
DLL Programmer’s
Guide for TNS/E
Systems
Abstract

This guide describes how application programmers can use the DLL facilities provided
on TNS/E systems and recommends good practices in using them.

Product Version

T9050 at H06.01

Supported Release Version Updates (RVUs)

This publication supports J06.03 and subsequent J-series RVUs and H06.03 and
subsequent H-series RVUs, until otherwise indicated by its replacement publications.

Part Number Published

527252-006 April 2012

Document History
Part Number Product Version Published

527252-002 T9050 February 2005

527252-003 T9050 May 2005

527252-004 T9050 July 2005

527252-005 T9050 August 2010

527252-006 T9050 April 2012

Legal Notices
 Copyright 2012 Hewlett-Packard Development Company L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S.
Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks and IT DialTone and The
Open Group are trademarks of The Open Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the
Open Software Foundation, Inc.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED
HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in
connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. This documentation and the software to
which it relates are derived in part from materials supplied by the following:

© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.
© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc.
© 1987, 1988, 1989, 1990, 1991 Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991,
1992 International Business Machines Corporation. © 1988, 1989 Massachusetts Institute of
Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989,
1990, 1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986,
1989, 1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.

This software and documentation are based in part on the Fourth Berkeley Software Distribution
under license from The Regents of the University of California. OSF acknowledges the following
individuals and institutions for their role in its development: Kenneth C.R.C. Arnold,
Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980,
1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents of the University of California.

Printed in the US

DLL Programmer’s Guide for
TNS/E Systems
Glossary Index Figures Tables
Legal Notices

What’s New in This Manual vii

Manual Information vii

New and Changed Information vii

About This Manual ix

Purpose of This Manual ix

Who Should Read This Manual ix

How This Manual Is Organized ix

Related Reading ix

Notation Conventions x

HP Encourages Your Comments xiv

1. DLLs on a TNS/E System
Libraries and Symbols 1-1

Position-Independent Code (PIC) in TNS/E 1-3

What is a DLL? 1-3

Why Dynamically Linked Libraries? 1-4

Building and Loading Programs and Libraries 1-5

Compilers 1-6

Linker 1-6

Loading 1-7

Finding the Needed Libraries 1-8

The TNS/E Library Facility 1-9

Public Libraries and DLLs (Implicit and Explicit). 1-9

The Public Library Registry 1-10

Linkfiles and Archives 1-11

Import Controls 1-11

Other Loader Operations 1-12

Adjusting Symbol Values and Relocating in Virtual Memory 1-12

Dynamically Loaded DLLs 1-12

User Library 1-13
 Hewlett-Packard Company—527252-006
i

Contents 2. Essential DLL Facility Controls
2. Essential DLL Facility Controls
The Linker’s Command Stream 2-1

Direct Use of the Linker 2-1

Option Types 2-2

Specifying the Linker’s Output 2-3

Choosing the Output File 2-3

Choosing to Create a Program or a DLL 2-3

Naming DLLs 2-3

 File-Name Qualification 2-4

At a Glance: Controlling Linker Output When Producing a Loadfile 2-6

Specifying Which Inputs Go into a Link 2-7

Linkfile Inputs 2-7

Library Inputs 2-9

Specifying Where the Linker Can Find Its Inputs 2-9

Files the Linker Opens Normally 2-10

Libraries the Linker Searches For and Opens 2-10

Specifying a User Library for a Program 2-12

At a Glance: Files the Linker Brings into a Link 2-12

Compile-Time Control of Export and Import 2-12

Your Loadfile’s Exported Symbols 2-13

Re-Exported libraries 2-14

How to Make Your Loadfile Re-Export Symbols of Other DLLs 2-14

Some Examples Using Re-Exportation 2-15

Things to Consider about the Loader 2-17

The Link-Time-Defined Search Path of the Loader 2-17

Unresolved Symbols at Load Time 2-18

Simultaneously Using Different Versions of a DLL 2-18

Default Setting and Checking of File Attributes 2-19

Floating-Point Type 2-19

C++ Dialect 2-20

Execution-Target System Type 2-21

At a Glance: Linker Mandatory Inputs, and Defaults 2-22

Normal Linker Inputs 2-22

Linker Default Operation 2-22

Linker and Loader Errors 2-23
DLL Programmer’s Guide for TNS/E Systems—527252-006
ii

Contents 3. Dynamic Use of DLLs
3. Dynamic Use of DLLs
Dynamic Loading Functions 3-1

Opening a DLL from a Running Loadfile (dlopen) 3-2

dlopen’s Mode Parameter Values 3-3

Returned Value of dlopen 3-5

Accessing Symbols (dlsym) 3-5

 Returned Values of dlsym 3-6

Closing a Running Loadfile’s Handle to a DLL (dlclose) 3-6

Returned Values of dlclose 3-7

Error Reporting For Dynamic Library Calls (dlerror and dlresultcode) 3-7

Error Text : dlerror 3-7

Error Encoding: dlresultcode 3-8

Thread Considerations 3-9

Using Dynamically Loaded DLLs to Extend an Application 3-9

4. Finding Symbol Definitions
The loadList 4-1

Global Scope, Import and Export 4-3

Import Controls and SearchLists 4-5

The SearchList for a Localized Loadfile 4-5

The SearchList for a Globalized Loadfile 4-8

The SearchList for a Semi-Globalized Loadfile 4-11

Import Control Summary 4-11

C++ Considerations:
Globalized (Gblzd) Symbols 4-12

System Library and Millicode 4-13

Symbol Resolution at a Glance 4-13

Example: Intercepting an Exported Symbol 4-13

5. Advanced DLL Facility Controls
Linker Input Controls 5-1

Making the Linker Accept Only DLLs or Only Archives 5-1

Augmenting Library Names Automatically in Searches 5-2

Handling Duplicate Symbols among Linkfiles in a Link 5-2

Making the Linker Look for Unresolved Symbols 5-3

Linker Output Controls 5-4

Designating the Main Entry Point of Your Program 5-4

Controlling Which Symbols Your Loadfile Exports 5-5

C++ Mangled Symbol Names 5-6
DLL Programmer’s Guide for TNS/E Systems—527252-006
iii

Contents 5. Advanced DLL Facility Controls (continued)
5. Advanced DLL Facility Controls (continued)
How to Set Run-Time Attributes of Your Loadfile 5-6

Controlling the Load Image of DLLs 5-8

Using the Linker to Change an Existing Loadfile 5-9

Link-Time Operation 5-10

Running the Linker Through the Compiler 5-10

Naming Intermediate Linker Output Files 5-11

Controlling What Checks the Linker Makes and Reports 5-11

Load-Time Operation 5-13

Controlling the Loader’s Search Path at Load Time 5-13

Changing Run-Time Options for C and C++ Programs 5-14

6. Example Code
Example One 6-2

Example Two 6-7

A. Linker Options List

Glossary

Index

Figures
Figure 1-1. Symbol Resolution by Binding at Load Time 1-2

Figure 1-2. An Application Made Up Of a Program And The DLLs It Needs 1-4

Figure 1-3. Simplified Code Generation and Load Processes 1-6

Figure 1-4. Loadfiles and Their libLists (To Create the Structure in Figure 1-2) 1-9

Figure 1-5. Loadfiles of Figure 1-4 with a User Lib and Its Library Added 1-14

Figure 2-1. DLL A Imports DLL D’s Symbols. 2-15

Figure 2-2. Splitting a DLL Into Two Parts 2-16

Figure 2-3. the New Symbol, Gamma, With New Function (Shaded), Replaces the
Old Gamma. 2-16

Figure 4-1. PIC Code Generation 4-1

Figure 4-2. Development of the Globalized SearchList for the Program and Libraries
based on Figure 1-5 on page 1-14 4-3

Figure 4-3. The Loadfiles of Figure 1-5, Now Showing the Use and Availability of
the Global Symbol xray 4-7

Figure 4-4. Development of the Globalized SearchList for the Program and
Libraries in Figure 4-3 4-9

Figure 4-5. Localized and Globalized Symbol Resolution 4-10

Figure 4-6. Intercepting a Call to Library D 4-14
DLL Programmer’s Guide for TNS/E Systems—527252-006
iv

Contents Tables
Tables
Table 4-1. Import Control Summary 4-12

Table A-1. Set Attributes A-7
DLL Programmer’s Guide for TNS/E Systems—527252-006
v

Contents
DLL Programmer’s Guide for TNS/E Systems—527252-006
vi

What’s New in This Manual

Manual Information
DLL Programmer’s Guide for TNS/E Systems

Abstract

This guide describes how application programmers can use the DLL facilities provided
on TNS/E systems and recommends good practices in using them.

Product Version

T9050 at H06.01

Supported Release Version Updates (RVUs)

This publication supports J06.03 and subsequent J-series RVUs and H06.03 and
subsequent H-series RVUs, until otherwise indicated by its replacement publications.

Document History

New and Changed Information

Changes to the H06.25/J06.14 manual:

 Updated the section What is a DLL on page 1-3.

 Updated the section Where The Linker Searches for Libraries and Archives on
page 2-11.

 Updated the section The Link-Time-Defined Search Path of the Loader on
page 2-17.

 Updated the section Controlling the Loader’s Search Path at Load Time on
page 5-13.

 Updated the table Set Attributes on page A-7.

Part Number Published

527252-006 April 2012

Part Number Product Version Published

527252-002 T9050 February 2005

527252-003 T9050 May 2005

527252-004 T9050 July 2005

527252-005 T9050 August 2010

527252-006 T9050 April 2012
DLL Programmer’s Guide for TNS/E Systems—527252-006
vii

What’s New in This Manual Changes to the H06.21/J06.10 manual:
 Added the term Neutral loadfile. on page Glossary-4.

Changes to the H06.21/J06.10 manual:

 Added new section Special initialization and termination procedures on page 5-5.

 Add a note on systype on page 5-8.

 Add a note on data2protected attribute on page A-4.

 Added c99 compiler information throughout the manual, wherever applicable.

Changes to the 527252-004 Manual

This is a new manual for TNS/E systems (based on the TNS/R version).
DLL Programmer’s Guide for TNS/E Systems—527252-006
viii

About This Manual

Purpose of This Manual
The DLL Programmer’s Guide For TNS/E Systems is intended as an introduction to
the process of creating and using Dynamic-Link Libraries (DLLs) on TNS/E H-series
systems.

Who Should Read This Manual
Applications and System Programmers who want to create or use DLLs.

How This Manual Is Organized
This manual consists of the following sections:

Section 1, DLLs on a TNS/E System. This section explains the TNS/E DLL facility –
what DLLs are, how they work, how they can be used, and the basic workings of the
tools that create them.

Section 2, Essential DLL Facility Controls. This section explains the linker’s most
commonly used controls.

Section 3, Dynamic Use of DLLs. This section discusses how to dynamically load and
unload a DLL from your running process and how to link your loadfile with a
dynamically loaded DLL.

Section 4, Finding Symbol Definitions. This section describes how the linker and loader
resolve symbol references, including cases when multiple definitions are available for
the same symbol name.

Section 5, Advanced DLL Facility Controls. This section tells how you can manually
override and extend previously described linker and loader defaults and options to
meet special needs.

Section 6, Example Code. This section contains a set of examples to introduce you to
some of the tools and capabilities for building dynamic linked libraries on a TNS/E
system.

Related Reading
The following manuals (use H06.03 or later versions) form the set that you may need
to create and use DLLs:

 eld Manual.
This contains details on options for the eld linker.

 rld Manual.
This contains details on dynamic loading facilities.
DLL Programmer’s Guide for TNS/E Systems—527252-006
ix

About This Manual Notation Conventions
 eNOFT Manual.
This contains information on examining PIC object files on H-series systems.

 TACL Reference Manual.
This contains information on loadfiles in processes and processes using
loadfiles.

 Guardian Procedure Calls Reference Manual.

 Guardian Procedure Errors and Messages Manual.

You will also be using a programming language, so choose from the following:

 COBOL85 For Non-Stop Systems

 C and C++ Programmer’s Guide

 Guardian TNS/R Native C Library Calls Reference Manual

If you are using the OSS programming environment, you may need the following
manuals:

 OSS Library Calls Reference Manual

 OSS Shell and Utilities Manual

Notation Conventions

Hypertext Links

Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

This requirement is described under Backup DAM Volumes and Physical Disk
Drives on page 3-2.

General Syntax Notation

This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words. Type
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name
DLL Programmer’s Guide for TNS/E Systems—527252-006
x

About This Manual General Syntax Notation
computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words. Type these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
 [-num]
 [text]

K [X | D] address

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list can be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…

[-] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"
DLL Programmer’s Guide for TNS/E Systems—527252-006
xi

About This Manual General Syntax Notation
Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be typed as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must type as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no
spaces are permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…

!i and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o. In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; !i,o

!i:i. In procedure calls, in TAL or PTAL, the !i:i notation follows an input string parameter
that has a corresponding parameter specifying the length of the string in bytes. For
example:

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

Note that some interfaces count the pair as a single parameter for error-reporting
purposes, even though they constitute two separate parameters, and must be so
expressed in C or C++.
DLL Programmer’s Guide for TNS/E Systems—527252-006
xii

About This Manual Notation for Messages
!o:i. In procedure calls, in TAL or PTAL, the !o:i notation follows an output buffer parameter
that has a corresponding input parameter specifying the maximum length of the output
buffer in bytes. For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

Note that some interfaces count the pair as a single parameter for error-reporting
purposes, even though they constitute two separate parameters, and must be so
expressed in C or C++.

Notation for Messages

This list summarizes the notation conventions for the presentation of displayed
messages in this manual.

Bold Text. Bold text in an example indicates user input typed at the terminal. For example:

ENTER RUN CODE

?123

CODE RECEIVED: 123.00

The user must press the Return key after typing the input.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.

lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-register

process-name

[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be
displayed, of which one or none might actually be displayed. The items in the list can
be arranged either vertically, with aligned brackets on each side of the list, or
horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

proc-name trapped [in SQL | in SQL file system]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list can be arranged
DLL Programmer’s Guide for TNS/E Systems—527252-006
xiii

About This Manual Change Bar Notation
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

obj-type obj-name state changed to state, caused by
{ Object | Operator | Service }

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { OK | Failed }

% Percent Sign. A percent sign precedes a number that is not in decimal notation. The
% notation precedes an octal number. The %B notation precedes a binary number.
The %H notation precedes a hexadecimal number. For example:

%005400

%B101111

%H2F

P=%p-register E=%e-register

Change Bar Notation

Change bars are used to indicate substantive differences between this manual and its
preceding version. Change bars are vertical rules placed in the right margin of changed
portions of text, figures, tables, examples, and so on. Change bars highlight new or
revised information. For example:

The message types specified in the REPORT clause are different in the COBOL85
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for
old message types. In the CRE, the message type SYSTEM includes all messages
except LOGICAL-CLOSE and LOGICAL-OPEN.

HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to
providing documentation that meets your needs. Send any errors found, suggestions
for improvement, or compliments to docsfeedback@hp.com.

Include the document title, part number, and any comment, error found, or suggestion
for improvement you have concerning this document.
DLL Programmer’s Guide for TNS/E Systems—527252-006
xiv

1 DLLs on a TNS/E System

This section explains the TNS/E DLL (dynamic-link library) facility – what DLLs are,
how they work, how they can be used, and the basic workings of the tools that create
them. This facility comprises the linker (eld), the loader (rld), and the portions of the
HP NonStop™ operating system used in loading libraries. The facility runs in either the
OSS or Guardian environments, and on auxiliary Windows systems you can construct,
but not load, TNS/E applications that use DLLs.

DLLs or equivalent features exist on other platforms in the industry (for example, UNIX
and Windows); on UNIX systems they are known as DSO’s (dynamically shared
objects).

Note that this manual discusses the use of the linker eld on TNS/E systems. There is
a companion manual, The DLL Programmer’s Guide for TNS/R Systems that covers
the use of the other PIC linker, ld, which is designed for use on TNS/R systems.

Libraries and Symbols
As used here, a library is a loadable object or code file (or loadfile), that offers
functions and data for use by other loadable code files. In a library, each such function
and data item has its own symbolic name, as defined in its original source. This
symbolic name is known as a symbol, and the function or data offered under this name
is called the symbol definition.

Code that needs a function or data item refers to that function or data by its symbolic
name; such a reference is called a symbolic reference. Thus, a symbolic reference is
the requisition for or the use of the symbol’s definition. A symbolic reference is satisfied
by assigning to it the symbol value, which is the virtual address of the symbol’s
definition. The process of assigning that value is called binding or resolving the
symbolic reference. At load time, for every symbolic reference in every loadfile, the
system finds the program or a library that offers a function or data item having the
same name, and it binds that reference to a corresponding definition.

Figure 1-1 on page 1-2 is an example of how this binding works; while this example is
illustrative, it is not entirely realistic, for instance, in the numbers used for virtual
addresses. The upper portion of this figure shows the situation before the loadfiles are
loaded. A loadfile on the left, called H, which may be a program or a library, contains a
reference to a symbol, Joe. Three libraries are shown on the right; library J is 5000
bytes long; library K is 3000 bytes long; and library L is 4000 bytes long. Lib K contains
a definition of Joe, which has an entry point offset 1300 bytes from the start of that
library.

The lower portion of Figure 1-1 shows the situation after the four code files are loaded
in a process. The loader placed the three libraries contiguously starting at some virtual
address, say, 10000. This means that the definition of Joe is now located at virtual
address 16300; therefore, this is the value of Joe. The loader has resolved, or bound,
the reference in H to Joe by replacing the symbol in H with the value of Joe, namely,
16300.
DLL Programmer’s Guide for TNS/E Systems—527252-006
1-1

DLLs on a TNS/E System Libraries and Symbols
A loadfile exports a symbol when it defines a symbol that can be used by another
loadfile. A loadfile imports a needed symbol when that symbol reference in the
program or DLL is or will be set to the value (address) of a symbol of the same name
exported by another loadfile. Thus, in Figure 1-1, Library K exports Joe and, after H is
loaded, H imports Joe.

In the rest of this document, the term library means a DLL that may be designed for
either public or private use.

Figure 1-1. Symbol Resolution by Binding at Load Time

1300

Lib J

Lib K

Joe()

H

Call Joe()

H

Call 16300

Lib L

Lib K

Joe()

Lib J
10000

15000

18000

Four object files after they are loaded

Four object files before they are loaded

Lib L

4000

3000

5000

VST011.vsd
DLL Programmer’s Guide for TNS/E Systems—527252-006
1-2

DLLs on a TNS/E System Position-Independent Code (PIC) in TNS/E
Position-Independent Code (PIC) in TNS/E

All code on a TNS/E system is position-independent. Code that can be relocated in
virtual memory at load time without alteration is called position-independent code
(PIC). If you use DLLs in your application, your program and these DLLs must be PIC.
All references in PIC files to global or external symbols are made indirectly through
addresses stored in a data area so that the loader can find and bind them to reflect
their virtual-memory locations at load time without modifying code. The TNS/E
compilers can generate PIC files, the PIC linker (eld) creates either PIC programs or
DLLs, and the loader and operating system load and bind the results.

PIC is more position-independent than one might imagine from the term. PIC can even
be simultaneously mapped to different addresses for different processes in the same
CPU.

What is a DLL?
A DLL is a type of library that is constructed of PIC. When using DLLs on TNS/E, a
complete, executable application comprises one (main) program and zero or more
DLLs. The program is the root of the application, while the DLLs provide functions and
data needed by the program or other DLLs. DLLs allow you to structure your
applications in functional units (the DLLs). A DLL might be a library that supports a
single program, it might be available to a project or a group with common
computational needs, or it might be a library that is available to all users.

Figure 1-2 on page 1-4, shows an application comprising a program and the DLLs that
it requires in order to run. Some of these (A, B, and C) offer symbol definitions that the
program itself may need; others offer symbol definitions that the various libraries, but
not the program, may need.

A, B, and C might be libraries that, along with Program, constitute the basic logic of the
application. D and E might be libraries of supporting routines for A. F and G might be
more general purpose libraries.

A DLL is written as an ordinary program with no main procedure and is designated a
DLL in the course of construction.

A DLL can be a 32-bit, 64-bit, or neutral loadfile on a TNS/E OSS platform and 32-bit
loadfile on all other platforms. 64-bit and neutral DLLs are supported from
H06.24/J06.13 RVU onwards.
DLL Programmer’s Guide for TNS/E Systems—527252-006
1-3

DLLs on a TNS/E System Why Dynamically Linked Libraries?
Why Dynamically Linked Libraries?

For statically linked programs, you must copy all shared libraries into your own
programs; thus, complete copies of these libraries appear in all the programs that use
them, and each copy consumes main memory and disk space. Also, whenever such a
library is changed, it must be relinked into all the programs that need those changes.

Some key characteristics of DLLs are:

 A single copy of a DLL in physical memory can be shared among multiple
processes.

 A DLL that is shared among processes can appear at a different virtual address in
each process and each instance has its own copy of global data that is available to
its process.

 Multiple processes can use different versions of the same DLL simultaneously,
though each version must have a different name or be stored in a different location
in the file system.

 The same program can run simultaneously in different processes with different
DLLs supplying the supporting data and functions.

Figure 1-2. An Application Made Up Of a Program And The DLLs It Needs

Program

DLL A DLL B DLL C

DLL D DLL E

DLL G

DLL F

VST012.vsd
DLL Programmer’s Guide for TNS/E Systems—527252-006
1-4

DLLs on a TNS/E System Building and Loading Programs and Libraries
 A new version of a DLL can be introduced without having to alter a program or DLL
that references it, even though the location of the referenced sites has changed.
This gives you great freedom to change a DLL.

 A program and the DLLs loaded with it at process creation time can access each
other’s functions and data by simply referencing their symbolic names.

 A running application can cause a DLL to be loaded dynamically and to make its
functions and data accessible.

Building and Loading Programs and Libraries

Generating an Executable Load Image

Figure 1-3 on page 1-6 shows the steps for going from a source file to an executable
PIC load image. The compiler translates a source code file into a linkable code file,
called a linkfile. The linker brings together one or more linkfiles to create a loadfile,
which can be designated as either a program or a DLL.

Finally, at load time, the loader determines the arrangement of the libraries in virtual
memory, resolves references among loadfiles, and loads the program and libraries for
execution. Your application can also cause DLLs to be loaded after the program has
been loaded and put into execution.
DLL Programmer’s Guide for TNS/E Systems—527252-006
1-5

DLLs on a TNS/E System Compilers
Compilers

The TNS/E compilers translate source input into a linkfile. In addition to object code
and data, TNS/E compilers generate the following auxiliary information as part of their
linkfile output that is used by the linker:

 A symbol table, which identifies all the symbols that this linkfile either makes
available to other code files or needs from other code files.

 A relocation table, which points to all the places in the compiled code and data that
must be relocated by the linker. Each entry that refers to an external symbol
contains a pointer to the corresponding entry in the external symbol table.

Linker

The TNS/E PIC linker is named eld; it combines one or more PIC linkfiles to create a
PIC loadfile. In doing this, the linker manipulates both code and data, then places all of
the loadfile’s adjustable references in tables outside the code to make them available
to the loader. This process, called linking or executing a link, must be applied to
linkfiles after they have been compiled and before they can be loaded for execution.

Figure 1-3. Simplified Code Generation and Load Processes

Compiler

Loader

Linker

Source

LinkfileLinkfile Linkfile

Loadfile LoadfileLoadfile

Executable load image

{ A program
and libraries

VST013.vsd
DLL Programmer’s Guide for TNS/E Systems—527252-006
1-6

DLLs on a TNS/E System Loading
You invoke the linker by a single command, eld, and control it by items you enter in its
command stream, which comprises the options, file names, and parameters that
modify the eld command.

Later, the loader brings together programs with their required libraries in structures like
that shown in Figure 1-2 on page 1-4. To enable the linker to find the required libraries
when it links a loadfile, the loadfile’s programmer must enter in the command stream
the names of libraries that can provide symbols that this loadfile needs. From these
names, the linker creates in the loadfile a libList, which lists the names and certain
attributes of each of these libraries. A library that is listed in a loadfile’s libList is said to
be directly referenced by that loadfile.

In simple compile-and-link operations, the compiler runs the linker automatically. When
it does this, the compiler tells the linker the names of certain standard libraries. If those
are the only libraries required, you need do nothing more. But if you require other
libraries, you can command the compiler to pass them to the linker, or, you can run the
linker yourself. In the latter case you must provide to the linker with the required library
names, including the ones the compiler would have automatically done for you.

The linker can run on a TNS/E machine in either the Guardian or OSS environment.
It can also run on Win32 support machines, usually in an ETK environment. In this
document, these support machines are called auxiliary systems. The object file
produced can only be run on TNS/E systems.

Loading

Once a program and its DLLs have been processed by the PIC linker, they can be
loaded for execution by a special library program (the run-time linker rld) that works
with the operating system. This combined facility of rld and the operating system that
loads programs and libraries into virtual memory for execution is called, in this
document, the loader.

FastLoad

Required libraries are not statically linked with the program. Instead, at load time, the
program and its DLLs are brought into virtual memory, and the loader resolves
references among them. The loader does not alter the stored file image of the loadfile;
rather, it changes only the loaded memory image of the loadfile’s tables and other
initialized data. So this load-time adjustment might be repeated every time a program
and its DLLs are loaded, although the FastLoad facility loads a preset loadfile without
having to rebind it.

Automatic Update

If rld has to rebind a loadfile and the loadfile import control is localized, it will update
the preset bindings in the loadfile with the cooperation of the NonStop operating
system. This is called automatic update. rld and the operating system only
automatically update loadfiles at process creation time. If a loadfile is loaded via a call
to dlopen(), the loadfile is not automatically updated.
DLL Programmer’s Guide for TNS/E Systems—527252-006
1-7

DLLs on a TNS/E System Finding the Needed Libraries
See Section 3, Dynamic Use of DLLs for further details.

After the program and the initially loaded libraries are running, the program or a loaded
DLL can also call on the loader to dynamically load yet other DLLs. References by the
newly loaded DLLs are resolved among already loaded loadfiles, and subsequent
function calls can retrieve symbols offered by the newly loaded DLLs.

The system automatically arranges loadfiles in virtual memory so there is no address
overlap and interference.

Finding the Needed Libraries

A loadfile must be loaded with all the libraries that it directly references, that is, the
libraries in its libList. However, loading only the directly referenced libraries might not
be enough, because some of these libraries might directly reference still other libraries.
Therefore these other libraries must also be loaded, and they might further require still
other libraries. Proceeding in this way can lead to an arbitrarily long succession of
required libraries, all of which must be loaded to run the given loadfile.

The loader generates a list of all the libraries that must be loaded in order to run a
given loadfile by starting from the libList of that loadfile and proceeding through the
libLists of all the required libraries. This generated list is that loadfile’s loadList, and the
loader orders it in the sequence that these libraries are to be loaded, as discussed in
The SearchList for a Globalized Loadfile on page 4-8. Subsequently, the loader uses
the loadList to control the loading operation.

