINES z-c PIC X OCCURS 8 TIMES.
END

DEF zspi-ddl-username TACL username.
 02 z-groupname TYPE zspi-ddl-char8.
 02 z-username TYPE zspi-ddl-char8.
END

CONSTANT zspi-tdt-int VALUE IS 2.
CONSTANT zspi-tdt-int2 VALUE IS 3.
CONSTANT zspi-tdt-map VALUE IS 8.
CONSTANT zspi-tdt-boolean VALUE IS 10.
CONSTANT zspi-tdt-enum VALUE IS 11.
CONSTANT zspi-tdt-byte VALUE IS 12.
CONSTANT zspi-tnm-command VALUE IS -510.
CONSTANT zspi-tnm-retcode VALUE IS 0.

TOKEN-TYPE zspi-typ-enum VALUE IS zspi-tdt-enum
 DEF IS zspi-ddl-enum.

TOKEN-TYPE zspi-typ-map VALUE IS zspi-tdt-map
 OCCURS VARYING.

TOKEN-CODE zspi-tkn-command VALUE IS zspi-tnm-command
 TOKEN-TYPE IS zspi-typ-enum.

TOKEN-CODE zspi-tkn-retcode VALUE IS zspi-tnm-retcode
 TOKEN-TYPE IS zspi-typ-enum.
Data Definition Language (DDL) Reference Manual—529431-003
B-9

Sample Schemas ASSNDDL Statements
ASSNDDL Statements
The DDL statements in Figure B-2 on page B-10 are in the sample DDL file ASSNDDL.
They are the statements needed by the sample subsystem in addition to those
provided by ZSPIDEF.ZSPIDDL.

Figure B-2. Sample DDL File ASSNDDL

? SECTION assn-defs

DEF assn-variable-token.
 02 table-size TYPE zspi-ddl-int.
 02 data-table TYPE zspi-ddl-int2 OCCURS 100 TIMES.
END

DEF assn-ddl-jobinfo.
 02 jnumber TYPE zspi-ddl-int.
 02 priority TYPE zspi-ddl-int.
 02 location TYPE zspi-ddl-char8 SPI-NULL "X".
 02 jobclass-is-present TYPE zspi-ddl-boolean.
 02 jobclass TYPE zspi-ddl-int.
 02 jobusername TYPE zspi-ddl-username.
END

?SECTION assn-token-info

! Constants to define token numbers:
CONSTANT assn-tnm-my-status VALUE IS 101.
CONSTANT assn-tnm-stat-reply VALUE IS 102.
CONSTANT assn-tnm-jobinfo VALUE IS 3.

! Constants for subsystem-ID:
CONSTANT assn-val-yourco VALUE IS "YOUR-CO ".
CONSTANT assn-ssn-assn VALUE IS 1.
CONSTANT assn-val-version VALUE IS VERSION "D30".

! Constant for buffer length:
CONSTANT assn-val-buflen VALUE IS 600.

! Token-type definitions:
TOKEN-TYPE assn-typ-variable-token VALUE IS zspi-tdt-int2
 OCCURS VARYING
 DEF IS assn-variable-token.

TOKEN-TYPE assn-typ-status VALUE IS zspi-tdt-enum
 DEF IS zspi-ddl-enum.

! Token-code definitions:
TOKEN-CODE assn-tkn-my-status VALUE IS assn-tnm-my-status
 TOKEN-TYPE IS assn-typ-status.

TOKEN-CODE assn-tkn-stat-reply VALUE IS assn-tnm-stat-reply
 TOKEN-TYPE IS assn-typ-status.
Data Definition Language (DDL) Reference Manual—529431-003
B-10

Sample Schemas ASSNDDL Statements
! Token-map definition:
TOKEN-MAP assn-map-jobinfo VALUE IS assn-tnm-jobinfo
 DEF IS assn-ddl-jobinfo.
 VERSION "D00" FOR jnumber THRU location.
 VERSION "D30" FOR jobclass-is-present.
 NOVERSION FOR jobclass.
 VERSION "D30" FOR jobusername.
END

! Subsystem-ID definition:
DEF assn-val-ssid TACL ssid.
 02 z-filler TYPE CHARACTER 8
 VALUE IS assn-val-yourco.
 02 z-owner TYPE zspi-ddl-char8
 REDEFINES z-filler.
 02 z-number TYPE zspi-ddl-int
 VALUE IS assn-ssn-assn.
 02 z-version TYPE zspi-ddl-uint
 VALUE IS assn-val-version.
END

? SECTION assn-buffer

! Buffer definition
DEF assn-ddl-msg-buffer.
 02 z-msgcode TYPE zspi-ddl-int.
 02 z-buflen TYPE zspi-ddl-uint.
 02 z-occurs TYPE zspi-ddl-uint.
 02 z-filler TYPE zspi-ddl-byte
 OCCURS 0 TO assn-val-buflen TIMES
 DEPENDING ON z-occurs.
END

Figure B-2. Sample DDL File ASSNDDL
Data Definition Language (DDL) Reference Manual—529431-003
B-11

Sample Schemas ASSNDDL Statements
Data Definition Language (DDL) Reference Manual—529431-003
B-12

C DDL Data Translation
This appendix explains how data defined in DDL is translated to each of the seven
supported host languages.

The DDL compiler can translate any definition or record to data-declaration source
code for host languages [C, COBOL, FORTRAN, Pascal (on D-series systems), TACL,
TAL, and pTAL]. The only restriction on translation is that not all data types are
supported in all languages, as indicated by the following:

• Whenever a declared data type is not supported in a particular language, the DDL
compiler attempts to translate the data type to a declaration with a compatible data
type. For example, DDL structures described with PICTURE X or PICTURE 9
clauses are translated to CHARACTER data type in FORTRAN or STRING BYTE
data type in pTAL or TAL; a structure described as PICTURE S9(4) COMP is
translated to an INT data type in pTAL, TAL, or TACL, or a NATIVE-2 data type in
COBOL; a DDL TYPE BINARY 64 data type is translated to a long long data
type in C or an INT64 data type in Pascal.

• When no compatible data type is available, the DDL compiler translates the data
type to a character-string declaration. For example, a structure described as TYPE
FLOAT, which is the REAL data type used by FORTRAN, pTAL or TAL, is
translated to a PICTURE X(4) data type in COBOL.

These tables summarize how the DDL compiler translates its definitions to each host
language:

• Table C-1, Sample DDL/C Data Translation Table, on page C-1

• Table C-2, Sample DDL/COBOL Data Translation Table, on page C-3

• Table C-3, Sample DDL/FORTRAN Data Translation Table, on page C-5

• Table C-4, Sample DDL/Pascal Data Translation Table, on page C-7

• Table C-5, Sample DDL/TACL Data Translation Table, on page C-9

• Table C-6, Sample DDL/pTAL and TAL Data Translation Table, on page C-11

Note. For information about how DDL translates SQL data types, see the SQL/MP Reference
Manual and the SQL/MX Reference Manual.

Table C-1. Sample DDL/C Data Translation Table (page 1 of 3)

DDL Clause Type DDL Clause Specification C Data Type

PICTURE PIC A(10) char [10]

PIC 9(10) char [10]

PIC X(10) char [10]

* Field definition does not have bit length generated.

** H06.03 and later RVUs
Data Definition Language (DDL) Reference Manual—529431-003
C-1

DDL Data Translation
PICTURE PIC A(2)X(10)9(2)A(5) char [19]

PIC SV9(3) char [4]

PIC 9V9(2) char [4]

PIC T9V9 char [3]

PIC 9(2)T char [3]

PIC N(10) char [20]

PIC 9(4) COMP unsigned short

PIC S9(4) COMP short

PIC 9(5) COMP unsigned long

PIC S9(5) COMP long

PIC 9(10) COMP unsigned long long**

PIC S9(10) COMP long long

PIC 9999V99
OCCURS 52 TIMES

char [52][6]

PIC 9
OCCURS 0 TO 10 TIMES
DEPENDING ON item

char [10]

TYPE TYPE CHARACTER len char [len]

TYPE BINARY 8 signed char

TYPE BINARY 8 UNSIGNED char

TYPE BINARY [16] short

TYPE BINARY [16]
UNSIGNED

unsigned short

TYPE BINARY 16,2 short

TYPE BINARY 32 long

TYPE BINARY 32
UNSIGNED

unsigned long

TYPE BINARY 64 long long

TYPE BINARY 64,-16 long long

TYPE BINARY 64
UNSIGNED

unsigned long long**

Table C-1. Sample DDL/C Data Translation Table (page 2 of 3)

DDL Clause Type DDL Clause Specification C Data Type

* Field definition does not have bit length generated.

** H06.03 and later RVUs
Data Definition Language (DDL) Reference Manual—529431-003
C-2

DDL Data Translation
TYPE TYPE BIT len * short or unsigned short len

TYPE BIT len UNSIGNED unsigned short:len

TYPE FLOAT [32] float

TYPE FLOAT 64 double

TYPE COMPLEX double (inaccurate representation)

TYPE LOGICAL 1 char

TYPE LOGICAL[2] short

TYPE LOGICAL 4 long

TYPE ENUM enum

TYPE CHARACTER 8
OCCURS 100 TIMES

char[100][8]

TYPE BINARY 16
OCCURS 3 TIMES

short[3]

Table C-2. Sample DDL/COBOL Data Translation Table (page 1 of 2)

DDL Clause Type DDL Clause Specification COBOL Data Type

PICTURE PIC A(10) PIC A(10)

PIC 9(10) PIC 9(10)

PIC X(10) PIC X(10)

PIC N(10) PIC N(10)

PIC A(2)X(10)9(3) PIC A(2)X(10)9(3)

PIC SV9(3) PIC SV9(3) SIGN LEADING
SEPARATE

PIC 9V9(2)S PIC S9V9(2) SIGN TRAILING
SEPARATE

PIC T9V9 PIC S99V9 SIGN LEADING

PIC 99T PIC S9(2)9 SIGN TRAILING

PIC 9(4) COMP PIC 9(4) COMP

PIC S9(4) COMP PIC S9(4) COMP

PIC 9(5) COMP PIC 9(5) COMP

PIC S9(5) COMP PIC S9(5) COMP

PIC S9(10) COMP PIC S9(10) COMP

* Groups bit fields that can fit in the same word and generates a filler in the word’s type.

Table C-1. Sample DDL/C Data Translation Table (page 3 of 3)

DDL Clause Type DDL Clause Specification C Data Type

* Field definition does not have bit length generated.

** H06.03 and later RVUs
Data Definition Language (DDL) Reference Manual—529431-003
C-3

DDL Data Translation
PIC 9999V99
OCCURS 52 TIMES

PIC 9999V99
Occurs 52 TIMES

PIC 9
OCCURS 0 TO 10 TIMES
DEPENDING ON item

PIC 9
OCCURS 0 TO 10 TIMES
DEPENDING ON item

TYPE TYPE CHARACTER 8 PIC X(8)

TYPE BINARY 8 PIC X(1)
FILLER PIC X(1) (added by DDL)

TYPE BINARY [16] NATIVE-2

TYPE BINARY [16]
UNSIGNED

NATIVE-2

TYPE BINARY 16,2 PIC S9(2)V9(2) COMP

TYPE BINARY 32 NATIVE-4

TYPE BINARY 32
UNSIGNED

NATIVE-4

TYPE BINARY 64 NATIVE-8

TYPE BINARY 64,-16 PIC S9(2)P(16) COMP

TYPE BIT len * NATIVE-2

TYPE FLOAT [32] PIC X(4)

TYPE TYPE FLOAT 64 PIC X(8)

TYPE COMPLEX PIC X(8)

TYPE LOGICAL [2] PIC X(2)

TYPE LOGICAL 4 PIC X(4)

TYPE ENUM NATIVE-2

TYPE CHARACTER 8
OCCURS 100 TIMES

PIC X(8)
Occurs 100 TIMES

TYPE BINARY 16
OCCURS 3 TIMES

NATIVE-2
Occurs 3 TIMES

Table C-2. Sample DDL/COBOL Data Translation Table (page 2 of 2)

DDL Clause Type DDL Clause Specification COBOL Data Type

* Groups bit fields that can fit in the same word and generates a filler in the word’s type.
Data Definition Language (DDL) Reference Manual—529431-003
C-4

DDL Data Translation
Table C-3. Sample DDL/FORTRAN Data Translation Table (page 1 of 2)

DDL Clause Type DDL Clause Specification FORTRAN Data Type

PICTURE PIC A(10) CHARACTER*10

PIC 9(10) CHARACTER*10

PIC X(10) CHARACTER*10

PIC N(10) CHARACTER*20

PIC A(2)X(10)9(3) CHARACTER*15

PIC SV9(3) CHARACTER*4

PIC 9V9(2)S CHARACTER*4

PIC T9V9 CHARACTER*3

PIC 99T CHARACTER*3

PIC 9(4) COMP INTEGER*2

PIC S9(4) COMP INTEGER*2

PIC 9(5) COMP INTEGER*4

PIC S9(5) COMP INTEGER*4

PIC S9(10) COMP INTEGER*8

PIC 9(4)V9(2)
OCCURS 52 TIMES

CHARACTER*6 (1:52)

PIC 9
OCCURS 0 TO 10 TIMES
DEPENDING ON item

CHARACTER*1 (1:10)

TYPE TYPE CHARACTER 8 CHARACTER*8

TYPE BINARY 8 CHARACTER*1
FILLER*1 (added by DDL)

TYPE BINARY [16] INTEGER*2

TYPE BINARY [16]
UNSIGNED

INTEGER*2

TYPE BINARY 16,2 INTEGER*2

TYPE BINARY 32 INTEGER*4

TYPE BINARY 32 UNSIGNED INTEGER*4

TYPE BINARY 64 INTEGER*8

TYPE BIT len1 FILLER*2

TYPE FLOAT [32] REAL

TYPE FLOAT 64 DOUBLE PRECISION

TYPE COMPLEX COMPLEX

1. Groups bit fields that can fit in the same word and generates a filler in the word’s type.

2. Only one of the possible forms of the clause; see DICTOBL (Object Build List) on page D-15, for the
byte lengths of all forms of the clause.
Data Definition Language (DDL) Reference Manual—529431-003
C-5

DDL Data Translation
TYPE LOGICAL [2] LOGICAL

TYPE LOGICAL 4 LOGICAL*4

TYPE ENUM INTEGER*2

TYPE CHARACTER 8
OCCURS 100 TIMES

CHARACTER*8 (1:100)

TYPE BINARY 16
OCCURS 3 TIMES

INTEGER*2

Table C-3. Sample DDL/FORTRAN Data Translation Table (page 2 of 2)

DDL Clause Type DDL Clause Specification FORTRAN Data Type

1. Groups bit fields that can fit in the same word and generates a filler in the word’s type.

2. Only one of the possible forms of the clause; see DICTOBL (Object Build List) on page D-15, for the
byte lengths of all forms of the clause.
Data Definition Language (DDL) Reference Manual—529431-003
C-6

DDL Data Translation
Table C-4. Sample DDL/Pascal Data Translation Table (page 1 of 2)

DDL Clause Type DDL Clause Specification Pascal Data Type

PICTURE PIC A(10) CHARACTER*10

PIC 9(10) CHARACTER*10

PIC X(10) CHARACTER*10

PIC N(10) CHARACTER*20

PIC A(2)X(10)9(3) CHARACTER*15

PIC SV9(3) CHARACTER*4

PIC 9V9(2)S CHARACTER*4

PIC T9V9 CHARACTER*3

PIC 99T CHARACTER*3

PIC 9(4) COMP INTEGER*2

PIC S9(4) COMP INTEGER*2

PIC 9(5) COMP INTEGER*4

PIC S9(5) COMP INTEGER*4

PIC S9(10) COMP INTEGER*8

PIC 9(4)V9(2)
OCCURS 52 TIMES

CHARACTER*6 (1:52)

PIC 9
OCCURS 0 TO 10 TIMES
DEPENDING ON item

CHARACTER*1 (1:10)

TYPE TYPE CHARACTER len FSTRING(len)

TYPE BINARY 8 BYTE

TYPE BINARY [16] INT16

TYPE BINARY [16] UNSIGNED CARDINAL

TYPE BINARY 16,2 INT16

TYPE BINARY 32 INT32

TYPE BINARY 32 UNSIGNED INT32

TYPE BINARY 64 INT64

TYPE BINARY 64,-16 INT64

TYPE BIT len INT(len)

TYPE BIT len UNSIGNED UNSIGNED(len)

TYPE FLOAT [32] REAL

TYPE FLOAT 64 LONGREAL

TYPE COMPLEX INT64

* Only one of the possible forms of the clause; see DICTOBL (Object Build List) on page D-15, for the
byte lengths of all forms of the clause..
Data Definition Language (DDL) Reference Manual—529431-003
C-7

DDL Data Translation
TYPE TYPE LOGICAL 1 BOOLEAN

TYPE LOGICAL[2] INT16

TYPE LOGICAL 4 INT32

TYPE ENUM INT16

TYPE CHARACTER 8
OCCURS 100 TIMES

Array[1..100] of FSTRING(8)

TYPE BINARY 16
OCCURS 3 TIMES

Array[1..3] of INT16

Table C-4. Sample DDL/Pascal Data Translation Table (page 2 of 2)

DDL Clause Type DDL Clause Specification Pascal Data Type

* Only one of the possible forms of the clause; see DICTOBL (Object Build List) on page D-15, for the
byte lengths of all forms of the clause..
Data Definition Language (DDL) Reference Manual—529431-003
C-8

DDL Data Translation
Table C-5. Sample DDL/TACL Data Translation Table (page 1 of 2)

DDL Clause Type DDL Clause Specification TACL Data Type

PICTURE PIC A(10) CHAR BYTE(0:9)

PIC 9(10) CHAR BYTE(0:9)

PIC X(10) CHAR BYTE(0:9)

PIC N(10) CHAR BYTE(0:19)

PIC A(2)X(10)9(2)A(5) CHAR BYTE(0:18)

PIC SV9(3) CHAR BYTE(0:3)

PIC 9V9(2)S CHAR BYTE(0:3)

PIC T9V9 CHAR BYTE(0:2)

PIC 9(2)T CHAR BYTE(0:2)

PIC 9(4) COMP UINT

PIC S9(4) COMP INT

PIC 9(5) COMP INT2

PIC S9(5) COMP INT2

PIC S9(10) COMP INT4

PIC 9(4)V9(2)
OCCURS 52 TIMES

STRUCT (0:51)
CHAR BYTE(0:5)

PIC 9
OCCURS 0 TO 10 TIMES
DEPENDING ON item

CHAR (0:9)

TYPE TYPE CHARACTER len BEGIN
 CHAR BYTE(0:len)
END;

TYPE BINARY 8 BYTE

TYPE BINARY [16] INT

TYPE BINARY [16] UNSIGNED UINT

TYPE BINARY 16,2 INT

TYPE BINARY 32 INT2

TYPE BINARY 32 UNSIGNED INT2

TYPE BINARY 64 INT4

TYPE BINARY 64,-16 INT4

TYPE BIT len * FILLER 2

TYPE FLOAT [32] INT2

TYPE FLOAT 64 INT4

TYPE COMPLEX INT4

* Groups bit fields that can fit in the same word and generates a filler in the word’s type.
Data Definition Language (DDL) Reference Manual—529431-003
C-9

DDL Data Translation
TYPE TYPE LOGICAL 1 BYTE

TYPE LOGICAL[2] BOOL

TYPE LOGICAL 4 INT2

TYPE ENUM ENUM

TYPE CHARACTER 8
OCCURS 100 TIMES

STRUCT(0:99);
 BEGIN CHAR BYTE(0:9);
 END;

TYPE BINARY 16
OCCURS 3 TIMES

INT(0:2);

Table C-5. Sample DDL/TACL Data Translation Table (page 2 of 2)

DDL Clause Type DDL Clause Specification TACL Data Type

* Groups bit fields that can fit in the same word and generates a filler in the word’s type.
Data Definition Language (DDL) Reference Manual—529431-003
C-10

DDL Data Translation
Table C-6. Sample DDL/pTAL and TAL Data Translation Table (page 1 of 2)

DDL Clause Type DDL Clause Specification pTAL or TAL Data Type

PICTURE PIC A(10) STRUCT
BEGIN STRING BYTE [1:10];
END;

PIC 9(10) STRUCT
BEGIN STRING BYTE [1:10];
END;

PIC X(10) STRUCT
BEGIN STRING BYTE [1:10];
END;

PIC N(10) STRUCT
BEGIN STRING BYTE [1:20];
END;

PIC A(2)X(10)9(3) STRUCT
BEGIN STRING BYTE [1:15];
END;

PIC SV9(3) STRUCT
BEGIN STRING BYTE [1:4];
END;

PIC 9V9(2)S STRUCT
BEGIN STRING BYTE [1:4];
END;

PIC T9V9 STRUCT
BEGIN STRING BYTE [1:3];
END;

PIC 9(2)T STRUCT
BEGIN STRING BYTE [1:3];
END;

PIC 9(4) COMP INT

PIC S9(4) COMP INT

PIC 9(5) COMP INT(32)

PIC S9(5) COMP INT(32)

PIC 9(10) COMP FIXED

PIC S9(10) COMP FIXED

PIC 9(4)V9(2)
OCCURS 52 TIMES

STRUCT [1:52];
BEGIN STRING BYTE [1:6];
END;

* Field definition generates INT.

** Only one of the possible forms of the clause; see DICTOBL (Object Build List) on page D-15, for the
byte lengths of all forms of the clause.
Data Definition Language (DDL) Reference Manual—529431-003
C-11

DDL Data Translation
PICTURE PIC 9
OCCURS 0 TO 10 TIMES
DEPENDING ON item

STRUCT (*)
STRING [1:10]

TYPE TYPE CHARACTER 8 STRUCT
BEGIN STRING BYTE [1:8];
END;

TYPE BINARY 8 STRING
FILLER 1; (added by DDL)

TYPE BINARY [16] INT

TYPE BINARY [16] UNSIGNED INT

TYPE BINARY 16,2 INT

TYPE BINARY 32 INT(32)

TYPE BINARY 32 UNSIGNED INT(32)

TYPE BINARY 64 FIXED

TYPE BINARY 64,-16 FIXED(-16)

TYPE BINARY 64 UNSIGNED FIXED

TYPE BIT len * UNSIGNED(len)

TYPE FLOAT [32] REAL

TYPE FLOAT 64 REAL(64)

TYPE COMPLEX FIXED

TYPE LOGICAL 1 STRING

TYPE LOGICAL [2] INT

TYPE LOGICAL 4 INT(32)

TYPE ENUM INT

TYPE CHARACTER 8
OCCURS 100 TIMES

STRUCT [1:100];
BEGIN STRING BYTE [1:8];
END;

TYPE BINARY 16
OCCURS 3 TIMES

INT [1:3];

Table C-6. Sample DDL/pTAL and TAL Data Translation Table (page 2 of 2)

DDL Clause Type DDL Clause Specification pTAL or TAL Data Type

* Field definition generates INT.

** Only one of the possible forms of the clause; see DICTOBL (Object Build List) on page D-15, for the
byte lengths of all forms of the clause.
Data Definition Language (DDL) Reference Manual—529431-003
C-12

D Dictionary Database Structure
A dictionary is itself a DDL database consisting of 14 files. The DDL compiler supplies
the names of the dictionary database files; these names must not be changed.

Topics in this appendix:

• Dictionary Components on page D-1

• Dictionary Files on page D-3

• Definition and Record Storage in the Dictionary on page D-63

Dictionary Components
A dictionary has three basic components:

• Objects on page D-1

• Elements on page D-2

• Text Items on page D-2

Objects
An object can be:

• A single element:

° Constant
° Single-field definition
° SPI token type
° SPI token code

• A group of elements:

° Record
° Group definition
° SPI token map

The DDL compiler can add these objects to and delete them from a dictionary, as well
as perform other operations on them.

Note. Information in this appendix is not guaranteed to remain the same or to change in
compatible ways from RVU to RVU.
Data Definition Language (DDL) Reference Manual—529431-003
D-1

Dictionary Database Structure Elements
If a dictionary is part of a Pathmaker application catalog, the Pathmaker product can
store additional objects in the dictionary. The Pathmaker product manages four types
of objects that it can store in a dictionary:

• Servers
• Services
• Requesters
• Screens

The DDL compiler assigns each object a unique object number for identification.
Object numbers are assigned in ascending order and are never reused. When an
object is removed from the dictionary, all references to its object number are also
removed.

Elements
Definitions and records can contain one or more elements. For example, a single-field
definition contains a single element; a record or group definition contains an element
for itself and additional elements for each field description within the record or group
definition.

The DDL compiler assigns each element a unique element number for identification.

Text Items
Text items can contain any text associated with an object. A text item can be one of the
following five types:

Example D-1. Objects

DEF partnum PIC 999. ! Object with one element

RECORD parts. ! Object with five elements
 02 partnum TYPE *. ! Element 1
 02 partname PIC X(18). ! Element 2
 02 inventory PIC 999. ! Element 3
 02 location PIC XXX. ! Element 4
 02 price PIC 999999V99. ! Element 5
END

Type Description

Number ASCII representation of a numeric literal in a VALUE or MUST BE clause

String Alphanumeric string in a COMMENT, DISPLAY, PICTURE, VALUE,
HEADING, HELP, or MUST BE clause

Keyword Keyword in a VALUE or MUST BE clause

Enumeration Name of a value in a level 89 enumeration clause

National National string in a VALUE or MUST BE clause

International Internationalized text items in an AS, HEADING, 88, or VALUE clause.
Data Definition Language (DDL) Reference Manual—529431-003
D-2

Dictionary Database Structure Dictionary Files
The dictionary stores all of the text items associated with each statement in a text file.
Each text item is uniquely identified by a text ID number. A single text item can consist
of a list of several lines of text; the list is ordered by element number.

Table D-1 on page D-3 shows the text items described in the following three objects:

CONSTANT custnum-heading VALUE "Customer".

DEF initials PIC XXX VALUE ALL SPACES
 HELP "Initials".

DEF quantity PIC 999 MUST BE 1 THRU 999.

In Table D-1 on page D-3, each text item is assigned a unique text ID number. A single
text item can contain more than one text type.

Dictionary Files
When the DDL compiler compiles a schema in a dictionary, it builds these 14 dictionary
files:

• DICTALT (Alternate Key File) on page D-4

• DICTCDF (Constant Definition File) on page D-4

• DICTDDF (Dictionary Definition File) on page D-6

• DICTKDF (Key Definition File) on page D-8

• DICTMAP (Token Map File) on page D-13

• DICTOBL (Object Build List) on page D-15

• DICTODF (Object Definition File) on page D-37

• DICTOTF (Object Text File) on page D-41

• DICTOUF (Object Usage File) on page D-45

Table D-1. Text IDs Assigned to Text Items

Text ID Element Number Text Item Type

1 0 “Customer” S (String)

2 0 “XXX” S (String)

3 0 “ALL” K (Keyword)

3 1 “SPACES” K (Keyword)

4 0 “Initials” S (String)

5 0 “999” S (String)

6 0 “1” N (Number)

6 1 “THRU” K (Keyword)

6 2 “999” N (Number)
Data Definition Language (DDL) Reference Manual—529431-003
D-3

Dictionary Database Structure DICTALT (Alternate Key File)
• DICTOUK (Object Usage Key File) on page D-47

• DICTRDF (Record Definition File) on page D-47

• DICTTKN (Token Code File) on page D-56

• DICTTYP (Token Type File) on page D-58

• DICTVER (Token Map Field Version File) on page D-61

All dictionary files are key-sequenced except DICTDDF, which is unstructured.