Among the libraries on its loadList, the loadfile directly references those libraries on its
own libList, while the rest are indirectly referenced libraries. Figure 1-4, below, shows a
more detailed view of what Figure 1-2 on page 1-4 suggests. Figure 1-4 illustrates how
the program directly references libraries A, B, and C, which were specified to the linker
by the programmer and consequently appear in Program’s libList. Also, A directly
references D and E, B directly references F, and C directly references F. The
programmers of A, B, and C stated these requirements for these libraries when each
was linked. Likewise, D and E both directly reference G. Finally, neither F nor G
reference any other libraries.
DLL Programmer’s Guide for TNS/E Systems—527252-006
1-8

DLLs on a TNS/E System The TNS/E Library Facility

d

For the loadfiles in Figure 1-4:

 The program indirectly references D, E, F, and G, so these libraries do not appear
in the program’s libList.

 The program’s loadList comprises all the libraries shown in the figure.

 A indirectly references G, and A’s loadList comprises D, E, and G.

Neither a loadfile nor its programmer needs to know about its indirect needs. There is
no limit to the number or depth of directly and indirectly referenced libraries in a
loadList. Also, many libraries in the loadList can reference the same library, as
illustrated by the multiple clients of F and G. Each library appears once in the loadLIst
and in memory.

The TNS/E Library Facility
This subsection gives an overview of the library facility and some of the controls it
offers. Discussion of how to control the library-facility begins in Essential DLL Facility
Controls on page 2-1.

Public Libraries and DLLs (Implicit and Explicit).

TNS/E supports public libraries. Public libraries are a set of (DLL) libraries, available to
all users of the system, and managed as part of the system software. They are mostly
supplied by HP, although you and third party software providers can also provide DLLs
to be added to the public DLLs. You use DSM/SCM to add your DLLs to the public
libraries. Note that these must be loadfiles, not linkfiles.

Public libraries include:

Figure 1-4. Loadfiles and Their libLists (To Create the Structure in Figure 1-2)

Program

DLL A

DLL B

DLL C

DLL D

DLL E

Lib G

Lib F

Lib A

Lib B

Lib C
Lib F

Lib D
Lib E

Lib F

Lib G

Lib G

Code
and
Data

libList

VST014.vs
DLL Programmer’s Guide for TNS/E Systems—527252-006
1-9

DLLs on a TNS/E System The Public Library Registry
 TNS/E compiler run-time libraries.

 Libraries that support connections to TNS/E communication facilities.

 Certain TNS/E tools, utilities, and the loader library (rld).

TNS/E compilers generate needed linkages from PIC programs and DLLs to the
compilers’ run-time libraries.

In Figure 1-2 on page 1-4, DLLs F and G might instead be public DLLs, because they
refer to no PIC loadfiles. This is reflected in Figure 1-4 on page 1-9, where these
libraries are labeled simply Lib.

In addition to accessing public libraries, PIC programs and DLLs will automatically
access the system and millicode libraries, without your specifying this linkage
requirement. The system and millicode libraries are PIC libraries that the system loads
before loading any application code, and the loader and operating system
automatically link your application to these libraries as appropriate. These are known
as implicit libraries because every loadfile is implicitly a user of them.

This can be contrasted with the public DLLs, which are explicit because a loadfile must
explicitly ask to use a public DLL, although you need not specify where to find the
public DLL. The combination of the ZREG file (the Public LIbrary Registry file) and
ZREGPTR (pointer) file specifies the location.

One main user of the ZREG file (and the ZREGPTR) is the preloader. Public DLLs are
preloaded during coldload, reload of a CPU or when a set of public DLLs is replaced
online. The other main user is the linker (eld). Typically, eld “finds” the DLLs by
finding the ZREG file that is in the same subdirectory, then searches the registry. The
linker does not use the ZREGPTR pointer directly, but acquires its information from the
preloader by use of a procedure call.

Each set of public libraries is installed in a separate subvolume, separate from the
SYSnn subvolume and separate from any other set of public DLLs. This subvolume is
on the same disk as the SYSnn subvolume.

The SYSnn subvolume also contains the imp-imp file, named zimpimp. This is the
import file usable for resolving external references to the implicit libraries. The imp-imp
file can be copied to the public-DLL subvolume. This renders the public-DLL
subvolume portable. A portable public-DLL subvolume contains everything the linker
needs to link files to use these particular public libraries. A portable subvolume can be
copied for use by the linker (eld) on another system or another platform, such as a
PC.

The Public Library Registry

The public-DLL registry file (ZREG) serves as an interface between DSM/SCM (that
you use), the public-library installation tool (that DSM/SCM uses on your behalf), the
preloader and the linker.
DLL Programmer’s Guide for TNS/E Systems—527252-006
1-10

DLLs on a TNS/E System Linkfiles and Archives
DSM/SCM creates an initial registry file, listing all the public DLLs by name. This is an
edit file (filecode 101). Use DSM/SCM to add your public DLLs to those provided by
HP.

Entries to the file consist of a series of statements. The dll statement describes a public
DLL. In its simplest form, it is just a name, for example:

dll file ztestdll;

Here is another example; it contains the license attribute. A licensed DLL is one that
contains privileged code. Unless you use this attribute along with the value “1”, the
default is “0”, which means the DLL is unlicensed.

dll license 1, file privdll;

There are other attributes which are created automatically, for example the timestamps
that you and the tools can use for version control. Here are two examples, the
link_timestamp (from when the linker first created the DLL), and the update_timestamp
(from when the linker last updated the DLL, or when another tool rebases or presets it):

dll file zredll,
link_timestamp 2004-08-01 16:34:41.213592,
update_timestamp 2004-08-01 17:15:17.119634;

From these examples you can see that attributes can be in any order, attributes are
separated by commas, and statements are terminated by semicolons.

Linkfiles and Archives

When the linker is building a new loadfile, its command stream must contain the names
of one or more linkfiles to be transformed into the loadfile. A programmer brings
together linkfiles to make a loadfile because these linkfiles are designed to work
together and they often cross-reference each other.

A linkfile can also be stored in an archive, which is a file that holds one or more
linkfiles. Normally an archive stores what might be called auxiliary linkfiles, which serve
general purposes and can be included in different links. For example, you might store a
number of utility routines as linkfiles in an archive and incorporate them as needed.

Import Controls

Import controls allow you to determine from which other loadfiles your loadfile can
import symbols. These controls take the form of attributes that you assign to your
loadfile. This topic is discussed in detail in Import Controls and SearchLists on
page 4-5. The three variants of import controls are:

 Localized — A localized loadfile can import symbols from certain libraries in this
loadfile’s loadList. The choice of libraries is discussed in detail in The SearchList
for a Localized Loadfile on page 4-5.

 Globalized — A globalized loadfile can import symbols from the program it is
loaded with and any loadfile in the program’s loadList.
DLL Programmer’s Guide for TNS/E Systems—527252-006
1-11

DLLs on a TNS/E System Other Loader Operations
 Semi-globalized — A semi-globalized loadfile uses its own definition for any of its
symbol references when it offers such a definition, but imports other definitions
from the program it is loaded with and any loadfile in the program’s loadList.

In any case, if the symbol to be imported is defined only once in the collection of
loadfile candidates to supply imported symbols, that symbol is used to resolve your
loadfile’s need. Good practice normally avoids multiple definitions of the same symbol
in the loadfiles in a loadList, because of the danger that an imported symbol could be
resolved in an unexpected way. However, the library facility allows multiple definitions,
and symbol resolution in such cases is discussed in Import Controls and SearchLists
on page 4-5.

Localized symbol resolution is consistent with long standing conventions on NonStop
systems including TNS programs and user libraries, as well as native non-PIC
programs and SRLs in TNS/R. The linker’s default is to localize loadfiles. On the other
hand, globalized symbol resolution is an industry (UNIX) standard. One useful
consequence of globalized symbol resolution is that DLLs can import symbols from
their clients, including the program. Globalized symbol resolution can be especially
useful when multiple loadfiles define and use the same symbol and you want to ensure
that they all use the same one. If you declare all these loadfiles to be globalized, then
the loader will resolve all these imports to the same exported symbol. However, object
files using globalized or semi-globalized import are likely to take somewhat longer to
load, because the linker is unable to preset bindings for files not seen at link time.

Other Loader Operations
The loader and operating system assign the program being loaded and the libraries in
its loadList to their positions in virtual memory and bind their symbols to their
appropriate definitions in these loadfiles.

Adjusting Symbol Values and Relocating in Virtual Memory

You do not have to relink a loadfile when a DLL it uses is changed. To accommodate
this, each instance of a DLL must be relocatable in virtual memory when the DLL is
loaded for execution. This requirement is the reason that programs and DLLs are
written in PIC (although all code on a TNS/E system is PIC). Virtual instances of a DLL
do not depend on being loaded in any particular location in virtual memory, and they do
not depend on any symbols they reference being loaded in any particular location. For
example, you can replace a DLL with a new one of the same name that provides the
same symbols without relinking the DLL’s clients, even if the locations of these
symbols are different in the two DLLs.

Dynamically Loaded DLLs

A running program or DLL can load and open a previously not-loaded DLL and gain
access to the symbols it offers. DLLs invoked this way are called dynamically loaded
DLLs; they are further described in Section 3, Dynamic Use of DLLs.
DLL Programmer’s Guide for TNS/E Systems—527252-006
1-12

DLLs on a TNS/E System User Library
An important advantage of dynamically loaded DLLs is that their names and their
symbols need not be known when the program is constructed. Using this facility, you
can add to an existing application a new DLL that provides new functionality without
even restarting the application.

You do not need to load infrequently used DLLs when the application is loaded.
Instead, you can load and use these DLLs when required and unload them when they
are no longer needed. They can be reloaded whenever necessary.

User Library

A program, but not a DLL, can be linked to one user library, which is a DLL having a
special relationship to the program. Instead of adding the user library’s name to the
program’s libList, the user-library name is recorded in the program loadfile as an
attribute called libname. However the linker and loader treat this DLL as if it were first
in the program’s libList, and a program’s loadList always begins with the user library if
there is one.

It should be noted that you can run two instances of the same program simultaneously
where each instance of the program uses a different user library.

The starting virtual addresses of the program text (code) and data segments are
system constants, set by the linker and enforced by the operating system. The linker
also sets "preferred" virtual addresses for the text and data of DLLs, either by default
or from command-string input. (DLL data immediately follows the text.) If the preferred
address ranges are available at load time (do not conflict with already loaded objects
or reserved areas), they are used; otherwise the operating system finds an available
address range for the DLL.

Like any other DLL, a user library can require other libraries. Figure 1-5 below shows a
User Library assigned to Program, and this User Library itself requires the library Lib H.
Program directly references the user library and hence indirectly references H.

You can assign a DLL as a user library to a program when you link or load that
program, or by a special linker command that allows you to change this assignment in
an existing program. More detail is provided in How to Set Run-Time Attributes of Your
Loadfile on page 5-6.
DLL Programmer’s Guide for TNS/E Systems—527252-006
1-13

DLLs on a TNS/E System User Library

d

 A user library can also be specified at run time:

 In Guardian, the run-option lib can specify the fully qualified name of the user
library:

/lib $vol.subvol.name/

Alternatively, the option with no name, /lib/, causes any libname attribute in the
program file to be ignored.

 In OSS, the shell command run has a -lib option that accepts a fully qualified
Guardian file name in OSS notation:

-lib /G/vol/subvol/name

Alternatively, use -lib=unset to disregard any libname attribute in the program file.

A /lib .../ or -lib=... specification at run time does not change the libname attribute of
the program file.

Ordinary DLLs are generally more convenient, and there can be more than one, so the
use of a user library with PIC programs is not encouraged. The feature is provided
primarily for compatibility with legacy practice on NonStop systems. A user library can
also provide an "intercept" facility: because it is loaded first after the program, a user
library could export symbol definitions that take precedence over those in DLLs on the
linker-provided libList.

Figure 1-5. Loadfiles of Figure 1-4 with a User Lib and Its Library Added

Program

DLL A

DLL B

DLL C

DLL D

DLL E

Lib G

Lib F

Lib A

Lib B

Lib C
Lib F

Lib D

Lib E

Lib F

Lib G

Lib G

Code
and
Data

libList

VST015.vs

User Library
(DLL)

Lib H

Lib H
DLL Programmer’s Guide for TNS/E Systems—527252-006
1-14

2 Essential DLL Facility Controls

You control the TNS/E DLL facility by using the linker and the loader options, many of
which normally run using automatic defaults. This section explains the linker’s most
commonly used controls, but Advanced DLL Facility Controls on page 5-1 tells you
how to get more precise control over the process and its results.

The execution target for code produced by the linker is either OSS or Guardian on
TNS/E (or possibly both, for a DLL); but you will often link on an auxiliary system,
which usually means a Win32 workstation that supports development or administration.
Certain linker options facilitate this capability. Wherever the linker performs its link is
called the linker host platform, whether or not it is an auxiliary system.

Implementations of the linker utility run on each host: Guardian, OSS, or Win32.

More detailed reference information for the Guardian version may be found in the eld
Manual.

The Linker’s Command Stream
You operate the linker by:

 Starting it as a new process

 Providing the appropriate inputs that tell the linker what to do

 Examining the textual output it produces

Most of this section describes direct use of the eld utility which can also be used
indirectly in several ways:

 Compiler drivers, such as CCOMP and CPPCOMP (Guardian), or c89 and c99
(OSS) can run the linker during the compilation. The compiler driver provides the
linker's command stream, based on defaults and some compiler options.
c89 and c99 compilers also have syntax

-Weld=...

 to pass options through to the linker.

 The Enterprise ToolKit has facilities to invoke the linker automatically.

Direct Use of the Linker

You invoke the linker by a single command, eld, and control its subsequent link
operation by tokens inserted following the command on the command line. These
tokens come in three varieties:

 Option – A directive to the linker, which might be modified by arguments that
immediately follow it. These arguments are either file names or parameters.
Options without parameters are sometimes called flags.
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-1

Essential DLL Facility Controls Option Types
 File name – A name of a file, which may or may not be an argument of an option.
In this document, a file name in the command stream that is not a part of an option
is said to be directly inserted in the command stream.

 Parameter – A non-file-name argument of an option

The command stream comprises all the tokens that modify an eld command; these
are processed in the order they appear in the command stream. These tokens can
come from the command line or from command files that are referenced in the
command line. In this document, to insert an item means to make it a token in the
linker’s command stream either directly or as an option argument.

Herein, options are defined with the file names and parameters they require. Thus, in
the next paragraph, the -obey option is defined as -obey<filename> meaning that
<filename > is required when the option is declared.

-obey <filename> is a linker option that designates a command file containing
tokens to be incorporated into the linker’s command stream. The linker processes
these tokens in sequential order before it moves on to the next token on the command
line. Such a file is called an obey file. Obey files can be called from within an obey file.
The linker accepts -FL as a synonym for -obey. To use the standard input file as an
obey file, insert the -stdin option with no file names or parameters.

Option Types

Options fall into three categories:

 Repeatable option - Each occurrence adds another element of information or
causes the linker to repeat an operation.

 Toggle option - A set of options, usually a pair. One of the set turns on a
designated linker behavior, and that behavior remains in effect until the linker
encounters another member of the set in the command stream, which invokes a
different linker behavior. Command-stream processing begins with one behavior as
default, and the option members can be repeated in the command stream as many
times as needed.

 One-time option - All other options, which can only appear once in a command
stream.

The order in which an option appears in the command stream makes no difference
except where specifically mentioned. However, when adding an option to the command
stream, be sure to avoid inserting it where it separates some other option from its
arguments.
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-2

Essential DLL Facility Controls Specifying the Linker’s Output
Specifying the Linker’s Output
By default, the linker merges linkfiles to produce loadfiles. Following the eld
command, you should list the names of the linkfiles to be combined, as illustrated in
this command-stream fragment:

eld linkfile1 linkfile2

where linkfile1 and linkfile2 are names of linkfiles to be combined in the link.

Choosing the Output File

The output file is where the linker stores the loadfile that results from a link. To specify
an output file name, insert the -o <filename> option, where <filename > is the
desired name of a file. For example:

eld linkfile1 linkfile2 -o mainout

This specifies that the linkfiles from the previous example are to be linked and the
output loadfile is to be stored in mainout. -o is a one-time option.

Choosing to Create a Program or a DLL

By default, the linker combines specified linkfiles to produce a loadfile that is a
program, not a DLL. Thus, the previous example will cause the linker to produce a
program that it stores in mainout. To explicitly cause the linker to produce that
program, insert the -call_shared option.

To create a DLL in mainout, insert the option -dll, or its synonym, -shared, as in
the following example.

eld linkfile1 linkfile2 -dll -o mainout

 -call_shared and -dll are mutually exclusive, one-time options.

Naming DLLs

Unlike programs, every DLL has an internal name that is also the name of the file
where that DLL is (to be) stored on the execution target; see Choosing a DLL Name on
page 2-6. This name is specified when the DLL is linked and is recorded in the DLL
itself. The -dllname option gives the DLL its internal name, independently of the
name of the file in which you store it. The -dllname option can be used to create an
arbitrary DLL name, for example, a fully qualified file name.

You may use -soname as a synonym for -dllname. (so stands for shared object.)

The following example might be used to link on a Win32 system, to give the resulting
DLL the name maindll, and to store it in a file named mainoutput.dll in a
directory named C:\myfiles\dlls.

eld linkfile1 linkfile2 -dll -dllname maindll &
-o C:\myfiles\dlls\mainoutput.dll
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-3

Essential DLL Facility Controls File-Name Qualification
You also have three ways to give the DLL and its output file the same name:

 The -o <filename> option, when used by itself, assigns <filename> to the
internal DLL name as well as the file. When using the -o option and <filename>
is a qualified file name, the DLL name is obtained by truncating <filename> to
remove the path or subvolume definition and yield the corresponding unqualified
name. See File-Name Qualification below.

 The -dllname <filename> option, when used by itself, also assigns
<filename> to the file.

 You can use both the -dllname and -o options with the same name in each.

The following example of the first option gives the resulting DLL the name mainout
and also stores it in a file named mainout.

eld linkfile1 linkfile2 -dll -o mainout

If you do not insert either a -dllname or a -o option, the linker will assign the same
default name to both the DLL and the output file. If the linker is running on a Guardian
host, that name is aout; otherwise, it is a.out.

 File-Name Qualification

The linker distinguishes between:

 An unqualified, or “simple” file name (also known as the file identifier), which
identifies a file within a directory or subvolume but which must be appended to the
directory or subvolume definition and expanded with file-name augmentation
according to the file system, as described in Augmenting Library Names
Automatically in Searches on page 5-2

 A partially qualified file name, which identifies the file uniquely in the file system
where the name is used.

 A fully qualified file name: for Guardian, has $vol.subvol.name, perhaps prefaced
by \system; for OSS, begins with /.

The linker identifies a qualified file name as one that contains:

 On Guardian – a period, backward slash, or dollar sign

 On OSS – a forward slash

 On Win32 – a forward slash, a backward slash, or a colon

All other file names are regarded as unqualified.

For any stand-alone file name (specifying a linker input), the handling is much the
same:

 Guardian - Apply the =_DEFAULTS DEFINE to fill in any system, volume, or subvol
that is missing. (This is a no-op for a fully qualified name). See also the MAP
DEFINES note below.
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-4

Essential DLL Facility Controls File-Name Qualification
 OSS - If it is "absolute" (begins with a /), take it as is; otherwise append it to the
current working directory.

 Win32 - As above, except for drive: and \ issues.

The distinctions become more important for file names specified by the -lib (-l) option.
In this case, only unqualified names are subject to searching through the list of paths.
Partially or fully qualified names are treated as above.

Notes About MAP DEFINES

In General

A DEFINE is a collection of attributes to which a common name has been assigned.
These attributes can be passed to a process simply by referring to the DEFINE name
from within the process. The =_DEFAULTS DEFINE cited above is an example of such
a DEFINE; this DEFINE passes the default node name, volume, and subvolume to a
process.

The DEFINE mechanism can be used for passing file names to processes; this kind of
DEFINE is called a CLASS MAP DEFINE. The following example creates a CLASS
MAP DEFINE called =MYFILE and gives it a FILE attribute equal to
\SWITCH.$DATA.MESSAGES.ARCHIVE:

1> SET DEFINE CLASS MAP, FILE \SWITCH.$DATA.MESSAGES.ARCHIVE

2> ADD DEFINE =MYFILE

Whenever your process accesses the DEFINE =MYFILE, it gets the name of the file
specified in the DEFINE. For example, when your process opens =MYFILE, the file
that actually gets opened is \SWITCH.$DATA.MESSAGES.ARCHIVE.

eld Specifics

There are various items on the eld command line that are filenames. These include
the parameters of various options, such as -o, -l, -strip, etc., as well as
filenames that are just written directly on the command line. For such command line
items, eld checks if they begin with equal signs. If so, in the Guardian case, the linker
will immediately do the expansion of the DEFINE, so that all uses thereafter will be the
same as if the expanded name had been given originally (with one special case
described below). The expansion of the name should also be done in uppercase, and
the linker will put out an informational message. If the specified string cannot be
expanded as a MAP DEFINE, that is an error. And, on other platforms, such as the PC
or OSS, if a filename parameter begins with an equal sign, that is unconditionally an
error.

On the other hand, there are certain items on the command line that are not filenames,
although they look similar to filenames. In such cases, if the string starts with an equal
sign, that is always an error, even on Guardian. Examples of this include the names of
subvolumes specified in options such as -L and -rpath, and the DLL name specified
by the -soname option.
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-5

Essential DLL Facility Controls At a Glance: Controlling Linker Output When
Producing a Loadfile
When it comes to parameters that are symbol names, no such rules apply. An equal
sign at the start of a symbol name has no special significance to the linker.

There is a special case. In the case of the -libname (or -set libname, or -change
libname) option, usually, it is an error if the parameter is not exactly of the form
$a.b.c. However, a DEFINE can be used for this, even though a DEFINE always
expands to the form \system.$a.b.c. In these contexts, after expanding the DEFINE,
the linker also removes the system name.

Choosing a DLL Name

On the execution target, you must store a DLL in a file having the same name as that
DLL, or else the loader will be unable to find it. This is because when a loadfile being
linked requires that DLL, the linker uses that DLL’s internal name to enter in this
loadfile’s libList. Then, when the loader (on the execution target) searches for DLLs
this loadfile requires, it searches the file system using names from this loadfile’s libList.

The ability to name a DLL differently from its linker-output file is useful when linking on
an auxiliary system, so you can name that DLL for the file you want to store it in on the
execution target.

On the other hand, names in a libList may be used on both the linker platform and the
execution target systems, so since libList names come from internal DLL names,
portable names are recommended. A portable name is a proper Guardian name, which
can be up to eight-characters long, expressed in lower-case.

There is one more consideration for making simple names portable: If they are
lowercase, begin with a letter, contain only letters and digits, and are at most eight
characters long, they work as either Guardian or OSS names. This can be important
for a DLL that serves both environments.

 To change a DLL’s internal name, you must relink it.

At a Glance: Controlling Linker Output When Producing a
Loadfile

The one command, eld, invokes the linker for all operations; options control all
subsequent linker steps.

The following table summarizes the options for creating loadfiles and for naming the
files they are stored in.

To: Action:

Output a program This happens by default

Output a DLL Insert the -dll option
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-6

Essential DLL Facility Controls Specifying Which Inputs Go into a Link
Specifying Which Inputs Go into a Link
Primary inputs to a link are the individual linkfiles inserted by name in the command
stream. Other linkfiles can come from archives that are inserted in the command
stream; an archive is a file that contains one or more linkfiles. Input linkfiles are merged
in the link process to form the output loadfile. Other inputs to a link are libraries that the
output loadfile references directly or indirectly. The following subsections describe each
of these inputs in detail.

Linkfile Inputs

The linker’s main purpose is to combine linkfiles to produce a loadfile. You must insert
directly in the command stream the name of the linkfiles that are the primary inputs to
the link. The names of these linkfile inputs can be unqualified if the linkfile is in the
same subvolume or directory from which you invoke the linker or else they must be
fully qualified file names; they cannot be part of any option. These names can be
inserted anywhere as long as they do not separate another option from its parameters.

The linker always resolves symbol references in linkfiles being linked with symbol
definitions those linkfiles themselves provide. In particular, if a loadfile refers to a
symbol that it also exports, the linker binds that reference to that loadfile’s definition. If
the loadfile is localized, which the linker assigns by default, then at load time, the
loader will accept this resolution. If the loadfile is not localized, the loader may revise
the linker’s resolution, as discussed in Ambiguity Example 2 on page 4-9.

Selecting Linkfiles from Archives

Like named linkfiles, by inserting their qualified names, you can specify archives for the
linker to access. To learn how the linker searches for an archive, see Specifying Where
the Linker Can Find Its Inputs on page 2-9. Two options allow you to select which
linkfiles are brought into the link from an open archive:

Specify the name of the file in which to
store the result

Assign the file name with a -o option

Name the resulting DLL differently from
the output file

Assign the DLL name with the -dllname
option and the file name with a -o option.

Simultaneously give the same name to
the output DLL and the file it is stored in

Assign the name with a -o option and do not
use a -dllname option, or vice versa.

Linkfiles to Bring into the Link Option

Bring in all linkfiles in this archive. -all or the synonym -
include_whole

Bring in only those linkfiles that resolve
currently unresolved symbols.

-none or the synonym
-no_include_whole

To: Action:
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-7

Essential DLL Facility Controls Linkfile Inputs
 -all and -none are toggle options you can insert multiple times in the command
stream to set the mode for archives that are subsequently specified in the command
stream. You can also insert the same archive more than once in the command stream.
At the beginning of the command stream, the default mode is -none.

The following example brings into the link only those linkfiles in an archive called
archfile1 that resolve symbols at the time the linker has archfile1 open, since
-none is the undeclared mode at the beginning of the command stream.

eld linkfile1 linkfile2 archfile1 -dll -o mainout

If, instead, you want the linker to bring into the link all the linkfiles in
archfile1, insert the following:

eld linkfile1 linkfile2 -all archfile1 -dll -o mainout

In this case, -all remains in effect for the rest of the command stream that follows it.

Availability of Linkfiles from Archives

Regardless of how the linker finds an archive, that archive is opened and remains
open, with its linkfiles available for inclusion in your link, only while the linker processes
the token naming that archive. When the linker has finished processing that token and
has extracted the appropriate linkfiles for inclusion in your link, it closes that archive.
Thereafter, that archive’s other linkfiles and their symbol definitions, are no longer
available to your link unless you reopen that archive. If subsequently processed files
require symbols from this archive, they can be satisfied in any of the following ways:

 Open the archive only after processing all the files that may need these symbols.

 Reopen the archive again later, after processing the other files that may need
these symbols.

 Open the archive with -all in effect, so that all its linkfiles are incorporated in the
link and all their symbols are subsequently available.

 If you know ahead of time that a given symbol must be resolved later, insert
the -u <symbol name > option, where <symbol name> names that symbol.
Having seen this declaration, the linker incorporates the first linkfile it finds in the
archive that resolves <symbol name> into the link. -u is repeatable, and only
one symbol can be listed with each -u option.

Here is another way of solving the same issues:

 If a first linkfile is supposed to get a symbol definition from an archive and if you
are unsure whether a second linkfile in the link also exports that symbol, then
insert the archive after the first linkfile and before the second linkfile.

 Otherwise, insert the names of your archives at the end of your command stream,
so that these archives can address all the outstanding symbol references
generated by processing the command stream.
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-8

Essential DLL Facility Controls Library Inputs
While the archive is open (when -none is in effect), the linker searches for symbols
that are unresolved in the loadfiles seen so far, or specified by the -u option, or
unresolved in linkfiles selected from the archive. The archive can have indirectly
needed linkfiles. The linker finds them regardless of their order. (That is, the linker
makes multiple passes over the archive while it has it open, if necessary to resolve
symbols introduced by linkfiles in the archive.)

Library Inputs

In addition to linkfiles and archives, a loadfile being linked can also obtain symbol
definitions from existing loadable libraries. You must know which symbols the loadfile
you are creating will import from existing libraries, and tell the linker which libraries can
resolve those symbols by inserting their file names in the command stream. Using
these names, the linker opens the corresponding files and reads their internal names
to build the libList in the resulting loadfile. There it lists the libraries in the order that you
inserted them; these libraries are called your loadfile’s libListed libraries. Later, the
loader uses this libList on the execution target to find the libraries that will resolve your
loadfile’s symbol references and to build your loadfile’s loadList.

Thus, when linking your loadfile, the order in which you insert library names into the
linker’s command stream determines the order that the linker processes them and lists
them in your loadfile’s libList. The order of library names is unaffected by the mingling
in the command stream of other inserted tokens among these names.

Figure 1-4 on page 1-9 shows that when linking the program, the programmer inserted
the file names of DLLs A, B, and C, in that sequence. It also shows that:

 A requires D and E.

 Both D and E require G.

 Both B and C require F.

To get these results, when A was linked, its programmer inserted first the names D
then E. When D and E were linked, their programmers inserted G. Likewise, when B
and C were linked, their programmers inserted F.

Library names can safely be inserted anywhere in the command stream, because their
symbols are made available as needed in the link regardless of their inserted position.
Also remember, when a TNS/E compiler invokes the linker for you, the compiler
automatically ensures that the object files are linked to any required standard run-time
libraries.

Specifying Where the Linker Can Find Its
Inputs

The previous section discussed how to tell the linker what items go into a link. This
section focuses on how to tell the linker where to look for these items in the file system
of the linker platform. The linker can find files in several different ways:
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-9

Essential DLL Facility Controls Files the Linker Opens Normally
 If the linker is given a qualified file name inserted directly in the command stream,
it opens the file in the normal way for the linker host platform.

 If the linker is given an unqualified file name inserted directly in the command
stream, it opens a file of that name in the current directory or subvolume.

 If an unqualified file name is used in a -lib option, the linker searches for that file
following prescribed search paths, as discussed in Where The Linker Searches for
Libraries and Archives on page 2-11.

 If a partially or fully qualified file name is used in a -lib option, the linker does not
search; it applies the host-system defaults to a partially qualified file name, and
attempts to open the file.

 The linker can look for the file among the public libraries.

Files the Linker Opens Normally

The linker accesses files inserted directly in the command stream by making a single
attempt to open them, as described above. The linker recognizes and distinguishes
among a linkfile, an archive, and a DLL that it opens, and it handles each appropriately.

The following causes the linker to attempt to open linkfile1, linkile2, and
archfile1 normally in order to access their contents.

eld linkfile1 linkfile2 archfile1 -dll -o mainout

Libraries the Linker Searches For and Opens

To cause the linker to search for a file to bring into a link, insert the -lib <filename>
option. The file can be either an archive, which supplies linkfiles to incorporate into the
link, or a loadable library, which will be listed in the output loadfile’s libList. Only one
filename can follow a -lib option, so to declare multiple file names, use
multiple -lib option declarations. -lib is a repeatable option. -l <filename> is a
synonym for -lib <filename>, where the -l must be lowercase and may, but
need not, be separated from its filename parameter by white space.

The linker recognizes file names in a -lib (or -l) option as either qualified or
unqualified, as discussed in File-Name Qualification on page 2-4. It accepts a qualified
name in a -lib option and does not search for it, but instead, attempts to open the file
as a library or archive; thus -lib qf is equivalent to a qf input as a separate file
name, when qf is qualified. If the linker cannot open a file with a qualified name it
declares an error and terminates the link. If the linker cannot open a file specified in a
-lib option with an unqualified name it declares an error, unless you have instructed
it to allow missing libraries, as described in Allowing Missing Libraries on page 2-12. It
is an error if a file opened as a result of -lib is not a library or an archive.

On the other hand, when the linker recognizes an unqualified name in a -lib option, it
searches the file system for a file with that name and opens it. Also, if the name in a
-lib option is unqualified, the linker might augment the given name with the defaults
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-10

Essential DLL Facility Controls Libraries the Linker Searches For and Opens
appropriate to the linker platform and then attempt to open the resulting file. This is
described in Augmenting Library Names Automatically in Searches on page 5-2.

A -lib option cannot specify any of the primary linkfiles in a link; these must be
inserted separately in the command stream as qualified file names or unqualified
names if the files are in the current directory.

Where The Linker Searches for Libraries and Archives

The following example adds a library, whose unqualified name is libfile1, to the
link.

ld linkfile1 linkfile2 archfile1 -lib libfile1 -dll -o mainout

If libfile1 were a qualified name, the linker would open it normally, just as it did for
the two linkfiles and the archive. However, since libfile1 is an unqualified name,
the linker searches for it, and the linker must know where in the file system to look for
it. This is defined by the linker search path, which specifies the sequence of directories
or subvolumes in which the linker searches for directly referenced libraries. This path is
specified by the following sequence in the order shown:

1. A directory or subvolume you specify in a -first_L <pathname > option in the
linker’s command stream, where <pathname > is a path to a specified directory or
subvolume. Only one path or directory can be inserted with each -first_L
option, so one such option must be inserted for each path or directory needed. The
linker searches the specified directories or subvolumes in the sequence that the
-first_L options are inserted.

2. The public libraries. Because the public libraries cannot store archives, the linker
will bypass this step if -b static is in effect, as discussed in Making the Linker
Accept Only DLLs or Only Archives on page 5-1.

3. The directory or subvolume you specify in a -libvol <pathname > option in the
linker’s command stream, where <pathname > is a path to a specified directory or
subvolume. -L, in upper case, is a synonym for -libvol. Only one path or
directory can be inserted with each -libvol option, so one such option must be
inserted for each path or directory needed. The linker searches the specified
directories or subvolumes in the sequence that the -libvol options are inserted.

4. For OSS, where the value of the environmental value COMP_ROOT prefixes each
of the following names:

 when building a 32-bit or neutral object:
/lib:/usr/lib:/usr/local/lib:/G/SYSTEM/ZDLL

 when building a 64-bit object:
/lib64:/usr/lib64:/usr/local/lib64:/lib:/usr/lib:/usr/loca
l/lib:/G/SYSTEM/ZDLL

Finally, unless the -b static option is in effect, (see Making the Linker Accept
Only DLLs or Only Archives on page 5-1), the linker searches in
/G/SYSTEM/ZDLL.
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-11

Essential DLL Facility Controls Specifying a User Library for a Program
For Guardian, unless the -b static option is in effect, the linker searches in
$SYSTEM.ZDLL.

For Win 32, the linker does not search in any standard places.

You can have the linker skip steps 2 and 4 above by inserting the -nostdlib option
or its synonym -no_stdlib.In this event, the linker will search for libraries in places
specified by -first_L or -libvol options. -nostdlib is a one-time option that
applies to the linker only; it has no effect on subsequent loader operation.

The following example causes the linker to search for a library listed in a -lib option
first in a private subvolume, pvtsvol, before searching for it in the public libraries.

 eld linkfile1 linkfile2 -lib dllfile1 &
-first_L pvtsvol -dll -o mainout

You may find it convenient to use a common search path that can work on different
linker platforms. The linker design supports this by allowing directory and subvolume
names for different platforms to be mixed in one search path definition. In this case, the
linker on one platform will find in its search path some directory or subvolume names
that are syntactically incorrect, because they are for the other platform. The linker
ignores these and searches only the ones it deems correct.

Allowing Missing Libraries

The linker terminates in error when it cannot find a file it searches for, unless it has
been instructed to allow missing libraries, by use of the -allow_missing_libs
option.

If the linker is directed to search for archives as well as libraries, then operating under
the -allow_missing_libs option, the linker treats any missing file as a library; thus
it can miss an archive as well. -allow_missing_libs is a one-time option.

If -allow_missing_libs is specified, and a specified library is not found, the name
from the -lib option is placed into the libList of the output loadfile.

Specifying a User Library for a Program

When linking a PIC Program, you can make an existing DLL the program’s user library
by inserting the -set libname <filename > option, where <filename > is the
name of that DLL. -libname is a synonym for -set libname.<filename > must
be a fully qualified Guardian file name on the execution target. -set libname is only
valid when linking a program.
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-12

Essential DLL Facility Controls At a Glance: Files the Linker Brings into a Link
At a Glance: Files the Linker Brings into a Link

Compile-Time Control of Export and Import
The TNS/E C and C++ compilers provide facilities to specify export and import controls
at compile time. The syntax involves a modifier, export$ or import$, which can be
placed on the declaration of an identifier. As their names imply, they cause the
compiler to mark the associated definition as exported or imported, respectively. When
applied to the declaration or definition of an individual function or variable, it affects that
one item. When applied to the declaration of a class, it affects all the symbol definitions
within that class, including auxiliary compiler-generated definitions such as type
identification variables. This facility has several important advantages:

 The identifiers can be marked in the source, avoiding the need to place details into
the linker's command stream.

 The programmer need not know or enter the "mangled" form of C++ function
names to export them.

 When marking a whole class, the programmer need not know its compiler-
generated auxiliary identifiers.

 Not only can identifiers be marked exported in some linkfiles and loadfiles, they
can be marked imported in others. Judicious use of this ability can avoid unwanted
multiple definitions, reducing wasted address space and potential ambiguity.
(Linker commands can offer symbols for export, but cannot force them to be
imported.)

The export$ and import$ modifiers are not intended to be used explicitly, but instead to
occur within the expansions of defines. For example, consider the following header file
fragment:

#ifndef export_foo

define export_foo import$

#endif

export_foo class foo {...}...

When this file is included in routine compilations, the various symbols associated with
this class definition will be marked as undefined, so they must be defined in another

To incorporate in a link: Action:

A linkfile, archive, or library to open
normally

Insert its qualified file name directly in the
command stream

An archive or library to search for and
open

Insert its unqualified file name in a -lib
option
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-13

Essential DLL Facility Controls Your Loadfile’s Exported Symbols
linkfile or loadfile. However, the compilation of the module that implements class foo
can contain

#define export_foo export$

ahead of the #include directive for this header file. As a result, this compilation will
define all the symbols associated with class foo, and mark them offered for export.

Your Loadfile’s Exported Symbols
By default, the linker causes your loadfile to offer for export those symbols for which
your compiler sets the xport bit in the external symbol table. To know which these
are, you must know which symbols your compiler designates this way. To ensure that
your loadfile offers for export all needed symbols, insert the -export_all option.
This causes the loadfile to offer all symbols except:

 Those used internally by the compiler and linker

 Those used only in starting up or shutting down the loadfile

Controlling Which Symbols Your Loadfile Exports on page 5-5 discusses how to
override the automatic exporting of symbols your compiler designates as exportable.

Re-Exported libraries
A DLL can also make available symbols exported by any library in its libList; that is, the
given DLL can re-export the other library. Thus, when a given DLL, call it A, re-exports
a library, B, any loadfile that has A in its libList can also use all the symbols offered for
export by B. When linking a given DLL, the programmer must designate which
libraries, if any, the given one is to re-export.

The fact that DLL A re-exports library B is only meaningful when a loadfile that has A in
its libList is localized, because if that loadfile is not localized, it has access to B’s
symbols anyway.

As an example, suppose that in Figure 1-5 on page 1-14, Program is localized. Then it
can only import symbols from User Library, A, B, and C, unless one of these four re-
exports libraries in its libList. Either B or C could re-export F, in which case Program
could use F’s symbols. And if A re-exported either D or E, Program could use the re-
exported library’s symbols. In the latter case, if the re-exported library (either D or E)
also re-exported G, then Program could use G’s symbols, as well. This is because re-
exportation is transitive, in that if Library X re-exports DLL Y and Y re-exports library Z,
then X re-exports Z. User Library could also re-export H for A’s use.

On the other hand, in Figure 1-5, if Program is globalized, then it can import symbols
from any libraries shown in that figure, regardless of which libraries are re-exported.
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-14

Essential DLL Facility Controls How to Make Your Loadfile Re-Export Symbols of
Other DLLs
How to Make Your Loadfile Re-Export Symbols of Other DLLs

When you link your DLL, you can make it re-export the exported symbols of any library
in its libList. To do this you insert the -reexport option, after which you insert directly
or in a -lib option the libraries which are to be re-exported. -reexport and
-no_reexport are a toggle-option pair telling the linker that all libraries inserted after
the -reexport option are re-exported until the linker encounters a -no_reexport
option. -no_reexport is the undeclared mode at the start of the command stream.

In the following example, -reexport makes available the symbols in dllfile1 to
any localized loadfile that has mainout in its libList.

eld linkfile1 linkfile2 -reexport -lib dllfile1 &
-first_L pvtsvol... -dll -o mainout

Some Examples Using Re-Exportation

Splitting a DLL into Two DLLs

One use of re-exportation is to allow you to split a DLL into multiple DLLs without
having to relink the clients of the original DLL. You might make such a split because it
is expedient to assign responsibility for parts of the original DLL to different individuals
or groups. To split a DLL in two, you give one of the new DLLs the name of the original
and have it re-export the other.

Figure 2-1 on page 2-15 illustrates DLL D exporting symbols Alpha, Beta, and Gamma,
while its client, DLL A, imports those symbols. Suppose that you want to replace D with
two loadfiles, one which provides the Gamma definition and the other which provides
the Alpha and Beta definitions, and you do not want to affect D’s client loadfiles. You
can do this as follows.

1. Split the source for D to create the two new loadfiles: one that exports Alpha and
Beta, the other that exports Gamma.

Figure 2-1. DLL A Imports DLL D’s Symbols.

DLL A

Alpha

Beta

Gamma

DLL D

Alpha

Beta

Gamma

VST021.vsd
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-15

Essential DLL Facility Controls Some Examples Using Re-Exportation
2. Recompile and relink the new sources, and give one resulting loadfile (say the one
that exports Alpha and Beta) a new name, Y. Give the other loadfile the old name,
D. See Naming DLLs on page 2-3.

3. Set up D to re-export Y.

The result is shown in Figure 2-2 on page 2-16, where the dashed lines through D
indicate re-exportation. All the clients of D, like A, still get symbols Alpha, Beta, and
Gamma through D, so they need not be changed.

Replacing an Existing Symbol Definition

In a working DLL you can make a new version of an existing symbol having new
function without recompiling that DLL, so that all client loadfiles that use this symbol
will invoke the new function without being relinked and reloaded. Starting from the
situation in Figure 2-1 on page 2-15, Figure 2-3 on page 2-17 illustrates how a new
DLL can combine with an existing DLL to replace the old function. The steps to
accomplish this are:

1. Relink DLL D and rename it DLL Y.

2. In a new DLL D, construct the new procedure to provide the new function and
name its entry point Gamma, the same name as the replaced function in the old
DLL D. Put Y in D’s libList and designate Y re-exported, so users can still access
the old symbols Alpha and Beta from D.

Figure 2-2. Splitting a DLL Into Two Parts

DLL A

Alpha

Beta

Gamma
DLL D
(new)

Gamma

VST022.vsd

DLL Y
(new)

Alpha

Beta
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-16

Essential DLL Facility Controls Things to Consider about the Loader
Because the search order for the linker and loader comes to D before Y (See Finding
Symbol Definitions on page 4-1), D’s Gamma masks Y’s. So without any change to the
users, all of those that formerly used old D’s Gamma will now get new D’s Gamma.

Things to Consider about the Loader
Many of the loader’s operations are automatic and driven by adequate defaults. This
subsection discusses a few of which you must be aware. For more precise control of
the loader, see Load-Time Operation on page 5-13.

The Link-Time-Defined Search Path of the Loader

The linker can run on an auxiliary system while the loader must run on the execution
target, so their search paths might necessarily be different. For example, the directory
and subvolume names are unlikely to be the same on the auxiliary and execution-
target systems. This subsection discusses how, when executing the link, you can direct
the load-time search to appropriate paths on the target system.

While the loader’s search path is similar to the linker’s, the search-path information the
linker gets from -first_L, -libvol, or -L options is not passed on to the loader.
Instead, the loader’s search path is controlled at link time by -RLD_first_L or
-RLD_L options. These are repeatable options.

The loader’s search path can also be modified at load time, as discussed in Controlling
the Loader’s Search Path at Load Time on page 5-13; however, when not augmented
at load time, the loader’s search path is:

1. The directories or subvolumes specified in a -RLD_first_L <parameter>
option in the linker’s command stream, where <parameter> is a path or paths
to a specified directory or subvolume. The -RLD_first_L option is not
required, but when used, is repeatable with different path strings.

Figure 2-3. the New Symbol, Gamma, With New Function (Shaded), Replaces the
Old Gamma.

DLL A

Alpha

Beta

Gamma

DLL D
(new)

Gamma

VST023.vsd

DLL Y
(old D)

Alpha

Beta

GammaX
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-17

Essential DLL Facility Controls The Link-Time-Defined Search Path of the Loader
2. The public libraries.

3. The directory or subvolume specified in a -RLD_L <parameter> option in
the linker’s command stream, where <parameter> is a path or paths to a
specified directory or subvolume. The -RLD_L option is not required but when
used, is repeatable with different path strings.

4. Following default locations:

 32-bit process:

For OSS: /lib, /usr/lib, /usr/local/lib, and
/G/SYSTEM/ZDLL in the order of the paths specified here.

For Guardian: $SYSTEM.ZDLL

 64-bit process:

For OSS: /lib64, /usr/lib64, /usr/local/lib64, /lib,
/usr/lib, /usr/local/lib, /G/SYSTEM/YDLL, and
/G/SYSTEM/ZDLL in the order of the paths specified here.

Unlike the previously discussed options that guide the linker’s search, -RLD_first_L
and -RLD_L, which guide the loader’s search, allow you to specify multiple colon-
separated paths as a single argument for each option. You can also insert multiple
such options, and the linker concatenates their arguments in the order you insert them
to present the loader with a single list of colon-separated paths. The loader follows this
list in the order listed. The path names themselves cannot have colons embedded
within them.

The loader ignores invalid path names, so you can mix OSS paths and Guardian
subvolumes to create a loader search path that will work on either.

As mentioned above, the loader offers the ability to specify paths at load time, but for
security reasons you may wish to ensure that the loader accepts no load-time
directives and uses only the paths in 1 through 4 above. To disable such run-time
directives, insert the linker option -limit_runtime_paths, which is a one-time
option.

The following command-stream fragment might appear when linking on Win32. It
directs the linker to look for dllfile1 in a directory called mydir before it searches
the public libraries.

eld... -L mydir -lib dllfile1 ... -o mainout

However, this example passes no search directions to the loader running on the
execution target; so the loader will search for dllfile1 in only the target’s default
places. If dllfile1 (or its equivalent) is stored on the execution target in a private
subvolume named pvtsvol, you can direct the loader to search there before looking
anywhere but in the public libraries by altering the previous example:

eld... -L mydir -lib dllfile1 ... -o mainout -RLD_L pvtsvol
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-18

Essential DLL Facility Controls Unresolved Symbols at Load Time
The -RLD_first_L option is rarely necessary, because the public libraries have
unique names that should not overlap those supplied by the user or other agencies.
It is more efficient to have the public libraries first on the path search list at load time,
because the set of public libraries can be searched very quickly using a table in
memory.

Unresolved Symbols at Load Time

The loader always searches for every symbol definition that your loadfile must import.
Until it finds a library that offers a symbol definition that your loadfile needs, it considers
that symbol unresolved.

The loader’s search path can be as described under The Link-Time-Defined Search
Path of the Loader on page 2-17, but it might be more extensive, as described in
Finding Symbol Definitions on page 4-1. After looking in all the files specified for this
search and in the implicit system and millicode libraries, if the loader cannot resolve a
symbol reference, it will likely deem this an error; see the definition of set
RLD_unresolved under How to Set Run-Time Attributes of Your Loadfile on
page 5-6.

Also, you may want the linker to help you to find unresolved symbols prior to load time.
For this, see Making the Linker Look for Unresolved Symbols on page 5-3.

Simultaneously Using Different Versions of a DLL

By controlling the loader’s search path, you can allow two different versions of the
same DLL with the same name to be loaded and run in two different processes
simultaneously. This can be useful when testing a new version of a DLL with existing
application code that you do not want to modify. One way to substitute a test DLL for a
production DLL is to link the program and DLLs to allow load-time search-path
specifications, as described in Controlling the Loader’s Search Path at Load Time on
page 5-13.

Default Setting and Checking of File Attributes
The linker sets certain attributes of the loadfile being linked and performs certain
consistency checks. This subsection discusses those that you must know about. How
to set these and others to non-default values is covered in How to Set Run-Time
Attributes of Your Loadfile on page 5-6.

Floating-Point Type

Setting the Floating-Point Type of a Loadfile Being Linked

The floating-point type attribute of the loadfile being linked is determined in one of two
ways.
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-19

Essential DLL Facility Controls C++ Dialect
1. If the -set floattype <value> option is inserted, the linker sets the floating-
point type of the output loadfile to <value>, where <value> can be ieee,
tandem, or neutral.

2. If the -set floattype <value> option is not inserted, then if the input
linkfiles do not contain a mixture of both ieee and tandem floating-point types,
the linker sets the floating-point type of the output loadfile to the one that is
represented. Input linkfiles of neutral floating-point type are ignored in this.
However, if all input linkfiles are neutral, then the linker sets the output loadfile to
neutral.

Checking the Floating-Point Types of Linkfiles Being Linked

The linker checks for consistency of floating-point types among all input linkfiles, as
follows.

1. If the floating point type of a loadfile being linked is set by inserting the -set
floattype <value> option, as in (1) of Setting the Floating-Point Type of a
Loadfile Being Linked on page 2-19, then if any of the linkfiles being linked has a
floating-point type that differs from <value>, the linker issues a warning message.

2. If the -set floattype <value> option is not inserted, as in (2) of Setting the
Floating-Point Type of a Loadfile Being Linked on page 2-19, then if the input
linkfiles contain a mixture of both ieee and tandem floating-point types, the
linker terminates in error.

Checking the Floating-Point Types of Liblisted Libraries

When linking a PIC program, by default, the linker checks for floating-point type
consistency among the libraries from which that program imports symbols. If either the
program’s floating-point type is neutral or the floating-point type of any such library
differs from floating-point type set for the program, the linker issues a warning
message.

When linking a DLL, the linker does not check for floating-point type consistency
among loadfiles from which it imports symbol definitions.

C++ Dialect

Each compiler identifies its language in the generated linkfiles. Three different versions
of the C++ language exist on HP NonStop systems; these dialects are called version1,
version2 and version3. They differ in language constructs and in their run-time support
libraries; they have slightly different "mangling" algorithms for function names.
Version1, the oldest, is obsolete and is not supported for PIC files (on TNS/R or
TNS/E). Version3 was new with G06.20; it complies with the ANSI standard.

For any language other than C++, the C++ dialect is defined to be neutral. The linker
and loader ensure that only one non-neutral C++ dialect appears in a loadfile or a
process, respectively.
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-20

Essential DLL Facility Controls C++ Dialect
Checking the C++ Dialect of Linkfiles That Go into a Link

The linker checks for consistency of C++ dialect among all input linkfiles. If any linkfiles
from C++ compilations differ in C++ dialect, the linker terminates in error.

Setting the C++ Dialect of a Loadfile Being Linked

The C++ dialect of the loadfile being linked is determined in one of two ways.

1. If the -set cppdialect cppneutral option is specified, the linker sets the
output loadfile C++ dialect to neutral. See Neutralizing the C++ Dialect of a
Loadfile on page 2-21.

2. Otherwise, if all C++ compilation units among the input linkfiles have the same
dialect, the linker sets the output loadfile's cppdialect attribute to that value.

Checking the C++ Dialect of Loadfiles in a Process

The loader checks the consistency of C++ dialect in all the native loadfiles in the
process. For PIC processes, there are two assertions:

 No loadfile has cppdialect = version1. Violation results in process creation error 78
(operation not supported) with error-detail 6 (C++ version1 is not supported).

 All loadfiles that have non-neutral cppdialect have the same value, version2 or
version3. Violation results in process creation error 77 (unable to load object file)
with error-detail 8 (mixed C++ dialect versions are not allowed).

The checking applies to all loadfiles: the program, DLLs, and public DLLs. It applies to
libraries dynamically loaded by dlopen()as well as those loaded at process creation
time. Violation of either assertion generates a unique process-creation error, detail
(78,6 and 77,8, respectively; see the Guardian Procedure Errors and Messages
Manual).

Neutralizing the C++ Dialect of a Loadfile

The linker can overwrite the cppdialect attribute of an existing PIC loadfile; the
command is:

eld -change cppdialect cppneutral filename

This action must be taken with care. Like the corresponding -set option at link time, it
causes the presence of any C++ code in this loadfile to be suppressed. Neutralization
can be useful for a library that happens to contain code compiled by C++ but does not
have any dependencies on C++ run-time libraries, and does not import or export any
C++ objects or compiler-generated identifiers. The neutralized library can load into the
same process as other loadfiles with a different version of C++. But if applied
improperly, this assertion of neutrality can lead to errors ranging from fairly obvious
(such as unresolved symbols) to rather subtle (such as differing semantics in different
versions of same-named support-library functions).
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-21

Essential DLL Facility Controls Execution-Target System Type
SQL/MX Restriction

Public DLLs that support SQL/MX have cppdialect = version2. Therefore, SQL/MX
clients cannot yet use C++ version3.

Execution-Target System Type

The linker sets a system-type attribute in the output loadfile to the following default
values.

 If the linker is hosted on a PC, the default is OSS.

 If the linker is hosted on OSS, the default is Guardian if the loadfile is being
created in a Guardian subvolume and is OSS if not.

 If the linker is hosted on Guardian, the default is Guardian.

How to Set Run-Time Attributes of Your Loadfile on page 5-6 tells how set the system
type to a non-default value.

At a Glance: Linker Mandatory Inputs, and
Defaults

Normal Linker Inputs

To avoid a linker error when linking your loadfile, you must specify the following items
in the linker command stream:

1. The linkfiles to be merged to form your loadfile

2. The archives that contain linkfiles that resolve symbols your loadfile needs.

3. The libraries that resolve symbols your loadfile needs.

Also, you may run a link in a situation where you know certain needed libraries are
missing, and you may not want the linker to issue the consequent diagnostics. In that
case, insert the -allow_missing_libs option.

Linker Default Operation

When executing the options specified in this section, the linker automatically follows its
designed default modes. These are listed below, along with references, in square
brackets, to subsections that tell how to manually affect these behaviors.