The dictionary is itself a database. HP supplies the DDL schema for the dictionary
database in the following file:

$SYSTEM.SYSTEM.DDSCHEMA

In the following topics, the record definitions for the dictionary database files are fully
expanded to show the field descriptions. The field names and structures are the same
as those used in DDSCHEMA for the data dictionary. Some field descriptions are
expanded from referenced definitions.

DICTALT (Alternate Key File)
DICTALT (Alternate Key File) contains keys for:

• DICTKDF (Key Definition File) on page D-8

• DICTOBL (Object Build List) on page D-15

• DICTODF (Object Definition File) on page D-37

• DICTRDF (Record Definition File) on page D-47

DICTCDF (Constant Definition File)
DICTCDF (Constant Definition File) is a key-sequenced file that contains one CDF
record for each constant in the dictionary. The CDF record links the constant with the
constant text in the DICTOTF (Object Text File).

DICTCDF is different on G-series and H-series systems—see:

• Figure D-1, DICTCDF (Constant Definition File)—G-Series, on page D-5

• Figure D-2, DICTCDF (Constant Definition File)—H-Series, on page D-5

Change bars in Figure D-2 on page D-5 show where it differs from Figure D-1 on
page D-5.

Table D-2, DICTCDF (Constant Definition File) Fields, on page D-6, applies to both
G-series and H-series systems.
Data Definition Language (DDL) Reference Manual—529431-003
D-4

Dictionary Database Structure DICTCDF (Constant Definition File)
Figure D-1. DICTCDF (Constant Definition File)—G-Series

Record CDF.
File is "DICTCDF" Key-sequenced
 Code 207
 Audit.

 02 OBJECT-NUMBER Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Object/Number".

 02 TEXT-ID Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Text Id/Number".

 02 CONSTANT-TYPE-STRING Pic "XX".
 88 CONSTANT-STRING Value is "ST".
 88 CONSTANT-VERSION Value is "VR".
 88 CONSTANT-BINARY-16 Value is "2S".
 88 CONSTANT-BINARY-16-UNSIGNED Value is "2U".
 88 CONSTANT-BINARY-32 Value is "4S".
 88 CONSTANT-BINARY-32-UNSIGNED Value is "4U".
 88 CONSTANT-BINARY-64 Value is "8S".
 88 CONSTANT-NATIONAL-STRING Value is "NS".

 02 CONSTANT-TYPE Redefines CONSTANT-TYPE-STRING Type Binary 16.

 02 CONSTANT-TYPE-EXPLICIT Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 Heading "Type/Explicitly Given".

 Key is OBJECT-NUMBER Duplicates not allowed.

End

Figure D-2. DICTCDF (Constant Definition File)—H-Series (page 1 of 2)

Record CDF.
File is "DICTCDF" Key-sequenced
 Code 207
 Audit
 MaxExtents 500.

 02 OBJECT-NUMBER Type *
 Heading "Constant/Object #".

 02 TEXT-ID Type *
 Heading "Constant/Text-Id".

 02 CONSTANT-TYPE-STRING Pic "XX".
 88 CONSTANT-STRING Value is "ST".
 88 CONSTANT-VERSION Value is "VR".
 88 CONSTANT-BINARY-16 Value is "2S".
 88 CONSTANT-BINARY-16-UNSIGNED Value is "2U".
 88 CONSTANT-BINARY-32 Value is "4S".
 88 CONSTANT-BINARY-32-UNSIGNED Value is "4U".
 88 CONSTANT-BINARY-64 Value is "8S".
 88 CONSTANT-NATIONAL-STRING Value is "NS".

 02 CONSTANT-TYPE Redefines CONSTANT-TYPE-STRING Type Binary 16.
Data Definition Language (DDL) Reference Manual—529431-003
D-5

Dictionary Database Structure DICTDDF (Dictionary Definition File)
DICTDDF (Dictionary Definition File)
DICTDDF (Dictionary Definition File) is an unstructured file that contains one DDF
record with the next object number to be assigned, the next text ID number to be
assigned, the DDL compiler product version information, and the creator’s user ID. The
DDF record is updated every time the DDL compiler adds a new object to the
dictionary. DICTDDF cannot be an audited file.

DICTDDF is different on G-series and H-series systems—see:

• Figure D-3, DICTDDF (Dictionary Definition File)—G-Series, on page D-7

• Figure D-4, DICTDDF (Dictionary Definition File)—H-Series, on page D-7

Change bars in Figure D-4 on page D-7 show where it differs from Figure D-3 on
page D-7.

Table D-3, DICTDDF (Dictionary Definition File) Fields, on page D-8, applies to both
G-series and H-series systems.

 02 CONSTANT-TYPE-EXPLICIT Type ASCII-SWITCH
 Heading "Type/Explicitly Given".

 Key is OBJECT-NUMBER Duplicates not allowed.

End

Table D-2. DICTCDF (Constant Definition File) Fields

Field Description

OBJECT-NUMBER The object number of this record from DICTODF.OBJECT.
The record in DICTODF contains the constant name and its
object-type code, “CD.”

TEXT-ID The text ID assigned to the constant; it is used to link the
constant record to the record for this constant in DICTOTF.

CONSTANT-TYPE-STRING A two-character ASCII code that identifies the type of the
constant.

CONSTANT-TYPE A numeric code identifying the type of the constant.

CONSTANT-TYPE-EXPLICIT Contains an ASCII character Y (yes) to indicate the constant
type was entered explicitly or N (no) to indicate the constant
type was inherited from another constant or by default.

Figure D-2. DICTCDF (Constant Definition File)—H-Series (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
D-6

Dictionary Database Structure DICTDDF (Dictionary Definition File)
Figure D-3. DICTDDF (Dictionary Definition File)—G-Series

Record DDF.
 File is "DICTDDF" Unstructured
 Code 200
 Ext 2.

 02 NEXT-OBJ Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Next/Object".

 02 NEXT-TEXT-ID Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Next/Text Id".

 02 VERSION Type Binary 16 Unsigned
 MUST BE 6
 VALUE 6
 Heading "Dict/Version".

 02 CREATOR-USERID Heading "Creator User Id"
 TACL USERNAME.

 03 GROUP-NAME Type Character 8
 UPSHIFT
 Heading "Group".

 03 USER-NAME Type Character 8
 UPSHIFT
 Heading "User".

 02 NEXT-QUAL-ID Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Next/Qual Id".

End

Figure D-4. DICTDDF (Dictionary Definition File)—H-Series

Record DDF.
 File is "DICTDDF" Unstructured
 Code 200
 Ext 2.

 02 NEXT-OBJ Type OBJECT-NUMBER
 Heading "Next/Object".

 02 NEXT-TEXT-ID Type TEXT-ID
 Heading "Next/Text Id".

 02 VERSION Type Binary 16 Unsigned
 MUST BE 8
 VALUE 8
 Heading "Dict/Version".

 02 CREATOR-USERID Type USERID-NAME
 Heading "Creator User Id".

 02 NEXT-QUAL-ID Type QUALIFIER-ID
 Heading "Next/Qual Id".

End
Data Definition Language (DDL) Reference Manual—529431-003
D-7

Dictionary Database Structure DICTKDF (Key Definition File)
DICTKDF (Key Definition File)
DICTKDF (Key Definition File) is a key-sequenced file that contains one KDF record for
each key assignment defined in the schema; that is, one record for each alternate and
primary key (structured files) or one record for each SEQUENCE IS field. Each KDF
record describes the key and provides a link back to the element in DICTOBL (Object
Build List) that defines the key field.

DICTKDF is different on G-series and H-series systems—see:

• Figure D-5, DICTKDF (Key Definition File)—G-Series, on page D-9

• Figure D-6, DICTKDF (Key Definition File)—H-Series, on page D-10

Change bars in Figure D-6 on page D-10 show where it differs from Figure D-5 on
page D-9.

These tables apply to both G-series and H-series systems:

• Table D-4, DICTKDF (Key Definition File) Fields, on page D-11

• Table D-5, KEY-CLASS Codes, on page D-12

Table D-3. DICTDDF (Dictionary Definition File) Fields

Field Description

NEXT-OBJ Object number that the DDL compiler assigns to the next record or
definition added to the dictionary, or that the Pathmaker product
assigns to the next service, server, requester, or screen added to the
dictionary.

NEXT-TEXT-ID The text ID number that the DDL compiler or the Pathmaker product
assigns to the next text item stored in DICTOTF (refer to DICTOTF
fields for a description of the types of text items stored in the
dictionary).

VERSION A product version number that is incremented every time the internal
structure of the dictionary changes. The product version number
encoded in the DDL compiler is checked against this field whenever
a dictionary is opened.

CREATOR-USERID A group field that describes the user ID of the person who created
this dictionary. CREATOR-USERID consists of the next two fields,
GROUP-NAME and USER-NAME.

GROUP-NAME The name of the group to which the user belongs.

USER-NAME A name identifying the user within the group.

NEXT-QUAL-ID A field that the Pathmaker product uses to obtain field qualifier IDs.
Data Definition Language (DDL) Reference Manual—529431-003
D-8

Dictionary Database Structure DICTKDF (Key Definition File)
Figure D-5. DICTKDF (Key Definition File)—G-Series (page 1 of 2)

Record KDF.
File is "DICTKDF" Key-sequenced
 Code 206
 Audit.

 02 IDENTIFIER.

 03 RECORD-NUMBER Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Record/Number".
 03 ELEMENT Type Binary 16
 Display "I3"
 Heading "Key/Num".

 02 OBL-KEY.

 03 OBJECT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Object/Number".

 03 ELEMENT Type Binary 16
 Display "I3"
 Heading "Element/Number".

 02 KEYTAG-VALUE Type Binary 16
 VALUE 0
 Display "I5"
 Heading "Keytag/Value".

 02 KEYTAG-STRING Redefines KEYTAG-VALUE Type Character 2
 Display "A2"
 Heading "Keytag/Value".

 02 KEYTAG-OBJECT Type OBJECT-NUMBER
 VALUE 0
 Null 0
 Display "I5"
 Heading "Keytag/Object".

 02 FIELD.

 03 OFFSET Type Binary 16
 Display "I4"
 Heading "Offset".

 03 ELEMENT-SIZE Type Binary 16
 Display "I4"
 Heading "Size".

 02 NULL-VALUE Type Binary 16
 Display "I5"
 Heading "Null/Value".

 02 NULL-VALUE-SPECIFIED Type ASCII-SWITCH
 VALUE "N"
 Heading "Null/Specified".

 02 KEY-CLASS Pic "XXX"
 VALUE "PRI"
 Heading "Key/Class".
Data Definition Language (DDL) Reference Manual—529431-003
D-9

Dictionary Database Structure DICTKDF (Key Definition File)
 02 KEY-UNIQUE Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "Y"
 Heading "Key/Uniq".

 02 KEY-UPDATE Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "Y"
 Heading "Key/Update".

 02 KEY-FILE-NAME Type Character 34
 UPSHIFT
 Heading"Physical File Name".

 02 FILLER Type Character 30.

 Key is IDENTIFIER Duplicates not allowed.
 Key "OK" is OBL-KEY.

End

Figure D-6. DICTKDF (Key Definition File)—H-Series (page 1 of 2)

Record KDF.
File is "DICTKDF" Key-sequenced
 Code 206
 Audit
 MaxExtents 500.

 02 IDENTIFIER.

 03 RECORD-NUMBER Type OBJECT-NUMBER
 Heading "Record/Number".

 03 ELEMENT Type Binary 16
 Display "I3"
 Heading "Key/Num".

 02 OBL-KEY Type FIELD.

 02 KEYTAG-VALUE Type Binary 16
 VALUE 0
 Display "I5"
 Heading "Keytag/Value".

 02 KEYTAG-STRING Redefines KEYTAG-VALUE Type Character 2
 Display "A2"
 Heading "Keytag/Value".

 02 KEYTAG-OBJECT Type OBJECT-NUMBER
 VALUE 0
 Null 0
 Display "I5"
 Heading "Keytag/Object".

Figure D-5. DICTKDF (Key Definition File)—G-Series (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
D-10

Dictionary Database Structure DICTKDF (Key Definition File)
 02 FIELD.

 03 OFFSET Type Binary 16
 Display "I4"
 Heading "Offset".

 03 ELEMENT-SIZE Type Binary 16
 Display "I4"
 Heading "Size".

 02 NULL-VALUE Type *.

 02 NULL-VALUE-SPECIFIED Type ASCII-SWITCH
 VALUE "N"
 Heading "Null/Specified".

 02 KEY-CLASS Pic "XXX"
 VALUE "PRI"
 Heading "Key/Class".

 02 KEY-UNIQUE Type ASCII-SWITCH
 VALUE "Y"
 Heading "Key/Uniq".

 02 KEY-UPDATE Type ASCII-SWITCH
 VALUE "Y"
 Heading "Key/Update".

 02 KEY-FILE-NAME Type FILE-NAME.

 02 FILLER Type Character 30.

 Key is IDENTIFIER Duplicates not allowed.
 Key "OK" is OBL-KEY File is "DICTALT".

End

Table D-4. DICTKDF (Key Definition File) Fields (page 1 of 2)

Field Description

IDENTIFIER The primary key of the KDF record, consisting of the next two
fields, RECORD-NUMBER and ELEMENT.

RECORD-NUMBER The object number of the record that has this DICTKDF
element as a key; the same as OBJECT in DICTRDF.

ELEMENT A sequentially assigned number to guarantee that IDENTIFIER
is unique, starting with 0.

OBL-KEY The primary key of the OBL record that describes this key field,
consisting of the next two fields, OBJECT and ELEMENT.

OBJECT The object number of the record containing this key field; the
same as OBJECT in DICTOBL.

ELEMENT The element number of this key field; the same as ELEMENT in
DICTOBL.

KEYTAG-VALUE The Enscribe key specifier of this key; a one-word integer
representing the primary or alternate key number.

Figure D-6. DICTKDF (Key Definition File)—H-Series (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
D-11

Dictionary Database Structure DICTKDF (Key Definition File)
KEYTAG-STRING A 2-character string used when the Enscribe key specifier is
declared as two ASCII characters. KEYTAG-STRING redefines
KEYTAG-VALUE as a 2-byte string.

KEYTAG-OBJECT If the keytag value is defined by a constant, contains the object
number of the constant.

FIELD A group containing the OFFSET and ELEMENT-SIZE values
from the OBL record that describes this key field.

OFFSET The offset of this key field within the record that contains it. This
field is copied from OFFSET in DICTOBL; it is duplicated here
for efficient access.

ELEMENT-SIZE The size in bytes of the key field. This field is copied from SIZE
in DICTOBL; it is duplicated here for efficient access.

NULL-VALUE A value that indicates whether the field has been initialized. If
NULL-VALUE contains the null value specified by the user, then
the field has not been initialized. This field is currently used by
the Enform Plus product when producing reports and by FUP
when producing a FUP file-creation source file. An alternate
key field filled with null values is not added to an alternate key
file.

NULL-VALUE-SPECIFIED Contains the ASCII character Y (yes) or N (no) to indicate
whether the user specified a null value for this item. N is the
default.

KEY-CLASS Indicates the type of key this record defines. Codes are in
Table D-5 on page D-12. PRI is the default.

KEY-UNIQUE Contains the ASCII character Y (yes) or N (no) to indicate
whether the key that defines this record is unique. Y is the
default.

KEY-UPDATE Contains the ASCII character Y (yes) or N (no) to indicate if the
key might be updated. Y is the default.

KEY-FILE-NAME Contains the actual Guardian file name to be used for the key.
The name is stored in external form and might be a network
name; for example, \NEWYORK.$MARKET.DATAFILE.FILE1.

Table D-5. KEY-CLASS Codes

Code Meaning

PRI Primary key (default)

ALT Alternate Key

DSF Descending sort order

ASF Ascending sort order

Table D-4. DICTKDF (Key Definition File) Fields (page 2 of 2)

Field Description
Data Definition Language (DDL) Reference Manual—529431-003
D-12

Dictionary Database Structure DICTMAP (Token Map File)
DICTMAP (Token Map File)
DICTMAP (Token Map File) is a key-sequenced file that contains one record for each
SPI token map. Each record contains detailed information about a token map,
including its unique token number, and the object number of the definition that
describes the extensible structured token associated with the token map. Additional
information about token maps is contained in the Version File (DICTVER).

DICTMAP is different on G-series and H-series systems—see:

• Figure D-7, DICTMAP (Token Map File)—G-Series, on page D-13

• Figure D-8, DICTMAP (Token Map File)—H-Series, on page D-14

Change bars in Figure D-8 on page D-14 show where it differs from Figure D-7 on
page D-13.

Table D-6, DICTMAP (Token Map File) Fields, on page D-14, applies to both G-series
and H-series systems.

Figure D-7. DICTMAP (Token Map File)—G-Series

Record MAP.
 File is "DICTMAP" Key-sequenced
 Code 209
 Audit.

 02 OBJECT-NUMBER Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Token Map/Object".

 02 TOKEN-NUMBER-VALUE Type Binary 16
 Heading "Token Numb".

 02 TOKEN-NUMBER-CONSTANT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Token Numb/Object".

 02 MAP-DEF Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Map Def/Object".

 02 SSID-TEXT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "SSID".

 02 HEADING-TEXT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Heading".

 Key is OBJECT-NUMBER Duplicates not allowed.

End
Data Definition Language (DDL) Reference Manual—529431-003
D-13

Dictionary Database Structure DICTMAP (Token Map File)
Figure D-8. DICTMAP (Token Map File)—H-Series

Record MAP.
 File is "DICTMAP" Key-sequenced
 Code 209
 Audit
 MaxExtents 500.

 02 OBJECT-NUMBER Type *
 Heading "Token Map/Object".

 02 TOKEN-NUMBER-VALUE Type Binary 16
 Heading "Token Numb".

 02 TOKEN-NUMBER-CONSTANT Type OBJECT-NUMBER
 Heading "Token Numb/Object".

 02 MAP-DEF Type OBJECT-NUMBER
 Heading "Map Def/Object".

 02 SSID-TEXT Type TEXT-ID
 Heading "SSID".

 02 HEADING-TEXT Type TEXT-ID
 Heading "Heading".

 Key is OBJECT-NUMBER Duplicates not allowed.

End

Table D-6. DICTMAP (Token Map File) Fields

Field Description

OBJECT-NUMBER Contains the object number of this token map from
DICTODF.OBJECT. The record in DICTODF contains the
token-map name and its object type, “TM.”

TOKEN-NUMBER-VALUE Contains the token number of the token map taken from
the VALUE clause of the TOKEN-MAP statement that
defines the token map.

Token numbers can be in the range -32,768 through
32,767. Any user-supplied token numbers must be in the
range 1 through 9,998; the other token numbers are
reserved by HP or are previously defined by SPI.

TOKEN-NUMBER-CONSTANT Contains the object-number of the constant used to define
the token number; if the token number was not specified
using a constant, this field is set to 0.

MAP-DEF Contains the object number of the definition (DEF) for the
token map. The definition defines the data structure of the
extensible structured token described by the token map.

SSID-TEXT Contains the text ID of the OTF record that contains the
subsystem ID value for the token map.

HEADING-TEXT Contains the text ID of the OTF record that contains the
heading value for the token map.
Data Definition Language (DDL) Reference Manual—529431-003
D-14

Dictionary Database Structure DICTOBL (Object Build List)
DICTOBL (Object Build List)
DICTOBL (Object Build List) is a key-sequenced file that contains one record for each
element of each unique object in the dictionary. The primary key of the file is the
OBJECT field from DICTODF plus a sequentially assigned element number.

An object can contain one or more elements.

If an object or an element within an object is defined by a TYPE * or TYPE def-name
clause, elements of the referenced object are copied to each DICTOBL field for the
referring object. The top-level SOURCE-DEF field in this file contains the object
number of the referenced definition.

If a record's structure is defined by a DEFINITION IS def-name clause, DICTOBL
has no entry for the referenced object. Instead, linkage is made through DICTRDF
(Record Definition File). DICTRDF.DEF-NUMBER contains the object number of the
referenced definition. For all other records, DICTRDF.DEF-NUMBER contains the
object number of the record itself.

DICTOBL is different on G-series and H-series systems—see:

• Figure D-9, DICTOBL (Object Build List)—G-Series, on page D-16

• Figure D-10, DICTOBL (Object Build List)—H-Series, on page D-21

Change bars in Figure D-10 on page D-21 show where it differs from Figure D-9 on
page D-16.

These tables apply to both G-series and H-series systems:

• Table D-7, DICTOBL (Object Build List) Fields, on page D-25

• Table D-8, VALUE-TEXT Codes, on page D-32

• Table D-9, TACL-TYPE Codes, on page D-32

• Table D-10, OBJ-CLASS Codes, on page D-33

• Table D-11, STRUCTURE Codes, on page D-33

• Table D-12, SQL DATETIME Element Sizes, on page D-35

• Table D-13, SQL INTERVAL Element Sizes, on page D-36

Example D-2. Object With Multiple Elements

DEF example. ! Element 0
 02 field-1 PIC X. ! Element 1
 02 group-2 ! Element 2
 03 field-3 PIC X. ! Element 1
END
Data Definition Language (DDL) Reference Manual—529431-003
D-15

Dictionary Database Structure DICTOBL (Object Build List)
Figure D-9. DICTOBL (Object Build List)—G-Series (page 1 of 6)

Record OBL.
 File is "DICTOBL" Key-sequenced
 MaxExtents 500
 Code 204
 Audit.

 02 IDENTIFIER.

 03 OBJECT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Object/Number".

 03 ELEMENT Type Binary 16
 Display "I3"
 Heading "Element/Number".

 02 LEVEL Type Binary 16
 Display "I2"
 Heading "LV".

 02 LOCAL-NAME Type Character 30
 Heading "Element Name".

 02 COMMENT-TEXT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Comment/Text ID".

 02 VALUE-TEXT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Value/Text ID".

 02 AS-TEXT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "As/Text ID".

 02 HEADING-TEXT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Heading/Text ID".

 02 DISPLAY-TEXT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Display/Text ID".

 02 PICTURE-TEXT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Picture/Text ID".

 02 HELP-TEXT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Help/Text ID".

 02 MUST-BE-TEXT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Must Be/Text ID".
Data Definition Language (DDL) Reference Manual—529431-003
D-16

Dictionary Database Structure DICTOBL (Object Build List)
 02 EDIT-PIC-TEXT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Edit Pic/Text ID".

 02 TACL-TYPE Type Character 2
 UPSHIFT
 Heading "TACL/Type"
 MUST BE "CP", "DV", "EN", "FN",
 "F3", "PH", "SI", "SV",
 "TI", "TS", "UN", " ".

 02 SOURCE-DEF Pic "9(9)" COMP
 Display "[BZ]I10"
 Null 0
 Heading "Source/Def".

 02 ELEMENT-REDEFINED Type Binary 16
 Display "[BZ]I3"
 Heading "Element/Redefined".

 02 OBJ-CLASS Type Binary 16
 Display "[ZA1'Grp',PA1'Elm']I3"
 Heading "Grp/Elm".

 02 STRUCTURE Type Binary 16
 Display "I2"
 Heading "Data/Type".

 02 ELEMENT-SIZE Type Binary 16
 Display "I4"
 Heading "Size".

 02 SCALE Type Binary 16
 Display "[BZ]I2"
 Heading "Scale".

 02 OFFSET Type Binary 16
 Display "I4"
 Heading "Offset".

 02 OCCURS-MIN Type Binary 16
 VALUE 1
 Display "I4"
 Heading "Occurs/Min".

 02 OCCURS-MAX Type Binary 16
 VALUE 1
 Display "I4"
 Heading "Occurs/Max".

 02 OCCURS-MIN-OBJECT Pic "9(9)" COMP
 Display "[BZ]I10"
 Null 0
 Heading "Occurs Min/Object #".

 02 OCCURS-MAX-OBJECT Pic "9(9)" COMP
 Display "[BZ]I10"
 Null 0
 Heading "Occurs Max/Object #".

 02 OCCURS-ELEMENT Type Binary 16
 Display "I4"
 Heading "Occurs/Element".

Figure D-9. DICTOBL (Object Build List)—G-Series (page 2 of 6)
Data Definition Language (DDL) Reference Manual—529431-003
D-17

Dictionary Database Structure DICTOBL (Object Build List)
 02 STARTING Type Binary 16
 Display "I4"
 Heading "Starting/Element".

 02 ENDING Type Binary 16
 Display "I4"
 Heading "Ending/Element".

 02 TALBOUND Type Binary 16
 Heading "Talbound".

 02 NULL-VALUE Type Binary 16
 Display "I5"
 Heading "Null/Value".

 02 NULL-VALUE-OBJECT Pic "9(9)" COMP
 Display "[BZ]I10"
 Null 0
 Heading "Null Value/Object #".

 02 SPI-NULL-VALUE Type Binary 16
 Display "I5"
 Heading "SPI-Null/Value".

 02 SPI-NULL-VALUE-OBJECT Pic "9(9)" COMP
 Display "[BZ]I10"
 Null 0
 Heading "SPI-Null/Object #".

 02 NULL-VALUE-SPECIFIED Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "N"
 Heading "Null/Specified".

 02 SPI-NULL-VALUE-SPECIFIED Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "N"
 Heading "SPI-Null/Specified".

 02 UPSHIFT Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "N"
 Heading "Upshift".

 02 USER-DEFINED-FILLER Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "N"
 Heading "User Defined/Filler".

 02 PADDED-FILLER REDEFINES USER-DEFINED-FILLER
 Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "N"
 Heading "Padded/Filler".

Figure D-9. DICTOBL (Object Build List)—G-Series (page 3 of 6)
Data Definition Language (DDL) Reference Manual—529431-003
D-18

Dictionary Database Structure DICTOBL (Object Build List)
 02 GROUP-COMP Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "N"
 Heading "Computational".

 02 SOURCE-DEF-FLAG Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "N"
 Heading "Sourced/Item".

 02 NOVALUE Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "N"
 Heading "No Value".

 02 TACL-INHERITED Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 Heading "TACL Clause/Inherited".

 02 NULL-INHERITED Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 Heading "Null/Inherited".

 02 SPI-NULL-INHERITED Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 Heading "SPI-Null/Inherited".

 02 UPSHIFT-INHERITED Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 Heading "Upshift/Inherited".

 02 USAGE-IS-INDEX Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "N"
 Heading "Index/Usage".

 02 BIT-LENGTH Type Binary 32
 Display "I10"
 Heading "Bit Size".

 02 FIELD-ALIGN Type Binary 16
 Display "I4"
 Heading "Field/Alignment".

 02 BIT-OFFSET Type Binary 16
 Display "I4"
 Heading " Bit/Offset".

Figure D-9. DICTOBL (Object Build List)—G-Series (page 4 of 6)
Data Definition Language (DDL) Reference Manual—529431-003
D-19

Dictionary Database Structure DICTOBL (Object Build List)
 02 ENUM-DEF Pic "9(9)" COMP
 Display "[BZ]I10"
 Null 0
 Heading "Enum/Def".

 02 PASCALBOUND Type Binary 16
 Heading "Pascalbound".

 02 INDEX-NAME Type Character 30
 Heading "Indexed By".

 02 EXTERNAL-SPECIFIED Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "N"
 Heading "External".

 02 JUSTIFY Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "N"
 Heading "Justify".

 02 JUSTIFY-INHERITED Type Character 1
 MUST BE "Y", "N"
 VALUE "N"
 UPSHIFT
 Display "A1"
 Heading "Just-Right/Inherited".