1. By default, the linker builds a loadfile.

2. The linker builds a loadfile that is, by default, a program. [Choosing to Create a
Program or a DLL on page 2-3]

3. The linker builds a loadfile that is, by default, localized. [Import Controls and
SearchLists on page 4-5]
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-22

Essential DLL Facility Controls Linker and Loader Errors
4. By default, the linker uses only the linkfiles from an archive that resolve currently
unresolved symbols. [Selecting Linkfiles from Archives on page 2-7]

5. By default, the linker exports those symbols for which your compiler sets the
xport bit in the external symbol table. [Controlling Which Symbols Your Loadfile
Exports on page 5-5]

6. The linker builds a loadfile that, by default, re-exports no other DLLs. [How to Make
Your Loadfile Re-Export Symbols of Other DLLs on page 2-15]

7. If you specify an output file for the DLL you are linking but no DLL name, the linker
gives the resulting DLL the same name as the file. [Naming DLLs on page 2-3]

8. If you specify a DLL name for the DLL you are linking but no output file, the linker
gives the output file the same name as the DLL. [Naming DLLs on page 2-3]

9. If you specify neither a DLL name nor an output file for the DLL you are linking, the
linker gives them both the same name, as defined in Naming DLLs on page 2-3.

10. By default, the linker sets the system type of your loadfile as defined in Execution-
Target System Type on page 2-22. [How to Set Run-Time Attributes of Your
Loadfile on page 5-6.]

Linker and Loader Errors
Linker errors described in this document cause the link to terminate with all the files
involved in the link left as they were before the link started. Fatal loader errors cause
the load operation to abort, but have no effect on other system operation.

For a complete list of eld error messages, with cause/effect/recovery information see
the eld Manual.
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-23

Essential DLL Facility Controls Linker and Loader Errors
DLL Programmer’s Guide for TNS/E Systems—527252-006
2-24

3 Dynamic Use of DLLs

An important attribute of the DLL facility is that a running PIC program or DLL can load
and open a previously not-loaded DLL and gain access to the symbols it offers. DLLs
invoked this way are called dynamically loaded DLLs.

One advantage of dynamically loading a DLL is that its name need not be known when
the program is constructed; instead, you can add this new DLL to an existing
application without even restarting the application. Also, you do not need to load
infrequently used DLLs when the application is loaded. Instead, you can load and use
these DLLs when needed and unload them when they are no longer required. They
can be reloaded whenever necessary.

Dynamic libraries make it possible to update facilities in a running application. If
specific business functions are implemented in a dynamically loaded DLL, a program
can unload that DLL and load an updated version that supports the same interfaces
with revised algorithms, tables, etc.

This section discusses how to dynamically load and unload a DLL from your running
process and how to link your loadfile with a dynamically loaded DLL.

rld is the facility that loads a program and its requisite libraries. It will load a preset
loadfile without rebinding ordinary symbols if the loadfile bindings are correct. This is
called FastLoad. A FastLoadable loadfile is one whose bindings have been preset by
eld, or automatically updated by rld and the NonStop operating system.

If rld has to rebind a loadfile and the loadfile import control is localized, it will update
the preset bindings in the loadfile with the cooperation of the NonStop operating
system. This is called automatic update. rld and the operating system only
automatically update loadfiles at process creation time. If a loadfile is loaded via a call
to dlopen(), the loadfile is not automatically updated.

Reference information about dynamic linking may be found in the rld Manual.

For the C/C++ languages, declarations for the runtime dynamic linking functions and
the dlopen() mode options are provided in a header file called dlfcnh on the
Guardian platform and dlfcn.h on the OSS/Unix/PC platforms. For the pTAL
language, a header file called hdlfcn is provided on the Guardian platform containing
the same declarations.

The rest of this section details the loading facilities based on C/C++ language
functions.

Dynamic Loading Functions
Dynamic loading and linking use five associated C-language functions, dlopen(),
dlsym(), dlclose(), dlerror() and dlresultcode(). These functions
compose the dynamic library function calls described in this section, and they are
DLL Programmer’s Guide for TNS/E Systems—527252-006
3-1

Dynamic Use of DLLs Opening a DLL from a Running Loadfile (dlopen)
declared in a header file called dlfcn.h and defined in the loader’s library. Therefore,
any C or C++ source file that uses these functions must contain the following:

#include <dlfcn.h>

The same functions have pTAL external declarations in a file named hldfcn. Both
header files also define parameter types and constants for using with these functions.

These functions are implemented in the public library ZRLDDLL. This DLL does not
use any explicit public libraries. This library is not named in LIBCOBEY or libc.obey
(if one exists), and is not supplied automatically by the compiler driver when it runs the
linker for you. Therefore, you must name this library explicitly when building a loadfile
that calls any of these functions. If you run eld manually, you can add a -lib zrlddll
option in the command stream. If you let the compiler run the linker, you can provide
the option through the compiler command line; see Running the Linker Through the
Compiler on page 5-10.

The following summarizes the dynamic library function calls.

dlopen() loads and opens a specified DLL and the libraries in its loadList if they are
not loaded, and this function returns a handle for the named DLL.

dlsym() returns an address of a named symbol exported by a loadfile associated with
a dlopen handle. The calling process can assign that address to an appropriate
data or function pointer, which becomes a reference to that symbol.

dlclose() invalidates a dlopen handle and unloads any dynamically loaded libraries
not required by some other handle.

dlerror() provides a textual error message that describes any error arising from an
immediately preceding call to dlopen(), dlsym(), or dlclose().

dlresultcode() provides an enumerated result code for the last call to dlopen(),
dlsym(), or dlclose().

Opening a DLL from a Running Loadfile
(dlopen)

A call to dynamically load a DLL must come from a loadfile that is already loaded. The
operation also loads any libraries in that DLL’s loadList that are not already loaded.

To open and load a DLL, a running process invokes the following function call.

void *dlhandle dlopen (const *object_pathname, int mode)

dlopen() invokes rld to load the DLL and the libraries in that DLL’s loadList and to
make them available to the calling process. The dlopen() function also returns to the
calling process a handle for the named DLL, even when that DLL is already loaded.
This handle is used by subsequent dynamic library calls.

The parameters of dlopen() are:
DLL Programmer’s Guide for TNS/E Systems—527252-006
3-2

Dynamic Use of DLLs dlopen’s Mode Parameter Values
*object_pathname is either zero (NULL) or a pointer to the null-terminated file
name (string) of the DLL to open and load, which is called herein the dlopen target.

mode is an enumeration of options that control symbol resolution and loading, as
described in dlopen’s Mode Parameter Values below.

When the object_pathname parameter is zero, the loader does not load anything, but
returns a handle that enables dlsym() to search for symbols in the program and
libraries loaded with it. Furthermore, any running loadfile object_pathname can name
any currently loaded DLL as a dlopen target and get a handle to access the exported
symbols of that DLL and the libraries in its loadList.

In the following discussion, the loadfiles loaded prior to a dlopen() call are called the
prior operating load set. The prior operating load set includes the main program and its
initially loaded DLLs as well as any DLLs that were previously loaded dynamically. The
DLL named in a dlopen() is called the targeted DLL. That DLL and the libraries
loaded with it compose the added load set. The prior operating load set and the added
load set compose the new operating load set.

Resolving the Added Load Set’s Imported Symbols

The loader resolves symbols imported by the DLLs in the added load set following the
normal import-control rules for each such DLL and treating each as part of the new
operating load set. For example, the loader binds symbols imported by an added
localized DLL to those offered from its own load set, as described in The SearchList for
a Localized Loadfile on page 4-5; whereas, the loader binds symbols imported by an
added globalized DLL to those offered by the entire new operating load set. To resolve
globalized symbols, the added load set’s search list is appended to the end of the old
operating load set’s globalized search list, which is described in The SearchList for a
Globalized Loadfile on page 4-8. dlopen() can issue either warnings or errors as a
result of unresolved symbols, as described in Unresolved Symbols at Load Time on
page 2-19.

The old operating load set cannot have symbol references that must be bound to
symbol definitions in the added load set, because these would have caused errors
when the old operating load set was loaded. Instead, the old operating load set can
have pointers to procedures and data that are initially unused. Then after dlopen()
loads the added load set, the old operating load set can call dlsym to fill in the pointers,
as described in Accessing Symbols (dlsym) on page 3-5.

dlopen’s Mode Parameter Values

dlopen() accepts any valid combination of the mode options described below.
These values are defined in the header file dlfcn.h. A mode value of zero is invalid. The
options are as follows:

RTLD_NOW

This option performs all linking on the newly loaded library immediately.
DLL Programmer’s Guide for TNS/E Systems—527252-006
3-3

Dynamic Use of DLLs dlopen’s Mode Parameter Values
RTLD_LAZY

This option is accepted to provide compatibility for UNIX, but is treated the same
as RTLD_NOW.

RTLD_GLOBAL

This option specifies that the newly loaded DLLs should be added to the
cumulative loadList, i.e. new libraries are added to the global set, which consists of
the program and libraries loaded initially by rld. This is the default.

RTLD_LOCAL

This option is accepted to provide compatibility for UNIX, but is treated the same
as RTLD_GLOBAL.

RTLD_NOLOAD

This option specifies that dlopen() should not load the target library, but should
provide a unique handle to it, if it is already loaded. This option causes dlopen()
to return a 0 if the library is not already loaded. Note that any handle returned by
dlopen() counts as a usage of the target library and until it is closed, the library
is not unloaded.

RTLD_VERBOSE(verbosity_level)

This option specifies the diagnostic output detail from calls to dynamic linking
functions regarding loading of library files, resolution of symbol names and search
details for files and symbols. The verbosity_level values are the same as
rld’s and are as follows:

 0 - default (as though this specification is absent)
 1 - none (no output to hometerm/stderr)
 2 - warnings and errors
 3 - also show files loaded
 4 - also show symbol resolution
 5 - same as 3, plus file search details
 6 - same as 4, plus file search details
 7 - same as 4, plus symbol search details
 8 - all the above

dlopen() treats the mode parameter as the union of the above values and detects an
error if any other value is used. Valid combinations for the mode parameter include
both of the following:

 Exactly one from the set of (RTLD_NOW | RTLD_LAZY | RTLD_NOLOAD)

 No more than one from the set of (RTLD_GLOBAL | RTLD_LOCAL)

This means that if RTLD_NOLOAD is specified the user cannot set RTLD_NOW or
RTLD_LAZY, however, the user can, optionally, set RTLD_GLOBAL or RTLD_LOCAL.
DLL Programmer’s Guide for TNS/E Systems—527252-006
3-4

Dynamic Use of DLLs Returned Value of dlopen
Each valid combination can be combined with the verbosity level, via
RTLD_VERBOSE (verbosity_level) to create the mode parameter.

Returned Value of dlopen

dlopen() returns a handle (value) for the calling process to use in subsequent calls
to the dlopen target. This handle is not usable in any other way; in particular, it is not
an address.

dlopen (with dlsym) is the only way for DLLs in the prior operating load set to access
symbols exported by DLLs in the (dynamically loaded) added load set. Furthermore,
any running loadfile can name any currently loaded DLL as a dlopen target and get a
handle to access the exported symbols of that DLL and the libraries in its loadList.
When the dlopen target is 0, dlopen() returns a handle for the main program.

Error-Returned Value of dlopen

A returned value of 0 indicates an error, which can occur for any of the following
reasons:

 The object_pathname parameter pointed out of bounds or to a malformed
name.

 dlopen() could not find or could not open the specified file.

 The specified file was neither a DLL nor a public DLL, or was not valid.

 An error occurred while the loader was loading the specified file or adjusting its
symbolic references.

 A target DLL specified with RTLD_NOLOAD mode was not already loaded.

 The mode parameter value is invalid.

When dlopen() returns 0, call dlerror() for a textual description of the error, or
dlresultcode() for an encoded error code and error-detail.

Accessing Symbols (dlsym)
Using the handle returned to the calling process by dlopen(), that process can
access a named symbol if it is exported by the targeted DLL or any library in its
loadList. dlsym() is the only way to access symbols in a dynamically loaded library;
but it also allows a process to obtain the address of a symbol exported by any currently
loaded loadfile for which the process has a dlopen handle or by the libraries in that
loadfile’s loadList. The following function call invokes dlsym():

void *dlsym(dlhandle dlopen_handle, const char *symbol_name)

 The parameters of dlsym are:

dlopen_handle
DLL Programmer’s Guide for TNS/E Systems—527252-006
3-5

Dynamic Use of DLLs Returned Values of dlsym
A handle returned by a previous dlopen call and not invalidated by dlclose().

*symbol_name

A pointer to the null-terminated name (string) of a symbol to be accessed in the
specified loadfile.

 Returned Values of dlsym

Each dlsym() call returns the address of a specified symbol. You can use the
returned address by storing it as a pointer of a type appropriate for the function or
datum designated by the symbol. dlsym() finds this address by searching for the first
exported occurrence of the named symbol starting with the loadfile designated by the
dlopen handle and followed by the libraries in that loadfile’s loadList. The import and
re-export controls of the searched loadfiles are ignored. If the handle is for the main
program, dlsym() starts with the main program and searches the entire operating
load set.

Each dlsym() call returns the address of only one symbol, so the calling process
must issue a separate dlsym()call for the address of each symbol it needs.

Error-Returned Value of dlsym

If dlsym() encounters any of the following conditions, it returns the value 0 :

 Invalid dlopen_handle including a handle that has been invalidated by
dlclose(), as discussed in Closing a Running Loadfile’s Handle to a DLL
(dlclose) on page 3-6.

 symbol_name cannot be found

 The value of the symbol is 0 (rare, non-error case). Only an "absolute" symbol
exported from an assembler module can have the value 0; symbols exported by
higher-level languages are virtual addresses, and zero is never a valid address in
native processes.

When dlsym() returns 0, call dlerror() for a textual description of the error, or
dlresultcode() for an encoded error code and error-detail. In the rare event that
dlsym() found the symbol and its value was 0, dlerror() and dlresultcode()
return 0.

Closing a Running Loadfile’s Handle to a DLL
(dlclose)

To invalidate a handle obtained by a dlopen call, a running process issues the following
call.

int dlclose(dlhandle dlopen_handle)
DLL Programmer’s Guide for TNS/E Systems—527252-006
3-6

Dynamic Use of DLLs Returned Values of dlclose
dlclose invalidates the handle and makes it unavailable for any other call that uses that
handle. If the specified handle is the last outstanding one for the referenced DLL and if
that DLL was dynamically loaded (by dlopen), the DLL is also unloaded. The following
is the parameter of a dlclose call:

dlopen_handle is a handle previously returned by a dlopen call.

Closing the last handle for the main program or for any DLLs that were loaded with the
main program does not unload any of these loadfiles. Also, if dlclose causes a loadfile
to be unloaded, then any DLL in its load set is also unloaded, unless that DLL also
belongs to the load set of the main program or to a DLL that still has an outstanding
handle for it. When dlclose unloads DLLs, the new operating load set becomes the old
operating load set less the unloaded DLLs.

Referencing code or data in a DLL using a handle that has been invalidated by dlclose
produces undefined results.

Issuing a dlopen that specifies a DLL previously unloaded by dlclose reloads that DLL
plus the libraries in its libList that are not already loaded, and establishes a new handle
to it.

Returned Values of dlclose

dlclose returns 0 if it successfully invalidated the specified handle.

Error-Return Values of dlclose

If dlclose cannot invalidate the specified handle, it returns a non-zero number. In that
event, call dlerror() for a textual description of that error, or dlresultcode() for
an encoded error code and error-detail.

Error Reporting For Dynamic Library Calls
(dlerror and dlresultcode)

Error Text : dlerror

To obtain information in textual form about any error that occurred in a dynamic library
call (dlopen, dlsym, or dlclose), a process can immediately invoke the following
function.

char *dlerror(void)

dlerror has no parameters.

The dlerror function returns 0 (a NULL pointer) if:

 The immediately prior call to dlopen, dlclose, or dlsym had no error

 dlerror has already been called since the last call to dlopen, dlclose, or dlsym
DLL Programmer’s Guide for TNS/E Systems—527252-006
3-7

Dynamic Use of DLLs Error Encoding: dlresultcode
 There has never been a call to dlopen, dlclose, or dlsym in this process.

Otherwise, dlerror returns a pointer to a buffer that contains a null-terminated character
string containing only displayable characters and no trailing newline character. The
string is a read-only value that is overwritten by the occurrence of any subsequent
error in a dynamic library call, or by any call to dlopen, dlsym, or dlclose, so to preserve
or modify the string, a process should make its own copy of it.

The loader cannot recognize threads that may be used in a multi-threaded application.
Therefore, if you create such an application, you must ensure that no thread switch
occurs between a dynamic library call and the invocation of dlerror that retrieves
information about that call. Since the NonStop operating system supports only user-
level threads, this means that during this interval, you must avoid invoking functions
that can cause explicit thread switching.

Error Encoding: dlresultcode

To obtain information in encoded form about any error that occurred in a dynamic
library call (dlopen, dlsym, or dlclose), a process can invoke the following function:

char dlresultcode(void)

dlresultcode has no parameters.

If the previous call of dlopen, dlsym, or dlclose encountered no error, or if none of
those functions has been called in this process, dlresultcode returns 0. Otherwise, it
returns a nonzero value encoding the information about the previous error. The 32-bit
result is subdivided: the upper 16 bits are an error code; the lower 16 bits are an error-
detail code.

Most of the errors encountered by dlopen() are similar to those encountered when
loading a program and its requisite libraries, so they are encoded the same way, as
process creation errors. These error and error-detail codes are described in the
Guardian Procedure Errors and Messages Manual and in the PROCESS_LAUNCH_
description in the Guardian Procedure Calls Reference Manual.

Certain errors are unique to the dynamic loading functions. These are reported with
error code 100; the error-detail is one of the following:

1 - An invalid handle argument was passed to dlsym() or dlclose().

2 - The symbol sought by dlsym() was not found.

3 - An unrecognized option was passed to dlopen().

4 - A bounds error occurred on the pathname parameter to dlopen().

5 - 7 An inconsistent state was detected in dlopen() or dlclose() processing.
Perhaps a process flag at the high-address end of the stack is corrupted.

8 - RTLD_NOLOAD was specified as an option to dlopen(), but the specified library
was not already loaded.
DLL Programmer’s Guide for TNS/E Systems—527252-006
3-8

Dynamic Use of DLLs Thread Considerations
Calling dlresultcode() does not reset the error code. dlerror() and
dlresultcode() can be called in either order; neither affects the value returned by
the other.

dlresultcode() is an HP NonStop operating system addition to the conventional
set of dynamic loading functions.

Thread Considerations

The loader is not aware of threads that may be used in a multi-threaded application.
Therefore, if you create such an application, you must ensure that no thread switch
occurs between a dynamic library call and the invocation of dlerror or dlresultcode that
retrieves information about that call. Because the NonStop operating system supports
only user-level threads, this means that during this interval, you must avoid invoking
functions that can cause explicit thread switching.

Using Dynamically Loaded DLLs to Extend an
Application

You can take advantage of dynamically loaded DLLs to build your application to
incorporate anticipated but as yet undefined functions. There are several ways to
accomplish this. For example:

 If the application is interactive or has an interactive control mechanism, the
operator can supply the name of a DLL to load.

 In a transaction processing system, individual transaction requests could name a
DLL to process the transaction, or include a transaction type code that maps into a
table of DLL file names; the program might update that table dynamically at
operator command.

In either event, the program can load the required DLL if it is not already present. Or it
could unload an existing DLL (of that name or for that transaction type) and load
another, thus dynamically updating part of the application code.

Of course, loading the DLL is only the first step; the application must also find and
access the necessary symbols. Again, multiple approaches are possible:

 In the simplest situation, all the DLLs that support this application export a small
set of functions (and perhaps data) with canonical symbol names. The application
uses dlsym() to find the addresses of these symbols. Each canonical function
has the same prototype, so it can receive and process the same set of parameters.
The DLLs differ in what their functions do. A classical example from engineering or
scientific applications is a numerical integration program: a DLL supplies a function
(subroutine) to compute the mathematical function to be integrated. The program
calls that function repeatedly to compute an approximate definite integral over
some range.
DLL Programmer’s Guide for TNS/E Systems—527252-006
3-9

Dynamic Use of DLLs Using Dynamically Loaded DLLs to Extend an
Application
 More elaborate conventions can have the DLL export a canonical "master" function
or data structure that describes the functions or data available in this library. The
application uses dlsym() to locate the "master" symbol. For example, an
exported data structure could contain a count and an array of substructures that
contain information about each available function, including a function pointer and
an encoding of its purpose, result and parameter types. Of course, these
descriptions are limited by the conventions established between application and
DLL programmers, but can be as flexible as the programmers make them.
Because these structures include the function pointer, the individual functions need
not be exported from the DLL; the application need not know their actual names or
use dlsym to find them.

All of this can be done without changing or even stopping and restarting the original
application.
DLL Programmer’s Guide for TNS/E Systems—527252-006
3-10

4 Finding Symbol Definitions

This section describes how the linker and loader resolve symbol references, including
cases when multiple definitions are available for the same symbol name.

Figure 4-1 on page 4-1 shows the evolution of code from source to linkfile to loadfile to
executable PIC load image. At the linkfile and loadfile stages, these code objects can
be brought together so they can exchange services and data. This exchange is defined
by symbol references that express a need for functions or data and symbol definitions
that provide functions and data.

The loadList
The loadList of a file consists of that file, the library files specified on its libList, the files
specified on their libLists, and so on. This is called the breadth-first transitive closure of
libLists. The linker develops the loadList of the loadfile being created. The loader, at
process creation time, develops the loadList of the program. For dynamic loading,
using dlopen(), the relevant loadList is that of the designated library file; that loadList
extends the operating load set of the program.

Figure 4-1. PIC Code Generation

Compiler

Loader

Linker

Source

LinkfileLinkfile Linkfile

Loadfile LoadfileLoadfile

Executable load image

{ A program
and/or DLLs

VST041.vsd
DLL Programmer’s Guide for TNS/E Systems—527252-006
4-1

Finding Symbol Definitions The loadList
The linker or loader creates the loadList for a loadfile using the following algorithm:

1. [Initialize] To an empty loadList add the name of the designated file, and set a
pointer referring to this entry, making it the currently referenced loadfile.

2. If the designated file is the program and it has a user library, add the library name to
the loadList.

3. If the designated file has a non-empty libList, add the libList entries in the same
order they appear in the libList.

4. [Begin loop] If there is another loadList entry immediately following the referenced
loadfile, set the reference pointer to it. If there are no more loadList entries, the loadList
is finished.

5. Append to the loadList, in the same order, the libList entries of the referenced
loadfile that are not already on the loadList.

6. Return to step 4. [End loop]

For the program and loadfiles of Figure 1-5 on page 1-14, Figure 4-2 on page 4-3
shows the evolution of the globalized loadList and the pointer status for each loop run
in the foregoing algorithm at the end of steps 4 and 5. That figure shows only the first
few runs of the loop and the last. The resulting loadList, is shown at the bottom of the
figure.
DLL Programmer’s Guide for TNS/E Systems—527252-006
4-2

Finding Symbol Definitions Global Scope, Import and Export
Global Scope, Import and Export
The concepts of global and local apply intuitively to different scopes in a programming
environment. These concepts are subtle, and apply differently to individual compiler
source streams, to linkfiles representing compilation units, and to loadfiles (programs

Figure 4-2. Development of the Globalized SearchList for the Program and
Libraries based on Figure 1-5 on page 1-14

Program

UL

A

B

C

Program

UL

A

B

C

Program

UL

A

B

C

D

Program

UL

A

B

C

Program

UL

A

B

C

D

Program

UL

A

B

C

D

Program

UL

A

B

C

D

Program

UL

A

B

C

D

Program

UL

A

B

C

D

Program

UL

A

B

C

D

5th (last) LoopRun

4th LoopRun

3rd LoopRun

2nd LoopRun

1st LoopRun

4 5Algorithm step:

VST043.vsd
DLL Programmer’s Guide for TNS/E Systems—527252-006
4-3

Finding Symbol Definitions Global Scope, Import and Export
and libraries). Furthermore, the application of these concepts differs from one source
language to another.

In the C language, items declared within a function are local to that function and are
undefined (invisible) elsewhere. Items declared outside any function have global scope
and are visible in any function that does not hide that declaration with a local one of the
same name. (In languages with nested functions, such as Pascal, there are multiple
levels of nested scopes. In pTAL, a SUBPROC has a scope nested within that of the
PROC.)

The C language defines storage class (sometimes also called linkage); the two storage
classes that apply to global functions and data are extern and static. Global data
and functions with static linkage are visible to the functions within this compilation
unit, but are local to the compilation, and therefore to the linkfile that results from the
compilation. Global variables with no specified storage class are implicitly extern.
The explicit specification of extern linkage on an uninitialized variable declares the
variable but leaves it undefined; if there are references in this compilation, they must
be linked to a definition in another.

(The pTAL language has no explicit storage class. Everything is effectively extern
except SUBPROCs, which are static.)

When the linker combines multiple linkfiles to build a loadfile, global extern definitions
in one linkfile are available to satisfy references to an undefined symbol in another;
these items are considered global in the resulting loadfile. However, static global items
within each linkfile become local in the loadfile.

A key part of the linker's job is binding global references in one linkfile to definitions in
another. For C compilation units, the linker enforces the language requirement that a
given symbol have at most one definition in the loadfile. For some constructs common
in header files, the C++ language generates definitions in every compilation that
includes the header; the compiler marks these symbols to inform the linker that
multiple definitions are acceptable, and the linker is expected to bind all references to
one of them. Slightly different rules apply to some pTAL definitions, such as data
blocks: the linker will accept multiple definitions, as long as any initialized data is the
same in each.

If none of the linkfiles contributing to a loadfile defines a referenced symbol, it remains
undefined in the loadfile. In this case, it will need to be bound to a definition in some
other loadfile. In such a case, the referencing file is said to import the symbol, and the
defining loadfile is said to export it. In a DLL with globalized import control, it is also
possible for a symbol to be imported even though that symbol is offered for export; in
this case the definition in this DLL is said to be preempted by a definition in a loadfile
appearing earlier in the program's loadList.

Only some of the global symbols in the loadfiles can be shared with other loadfiles:
those that are offered for export, and those that are undefined (require import). There
are several ways that symbols become available for export. By default, the linker offers
for export only symbols that the compiler designates as exportable. With the C/C++
compilers, you can specify export or import of individual symbols, or of whole classes.
DLL Programmer’s Guide for TNS/E Systems—527252-006
4-4

Finding Symbol Definitions Import Controls and SearchLists
With the linker, you can export individual symbols, or you can cause all global symbols
in your loadfile to be exported, and then you can choose which symbols not to export.
See Controlling Which Symbols Your Loadfile Exports on page 5-5.

Import Controls and SearchLists

Just as you have control over the symbol definitions your loadfile offers for export, you
can control the sources from which your loadfile can import symbol definitions. You do
this by setting your loadfile’s import control, which directly affects the range and
sequence of the search that the linker and loader follow in locating needed symbol
definitions. The search range defines which loadfiles are searched for symbol
definitions; the search sequence determines the order in which these loadfiles are
searched.

The search sequence is important, because each symbol reference will be bound to
the first definition found whose name matches the reference. This is how the linker and
loader avoid the dilemma posed by duplicate symbol definitions among loadfiles in the
search range, which would otherwise be ambiguous.

The search range and sequence are encapsulated in your loadfile’s searchList, which
is created and used by the linker, when your loadfile is linked, then later recreated and
used by the loader each time your loadfile is loaded. The searchList names the
loadfiles to be searched for symbol definitions in the order they are to be searched.