 02 SQLNULLABLE-SPECIFIED Type Character 1
 MUST BE "Y", "N"
 VALUE "N"
 UPSHIFT
 Display "A1"
 Heading "SqlNull/Spec".

 02 INTERVAL-LEADING-PRECISION Type Binary 16
 Display "I4"
 Heading "Leading/Prec".

 02 DATETIME-FRACTION-PRECISION Type Binary 16
 Display "I4"
 Heading "Fraction/Prec".

 02 SQLNULLABLE-FLAG Type Character 1
 MUST BE "Y", "N"
 VALUE "N"
 UPSHIFT
 Display "A1"
 Heading "SqlNull/Flag".

 02 GROUP-COMP3 Type Character 1
 MUST BE "Y", "N"
 VALUE "N"
 UPSHIFT
 Display "A1"
 Heading "Computational-3".

 02 FILLER Type Character 2.

Figure D-9. DICTOBL (Object Build List)—G-Series (page 5 of 6)
Data Definition Language (DDL) Reference Manual—529431-003
D-20

Dictionary Database Structure DICTOBL (Object Build List)
 02 SQLNULLABLE-FILLERS Type Binary 16
 Display "I4"
 Heading "SqlNull/Filler"
 VALUE "0"
End

Figure D-10. DICTOBL (Object Build List)—H-Series (page 1 of 4)

Record OBL.
 File is "DICTOBL" Key-sequenced
 Code 204
 Audit
 MaxExtents 500.

 02 IDENTIFIER Type FIELD.

 02 LEVEL Type Binary 16
 Display "I2"
 Heading "LV".

 02 LOCAL-NAME Type NAME
 Heading "Element Name".

 02 COMMENT-TEXT Type TEXT-ID
 Heading "Comment/Text ID".

 02 VALUE-TEXT Type TEXT-ID
 Heading "Value/Text ID".

 02 AS-TEXT Type TEXT-ID
 Heading "As/Text ID".

 02 HEADING-TEXT Type TEXT-ID
 Heading "Heading/Text ID".

 02 DISPLAY-TEXT Type TEXT-ID
 Heading "Display/Text ID".

 02 PICTURE-TEXT Type TEXT-ID
 Heading "Picture/Text ID".

 02 HELP-TEXT Type TEXT-ID
 Heading "Help/Text ID".

 02 MUST-BE-TEXT Type TEXT-ID
 Heading "Must Be/Text ID".

 02 EDIT-PIC-TEXT Type TEXT-ID
 Heading "Edit Pic/Text ID".

 02 TACL-TYPE Type Character 2
 MUST BE "CP", "DV", "EN", "FN",
 "F3", "PH", "SI", "SV",
 "TI", "TS", "UN", " ".
 UPSHIFT
 Heading "TACL/Type"

 02 SOURCE-DEF Type OBJECT-NUMBER
 Null 0
 Heading "Source/Def".

Figure D-9. DICTOBL (Object Build List)—G-Series (page 6 of 6)
Data Definition Language (DDL) Reference Manual—529431-003
D-21

Dictionary Database Structure DICTOBL (Object Build List)
 02 ELEMENT-REDEFINED Type Binary 16
 Display "[BZ]I3"
 Heading "Element/Redefined".

 02 OBJ-CLASS Type Binary 16
 Display "[ZA1'Grp',PA1'Elm']I3"
 Heading "Grp/Elm".

 02 STRUCTURE Type Binary 16
 Display "I2"
 Heading "Data/Type".

 02 ELEMENT-SIZE Type Binary 16
 Display "I4"
 Heading "Size".

 02 SCALE Type Binary 16
 Display "[BZ]I2"
 Heading "Scale".

 02 OFFSET Type Binary 16
 Display "I4"
 Heading "Offset".

 02 OCCURS-MIN Type Binary 16
 VALUE 1
 Display "I4"
 Heading "Occurs/Min".

 02 OCCURS-MAX Type Binary 16
 VALUE 1
 Display "I4"
 Heading "Occurs/Max".

 02 OCCURS-MIN-OBJECT Type OBJECT-NUMBER
 Null 0
 Heading "Occurs Min/Object #".

 02 OCCURS-MAX-OBJECT Type OBJECT-NUMBER
 Display "[BZ]I10"
 Null 0
 Heading "Occurs Max/Object #".

 02 OCCURS-ELEMENT Type Binary 16
 Display "I4"
 Heading "Occurs/Element".

 02 STARTING Type Binary 16
 Display "I4"
 Heading "Starting/Element".

 02 ENDING Type Binary 16
 Display "I4"
 Heading "Ending/Element".

 02 TALBOUND Type Binary 16
 Heading "Talbound".

 02 NULL-VALUE Type *.

 02 NULL-VALUE-OBJECT Type OBJECT-NUMBER
 Null 0
 Heading "Null Value/Object #".

Figure D-10. DICTOBL (Object Build List)—H-Series (page 2 of 4)
Data Definition Language (DDL) Reference Manual—529431-003
D-22

Dictionary Database Structure DICTOBL (Object Build List)
 02 SPI-NULL-VALUE Type NULL-VALUE
 Heading "SPI-Null/Value".

 02 SPI-NULL-VALUE-OBJECT Type OBJECT-NUMBER
 Null 0
 Heading "SPI-Null/Object #".

 02 NULL-VALUE-SPECIFIED Type ASCII-SWITCH
 VALUE "N"
 Heading "Null/Specified".

 02 SPI-NULL-VALUE-SPECIFIED ASCII-SWITCH
 VALUE "N"
 Heading "SPI-Null/Specified".

 02 UPSHIFT ASCII-SWITCH
 VALUE "N"
 Heading "Upshift".

 02 USER-DEFINED-FILLER Type ASCII-SWITCH
 VALUE "N"
 Heading "User Defined/Filler".

 02 PADDED-FILLER REDEFINES USER-DEFINED-FILLER
 Type Character 1
 Heading "Padded/Filler".

 02 GROUP-COMP Type ASCII-SWITCH
 VALUE "N"
 Heading "Computational".

 02 SOURCE-DEF-FLAG Type ASCII-SWITCH
 VALUE "N"
 Heading "Sourced/Item".

 02 NOVALUE Type ASCII-SWITCH
 VALUE "N"
 Heading "No Value".

 02 TACL-INHERITED Type ASCII-SWITCH
 Heading "TACL Clause/Inherited".

 02 NULL-INHERITED Type ASCII-SWITCH
 Heading "Null/Inherited".

 02 SPI-NULL-INHERITED Type ASCII-SWITCH
 Heading "SPI-Null/Inherited".

 02 UPSHIFT-INHERITED Type ASCII-SWITCH
 Heading "Upshift/Inherited".

 02 USAGE-IS-INDEX Type ASCII-SWITCH
 VALUE "N"
 Heading "Index/Usage".

 02 BIT-LENGTH Type Binary 32
 Display "I10"
 Heading "Bit Size".

 02 FIELD-ALIGN Type Binary 16
 Display "I2"
 Heading "Field/Alignment".

Figure D-10. DICTOBL (Object Build List)—H-Series (page 3 of 4)
Data Definition Language (DDL) Reference Manual—529431-003
D-23

Dictionary Database Structure DICTOBL (Object Build List)
 02 BIT-OFFSET Type Binary 16
 Display "I4"
 Heading " Bit/Offset".

 02 ENUM-DEF Type OBJECT-NUMBER
 Null 0
 Heading "Enum/Def".

 02 PASCALBOUND Type Binary 16
 Heading "Pascalbound".

 02 INDEX-NAME Type NAME
 Heading "Indexed By".

 02 EXTERNAL-SPECIFIED Type ASCII-SWITCH
 VALUE "N"
 Heading "External".

 02 JUSTIFY Type ASCII-SWITCH
 VALUE "N"
 Heading "Justify".

 02 JUSTIFY-INHERITED Type ASCII-SWITCH
 VALUE "N"
 Heading "Just-Right/Inherited".

 02 SQLNULLABLE-SPECIFIED Type ASCII-SWITCH
 VALUE "N"
 Heading "SqlNull/Spec".

 02 INTERVAL-LEADING-PRECISION Type Binary 16
 VALUE 2
 Display "I4"
 Heading "Leading/Prec".

 02 DATETIME-FRACTION-PRECISION Type Binary 16
 VALUE 0
 Display "I4"
 Heading "Fraction/Prec".

 02 SQLNULLABLE-FLAG Type ASCII-SWITCH
 VALUE "N"
 Heading "SqlNull/Flag".

 02 GROUP-COMP3 Type ASCII-SWITCH
 VALUE "N"
 Heading "Computational-3".

 02 FILLER Type Character 2.

 02 SQLNULLABLE-FILLERS Type Binary 16
 VALUE 0
 Display "I4"
 Heading "SqlNull/Filler"

 Key is IDENTIFIER Duplicates not allowed.
 Key "SO" is SOURCE-DEF File is "DICTALT".

End

Figure D-10. DICTOBL (Object Build List)—H-Series (page 4 of 4)
Data Definition Language (DDL) Reference Manual—529431-003
D-24

Dictionary Database Structure DICTOBL (Object Build List)
Table D-7. DICTOBL (Object Build List) Fields (page 1 of 8)

Field Description

IDENTIFIER A unique identifier for each object in the dictionary,
consisting of the next two fields, OBJECT and
ELEMENT.

OBJECT The object number of the definition or record.

ELEMENT The element number of the group or field within the
object. Element numbers are assigned sequentially,
starting with 0. Element number 0 describes the
entire object.

LEVEL The level number of this element relative to the level
of the entire definition.

The first element (the object name) has a level of 0.
Subordinate groups and elementary items have
higher level values, but none greater than 49.
Although the level numbers in the schema can be
incremented by values greater than one, the DDL
compiler compresses all level values so that there is
no skipping.

This field also identifies Level 66 RENAMES and
Level 88 clauses, which have reserved level
numbers.

LOCAL-NAME A field with 30 ASCII characters, containing the
name of this element.

COMMENT-TEXT The text ID of the OTF record that contains any
comment for this element. If there is no comment
text, this field is set to 0.

VALUE-TEXT The text ID number of the OTF record that contains
the value string for this element. Values and lists of
values are represented in the OTF as sequences of
records that have one of the text types in Table D-8
on page D-32. If there is no value text, this field is set
to 0.

AS-TEXT The text ID of the OTF record that contains the
display text for level 89 items.

HEADING-TEXT The text ID of the OTF record that contains the
HEADING string for this element. The text type for
this field is S (string). If the element has no
HEADING clause, this field is set to 0.

DISPLAY-TEXT The text ID of the OTF record that contains the
DISPLAY string for this element. The text type for
this field is S (string). If the element has no DISPLAY
clause, this field is set to 0.
Data Definition Language (DDL) Reference Manual—529431-003
D-25

Dictionary Database Structure DICTOBL (Object Build List)
PICTURE-TEXT The text ID of the OTF record that contains the
PICTURE string for this element. The text type for
this field is S (string). If the element was not defined
with a PICTURE clause, this field is set to 0.

HELP-TEXT The text ID of the OTF record that contains the help
text for this element. The text type for this field is S
(string). If the element was not defined with a HELP
clause, this field is set to 0.

MUST-BE-TEXT The text ID of the OTF record that contains the
MUST BE string for this element. The MUST BE
string consists of a value, a list of values, or ranges
of values that can be entered in a field. If the element
was not defined with a MUST BE clause, this field is
set to 0.

Text items can be one of three text types (K, N, S),
as described under VALUE-TEXT. A single MUST
BE string can be made up of text items of different
types.

EDIT-PIC-TEXT The text ID of the OTF record containing the edit
picture value.

TACL-TYPE Contains a 2-character ASCII code identifying the
high-level TACL data type associated with the
element. Valid codes for this field are in Table D-9 on
page D-32. If this field is left blank, the item does not
have a high-level TACL data type.

Table D-7. DICTOBL (Object Build List) Fields (page 2 of 8)

Field Description
Data Definition Language (DDL) Reference Manual—529431-003
D-26

Dictionary Database Structure DICTOBL (Object Build List)
SOURCE-DEF The object number of the referenced definition when
this element is described by TYPE def-name or
TYPE *.

SOURCE-DEF is an alternate key to the OBL. The
DDL compiler uses this key to determine whether a
definition is referenced by any other record or
definition and to find the name of the referenced
definition. SOURCE-DEF is set to 0 for all elements
not defined with a TYPE clause.

If the referenced definition itself contains more than
one element, these elements are copied to the
current object's build list. SOURCE-DEF keeps only
one level of reference, as shown in Example D-3 on
page D-33.

If the object number of DATE is 1, the SOURCE-DEF
code for the element ORDER-DATE is 1, referring to
the object DATE. If the object number of ORD-
HEADER is 2, the SOURCE-DEF code for header is
2, referring to the element ORDER-DATE in the
object ORD-HEADER; in this case, SOURCE-DEF
does not indicate that ORDER-DATE in turn refers to
DATE.

ELEMENT-REDEFINED The element number of the group or field that this
element redefines if this element redefines another
element.

OBJ-CLASS An indicator that describes this element as a group
or elementary field; it can have one of the codes in
Table D-10 on page D-33.

STRUCTURE A field that identifies the storage structure of this
element if it is an elementary field (OBJ-CLASS=1).
The DDL compiler supports the STRUCTURE codes
in Table D-11 on page D-33.

Table D-7. DICTOBL (Object Build List) Fields (page 3 of 8)

Field Description
Data Definition Language (DDL) Reference Manual—529431-003
D-27

Dictionary Database Structure DICTOBL (Object Build List)
ELEMENT-SIZE The number of bytes per occurrence of this element.
The total size of the element is equal to ELEMENT-
SIZE times OCCURS-MAX.

For an SQL VARCHAR element, this field contains
the actual length of the element.

For SQL DATETIME elements, this field contains the
byte length needed for the longest possible ANSI
DATETIME string with a specific SQL DATETIME
qualifier, as listed in Table D-12 on page D-35.

For SQL INTERVAL elements, this field contains the
value of the byte length required for the longest
possible interval string with a specific interval
qualifier, as listed in Table D-13 on page D-36.

SCALE The scale factor in a numeric field; the scale is equal
to the number of positions to the right of the implied
decimal point.

OFFSET The number of bytes from the first byte of the object
to the first byte of this element; byte numbering
begins with 0.

OCCURS-MIN The minimum number of times LOCAL-NAME
occurs; the default value is 1.

If the element is described by an OCCURS min TO
max TIMES DEPENDING ON clause, this field
contains the value of min.

OCCURS-MAX The number of times LOCAL-NAME occurs; the
default value is 1.

If the element is described by an OCCURS max
TIMES clause, this field contains the value max.

OCCURS-MIN-OBJECT If min is defined as a constant, contains the object
number of the constant; otherwise, it is 0.

OCCURS-MAX-OBJECT If max is defined by a constant, contains the object
number of the constant; otherwise, it is 0.

OCCURS-ELEMENT The element number of the field in an OCCURS
DEPENDING ON field-name clause. This element
must be defined as an integer. If there is no
DEPENDING ON clause, the field is set to 0.

STARTING The first element of the set of elements renamed by
a level 66 RENAMES clause, where this starting
element has the same offset as renaming element.

Table D-7. DICTOBL (Object Build List) Fields (page 4 of 8)

Field Description
Data Definition Language (DDL) Reference Manual—529431-003
D-28

Dictionary Database Structure DICTOBL (Object Build List)
ENDING The last element of the set of elements renamed by
a level 66 RENAMES clause, where this ending
element ends at the same position as the renaming
element.

TALBOUND Contains a binary value that specifies the lower limit
of pTAL or TAL arrays. Valid values are 0 and 1. The
default value for this field is 1.

NULL-VALUE The ASCII value used by the DDL compiler when
producing FUP source output for an alternate key.

NULL-VALUE-OBJECT If the null value is defined by a constant, contains the
object number of the constant; otherwise, it is 0.

SPI-NULL-VALUE Contains a user-specified SPI null value used by SPI
to process token maps.

SPI-NULL-VALUE-OBJECT If the SPI null value is defined by a constant,
contains the object number of the constant;
otherwise, it is 0.

NULL-VALUE-SPECIFIED Contains the ASCII character Y (yes) to indicate this
item has a null value or N (no) to indicate it does not.
N is the default.

SPI-NULL-VALUE-SPECIFIED Contains the ASCII character Y (yes) to indicate a
SPI null value was explicitly specified for this object
or N (no) to indicate it was not. N is the default.

UPSHIFT Contains the ASCII character Y (yes) to indicate this
data item is to be upshifted or N (no) to indicate it is
not to be upshifted. N is the default.

Only an elementary item can be upshifted. The field
must be declared as alphabetic or alphanumeric.

USER-DEFINED-FILLER Contains the ASCII character Y (yes) to indicate this
field is a user-defined FILLER field or N (no) to
indicate it is not. N is the default.

PADDED-FILLER Contains the ASCII character Y (yes) to indicate that
an SQL VARCHAR element has an odd byte length
and has an OCCURS clause associated with it;
contains N (no) to indicate that the element does not.
N is the default.

GROUP-COMP For group items; contains the ASCII character Y
(yes) to indicate the group is defined as
computational or N (no) to indicate it is not. All
elementary items within a group defined as
computational are treated as though they were
individually defined as computational. N is the
default.

Table D-7. DICTOBL (Object Build List) Fields (page 5 of 8)

Field Description
Data Definition Language (DDL) Reference Manual—529431-003
D-29

Dictionary Database Structure DICTOBL (Object Build List)
SOURCE-DEF-FLAG Contains the ASCII character Y (yes) to indicate this
item is defined with TYPE * or TYPE def-name or N
(no) to indicate it is not. N is the default.

NOVALUE Contains the ASCII character Y (yes) or N (no) to
indicate whether this item has the NOVALUE
attribute. NOVALUE suppresses any VALUE IS
clause in a referenced definition. NOVALUE can be
specified only for a field or group definition defined
with a TYPE clause. N is the default.

TACL-INHERITED Contains the ASCII character Y (yes) to indicate the
TACL type was inherited from a definition or N (no)
to indicate the type was explicitly specified.

NULL-INHERITED Contains the ASCII character Y (yes) to indicate the
null was inherited from a definition or N (no) to
indicate it was explicitly specified.

SPI-NULL-INHERITED Contains the ASCII character Y (yes) to indicate the
SPI null was inherited from a definition or from the
default, or N (no) to indicate the SPI null was
explicitly specified.

UPSHIFT-INHERITED Contains the ASCII character Y (yes) to indicate the
upshift was inherited from a definition or from the
default, or N (no) to indicate the upshift was explicitly
specified.

USAGE-IS-INDEX Contains the ASCII character Y (yes) or N (no) to
indicate whether the item is to be used as an index.
This field is set to Y if the definition or description of
the item includes a USAGE IS INDEX clause. N is
the default.

BIT-LENGTH Contains the bit length of the current item. For an
item that is not a bit map, the bit length is a multiple
of 8. For a bit map item, the bit length is a value from
1 to 15.

FIELD-ALIGN Contains the alignment method used when storing
the item. C00CALIGN is the default.

BIT-OFFSET Contains the bit offset from the (byte) offset that this
elementary item is in. For an item that is not a bit
map, the bit offset value is 0. For a bit map item, the
bit offset value is from 0 to 15. (A group item that is a
bit map or maps always starts on a word boundary.)
The bit offset from the start of the structure for any
item is the value of the BIT-OFFSET field plus 8
times the value of the OFFSET field in the DICTOBL
file.

Table D-7. DICTOBL (Object Build List) Fields (page 6 of 8)

Field Description
Data Definition Language (DDL) Reference Manual—529431-003
D-30

Dictionary Database Structure DICTOBL (Object Build List)
ENUM-DEF Contains the object number of the enumeration
definition specified in the ENUM clause of a bit map
item. For an item that is not a bit map, this field
contains the null value for OBJECT-NUMBER.

PASCALBOUND
(D-series systems only)

Contains the value of the lower bound, 0 or 1, for
Pascal arrays. 1 is the default.

INDEX-NAME Contains the index name specified in the INDEXED
BY attribute, padded with blanks.

EXTERNAL-SPECIFIED Contains the ASCII character Y (yes) if the element
is to be external. This attribute permits you to output
the EXTERNAL clause in COBOL. Only elements of
object name level can have this attribute. N (no) is
the default.

JUSTIFY Contains the ASCII character Y (yes) or N (no)
depending on whether the element is to be right
justified. N is the default.

JUSTIFY-INHERITED Contains the ASCII character Y (yes) if the element
is to be justified right because that attribute was
inherited from a definition, or N (no) if right
justification was specified on the line item by the
appropriate clause. N is the default.

SQLNULLABLE-SPECIFIED Contains the ASCII character Y (yes) if the line item
has the [NOT]SQLNULLABLE clause specified, or N
(no) if no such clause is specified. N is the default.

If the value of this field is Y, the value of the
SQLNULLABLE-FLAG field, described below,
indicates whether SQLNULLABLE or NOT
SQLNULLABLE is specified. (If the value of this field
is N and the value of the SQLNULLABLE-FLAG field
is Y, the indication is that the line item, although it
has no explicit SQL-nullability specification, is
nevertheless SQL-nullable because of a specification
at the group level above.)

INTERVAL-LEADING-PRECISION Contains the number of significant digits specified as
the start-field-precision of the SQL INTERVAL line
item. Only line items of data type SQL INTERVAL
use this field. The valid range for this value is 1
through 18. If no start-field-precision is
specified, the default value for this field is 2.

Table D-7. DICTOBL (Object Build List) Fields (page 7 of 8)

Field Description
Data Definition Language (DDL) Reference Manual—529431-003
D-31

Dictionary Database Structure DICTOBL (Object Build List)
DATETIME-FRACTION-PRECISION Contains the number of significant digits with which
the fraction of a second is specified. This field stores
the value of end-field-precision of FRACTION (one of
the end-date-time qualifiers) in an SQL DATETIME
or SQL INTERVAL line item. The valid range for this
value is 1 through 6. If end-field-precision is
not specified, the default value for this field is 6. If no
end-date-time qualifier is specified with FRACTION,
the default value for this field is zero.

SQLNULLABLE-FLAG Contains the ASCII character Y (yes) if the line item
is SQL-nullable, or N (no) if it is not. N is the default.

GROUP-COMP3 Contains the ASCII character Y (yes) if the line item
is of type PACKED-DECIMAL or N (no) if it is not. N
is the default.

SQLNULLABLE-FILLERS Contains the number of fillers required to add after
INDICATOR field to make the SQL-nullable well-
aligned for SHARED8 alignment. This field is only
used for SHARED8 alignment.

Table D-8. VALUE-TEXT Codes

Code Meaning

K Keyword

N ASCII representation of a numeric literal

S Alphanumeric string

E Enumeration value name

J National string

Table D-9. TACL-TYPE Codes (page 1 of 2)

Code TACL Type

CP CRTPID

DV DEVICE

EN ENUM

FN FNAME

F3 FNAME32

PH PHANDLE

SI SSID

SV SUBVOL

Table D-7. DICTOBL (Object Build List) Fields (page 8 of 8)

Field Description
Data Definition Language (DDL) Reference Manual—529431-003
D-32

Dictionary Database Structure DICTOBL (Object Build List)
TI TRANSID

TS TSTAMP

UN USERNAME

Example D-3. SOURCE-DEF Field

DEF date.
 02 year PIC 99.
 02 month PIC 99.
 02 day PIC 99.
END

DEF ord-header.
 02 order-date TYPE date.
END

DEF order.
 02 header TYPE ord-header.
END

Table D-10. OBJ-CLASS Codes

Code Meaning

0 Group field

1 Elementary field

Table D-11. STRUCTURE Codes (page 1 of 3)

Code Meaning

0 Alphanumeric string

1 Numeric string unsigned

2 Binary 16 signed

3 Binary 16 unsigned

4 Binary 32 signed

5 Binary 32 unsigned

6 Binary 64 signed

8 Float 32

9 Complex 32*2

10 Float 64

12 Numeric string trailing embedded sign

13 Numeric string trailing separate sign

Table D-9. TACL-TYPE Codes (page 2 of 2)

Code TACL Type
Data Definition Language (DDL) Reference Manual—529431-003
D-33

Dictionary Database Structure DICTOBL (Object Build List)
14 Numeric string leading embedded sign

15 Numeric string leading separate sign

17 Logical*1

19 Logical*2

21 Logical*4

22 Binary 8 signed

23 Binary 8 unsigned

24 SQL VARCHAR

25 Enumeration

26 Bit signed

27 Bit unsigned

28 National string

32 SQL DATETIME YEAR

33 SQL DATETIME MONTH

34 SQL DATETIME YEAR TO MONTH

35 SQL DATETIME DAY

36 SQL DATETIME MONTH TO DAY

37 SQL DATETIME YEAR TO DAY

38 SQL DATETIME HOUR

39 SQL DATETIME DAY TO HOUR

40 SQL DATETIME MONTH TO HOUR

41 SQL DATETIME YEAR TO HOUR

42 SQL DATETIME MINUTE

43 SQL DATETIME HOUR TO MINUTE

44 SQL DATETIME DAY TO MINUTE

45 SQL DATETIME MONTH TO MINUTE

46 SQL DATETIME YEAR TO MINUTE

47 SQL DATETIME SECOND

48 SQL DATETIME MINUTE TO SECOND

49 SQL DATETIME HOUR TO SECOND

50 SQL DATETIME DAY TO SECOND

51 SQL DATETIME MONTH TO SECOND

52 SQL DATETIME YEAR TO SECOND

53 SQL DATETIME FRACTION

Table D-11. STRUCTURE Codes (page 2 of 3)

Code Meaning
Data Definition Language (DDL) Reference Manual—529431-003
D-34

Dictionary Database Structure DICTOBL (Object Build List)
54 SQL DATETIME SECOND TO FRACTION

55 SQL DATETIME MINUTE TO FRACTION

56 SQL DATETIME HOUR TO FRACTION

57 SQL DATETIME DAY TO FRACTION

58 SQL DATETIME MONTH TO FRACTION

59 SQL DATETIME YEAR TO FRACTION

60 SQL INTERVAL YEAR

61 SQL INTERVAL MONTH

62 SQL INTERVAL YEAR TO MONTH

63 SQL INTERVAL DAY

64 SQL INTERVAL HOUR

65 SQL INTERVAL DAY TO HOUR

66 SQL INTERVAL MINUTE

67 SQL INTERVAL HOUR TO MINUTE

68 SQL INTERVAL DAY TO MINUTE

69 SQL INTERVAL SECOND

70 SQL INTERVAL MINUTE TO SECOND

71 SQL INTERVAL HOUR TO SECOND

72 SQL INTERVAL DAY TO SECOND

73 SQL INTERVAL FRACTION

74 SQL INTERVAL SECOND TO FRACTION

75 SQL INTERVAL MINUTE TO FRACTION

76 SQL INTERVAL HOUR TO FRACTION

77 SQL INTERVAL DAY TO FRACTION

Table D-12. SQL DATETIME Element Sizes (page 1 of 2)

Code Meaning Element Size

32 SQL DATETIME YEAR 4

33 SQL DATETIME MONTH 2

34 SQL DATETIME YEAR TO MONTH 7

35 SQL DATETIME DAY 2

36 SQL DATETIME MONTH TO DAY 5

37 SQL DATETIME YEAR TO DAY 10

38 SQL DATETIME HOUR 2

Table D-11. STRUCTURE Codes (page 3 of 3)

Code Meaning
Data Definition Language (DDL) Reference Manual—529431-003
D-35

Dictionary Database Structure DICTOBL (Object Build List)
39 SQL DATETIME DAY TO HOUR 5

40 SQL DATETIME MONTH TO HOUR 8

41 SQL DATETIME YEAR TO HOUR 13

42 SQL DATETIME MINUTE 2

43 SQL DATETIME HOUR TO MINUTE 5

44 SQL DATETIME DAY TO MINUTE 8

45 SQL DATETIME MONTH TO MINUTE 11

46 SQL DATETIME YEAR TO MINUTE 16

47 SQL DATETIME SECOND 2

48 SQL DATETIME MINUTE TO SECOND 5

49 SQL DATETIME HOUR TO SECOND 8

50 SQL DATETIME DAY TO SECOND 11

51 SQL DATETIME MONTH TO SECOND 14

52 SQL DATETIME YEAR TO SECOND 19

53 SQL DATETIME FRACTION 6

54 SQL DATETIME SECOND TO FRACTION 9

55 SQL DATETIME MINUTE TO FRACTION 12

56 SQL DATETIME HOUR TO FRACTION 15

57 SQL DATETIME DAY TO FRACTION 18

58 SQL DATETIME MONTH TO FRACTION 21

59 SQL DATETIME YEAR TO FRACTION 26

Table D-13. SQL INTERVAL Element Sizes (page 1 of 2)

Code Meaning Element

60 SQL INTERVAL YEAR 3

61 SQL INTERVAL MONTH 3

62 SQL INTERVAL YEAR TO MONTH 6

63 SQL INTERVAL DAY 3

64 SQL INTERVAL HOUR 3

65 SQL INTERVAL DAY TO HOUR 6

66 SQL INTERVAL MINUTE 3

67 SQL INTERVAL HOUR TO MINUTE 6

68 SQL INTERVAL DAY TO MINUTE 9

69 SQL INTERVAL SECOND 3

Table D-12. SQL DATETIME Element Sizes (page 2 of 2)

Code Meaning Element Size
Data Definition Language (DDL) Reference Manual—529431-003
D-36

Dictionary Database Structure DICTODF (Object Definition File)
DICTODF (Object Definition File)
DICTODF (Object Definition File) is a key-sequenced file that contains one record for
each object in the dictionary.