The setting of your loadfile’s import control tells the linker and loader how to build your
loadfile’s searchList. The allowed settings are localized, globalized, and semi-
globalized. You choose the setting for the loadfile you are linking by inserting one of
the following options:

-b localized

-b globalized

-b semi_globalized or its synonym, -b symbolic

These are one-time options. If you do not insert one of these options, then by default,
the linker produces a localized loadfile.

The SearchList for a Localized Loadfile

In the localized case with no re-exportation, the only loadfiles available to resolve
symbols are those listed in the importing loadfile’s libList. Hence, the searchList begins
with the loadfile itself followed by names taken from the libList in the order listed.

However, a DLL can also make available symbols exported by any library in its libList
by re-exporting that library, so a localized loadfile could import symbols from libraries
not in its libList. A localized loadfile’s searchList is developed starting with this loadfile
itself, adding its libList (as above), appending to this the names of re-exported libraries,
then appending the names of the libraries those re-exported libraries re-export, and so
forth. This process is defined in the following algorithm, which the linker uses when
DLL Programmer’s Guide for TNS/E Systems—527252-006
4-5

Finding Symbol Definitions The SearchList for a Localized Loadfile
linking a localized loadfile and the loader uses when loading it. The algorithm is
illustrated in the example that comes after it.

1. [Initialize] To an empty searchList add the name of the localized loadfile being
linked and set a reference pointer pointing to this entry, making it the currently
referenced loadfile.

2. If the referenced loadfile is a program that has a user library, add the user library’s
name to the searchList.

3. If the referenced loadfile has a non-empty libList, add the libList entries from the
loadfile in the same order they appear in the libList.

4. [Begin loop] If there is another searchList entry immediately below the referenced
loadfile, set the reference pointer to it and make it the reference loadfile. If there
are no more searchList entries, the searchList is finished.

5. Append to the searchList, in the same order, the libList entries of the referenced
loadfile that are designated in the libList as re-exported and that are not already on
the searchList.

6. Return to step 4.

As an example of how the foregoing algorithm works, consider Figure 4-3 on page 4-7,
which shows Program and the libraries in its loadList. Program references the symbol
xray and DLLs C and D both export it. Assume that Program is a localized loadfile.
Program’s imported symbols are resolved by searching UL, A, B, and C in that order,
where UL stands for User Library. Suppose also, that UL does not re-export H, that A
re-exports D but not E, and that neither B nor C re-exports F. Figure 4-4 on page 4-9
shows the development of the localized searchList for Program following the algorithm
listed above. For each run through the loop, the rows in that figure show the situations
after the execution of algorithm steps 4 and 5.
DLL Programmer’s Guide for TNS/E Systems—527252-006
4-6

Finding Symbol Definitions The SearchList for a Localized Loadfile

d

The final searchList is shown at the bottom of Figure 4-4. This shows how to develop a
localized searchList for Program when A re-exports D and no other DLLs re-export.
The arrows point to the referenced libraries in the algorithm after the indicated loop
run.

Program will use C’s definition of xray, since C precedes D in the searchList. But,
assuming D is localized, D will use its own definition of xray.

If we change the conditions so that B re-exports F, then Program’s searchList becomes
Program, UL, A, B, C, D, F. If now D re-exports G, then Program’s searchList becomes
Program, UL, A, B, C, D, F, G. Then if User Library re-exports H, the searchList
becomes Program, UL, A, B, C, H, D, F, G. If E re-exports G, this has no effect on the
searchList, because E itself is not re-exported; hence, E does not appear on the
searchList.

Localized import gives the programmer tight control over how imported symbols are
resolved, which is consistent with previous conventions used on HP NonStop systems.
Localized import facilitates load-time optimizations, because the linker's search list is
the same as the loader's. Finally, localized import is necessary for security where PIC
programs and DLLs support license and privilege.

Figure 4-3. The Loadfiles of Figure 1-5, Now Showing the Use and Availability of
the Global Symbol xray

Program

DLL A

DLL B

DLL C

DLL D

DLL E

Lib G

Lib F

Lib A

Lib B

Lib C
Lib F

Lib D
Lib E

Lib F

Lib G

Lib G

Code
and
Data

libList

VST042.vs

User Library
(DLL)

Lib H

Lib H

Imports xray

Exports xray

Exports xray
DLL Programmer’s Guide for TNS/E Systems—527252-006
4-7

Finding Symbol Definitions The SearchList for a Globalized Loadfile
The SearchList for a Globalized Loadfile

For a loadfile with globalized import, the linker's searchList is just its loadList; the
loader's searchList is the loadList of the program. (For dynamic loads, that is the
operating load set, also called the cumulative loadList of the program.)

The resulting loadList, shown at the bottom of Figure 4-2, is thus the searchList; it
gives the sequence followed by the loader to look for exported symbol definitions that
satisfy the import needs of every globalized loadfile loaded with the program.

Because the linker sees only the file it is building and its loadList, the linker searchList
of a DLL differs from the loader searchList, which includes the program and other
libraries it requires. Therefore, any link-time bindings may require revision at load time.

An advantage of globalized import is that the resulting bindings of symbols across
loadfiles more closely resemble those that would occur if all the linkfiles that constitute
the separate loadfiles had been linked into one loadfile. (This observation explains why
"globalized" import is the UNIX default.)

Ambiguity Example 1

Figure 4-3 on page 4-7 shows a case of symbol ambiguity when Program is globalized
and imports a symbol named xray, since both C and D export a symbol named xray.
In linking Program, the linker sees xray in both C and D. However, following the
globalized searchList (Program, UL, A, B, C, H, D, E, F, G), the linker encounters C’s
xray before it encounters D’s xray, so it resolves Program’s need with C’s definition.

Furthermore, if D is globalized and if it also references xray, then the loader assigns
C’s definition to D’s reference as well, preempting the linker’s original assignment of
D’s own definition to D’s reference. Thus, xray is defined the same for Program and
D. If C references xray, it will get its own definition, regardless of whether it is
localized or globalized, because it appears first in both searchLists.
DLL Programmer’s Guide for TNS/E Systems—527252-006
4-8

Finding Symbol Definitions The SearchList for a Globalized Loadfile
Ambiguity Example 2

When linking a DLL, the programmer might not know about the program or the other
DLLs that could ultimately be bound together to create an executable set. In Figure 4-5

Figure 4-4. Development of the Globalized SearchList for the Program and
Libraries in Figure 4-3

Program

UL

A

B

C

Program

UL

A

B

C

Program

UL

A

B

C

H

Program

UL

A

B

C

Program

UL

A

B

C

H

Program

UL

A

B

C

H

Program

UL

A

B

C

H

D

E

F

G

9th (last) LoopRun

3rd LoopRun

2nd LoopRun

1st LoopRun

4 5Algorithm step:

VST044.vsd

H

H

D

E

D

E

F

D

E

DLL Programmer’s Guide for TNS/E Systems—527252-006
4-9

Finding Symbol Definitions The SearchList for a Globalized Loadfile
on page 4-10, the programmer of globalized DLL B links it to another globalized library,
called F, that exports the symbol definition of john that B should use. Thus, there
appears to be no ambiguity, and the resolution of john should be simple. But, because
B is globalized, the loader sees it differently.

When loading Program, the loader’s picture is shown in the lower part of Figure 4-5,
which includes DLL B and Lib F as they were linked in the upper part of the figure.
Program requires A, B, and C, and it turns out that john is exported by both A and F.
Recall that imported symbols for every globalized loadfile are resolved using Program’s
globalized searchList, which is Program, UL, A, B, C, H, D, E, F, and G. Because the
loader encounters A’s definition of john before F’s and because B is globalized, the
loader satisfies B’s need with A’s definition, not F’s. If B’s programmer expected
otherwise, there is a surprise in store.

Figure 4-5. Localized and Globalized Symbol Resolution

Program

DLL A

DLL B

DLL C

DLL D

DLL E

Lib G

Lib F

Lib A

Lib B

Lib C
Lib F

Lib D

Lib E

Lib F

Lib G

Lib G

VST045.vsd

User Library
(DLL)

Lib H

Lib H

Imports john

Exports john

Exports john

Program loaded with its required DLLs, including B

DLL B Lib F

Lib F

Exports john

DLL B as it was linked.
DLL Programmer’s Guide for TNS/E Systems—527252-006
4-10

Finding Symbol Definitions The SearchList for a Semi-Globalized Loadfile
Perhaps more surprising, if a DLL references its own global symbol definition, one
might think that this definition would always be used to satisfy this DLL. However, as
we saw earlier in Ambiguity Example 1 on page 4-8, the loader can preempt the
linker’s setting and decide to import that symbol. So, if a DLL is globalized, any of its
references might be satisfied by a symbol of the same name in some other loadfile.
Therefore, in the above example, if F references john in addition to offering it for
export, then because F is globalized, the loader binds F’s reference to A’s definition
instead of F’s.

B’s and F’s programmers can avoid this substitution by declaring both B and F to be
localized. This assures that in resolving B’s imported symbols, the linker and the loader
use B’s localized searchList (in this case: F); it also assures that F uses its own
definition of john. Note, however, that if any other globalized loadfile in the list needs
john, it still gets the definition from A. So, for example, if B is localized and F is
globalized, B uses F’s definition of john, but F uses A’s.

Ambiguity Caution

The UNIX environment standardizes on globalized import controls, and hence, accepts
symbol ambiguity; but it can be dangerous and is often undesirable, because a symbol
might be resolved in a way that the programmer did not anticipate. Like UNIX, TNS/E
permits ambiguity in the globalized case, and the loader issues no warning about it. On
the other hand, this mechanism ensures that all globalized loadfiles in a process will
consistently use the same definition for a given symbol.

The SearchList for a Semi-Globalized Loadfile

Localizing a DLL prevents a locally referenced and defined symbol from being resolved
by an external definition. But should the DLL need to be globalized to resolve other
symbols, declaring it semi-globalized might solve the problem.

A semi-globalized searchList for a given loadfile is identical to the globalized searchList
except that the given loadfile’s name is ordered at the beginning of the searchList. For
example, in Figure 4-5 on page 4-10, if F is declared semi-globalized, then to resolve
F’s imported symbols the loader will use the searchList: F, Program, UL, A, B, C, H, D,
E, and G. As a result, F uses its own exported symbols; and hence, the loader will bind
F’s reference to john to its own definition of john.

Semi-globalized import exists primarily for compatibility with the conventional UNIX
option -B symbolic. Like localized import, it prevents preemption of definitions.
Localized import provides finer control.

Import Control Summary

This table summarizes the effects of the three import options that you can apply when
linking your loadfile. Both -b globalized and -b semi_globalized (or its synonym
-b symbolic) invoke a sort range that includes every loadfile in the loadList of the
program. On the other hand, -b localized restricts the range to within the loadlist of
DLL Programmer’s Guide for TNS/E Systems—527252-006
4-11

Finding Symbol Definitions C++ Considerations: Globalized (Gblzd) Symbols
the loadfile itself. That range comprises the loadfile’s LibList, the loadfiles that those
loadfiles re-export, and so on.

C++ Considerations:
Globalized (Gblzd) Symbols

Constructs in the C++ language can generate symbols that might have multiple
definitions (for example, one in every compilation unit that includes a particular header
file). The compiler marks these symbols so that the linker can recognize them and pick
one definition for use throughout the resulting loadfile. The linker also marks them so
that the loader can recognize them and pick one definition for use throughout the
process.

Here are a few of the situations that give rise to such symbols:

 Functions declared inline for which the compiler defines an out-of-line procedure

 Elaborations of template functions or classes

 Compiler-generated variable names used to identify types for run-time type
checking, including throw and catch of exceptions

The compiler generates these symbols as needed; programmer's cannot explicitly
define them in source.

For correct function of the C++ program and libraries, it is important that a single
definition be used throughout the process. For example, an exception can be thrown
and caught in different loadfiles only if they agree on the exception class type.

These special symbols are called globalized symbols, often abbreviated gblzd. The
overloading of the term globalized arises because these symbols unconditionally have
globalized semantics: the loader picks one definition for this symbol and binds all
references to it. It does so regardless of the import control for the referencing loadfile.
One must carefully distinguish the term globalized symbols (these symbols that
automatically get special treatment) from globalized import (selected by the user at link
time).

These gblzd symbols reside in a separate symbol table in PIC loadfiles.

Table 4-1. Import Control Summary

Option Range Sequence

-b globalized loadList of the program load sequence

-b semi_globalized loadList of the program current loadfile followed by
load sequence

-b localized within the loadfile’s loadList load sequence
DLL Programmer’s Guide for TNS/E Systems—527252-006
4-12

Finding Symbol Definitions System Library and Millicode
System Library and Millicode
The TNS/E system and millicode libraries are implicitly attached to the end of every
searchList and cannot be mentioned in the command stream. So, if the loader does not
find a needed symbol definition in the loadfiles in the searchList, it will automatically
look for one in the system and millicode libraries.

Symbol Resolution at a Glance
Globalized symbols defined in C++ receive special handling, described above. The
following statements apply to all other symbols:

 Whether a given loadfile is declared localized, semi-globalized, or globalized
determines how its imported symbols are resolved. That declaration has no effect
on how imported symbols of other loadfiles are resolved.

 A loadfile’s searchList names the loadfiles to search in the sequence they are to be
searched in order to find symbols referenced by the loadfile.

 For a globalized loadfile, at load time, symbols are resolved using the globalized
searchList for the program with which the loadfile is loaded.

 For a semi-globalized loadfile, at load time, symbols are resolved using that
loadfile itself followed by the globalized searchList for the program with which it is
loaded.

 For a localized loadfile, at load time, symbols are resolved using the localized
searchList for that loadfile, which begins with the loadfile itself. If that loadfile’s
libList includes DLLs that re-export other libraries, then that searchList can include
libraries that are not listed in the loadfile’s libList.

 The loader appends the load list of any dynamically loaded DLLs to the end of the
globalized searchList of the prior operating load set.

Example: Intercepting an Exported Symbol
This allows you to introduce a new function that modifies an existing one in an existing
library. This modified function may be used by some loadfiles in the installation, but
need not be used by all; they can still access the original function without modification.
This case is similar to previous examples in Section 2, Essential DLL Facility Controls
but it takes advantage of searchList order to override a symbol definition and leaves
the existing library unmodified, as illustrated in Figure 4-6 on page 4-14 The following
description assumes the starting condition shown in Figure 2-1 on page 2-15.
DLL Programmer’s Guide for TNS/E Systems—527252-006
4-13

Finding Symbol Definitions Example: Intercepting an Exported Symbol
The symbol Gamma, provided by the existing Library D, is intercepted for selected
calling loadfiles (including DLL A). These selected loadfiles must be relinked to put DLL
X in their libLists and remove Library D. Hence, their Gamma references are bound to
the definition in DLL X. The new function that modifies the original Gamma goes into X
and Y, and Y accesses Library D to get the original Gamma function, so you do not have
to rewrite it. Calls to Gamma from unmodified calling loadfiles continue to go directly to
Library D.

To create this library intercept you:

1. Relink the calling modules (such as A) that are to use the intercepted Gamma in
order to replace D in their liblists with X. These calling loadfiles must be localized.

2. Write a new localized DLL X that contains the new (intercept) function and offers
the intercepted symbol, Gamma. Make X re-export D, so the other symbols D offers
are available to the callers.

3. So that you do not have to rewrite the original Gamma definition, the new function in
DLL X needs to pass control to Gamma in DLL D. But DLL X cannot call Gamma in
DLL D directly, because X’s reference to Gamma would be resolved to X’s own
definition of Gamma. Hence, you introduce an intermediary DLL, Y, which
references Gamma. Y must be localized and have D in its liblist. If for some reason
X must be in Y’s liblist, then be sure that D precedes it in that list.

4. Instead of calling Gamma, X calls Joe to pass the information to Y. Y’s definition of
Joe converts this to a call for Gamma in D.

Figure 4-6. Intercepting a Call to Library D

DLL A

Alpha

Beta

Gamma

DLL X

 Gamma Joe

VST046.vsd

Library D

Alpha

Beta

Gamma

DLL Y

 Joe Gamma
DLL Programmer’s Guide for TNS/E Systems—527252-006
4-14

5
Advanced DLL Facility Controls

This section tells how you can manually override and extend previously described
linker and loader defaults and options to meet special needs. These advanced options
fall loosely into four categories that compose the major headings in this section:

 Linker Input Controls on page 5-1

 Linker Output Controls on page 5-4

 Link-Time Operation on page 5-10

 Load-Time Operation on page 5-13

Linker Input Controls
Specifying Which Inputs Go into a Link on page 2-7 describes the essential controls
over linker inputs. This section covers less usual situations where more precise control
over inputs is needed.

Making the Linker Accept Only DLLs or Only Archives

The following options act as a three-way switch that sets the mode for processing
subsequent items in the command stream. They allow you to constrain the class of
files the linker accepts in a link operation:

These options can be inserted multiple times, and each time, the option sets the mode
for processing subsequent input-file names in the command stream, until another of
these options appears and changes the mode again. At the beginning of the command
stream, the undeclared mode is -b dynamic. The following examples illustrate error
conditions that can occur when the linker opens a file named either directly on the
command line or in a -lib option.

 If -b static is in effect and the file is a DLL, the linker terminates in error.

 If -b dllsonly is in effect and the file is an archive, the linker terminates in
error.

Also, recall that if the linker is searching for both archives and DLLs,
-allow_missing_libs can cause the linker to overlook missing archives as well;
see Allowing Missing Libraries on page 2-12. However, if -b static is in effect, then

Option Constraint on Linker

-b static Accept only archives, not DLLs

-b dllsonly Accept only DLLs, not archives

-b dynamic Accept both archives and DLLs
DLL Programmer’s Guide for TNS/E Systems—527252-006
5-1

Advanced DLL Facility Controls Augmenting Library Names Automatically in
Searches
the linker can only be looking for archives, and even if -allow_missing_libs has
been inserted, the linker will terminate in error if it doesn’t find the specified archive file.

Augmenting Library Names Automatically in Searches

By convention in OSS and Windows, names for DLLs and archives have a common
prefix, lib, and have distinguishing suffixes (filename extensions), .so for DLLs and
.a for archives. However, especially if the linker host is Windows but the target is
Guardian, it might be convenient to use ‘simple’ filenames directly.

Therefore, if you tell the linker to search using -l abc:

1. eld first attempts to open abc.

2. If eld fails to find that file in the Guardian file system, and -b static is not in
effect, it looks for libabc.so.

3. If eld still has not found a file and -b dllsonly is not in effect, it looks for
libabc.a.

4. Again if -b static is not in effect, eld will try to open a file named zabcdll.

The prefix and the suffixes are appended automatically at each location in the search
path list, including the public library set.

The augmentation of library names occurs only in the linker, in all environments. (The
Guardian loader searches only for the name found in the libList, which the linker takes
from the DLL name of the target file.)

Handling Duplicate Symbols among Linkfiles in a Link

The same symbol can be defined in more than one linkfile in a link, and the linker may
or may not treat this as an error. The following subsections tell when duplication is
treated as an error and when it is accepted.

Deciding When to Accept Duplicate Symbol Definitions in
Linkfiles

Either Data or Procedure Definitions

The linker treats multiple definitions of the same symbol in linkfiles as an error when
either all the definitions of a symbol are not data items or all are not procedures.

Data Definitions

The linker accepts multiple data-item definitions of the same symbol in input linkfiles
when both of the following are true:

 An item is defined in more than one file, and the compiler has marked every
instance of this symbol to allow multiple definition (so this will become a gblzd
symbol; see C++ Considerations: Globalized (Gblzd) Symbols on page 4-12 .
DLL Programmer’s Guide for TNS/E Systems—527252-006
5-2

Advanced DLL Facility Controls Making the Linker Look for Unresolved Symbols
 The linker can determine that they are the same size and that their initial values (if
any) are the same.

Otherwise, the linker treats multiple definitions of a data item in input linkfiles as an
error.

Procedure Definitions

Multiple procedure definitions of the same symbol are permitted when the compiler
generates and appropriately labels the duplicates. In this case, the linker checks that
the attributes of the duplicated procedures are identical except for EDITLINE. If the
others are not identical, the linker declares an error.

Choosing Among Accepted Duplicate Symbol Definitions in
Linkfiles

In reading the following, be aware that the linker processes linkfiles in the order that
they, or the archives they come from, appear in the command stream.

Data Definitions

When the linker accepts duplicate data-item definitions of a symbol in linkfiles, it
chooses the instance to use according to the following priority:

1. An instance that is initialized over one that is not.

2. An instance which retains its symbol-table information over one that has been
stripped of this information.

3. An instance that come from the following sources in preferred order: C, C++, pTAL,
COBOL.

4. The first instance the linker finds in processing the linkfiles.

Procedure Definitions

When the linker accepts a duplicate procedure definition of a symbol in linkfiles, it
selects the instance to use from the first version of the procedure it finds in processing
the linkfiles.

Making the Linker Look for Unresolved
Symbols

As part of a link, you can ask the linker to check that the symbol definitions imported by
the output loadfile are available through the libraries in its libList. You do this by
inserting -unres_symbols <parameter>, where <parameter> can have the
values error, warn, or ignore. When -unres_symbols is in effect, if the loadfile
being linked is localized, the linker searches for libraries and their symbols as defined
in The SearchList for a Localized Loadfile on page 4-5. On the other hand, if the
DLL Programmer’s Guide for TNS/E Systems—527252-006
5-3

Advanced DLL Facility Controls Linker Output Controls
loadfile being linked is globalized or semi-globalized, the linker searches for libraries
and their symbols following a searchList that is identical to this loadfile’s loadList.

Until the linker finds a library that offers a symbol that the output loadfile needs, it
considers that symbol unresolved. After searching the libraries described above and
looking in the millicode libraries, if the linker cannot find an exported symbol to match
an imported one in the output loadfile, it will respond as specified by <parameter>. If
error is specified, the linker terminates and reports an error; if warn is specified, the
linker issues a warning message and continues; if ignore is specified, the linker does
not attempt to find matching symbols. If you do not specify -unres_symbols, the
default on TNS/E is to ignore unresolved symbols.

Also, when linking on a system other than the execution target, such as an auxiliary
system, be aware that certain libraries may be unavailable. This may cause an
inevitable error or warning if either is specified.

Also note that if you insert the option, -unres_symbols and also allow missing
libraries, then -unres_symbols automatically defaults to ignore.

Linker Output Controls

Designating the Main Entry Point of Your Program

When a program loadfile is linked, it must have a main entry point designated in one of
the following ways:

 The input to the link must include a linkfile that contains a procedure that has the
main attribute. If you do not insert the -e <entrypoint> option, as described
in the next bullet, the linker will designate the procedure with the main attribute as
the entry point.

 You explicitly designate the main entry point using the -e <entrypoint>
option, where <entrypoint> is the name of a global symbol definition. (It need
not be offered for export.)

PIC programs written in C or C++ are usually linked including a linkfile named
CCPLMAIN (Guardian) or ccplmain.o (OSS, Windows), which provides a function
named _MAIN() that has the main attribute. COBOL programs include a compiler-
supplied main program. Therefore, the -e command is rarely needed.

In a program, the procedure having the main attribute is the default entry point for
starting the program, and it is usually a mistake for you to force a program to start at
some other point. The linker will not accept a program in which there are more than
one procedure having a main attribute, unless you insert the
-allow_multiple_mains option. In this case, if there are two main procedures,
you must resolve the choice by inserting the -e <entrypoint> option.

The linker will not accept a DLL with a procedure having the main attribute; you can
force a DLL to have an entry point by inserting the -e <entrypoint> option when
linking that DLL, but the loader ignores it.
DLL Programmer’s Guide for TNS/E Systems—527252-006
5-4

Advanced DLL Facility Controls Controlling Which Symbols Your Loadfile Exports
Controlling Which Symbols Your Loadfile Exports

Symbols offered for export are those made available to other loadfiles. By default, the
linker offers for export those symbols designated by the compiler to be exported. If you
insert the -export_all option, the linker offers all defined global symbols except for
the following:

 Special initialization, construction, destruction, and termination procedures with
reserved name prefixes, namely __INIT__, __sti__, __std__, and __TERM__.

 Symbols that the linker creates, only for use within the current loadfile.

The linker interprets the option -ul as synonymous with the combination of the -dll
(or -shared) option and the -export_all option. As the option name -ul
suggests, it is often convenient, but not necessary, to use this option when linking a
user library. This option can be used when linking any DLL.

To assure that a particular symbol is unconditionally offered for export, insert the
-export <symbolname> option. To assure that a symbol is unconditionally not
offered, insert the -export_not <symbolname> option or its synonym
-hidden_symbol.

Special initialization and termination procedures

Special initialization, construction, destruction, and termination procedures are
procedures whose names begin with certain prefixes. These prefixes and their order of
execution are as follows:

__INIT__

Alphabetical order of procedure names.

__sti__

The order in which eld sees the procedures.

__std__

The reverse of the order in which eld sees the procedures.

__TERM__

Reverse alphabetical order of procedure names.

As the names suggest, these procedures are called during the initialization (__INIT__
and __sti__) and termination of a process (__std__ and __TERM__). These
procedures are called without the program explicitly calling them.

__sti__ and __std__

The C++ compiler generates local functions to invoke static constructors and
destructors for global variables that are instances of classes. The linker builds two
DLL Programmer’s Guide for TNS/E Systems—527252-006
5-5

Advanced DLL Facility Controls C++ Mangled Symbol Names
iniTerm lists corresponding to these procedures, and places pointers (ctors and
dtors addresses) to them in the tandeminfo segment of the object file.

___INIT__ and __TERM__

Apart from the procedures from runtime-library, the user program itself might
contain procedures with these names (for example, __INIT__< name>). These
functions need not be called by the program explicitly; they are executed in
alphabetical order of the procedure names in case of __INIT__ procedures and
reverse alphabetic order in case of __TERM__ functions. The linker builds two
iniTerm lists corresponding to these procedures and places pointers (initz and
termz addresses) to them in the tandeminfo segment of the object file.

C++ Mangled Symbol Names

In order to identify to the linker a C++ function (other than one declared with extern
“c”), you must use the symbol’s mangled name. The linker does not make the
correspondence between unmangled and mangled names. For example, if
<symbolname> or <entrypoint> in the two previous subsections are in a C++
program, these values must be the mangled version of their source-code names.

How to Set Run-Time Attributes of Your Loadfile

At link time, the linker sets certain run-time attributes of the loadfile it is building to
default values, unless you override a default by inserting the -set attribute
<value> option.

See also Default Setting and Checking of File Attributes on page 2-19.

Each -set attribute option can affect only one attribute, so this option must be
re-inserted for each attribute that is changed. Permitted attributes are shown in the
following list, which summarizes the values that can be set. The linker places these
attribute values in the loadfile being linked in order to make them available to the
system at load time.

cppdialect

sets the C++ dialect of the output loadfile. The values are cppneutral or v2 or
v3.