DICTODF is an important entry point into the dictionary. Given an object name and
object type, DICTODF provides the object number. Given an object number, DICTODF
provides the object type and name.

DICTODF is different on G-series and H-series systems—see:

• Figure D-11, DICTODF (Object Definition File)—G-Series, on page D-37

• Figure D-12, DICTODF (Object Definition File)—H-Series, on page D-39

Change bars in Figure D-12 on page D-39 show where it differs from Figure D-11 on
page D-37.

These tables apply to both G-series and H-series systems:

• Table D-14, DICTODF (Object Definition File) Fields, on page D-39

• Table D-15, OBJ-TYPE Values, on page D-40

70 SQL INTERVAL MINUTE TO SECOND 6

71 SQL INTERVAL HOUR TO SECOND 9

72 SQL INTERVAL DAY TO SECOND 12

73 SQL INTERVAL FRACTION 7

74 SQL INTERVAL SECOND TO FRACTION 10

75 SQL INTERVAL MINUTE TO FRACTION 13

76 SQL INTERVAL HOUR TO FRACTION 16

77 SQL INTERVAL DAY TO FRACTION 19

Figure D-11. DICTODF (Object Definition File)—G-Series (page 1 of 2)

Record ODF.
 File is "DICTODF" Key-sequenced
 Code 202
 Audit.

 02 OBJECT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Object/Number".

Table D-13. SQL INTERVAL Element Sizes (page 2 of 2)

Code Meaning Element
Data Definition Language (DDL) Reference Manual—529431-003
D-37

Dictionary Database Structure DICTODF (Object Definition File)
 02 IDENTIFIER Null " "
 Heading "Object Identifier".

 03 OBJ-TYPE Type Character 2
 MUST BE "ID","RD","CD","TT",
 "TC","TM","SR","SV",
 "RQ","TB"
 UPSHIFT
 Heading "Obj/Type".

 03 NAME Type Character 30
 Heading "Object Name".

 02 VERSION Type Binary 16 Unsigned
 Display "I3"
 Heading "Cur/Ver".

 02 DATE-CREATED Type Character 6
 Heading "Date-Time/Created".

 02 CREATOR-USERID Heading "Created By"
 TACL USERNAME.

 03 GROUP-NAME Type Character 8
 UPSHIFT
 Heading "Group".

 03 USER-NAME Type Character 8
 UPSHIFT
 Heading "User".

 02 DATE-MODIFIED Type Character 6
 Heading "Date-Time/
 Last Modified".

 02 MODIFIER-USERID Heading "Modified By"
 TACL USERNAME.

 03 GROUP-NAME Type Character 8
 UPSHIFT
 Heading "Group".

 03 USER-NAME Type Character 8
 UPSHIFT
 Heading "User".

 02 COMMENT-TEXT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Comments/Text Id".

 Key is OBJECT Duplicates not allowed.
 Key "ID" is IDENTIFIER Duplicates not allowed.

End

Figure D-11. DICTODF (Object Definition File)—G-Series (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
D-38

Dictionary Database Structure DICTODF (Object Definition File)
Figure D-12. DICTODF (Object Definition File)—H-Series

Record ODF.
 File is "DICTODF" Key-sequenced
 Code 202
 Audit
 MaxExtents 500.

 02 OBJECT Type OBJECT-NUMBER.

 02 IDENTIFIER Type OBJECT-IDENTIFIER.

 02 VERSION Type Binary 16 Unsigned
 Display "I3"
 Heading "Cur/Ver".

 02 DATE-CREATED Type INTERNAL-TIMESTAMP
 Heading "Date-Time/Created".

 02 CREATOR-USERID Type USERID-NAME
 Heading "Created By".

 02 DATE-MODIFIED Type INTERNAL-TIMESTAMP
 Heading "Date-Time/
 Last Modified".

 02 MODIFIER-USERID Type USERID-NAME
 Heading "Modified By".

 02 COMMENT-TEXT Type TEXT-ID
 Heading "Comments/Text Id".

 Key is OBJECT Duplicates not allowed.
 Key "ID" is IDENTIFIER File is "DICALT" Duplicates not allowed.

End

Table D-14. DICTODF (Object Definition File) Fields (page 1 of 2)

Field Description

OBJECT The object number, a system-assigned number that uniquely
identifies each object within the dictionary.

Each object corresponds to exactly one identifier.

IDENTIFIER A unique identifier of each object in the dictionary, consisting of the
next two fields, OBJ-TYPE and NAME.

OBJ-TYPE A 2-byte field that has one of the values in Table D-15 on page D-40.

NAME A 30-byte field containing the object's name, which must be unique
within the type.

Object names must begin with an alphabetic character. A dash (-)
can be used as a word separator within a name. Records and
definitions cannot have the same name.
Data Definition Language (DDL) Reference Manual—529431-003
D-39

Dictionary Database Structure DICTODF (Object Definition File)
VERSION An integer value that is incremented every time the object is updated
in this dictionary.

Because the DDL compiler does not allow partial updating of an
object, VERSION reflects how many times the object has been
compiled since the dictionary was created.

DATE-CREATED A 6-byte timestamp taken from the system when the object is added
to the dictionary.

CREATOR-USERID A group field that describes the user ID of the person who created
this dictionary. CREATOR-USERID consists of the next two fields,
GROUP-NAME and USER-NAME.

GROUP-NAME The name of the group to which the user belongs.

USER-NAME A name identifying the user within the group.

DATE-MODIFIED A 6-byte timestamp that is updated every time the object is modified.
DATE-MODIFIED is initially set to the same value as DATE-
CREATED.

MODIFIER-USERID A group field that describes the user ID of the last person to modify
this dictionary. MODIFIER-USERID consists of the next two fields,
GROUP-NAME and USER-NAME.

GROUP-NAME The name of the group to which the user belongs.

USER-NAME A name identifying the user within the group.

COMMENT-TEXT A 32-bit number that identifies the comment text associated with the
object.

If no comment precedes the object, or the COMMENTS command is
not set when the object is added to the dictionary, this field is set to 0;
otherwise, the field contains the partial key to the comment text
stored in DICTOTF.

For a DEFINITION object, the comment text associated with the
object is identified by the COMMENT-TEXT field in the DICTOBL file,
not in the DICTODF file.

Table D-15. OBJ-TYPE Values (page 1 of 2)

Value Object Type Description

CD CONSTANT Constant

ID DEFINITION Field definition or group or field description

RD RECORD Record

TT TOKEN TYPE SPI token type

TC TOKEN CODE SPI token code

TM TOKEN MAP SPI token map

* This object type is defined and used in Pathmaker applications.

Table D-14. DICTODF (Object Definition File) Fields (page 2 of 2)

Field Description
Data Definition Language (DDL) Reference Manual—529431-003
D-40

Dictionary Database Structure DICTOTF (Object Text File)
DICTOTF (Object Text File)
DICTOTF (Object Text File) is a key-sequenced file that contains all of the text items
associated with a schema. Each text block is assigned a unique text ID that links
objects and elements to their associated text items in DICTOTF.

DICTOTF is different on G-series and H-series systems—see:

• Figure D-13, DICTOTF (Object Text File)—G-Series, on page D-41

• Figure D-14, DICTOTF (Object Text File)—H-Series, on page D-42

Change bars in Figure D-14 on page D-42 show where it differs from Figure D-13 on
page D-41.

These tables apply to both G-series and H-series systems:

• Table D-16, DICTOTF (Object Text File) Fields, on page D-44

• Table D-17, TEXT-TYPE Codes, on page D-45

SR SERVER* Application program that performs one or more services

SV SERVICE* Unit of work performed by a server

RQ REQUESTER* Equivalent to a SCREEN COBOL program

SC SCREEN* Equivalent to the SCREEN SECTION of a SCREEN COBOL
program.

Figure D-13. DICTOTF (Object Text File)—G-Series (page 1 of 2)

Record OTF.
 File is "DICTOTF" Key-sequenced
 Code 203
 Audit.

 02 IDENTIFIER.

 03 TEXT-ID Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Text Id/Number".

 03 LINE-NUMBER Type Binary 16 Unsigned
 Heading "Line/Num".

 02 CONSTANT-ID Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Constant/Object #".

Table D-15. OBJ-TYPE Values (page 2 of 2)

Value Object Type Description

* This object type is defined and used in Pathmaker applications.
Data Definition Language (DDL) Reference Manual—529431-003
D-41

Dictionary Database Structure DICTOTF (Object Text File)
 02 CONSTANT-TYPE-STRING PIC "XX"
 88 CONSTANT-STRING Value is "ST".
 88 CONSTANT-VERSION Value is "VR".
 88 CONSTANT-BINARY-16 Value is "2S".
 88 CONSTANT-BINARY-UNSIGNED Value is "2U".
 88 CONSTANT-BINARY-32 Value is "4S".
 88 CONSTANT-BINARY-32-UNSIGNED Value is "4U".
 88 CONSTANT-BINARY-64 Value is "8S".
 88 CONSTANT-NATIONAL-STRING Value is "NS".

 02 CONSTANT-TYPE Redefines CONSTANT-TYPE-STRING Type Binary 16.

 02 CONSTANT-TYPE-EXPLICIT Type Character 1
 MUST BE "Y","N"
 UPSHIFT
 Display "A1"
 Heading "Type/Explicitly Given".

 02 LOCALE-NAME Type Character 16.
 Heading "Locale Name".

 02 LN-CONSTANT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Constant/Locale #".

 02 TEXT-LEN Type Binary 16 Unsigned
 Heading "Text/Len".

 02 TEXT-TYPE Type Character 1
 MUST BE "K", "N", "S", "E" or "J"
 UPSHIFT
 Heading "TX/TP".

 02 TEXT-LINE Heading "Text Line".
 03 BYTE Type Character 1
 Occurs 1 to 132 times depending on TEXT-LEN.

 Key is IDENTIFIER Duplicates not allowed.

End

Figure D-14. DICTOTF (Object Text File)—H-Series (page 1 of 2)

Record OTF.
 File is "DICTOTF" Key-sequenced
 Code 203
 Audit
 MaxExtents 500.

 02 IDENTIFIER.

 03 TEXT-ID Type *.

 03 LINE-NUMBER Type Binary 16 Unsigned
 Heading "Line/Num".

 02 CONSTANT-ID Type OBJECT-NUMBER
 Heading "Constant/Object #".

Figure D-13. DICTOTF (Object Text File)—G-Series (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
D-42

Dictionary Database Structure DICTOTF (Object Text File)
 02 CONSTANT-TYPE-STRING PIC "XX"
 88 CONSTANT-STRING Value is "ST".
 88 CONSTANT-VERSION Value is "VR".
 88 CONSTANT-BINARY-16 Value is "2S".
 88 CONSTANT-BINARY-UNSIGNED Value is "2U".
 88 CONSTANT-BINARY-32 Value is "4S".
 88 CONSTANT-BINARY-32-UNSIGNED Value is "4U".
 88 CONSTANT-BINARY-64 Value is "8S".
 88 CONSTANT-NATIONAL-STRING Value is "NS".

 02 CONSTANT-TYPE Redefines CONSTANT-TYPE-STRING Type Binary 16.

 02 CONSTANT-TYPE-EXPLICIT Type ASCII-SWITCH
 Heading "Type/Explicitly Given".

 02 LOCALE-NAME Type Character 16.
 Heading "Locale Name".

 02 LN-CONSTANT Type OBJECT-NUMBER
 Heading "Constant/Locale #".

 02 TEXT-LEN Type Binary 16 Unsigned
 Heading "Text/Len".

 02 TEXT-TYPE Type Character 1
 MUST BE "K", "N", "S", "E" or "J"
 UPSHIFT
 Heading "TX/TP".

 02 TEXT-LINE Heading "Text Line".
 03 BYTE Type Character 1
 Occurs 1 to 132 times depending on TEXT-LEN.

 Key is IDENTIFIER Duplicates not allowed.

End

Figure D-14. DICTOTF (Object Text File)—H-Series (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
D-43

Dictionary Database Structure DICTOTF (Object Text File)
Table D-16. DICTOTF (Object Text File) Fields

Field Description

IDENTIFIER A group that uniquely identifies each record in DICTOTF,
consisting of the next two fields, TEXT-ID and LINE-
NUMBER.

TEXT-ID A number that uniquely identifies a text item.

The value of TEXT-ID can be used as a link to DICTODF
and DICTOBL through the following fields:

• ODF.COMMENT-TEXT
• OBL.COMMENT-TEXT
• OBL.DISPLAY-TEXT
• OBL.HEADING-TEXT
• OBL.HELP-TEXT
• OBL.MUST-BE-TEXT
• OBL.PICTURE-TEXT
• OBL.VALUE-TEXT

DISPLAY, HEADING, and PICTURE strings can have only
one line of text for each text ID; otherwise, a text ID can
have multiple lines of text associated with it.

LINE-NUMBER A number that uniquely identifies each line of text
associated with a text item. Line numbers are assigned
sequentially from 0.

CONSTANT-ID If the text element was defined by referring to a constant,
contains the object number of the constant; otherwise, it is
0.

CONSTANT-TYPE-STRING A two-character ASCII code that identifies the type of
constant.

CONSTANT-TYPE A numeric code identifying the type of constant.

CONSTANT-TYPE-EXPLICIT Contains an ASCII character “Y” (yes) to indicate the
constant type was entered explicitly or “N” (no) to indicate
the constant type was inherited from another constant or by
default.

LOCALE-NAME The locale name for an internationalization item.

LN-CONSTANT If the locale name was defined by referring to a constant,
contains the object number of the constant; otherwise, it is
0.

TEXT-LEN The number of bytes of text in TEXT-LINE.

TEXT-TYPE A code in Table D-17 on page D-45 that identifies the type
of text stored in TEXT-LINE. For more information about
text types, see Text Items on page D-2.

TEXT-LINE The text line identified by TEXT-ID and LINE number. Each
line of text is a variable length string of from 0 through 132
bytes.
Data Definition Language (DDL) Reference Manual—529431-003
D-44

Dictionary Database Structure DICTOUF (Object Usage File)
DICTOUF (Object Usage File)
DICTOUF (Object Usage File) is a key-sequenced file that contains one record for
each object that is used by another object. This file indicates which objects are used by
which other objects. For example, in the following statements, definition B uses
definition A:

DEF A TYPE BINARY 16.
DEF B TYPE A.

DICTOUF is different on G-series and H-series systems—see:

• Figure D-15, DICTOUF (Object Usage File)—G-Series, on page D-45

• Figure D-16, DICTOUF (Object Usage File)—H-Series, on page D-46

Change bars in Figure D-16 on page D-46 show where it differs from Figure D-15 on
page D-45.

These tables apply to both G-series and H-series systems:

• Table D-18, DICTOUF (Object Usage File) Fields, on page D-46

• Table D-19, OBJECT-TYPE Codes, on page D-47

Table D-17. TEXT-TYPE Codes

Code Meaning

K Keyword

N ASCII representation of a numeric literal

S Alphanumeric string

E Enumeration value name

J National string

Figure D-15. DICTOUF (Object Usage File)—G-Series (page 1 of 2)

Record OUF.
 File is "DICTOUF" Key-sequenced
 Code 208
 Audit.

 02 IDENTIFIER.

 03 OBJECT-USED Null 0
 Heading "Object/Used".

 04 OBJ-TYPE Type Character 2
 MUST BE "ID","RD","CD" "TT",
 "TC","TM","SR","SV",
 "RQ","TB"
 UPSHIFT
 Heading "Obj/Type".

 04 NAME Type Character 30
 Heading "Object Name".
Data Definition Language (DDL) Reference Manual—529431-003
D-45

Dictionary Database Structure DICTOUF (Object Usage File)
 03 CONSUMER Null 0
 Heading "Consumer/Object".

 04 OBJ-TYPE Type Character 2
 MUST BE "ID","RD","CD" "TT",
 "TC", TM","SR","SV",
 "RQ","TB"
 UPSHIFT
 Heading "Obj/Type".

 04 NAME Type Character 30
 Heading "Object Name".

 02 REPLACEMENT-ALLOWED Type Character 1.
 88 REPLACEMENT-IS-ALLOWED Value is "Y".
 88 REPLACEMENT-NOT-ALLOWED Value is "N".

 Key is IDENTIFIER Duplicates not allowed.
 Key "OC" is CONSUMER.

End

Figure D-16. DICTOUF (Object Usage File)—H-Series

Record OUF.
 File is "DICTOUF" Key-sequenced
 Code 208
 Audit
 MaxExtents 500.

 02 IDENTIFIER.

 03 OBJECT-USED Type OBJECT-IDENTIFIER
 Null 0
 Heading "Object/Used".

 03 CONSUMER Type OBJECT-IDENTIFIER
 Null 0
 Heading "Consumer/Object".

 02 REPLACEMENT-ALLOWED Type Character 1.
 88 REPLACEMENT-IS-ALLOWED Value is "Y".
 88 REPLACEMENT-NOT-ALLOWED Value is "N".

 Key is IDENTIFIER Duplicates not allowed.
 Key "OC" is CONSUMER File is "DICTOUK".

End

Table D-18. DICTOUF (Object Usage File) Fields (page 1 of 2)

Field Description

IDENTIFIER The unique key of the OUF record, consisting of the next
two group fields, OBJECT-USED and CONSUMER.

OBJECT-USED A group field that identifies the object being used,
consisting of the fields OBJECT-TYPE and NAME.

CONSUMER A group field that identifies the using object (or consumer),
consisting of the fields OBJECT-TYPE and NAME.

Figure D-15. DICTOUF (Object Usage File)—G-Series (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
D-46

Dictionary Database Structure DICTOUK (Object Usage Key File)
DICTOUK (Object Usage Key File)
DICTOUK (Object Usage Key File) is a key-sequenced file that contains alternate keys
for DICTOUF (Object Usage File) on page D-45.

DICTRDF (Record Definition File)
DICTRDF (Record Definition File) is a key-sequenced file that contains one record for
each record in the dictionary. Each RDF record contains the object number, definition
number, file name, and file type of the dictionary record.

DICTRDF is different on G-series and H-series systems—see:

• Figure D-17, DICTRDF (Record Definition File)—G-Series, on page D-48

• Figure D-18, DICTRDF (Record Definition File)—H-Series, on page D-50

OBJECT-TYPE Contains a 2-character ASCII code from Table D-19 on
page D-47, which indicates the type of the object being
used in the DDL subsystem.

NAME Contains the name of the object.

REPLACEMENT-ALLOWED Contains the ASCII character Y (yes) to indicate that the
object used can be replaced or deleted even if the using
object (consumer) is still in the dictionary; or N (no) to
indicate that the using object (consumer) must be deleted
before the object used can be replaced or deleted.

For DDL objects, this field is set to N. The Pathmaker
application generator does not currently use this file.

Table D-19. OBJECT-TYPE Codes

Code Object

ID Definition

RD Record

CD Constant

TT SPI Token Type

TC SPI Token Code

TM SPI Token Map

SR Server

SV Service

RQ Requester

TB Table

Table D-18. DICTOUF (Object Usage File) Fields (page 2 of 2)

Field Description
Data Definition Language (DDL) Reference Manual—529431-003
D-47

Dictionary Database Structure DICTRDF (Record Definition File)
Change bars in Figure D-18 on page D-50 show where it differs from Figure D-17 on
page D-48.

These tables apply to both G-series and H-series systems:

• Table D-20, DICTRDF (Record Definition File) Fields, on page D-53

• Table D-21, FILE-TYPE Codes, on page D-55

• Table D-22, FILE-DURATION Values, on page D-55

Figure D-17. DICTRDF (Record Definition File)—G-Series (page 1 of 3)

Record RDF.
 File is "DICTRDF" Key-sequenced
 Code 205
 Audit.

 02 OBJECT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Record/Number".

 02 DEF-NUMBER Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Def/Number".

 02 RECORD-LENGTH Type Binary 16
 Heading "Record/Length".

 02 FILE-NAME Type Character 34
 UPSHIFT
 Heading "Physical File Name".

 02 FILE-TYPE Type Character 1
 Heading "File/Type".

 02 FILE-DURATION Type Character 1
 VALUE "P"
 Heading "File/Dur".

 02 FILE-CODE Type Binary 16 Unsigned
 VALUE 0
 Display "I5"
 Heading "File/Code".

 02 FILE-CODE-OBJECT Pic "9(9)" COMP
 VALUE 0
 Null 0
 Display "I5"
 Heading "File Code/Object".

 02 PRIMARY-EXTENT-SIZE Type Binary 16
 VALUE 4
 Display "I5"
 Heading "Primary/Ext Size".

 02 PRIMARY-EXTENT-OBJECT Pic "9(9)" COMP
 VALUE 0
 Null 0
 Display "I5"
 Heading "Pri Ext/Object".
Data Definition Language (DDL) Reference Manual—529431-003
D-48

Dictionary Database Structure DICTRDF (Record Definition File)
 02 SECONDARY-EXTENT-SIZE Type Binary 16
 VALUE 32
 Display "I5"
 Heading "Secondary/Ext Size".

 02 SECONDARY-EXTENT-OBJECT Pic "9(9)" COMP
 VALUE 0
 Null 0
 Display "I5"
 Heading "Sec Ext/Object".

 02 REFRESH Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "N"
 Heading "Refresh".

 02 AUDIT Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "N"
 Heading "Audit".

 02 BLOCK-SIZE Type Binary 16
 VALUE 4096
 Display "I4"
 Heading "Block/Size".

 02 BUFFER-SIZE Redefines BLOCK-SIZE Type Binary 16
 Display "I4"
 Heading "Buffer/Size".

 02 BLOCK-SIZE-OBJECT Pic "9(9)" COMP
 Display "[BZ]I10"
 VALUE 0
 Null 0
 Display "I5"
 Heading "Blk Siz/Object".

 02 BUFFER-SIZE-OBJECT Pic "9(9)" COMP
 Display "[BZ]I10"
 VALUE 0
 Null 0
 Display "I5"
 Heading "Buf Siz/Object".

 02 ICOMPRESS Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "N"
 Heading "ICompress".

 02 DCOMPRESS Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "N"
 Heading "DCompress".

Figure D-17. DICTRDF (Record Definition File)—G-Series (page 2 of 3)
Data Definition Language (DDL) Reference Manual—529431-003
D-49

Dictionary Database Structure DICTRDF (Record Definition File)
 02 MAXEXTENTS Type Binary 16
 VALUE 100
 Display "I4"
 Heading "Maxextents".

 02 MAXEXTENTS-OBJECT Pic "9(9)" COMP
 VALUE 0
 Null 0
 Display "I5"
 Heading "Max Ext/Object".

 02 BUFFERED Type Character 1
 VALUE "D"
 Display "A1"
 Heading "Buffered".

 02 AUDIT-COMPRESS Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "N"
 Heading "Audit/Compress".

 02 VERIFIED-WRITES Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "N"
 Heading "Verifies/Writes".

 02 SERIAL-WRITES Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "N"
 Heading "Serial/Writes".

 02 ODD-UNSTRUCTURED Type Character 1
 MUST BE "Y", "N"
 UPSHIFT
 Display "A1"
 VALUE "Y"
 Heading "Odd/Unstructured".

 Key is OBJECT Duplicates not allowed.
 Key "IN" is DEF-NUMBER.

End

Figure D-18. DICTRDF (Record Definition File)—H-Series (page 1 of 3)

Record RDF.
 File is "DICTRDF" Key-sequenced
 Code 205
 Audit
 MaxExtents 500.

 02 OBJECT Type OBJECT-NUMBER
 Heading "Record/Number".

 02 DEF-NUMBER Type OBJECT-NUMBER
 Heading "Def/Number".

Figure D-17. DICTRDF (Record Definition File)—G-Series (page 3 of 3)
Data Definition Language (DDL) Reference Manual—529431-003
D-50

Dictionary Database Structure DICTRDF (Record Definition File)
 02 RECORD-LENGTH Type Binary 16
 Heading "Record/Length".

 02 FILE-NAME Type *.

 02 FILE-TYPE Type Character 1
 Heading "File/Type".

 02 FILE-DURATION Type Character 1
 VALUE "P"
 Heading "File/Dur".

 02 FILE-CODE Type Binary 16 Unsigned
 VALUE 0
 Display "I5"
 Heading "File/Code".

 02 FILE-CODE-OBJECT Type OBJECT-NUMBER
 VALUE 0
 Null 0
 Display "I5"
 Heading "File Code/Object".

 02 PRIMARY-EXTENT-SIZE Type Binary 16
 VALUE 4
 Display "I5"
 Heading "Primary/Ext Size".

 02 PRIMARY-EXTENT-OBJECT Type OBJECT-NUMBER
 VALUE 0
 Null 0
 Display "I5"
 Heading "Pri Ext/Object".

 02 SECONDARY-EXTENT-SIZE Type Binary 16
 VALUE 32
 Display "I5"
 Heading "Secondary/Ext Size".

 02 SECONDARY-EXTENT-OBJECT Type OBJECT-NUMBER
 VALUE 0
 Null 0
 Display "I5"
 Heading "Sec Ext/Object".

 02 REFRESH Type ASCII-SWITCH
 VALUE "N"
 Heading "Refresh".

 02 AUDIT Type ASCII-SWITCH
 VALUE "N"
 Heading "Audit".

 02 BLOCK-SIZE Type Binary 16
 VALUE 4096
 Display "I4"
 Heading "Block/Size".

 02 BUFFER-SIZE Redefines BLOCK-SIZE Type Binary 16
 Display "I4"
 Heading "Buffer/Size".

Figure D-18. DICTRDF (Record Definition File)—H-Series (page 2 of 3)
Data Definition Language (DDL) Reference Manual—529431-003
D-51

Dictionary Database Structure DICTRDF (Record Definition File)
 02 BLOCK-SIZE-OBJECT OBJECT-NUMBER
 VALUE 0
 Null 0
 Display "I5"
 Heading "Blk Siz/Object".