See also C++ Dialect on page 2-20.

float_lib_overrule

inhibits float-type checking of the program and the libraries from which the program
imports symbols. Possible values are on or off, and the default is off. See
Checking the Floating-Point Types of Liblisted Libraries on page 2-20.

floattype
DLL Programmer’s Guide for TNS/E Systems—527252-006
5-6

Advanced DLL Facility Controls How to Set Run-Time Attributes of Your Loadfile
sets the floating-point type of the output loadfile. Possible values are ieee,
tandem, and neutral. See Setting the Floating-Point Type of a Loadfile Being
Linked on page 2-19.

heap_max

has a numeric (hexadecimal) value with a default of zero (0).

highpin

has possible values of on and off. The default is on.

highrequestors

has possible values of on and off. The default is on.

incomplete

has only one possible value, on. If this is not specified, and an import library is
being created, it is a complete import library.

inspect

has possible values of on and off. The default is on.

libname

is the name of a DLL to be the user library of the PIC program being linked. See
Specifying a User Library for a Program on page 2-12.

mainstack_max

has a numeric (hexadecimal) value with a default of zero (0).

oktosettype

has possible values of on and off. The default is off.

pfsize

is a number. It is accepted for compatibility with TNS/R systems, but is ignored.

process_subtype

has a numeric value with a default of zero (0).

rld_unresolved

has possible values of error, warn, and ignore, and the default is error. If
error is set (or by default), then an unresolved symbol encountered by the
loader (rld) will result in its error termination. If the loader cannot resolve a symbol
that references data, an error occurs regardless of the setting of
rld_unresolved.

However, if the loader cannot resolve a symbol that references code, and if warn
or ignore is set, it searches for a symbol definition named
UNRESOLVED_PROCEDURE_CALLED_. If this definition is found, the symbol is
DLL Programmer’s Guide for TNS/E Systems—527252-006
5-7

Advanced DLL Facility Controls Controlling the Load Image of DLLs
bound to this definition and either a message is put out if warn is set or no
message is put out if ignore is set.

By default, the loader finds this function defined in the system library. If invoked, it
generates a non-deferrable SIGILL signal. You can provide your own function if
you wish; the loader searches normally for this symbol, so it will use any definition
found in the searchList of the loadfile containing the unresolved reference.

runnamed

has possible values of on and off. The default is off.

saveabend

has possible values of on and off. The default is off.

space_guarantee

has a (hexadecimal) numeric value with a default of zero (0).

systype

sets the system type of the loadfile being linked. Possible values are OSS and
Guardian. See Execution-Target System Type on page 2-22.

Controlling the Load Image of DLLs

Segmenting Loadfiles

The linker produces the output loadfile in two segments, text and data.

The linker can be directed to produce two data segments - one for constant data
(the constant data segment) and one for variable data (the data variable segment).
Also, if the input linkfile contains PRIV code, the linker will also produce a gateway
segment.

Specifying the Preferred Location of a Loadfile in Virtual
Memory

The linker assigns addresses for these segments by default; you can specify non-
default values with the following options:

-t address

this is a hexadecimal number that sets the starting address of the text segment
(headers and code).

Note. The systype attribute has no meaning for a DLL. A DLL can be used by a
Guardian process, or an OSS process, or both, depending on how the various parts of it
were written and compiled. You must have this information about the DLL to use it
appropriately.
DLL Programmer’s Guide for TNS/E Systems—527252-006
5-8

Advanced DLL Facility Controls Using the Linker to Change an Existing Loadfile
-d address

this is a hexadecimal number that sets the starting address of the data segment.

In both cases, the linker rounds up address to a virtual memory page boundary. If
-t, but not -d, is inserted, then -t specifies the starting address of the entire
contiguous DLL. By inserting -d, you can cause the DLL to load in two separate
regions.

By default, the loader loads the text and data of a DLL into a contiguous virtual-
memory area, starting with the text (including code) section. This area is chosen to
avoid memory interference with other loaded files. These linker-assigned addresses
are called the preferred addresses; if this address range for a DLL is available, the
loader will use it.

If -t, but not -d, is inserted, then -t specifies the preferred starting address of the
entire contiguous DLL. By inserting -d, you can cause the linker to assign the two DLL
segments to disjoint address ranges. If you do that, the loader will reject the DLL.

In general, you should not use the -d option because it may result in the creation of
an object file that the operating system will refuse to load.

In contrast to a DLL, a program is always divided into two separate regions. For a
program, the default for -t is 0x70000000 and for -d is 0x08000000. If a non-default
value is specified, the loader will reject the program.

Summarizing these two options: -t is useful to specify a preferred address for a DLL,
so that it will not overlap the preferred address ranges of other DLLs that will appear in
the same process; with non-overlapping address ranges the DLLs will load slightly
faster. Otherwise, -t and -d are useful only in unusual circumstances that are beyond
the scope of this manual.

Using the Linker to Change an Existing
Loadfile

The options described in this subsection act on existing loadfiles, rather than a file
being linked. In the following options, <loadfileName> is the name of the target
loadfile.

Changing the Attributes of an Existing Loadfile

To alter any attribute of an existing loadfile, invoke the linker and insert the -change
<attribute> <value> <filename> option.

The <attribute> and <value> choices are the same as for -set, as described in
How to Set Run-Time Attributes of Your Loadfile on page 5-6. The -change option
overwrites the attribute in the existing loadfile. You must be able to open the existing
loadfile for update. If an error occurs in -change processing, the specified change
may or may not have occurred and the file will be otherwise unmodified.
DLL Programmer’s Guide for TNS/E Systems—527252-006
5-9

Advanced DLL Facility Controls Link-Time Operation
You can insert multiple -change options, where each must be followed by the name
of the affected loadfile, even if the loadfile is the same in each case. These options are
executed one at a time in the order inserted.

Your user ID must have write access to the file to execute the -change option on it.

Link-Time Operation

Running the Linker Through the Compiler

The C and C++ compilers can run the linker for you, saving you a separate step in
straightforward situations. In each case, the compiler automatically names many of the
appropriate input files and library files in the linker command stream. These are:

 The usual C libraries

 The usual C++ runtime libraries and cppinit module for the selected dialect version,
for C++

 CCPLMAIN or ccplmain.o

The compiler does not automatically include more specialized libraries, such as those
for tools.h++, or the loader library (ZRLDDLL).

Guardian

CCOMP and CPPCOMP will run the linker when building a program, if you add the
RUNNABLE pragma to the command line. For example:

ccomp /in myprogc/ myprog; suppress,runnable,call_shared,symbols

These compiler drivers will also run the linker when building a DLL, if you use the
SHARED rather than the CALL_SHARED option. For example:

ccomp /in mylibc/ mylib;suppress,shared,symbols

This example compiles a program that uses that DLL:

ccomp /in myprog2c/ myprog2;suppress,runnable, &

call_shared,symbols,search "mylib"

The search pragma causes the “mylib” to be included in the linker command stream.

A more flexible way to add linker commands through the compiler command line is the
pragma LINKFILE. For example, suppose that you create an edit file named obeyrld
that contains one line:

-lib zrlddll

Then the following example will link a program that requires the dynamic loader library
(in addition to the usual libraries that are provided automatically):

ccomp /in mydynpc/ mydynp;suppress,runnable, &

call_shared,symbols,linkfile "obeyrld"
DLL Programmer’s Guide for TNS/E Systems—527252-006
5-10

Advanced DLL Facility Controls Naming Intermediate Linker Output Files
OSS

The c89 or c99 compiler will run the linker for each module it compiles, unless the -c
option is present. It is somewhat more flexible in allowing you to specify linker
commands to the compiler:

 The -L and -l options are passed straight through, with their arguments.

 Several other linker options are recognized in -W form; run c89 or c99 with no
command input to see a list.

 The -Weld=args option passes args into the eld command stream. For example:

 pass a parameterless option: -Weld=-verbose

 pass an input filename: -Weld=foo.so

 pass a sequence of tokens including blanks: -Weld="-set floattype
neutral_float"

The -Weld_obey=file option passes the named file as an obey file for the linker.
Here's an example that compiles and links a DLL:

c89 dllx.c -o dllx.so -Wshared

(Note that .so is the conventional extension for a DLL on OSS.)

The following example compiles and links a program that uses that DLL and also uses
dynamic loading:

c89 prg.c -o prg -Wcall_shared dllx.so -l zrlddll

Naming Intermediate Linker Output Files

The linker always creates the output in an intermediate file in a link operation, and the
linker gives this intermediate file an internal name. When the operation is complete, the
intermediate file contents are renamed to the file name you specified as the output file.
See Choosing the Output File on page 2-3. If you want to allow for the linker being
unable to open the output file and store the finished loadfile under the desired name,
you can give the intermediate file a name that you can locate easily; otherwise, you
might have to relink. To do this, you insert the -temp_o <filename> option, where
<filename> is the name you choose.

Controlling What Checks the Linker Makes and Reports

Automatic Messages

The linker reports on its operation using messages that appear in an output listing.
These are reported with a message identifier that indicates the message’s severity as
follows:
DLL Programmer’s Guide for TNS/E Systems—527252-006
5-11

Advanced DLL Facility Controls Controlling What Checks the Linker Makes and
Reports
Messages are the same on all linker host platforms.

Message-Control Options

The appearance of these messages is controlled by the following options:

-verbose tells the linker to show all messages.

-warn tells the linker to show all fatal-error, error, and warning messages, plus
messages requested by command-stream options, as described in the next
subsection.

-no_verbose tells the linker to show all fatal error and error messages, plus
messages requested by command-stream options, as described in the next
subsection. -noverbose is a synonym for -no_verbose.

The default is -no_verbose, except on Guardian, where the default is -verbose.

If -verbose or -warn is in effect, then when a linking operation finishes, the linker
puts out a completion message that covers the entire process and indicates how many
of each type of message (error, warn, or information) were generated during the linking
process.

Command Stream Requests for Linker Messages

In addition to the progress-reporting linker messages described above, you can
request informational messages by inserting one of the following options. These are
effective regardless of the message-control option in effect.

-y <symbolname> tells the linker to show the names of linkfiles that mention
<symbolname> in their external symbol tables and the information in those tables
about the symbol. -y reports on linkfiles that either reference the symbol or offer it
for use beyond the same compilation.

-show_multiple_defs tells the linker to show information about all multiply defined
symbols. Unlike -y, the linker only provides information about linkfiles that offer the
symbol for use beyond the same compilation, not about those that reference it.

Identifier Severity Meaning

500-19999 Fatal Error The linker cannot do what was requested and it
stops immediately.

20000-
29999

Error The linker cannot do what was requested and will
eventually stop.

30000-
39999

Warning The linker can continue but the results seem
questionable.

40000-
49999

Informational This does not indicate a problem.
DLL Programmer’s Guide for TNS/E Systems—527252-006
5-12

Advanced DLL Facility Controls Load-Time Operation
-map tells the linker to report the virtual addresses and sizes of the segments and the
sections, within each segment, of a loadfile being built. Further, the linker shows
the library and file names of all liblisted libraries. -m is a synonym for -map.

Load-Time Operation
To load a program and its DLLs, the system is commanded simply to load the program.
The loader automatically ensures that the program’s entire loadList is loaded and that
all symbols are resolved with proper bindings.

Controlling the Loader’s Search Path at Load Time

Like the linker (eld), the loader (rld) searches for DLLs, but the loader does it
according to rld’s search path, which was initially specified when the loadfile was
linked; see The Link-Time-Defined Search Path of the Loader on page 2-17. To this
path, other directories or subvolumes may be added at load time as follows.

On OSS, you can specify the following environmental variables:

EXPORT _RLD_FIRST_LIB_PATH=path1[:path2]...

EXPORT _RLD_LIB_PATH=path1[:path2]...

where path1, path2, etc. are the paths the loader is to search.

On Guardian, you can use the following Search Class Defines, specified according to
the Guardian Programmers Guide.

 ADD DEFINE =_RLD_FIRST_LIB_PATH

 ADD DEFINE =_RLD_LIB_PATH

The list of paths is the set of subvolumes specified by the define's attributes in the
order SUBVOL0, RELSUBVOL0, SUBVOL1, ..., RELSUBVOL20. Each attribute can
specify a single subvolume or a parenthesized, comma-separated list of subvolumes.
Any attributes unspecified are ignored.

For example the following TACL statements specify search list $A.B:$B.C:$C.D:$D.E:

SET CLASS SEARCH, SUBVOL0 $A.B, RELSUBVOL0 $B.C, &

SUBVOL1 ($C.D,$D.E)

ADD DEFINE = _RLD_FIRST_LIB_PATH

The same list can be specified more simply with a single statement and single
attribute:

ADD DEFINE =_RLD_LIB_PATH, CLASS SEARCH, &

SUBVOL0 ($A.B,$B.C,$C.D,$D.E)

No blank spaces are permitted within the parenthesized list.
DLL Programmer’s Guide for TNS/E Systems—527252-006
5-13

Advanced DLL Facility Controls Controlling the Loader’s Search Path at Load Time
In either case, the loader’s search path that was defined at link time is augmented as
follows, where the paths identified at link-time were steps 2, 3, 6, and 7, as described
in The Link-Time-Defined Search Path of the Loader on page 2-17.

1. The directories or subvolumes specified at load time by
_RLD_FIRST_LIB_PATH.

2. The directories or subvolumes specified in -RLD_first_L options at link
time

3. The public libraries (DLLs)

4. The directory or subvolume that stores the program being loaded

5. The directories or subvolumes specified by _RLD_LIB_PATH at load time

6. The directories or subvolumes specified in -RLD_L options at link time

7. Following default locations:

 32-bit process:

For OSS: /lib, /usr/lib, /usr/local/lib, and
/G/SYSTEM/ZDLL in the order of the paths specified here.

For Guardian: $SYSTEM.ZDLL

 64-bit process:

For OSS: /lib64, /usr/lib64, /usr/local/lib64, /lib,
/usr/lib, /usr/local/lib, /G/SYSTEM/YDLL, and
/G/SYSTEM/ZDLL in the order of the paths specified here.

 Steps 3, 4, and 7, the loader follows automatically.

 Steps 2 and 6 were set up at link time.

 Steps 1 and 5 are load-time additions.

Steps 1 and 2 are provided for completeness, but are rarely required and are not
recommended for routine use. Because the public libraries can be searched in a
memory table, but all other searches require messages to name servers or disk
processes, it is more efficient to start at step 3. The public libraries have unique names
(Z*DLL) that should not interfere with finding ordinary DLLs later.

Note that the path search order for finding libraries is irrelevant to symbol search order,
which depends upon the searchList order, developed from the libLists.

_RLD_FIRST_LIB_PATH and _RLD_LIB_PATH can be stated only once for loading
each program and its libraries, so you must specify all the desired search paths for
each of these two environmental variables or defines in a list of colon-separated path
names.
DLL Programmer’s Guide for TNS/E Systems—527252-006
5-14

Advanced DLL Facility Controls Changing Run-Time Options for C and C++
Programs
You can prevent the loader’s search path for your loadfile from deviating from what you
set up at link time, that is, restrict the loader’s search path to steps 2, 3, 6, and 7
above. You do this by having inserted the -limit_runtime_paths option in the
linker’s command stream; see The Link-Time-Defined Search Path of the Loader on
page 2-17.

Changing Run-Time Options for C and C++ Programs

These options are available to you only when linking programs, not DLLs.

When linking a program written in C, if the target platform is OSS, then by default, the
linker sets the program to use the code 180 C text files. But if the target is Guardian,
then by default, it sets the program to use code 101 C text files. If the target is
Guardian and you want the program to use code 180 C text files instead, then insert
-ansistreams option when linking the program.

When linking a program written in C or C++, by default, the linker sets the program to
use the standard C/C++ I/O files. To avoid this setting, insert the -nostdfiles option
when linking the program. -no_stdfiles is a synonym for -nostdfiles. This
means that when the program is run, the program’s stdin, stdout and stderr files will not
be opened automatically and you may thus need to add logic to the program to open
these files.
DLL Programmer’s Guide for TNS/E Systems—527252-006
5-15

Advanced DLL Facility Controls Changing Run-Time Options for C and C++
Programs
DLL Programmer’s Guide for TNS/E Systems—527252-006
5-16

6 Example Code

This section contains a set of examples to introduce you to some of the tools and
capabilities for building dynamic linked libraries on a TNS/E system.

Example One. This example creates a PIC program running with a DLL, using
the TNS/E native compiler and linker.

Example Two. This session demonstrates dynamic loading. We create and
compile a main and a DLL, but don’t load the DLL. We invoke rld, the run-time
loader, from inside the process by using a dlopen() call.
DLL Programmer’s Guide for TNS/E Systems—527252-006
6-1

Example Code Example One
Example One

This example shows the use of a main program, mainstrc, and a library called
mystrngc. Both will be compiled using ccomp, then linked using eld. mystrngc will be
loaded as a DLL.

Display the Source Code

Here is the code for the main program, mainstrc

#include <stdio.h> nolist
#include <stdlib.h> nolist
#include <string.h> nolist
int StrRev (char *s, char *r); /* declaration of external procedure */

char s[100];

/***
| main: given a list of strings, print out them reversed
| argv[1]...argv[argc-1] point to strings
|
| if no string passed, put out usage message and quit.
| for each string
| reverse it
| display it
|
***/
int main(int argc, char *argv[]) {
 char **ppStr;
 int strLeft;
 int outcome;

 if (argc < 2) /* no args passed */
 {
 printf("Usage: run rev <str1> [<str2>]\n \
 \twhere <str> is a string to reverse\n \
 \texample: run rev abc zyxw\n");
 exit(1);
 }

 for (strLeft= argc-1, ppStr=argv+1;
 strLeft;
 ppStr++, strLeft--) {
 strcpy(s, *ppStr);
 outcome = StrRev(s, s);
 (outcome == 0) ? printf("Reverse(%s) = (%s)\n", *ppStr, s) :
 printf("error in reversing the string\n");
 } /* for */

 printf("Hit enter to finish\n");

 getchar();

} /* of proc main */

Here is the source code for the library, mystrngc

#include <string.h> nolist
#include <stdlib.h> nolist

int StrRev (char *s, char *r) {
DLL Programmer’s Guide for TNS/E Systems—527252-006
6-2

Example Code Example One
 char *pBegin;
 char *pEnd;
 char c;
 strcpy(r, s);
 pBegin = r;
 pEnd = r + strlen(r);
 while (--pEnd > pBegin)
 {
 c = *pBegin;
 *pBegin++ = *pEnd;
 *pEnd = c;
 }
 return (0);

} /* StrRev */

Compile the Program and Library

The first step is to compile the programs using ccomp, the native mode TNS/E
compiler, on the HP NonStop operating system to create the two object files, mainstro
and mystro.

We are using a fully-qualified filename to get to the TNS/E compiler, ccomp. On your
system, the pathname showing the location of your development tools will be quite
different.

run $data01.toolsy02.ccomp /in mainstrc /mainstro; suppress

TNS/E C - T0549H01 - 30AUG2004 (Oct 25 2004 14:47:23)

(C)2004 Hewlett Packard Development Company, L.P.

0 remarks were issued during compilation.

0 warnings were issued during compilation.

0 errors were detected during compilation.

Object file: mainstro

Compiler statistics

 phase CPU seconds elapsed time file name

 CCOMP \SPEEDY.$DATA01.TOOLSY02.CCOMP

 CCOMBE 0.2 00:00:07 \SPEEDY.$DATA01.TOOLSY02.CCOMBE

 total 0.2 00:00:09

All processes executed in CPU 05 (NSR-Y)

Swap volume: \SPEEDY.$DATA01
DLL Programmer’s Guide for TNS/E Systems—527252-006
6-3

Example Code Example One
Here’s the creation of the object file called mystro.

run $data01.toolsy02.ccomp /in mystrngc /mystro;suppress

TNS/E C - T0549H01 - 30AUG2004 (Oct 25 2004 14:47:23)

(C)2004 Hewlett Packard Development Company, L.P.

0 remarks were issued during compilation.

0 warnings were issued during compilation.

0 errors were detected during compilation.

Object file: mystro

Compiler statistics

 phase CPU seconds elapsed time file name

 CCOMP \SPEEDY.$DATA01.TOOLSY02.CCOMP

 CCOMBE 0.2 00:00:06 \SPEEDY.$DATA01.TOOLSY02.CCOMBE

 total 0.2 00:00:06

All processes executed in CPU 04 (NSR-Y)

Swap volume: \SPEEDY.$DATA01

Build the DLL and the Program

First we build the DLL, then the main executable file called revstr. It has to be in that
order because the main executable could not refer to a DLL that did not yet exist. (If
the linker’s -allow_missing_libs option is specified, the main executable could be
linked befoe the DLL is linked.)

Note that the -lib option references the DLL called mystrdll. In Example Two we
show the main built without reference to a DLL. We will use rld to load the DLL
dynamically.

Note the -export_all option. We could also individually reference the items to be
exported, as follows:

 -export StrRev

Note the -shared option sent to eld. This creates the DLL. The -dll option can be
used to do the same task, and is probably more descriptive of what we want to
achieve. Either option can be used.
DLL Programmer’s Guide for TNS/E Systems—527252-006
6-4

Example Code Example One
The following command input creates the DLL:

run $data01.toolsy02.eld mystro -o mystrdll -shared -export_all

eld - TNS/E Native Mode Linker - T0608H01 - 26OCT04

Copyright 2004 Hewlett-Packard Company

eld command line:

 \speedy.$data01.toolsy02.eld mystro -o mystrdll -shared -export_all

**** INFORMATIONAL MESSAGE **** [1530]:

 Using 'ImpImp' file: \speedy.$data01.toolsy02.zimpimp.

Output file: mystrdll (dll)

Output file timestamp: Nov 8 13:59:43 2004

No errors reported.

No warnings reported.

1 informational message reported.

Elapsed Time: 00:00:01

Now Build the Program

The next step is to create the loadfile (the whole program) by use of the linker.

ccplmain contains initialization code for the C and C++ run-time libraries. Your
version of that file will probably be located in $system.system.

ccplmain contains external references to errno and environ (which are defined in
ZCREDLL) and C_INT_INIT_COMPLETE_ , C_INT_INIT_START_ , and exit (which
are defined in ZCRTLDLL).

Note that each DLL must use an individual -lib option to be linked with eld. The
command syntax does not allow for a single -lib option followed by a list of DLLs, for
example: -lib zcredll, zcrtdll, mystrdll is not valid syntax.
DLL Programmer’s Guide for TNS/E Systems—527252-006
6-5

Example Code Example One
60> run $data01.toolsy02.eld $data01.toolsy02.ccplmain mainstro -lib
mystrdll&

60> & -lib zcredll -lib zcrtldll -o revstr -L $users.patrick -L
$data01.toolsy02 -verbose

eld - TNS/E Native Mode Linker - T0608H01 - 26OCT04

Copyright 2004 Hewlett-Packard Company

eld command line:

 \speedy.$data01.toolsy02.eld $data01.toolsy02.ccplmain mainstro -lib

 mystrdll -lib zcredll -lib zcrtldll -o revstr -L $users.patrick -L

 $data01.toolsy02 -verbose

**** INFORMATIONAL MESSAGE **** [1019]:

 Using DLL: $users.patrick.mystrdll.

**** INFORMATIONAL MESSAGE **** [1019]:

 Using DLL: $data01.toolsy02.zcredll.

**** INFORMATIONAL MESSAGE **** [1019]:

 Using DLL: $data01.toolsy02.zcrtldll.

**** INFORMATIONAL MESSAGE **** [1530]:

 Using 'ImpImp' file: \speedy.$data01.toolsy02.zimpimp.

Output file: revstr (program file)

Output file timestamp: Nov 9 14:59:42 2004

No errors reported.

No warnings reported.

4 informational messages reported.

Elapsed Time: 00:00:02

Run The Program
RUN REVSTR XYZ
Reverse(XYZ) = (ZYX)
Hit enter to finish
DLL Programmer’s Guide for TNS/E Systems—527252-006
6-6

Example Code Example Two
Example Two

This example was created using TNS/R tools, thus uses ld instead of eld as the
linker. The use of the dynamic loader rld is the same on either TNS/R or TNS/E.

This session demonstrates dynamic loading. We create and compile a program and a
DLL, but don’t load the DLL with the program. We invoke the loader from inside the
process with a dlopen() call.

If you set breakpoints in Visual Inspect just before and after executing such calls, and
use the new TACL command LOADEDFILES, you can see the process in action.

Display the Source Code

Again there is a program and a library in the session, mainc and helloc. In mainc we
use dlopen() to load hellodll, which will be created from helloc. We use dlsym() to find
function hello(), which we invoke. We then use dlclose() to dynamically drop that
loaded file. Just to demonstrate an error routine, we then attempt to load a non-existent
DLL called NotThere.

Note that dlopen("hellodll",RTLD_NOW) takes a pathname that typically is a relative
pathname. It is qualified by the default directory searchlist which can be overridden at
link or load time. At load time, the searchlist is modified by the =RLD* defines (for
Guardian) and environmental variables (for OSS processes).

The source code for mainc is as follows:

#include <dlfcn.h>
#include "hello.h" nolist
#include <stdio.h> nolist

/***
| main:
|
***/
int main(int argc, char *argv[]) {

 int result = 0;
 union {
 int resCode;
 short err[2];
 } res;

 typedef void (*HelloFPtr)(void);
 HelloFPtr pHello;
 dlHandle dlopenHandle;
 dlopenHandle = dlopen("hellodll",RTLD_NOW);
 if (dlopenHandle == 0) {
 printf("%s\n", dlerror());
 return (1);
 }

 pHello = (HelloFPtr)dlsym(dlopenHandle, "hello");
 if (pHello == 0) {
 printf("%s\n", dlerror());
 return (2);
 }
 pHello();
DLL Programmer’s Guide for TNS/E Systems—527252-006
6-7

Example Code Example Two
 result = dlclose(dlopenHandle);
 dlopenHandle = 0;

/* demonstrate the error routines */

 dlopenHandle = dlopen("NotThere",RTLD_NOW);
 if (dlopenHandle == 0) {
 res.resCode = dlresultcode();
 printf("dlopen of a non-existent dll returns result %i\n"
 ,res.resCode);
 printf("\terror(%i,%i)\n"
 ,res.err[0], res.err[1]);
 printf("%s\n", dlerror());
 return (1);
 }

 return 0;

} /* of proc main */

The source code for helloc is as follows:

#include <stdio.h> nolist
void hello() {
 printf("Hello, I am a DLL!\n");
}

Compile the Program and Library

Both programs are compiled using the CALL_SHARED option to create PIC.

Note that we could have compiled helloc using the -shared compile-time option to
cause the compiler to invoke ld to produce a DLL. Instead, to illustrate an alternative,
we invoke ld manually to produce the DLL after compiling helloc as a PIC linkfile.

This is the compile for the main program:

NMC /IN mainc/maino;suppress,OPTIMIZE 0,SYMBOLS,ERRORS
5,EXTENSIONS,call_shared
TNS/R Native Mode Risc C - T9577D46 - 30APR2003 (Mar 23 2003 19:42:26)
(C)2000 Compaq (C)2003 Hewlett Packard Development Company, L.P.