 02 BUFFER-SIZE-OBJECT OBJECT-NUMBER
 VALUE 0
 Null 0
 Display "I5"
 Heading "Buf Siz/Object".

 02 ICOMPRESS Type ASCII-SWITCH
 VALUE "N"
 Heading "ICompress".

 02 DCOMPRESS Type ASCII-SWITCH
 VALUE "N"
 Heading "DCompress".

 02 MAXEXTENTS Type Binary 16
 VALUE 100
 Display "I4"
 Heading "Maxextents".

 02 MAXEXTENTS-OBJECT Type OBJECT-NUMBER
 VALUE 0
 Null 0
 Display "I5"
 Heading "Max Ext/Object".

 02 BUFFERED Type Character 1
 VALUE "D"
 Display "A1"
 Heading "Buffered".

 02 AUDIT-COMPRESS Type ASCII-SWITCH
 VALUE "N"
 Heading "Audit/Compress".

 02 VERIFIED-WRITES Type ASCII-SWITCH
 VALUE "N"
 Heading "Verifies/Writes".

 02 SERIAL-WRITES Type ASCII-SWITCH
 VALUE "N"
 Heading "Serial/Writes".

 02 ODD-UNSTRUCTURED Type ASCII-SWITCH
 VALUE "Y"
 Heading "Odd/Unstructured".

 Key is OBJECT Duplicates not allowed.
 Key "IN" is DEF-NUMBER File is "DICTALT".

End

Figure D-18. DICTRDF (Record Definition File)—H-Series (page 3 of 3)
Data Definition Language (DDL) Reference Manual—529431-003
D-52

Dictionary Database Structure DICTRDF (Record Definition File)
Table D-20. DICTRDF (Record Definition File) Fields (page 1 of 3)

Field Description

OBJECT Contains the object number of this record from
DICTODF.OBJECT. The record in DICTODF
contains the record name and the object-type
code “RD.”

DEF-NUMBER The object number of the definition that defines
this record if the record is described with a
DEFINITION IS def-name clause; otherwise, DEF-
NUMBER contains the object number of the
record itself.

RECORD-LENGTH The length in bytes of the record.

FILE-NAME This record's permanent HP file name, stored in
FNAMECOLLAPSE form. For a description of
FNAMECOLLAPSE, see the Guardian Procedure
Calls Reference Manual. This field is defined only
if FILE-DURATION is permanent.

FILE-TYPE Contains a 1-character ASCII code from
Table D-21 on page D-55, which indicates the
record's file type.

FILE-DURATION A value that indicates whether the file specified by
FILE-NAME is permanent, dynamically assigned,
or temporary. FILE-DURATION values are in
Table D-22 on page D-55.

FILE-CODE This record's file code. The default value for a
user-created file is 0.

FILE-CODE-OBJECT If file code is defined by a constant, contains the
object number of the constant; otherwise, it is 0.

PRIMARY-EXTENT-SIZE This record's primary file extent in pages.
PRIMARY-EXTENT-SIZE must be an integer from
1 through 65,535. The default primary extent size
for DDL is four pages. The extent size must be an
integral multiple of the file's block size (for a
structured file) or buffer size (for an unstructured
file).

For more information about extent sizes, see the
Enscribe Programmer’s Guide.

PRIMARY-EXTENT-OBJECT If primary extent size is defined by a constant,
contains the object number of the constant;
otherwise, it is 0.
Data Definition Language (DDL) Reference Manual—529431-003
D-53

Dictionary Database Structure DICTRDF (Record Definition File)
SECONDARY-EXTENT-SIZE This file's secondary extent in pages.
SECONDARY-EXTENT-SIZE must be an integer
from 1 through 65,535. The default secondary
extent size for DDL is 32 pages. Like the primary
extent size, the secondary extent size must be an
integral multiple of the file's block size (for a
structured file) or buffer size (for an unstructured
file).

SECONDARY-EXTENT-SIZE-OBJECT If secondary extent size is defined by a constant,
contains the object number of the constant;
otherwise, it is 0.

REFRESH Contains the ASCII character Y (yes) or N (no) to
indicate whether the file's label will be copied to
disk whenever the file's end-of-file value is
changed. N is the default.

AUDIT Contains the ASCII character Y (yes) or N (no) to
indicate whether a file is audited by TMF. N is the
default.

BLOCK-SIZE Block size of a structured file in bytes. BLOCK-
SIZE must be 512, 1,024, 2,048, or 4,096 bytes.
The default block size for DDL is 4,096 bytes. For
information about block sizes, see the Enscribe
Programmer’s Guide.

BUFFER-SIZE Buffer size of an unstructured file in bytes.
BUFFER-SIZE redefines BLOCK-SIZE. Value
must be 512, 1,024, 2,048, or 4,096 bytes. 4,096
bytes is the default.

BLOCK-SIZE-OBJECT If block size is defined by a constant, contains the
object number of the constant; otherwise, it is 0.

BUFFER-SIZE-OBJECT If buffer size is defined by a constant, contains the
object number of the constant; otherwise, it is 0.

ICOMPRESS Contains the ASCII character Y (yes) or N (no) to
indicate whether the user has selected the index
compression attribute for this file. N is the default.

DCOMPRESS Contains the ASCII character Y (yes) or N to
indicate whether the user has selected the data
compression attribute for this file. N is the default.

MAXEXTENTS The maximum number of extents this file can
have. MAXEXTENTS contains an integer from 1
through 978. 100 is the default.

MAXEXTENTS-OBJECT If MAXEXTENTS is defined by a constant,
contains the object number of the constant;
otherwise, it is 0.

Table D-20. DICTRDF (Record Definition File) Fields (page 2 of 3)

Field Description
Data Definition Language (DDL) Reference Manual—529431-003
D-54

Dictionary Database Structure DICTRDF (Record Definition File)
BUFFERED Indicates the mode of handling write requests.
BUFFERED can be Y (yes), N (no), or D (follow
the default). The default value is Y for audited files
and N for nonaudited files.

If you select Y, then write requests are buffered in
the disk-process cache rather than forced to disk
at each request.

AUDIT-COMPRESS Contains the ASCII character Y (yes) to indicate
the audit-checkpoint record is to be compressed
or N (no) to indicate it is not to be compressed.
The audit-checkpoint record contains a copy of an
audited data record both before and after an
update. The audit-checkpoint record is
compressed by omitting the unchanged portions
of the data record. N is the default.

VERIFIED-WRITES Contains Y (yes) to indicate disk writes are
verified or N (no) to indicate they are not. N is the
default.

SERIAL-WRITES Contains Y (yes–serial) or N (no–parallel) to
indicate whether mirror disk writes are serial or
parallel. N is the default.

ODD-UNSTRUCTURED Contains Y (yes–odd unstructured) or N (no–even
unstructured) to indicate whether the file is to be
created as odd unstructured or even unstructured.
Y is the default. For information about even
unstructured and odd unstructured files, see the
File Utility Program (FUP) Reference Manual.

Table D-21. FILE-TYPE Codes

Code File Type

U Unstructured

R Relative

E Entry-sequenced

K Key-sequenced

Table D-22. FILE-DURATION Values

Value File Type

P Permanent (default)

T Temporary

A Assigned

Table D-20. DICTRDF (Record Definition File) Fields (page 3 of 3)

Field Description
Data Definition Language (DDL) Reference Manual—529431-003
D-55

Dictionary Database Structure DICTTKN (Token Code File)
DICTTKN (Token Code File)
DICTTKN (Token Code File) is a key-sequenced file that contains one record for each
SPI token code. Each record contains the detailed information about a token code,
including the object number of the token code, the object number of the associated
token type, and the value of the token number that identifies the token code within its
type.

DICTTKN is different on G-series and H-series systems—see:

• Figure D-19, DICTTKN (Token Code File)—G-Series, on page D-56

• Figure D-20, DICTTKN (Token Code File)—H-Series, on page D-57

Change bars in Figure D-20 on page D-57 show where it differs from Figure D-19 on
page D-56.

Table D-23, DICTTKN (Token Code File) Fields, on page D-57 applies to both G-series
and H-series systems.

Figure D-19. DICTTKN (Token Code File)—G-Series (page 1 of 2)

Record TKN.
 File is "DICTTKN" Key-sequenced
 Code 209
 Audit.

 02 OBJECT-NUMBER Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Token Code/Object".

 02 TOKEN-TYPE-OBJECT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Token Type/Object".

 02 TOKEN-NUMBER-VALUE Type Binary 16
 Heading "Token Numb".

 02 TOKEN-NUMBER-CONSTANT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Token Numb/Object".

 02 SSID-TEXT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "SSID".

 02 HEADING-TEXT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Heading".
Data Definition Language (DDL) Reference Manual—529431-003
D-56

Dictionary Database Structure DICTTKN (Token Code File)
 02 DISPLAY-TEXT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Display".

 Key is OBJECT-NUMBER Duplicates not allowed.

End

Figure D-20. DICTTKN (Token Code File)—H-Series

Record TKN.
 File is "DICTTKN" Key-sequenced
 Code 209
 Audit.
 MaxExtents 500.

 02 OBJECT-NUMBER Type *
 Heading "Token Code/Object".

 02 TOKEN-TYPE-OBJECT Type OBJECT-NUMBER
 Heading "Token Type/Object".

 02 TOKEN-NUMBER-VALUE Type Binary 16
 Heading "Token Numb".

 02 TOKEN-NUMBER-CONSTANT Type OBJECT-NUMBER
 Heading "Token Numb/Object".

 02 SSID-TEXT Type TEXT-ID
 Heading "SSID".

 02 HEADING-TEXT Type TEXT-ID
 Heading "Heading".

 02 DISPLAY-TEXT Type TEXT-ID
 Heading "Display".

 Key is OBJECT-NUMBER Duplicates not allowed.

End

Table D-23. DICTTKN (Token Code File) Fields (page 1 of 2)

Field Description

OBJECT-NUMBER Contains the object number of this record from
DICTODF.OBJECT. The record in DICTODF contains the
token-code name and its object-type code, “TC.”

TOKEN-TYPE-OBJECT Contains the object number of the SPI token type for the
token code.

Figure D-19. DICTTKN (Token Code File)—G-Series (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
D-57

Dictionary Database Structure DICTTYP (Token Type File)
DICTTYP (Token Type File)
DICTTYP (Token Type File) is a key-sequenced file that contains one record for each
SPI token type. Each record contains fields to specify the object number of the token
type, its token data type, its structure, and the token length.

DICTTYP is different on G-series and H-series systems—see:

• Figure D-21, DICTTYP (Token Type File)—G-Series, on page D-58

• Figure D-22, DICTTYP (Token Type File)—H-Series, on page D-59

Change bars in Figure D-22 on page D-59 show where it differs from Figure D-21 on
page D-58.

These tables apply to both G-series and H-series systems:

• Table D-24, DICTTYP (Token Type File) Fields, on page D-60

• Table D-25, TOKEN-OCCURS-VALUE Values, on page D-61

TOKEN-NUMBER-VALUE Contains the token number used by a subsystem to
distinguish one token code from another.

Token numbers can be in the range -32,768 through
32,767. Any user-supplied token numbers must be in the
range 1 through 9,998; the other token numbers are
reserved by HP or are previously defined by SPI.

TOKEN-NUMBER-CONSTANT If the token number is specified as a constant, this field
contains the object number of the constant; otherwise, it is
0.

SSID-TEXT Contains the text ID of the OTF record that contains the
subsystem ID value for the token code.

HEADING-TEXT Contains the text ID of the OTF record that contains the
heading value for the token code.

DISPLAY-TEXT Contains the text ID of the OTF record that contains the
display value for the token code.

Figure D-21. DICTTYP (Token Type File)—G-Series (page 1 of 2)

Record TYP.
 File is "DICTTYP" Key-sequenced
 Code 209
 Audit.

 02 OBJECT-NUMBER Type *
 Heading "Token Type/Object".

 02 TOKEN-TYPE-VALUE Type Binary 16
 Heading "Token/Value".

Table D-23. DICTTKN (Token Code File) Fields (page 2 of 2)

Field Description
Data Definition Language (DDL) Reference Manual—529431-003
D-58

Dictionary Database Structure DICTTYP (Token Type File)
 02 TOKEN-TYPE-CONSTANT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Constant/Object".

 02 TOKEN-DEF Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Def/Object".

 02 TOKEN-OCCURS-VALUE Type Binary 16
 Heading "Token/Occurs".
 88 OCCURS-VARYING Value is -1.
 88 OCCURS-0 Value is 0.

 02 TOKEN-OCCURS-CONSTANT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Occurs/Object".

 02 STRUCTURE Type Binary 16
 Heading "Structure".

 02 TOKEN-LENGTH Type Binary 16 Unsigned
 Heading "Token/Length".

 Key is OBJECT-NUMBER Duplicates not allowed.

End

Figure D-22. DICTTYP (Token Type File)—H-Series (page 1 of 2)

Record TYP.
 File is "DICTTYP" Key-sequenced
 Code 209
 Audit
 MaxExtents 500.

 02 OBJECT-NUMBER Type *
 Heading "Token Type/Object".

 02 TOKEN-TYPE-VALUE Type Binary 16
 Heading "Token/Value".

 02 TOKEN-TYPE-CONSTANT Type OBJECT-NUMBER
 Heading "Constant/Object".

 02 TOKEN-DEF Type OBJECT-NUMBER
 Heading "Def/Object".

 02 TOKEN-OCCURS-VALUE Type Binary 16
 Heading "Token/Occurs".
 88 OCCURS-VARYING Value is -1.
 88 OCCURS-0 Value is 0.

 02 TOKEN-OCCURS-CONSTANT Type OBJECT-NUMBER
 Heading "Occurs/Object".

 02 STRUCTURE Type Binary 16
 Heading "Structure".

Figure D-21. DICTTYP (Token Type File)—G-Series (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
D-59

Dictionary Database Structure DICTTYP (Token Type File)
 02 TOKEN-LENGTH Type Binary 16 Unsigned
 Heading "Token/Length".

 Key is OBJECT-NUMBER Duplicates not allowed.

End

Table D-24. DICTTYP (Token Type File) Fields

Field Description

OBJECT-NUMBER Contains the object number of this record from
DICTODF.OBJECT. A record in DICTODF contains the
token-type name and its object-type code, “TT.”

TOKEN-TYPE-VALUE Contains the numeric value used by subsystems to
identify the token type. This value must be a positive
integer in the range 0 through 254.

TOKEN-TYPE-CONSTANT If TOKEN-TYPE-VALUE is specified as a constant, this
field contains the object number of the constant;
otherwise, it is 0.

TOKEN-DEF If the token structure is defined by reference to a
definition, this field contains the object number of the
specified definition; otherwise, it is 0.

TOKEN-OCCURS-VALUE Specifies the number of times the token data structure
occurs; possible values are in Table D-25 on page D-61.

TOKEN-OCCURS-CONSTANT If the number of occurrences in an OCCURS clause is
specified as a constant, this field contains the object
number of the constant; otherwise, it is 0.

STRUCTURE If the structure of the token is defined by reference to a
definition, this field contains a code indicating the data
type of the first element of the definition; otherwise, this
field is set to 0.

For a description of the possible codes this field can
contain and their meanings, see DICTOBL (Object Build
List) on page D-15.

TOKEN-LENGTH Contains the length of the token derived from either the
TOKEN-OCCURS-VALUE or the STRUCTURE field, as
follows:

• If TOKEN-OCCURS-VALUE is a positive integer in the
range 1 through 254 and if a DEF IS clause was
specified, the length from the definition (DEF) is
multiplied by the OCCURS value and stored in
TOKEN-LENGTH.

• If no DEF IS clause was specified, the TOKEN-
OCCURS-VALUE is stored in TOKEN-LENGTH. A
token length of 0 or -1 is considered valid.

Figure D-22. DICTTYP (Token Type File)—H-Series (page 2 of 2)
Data Definition Language (DDL) Reference Manual—529431-003
D-60

Dictionary Database Structure DICTVER (Token Map Field Version File)
DICTVER (Token Map Field Version File)
DICTVER (Token Map Field Version File) is a key-sequenced file that associates
product version numbers from VERSION clauses in an SPI token-map definition with
single fields or sequences of fields in a structured token.

DICTVER is different on G-series and H-series systems—see:

• Figure D-23, DICTVER (Token Map Field Version File)—G-Series, on page D-61

• Figure D-24, DICTVER (Token Map Field Version File)—H-Series, on page D-62

Change bars in Figure D-24 on page D-62 show where it differs from Figure D-23 on
page D-61.

Table D-26, DICTVER (Token Map Field Version File) Fields, on page D-62 applies to
both G-series and H-series systems.

Table D-25. TOKEN-OCCURS-VALUE Values

Value Meaning

255 OCCURS VARYING

0 OCCURS 0 TIMES

n OCCURS n TIMES when 1 <=n <=254

Figure D-23. DICTVER (Token Map Field Version File)—G-Series

Record VER.
 File is "DICTVER" Key-sequenced
 Code 209
 Audit.

 02 IDENTIFIER.

 03 MAP-OBJECT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Token Map/Object".

 03 MAP-ELEMENT Type Binary 16
 Heading "Element".

 02 VERSION Type Binary 16 Unsigned
 Heading "Version".

 02 VERSION-CONSTANT Pic "9(9)" COMP
 Null 0
 Display "[BZ]I10"
 Heading "Version/Object".

 02 BEG-ELEMENT Type Binary 16
 Heading "Beginning/Element".

 02 END-ELEMENT Type Binary 16
 Heading "Ending/Element".
Data Definition Language (DDL) Reference Manual—529431-003
D-61

Dictionary Database Structure DICTVER (Token Map Field Version File)
 02 VERSION-TEXT Type Character 3
 Heading "Version/String".

 Key is IDENTIFIER Duplicates not allowed.

End

Figure D-24. DICTVER (Token Map Field Version File)—H-Series

Record VER.
 File is "DICTVER" Key-sequenced
 Code 209
 Audit
 MaxExtents 500.

 02 IDENTIFIER.

 03 MAP-OBJECT Type OBJECT-NUMBER
 Heading "Token Map/Object".

 03 MAP-ELEMENT Type Binary 16
 Heading "Element".

 02 VERSION Type Binary 16 Unsigned
 Heading "Version".

 02 VERSION-CONSTANT Type OBJECT-NUMBER
 Heading "Version/Object".

 02 BEG-ELEMENT Type Binary 16
 Heading "Beginning/Element".

 02 END-ELEMENT Type Binary 16
 Heading "Ending/Element".

 02 VERSION-TEXT Type Character 3
 Heading "Version/String".

 Key is IDENTIFIER Duplicates not allowed.

End

Table D-26. DICTVER (Token Map Field Version File) Fields (page 1 of 2)

Field Description

IDENTIFIER Contains a unique identifier for each record consisting of two
fields, MAP-OBJECT and MAP-ELEMENT.

MAP-OBJECT Contains the object number that uniquely identifies the token map
(OBJECT-NUMBER from DICTMAP).

MAP-ELEMENT Contains an element number sequentially assigned by the DDL
compiler.

VERSION Contains the product version number from the VERSION clause of
the TOKEN-MAP statement; or 0 for NOVERSION.

VERSION-CONSTANT If the product version number was specified as a constant, this
field contains the object number of the constant; otherwise, it is 0.

Figure D-23. DICTVER (Token Map Field Version File)—G-Series
Data Definition Language (DDL) Reference Manual—529431-003
D-62

Dictionary Database Structure Definition and Record Storage in the Dictionary
Definition and Record Storage in the
Dictionary

This topic explains how the dictionary database files are structured, showing how
definitions and records are stored in the dictionary. For simplicity, only a subset of the
dictionary fields is shown. The focus is on primary and alternate key fields, because
these fields show how the files are related.

A schema consisting of two objects, a definition and a record, is used to construct a
sample dictionary (see Example D-4 on page D-63).

Topics:

• DICTDDF (Dictionary Definition File) on page D-64

• DICTODF (Object Definition File) on page D-64

• DICTOBL (Object Build List) on page D-65

• DICTOTF (Object Text File) on page D-65

• DICTRDF (Record Definition File) on page D-66

BEG-ELEMENT Contains the element number from DICTOBL for the first element
specified in the sequence of fields with this product version.

END-ELEMENT Contains the element number from DICTOBL for the last element
in the sequence of fields with this product version.

VERSION-TEXT Contains the 3-character product version number in the form ann,
in which a is a letter of the alphabet and nn is a 2-digit number.

Example D-4. Sample Dictionary Schema for a Definition and a Record

DEF partname PIC X (18)
 HEADING "Part/Name".

RECORD parts.

FILE IS "$data.sales.parts" KEY-SEQUENCED
 02 PARTNAME TYPE *.
 02 inventory PIC 999 COMP
 VALUE ALL ZEROES
 02 location PIC XXX
 88 san-francisco
 UPSHIFT VALUE "SFO".

 KEY IS parts.partname.
END

Table D-26. DICTVER (Token Map Field Version File) Fields (page 2 of 2)

Field Description
Data Definition Language (DDL) Reference Manual—529431-003
D-63

Dictionary Database Structure DICTDDF (Dictionary Definition File)
• DICTKDF (Key Definition File) on page D-67

• Dictionary Structure Link Diagram on page D-68

DICTDDF (Dictionary Definition File)
DICTDDF, an unstructured file, contains only one record. The most important fields in
this file for record and definition storage are NEXT-OBJ and NEXT-TEXT-ID.

After PARTNAME and PARTS from Example D-4 on page D-63 are added to a new
dictionary, the fields of DICTDDF have these values:

DICTODF (Object Definition File)
DICTODF, a key-sequenced file, contains one record for every object (definition,
record, service, server, requester, screen) entered in the dictionary. The three most
important fields of this file are OBJECT, IDENTIFIER.NAME, and
IDENTIFIER.OBJECT-TYPE.

For the sample dictionary in Example D-4 on page D-63, the fields of DICTODF have
these values:

Field Description

NEXT-OBJ NEXT-OBJ is used by the DDL compiler to assign object numbers to
objects as they are entered in the dictionary. NEXT-OBJ has an initial
value of 1. When an object is entered in the dictionary, it is given the
current value of NEXT-OBJ. NEXT-OBJ is then incremented by 1.

NEXT-TEXT-ID NEXT-TEXT-ID is used by the DDL compiler to assign text numbers to
text items as they are added to the dictionary. Like NEXT-OBJ, NEXT-
TEXT-ID has an initial value of 1 and is incremented after a text item is
entered in the dictionary.

VERSION VERSION contains the product version number of the dictionary. This
value will not change unless you regenerate the dictionary with a
different product version of the DDL compiler.

Field Value

NEXT-OBJ 3

NEXT-TEXT-ID 7

VERSION 4

OBJECT IDENTIFIER.OBJECT-TYPE IDENTIFIER.NAME COMMENT-TEXT

1 ID partname 0

2 RD parts 0
Data Definition Language (DDL) Reference Manual—529431-003
D-64

Dictionary Database Structure DICTOBL (Object Build List)
DICTOBL (Object Build List)
DICTOBL, a key-sequenced file, contains one record for each element of each DDL
object (record or definition) in the dictionary. The primary key of DICTOBL is the object
number (IDENTIFIER.OBJECT) and an element number (IDENTIFIER.ELEMENT) that
identifies each element within an object. Each DICTOBL record contains most of the
information needed to describe an element: the element's name, data type, size, offset
within the object, text ID number, and other information.

For the sample dictionary in Example D-4 on page D-63, the fields of DICTOBL have
these values:

DICTOTF (Object Text File)
DICTOTF contains one record for each text item entered in the dictionary. Text items
can have one of these types:

For more information about text types, see Text Items on page D-2.

IDENTIFIER.
OBJECT

IDENTIFIER.
ELEMENT

LOCAL-
NAME

PICTURE-
TEXT

HEADING-
TEXT

VALUE-
TEXT UPSHIFT

1 0 partname 1 2 N

2 0 parts N

2 1 partname N

2 2 standard-
price

3 4 N

2 3 location 5 Y

2 4 san-
francisco

6 N

Code Type

N ASCII representation of a number

K Keyword in a MUST BE or VALUE clause

S ASCII character string

E Enumeration value name

J National string
Data Definition Language (DDL) Reference Manual—529431-003
D-65

Dictionary Database Structure DICTRDF (Record Definition File)
For the sample dictionary shown in Example D-4 on page D-63, the fields of DICTOTF
have these values:

DICTRDF (Record Definition File)
DICTRDF has one record for each record in the dictionary containing the record's
object number, definition number, and file information.

For the sample dictionary in Example D-4 on page D-63, the fields of DICTRDF contain
these values:

Suppose that the following record is added to the dictionary:

RECORD newparts.
FILE IS "$data.sales.newpart".
DEFINITION IS partname.
END

The fields of DICTRDF have these values:

IDENTIFIER.
TEXT-ID

IDENTIFIER.LINE-
NUMBER TEXT-TYPE TEXT-LEN TEXT-LINE

1 0 S 5 X (18)

2 0 S 9 Part/Name

3 0 N 3 999

4 0 K 3 ALL

4 1 K 6 ZEROES

5 0 S 3 XXX

6 0 S 3 SFO

Field Description

OBJECT The record’s unique object number.

DEF-NUMBER Either the object number of the record (if it is not defined with a
DEFINITION IS def-name clause) or (if it is defined with a DEFINITION
IS def-name clause) the object number of the referenced definition.

FILE-NAME The file name.

Field Value

OBJECT 2

DEF-NUMBER 2

FILE-NAME $data.sales.parts

OBJECT DEF-NUMBER FILE-NAME

2 2 $data.sales.parts

3 1 $data.sales.newpart
Data Definition Language (DDL) Reference Manual—529431-003
D-66

Dictionary Database Structure DICTKDF (Key Definition File)
When a record is declared with a DEFINITION IS clause, DICTOBL has no entry for
the new record. Instead, the data structure is found in DICTOBL by looking up the
referenced definition number in DICTRDF.

DICTKDF (Key Definition File)
DICTKDF contains one record for each primary key and each alternate key, or each
SEQUENCE IS field declared for each record in the dictionary. DICTKDF records are
uniquely identified by the object number of the record that contains the key and an
element number.

For the sample dictionary shown in Example D-4 on page D-63, the fields of DICTKDF
have these values.

Field Value

IDENTIFIER.RECORD-NUMBER 2

OBL-KEY.OBJECT 2

KEYTAG-VALUE 0
Data Definition Language (DDL) Reference Manual—529431-003
D-67

Dictionary Database Structure Dictionary Structure Link Diagram
Dictionary Structure Link Diagram
Figure D-25 on page D-68 shows the main database links in the dictionary database.

Figure D-25. Main Links Among Dictionary Files

TKN

**02 object-number
02 token-type-object

.

.
02 ssid-text
02 heading-text
02 display-text

OBL

**02 identifier
03 object
03 element
.
.

02 comment-text
02 value-text
02 as-text
02 heading-text
02 display-text
02 picture-text
02 help-text
02 must-be-text
02 edit-pic-text
*02 source-def

OUF

**02 identifier
03 object-used
.
.
*03 consumer

.

.

ODF

**02 object
*02 identifier

03 obj-type
03 name
.
.

02 comment-text

OTF

**02 identifier
03 text-id
03 line-number

02 constant-id
.
.

MAP

**02 object-number
.
.

02 map-def
02 ssid-text
02 heading-text

KDF

**02 identifier
03 record-number
03 element

*02 obj-key
03 object
03 element
.

.

TYP

**02 object-number
.
.

02 token-def
.
.

RDF

**02 object
*02 def-number
.
.

CDF

**02 object-number
*02 text-id

.

.

VER

**02 identifier
03 map-object
03 map-
element
.
.

02 beg-element
02 end-element

.

.

Legend: **Primary Key
*Alternate KeyDDF

02 next-object
02 next-text-id

.

.

VST926.vsd
Data Definition Language (DDL) Reference Manual—529431-003
D-68

E Dictionary Reports
HP supplies a set of Enform Plus queries that you can use to get information about any
dictionary. These queries produce a set of reports that provide the following
information:

• A list of all the objects in the dictionary, including any constants, definitions,
records, and Subsystem Programmatic Interface (SPI) token codes, token maps,
and token types.

• A description of the structure of each definition and record.