0 remarks were issued during compilation.
0 warning was issued during compilation.
0 errors were detected during compilation.
Object file: maino
Compiler statistics
 phase CPU seconds elapsed time file name
 NMC \DLLQA.$SYSTEM.SYSTEM.NMC
 CFE 0.2 00:00:01 \DLLQA.$SYSTEM.SYSTEM.CFE
 UGEN 0.1 00:00:00 \DLLQA.$SYSTEM.SYSTEM.UGEN
 AS1 0.0 00:00:00 \DLLQA.$SYSTEM.SYSTEM.AS1
 total 0.3 00:00:02
All processes executed in CPU 03 (NSR-G)
Swap volume: \DLLQA.$SYSTEM
DLL Programmer’s Guide for TNS/E Systems—527252-006
6-8

Example Code Example Two
The compile for helloc is as follows:

NMC /IN helloc/helloo;suppress, OPTIMIZE 0,SYMBOLS,ERRORS
5,EXTENSIONS,call_shared
TNS/R Native Mode Risc C - T9577D46 - 30APR2003 (Mar 23 2003 19:42:26)
(C)2000 Compaq (C)2003 Hewlett Packard Development Company, L.P.

0 remarks were issued during compilation.
0 warnings were issued during compilation.
0 errors were detected during compilation.
Object file: helloo
Compiler statistics
 phase CPU seconds elapsed time file name
 NMC \DLLQA.$SYSTEM.SYSTEM.NMC
 CFE 0.2 00:00:01 \DLLQA.$SYSTEM.SYSTEM.CFE
 UGEN 0.0 00:00:00 \DLLQA.$SYSTEM.SYSTEM.UGEN
 AS1 0.0 00:00:00 \DLLQA.$SYSTEM.SYSTEM.AS1
 total 0.2 00:00:01
All processes executed in CPU 03 (NSR-G)
Swap volume: \DLLQA.$SYSTEM

Build the DLL

The DLL is created with the following command line to ld.

ld helloo -o hellodll -obey $SYSTEM.SYSTEM.libcobey -L $OSS.NSKAPAT4 -shared
 -export_all
LD (T0429G09 - 30APR2003)
(C)2003 Hewlett Packard Development Company, L.P.

T0429's command line: helloo -o hellodll -obey $SYSTEM.SYSTEM.libcobey -L
 $OSS.NSKAPAT4 -shared -export_all

LD INFORMATIONAL MESSAGE **** [40056]:
 Entering OBEY file '$SYSTEM.SYSTEM.libcobey'.

LD INFORMATIONAL MESSAGE **** [40057]:
 Exiting OBEY file '$SYSTEM.SYSTEM.libcobey'.

LD INFORMATIONAL MESSAGE **** [40052]:
 '-export_all' specified

LD INFORMATIONAL MESSAGE **** [40063]:
 Creating a DLL and -dllname was not specified; using 'hellodll' as
 -dllname value.

Comment: lots of other informational messages edited out . . .

LD INFORMATIONAL MESSAGE **** [40065]:
 Creating a DLL without -t option specified. LD will use 0x60000000 as
 the default value.

LD reported 0 errors.
LD reported 0 warnings.
LD reported 16 informational messages.

LD created the following named loadfile as type:
 hellodll (ELF, dynamic link library).
LD Timestamp: 31MAR2003 13:36:57
Elapsed Time: 00:00:01
DLL Programmer’s Guide for TNS/E Systems—527252-006
6-9

Example Code Example Two
Next, the main executable file is built. Note that the main program does not use -l to
refer to hellodll at link time.

ld maino -o mainexe -obey $SYSTEM.SYSTEM.libcobey -L $OSS.NSKAPAT4
$SYSTEM.SYSTEM.CCPPMAIN -l ZRLDSRL
LD (T0429G09 - 30APR2003)
(C)2003 Hewlett Packard Development Company, L.P.

T0429's command line: maino -o mainexe -obey $SYSTEM.SYSTEM.libcobey -L
 $OSS.NSKAPAT4 $SYSTEM.SYSTEM.CCPPMAIN -l ZRLDSRL

LD INFORMATIONAL MESSAGE **** [40056]:
 Entering OBEY file '$SYSTEM.SYSTEM.libcobey'.

Comment: lots of other informational messages edited out . . .

LD INFORMATIONAL MESSAGE **** [40049]:
 The library specified as 'ZRLDSRL' in a -l or -lib option was resolved
 to the library named '\DLLQA.$SYSTEM.SYS00.ZRLDSRL'.

LD reported 0 errors.
LD reported 0 warnings.
LD reported 14 informational messages.

LD created the following named loadfile as type:
 mainexe (ELF, executable, main entry point is 0x70000e98).
LD Timestamp: 31MAR2003 13:37:05
Elapsed Time: 00:00:01

Run The Program

This is a simple run of the program. The first DLL (Hellodll) loads dynamically, and
works just fine. Then rld attempts to load the second DLL (NotThere), but it does not
appear to be there!

RUN mainexe

Hello, I am a DLL!
dlopen of a non-existent dll returns result 75,11
dlopen (70000F3C->NotThere, 1): FileSystem Error 11: File
$SYSTEM.ZDLL.NotThere
 NOT Found
ABENDED: 3,305
CPU time: 0:00:00.010
1: Process terminated with warning diagnostics

We also ran the program under Visual Inspect and set breakpoints before and after the
call to Hellodll. In both those places we used a new TACL command LOADEDFILES to
see which files had been loaded at that point. The output from that VI and TACL
session is simple, but nevertheless demonstrates a useful capability in more complex
situations.

LOADEDFILES (and new option for STATUS that shows which process uses a
specified file) is fully documented in the TACL Reference Manual (for G06.20 and
later).
DLL Programmer’s Guide for TNS/E Systems—527252-006
6-10

Example Code Example Two
You can use the process name with LOADEDFILES, but can also refer to it by cpu,
number which we do in this TACL example.

status *,user,pri

Process Pri PFR %WT Userid Program file Hometerm
 3,301 168 000 180,1 $OSS.NSKAPAT4.MAINEXE $ZTN10.#PTBSQW8

Comment: This is before the first dlopen().

$OSS NSKAPAT 8> loadedfiles 3,301

PROCESS NAME = UNNAMED PROCESS
TYPE FILENAME
PPROG \DLLQA.$OSS.NSKAPAT4.MAINEXE
SRL \DLLQA.$SYSTEM.SYS00.ZCRESRL
SRL \DLLQA.$SYSTEM.SYS00.ZSECSRL
SRL \DLLQA.$SYSTEM.SYS00.ZRLDSRL
SRL \DLLQA.$SYSTEM.SYS00.ZINETSRL
SRL \DLLQA.$SYSTEM.SYS00.ZICNVSRL
SRL \DLLQA.$SYSTEM.SYS00.ZSTFNSRL
SRL \DLLQA.$SYSTEM.SYS00.ZOSSHSRL
SRL \DLLQA.$SYSTEM.SYS00.ZI18NSRL
SRL \DLLQA.$SYSTEM.SYS00.ZCRTLSRL
SRL \DLLQA.$SYSTEM.SYS00.ZOSSKSRL
SRL \DLLQA.$SYSTEM.SYS00.ZOSSFSRL
SRL \DLLQA.$SYSTEM.SYS00.ZOSSESRL
Total No. of Loadedfiles = 13

Comment: This is after the first dlopen() ;note the appearance of the DLL.

$OSS NSKAPAT 9> loadedfiles 3,301

PROCESS NAME = UNNAMED PROCESS
TYPE FILENAME
DLL \DLLQA.$OSS.NSKAPAT4.HELLODLL
PPROG \DLLQA.$OSS.NSKAPAT4.MAINEXE
SRL \DLLQA.$SYSTEM.SYS00.ZCRESRL
SRL \DLLQA.$SYSTEM.SYS00.ZSECSRL
SRL \DLLQA.$SYSTEM.SYS00.ZRLDSRL
SRL \DLLQA.$SYSTEM.SYS00.ZINETSRL
SRL \DLLQA.$SYSTEM.SYS00.ZICNVSRL
SRL \DLLQA.$SYSTEM.SYS00.ZSTFNSRL
SRL \DLLQA.$SYSTEM.SYS00.ZOSSHSRL
SRL \DLLQA.$SYSTEM.SYS00.ZI18NSRL
SRL \DLLQA.$SYSTEM.SYS00.ZCRTLSRL
SRL \DLLQA.$SYSTEM.SYS00.ZOSSKSRL
SRL \DLLQA.$SYSTEM.SYS00.ZOSSFSRL
SRL \DLLQA.$SYSTEM.SYS00.ZOSSESRL
Total No. of Loadedfiles = 14

Comment: This is after the first dlclose();note the disappearance of the DLL.

$OSS NSKAPAT 10> loadedfiles 3,301

PROCESS NAME = UNNAMED PROCESS
TYPE FILENAME
PPROG \DLLQA.$OSS.NSKAPAT4.MAINEXE
SRL \DLLQA.$SYSTEM.SYS00.ZCRESRL
SRL \DLLQA.$SYSTEM.SYS00.ZSECSRL
SRL \DLLQA.$SYSTEM.SYS00.ZRLDSRL
SRL \DLLQA.$SYSTEM.SYS00.ZINETSRL
SRL \DLLQA.$SYSTEM.SYS00.ZICNVSRL
SRL \DLLQA.$SYSTEM.SYS00.ZSTFNSRL
SRL \DLLQA.$SYSTEM.SYS00.ZOSSHSRL
SRL \DLLQA.$SYSTEM.SYS00.ZI18NSRL
DLL Programmer’s Guide for TNS/E Systems—527252-006
6-11

Example Code Example Two
SRL \DLLQA.$SYSTEM.SYS00.ZCRTLSRL
SRL \DLLQA.$SYSTEM.SYS00.ZOSSKSRL
SRL \DLLQA.$SYSTEM.SYS00.ZOSSFSRL
SRL \DLLQA.$SYSTEM.SYS00.ZOSSESRL
Total No. of Loadedfiles = 13
DLL Programmer’s Guide for TNS/E Systems—527252-006
6-12

A Linker Options List

This section lists all the options supported by the TNS/E linker. For each one the
complete syntax is shown, a brief statement of its function is given, and a hyperlinked
reference is given to the main discussion of it elsewhere in this manual.

If no hyperlink exists the option is either a synonym so look for the other option name,
or the option is not covered in this manual and so you should consult the eld Manual
for further details. There is a similar options list in the eld Manual that will give you the
exact page reference in that manual.

-alf <filename>

Rebase or rebind an existing loadfile (or both), recreating the file.

-all

Use all members from archives.

-allow_duplicate_procs

Do not consider it an error if there are multiple definitions of procedures with the
same name.

-allow_missing_libs

Do not consider it an error if a -l option cannot be resolved, except in situations
where -b static is in effect. See Allowing Missing Libraries on page 2-12 .

-allow_multiple_mains

Do not consider it an error if more than one procedure has the MAIN attribute.
See Designating the Main Entry Point of Your Program on page 5-4.

-ansistreams

At runtime, the program will use the ANSI version of C I/O.
See Changing Run-Time Options for C and C++ Programs on page 5-15.

-b { dllsonly | dynamic | static }

These options specify whether the linker accepts DLLs or archives (or both).
See Making the Linker Accept Only DLLs or Only Archives on page 5-1.

-b { globalized | localized | semi_globalized | symbolic }

These options affect how references are resolved across loadfiles.
See Global Scope, Import and Export on page 4-3.

-call_shared

Create a program. See Choosing to Create a Program or a DLL on page 2-3.
DLL Programmer’s Guide for TNS/E Systems—527252-006
A-1

Linker Options List
-change <attribute> <value> <filename>

Change the parts of an existing object file corresponding to things that the -set
option would set up. The <attribute> and <value> have the same possibilities as for
the -set option shown below. See Changing the Attributes of an Existing Loadfile
on page 5-9 .

-check_registry <filename>

Use the specified DLL registry to tell where the DLL being built must be placed in
memory.

-d <hexadecimal number>

Use the specified value as the starting address of the data (constant) segment.
See Specifying the Preferred Location of a Loadfile in Virtual Memory on page 5-8.

-data_resident

This is a special option that may be used when building a “proto-process”, also
known as a “sysgen process”.

-dll

This is a synonym for -shared.

-dllname

This is a synonym for -soname.

-e <symbol name>

Use the address of the specified procedure as the main entry point.
See Designating the Main Entry Point of Your Program on page 5-4.

-error_unresolved

This is a synonym for -unres_symbols error.

-export

This is a synonym for -exported_symbol.

-export_all

Export all symbols that you might normally want to have exported without naming
them explicitly. See Controlling Which Symbols Your Loadfile Exports on page 5-5.

-exported_symbol <symbol name>

Export the specified symbol from the loadfile being created. See Controlling Which
Symbols Your Loadfile Exports on page 5-5.
DLL Programmer’s Guide for TNS/E Systems—527252-006
A-2

Linker Options List
-export_not

This is a synonym for -hidden_symbol.

-first_L <filename>

The specified directory or subvolume is one of the places where the linker will look
for DLLs and archives before it looks for public DLLs. See Where The Linker
Searches for Libraries and Archives on page 2-11.

-FL

This is a synonym for -obey.

-grow_data_amount <hexadecimal number>

Leave the specified amount of slack space in virtual memory for the data of this
DLL.

-grow_limit <hexadecimal number>

Use the specified value as the total amount of memory reserved for this DLL.

-grow_percent <number>

Leave the specified percentage of slack space in virtual memory for each of the
text and data segments of this DLL.

-grow_text_amount <hexadecimal number>

Leave the specified amount of slack space in virtual memory for the text of this
DLL.

-hidden_symbol <symbol name>

Do not export the specified symbol. See Controlling Which Symbols Your Loadfile
Exports on page 5-5.

-import_lib <filename>

Build a complete or incomplete import library with the specified filename in addition
to creating a new DLL.

-import_lib_stripped <filename>

Build a complete or incomplete import library with the specified filename in addition
to creating a new DLL, and strip the DWARF symbol table from the import library.

-include_whole

This is a synonym for -all.
DLL Programmer’s Guide for TNS/E Systems—527252-006
A-3

Linker Options List
-instance_data { data1 | data2 | data2protected | data2hidden |
data1constant }

This tells the linker whether to create one or two data segments, and whether to
require that the loadfile have no data that would need to go into the data variable
segment if two segments were created.

-L <filename>

The specified directory or subvolume is one of the places where the linker will look
for DLLs and archives, after it looks for public DLLs. The “-L” must be specified in
uppercase. See Where The Linker Searches for Libraries and Archives on
page 2-11.

-l <filename>

Use the specified filename to locate a DLL or archive. The “-l” must be specified
in lowercase. See Libraries the Linker Searches For and Opens on page 2-10.

-lib

synonym for -l. This usage may be preferred because it is not case-sensitive and
therefore cannot be confused with -L.

-libname

This is a synonym for -set libname.

-libvol

This is a synonym for -L.

-limit_runtime_paths

If this is specified then rld will not permit the user to override the places specified
at link time for where DLLs may be found.
See The Link-Time-Defined Search Path of the Loader on page 2-17.

-local_libname <filename>

Use the specified filename as the name of the user library that can be used to
resolve references in this program at link time.

-m

This is a synonym for -map.

-make_implicit_lib

Mark the DLL being created as an implicit library.

Note. The data2protected parameter is supported only on NonStop systems running
J06.09 or earlier J-series RVUs and H06.20 or earlier H-series RVUs.
DLL Programmer’s Guide for TNS/E Systems—527252-006
A-4

Linker Options List
-make_import_lib <filename>

Create a complete or incomplete import library with the specified filename, to
represent the other DLL or DLLs whose filenames are found in the command
stream.

-map

Produce a map showing how memory has been laid out. See Command Stream
Requests for Linker Messages on page 5-12.

-must_preset

Consider it an error if presetting fails.

-must_use_iname

eld reports an error if the linker is not able to delete an existing file of the same
name when creating an import library.

-must_use_oname

eld reports an error if the linker is not able to delete an existing file of the same
name when creating its main output object file.

-must_use_rname

 eld reports an error if the linker is not able to delete an existing file of the same
name when it is recreating a private DLL registry.

-no_include_whole

This is a synonym for -none.

-none

Only include archive members in the link if they satisfy needed references.

-no_optional_lib

Do not consider later DLLs in the command stream to be optional.

-no_preset

Do not preset the loadfile being created.

-no_reexport

Do not re-export DLLs found after this point in the command stream.

-nostdfiles

At runtime, do not automatically open the standard C I/O files.
See Changing Run-Time Options for C and C++ Programs on page 5-15.
DLL Programmer’s Guide for TNS/E Systems—527252-006
A-5

Linker Options List
-no_stdfiles

This is a synonym for -nostdfiles.

-nostdlib

Do not look in the standard places for DLLs and archives. See Where The Linker
Searches for Libraries and Archives on page 2-11.

-no_stdlib

This is a synonym for -nostdlib.

-noverbose

This is a synonym for -no_verbose.

-no_verbose

Do not show warnings or informational messages unless they are requested by a
linker option. See Message-Control Options on page 5-12.

-o <filename>

Use this as the name of the output object file. See Choosing the Output File on
page 2-3.

-obey <filename>

Use the specified file as an obey file. See Direct Use of the Linker on page 2-1.

-optional_lib

Consider later DLLs in the command stream to be optional.

-public_registry <filename>

Use the specified file as the public DLL registry file.

-r

 Create a linkfile rather than a loadfile.

-reexport

Re-export DLLs found after this point in the command stream. See How to Make
Your Loadfile Re-Export Symbols of Other DLLs on page 2-15.

-rename <symbol name> <symbol name>

Change the name of a symbol while creating a new file.
DLL Programmer’s Guide for TNS/E Systems—527252-006
A-6

Linker Options List
-rld_first_L <path>

The string specified by <path> should be a list of directories or subvolumes
separated by colons. At runtime, the specified directories or subvolumes are
places where rld will look for DLLs before it looks for public DLLs. SeeThe Link-
Time-Defined Search Path of the Loader on page 2-17.

-rld_L <path>

The string specified by <path> should be a list of directories or subvolumes
separated by colons. At runtime, the specified directories or subvolumes are
places where rld will look for DLLs after it looks for public DLLs. See The Link-
Time-Defined Search Path of the Loader on page 2-17.

-rpath

This is a synonym for -rld_L.

-s

Omit the DWARF symbol table when creating the output file.

-set <attribute> <value>

Set the specified attribute to have the specified value in the loadfile being created.
The following chart lists the attributes, their possible values and their defaults.

Table A-1. Set Attributes

Attribute Name Allowable Values Default

CPPDialect |

CPlusPlusDialect

neutral | v2 | v3 The value comes
from the input linkfiles

data_model ILP32, LP64 and
neutral

ILP32

floattype ieee | neutral | tandem The value comes
from the input linkfiles

float_lib_overrule on | off off

heap_max <hexadecimal
number>

0

highpin on | off on

highrequester |

highrequesters |

highrequestor |

highrequestors

on | off on
DLL Programmer’s Guide for TNS/E Systems—527252-006
A-7

Linker Options List
-shared

Create a DLL. See Choosing to Create a Program or a DLL on page 2-3 .

-show_multiple_defs

Put information into the listing about symbols that are defined in more than one of
the input linkfiles. See Command Stream Requests for Linker Messages on
page 5-12.

-soname <filename>

Specify the DLL name for the DLL being created. See Naming DLLs on page 2-3 .

incomplete on
(note: only one
allowable value, so it
is therefore also
required)

If not specified, and
an import library is
being created, it is a
complete import
library.

inspect on | off on

libname <filename> If not specified, there
may be no user
library, or the name
may be derived from
what is specified for
the -local_libname
option.

mainstack_max <hexadecimal
number>

0

oktosettype on | off off

pfs | pfssize <number> Option is a no-op.

process_subtype |

subtype

<number> 0

rld_unresolved error | warn | ignore error

runnamed on | off off

saveabend on | off off

space_guarantee <hexadecimal
number>

0

systype guardian | oss (depends on the
platform)

Table A-1. Set Attributes (continued)

Attribute Name Allowable Values Default
DLL Programmer’s Guide for TNS/E Systems—527252-006
A-8

Linker Options List
-stdin

Use the standard input file as an obey file. See Direct Use of the Linker on
page 2-1.

-strip <filename>

Remove the DWARF symbol table from an existing loadfile or import library.

-t <hexadecimal number>

Use the specified value as the starting address of the text segment of the loadfile
being built. See Specifying the Preferred Location of a Loadfile in Virtual Memory
on page 5-8.

-temp_i <filename>

Use the specified filename as the name of the intermediate file during the creation
of an import library.

-temp_o <filename>

Use the specified filename as the name of the intermediate file during the creation
of the linker’s main output object file. See Naming Intermediate Linker Output Files
on page 5-11.

-temp_r <filename>

Use the specified filename as the name of the intermediate file during the
recreation of a DLL registry.

-u <symbol name>

Consider the specified symbol to be needed when deciding which files to take from
archives. See Availability of Linkfiles from Archives on page 2-8.

-ul

Create a user library. In effect, this option is a synonym for -shared plus
-export_all. See Controlling Which Symbols Your Loadfile Exports on
page 5-5.

-unres_symbols { error | ignore | warn }

Handle unresolved references in the way specified. See Making the Linker Look for
Unresolved Symbols on page 5-3.

-update_registry <filename>

Use the specified DLL registry to suggest where the DLL being built may be placed
in memory and update it with the location chosen.
DLL Programmer’s Guide for TNS/E Systems—527252-006
A-9

Linker Options List
-verbose

Show all messages. See Message-Control Options on page 5-12.

-warn

Show all error and warning messages. See Message-Control Options on
page 5-12.

-warning_unresolved

This is a synonym for -unres_symbols warn.

-x

Omit the DWARF symbol table when creating the output file.

-y <symbol name>

Provide information about how this symbol is mentioned in the ELF symbol tables of
the linker’s input files. See Command Stream Requests for Linker Messages on
page 5-12.
DLL Programmer’s Guide for TNS/E Systems—527252-006
A-10

Glossary
Archive file. This file contains copies of other files, called the "members" of the archive. An

archive may be used for various purposes, one of which is to be an input for the linker.
The linker uses archives as a source of linkfiles. Archives are not used at load time.

Big endian. This term describes a method of storing data so that the most significant byte
appears in a lower-numbered location in memory. As with TNS/R, TNS/E data
structure is big endian. Code on the TNS/E platform is always little endian.

Bundle. This term describes a three-instruction-wide 128-bit word used by Intel to facilitate
parallel processing of code instructions.

Code file. A file comprising instructions that can be executed or emulated by a computer.
Native code files can be either linkable (linkfiles) or loadable (loadfiles). Object files
and binaries are other names for code files.

Client (of a loadable library). A loadfile that uses functions or data from a library.

Default. The choice made when the user does not direct otherwise.

Direct reference (of a loadfile). A library listed in a loadfile’s libList.

DLL file. This is a PIC library loadfile with symbols that can be referenced by another
loadfile to resolve symbolic references at link time and/or runtime. It is therefore a
loadfile that offers functions or data for use by other loadfiles. For TNS/E, DLLs replace
SRLs commonly associated with the TNS/R architecture. The object file linker eld
generates DLLs for TNS/E (as does ld for the TNS/R DLLs). In UNIX, this type of file
is known as a shared object file or dynamic shared object (DSO).

Dynamic loading. Loading and opening DLLs under programmatic control after the
program is loaded and execution has begun.

EDIT Line Number. The conventional source line numbering convention is where the
source lines are numbered sequentially using integers starting at 1. The Guardian
EDIT text file (file code "101") uses a source line number convention where the lines
are assigned numbers that have three places after the decimal point, and can be
sparse within all such possible numbers.

ELF. This term stands for "executable and link format" and describes an extensible file
structure that can deal with various target platforms. Like TNS/R, TNS/E uses the ELF
file structure with Tandem extensions. However TNS/E is ELF all-inclusive whereas
TNS/R uses both ELF and COFF file structures. All TNS/E compiler/assemblers,
linkers, and loaders generate object files with this file structure.

Explicit library. Any library that is named in the libList of any client loadifle or is a user
library of a client program.
DLL Programmer’s Guide for TNS/E Systems—527252-006
Glossary-1

Glossary Export.
Export. To provide a symbol definition for use by other loadfiles. A loadfile offers for export
a symbol definition for use by other loadfiles that need a data item or function
having that symbolic name.

Gateway. For every callable function there is a gateway; all calls to the function jump first to
the gateway, which effects the transition to privileged state if the caller is not
already privileged. There are two types of gateway pages, those that promote to
kernel and those that promote to executive level.

Gblzd. Globalized [symbol]

Globalized import. The import-control characteristic of a loadfile that allows it to import
symbols from any loadfile in the loadList of the program with which it is loaded.
When those loadfiles offer multiple definitions of the same symbol, those loadfiles
are searched in loadList sequence and the first definition found takes precedence.
See also searchList.

Globalized symbol. An exported symbol generated by the C++ compiler that may have
multiple definitions, of which the linker and loader must assure only one is used
throughout the process.

Hybrid file. This term describes a 'pseudo-DLL' that contains non-PIC text to allow a PIC
process to call (as inputs) when building or relinking a program or DLL file. Hybrids do
not exist in TNS/E.

Implicit library. A library supplied by HP that is available in the read-only and execute-only
globally mapped address space shared by all processes without being specified to the
linker or loader. The public libraries on TNS/E replace System Code, System Library,
and millicode. These libraries are called implicit because every loadfile is implicitly a
user of them. Contrast with public DLLs, which are explicit because a loadfile explicitly
asks to use a public DLL, although it does not specify where to find the public DLL.
See also System library. and Public Libraries.

Implicit library import library (imp-imp). An import library that can be used by the Linker
as a proxy for a set of implicit libraries. See Import library and Zimpimp file.

Import. To refer to a symbol definition from another loadfile. A loadfile imports a symbol
definition when it needs a data item or function having that symbolic name.

Import control. The characteristic of a loadfile that determines from which other loadfiles it
can import symbol definitions. The programmer sets a loadfile’s import control at link
time. That import control can be localized, globalized, or semiglobalized. A loadfile’s
import control governs the way the linker and loader construct that loadfile’s searchList
and affects the search only for symbols required by that loadfile.

Import library. This term describes one type of a loadfile whereby only enough parts of the
file are contained therein to allow the linker to resolve references, but not enough to
expose its source code; i.e., exports the symbols of the DLL . It is a file that can be
used by the Linker as a proxy for one or more DLLs, but that cannot actually be loaded
DLL Programmer’s Guide for TNS/E Systems—527252-006
Glossary-2

Glossary Indirect reference (of a loadfile).
and run. It is useful in cross-linking. See Implicit library import library (imp-imp) and
Zimpimp file.

Indirect reference (of a loadfile). A library in a loadfile’s searchList that is not named in its
libList.

iniTerm Lists. Lists of initialization and termination functions used in the support of runtime
dynamically-loaded libraries on the HP NonStop operating system.

Instance. A particular case of a class of items, objects, or events. For example, a process is
defined as one instance of the execution of a program; multiple processes might
be executing the same program simultaneously. Also, instance data refers to global
data of a program or library; each process has its own instance of this data.

Library. Generically, a collection of functions and data offered for use by clients. Libraries
can exist as source files, linkable object files, archives (aggregated of linkfiles), and
loadable object files. See also Loadable Library..

LibList. The list of libraries to be loaded along with a loadfile. However, it may not be the
complete list of loadfiles that must be loaded; see loadList definition below.When
linking the loadfile, the linker constructs the libList from the names of libraries
specified in the linker's command stream; it stores the libList within the loadfile.

Libname. An attribute of a program loadfile, which can be set by the linker, specifying the
name of a user library to be loaded with this program.