• A list of the records and definitions that refer to definitions and of the definitions
that are referenced by records and other definitions.

• Information on all records in the dictionary, their key fields, and how they are
defined.

• A list of all the comment, display, and heading text for any definition or record that
has such text.

In addition to the standard reports, you can produce customized reports, tailored to
answer specific questions, by editing the Enform Plus source code supplied by HP.

This appendix explains how you can obtain dictionary reports.

Topics in this appendix:

• Using Enform Plus Queries for Dictionary Reports on page E-1

• Producing Dictionary Reports on page E-3

Using Enform Plus Queries for Dictionary
Reports

The Enform Plus source code for the dictionary reports is stored in the file
$SYSTEM.SYSTEM.DDQUERYS.

For any of the standard reports summarized in Table E-1 on page E-2, use the source
code as is. For customized reports, copy DDQUERYS to your own subvolume and edit
your copy.

DDQUERYS contains source code for 16 Enform Plus queries that produce 16
different dictionary reports. Each query is a separate section. You can run the queries
as a complete group, individually, or in any combination.
Data Definition Language (DDL) Reference Manual—529431-003
E-1

Dictionary Reports Using Enform Plus Queries for Dictionary Reports
Table E-1. Dictionary Report Queries (page 1 of 2)

Query Name Report Description

R1 DICTIONARY OBJECTS Describes every constant, definition, record,
token code, token map, and token type in
the dictionary, giving the time and date of its
creation, the time and date of its last
modification, and its product version
number.

R2 DEFINITION STRUCTURE Lists every component group and field in
every definition in the dictionary.

R3 RECORD STRUCTURE Lists every component group and field in
every record in the dictionary.

R4 DEFINITIONS USING DEFINITIONS Lists every definition and every element
within that definition that refers to another
definition and lists the source definition for
each reference.

R5 RECORDS USING DEFINITIONS Lists every record and every element within
that record that refers to a definition and lists
the source definition for each reference.

R6 DEFINITIONS WHERE USED Lists every definition that is referenced by a
record or by another definition and lists the
referring definition or record.

R7 RECORD ACCESS Lists the file name and any primary and
alternate keys for each record in the
dictionary.

R8 RECORD DEFINITION METHOD Shows the method used to define each
record and gives the source definition for
any record defined with a DEFINITION IS
def-name clause.

R9 REPORT HEADINGS Lists the Enform Plus report heading for any
field or group that is defined with a
HEADING clause.

R10 DISPLAY FORMATS Lists the Enform Plus display format for any
field or group that is defined with a DISPLAY
clause.

R11 RECORD COMMENTS Lists all comments that immediately precede
any record in the dictionary.

R12 DEFINITION COMMENTS Lists all comments that immediately precede
any definition in the dictionary.

R13 CONSTANTS Lists the type and value of each constant.
Data Definition Language (DDL) Reference Manual—529431-003
E-2

Dictionary Reports Producing Dictionary Reports
Each report begins with a brief description of what the report does and the meanings of
the report fields.

Producing Dictionary Reports
The Enform Plus report queries use the dictionary that describes the structure of the 14
dictionary files. This dictionary must be compiled before you can produce the Enform
Plus dictionary reports. For a description of this dictionary, see Appendix D, Dictionary
Database Structure.

After the dictionary has been compiled, you can run any or all of the 16 Enform Plus
queries to report on any dictionary on any subvolume in the system.

Both the dictionary schema (DDSCHEMA) and the Enform Plus source (DDQUERYS)
reside on $SYSTEM.SYSTEM. When DDSCHEMA is compiled, the DDL compiler
creates the dictionary on the subvolume $SYSTEM.DDL.

To produce a report:

1. Compile the dictionary schema, thereby creating a dictionary for the 14 dictionary
files. (For details, see Compiling the Dictionary Schema on page E-4.)

2. Establish your dictionary volume and subvolume as the default for the terminal on
which you request the reports.

3. Generate reports.

To generate all 16 reports, run the Enform Plus program noninteractively using
$SYSTEM.SYSTEM.DDQUERYS as the source file.

To select particular reports, run the Enform Plus program interactively and specify
only the $SYSTEM.SYSTEM.DDQUERYS sections that generate the reports you
want.

For details, see Requesting Reports on page E-5.

R14 TOKEN CODES Lists the token type, value, and subsystem
ID of each token code.

R15 TOKEN MAPS Lists the value, definition, subsystem ID, and
product version of each token map.

R16 TOKEN TYPES Lists the value, definition, number of
occurrences of the definition, and length of
each token type.

Table E-1. Dictionary Report Queries (page 2 of 2)

Query Name Report Description
Data Definition Language (DDL) Reference Manual—529431-003
E-3

Dictionary Reports Compiling the Dictionary Schema
Compiling the Dictionary Schema
Each DDQUERYS query begins with this statement:

?DICTIONARY $SYSTEM.DDL

The statement opens the dictionary on subvolume $SYSTEM.DDL. Before you can run
any query, you must create a dictionary describing the dictionary files on subvolume
$SYSTEM.DDL. You can create the dictionary on any volume that does not already
have a dictionary, but to conform to the Enform Plus query, you must create it on
subvolume $SYSTEM.DDL. You create the dictionary by compiling DDSCHEMA for
example:

13> DDL/IN $system.system.ddschema, OUT/ DICT $system.ddl

The preceding command creates a dictionary describing the 14 dictionary files on
$SYSTEM.DDL and suppresses the listing. You can, of course, get a listing at your
terminal or list DDSCHEMA on a printer. Depending on how your dictionary is
managed, you might be able to omit this step. If the dictionary is already compiled on
subvolume $SYSTEM.DDL, you need not recompile it.

The DDQUERYS queries contain the following command:

?ASSIGN QUERY-COMPILER-LISTING to $NULL

If you do not have a $NULL process on your system, or if you want to redirect this
output, you can remove or change this line.
Data Definition Language (DDL) Reference Manual—529431-003
E-4

Dictionary Reports Requesting Reports
Requesting Reports
After you have created a dictionary, you can request reports about any dictionary on
any subvolume in your system.

The commands in Example E-1 on page E-5 list all of the dictionary reports that
describe the $DATA.SALES dictionary on the printer identified as $S.#PRINTER.

To select particular reports, you must run the Enform Plus program in the interactive
mode, specify the output device with the OUT command, and specify the reports you
want with the SOURCE command.

The commands in Example E-2 on page E-6 list two reports on $S.#PRINTER. The
first (R2) lists the structure of every definition in the $DATA.SALES dictionary; the
second (R6) shows every definition in the $DATA.SALES dictionary that is referenced
by records and other definitions and lists the referring structures.

Figure E-1. Creating a Dictionary for DDSCHEMA

Example E-1. Requesting All 16 Dictionary Reports

14> VOLUME $data.sales
15> ENFORM /IN $system.system.ddquerys, OUT $S.#printer /

21> DDL / IN $system.system.
ddschema / DICT $system.ddl

DDSCHEMA

DDQUERYS

DDL
Create dictionary

on $SYSTEM.DDL

DICTALT

DICTOBL

DICTODF

DICTDDF

.

.

.

$SYSTEM.SYSTEM

$SYSTEM.DDL

VST927.vsd
Data Definition Language (DDL) Reference Manual—529431-003
E-5

Dictionary Reports Requesting Reports
As Figure E-2 on page E-6 shows, the Enform Plus program reads its source
statements from $SYSTEM.SYSTEM.DDQUERYS, reads the dictionary on
$SYSTEM.DDL for the structure of the dictionary files; and finally, using the record
names, field names, and field offsets from $SYSTEM.DDL, reads the dictionary files on
$DATA.SALES to produce the reports.

Example E-2. Requesting Selected Dictionary Reports

16> VOLUME $data.sales
17> ENFORM
18> ?OUT $S.#printer
19> ?SOURCE $system.system.ddquerys (R2, R6)

Figure E-2. Running DDQUERYS to Produce Reports

21> DDL / IN $system.system.
ddschema / DICT $system.ddl

DDSCHEMA

DDQUERYS

DICTALT

DICTOBL

DICTODF

DICTDDF

.

.

.

$SYSTEM.SYSTEM

$SYSTEM.DDL

$SYSTEM.DDL

R1 R16R2
. . .

DICTOBL

DICTALT

ENFORM
Run dictionary queries
against dictionary on

$DATA.SALES

.

.

VST928.vsd
Data Definition Language (DDL) Reference Manual—529431-003
E-6

Dictionary Reports Requesting Reports
The queries in DDQUERYS use the dictionary files on $DATA.SALES, because the
dictionary file names stored in the dictionary on $SYSTEM.DDL do not specify a
volume or a subvolume. When the Enform Plus program reads $SYSTEM.DDL, it uses
the current default volume and subvolume to qualify the dictionary file names.

In the case of the sample database, the file name in the Enform Plus OPEN statement
in DDQUERYS is fully qualified by the current default volume and subvolume. For
example:

OPEN DICTOBL; ! Statement in DDQUERYS
OPEN $data.sales.DICTOBL; ! Statement as executed

The same default volume and subvolume insertion takes place for every OPEN
statement in DDQUERYS. So, to query any dictionary on any subvolume, you can use
the same dictionary describing the fourteen dictionary files, $SYSTEM.DDL, and the
same Enform Plus dictionary report source, $SYSTEM.SYSTEM.DDQUERYS.
Data Definition Language (DDL) Reference Manual—529431-003
E-7

Dictionary Reports Requesting Reports
Data Definition Language (DDL) Reference Manual—529431-003
E-8

F Syntax Summary
Topics in this appendix:

• RUN DDL Command on page F-2

• CONSTANT Statement on page F-2

• DEFINITION Statement on page F-2

• DELETE Statement on page F-5

• EXIT Statement on page F-5

• OUTPUT Statement on page F-6

• OUTPUT UPDATE Statement on page F-6

• RECORD Statement on page F-6

• SHOW USE OF Statement on page F-8

• TOKEN-CODE Statement on page F-9

• TOKEN-MAP Statement on page F-9

• TOKEN-TYPE Statement on page F-10

• DEFINITION and RECORD Statement Clauses on page F-10

• Commands on page F-16
Data Definition Language (DDL) Reference Manual—529431-003
F-1

Syntax Summary RUN DDL Command
RUN DDL Command

CONSTANT Statement

num-value-clause

VALUE [IS] { { constant-number } [LN-clause]... }
 { { national-literal } }
 { { existing-constant } }

type

BINARY { [16] } [UNSIGNED]
 { 32 }

Default: BINARY 16

value-clause

VALUE [IS] { { constant-number } [LN-clause]... }
 { { "string " } }
 { { national-literal } }
 { { existing-constant } }
 { }
 { VERSION "Lnn " }

national-literal

{ N }{ "2-byte-character ..." }
{ n }{ ‘2-byte-character ...’ }

DEFINITION Statement
• Field Definition on page F-3

• Group Definition on page F-4

• Reference Definition on page F-5

[RUN] DDL [/ run-option [, run-option] .../]
 [compiler-command [, compiler-command] ...

CONSTANT constant-name { num-value-clause [TYPE type] }
 { [TYPE type] num-value-clause }
 { value-clause }.
Data Definition Language (DDL) Reference Manual—529431-003
F-2

Syntax Summary Field Definition
Field Definition

DEF[INITION] def-name

 { PICTURE-clause | TYPE-clause }

 [AS-clause]

 [BEGIN]

 [DISPLAY-clause]

 [EDIT-PIC-clause]

 [EXTERNAL-clause]

 [HEADING-clause]

 [HELP-clause]

 [JUSTIFIED-clause]

 [MUST-BE-clause]

 [NULL-clause]

 [SPI-NULL-clause]

 [SQLNULLABLE-clause]

 [TACL-clause]

 [UPSHIFT-clause]

 [USAGE-clause]

 [VALUE-clause] .

 [88-condition-name-clause .] ...

 [89-enumeration-clause .] ...

 [END [.]]
Data Definition Language (DDL) Reference Manual—529431-003
F-3

Syntax Summary Group Definition
Group Definition

line-item specification

level-number { field-name | group-name | FILLER }
{ PICTURE-clause | TYPE-clause }
[AS-clause]
[DISPLAY-clause]
[EDIT-PIC-clause]
[HEADING-clause]
[HELP-clause]
[JUSTIFIED-clause]
[LN-clause] ...
[MUST-BE-clause]
[NULL-clause]
[{ OCCURS-clause | OCCURS-DEPENDING-ON-clause }]
[REDEFINES-clause]
[SPI-NULL-clause]
[SQLNULLABLE-clause]
[TACL-clause]
[USAGE-clause]
[VALUE-clause] .
[88-condition-name-clause .] ...
[89-enumeration-clause .] ...

DEF[INITION] def-name

 [DISPLAY-clause]

 [EXTERNAL-clause]

 [HEADING-clause]

 [HELP-clause]

 [NULL-clause]

 [SQLNULLABLE-clause]

 [USAGE-clause]

 [VALUE-clause] .

 line-item specification ...

 [66-RENAMES-clause .] ...

END [.]
Data Definition Language (DDL) Reference Manual—529431-003
F-4

Syntax Summary Reference Definition
Reference Definition

DELETE Statement

EXIT Statement

DEF[INITION] def-name-1 TYPE def-name-2

 [AS-clause]

 [BEGIN]

 [DISPLAY-clause]

 [EDIT-PIC-clause]

 [EXTERNAL-clause]

 [HEADING-clause]

 [HELP-clause]

 [MUST-BE-clause]

 [NULL-clause]

 [SPI-NULL-clause]

 [TACL-clause]

 [UPSHIFT-clause]

 [USAGE-clause]

 [VALUE-clause] .

 [88-condition-name-clause .] ...

 [END [.]]

 { DEF[INITION] def-name ... }
 { RECORD record-name ... }
DELETE { TOKEN-CODE token-name ... } .
 { TOKEN-MAP map-name ... }
 { TOKEN-TYPE type-name ... }

EXIT [.]
Data Definition Language (DDL) Reference Manual—529431-003
F-5

Syntax Summary OUTPUT Statement
OUTPUT Statement

OUTPUT UPDATE Statement

RECORD Statement

file-creation

FILE IS { ["]file-name["] } [creation-attribute] ...
 { TEMPORARY }
 { ASSIGNED }

OUTPUT { CONSTANT { constant-name ... } }
 { { * } }
 { }
 { DEF[INITION] { def-name ... } }
 { { * } }
 { }
 { RECORD { record-name ... } }
 { { * } }
 { }
 { TOKEN-CODE { token-name ... } }
 { { * } }
 { }
 { TOKEN-MAP { map-name ... } }
 { { * } }
 { }
 { TOKEN-TYPE { type-name ... } }
 { { * } }
 { }
 { * } .

OUTPUT UPDATE { CONSTANT constant-name ... }
 { [DEF[INITION]] def-name ... }
 { TOKEN-TYPE type-name ... } .

RECORD record-name .

 [file-creation]

 { record-structure | record-reference }

 [key-assignment]

END [.]
Data Definition Language (DDL) Reference Manual—529431-003
F-6

Syntax Summary RECORD Statement
creation-attribute

{ KEY-SEQUENCED }
{ RELATIVE }
{ ENTRY-SEQUENCED }
(UNSTRUCTURED }

[AUDIT]

[AUDITCOMPRESS]

[BLOCK block-length]

[[NO]BUFFERED]

[BUFFERSIZE buffer-size]

[CODE file-code]

{ COMPRESS | DCOMPRESS | ICOMPRESS }

[{ extent-size]
[EXT {]
[{ (pri-extent-size [, sec-extent-size])]

[MAXEXTENTS maximum-extents]

[NO ODDUNSTR]

[REFRESS]

[SERIALWRITES]

[VERIFYWRITES]
Data Definition Language (DDL) Reference Manual—529431-003
F-7

Syntax Summary SHOW USE OF Statement
record-structure

line-item specification ...
[66 RENAMES clause .] ...

line-item specification

level-number { field-name | group-name | FILLER }
{ PICTURE-clause | TYPE-clause }
[AS-clause]
[DISPLAY-clause]
[EDIT-PIC-clause]
[HEADING-clause]
[HELP-clause]
[JUSTIFIED-clause]
[LN-clause]
[MUST-BE-clause]
[NULL-clause]
{ OCCURS-clause | OCCURS-DEPENDING-ON-clause }
[REDEFINES-clause]
[SPI-NULL-clause]
[SQLNULLABLE-clause]
[TACL-clause]
[USAGE-clause]
[VALUE-clause] .
[88-condition-name- clause .] ...
[89-enumeration-clause .] ...

record-reference

DEF[INITION] IS def-name

key-assignment

KEY key-specifier IS { group-name | field-name }

 [FILE IS ["]file-name["]]

 [DUPLICATES [NOT] ALLOWED] .] ...

 [UPDATE [NOT] ALLOWED]

 [SEQUENCE IS [ASCENDING] { group-name }]
 [[DESCENDING] { field-name } .]

SHOW USE OF Statement
SHOW USE OF { CONSTANT constant-name [, constant-name]... }
 { [DEF[INITION]] def-name [, def-name]... }
 { TOKEN-TYPE type-name [, type-name]... }
Data Definition Language (DDL) Reference Manual—529431-003
F-8

Syntax Summary TOKEN-CODE Statement
TOKEN-CODE Statement

TOKEN-MAP Statement

TOKEN-CODE token-name

 VALUE [IS] token-number

 TOKEN-TYPE [IS] type-name

 [SSID subsystem-id]

 [HEADING label]

 [DISPLAY display-format]

TOKEN-MAP map-name

 VALUE [IS] token-number

 DEF [IS] def-name

 [SSID subsystem-id]

 [HEADING label]

 { { VERSION { number } } }
 { { { "Lnn " } } }
 { { { constant-name } } }
 { { } }
 { { NONVERSION } }
 { }
 { FOR { field-name [{ THROUGH } field-name] } }
 { { [{ THRU }] } }
 { { } }
 { { group-name [{ THROUGH } group-name] } }
 { { [{ THRU }] }. } ...

 END [.]
Data Definition Language (DDL) Reference Manual—529431-003
F-9

Syntax Summary TOKEN-TYPE Statement
TOKEN-TYPE Statement

DEFINITION and RECORD Statement Clauses
• AS Clause on page F-11

• DISPLAY Clause on page F-11

• EDIT-PIC Clause on page F-11

• EXTERNAL Clause on page F-11

• FILLER Clause on page F-11

• HEADING Clause on page F-11

• HELP Clause on page F-11

• JUSTIFIED Clause on page F-11

• KEYTAG Clause on page F-12

• LN Clause on page F-12

• MUST BE Clause on page F-12

• NULL Clause on page F-12

• OCCURS Clause on page F-12

• OCCURS DEPENDING ON Clause on page F-12

• PICTURE Clause on page F-13

• REDEFINES Clause on page F-13

• SPI-NULL Clause on page F-13

• SQLNULLABLE Clause on page F-13

• TACL Clause on page F-14

• TYPE Clause on page F-14

• UPSHIFT Clause on page F-14

• USAGE Clause on page F-15

TOKEN-TYPE type-name

 VALUE [IS] token-data-type

 { DEF [IS] def-name [OCCURS number TIMES] }
 { }
 { OCCURS { VARYING [DEF [IS] def-name] } }
 { { 0 TIMES } }
Data Definition Language (DDL) Reference Manual—529431-003
F-10

Syntax Summary AS Clause
• VALUE Clause on page F-15

• 66 RENAMES Clause on page F-15

• 88 Condition-Name Clause on page F-16

• 89 Enumeration Clause on page F-16

AS Clause

DISPLAY Clause

EDIT-PIC Clause

EXTERNAL Clause

FILLER Clause

HEADING Clause

HELP Clause

JUSTIFIED Clause

AS display-string [LN-clause]...

DISPLAY display-format

EDIT-PIC edit-picture-string

EXTERNAL

FILLER

HEADING report-heading [LN-clause]...

HELP help-text [[,] help-text]...

JUST[IFIED] RIGHT
Data Definition Language (DDL) Reference Manual—529431-003
F-11

Syntax Summary KEYTAG Clause
KEYTAG Clause

LN Clause

MUST BE Clause

value
value-1
value-2

{ "character-string" }
{ constant-name }
{ figurative-constant }
{ national-literal }
{ number }
{ symbolic-literal }
{ value-name }

NULL Clause

OCCURS Clause

OCCURS DEPENDING ON Clause

KEYTAG key-specifier [DUPLICATES [NOT] ALLOWED]

{ LN"language-code[_territory-code][.charset]" }
{ constant-name }

MUST BE { value }
 { value-1 { THROUGH | THRU } value-2 }

NULL { "character " | number | constant-name }

OCCURS max [TIMES] [INDEXED BY index-name]

OCCURS min TO max TIMES DEPENDING ON field-name
 [INDEXED BY index-name]
Data Definition Language (DDL) Reference Manual—529431-003
F-12

Syntax Summary PICTURE Clause
PICTURE Clause

picture-string

{ alphanumeric-string | numeric-string }

alphanumeric-string

{ A | X | 9 }...[(length)]

numeric-string

{ [S]9...[(length)[V[9...[(length)]]]] }
{ T[9...[(length)[V[9...[(length)]]]]] }
{ 9...[(length)[V[9...[(length)]]]]S }
{ 9...[(length)[V[9...[(length)]]]]T }

national-picture-string

{ { N | n } [(length)] }
{ { N | n }... }

REDEFINES Clause

SPI-NULL Clause

SQLNULLABLE Clause

PIC[TURE] { "{picture-string }" }
 { {national-picture-string } }
 { }
 { {picture-string } }
 { {national-picture-string } }

REDEFINES { field-name | group-name }

SPI-NULL {"character " | number | constant-name }

[NOT]SQLNULLABLE
Data Definition Language (DDL) Reference Manual—529431-003
F-13

Syntax Summary TACL Clause
TACL Clause

type

{ CRTPID }
{ DEVICE }
{ ENUM }
{ FNAME }
{ FNAME32 }
{ PHANDLE }
{ SSID }
{ SUBVOL }
{ TRANSID }
{ TSTAMP }
{ USERNAME }

TYPE Clause

data type

{ CHARACTER length }
{ }
{ BINARY { 8 } [UNSIGNED] }
{ { [16 [, scale]] } }
{ { 32 [, scale] } }
{ { 64 [, scale] } }
{ }
{ FLOAT { [32] } }
{ { 64 } }
{ }
{ COMPLEX }
{ }
{ LOGICAL { 1 } }
{ { [2] } }
{ { 4 } }
{ }
{ ENUM }
{ }
{ SQL-data-type }
{ }
{ BIT bit-length [UNSIGNED] [ENUM enum-name] }

UPSHIFT Clause

TACL type

TYPE { data-type | def-name | * }

UPSHIFT
Data Definition Language (DDL) Reference Manual—529431-003
F-14

Syntax Summary USAGE Clause
USAGE Clause

VALUE Clause

value

{ { "character-string" } [LN clause]... }
{ { constant-name } }
{ { national-literal } }
{ { number } }
{ }
{ figurative-constant }
{ sql-datetime-literal }
{ sql-interval-literal }
{ symbolic-literal }
{ value-name }

66 RENAMES Clause

[USAGE [IS]] { COMP[UTATIONAL] }
 { INDEX }
 { COMP[UTATIONAL]-3 }
 (PACKED-DECIMAL }

{ VALUE [IS] value }
{ NOVALUE }

66 renames-name RENAMES
 { field-name [{ THROUGH } field-name] }
 { [{ THRU }] }
 { }
 { group-name [{ THROUGH } group-name] }
 { [{ THRU }] }
Data Definition Language (DDL) Reference Manual—529431-003
F-15

Syntax Summary 88 Condition-Name Clause
88 Condition-Name Clause

value

{ { "character-string" } [LN clause] }
{ { constant-name } }
{ { national-literal } }
{ { number } }
{ }
{ figurative-constant }
{ sql-datetime-literal }
{ sql-interval-literal }
{ symbolic-literal }
{ value-name }

89 Enumeration Clause

Commands

Default: NOANSICOBOL

Default: NOC

Default: C00CALIGN

Default: CCHECK if a C source code file is open, otherwise NOCCHECK

88 condition-name { VALUE [IS] }
 { VALUES [ARE] }

 { value } [, value]
 { } []
 { value { THROUGH } value } [, value { THROUGH } value]
 { { THRU } } [{ THRU }] ...

89 value-name [VALUE value] [AS-clause]

[NO]ANSICOBOL

{ C [c-source-file [!]] }
{ NOC }

[NO]C00CALIGN

[NO]CCHECK
Data Definition Language (DDL) Reference Manual—529431-003
F-16

Syntax Summary Commands
Default: CDEFINEUPPER

Default: CLISTIN

Default: CLISTOUT

Default: COBCHECK if a COBOL source code file is open, otherwise NOCOBCHECK

Default: base =1, increment = 1

Default: NOCOBOL

Default: num = 132

[NO]CDEFINEUPPER

?CFIELDALIGN_MATCHED2

{ CIFNDEF } identifier_name
{ CIFDEF }

CENDIF

[NO]CLISTIN

{ [NO]CLISTOUT | CLISTOUTDETAIL }

[NO]COBCHECK

COBLEVEL [base [, increment]]

{ COBOL [cobol-source-file [!]] }
{ NOCOBOL }

COLUMNS num
Data Definition Language (DDL) Reference Manual—529431-003
F-17

Syntax Summary Commands
Default: NOCOMMENTS

Default: CPRAGMA

Default: NOCTOKENMAP_ASDEFINE

Default: NOC_DECIMAL

Default: NOC_MATCH_HISTORIC_TAL

Default: NODDL

Default: NODEFLIST

Default: NODICT

[NO]COMMENTS

[NO]CPRAGMA

[NO]CTOKENMAP_ASDEFINE

CUNDEF identifier_name

[NO]C_DECIMAL

[NO]C_MATCH_HISTORIC_TAL

{ DDL [ddl-source-file [!]] }
{ NODDL }

[NO]DEFLIST

{ DICT [dict-subvol-name] [!] }
{ NODICT }

DICTN [dict-subvol-name] [!]
Data Definition Language (DDL) Reference Manual—529431-003
F-18

Syntax Summary Commands
Default: DO_PTAL_ON

Default: Compilation continues until the end of the source code file regardless of the
number of errors

Default: NOEXPANDC

Default: FILLER 1

Default: FORCHECK if a FORTRAN source code file is open, otherwise
NOFORCHECK

Default: NOFORTRAN

Default: NOFORTRANUNDERSCORE

DICTR [dict-subvol-name]

{ DO_PTAL_ON | DO_PTAL_OFF }

EDIT [edit-file-name [; edit-parameter] ...]