Linker. A utility whose basic function is to process one or more linkfiles to create a loadfile.

Linker platform. The system on which the linker executes. Also called host or host
platform.

LIC. Library Import Characterization: A data string that characterizes the information used
by a linker or loader to bind the global symbols of a particular loadfile. If the same
loadfile is bound on two occasions, and its LIC has not changed, the two bindings are
the same. Thus it is possible to reuse a set of bindings if it has the same LIC as that
determined for this loadlfile in the presence of the other loadfiles with which it is being
loaded.

Linkfile. This term describes the output of the compiler and input to the linker. This object
file has accompanying tables required to build it into a PIC loadfile and can be all or
part of a loadfile. The code of a linkfile is not executable until linked. In the default
mode, the linker processes one or more linkfiles to produce a loadfile. This term is
synonymous with the term "relinkable" in TNS/R .

Loader. A programming utility that transfers a program into memory so it can run. The
mechanism that brings loadfiles into memory for execution, maps them into virtual
address space, and resolves symbol references among them. Synonyms include
run-time loader and run-time linker. The loader for TNS and for TNS/R native programs
and libraries that are not position-independent code (PIC) is part of the operating
DLL Programmer’s Guide for TNS/E Systems—527252-006
Glossary-3

Glossary Loadfile
system. For PIC loadfiles and all TNS/E native programs, the loader called rld works
with the operating system to load programs and libraries.

Loadfile. This term describes the input to the runtime loader and default output of the linker.
This object file may contain name references to symbols that exist in other loadfiles in
the same process. Such references are typically resolved when the loadfiles are
brought into memory by the runtime loader rld . This term is synonymous with the
term "executable" file. An executable object code file is one that is ready for loading
into memory and executing on the computer. Loadfiles are further classified as
executable programs (containing a main routine at which to begin execution of that
program) or executable libraries (supplying routines or variables to multiple programs
or separately loaded libraries). A TNS code file might be both a loadfile and a linkfile.
Native code files are never both. Contrast with Linkfile.

LoadList. A list of all the libraries that must be loaded for a given loadfile to execute. A
loadfile’s loadList includes all the libraries in the given loadfile’s libList plus all the
libraries in those loadfiles’ libLists, and so on. It does not include the implicit libraries.
The loadList order is the sequence in which these loadfiles are to be loaded when they
are not already loaded by a previous operation. The loadList of the program includes
all the loadfiles present in the process, in the order they were loaded.

Loadable Library. A loadfile that offers functions and data to other loadfiles. In this
document, DLLs are such libraries. A library cannot be invoked externally, for
example, by a RUN command; instead, it is invoked by calls or data references
from client loadfiles. In TNS/E, functions and data can also be obtained from the
system library and millicode.

Loader Library. A public library for loading PIC programs and libraries. It works in close
cooperation with the operating system. It is called "rld" when loading a program
and its libraries at process creation time. It also exports a set of functions for
dynamic loading.

Localized. The import-control characteristic of a loadfile that allows it to import symbols
only from the loadfile itself followed by the libraries in its libList, libraries that those
libraries re-export, and from these, any successions of re-exported libraries.

MCB. The Master Control Block. This contains global information such as the product
version number, valid file types, language dialects and floating point types that may be
used.

Millicode library. Low-level library routines. Although separate from it, the millicode can be
considered an adjunct of the system library.

Neutral loadfile. This can be loaded with either a 32-bit or 64-bit program.

Presetting. This is the process of resolving references to DLLs at linktime.

PIC. This term stands for 'position independent code' and describes a nomenclature
associated with DLLs whereby PIC text contains references do not have to be resolved
DLL Programmer’s Guide for TNS/E Systems—527252-006
Glossary-4

Glossary Program
at link time. PIC is executable code that need not be modified to run at different virtual
addresses. External reference addresses appear only in a data area that can be
modified by the loader; they do not appear in PIC code. PIC code is even more
position independent than one might imagine from the term; it can be simultaneously
mapped to different addresses for different processes in the same CPU. PIC
introduces several new elements into ELF files, some of which are adapted from the
Intel LP64 ELF structure. TNS/E supports only PIC files. TNS/R supports PIC and non-
PIC file types.

Program. This term describes one type of loadfile that is capable of being run on the
system. This is the main program and there can only be one program associated with a
process.

Public Libraries. A set of libraries (offering widely-used functions) that are managed as part
of the system, available to all users of the system, and in large part supplied by HP,
although it is possible for customers and third parties to provide DLLs to be added to
the public DLLs. A loadfile must explicitly reference a public library in order to access it.

Preempt. When the linker’s binding of a symbolic reference to a symbol defined in the
same DLL is rebound by the loader to a definition in another loadfile.

Process. An instance of the execution of a program.

Re-exported library. A library whose symbols are made available by another DLL to any
localized client of that DLL. Re-export is an attribute of the DLL's libList entry for
that library. This attribute is specified by the DLL's programmer and recorded by
the linker as a DLL is built. It affects only localized clients of the DLL. This feature
allows a symbol to be moved from one DLL to another without relinking clients of
the original DLL.

Re-exporting is transitive; i.e., if A re-exports B and B re-exports C, then A re-
exports C. Thus, re-exported libraries can re-export other libraries to form a
succession of re-exported libraries of arbitrary length.

Region. The Itanium® architecture divides the address space into eight regions, indexed
by the high-order three bits of the 64-bit address. TNS/E initially implements just two,
regions 0 and 7: region 0 is mapped per-process; region 7 is shared by all processes.
Sign extension places “negative” 32-bit addresses in region 7. Note that the high bit of
the 32-bit address on TNS/E determines global addressing, and privilege is an attribute
of the page; the MIPS architecture on TNS/R is just the opposite.

Relocation. the process of assigning load addresses to the different parts of a program,
adjusting the code and data in the program to reflect the assigned addresses.

SearchList. For each loadfile, a list that specifies which libraries to examine, and in which
order, to locate symbol definitions needed by that loadfile. The linker and loader
construct the loadfile's searchList in accordance with that loadfile's import control,
which is set at link time. The system library and millicode are appended to every
DLL Programmer’s Guide for TNS/E Systems—527252-006
Glossary-5

Glossary Sections and Segments
searchList. A loadfile's searchList is unaffected by the import control of any other
loadfile.

Sections and Segments. The TNS/E object file is organized into contiguous items called
sections. There is an array of ELF section headers that contains the type and name of
each of these section items. A section is not required to be present if it would not
contain any useful information for a given object file. In loadfiles, some of the sections
are further organized in segments that get loaded into virtual memory.

Strip(ped) file. These are files do not have debugging information; i.e., DWARF symbol
table, in it. Stripping can be done on any object file. It is still possible for the linker to
process a linkfile that has been stripped because the DWARF symbol table does not
contain any essential information to it. An import library can be stripped even if the
corresponding DLL is not stripped.

Symbol Resolution. When a program is built from multiple subprograms, the references
from one subprogram to another are made using symbols. For example a main
program might use a square root routine called sqrt and the math library defines
sqrt. A linker resolves the symbol by noting the location assigned to sqrt in the
math library and patches the caller’s object code so the call instruction refers to that
location.

Semi-globalized. An import control characteristic of a loadfile that allows the loadfile first to
obtain symbols from its own definitions and then to obtain others as for a
globalized loadfile. Thus, a semi-globalized loadfile cannot have its symbol
references to itself preempted. See also SearchList..

Symbol. The symbolic name of a function or data item. Symbols are defined in loadfiles
and referenced in the same or other loadfiles.

Symbol definition. a function or data item whose name is the symbol.

Symbol value. the address of a definition of that symbol.

Symbolic reference. An occurrence in code or data of a symbol that is or must be bound
to a definition of that symbol. The symbolic reference is bound (resolved and made
usable) by assigning to it the value of a definition of that symbol.

System library. TNS/E library routines required to access TNS/E operating system
functions. (Similar for TNS/R.) The loader automatically searches the system
library for definitions that satisfy a loadfile’s unresolved symbols after searching all
the loadfiles in the loadfile’s searchList.

TNS/E. The hardware platform based on the Itanium™ architecture and the HP NonStop
operating system and software that are specific to that platform. All code is PIC.

TNS/R. The hardware platform based on the MIPS™ architecture and the HP NonStop
operating system and software that are specific to that platform. Code may be PIC
or non-PIC.
DLL Programmer’s Guide for TNS/E Systems—527252-006
Glossary-6

Glossary TLB.
TLB. Translation Lookaside Buffer: a cache of page table entries, where each entry
designates the physical memory page corresponding to a range of virtual addresses.
Information within the entry can make the translation unique to the accessing process.
Unless the appropriate TLB entry is present, the page cannot be accessed; typically
the processor generates a fault to allow software to find and load the missing entry
from a memory-management structure.

TNS/E object file format. This object file format is an amalgam of Intel IA-64 code
architecture and the HP NonStop operating system extensions.

TNS/E object files are categorized into three types of files: linkfiles, loadfiles, and
import libraries. The following are key differences between TNS/R and TNS/E
platforms:

User library. A loadable library; primarily a legacy feature for NonStop systems. For PIC
programs, a user library is a DLL treated as if it were the first library in the program's
libList and therefore is searched first for symbols required by the program. However, a
user library does not appear in the program's libList; instead, its name is recorded in
the program's loadfile as the libname attribute. A program can be associated with at
most one user library; the association can be specified using the linker at link time or in
a later change command, or at run time using the process creation interfaces. (The
/LIB.../ option to the RUN command in TACL uses these interfaces.)

VHPT. Virtual Hash Page Table: an Itanium® architecture feature that can supply missing
TLB entries without generating faults.

VPROC. The version procedure identifier used to identify which version of the product you
are using.

Zimpimp file. The name of the imp-imp file on a system is $SYSTEM.<SYSnn>.ZIMPIMP.
Also called the "import library that represents the implicit DLLs", it is the file that tells
which symbols are available in the set of implicit DLLs, which collectively correspond to

Platform TNS/R TNS/E

Processor MIPS RISC Itanium

Architecture SGI Intel IA-64

Programming
model

32-bit (ILP32) 32-bit (ILP32)

and in future:
64-bit LP64

Object type ELF and COFF ELF exclusive

Debugging
symbols

Third-Eye DWARF2

Compiler
Backend

SGI w/ HP
extensions

Intel w/ HP
extensions

Linker, PIC ld eld
DLL Programmer’s Guide for TNS/E Systems—527252-006
Glossary-7

Glossary Zreg file
what was previously called the system library. See also Implicit library import library
(imp-imp).

Zreg file. This is the name of the public DLL registry file, which lists the names of all the
public DLLs.
DLL Programmer’s Guide for TNS/E Systems—527252-006
Glossary-8

Index

A
added load set 3-3
ambiguity

example 4-8, 4-9

warning 4-11

ambiguous symbols 4-5
archive 1-11, 2-7

repeated insertion 2-8

Archive file Glossary-1
argument, of a command-stream option 2-1
attributes, see loadfile attributes
augmenting file names 2-4, 2-11, 5-2
augmenting library names 5-2
auxiliary linkfile 1-11
auxiliary system 1-7, 2-1

B
Big endian Glossary-1
bind symbols 1-1
Bundle Glossary-1

C
C and C++ I/O Files 5-15
C library, dlfcn.h 3-2
C text files

code 101 5-15

code 180 5-15

changing an existing loadfile 5-9
Client (of a loadable library) Glossary-1
code 101, see C text files
code 180, see C text files
Code file Glossary-1
code file 1-1
code segment 5-8
command line 2-2
command stream 1-6, 1-7, 2-2
compiler option to generate PIC 1-3

completion message 5-12
constant-data segment 5-8
controlling the linker, see linker controls
CPlusPlusDialect 5-6
C++ mangled symbol names 5-6
C/C++ I/O files 5-15

D
data segment 5-8
Default Glossary-1
defaults, linker’s list of 2-22
Direct reference (of a loadfile) Glossary-1
directly inserted file name 2-2
directly referenced DLLs, see direct
reference
dlclose() 3-2
dlerror() 3-2, 3-7

in multi-threaded applications 3-8

dlfcn.h 3-2
DLL 1-1

dynamic loading 1-12

intercept 4-13

missing 5-2

name 2-3

DLL file Glossary-1
dlopen() 3-2

handle for accessing a symbol 3-6

mode parameter values 3-3

target 3-3

dlopen_handle 3-6, 3-7
dlsym() 3-2, 3-5

symbol search 3-6

duplicate data items in a linkfile 5-2, 5-3
duplicate procedure names in a linkfile 5-3
duplicate symbol definitions, see symbol
duplicate symbols 4-5
Dynamic loading Glossary-1
dynamic loading, see DLL
DLL Programmer’s Guide for TNS/E Systems—527252-006
Index-1

Index E
dynamically loaded DLL 1-8, 3-1
include file 3-2

dynamic-linked library, see DLL

E
EDIT Line Number Glossary-1
eld 1-6, 2-1
eld output 2-3
eld Specifics 2-5
ELF Glossary-1
entry point 5-4
error, dlclose

returned values 3-7

error, dlopen
mode parameter 3-5

returned values 3-5

unresolved symbols 3-3

error, dlsym
returned values 3-6

error, dynamic library call
analysis data 3-8

error, linker
avoiding errors 2-22

consequence of an error 2-23

during -change processing 5-9

error codes 5-11

library unavailable 5-4

main in a DLL 5-4

missing archive with -
allow_missing_libs in effect 5-2

missing searched-for file 2-12

mixed floating-point types 2-19

multiple main procedures 5-4

opening a DLL with -b static in
effect 5-1

opening a file that is not a library or
archive 2-10

opening an archive with -b dllsonly in
effect 5-1

error, linker (continued)
reporting according to message
control 5-12

symbol defined in multiple linkfiles 5-2

unopenable file 2-10

unresolved symbol 5-4

error, loader
consequence of an error 2-23

unresolved symbol 2-18, 5-7

execution-target system 1-7, 2-1
existing loadfile

changing 5-9

Explicit library Glossary-1
Export Glossary-2
export controls 5-5
export symbol 1-2, 2-13, 4-5

unconditionally 5-5

export-not symbol 5-5
extend an application with dynamic
DLLs 3-9
external symbol table 1-6

F
file name 2-2

qualified 2-4

unqualified 2-4

file name usage convention 2-2
file name, directly inserted 2-2
float_lib_overrule 5-6

G
Gateway Glossary-2
Gblzd Glossary-2
globalize 1-12
Globalized import Glossary-2
globalized loadfile, see loadfile
Globalized symbol Glossary-2
Guardian 2-11
DLL Programmer’s Guide for TNS/E Systems—527252-006
Index-2

Index H
H
handle 3-2

invalidate 3-7

main program 3-5

open 3-5

highpin 5-7
highrequestors 5-7
Hybrid file Glossary-2

I
implicit libraries 4-13
Implicit library Glossary-2
Implicit library import library (imp-
imp) Glossary-2
Import Glossary-2
Import control Glossary-2
import control 1-11

default 1-12

Import library Glossary-2
import symbol 1-2
include <dlfcn.h> 3-2
include-file for dynamic loading 3-2
indirect reference

depth of 1-9

Indirect reference (of a loadfile) Glossary-3
indirectly referenced library 1-8
infrequently used DLL 3-1
insert 2-2
inspect 5-7
Instance Glossary-3
intercept DLL, see DLL
intercepting an exported symbol 4-13
intermediate file naming 5-11
intrnal name of a DLL 2-3
invalidate handle 3-7
invoking the linker 2-1
I/O files, see C/C++ I/O files

L
ld, see linker

LibList Glossary-3
libList 1-7, 2-9

order of libraries listed 2-9

libListed libraries 2-9
Libname Glossary-3
Library Glossary-3
library 1-1

inputs to a link 2-9

missing 2-12

library names, where to insert 2-9
library-name augmentation 5-2
LIC Glossary-3
link 1-6
Linker Glossary-3
linker 1-6, 2-2

command stream 1-7

common search path for different
platforms 2-12

completion message 5-12

controls 1-7, 2-1, 5-1

defaults list 2-22

distinguishes among files that it
opens 2-10

error. See error, linker

invoking 2-1

messages 5-11

message-control options 5-12

option 2-1, 5-1

option paramenter 2-2

options 2-1

options list, see Appendix A

order of processing libraries 2-9

platform 2-1

search for libraries 2-10

search path 2-11

token 2-1

Linker platform Glossary-3
Linkfile Glossary-3
DLL Programmer’s Guide for TNS/E Systems—527252-006
Index-3

Index M
linkfile 1-6
duplicate data items in 5-2, 5-3

duplicate procedure names in 5-3

linkfile inputs to a link 2-7
linking 1-6

to standard runtime libraries 2-9

load image, executable load image 1-5
load time 1-8
Loadable Library Glossary-4
Loader Glossary-3
loader 1-7

error, see error, loader

load-time controls 5-13

making search path same as
linker’s 5-14

resolving symbols 1-8

search path 2-17, 5-14

unresolved symbol 5-8

Loader Library Glossary-4
Loadfile Glossary-4
loadfile 1-1, 1-6

globalized 1-11, 4-13

localized 1-11, 4-13

semi-globalized 1-12, 4-13

loadfile attributes 5-6
changing 5-9

loading sequence for libraries, see loadList
LoadList Glossary-4
loadList 1-8
Localized Glossary-4
localized

loadfile, see loadfile

M
MAIN attribute 5-4
main entry point 5-4

in a DLL 5-4

mainstack_max 5-7
mangled symbol names 5-6
MAP DEFINES 2-5

MCB. The Master Control
Block. Glossary-4
memory arrangement of DLLs 1-8
message-control options 5-12
millicode 4-13, Glossary-4
Millicode library Glossary-4
millicode library 1-10
missing DLLs 5-2
missing libraries 2-12
multiple main procedures in a loadfile. See
error, linker
multi-threaded appliction and dlopen() 3-8

N
name

default DLL 2-4

default output file 2-4

named files, accessing 2-2
naming a DLL 2-3
naming the linker output file 2-3

O
obey file 2-2
oktosettype 5-7
one-time option 2-2
operating load set 3-3
Option

-allow_missing_libs 2-12

-allow_multiple_mains 5-4

-ansistreams 5-15

-b dllsonly 5-1

-b dynamic 5-1

-b globalized 4-5

-b localized 4-5

-b semi_globalized 4-5

-b static 5-1

-b symbolic, see -b semi_globalized

-call_shared 2-3

-change 5-9

-d 5-9
DLL Programmer’s Guide for TNS/E Systems—527252-006
Index-4

Index P
Option (continued)
-dll 2-3

-dllname 2-3

-e 5-4

-export 5-5

-export_all 2-13, 5-5

-export_not 5-5

-first_L 2-11

-FL, see Option -obey

-include_whole 2-7

-lib 2-10

-libname 2-12

-libvol 2-11

-limit_runtime_paths 2-18

-l, see Option -lib

-L, see Option, -libvol

-l. See Option, -lib

-map 5-13

-m, see Option, -map

-nostdfiles 5-15

-nostdlib 2-11

-noverbose, see -no_verbose

-no_include_whole 2-7

-no_reexport 2-14

-no_stdfiles, see Option -nostdfiles

-no_stdlib, see Option, -nostdlib

-no_verbose 5-12

-o 2-3

-obey 2-2

-reexport 2-14

-rld_first_L 2-17

-rld_L 2-17

-set 5-6

-shared, see Option -dll

-show_multiple_defs 5-12

-stdin 2-2

-t 5-8

-temp_o 5-11

-u 2-8

Option (continued)
-ul 5-5

-unres_symbol 5-4

-verbose 5-12, 5-13

-warn 5-12

-y 5-12

option
definition 2-1

see linker

OSS 2-11
output file, naming 2-3
overriding MAIN 5-4

P
parameter of a linker option 2-2
pfsize 5-7
PIC 1-3, Glossary-4
PIC libraries 1-10
position-indipendent code, see PIC
Preempt Glossary-5
preempt 4-8
Presetting Glossary-4
Process Glossary-5
process_subtype 5-7
Program Glossary-5
program 1-3
Public Libraries Glossary-5
public library 1-9

Q
qualified file name 2-4

R
range 4-5
Region Glossary-5
reloading a DLL dynamically 3-7
Relocation Glossary-5
relocation table 1-6
repeatable option 2-2
DLL Programmer’s Guide for TNS/E Systems—527252-006
Index-5

Index S
resolution 4-13
resolve symbol 1-1
resolved file name 2-4
Re-exported library Glossary-5
re-exported library 2-14
RLD, see loader
runnamed 5-8
Running the Linker Through the
Compiler 5-10
runtime

attributes 5-6

libraries 1-10, 2-9

linker, see loader

loading a DLL 3-2

opening a DLL 3-2

runtime-loaded DLL, see dynamically
loaded DLL

S
saveabend 5-8
search path 2-11

linker 2-11

loader 2-17, 5-13

search range 4-5
search sequence 4-5
searching for augmented names 2-11, 5-2
SearchList Glossary-5
searchList 4-5

globalized 4-8

localized 4-5

semi-globalized 4-11

Sections and Segments Glossary-6
segmenting loadfiles 5-8
segments in a loadfile 5-8
Semi-globalized Glossary-6
semi-globalized loadfile, see loadfile
semi-globalized searchList 4-11
sequence 4-5
severity code 5-11, 5-12
severity codes 5-11
space_guarantee 5-8

splitting a DLL 2-15
standard C/C++ I/O files, see C/C++ I/O
files
Strip file Glossary-6
Symbol Glossary-6
symbol 1-1, 1-7, 4-13

accessing in dynamic-loaded DLLs 3-5

bind 1-1

definition 1-1

duplicated in linkfiles 5-2

resolve 1-1

value 1-1

Symbol definition Glossary-6
Symbol Resolution Glossary-6
Symbol value Glossary-6
Symbolic reference Glossary-6
symbolic reference 1-1
symbol_name 3-6
System library Glossary-6
system library 1-10, 4-13, Glossary-4
systype 5-8

T
text segment 5-8
TLB Glossary-6
TNS/E Glossary-6
TNS/E object file format Glossary-7
TNS/R Glossary-6
toggle option 2-2
token 2-1, 2-2
two-segment loadfiles 5-8

U
UNIX 4-11
unqualified file name 2-4
unresolved symbols 2-18, 5-4
UNRESOLVED_PROCEDURE_CALLED_
5-8
User library Glossary-7
user library 1-13, 2-12
DLL Programmer’s Guide for TNS/E Systems—527252-006
Index-6

Index V
V
VHPT Glossary-7
VPROC Glossary-7

W
warning of ambiguity, see ambiguity
warning
where the linker searches for files

See linker, search path

where to insert library names 2-9

X
xport bit in external symbol table 2-13

Z
Zimpimp file Glossary-7
Zreg file 1-10, Glossary-8

Special Characters
DLL Programmer’s Guide for TNS/E Systems—527252-006
Index-7

Index Special Characters
DLL Programmer’s Guide for TNS/E Systems—527252-006
Index-8

	DLL Programmer’s Guide for TNS/E Systems
	Legal Notices
	Contents
	What’s New in This Manual
	Manual Information
	New and Changed Information
	Changes to the H06.25/J06.14 manual:
	Changes to the H06.21/J06.10 manual:
	Changes to the 527252-004 Manual

	About This Manual
	Purpose of This Manual
	Who Should Read This Manual
	How This Manual Is Organized
	Related Reading
	Notation Conventions
	Hypertext Links
	General Syntax Notation
	Notation for Messages
	Change Bar Notation
	HP Encourages Your Comments

	1 DLLs on a TNS/E System
	Libraries and Symbols
	Position-Independent Code (PIC) in TNS/E

	What is a DLL?
	Why Dynamically Linked Libraries?

	Building and Loading Programs and Libraries
	Compilers
	Linker
	Loading
	Finding the Needed Libraries

	The TNS/E Library Facility
	Public Libraries and DLLs (Implicit and Explicit).
	The Public Library Registry
	Linkfiles and Archives
	Import Controls

	Other Loader Operations
	Adjusting Symbol Values and Relocating in Virtual Memory
	Dynamically Loaded DLLs
	User Library

	2 Essential DLL Facility Controls
	The Linker’s Command Stream
	Direct Use of the Linker
	Option Types

	Specifying the Linker’s Output
	Choosing the Output File
	Choosing to Create a Program or a DLL
	Naming DLLs
	File-Name Qualification
	At a Glance: Controlling Linker Output When Producing a Loadfile

	Specifying Which Inputs Go into a Link
	Linkfile Inputs
	Library Inputs

	Specifying Where the Linker Can Find Its Inputs
	Files the Linker Opens Normally
	Libraries the Linker Searches For and Opens
	Specifying a User Library for a Program

	At a Glance: Files the Linker Brings into a Link
	Compile-Time Control of Export and Import
	Your Loadfile’s Exported Symbols
	Re-Exported libraries
	How to Make Your Loadfile Re-Export Symbols of Other DLLs
	Some Examples Using Re-Exportation

	Things to Consider about the Loader
	The Link-Time-Defined Search Path of the Loader
	Unresolved Symbols at Load Time
	Simultaneously Using Different Versions of a DLL

	Default Setting and Checking of File Attributes
	Floating-Point Type
	C++ Dialect
	Execution-Target System Type

	At a Glance: Linker Mandatory Inputs, and Defaults
	Normal Linker Inputs
	Linker Default Operation

	Linker and Loader Errors

	3 Dynamic Use of DLLs
	Dynamic Loading Functions
	Opening a DLL from a Running Loadfile (dlopen)
	dlopen’s Mode Parameter Values
	Returned Value of dlopen

	Accessing Symbols (dlsym)
	Returned Values of dlsym

	Closing a Running Loadfile’s Handle to a DLL (dlclose)
	Returned Values of dlclose

	Error Reporting For Dynamic Library Calls (dlerror and dlresultcode)
	Error Text : dlerror
	Error Encoding: dlresultcode
	Thread Considerations

	Using Dynamically Loaded DLLs to Extend an Application

	4 Finding Symbol Definitions
	The loadList
	Global Scope, Import and Export
	Import Controls and SearchLists
	The SearchList for a Localized Loadfile
	The SearchList for a Globalized Loadfile
	The SearchList for a Semi-Globalized Loadfile
	Import Control Summary

	C++ Considerations: Globalized (Gblzd) Symbols
	System Library and Millicode
	Symbol Resolution at a Glance
	Example: Intercepting an Exported Symbol

	5 Advanced DLL Facility Controls
	Linker Input Controls
	Making the Linker Accept Only DLLs or Only Archives
	Augmenting Library Names Automatically in Searches
	Handling Duplicate Symbols among Linkfiles in a Link

	Making the Linker Look for Unresolved Symbols
	Linker Output Controls
	Designating the Main Entry Point of Your Program
	Controlling Which Symbols Your Loadfile Exports
	C++ Mangled Symbol Names
	How to Set Run-Time Attributes of Your Loadfile
	Controlling the Load Image of DLLs

	Using the Linker to Change an Existing Loadfile
	Link-Time Operation
	Running the Linker Through the Compiler
	Naming Intermediate Linker Output Files
	Controlling What Checks the Linker Makes and Reports

	Load-Time Operation
	Controlling the Loader’s Search Path at Load Time
	Changing Run-Time Options for C and C++ Programs

	6 Example Code
	Example One
	Example Two

	A Linker Options List
	Glossary
	Index
	Glossary
	Index