ERRORS [max-errors]

[NO]EXPANDC

FIELDALIGN_SHARED8

FILLER { 1 | 0 }

[NO]FORCHECK

{ FORTRAN [fortran-source-file [!]] }
{ NOFORTRAN }

[NO]FORTRANUNDERSCORE
Data Definition Language (DDL) Reference Manual—529431-003
F-19

Syntax Summary Commands
Default: NOFUP

Default: all DDL commands

Default: LINECOUNT 56

Default: LIST

Default: NONCLCONSTANT

Default: NOFILEFORMAT

Default: destination specified in the OUT run option of the RUN DDL Command on
page F-2

Default: NOOUTPUT_SENSITIVE

{ FUP [fup-source-file [!] }
{ NOFUP }

HELP [command]

LINECOUNT number

[NO]LIST

{ NCLCONSTANT [NCL-source-file [!]] }
{ NONCLCONSTANT }

{ NEWFUP_FILEFORMAT | OLDFUP_FILEFORMAT | NOFILEFORMAT }

OUT [listing-destination]

[NO]OUTPUT_SENSITIVE

PAGE ["listing-title "]
Data Definition Language (DDL) Reference Manual—529431-003
F-20

Syntax Summary Commands
Default: NOPASCAL (D-series systems only)

Default: PASCALBOUND 1 (D-series systems only)

Default: PASCALCHECK if a Pascal source code file is open, otherwise
NOPASCALCHECK (D-series systems only)

Default: NOPASCALNAMEDVARIANT (D-series systems only)

Default: NOREPORT

Default: SAVE

Default: default system locale

{ PASCAL [pascal-source-file { !]] }
{ NOPASCAL }

PASCALBOUND { 0 | 1 }

[NO]PASCALCHECK

[NO]PASCALNAMEDVARIANT

{ REPORT [report-destination [!]] }
{ NOREPORT }

RESET

[NO]SAVE

SECTION section-name

SETLOCALENAME [locale-name]

SETSECTION [section-name]
Data Definition Language (DDL) Reference Manual—529431-003
F-21

Syntax Summary Commands
Default: SPACING 0

Default: NOTACL

Default: TACLGEN 0

Default: NOTAL

Default: TALALLOCATE

Default: TALBOUND 1

Default: TALCHECK if a TAL or pTAL source code file is open, otherwise
NOTALCHECK

Default: NOTALUNDERSCORE

SOURCE source-name [(section-name [, section-name] ...)]

SPACING { 0 | 1 | 2 }

{ TACL [tacl-source-file [!] }
{ NOTACL }

TACLGEN 0

{ TAL [tal-source-file [!] }
{ NOTAL }

[NO]TALALLOCATE

TALBOUND { 0 | 1 }

[NO]TALCHECK

[NO]TALUNDERSCORE
Data Definition Language (DDL) Reference Manual—529431-003
F-22

Syntax Summary Commands
Default: TIMESTAMP

Default: VALUES

Default: WARN

Default: Compilation continues until the end of the source code file regardless of the
number of warnings

TEDIT [edit-file-name [; edit-parameter] ...]

[NO]TIMESTAMP

[NO]VALUES

[NO]WARN

WARNINGS [max-warnings]
Data Definition Language (DDL) Reference Manual—529431-003
F-23

Syntax Summary Commands
Data Definition Language (DDL) Reference Manual—529431-003
F-24

G Pathmaker and DDL
The Pathmaker product is a NonStop Transaction Services/MP (NonStop TS/MP)
application systems generator. When you start a Pathmaker project, the Pathmaker
program installs a dictionary for you as part of the application catalog, which is an
integrated system directory for the Pathmaker project.

After the Pathmaker dictionary has been installed, you can start a DDL process from
within the Pathmaker environment and enter definitions and records just as if you had
created the dictionary from the command interpreter; however, there are differences in
the information stored in the dictionary and this affects the way the dictionary is
maintained.

DDL is used to specify definitions and records used by Pathmaker dictionaries. The
DDL compiler can add these objects to and delete them from the dictionary, as well as
perform other operations on them. The Pathmaker product contains other objects in its
dictionaries (servers, services, requesters, and screens) that are not defined by using
DDL. Only the Pathmaker software can add these objects to or delete them from a
Pathmaker dictionary (or catalog). In addition, a Pathmaker dictionary contains
application design information provided by the Pathmaker product, not by DDL.

Table G-1. DDL Features That Differ in the Pathmaker Environment (page 1 of 2)

DDL Feature Pathmaker Action Manual Reference

HELP Clause The Pathmaker product displays help text on the
screen when requested from a Pathmaker
application.

HELP on
page 6-10

MUST BE
Clause

The Pathmaker product enforces MUST BE
constraints; the DDL compiler does not.

MUST BE on
page 6-15

UPSHIFT
Clause

The Pathmaker product shifts specified character
strings to uppercase; the DDL compiler does not.

UPSHIFT on
page 6-69

OUTPUT*
Statement

Pathmaker objects are not generated by this
statement. As a result, you cannot use OUTPUT* to
rebuild a Pathmaker dictionary.

OUTPUT on
page 8-5

OUTPUT
UPDATE
Statement

Pathmaker objects that refer to specified DDL
objects are ignored by OUTPUT UPDATE; the
Pathmaker product makes any changes to
Pathmaker objects that refer to DDL objects.

OUTPUT UPDATE
on page 8-7
Data Definition Language (DDL) Reference Manual—529431-003
G-1

Pathmaker and DDL
DDL
Command

The Pathmaker product cannot use DDL source
code created by the DDL command to rebuild a
Pathmaker dictionary; the DDL source code does
not contain essential Pathmaker application design
information.

DDL on page 9-42

DICT!
Command

Pathmaker objects are not deleted from the
dictionary with this command; only the Pathmaker
product can modify or delete Pathmaker objects.

DICT on page 9-47

PURGE
Command

Pathmaker dictionary files cannot be purged with the
command interpreter PURGE command; only the
Pathmaker product can purge Pathmaker dictionary
files.

Purging a
Dictionary on
page 10-18

Table G-1. DDL Features That Differ in the Pathmaker Environment (page 2 of 2)

DDL Feature Pathmaker Action Manual Reference
Data Definition Language (DDL) Reference Manual—529431-003
G-2

H DDL Alignment Rules for C
This section provides information about alignment rules used by the DDL compiler
when generating C code.

The DDL compiler supports four types of alignment rules:

Rules For Command

C00CALIGN Alignment Rules C00 and later
versions of the
C compiler

C00CALIGN (default)

NOC00CALIGN Alignment Rules Versions of the
C compiler
earlier than
C00

NOC00CALIGN

C_MATCH_HISTORIC_TAL Alignment Rules Compatibility
with pTAL or
TAL structures

CMATCH_HISTORIC_TAL

FIELDALIGN_SHARED8 Alignment Rules Default
alignment
rules for
compatibility
with C
structures

FIELDALIGN_SHARED8

Note. The DDL compiler does not generate C output for a structure definition if the alignment
is not compatible to that of other languages. Incompatibility can occur if, for example, the C
compiler adds implicit FILLER bytes to a structure wherever the DDL compiler does not add
FILLER bytes.
Data Definition Language (DDL) Reference Manual—529431-003
H-1

DDL Alignment Rules for C C00CALIGN Alignment Rules
C00CALIGN Alignment Rules
These are the default alignment rules.

C00 and later versions of the C compiler follow these rules:

• All structures and nested substructures begin and end on an even byte boundary.

• When a CHAR or CHAR ARRAY item directly follows another CHAR or CHAR
ARRAY item, no filler exists between them (see Example H-1 on page H-2).

This rule does not apply if the first CHAR data is within a substructure and the
second is outside of the structure (see Example H-2 on page H-2).

When C00CALIGN is in effect, the DDL compiler does not generate C output for a
structure that contains one of the following:

• A substructure that begins on an odd byte boundary.

• A structure that ends on an odd byte boundary and is followed by a user-defined
item that the DDL compiler allocates starting on an odd byte.

Example H-1. C00CALIGN Alignment With Character Inside Structure

struct
{
 char a[3];
 char b; ! Starts at offset 3
} s;

Example H-2. C00CALIGN Alignment With Character Outside Structure

struct
{
 struct
 {
 char x[3];
 } ss2; ! C adds a filler byte at the of ss2
 char y; ! Starts at offset 4
} s1;

Note. The term substructure refers to a structure or union within a structure definition. The
only data that the DDL compiler allocates starting on an odd byte is character data.
Data Definition Language (DDL) Reference Manual—529431-003
H-2

DDL Alignment Rules for C NOC00CALIGN Alignment Rules
NOC00CALIGN Alignment Rules
Versions of the C compiler earlier than C00 follow these rules:

• If a substructure contains any word-aligned data (any data except for a CHAR or
CHAR array), then C aligns the substructure on word boundaries and uses an
even length (adding filler before and after the structure as needed).

• If a substructure contains no word-aligned data (only CHAR data, CHAR array
data, or substructures containing only CHAR or CHAR array data, applied
recursively), the DDL compiler aligns the substructure on byte boundaries and
does not include implicit filler.

When NOC00CALIGN is in effect, the DDL compiler does not generate C output for a
structure if the structure contains a substructure that contains a word-aligned item and
one of the following is true:

• The substructure starts on an odd byte boundary.

• The substructure ends on an odd byte boundary and is followed by a user-defined
item that the DDL compiler allocates starting on that odd byte.

• The DDL compiler does not insert implicit filler between byte-aligned objects
except as defined by the preceding two rules.

C_MATCH_HISTORIC_TAL Alignment Rules
When you specify the CFIELDALIGN_MATCHED2 command, DDL uses the following
alignment rules:

• If a substructure starts on an odd byte boundary or has an odd length, and refers
to a previously defined structure, the DDL compiler inserts one or more fillers to
word-align the substructure and make its length even.

• If a substructure defined in line starts on an odd byte boundary, the DDL compiler
aligns the data on an odd byte boundary.

The C_MATCH_HISTORIC_TAL command allows members of a structure to have
consecutive byte or word addresses. If the remaining byte in a two-byte word is not
large enough to accommodate the next member, then the DDL compiler assigns the
next word-aligned address. This condition also applies to a substructure that is
declared inline, using the first member of the substructure.

Note. The term substructure refers to either a structure or union within a structure
definition. The only data that the DDL compiler allocates starting on an odd byte is
character data.
Data Definition Language (DDL) Reference Manual—529431-003
H-3

DDL Alignment Rules for C FIELDALIGN_SHARED8 Alignment Rules
FIELDALIGN_SHARED8 Alignment Rules
When you specify the FIELDALIGN_SHARED8 command, DDL uses the following
alignment rules:

• The offset of each field (other than bit fields) in the structure from the base of the
structure must begin at an address that is an integral multiple of the width of the
field.

• The offset of a substructure field must be an integral multiple of the widest field in
the substructure.

• The offset of an array must be an integral multiple of an element of the array.

• Bit fields are packed from the most significant bit to the least significant bit in a
word and can not overlap a 16-bit word boundary.

• Explicit fillers are required to ensure that the components are properly aligned.

• The structure must begin at an address that is an integral multiple of the width of
the widest field in the structure.

• The size of a structure must be an integral multiple of its alignment. Explicit fillers
might be required to ensure this.

• The minimum alignment for a struct or substruct is 16 bits.

• The possible values for alignment are 1,2,4, or 8 bytes.
Data Definition Language (DDL) Reference Manual—529431-003
H-4

Glossary
alphabetic character. Any uppercase or lowercase letter or a space.

alphanumeric character. Any ASCII character.

alternate record key. A field other than the primary record key whose value identifies a
record in a structured file.

command interpreter. A process that manages interactive communication between you
and the operating system. In this manual, command interpreter refers to a TACL
process.

compilation. The process of translating a source file to an object file.

complex instruction set computing (CISC). A processor architecture based on a large
instruction set, characterized by numerous addressing modes, multicycle machine
instructions, and many special-purpose instructions. Compare to reduced instruction
set computing (RISC) and explicitly parallel instruction set computing (EPIC).

constant. A dictionary object that has a name, a data type, and a value. You define a
constant in a CONSTANT statement, and you can refer to a constant value by name in
other DDL statements.

Data Definition Language (DDL). An HP product for defining data objects in Enscribe files
and translating object definitions to source code for programming languages and other
products on HP NonStop systems.

DDL. See Data Definition Language (DDL).

dictionary. A DDL database that contains information about dictionary objects in a set of 14
files on the same subvolume. The name of the dictionary is the subvolume name. A
subvolume can contain only one dictionary.

dictionary object. A data item defined in a schema and stored in a dictionary. Dictionary
objects include:

• constants

• definitions

• records

• SPI token codes

• SPI token maps

• SPI token types

DEF. See definition.
Data Definition Language (DDL) Reference Manual—529431-003
Glossary-1

Glossary definition
definition. A dictionary object that describes a data structure, including the name, data
type, size, and other attributes of a field (elementary item) or of a named group of
fields.

ENABLE™. A product that is part of the ENCOMPASS Distributed Database Management
System. ENABLE allows you to build simple applications that execute within a
PATHWAY system.

Enform Plus. A language and a report generator used to retrieve information from
databases. Enform Plus can use DDL to define data format.

Enscribe. The HP database record manager, which provides access to and manipulation of
records in disk files.

explicitly parallel instruction set computing (EPIC). A processor architecture in which
the instruction stream encodes what can be done in parallel (so that the hardware
need not do this). Compare to complex instruction set computing (CISC) and reduced
instruction set computing (RISC).

extensible structured token. An SPI token to which new fields can be added.

File Utility Program (FUP). A HP product for creating files and altering file attributes.

host language. Generally, a programming language available on HP NonStop systems; in
this manual, a language in which the DDL compiler can generate source code.

locale. In localization, the definition of the subset of a user’s environment that depends on
language and cultural conventions.

Pathmaker. A NonStop Transaction Services/MP (NonStop TS/MP) application systems
generator that can create and manipulate a dictionary.

record. A dictionary object that describes the structure of an Enscribe disk file; a record
usually includes file creation information so that FUP can create a file from the record
structure. If the file is to be key sequenced, a record also contains the key attributes.

reduced instruction set computing (RISC). A processor architecture based on a relatively
small and simple instruction set, a large number of general-purpose registers, and an
optimized instruction pipeline that supports high-performance instruction execution.
Compare to complex instruction set computing (CISC) and explicitly parallel instruction
set computing (EPIC).

simple token. An SPI token that has a single field or a fixed data structure.

source code. Input to a language compiler or other HP product.

schema. A set of DDL statements that define DDL objects.

schema file. An EDIT file that contains a schema.
Data Definition Language (DDL) Reference Manual—529431-003
Glossary-2

Glossary SPI
SPI. See Subsystem Programmatic Interface (SPI).

SPI token. The smallest accessible unit in an SPI message; each token has a value and a
code that identifies the value. See also simple token and extensible structured token.

SPI token code. The identifying code of a simple token.

SPI token map. The identifying code of an extensible structured token.

SPI token type. The data type and size of one or more tokens.

Subsystem Programmatic Interface (SPI). A set of procedures and associated definition
files and a standard message protocol used to define common message-based
interfaces for communication between management applications and subsystems. It
includes procedures to build and decode specially formatted messages; definition files
in TAL, COBOL, and HP Tandem Advanced Command Language (TACL) for inclusion
in programs, macros, and routines using the interface procedures; and definition files in
Data Definition Language (DDL) for programmers writing their own subsystems.

TNS architecture. NonStop Series architecture. HP computers that are based on complex
instruction set computing (CISC) technology. TNS architecture implements the TNS
instruction set.

TNS/E architecture. NonStop Series/Itanium® architecture. HP computers that are based
on Itanium technology. TNS/E architecture implements the Itanium instruction set
[explicitly parallel instruction set computing (EPIC)] and are upwardly compatible with
the TNS and TNS/R architectures.

TNS/R architecture. NonStop Series/RISC architecture. HP computers that are based on
reduced instruction set computing (RISC) technology. TNS/R architecture implements
the RISC instruction set and are upwardly compatible with the TNS architecture.
Data Definition Language (DDL) Reference Manual—529431-003
Glossary-3

Glossary TNS/R architecture
Data Definition Language (DDL) Reference Manual—529431-003
Glossary-4

Index

Numbers
66 RENAMES clause

description of 6-79/6-80
HELP clause and 6-10
in DEFINITION statement

group definition 5-4
position of 5-2

in RECORD statement 5-14
88 condition-name clause

description of 6-81/6-83
HELP clause and 6-10
in DEFINITION statement

field definition 5-3
position of 5-2
reference definition 5-6

in line-item specification 5-24
SQLNULLABLE clause and 6-41

89 enumeration clause
description of 6-84/6-89
in DEFINITION statement

field definition 5-3
position of 5-2

in line-item specification 5-24
SQL data types and 6-78
SQLNULLABLE clause and 6-41

A
ALL literal figurative constant 6-17
Alternate Key File D-4
Alternate keys 5-17
American locale name 6-14
ANSICOBOL command 9-7/9-8

Arrays
fixed-length

See OCCURS clause
variable-length

See OCCURS DEPENDING ON
clause

AS clause
description of 6-3
in 89 enumeration clause 6-84
in DEFINITION statement

field definition 5-3
reference definition 5-6

in line-item specification 5-24
ASCENDING sort order 5-17
ASSIGNED file attribute 5-9
Asterisk (*)

in dictionary comment 2-12
in OUTPUT statement 8-5, 8-6
in TYPE clause 6-48, 6-51

Attributes
definition 6-1/6-89
file 5-11/5-14

AUDIT file attribute 5-11
AUDITCOMPRESS file attribute 5-12
Audited dictionaries

creating 9-47
moving to another
subvolume 10-16/10-18
rebuilding 10-21

B
BEGIN keyword in DEFINITION statement

generally 5-2, 5-22
89 enumeration clause and 5-20
field definition 5-3
reference definition 5-6

Belgian locale names 6-14
Data Definition Language (DDL) Reference Manual—529431-003
Index-1

Index C
BINARY data type
description of 6-49
in TYPE clause 6-48
MUST BE clause and 6-17
octal form and 6-52
translation of

to C 6-52
to COBOL 6-52
to Pascal 6-52
to pTAL 6-53
to TACL 6-52
to TAL 6-53

BIT data type
See also Bit maps
description of 6-50
SQLNULLABLE clause and 6-41
syntax of 6-48
translation of 6-54/6-66

Bit maps
for C source code 6-56/6-58
for COBOL source code 6-58/6-59
for FORTRAN source code 6-60/6-61
for Pascal source code 6-61/6-63
for pTAL source code 6-65/6-66
for TACL source code 6-63/6-64
for TAL source code 6-65/6-66

BLOCK file attribute 5-12
British locale name 6-14
BUFFERED file attribute 5-12
BUFFERSIZE file attribute 5-12

C
C command 9-8/9-11
C source code

66 RENAMES clause and 6-79
88 condition-name clause and 6-81
89 enumeration clause and 6-85
alignment of H-1/H-4
BINARY data type and 6-52

C source code (continued)
bit maps for 6-56/6-58
COMPUTATIONAL usage and 6-72
CONSTANT statement and 4-5
ENUM data type and 6-53
generating 9-8/9-11
output commands for 9-2/9-3
OUTPUT statement and 8-6
PICTURE clause and 6-28
REDEFINES clause and 6-32/6-33
SQLNULLABLE clause and 6-42
subscript bounds in 6-21
suppressing 9-9
TOKEN-CODE statement and 7-8
TOKEN-MAP statement and 7-13
TOKEN-TYPE statement and 7-2
translation table sample C-1/C-3
VALUE clause and 6-75

C00CALIGN command 9-12, H-2/H-3
Case sensitivity

in DDL keywords 2-6
in DDL names 2-2

CCHECK command 9-12/9-13
CDEFINEUPPER command 9-14
CENDIF command 9-18/9-19
CFIELDALIGN_MATCHED2
command 9-14/9-17
CHARACTER data type

description of 6-48
syntax of 6-48

CIFDEF command 9-18/9-19
CIFNDEF command 9-18/9-19
Circumflex (^)

in pTAL output 9-111
in TACL output 9-102
in TAL output 9-111
in TOKEN-CODE statement
output 7-10
in TOKEN-MAP statement output 7-18
in TOKEN-TYPE statement output 7-5
Data Definition Language (DDL) Reference Manual—529431-003
Index-2

Index C
Clauses
list of 6-1/6-2
order of

in DEFINTION statement 5-2
in line-item specification 5-24

CLISTIN command 9-20/9-21
CLISTOUT command 9-21/9-22
COBCHECK command 9-23/9-24
COBLEVEL command 9-25
COBOL command 9-26/9-28
COBOL keys 5-17
COBOL source code

BINARY data type and 6-52
bit maps for 6-58/6-59
COMPUTATIONAL usage and 6-72
CONSTANT statement and 4-6
ENUM data type and 6-53
generating 9-26/9-28
nested OCCURS clauses and 6-21
output commands for 9-3
OUTPUT statement and 8-6
PICTURE clause and 6-29
REDEFINES clause and 6-33
SQLNULLABLE clause and 6-42
subscript bounds in 6-21
suppressing 9-26
TOKEN-CODE statement and 7-8
TOKEN-MAP statement and 7-13
TOKEN-TYPE statement and 7-2
translation table sample C-4/C-5
VALUE clause and 6-75

CODE file attribute 5-12
COLUMNS command 9-29
Commands

compilation 9-2
dictionary 9-2
File Utility Program (FUP)

See File Utility Program (FUP),
commands

introduction to 2-18

Commands (continued)
listing 9-6
other 9-6
source output

See Source code, output
commands for

Comments 2-12/2-15
COMMENTS command 9-29/9-31
Compilation commands 9-2
Compiler listing comments 2-15
Compilers

DDL
See DDL compiler

TNS 1-11
TNS/E native 1-11
TNS/R native 1-11

Completion codes 3-5
COMPLEX data type

description of 6-50
syntax of 6-48

Compound statements 2-16
COMPRESS file attribute 5-13
Compressed audit trails 5-12
COMPUTATIONAL option 6-70
Condition-name clause

See 88 condition-name clause
Constant Definition File D-4/D-6
CONSTANT statement 4-1/4-9
Constants

figurative
See Figurative constants

named
See Named constants

numeric 4-3
Continuation

of commands 2-18
of statements 2-16

CPRAGMA command 9-32
Ctrl-Y key 3-4
C_DECIMAL command 9-37/9-39
Data Definition Language (DDL) Reference Manual—529431-003
Index-3

Index D
C_MATCH_HISTORIC_TAL command
alignment rules for H-3
description of 9-40/9-42

D
Danish locale name 6-14
Data objects 1-1
Data translation C-1/C-12
Databases

See also Dictionary database
creating 1-7/1-8
sample schema for B-1/B-6

DCOMPRESS file attribute 5-13
DDL command

for schema file 9-42/9-45
to run DDL compiler (RUN DDL
command) 3-1/3-3

DDL commands
See Commands

DDL compiler
commands to

See Commands
comments generated by

in compiler listing 2-15
in dictionary 2-14

completion codes for 3-5
description of 1-1
main functions of 1-3
running the

interactively 3-4/3-5
noninteractively 3-3

run-time defaults for 3-3
DDL language

description of 1-1/1-15
elements of 2-1/2-18

DDL source code
generating 9-42/9-45
suppressing 9-43

DEF statement
See DEFINITION statement

Defining SPI tokens 7-2
Definition attributes 6-1/6-89
DEFINITION statement 5-1/5-7
DEFLIST command 9-45/9-47
DELETE statement 8-1/8-3
Deleting dictionary objects 10-4/10-8
DESCENDING sort order 5-17
DICT command 9-47/9-49
DICTALT file D-4
DICTCDF file D-4/D-6
DICTDDF file

description of D-6/D-8
storage of D-64

Dictionaries
See also Dictionary database
adding objects to 10-2/10-3
audited

See Audited dictionaries
backing up 10-1/10-2
changing security of 10-14
commands for 9-2
comments in 2-13/2-14

See Dictionary comments
converting 10-22/10-23
creating 1-5/1-6
deleting objects from 10-4/10-8
examining 1-14/1-15
increasing size of 10-19/10-20
maintaining 1-12/1-13
major modifications of 10-13
manipulating 8-1
modifying objects in 10-8/10-13
moving to another
subvolume 10-14/10-18
nonaudited

See Nonaudited dictionaries
Pathmaker

See Pathmaker, dictionaries
purging 10-18
rebuilding 10-20/10-21
Data Definition Language (DDL) Reference Manual—529431-003
Index-4

Index E
Dictionaries (continued)
recreating schemas from 10-1/10-2
uses of 1-1

Dictionary commands 9-2
Dictionary comments 2-13/2-14
Dictionary database

components of D-1/D-3
definition and record storage
in D-63/D-68
files in D-3/D-63
structure of D-1/D-68
text items in D-2/D-3

Dictionary Definition File
description of D-6/D-8
storage of D-64

Dictionary files D-3/D-63
Dictionary reports E-1/E-7
DICTKDF file

description of D-8/D-12
storage of D-67

DICTMAP file D-13/D-14
DICTN command 9-49/9-51
DICTOBL file

description of D-15/D-37
storage of D-65

DICTODF file
description of D-37/D-41
storage of D-64

DICTOTF file
description of D-41/D-45
storage of D-65/D-66

DICTOUF file D-45/D-47
DICTOUK file D-47
DICTR command 9-51/9-52
DICTRDF file

description of D-47/D-55
storage of D-66/D-67

DICTTKN file D-56/D-58
DICTTYP file D-58/D-61
DICTVER file D-61/D-63

Disk file record definitions
See RECORD statement

DISPLAY clause
description of 6-4
in DEFINITION statement

field definition 5-3
group definition 5-4
reference definition 5-6

in line-item specification 5-24
in TOKEN-CODE statement 7-8, 7-9

DO_PTAL_OFF command 9-52/9-53
DO_PTAL_ON command 9-52/9-53
DUPLICATES ALLOWED clause

in key assignment 5-16
in KEYTAG clause 6-12

Dutch locale names 6-14

E
EDIT command 9-53/9-55
EDIT-PIC clause

description of 6-5/6-6
in DEFINITION statement

field definition 5-3
reference definition 5-6

in line-item specification 5-24
SQLNULLABLE clause and 6-41

Elements in dictionary database D-2
ENABLE, HEADING clause and 6-9
END keyword

in DEFINITION statement
field definition 5-3
group definition 5-4
position of 5-2
reference definition 5-6

in RECORD statement 5-7
Enform Plus

dictionary conversion and 10-23
dictionary examination and 1-14/1-15
dictionary reports and E-1/E-7
Data Definition Language (DDL) Reference Manual—529431-003
Index-5

Index F
Enform Plus (continued)
DISPLAY clause and 6-4
HEADING clause and 6-9
NULL-VALUE field and D-12
reserved words 2-3

English locale names 6-14
Enscribe files

NULL clause and 6-19
types of 5-11

ENTRY-SEQUENCED file attribute 5-11
Entry-sequenced files

by default 5-10
explicitly defined 5-11

ENUM data type
description of 6-50
in TYPE clause 6-48
translation of

to C 6-53
to COBOL 6-53
to FORTRAN 6-53
to Pascal 6-53
to pTAL 6-54
to TACL 6-53
to TAL 6-54

Enumeration clause
See 89 enumeration clause

Error handling
for DEFINITION statement 5-7
for RECORD statement 5-17

ERRORS command 9-55
Exclamation point (!) 2-12
Existing named constants 4-5
EXIT statement 8-4
EXPANDC command 9-56/9-57
EXT file attribute 5-13
Extensible structured SPI tokens 7-2
Extents

maximum number of 5-14
size of 5-13

EXTERNAL clause
description of 6-6
in DEFINITION statement

field definition 5-3
group definition 5-4
reference definition 5-6

F
Field definitions 5-3/5-4
FIELDALIGN_SHARED8 command

alignment of C code and H-4
description of 9-58/9-59

Figurative constants
in 88 condition-name clause 6-82
in MUST BE clause 6-16
in VALUE clause 6-75
list of 6-17

File attributes 5-11/5-14
File names 2-3/2-4
File Utility Program (FUP)

commands
for dictionary security 10-14
for increasing dictionary size 10-19
for moving dictionary 10-14/10-18

file-creation defaults 5-10
source code

ASSIGNED file attribute and 5-9
AUDIT file attribute and 5-11
generating 1-7, 9-67/9-69
NULL clause and 6-19
NULL-VALUE field and

in DICTKDF file D-12
in DICTOBL file D-29

output commands for 9-4
RECORD statement and 5-9
specifying format of

format 1 (old) 9-79/9-81
format 2 (new) 9-75/9-77
no format 9-77/9-79
Data Definition Language (DDL) Reference Manual—529431-003
Index-6

Index G
File Utility Program (FUP) (continued)
source code (continued)

suppressing 9-67
TEMPORARY file attribute and 5-9
UPDATE clause and 5-17

Files
assigned 5-9
audited 5-11
creating 5-9/5-10
dictionary D-3/D-63
Enscribe 5-11
entry-sequenced

by default 5-10
explicitly defined 5-11

key-sequenced
by default 5-10
compressing 5-13
explicitly defined 5-11

relative
by default 5-10
explicitly defined 5-11

temporary 5-9
unstructured

by default 5-10
explicitly defined 5-11

FILLER clause
description of 6-7/6-8
EXTERNAL clause and 6-6
in line-item specification 5-24
SQLNULLABLE clause and 6-41

FILLER command 9-59/9-62
Finnish locale name 6-14
Fixed-length arrays

See OCCURS clause
FLOAT data type

description of 6-49
syntax of 6-48

FORCHECK command 9-62/9-63
FORTRAN command 9-63/9-66

FORTRAN source code
66 RENAMES clause and 6-79
88 condition-name clause and 6-81
89 enumeration clause and 6-85
bit maps for 6-60/6-61
COMPUTATIONAL usage and 6-72
ENUM data type and 6-53
generating 9-63/9-66
OCCURS DEPENDING ON clause
and 6-24
output commands for 9-3
OUTPUT statement and 8-6
PICTURE clause and 6-30
REDEFINES clause and 6-33,
6-33/6-34
SQLNULLABLE clause and 6-43
subscript bounds in 6-21
suppressing 9-64
translation table sample C-5/C-6
VALUE clause and 6-75

FORTRANUNDERSCORE command 9-66
French locale names 6-14
FUP

See File Utility Program (FUP)
FUP command (for DDL
compiler) 9-67/9-69

G
German locale names 6-14
Greek locale name 6-14
Group definitions 5-4/5-5

H
HEADING clause

description of 6-9
in DEFINITION statement

field definition 5-3
group definition 5-4
reference definition 5-6
Data Definition Language (DDL) Reference Manual—529431-003
Index-7

Index I
HEADING clause (continued)
in line-item specification 5-24
in TOKEN-CODE statement 7-9
in TOKEN-MAP statement 7-14

HELP clause
description of 6-10/6-11
in DEFINITION statement

field definition 5-3
group definition 5-4
reference definition 5-6

in line-item specification 5-24
HELP command 9-70
HIGH-NUMBER symbolic literal 6-17
HIGH-VALUE(S) figurative constant 6-17
HP C for NonStop Systems

See C
HP COBOL for NonStop Systems

See COBOL
HP FORTRAN for NonStop Systems

See FORTRAN
HP Pascal for NonStop Systems

See Pascal
HP Portable Transaction Application
Language

See pTAL
HP Tandem Advanced Command
Language

See TACL
HP Transaction Application Language

See TAL
Hyphen (-)

in C output 9-9
in DDL name 2-2
in FORTRAN output 9-66
in NCL output 9-73
in Pascal output 9-87
in pTAL output 9-111
in record name 5-10
in TACL output 9-102
in TAL output 9-111

Hyphen (-) (continued)
in TOKEN-CODE statement
output 7-10
in TOKEN-MAP statement output 7-18
in TOKEN-TYPE statement output 7-5

I
Icelandic locale name 6-14
ICOMPRESS file attribute 5-13
Initial values

See VALUE clause
Internationalization support 2-4
Italian locale name 6-14

J
Japanese locale names 6-14
JUSTIFIED clause

description of 6-11
in field definition 5-3
in line-item specification 5-24

K
Key assignment 5-16/5-17
Key Definition File

description of D-8/D-12
storage of D-67

KEYTAG clause
description of 6-12
reference record structure and 5-15

Keywords 2-6/2-11
KEY-SEQUENCED file attribute 5-11
Key-sequenced files

by default 5-10
compressing 5-13
explicitly defined 5-11

Korean locale name 6-14
Data Definition Language (DDL) Reference Manual—529431-003
Index-8

Index L
L
Level numbers

generally 5-23/5-24
01 (implicit) 5-23
66 (RENAMES clause) 6-79
88 (condition-name clause) 6-81
89 (enumeration clause) 6-84
in line-item specification 5-24

LINECOUNT command 9-70/9-71
Line-item specification

in DEFINITION statement 5-4
in RECORD statement 5-14
syntax of 5-24

LIST command 9-71/9-72
Listing commands 9-6
Literals

national
See National literals

SQL
See SQL literals

symbolic
See Symbolic literals

LN clause
description of 6-13/6-15
in 88 condition-name clause 6-81
in AS clause 6-3
in CONSTANT statement 4-1, 4-2
in line-item specification 5-24
in VALUE clause 6-75

Local file names 2-3
Locale names 2-4
LOGICAL data type

description of 6-50
syntax of 6-48
translation to Pascal 6-54

Logical records 5-9
LOW-NUMBER symbolic literal 6-17
LOW-VALUE(S) figurative constant 6-17

M
Manuals

prerequisite xxiv
related xxv

MAXEXTENTS file attribute 5-14
Mirror disk 5-14
MUST BE clause

description of 6-15/6-18
in DEFINITION statement

field definition 5-3
reference definition 5-6

in line-item specification 5-24
REDEFINES clause and 6-31
SQL data types and 6-78
UPSHIFT clause and 6-69

N
Named constants

defined by CONSTANT
statement 4-1/4-9
SPI 4-9

Names
file 2-3/2-4
locale 2-4
other 2-1/2-3

National literals
in 88 condition-name clause 6-81
in CONSTANT statement 4-1, 4-2
in MUST BE clause 6-16
in VALUE clause 6-75, 6-79
syntax of 2-6

Native compilers 1-11
NCL source code

generating 9-72/9-74
suppressing 9-73

NCLCONSTANT command 9-72/9-74
Data Definition Language (DDL) Reference Manual—529431-003
Index-9

Index O
Nesting
CIFNDEF and CIFDEF
commands 9-18/9-19
group definitions 5-4
OCCURS clauses

with COBCHECK command 9-24
without COBCHECK
command 6-21

schema files 9-100
Nesting levels 8-12/8-13
Network Control Language

See NCL
Network file names 2-4
NEWFUP_FILEFORMAT
command 9-75/9-77
NO ODDUNSTR file attribute 5-14
NOFILEFORMAT command 9-77/9-79
NOname command

See name command
Nonaudited dictionaries

creating
with DICT command 9-47
with DICTN command 9-49

moving to another subvolume 10-15
rebuilding 10-20/10-21
TMF and 9-49

Norwegian locale name 6-14
NOT SQLNULLABLE clause

See SQLNULLABLE clause
Notation conventions xxv/xxx
NOVERSION option in TOKEN-MAP
statement 7-14
NULL clause

description of 6-19/6-20
in DEFINITION statement

field definition 5-3
group definition 5-4
reference definition 5-6

in line-item specification 5-24
NOT SQLNULLABLE clause and 6-40
SPI-NULL clause and 6-37

Numbers 2-5
Numeric constants 4-3

O
Object Build List

description of D-15/D-37
storage of D-65

Object Definition File
description of D-37/D-41
storage of D-64

Object Text File
description of D-41/D-45
storage of D-65/D-66

Object Usage File D-45/D-47
Object Usage Key File D-47
Objects

data 1-1
in dictionary database D-1/D-2
operations on

adding to dictionary 10-2/10-3
deleting from dictionary 10-4/10-8
modifying 10-8/10-13

OCCURS clause
bit maps and 6-55
description of 6-20/6-23
in line-item specification 5-24
in TOKEN-TYPE statement 7-3,
7-3/7-4
nested 6-21
SQLNULLABLE clause and 6-41

OCCURS DEPENDING ON clause
description of 6-23/6-25
in line-item specification 5-24

Octal form, BINARY 64 UNSIGNED
and 6-52
OLDFUP_FILEFORMAT
command 9-79/9-81
OUT command 9-82
OUTPUT statement 8-5/8-7
Data Definition Language (DDL) Reference Manual—529431-003
Index-10

Index P
OUTPUT UPDATE statement 8-7/8-10
OUTPUT_SENSITIVE command 9-83/9-85

P
PAGE command 9-86
PASCAL command 9-86/9-89
Pascal source code

66 RENAMES clause and 6-79
88 condition-name clause and 6-81
89 enumeration clause and 6-85
BINARY data type and 6-52
bit maps for 6-61/6-63
COMPUTATIONAL usage and 6-72
CONSTANT statement and 4-6
ENUM data type and 6-53
generating 9-86/9-89
LOGICAL data type and 6-54
output commands for 9-4
OUTPUT statement and 8-6
PICTURE clause and 6-30
REDEFINES clause and 6-34/6-35
SQLNULLABLE clause and 6-43
subscript bounds in 6-21
suppressing 9-87
TOKEN-CODE statement and 7-8
TOKEN-MAP statement and 7-13
TOKEN-TYPE statement and 7-2
translation table sample C-7/C-8
VALUE clause and 6-75

PASCALBOUND command 9-89/9-90
PASCALCHECK command 9-90/9-91
PASCALNAMEDVARIANT command 9-91
Pathmaker

DDL command and 9-44
DICT command and 9-48
dictionaries

additional objects in D-2
backing up 1-12, 10-1
converting 10-22

Pathmaker (continued)
dictionaries (continued)

creating 1-5, G-1/G-2
modifying 10-13
moving 10-14
purging 10-18
rebuilding 9-44

DICTN command and 9-50/9-51
DICTOUF file and D-47
EDIT-PIC clause and 6-5
HEADING clause and 6-9
HELP clause and 6-10, 6-10
MUST BE clause and 6-18
NEXT-OBJ field and D-8
NEXT-QUAL-ID and D-8
NEXT-TEXT-ID field and D-8
NOSAVE command and 9-95
OBJ-TYPE values used by D-41
OUTPUT statement and 8-6
OUTPUT UPDATE statement and 8-8
UPSHIFT clause and 6-69

PIC clause
See PICTURE clause

PICTURE clause
description of 6-25/6-30
in field definition 5-3
in line-item specification 5-24

Portuguese locale name 6-14
Prerequisite manuals xxiv
Primary extent, size of 5-13
Primary keys 5-17
Product version constants 4-4
Production comments 2-15
pTAL source code

88 condition-name clause and 6-81
BINARY data type and 6-53
bit maps for 6-65/6-66
ENUM data type and 6-54
generating 9-105/9-107
output commands for 9-4
Data Definition Language (DDL) Reference Manual—529431-003
Index-11

Index Q
pTAL source code (continued)
PICTURE clause and 6-30/6-31
REDEFINES clause and 6-35
SQLNULLABLE clause and 6-43
suppressing 9-105
VALUE clause and 6-75

Punctuation
in commands 2-18
in statements 2-16

Q
Qualified names 2-2
Quotation marks within strings 2-5
QUOTE(S) figurative constant 6-17

R
Record Definition File

description of D-47/D-55
storage of D-66/D-67

RECORD statement 5-7/5-17
Records

See RECORD statement
REDEFINES clause

bit maps and 6-55
description of 6-31/6-36
in line-item specification 5-24
MUST BE clause and 6-17
UPSHIFT clause and 6-69

Reference definitions 5-6
REFRESH file attribute 5-14
Related manuals xxv
RELATIVE file attribute 5-11
Relative files

by default 5-10
explicitly defined 5-11

RENAMES clause
See 66 RENAMES clause

REPORT command 9-92/9-93
Reports, dictionary E-1/E-7

Reserved words
DDL 2-11
Enform Plus 2-3
host-language 2-2

RESET command 9-94
Rounding in unstructured file 5-14
RUN DDL command 3-1/3-3

S
SAVE command 9-94/9-96
Schemas

creating 1-4
recreating from dictionaries 10-1/10-2
sample B-1/B-11

Secondary extent, size of 5-13
SECTION command 9-96/9-97
SEQUENCE IS clause 5-17
SERIALWRITES file attribute 5-14
SETLOCALENAME command 9-97/9-98
SETSECTION command 9-98/9-99
Shifting to uppercase characters 6-69
SHOW USE OF statement 8-11/8-13
Signed numeric strings 6-26
SImple SPI tokens 7-2
Simple statements 2-16
Slash (/) in HEADING clause 6-9
Source code

generating 1-9/1-11
output commands for

C 9-2/9-3
COBOL 9-3
File Utility Program (FUP) 9-4
FORTRAN 9-3
other 9-5
Pascal 9-4
pTAL 9-4
TACL 9-5
TAL 9-4

SOURCE command 9-99/9-100
SPACE(S) figurative constant 6-17
Data Definition Language (DDL) Reference Manual—529431-003
Index-12

Index T
SPACING command 9-101
Spanish locale name 6-14
Special characters 2-12
SPI constants 4-9
SPI schema sample B-6/B-11
SPI tokens 1-1, 7-1
SPI variable names 2-3
SPI-NULL clause

description of 6-37/6-39
in DEFINITION statement

field definition 5-3
reference definition 5-6

in line-item specification 5-24
SQL data types in TYPE clause 6-48, 6-50
SQL literals

in 88 condition-name clause 6-81, 6-82
in VALUE clause 6-75, 6-76, 6-79

SQLNULLABLE clause
description of 6-39/6-44
in DEFINITION statement

field definition 5-3
group definition 5-4

in line-item specification 5-24
SSID clause

in TOKEN-CODE statement 7-9
in TOKEN-MAP statement 7-14

Statements
syntax rules for 2-16
that define or replace objects 2-17
that delete objects 8-1/8-3
that display objects 2-17
that end DDL session 8-4

Strings 2-5
Structured SPI tokens 7-2
Subscript bounds 6-21
Subsystem Programmatic Interface

See SPI
Swedish locale name 6-14
Swiss locale names 6-14

Symbolic literals
in 88 condition-name clause 6-81, 6-82
in MUST BE clause 6-16, 6-17
in VALUE clause 6-75, 6-76

T
TACL clause

description of 6-44/6-47
in DEFINITION statement

field definition 5-3
reference definition 5-6

in line-item specification 5-24
TACL command 9-101/9-104
TACL source code

66 RENAMES clause and 6-79
88 condition-name clause and 6-81
89 enumeration clause and 6-86
BINARY data type and 6-52
bit maps for 6-63/6-64
COMPUTATIONAL usage and 6-72
CONSTANT statement and 4-7
ENUM data type and 6-53
generating 9-101/9-104
OCCURS DEPENDING ON clause
and 6-24
output commands for 9-5
OUTPUT statement and 8-6
PICTURE clause and 6-31
REDEFINES clause and 6-33, 6-36
SQLNULLABLE clause and 6-44
subscript bounds in 6-21
suppressing 9-102
TOKEN-CODE statement and 7-8
TOKEN-MAP statement and 7-13
TOKEN-TYPE statement and 7-2
translation table sample C-9/C-10
VALUE clause and 6-75

TACLGEN command 9-104
Taiwanese locale name 6-14
Data Definition Language (DDL) Reference Manual—529431-003
Index-13

Index U
TAL command 9-105/9-107
TAL source code

88 condition-name clause and 6-81
89 enumeration clause and 6-85
BINARY data type and 6-53
bit maps for 6-65/6-66
COMPUTATIONAL usage and 6-72
CONSTANT statement and 4-8
ENUM data type and 6-54
generating 9-105/9-107
OCCURS clause and 6-21
OCCURS DEPENDING ON clause
and 6-24
output commands for 9-4
OUTPUT statement and 8-6
PICTURE clause and 6-30/6-31
REDEFINES clause and 6-35
SQLNULLABLE clause and 6-43
subscript bounds in 6-21
suppressing 9-105
TOKEN-CODE statement and 7-8
TOKEN-MAP statement and 7-13
TOKEN-TYPE statement and 7-2
translation table sample C-11/C-12
VALUE clause and 6-75

TALALLOCATE command 9-108
TALBOUND command 9-109/9-110
TALCHECK command 9-110/9-111
TALUNDERSCORE command 9-111/9-112
TEDIT command 9-112/9-113
TEMPORARY file attribute 5-9
Text items in dictionary database D-2/D-3
TIMESTAMP command 9-113/9-115
TNS compilers 1-11
TNS/E native compilers 1-11
TNS/R native compilers 1-11
Token Code File D-56/D-58
Token Map Field Version File D-61/D-63
Token Map File D-13/D-14
Token Type File D-58/D-61

Tokens, SPI 7-1
TOKEN-CODE statement 7-8/7-12
TOKEN-MAP statement 7-13/7-26
TOKEN-TYPE statement 7-2/7-8
Translating data C-1/C-12
Turkish locale name 6-14
TYPE clause

description of 6-48/6-68
in DEFINITION statement

field definition 5-3
reference definition 5-6

in line-item specification 5-24

U
UK locale name 6-14
Underscore (_)

in C output 9-9
in DDL name 2-2
in FORTRAN output 9-66
in NCL output 9-73
in Pascal output 9-87
in TAL output 9-111
in TOKEN-CODE statement
output 7-10
in TOKEN-MAP statement output 7-18
in TOKEN-TYPE statement output 7-5

UNSIGNED BINARY data type
description of 6-49
syntax of 6-48, 6-49

UNSTRUCTURED file attribute 5-11
Unstructured files

by default 5-10
explicitly defined 5-11
keys and 5-17

UPDATE ALLOWED clause 5-17
Uppercase characters, forcing 6-69
Data Definition Language (DDL) Reference Manual—529431-003
Index-14

Index V
UPSHIFT clause
description of 6-69
in DEFINITION statement

field definition 5-3
reference definition 5-6

MUST BE clause and 6-17
REDEFINES clause and 6-31
VALUE clause and 6-77

USA locale name 6-14
USAGE clause

description of 6-70/6-74
in DEFINITION statement

field definition 5-3
group definition 5-4
reference definition 5-6

in line-item specification 5-24
User-defined comments

in compiler listing 2-15
in dictionary 2-13/2-14

V
VALUE clause

description of 6-75/6-79
in CONSTANT statement 4-1, 4-2
in DEFINITION statement

field definition 5-3
group definition 5-4
reference definition 5-6

in line-item specification 5-24
MUST BE clause and 6-17
REDEFINES clause and 6-31
SPI-NULL clause and 6-38

Variable-length arrays
See OCCURS clause

VERIFIEDWRITES file attribute 5-14
Version constants 4-4
VERSION in CONSTANT statement 4-2
VERSION option in TOKEN-MAP
statement 7-14

W
WARN command 9-116
WARNINGS command 9-116/9-117

Z
ZERO((E)S) figurative constant 6-17
ZSPIDEF.ZSPIDDL file 7-5, 7-11

Special Characters
_COMPLETION variable (TACL) 3-5
Data Definition Language (DDL) Reference Manual—529431-003
Index-15

Index Special Characters
Data Definition Language (DDL) Reference Manual—529431-003
Index-16

Content Feedback

(All contact information fields are required.)

Thank you for taking the time to provide us with your comments.

You can submit this form online, email it as an attachment topubs.comments@hp.com, FAX it to
408-285-5520, or mail it to:

Hewlett-Packard Company
NonStop Enterprise Division
19333 Vallco Parkway, MS 4421
Cupertino, CA 95014-2599
Attn.: Product Manager, Software Publications

First Name: __________________
Phone: _____________________
Company: ___________________

Last Name: _________________
e-mail address: ______________

If you’re reporting an error or omission, is your issue:

 Minor: I can continue to work, but eventual resolution is requested.

 Major: I can continue to work, but prompt resolution is requested.

 Critical: I cannot continue to work without immediate response.

Comments (give sufficient detail to help us locate the text):

__

__

__

__

__

	Data Definition Language (DDL) Reference Manual
	Legal Notices
	Contents
	What’s New in This Manual
	Manual Information
	New and Changed Information
	Changes to the 529431-001 manual

	About This Manual
	Audience
	Prerequisite Manuals
	Related Manuals
	Notation Conventions
	Hypertext Links
	General Syntax Notation
	Notation for Messages
	Notation for Management Programming Interfaces
	Change Bar Notation

	1 Introduction to DDL
	Compiling and Translating Data Definitions
	Using DDL Definitions
	Creating a Dictionary
	Creating a Database
	Generating Source Code
	Maintaining a Dictionary
	Examining a Dictionary

	2 DDL Language Elements
	Names
	Syntax
	Restrictions

	File Names
	Local File Names
	Network File Names

	Locale Names
	Numbers
	Strings
	National Literals
	Keywords
	Reserved Words
	Special Characters
	Comments
	Dictionary Comments
	Compiler Listing Comments

	Statements
	Commands

	3 Running the DDL Compiler
	RUN DDL Command
	Running the DDL Compiler Noninteractively
	Running the DDL Compiler Interactively
	Completion Codes

	4 Named Constants
	CONSTANT
	Numeric Constants
	Product Version Constants
	Existing Constants
	C
	COBOL
	Pascal (D-series Systems Only)
	TACL
	TAL
	Examples

	Standard SPI Constants

	5 Definitions and Records
	DEFINITION
	Order of Clauses
	Definition Length
	Field Definition
	Group Definition
	Reference Definition
	Error Handling

	RECORD
	File-Creation Syntax
	Creation-Attribute Syntax
	Record Structure Syntax
	Record Reference Syntax
	Key Assignment Syntax
	Error Handling
	Examples

	Syntax Elements
	Clauses
	Other Elements

	6 Definition Attributes
	AS
	DISPLAY
	EDIT-PIC
	EXTERNAL
	FILLER
	HEADING
	HELP
	JUSTIFIED
	KEYTAG
	LN
	MUST BE
	NULL
	OCCURS
	OCCURS DEPENDING ON
	PICTURE
	National Data Items
	C
	COBOL
	FORTRAN
	Pascal (D-series Systems Only)
	pTAL and TAL
	TACL

	REDEFINES
	C
	COBOL
	FORTRAN
	Pascal (D-series Systems Only)
	pTAL or TAL
	TACL

	SPI-NULL
	SQLNULLABLE
	TACL
	TYPE
	Specifying TYPE data-type
	Specifying TYPE def-name
	Specifying TYPE *

	UPSHIFT
	USAGE
	VALUE
	66�RENAMES
	88�Condition-Name
	89�Enumeration

	7 SPI Tokens
	Defining SPI Tokens
	TOKEN-TYPE
	TOKEN-TYPE Statement Output
	Standard SPI TOKEN-TYPE Definitions

	TOKEN-CODE
	TOKEN-CODE Statement Output
	Standard SPI TOKEN-CODE Definitions

	TOKEN-MAP
	Product Versions for Bit Fields
	TOKEN-MAP Statement Output
	Standard SPI Definitions in Token-Map Definitions

	8 Dictionary-Manipulation Statements
	DELETE
	EXIT
	OUTPUT
	OUTPUT UPDATE
	SHOW USE OF

	9 DDL Compiler Commands
	ANSICOBOL
	C
	C00CALIGN
	CCHECK
	CDEFINEUPPER
	CFIELDALIGN_MATCHED2
	CIFDEF, CIFNDEF, and CENDIF
	CLISTIN
	CLISTOUT
	COBCHECK
	COBLEVEL
	COBOL
	COLUMNS
	COMMENTS
	CPRAGMA
	CTOKENMAP_ASDEFINE
	CUNDEF
	C_DECIMAL
	C_MATCH_HISTORIC_TAL
	DDL
	DEFLIST
	DICT
	DICTN
	DICTR
	DO_PTAL_ON
	EDIT
	ERRORS
	EXPANDC
	FIELDALIGN_SHARED8
	FILLER
	FORCHECK
	FORTRAN
	FORTRANUNDERSCORE
	FUP
	HELP
	LINECOUNT
	LIST
	NCLCONSTANT
	NEWFUP_FILEFORMAT
	NOFILEFORMAT
	OLDFUP_FILEFORMAT
	OUT
	OUTPUT_SENSITIVE
	PAGE
	PASCAL (D-Series Systems Only)
	PASCALBOUND (D-Series Systems Only)
	PASCALCHECK (D-Series Systems Only)
	PASCALNAMEDVARIANT (D-Series Only)
	REPORT
	RESET
	SAVE
	SECTION
	SETLOCALENAME
	SETSECTION
	SOURCE
	SPACING
	TACL
	TACLGEN
	TAL
	TALALLOCATE
	TALBOUND
	TALCHECK
	TALUNDERSCORE
	TEDIT
	TIMESTAMP
	VALUES
	WARN
	WARNINGS

	10 Dictionary Maintenance
	Generating a schema From a Dictionary
	Adding Dictionary Objects
	Deleting Dictionary Objects
	Deleting Unreferenced Objects
	Deleting Referenced Objects

	Modifying Dictionary Objects
	Modifying Unreferenced Objects
	Modifying Referenced Objects

	Making Major Modifications
	Changing Dictionary Security
	Moving a Dictionary
	Moving a Nonaudited Dictionary
	Moving an Audited Dictionary

	Purging a Dictionary
	Increasing Dictionary File Size
	Rebuilding a Dictionary
	Rebuilding a Nonaudited Dictionary
	Rebuilding an Audited Dictionary

	Converting a Dictionary

	A DDL Messages
	B Sample Schemas
	Sample Database Schema
	Host-Language Source Code
	Database Schema Listing

	Sample SPI Schema
	DDL Commands to Create an SPI Schema
	Selected ZSPIDDL Statements
	ASSNDDL Statements

	C DDL Data Translation
	D Dictionary Database Structure
	Dictionary Components
	Objects
	Elements
	Text Items

	Dictionary Files
	DICTALT (Alternate Key File)
	DICTCDF (Constant Definition File)
	DICTDDF (Dictionary Definition File)
	DICTKDF (Key Definition File)
	DICTMAP (Token Map File)
	DICTOBL (Object Build List)
	DICTODF (Object Definition File)
	DICTOTF (Object Text File)
	DICTOUF (Object Usage File)
	DICTOUK (Object Usage Key File)
	DICTRDF (Record Definition File)
	DICTTKN (Token Code File)
	DICTTYP (Token Type File)
	DICTVER (Token Map Field Version File)

	Definition and Record Storage in the Dictionary
	DICTDDF (Dictionary Definition File)
	DICTODF (Object Definition File)
	DICTOBL (Object Build List)
	DICTOTF (Object Text File)
	DICTRDF (Record Definition File)
	DICTKDF (Key Definition File)
	Dictionary Structure Link Diagram

	E Dictionary Reports
	Using Enform Plus Queries for Dictionary Reports
	Producing Dictionary Reports
	Compiling the Dictionary Schema
	Requesting Reports

	F Syntax Summary
	RUN DDL Command
	CONSTANT Statement
	DEFINITION Statement
	Field Definition
	Group Definition
	Reference Definition

	DELETE Statement
	EXIT Statement
	OUTPUT Statement
	OUTPUT UPDATE Statement
	RECORD Statement
	SHOW USE OF Statement
	TOKEN-CODE Statement
	TOKEN-MAP Statement
	TOKEN-TYPE Statement
	DEFINITION and RECORD Statement Clauses
	AS Clause
	DISPLAY Clause
	EDIT-PIC Clause
	EXTERNAL Clause
	FILLER Clause
	HEADING Clause
	HELP Clause
	JUSTIFIED Clause
	KEYTAG Clause
	LN Clause
	MUST BE Clause
	NULL Clause
	OCCURS Clause
	OCCURS DEPENDING ON Clause
	PICTURE Clause
	REDEFINES Clause
	SPI-NULL Clause
	SQLNULLABLE Clause
	TACL Clause
	TYPE Clause
	UPSHIFT Clause
	USAGE Clause
	VALUE Clause
	66 RENAMES Clause
	88 Condition-Name Clause
	89 Enumeration Clause

	Commands

	G Pathmaker and DDL
	H DDL Alignment Rules for�C
	C00CALIGN Alignment Rules
	NOC00CALIGN Alignment Rules
	C_MATCH_HISTORIC_TAL Alignment Rules
	FIELDALIGN_SHARED8 Alignment Rules

	Glossary
	Index
	Feedback

