
System Software Library
Distributed Systems
Network Management
(DSNM) Subsystem
Interface Development
Guide
Abstract

This manual describes the Distributed Systems Network Management (DSNM) services
that support network management applications. It describes how to use the program
frame and library services supplied by Tandem for the development of the subsystem
interface processes that integrate additional subsystems into the base of DSNM-
managed subsystems.

Product Version

DSNM D30

Supported Releases

This manual supports D30.01 and all subsequent releases until otherwise indicated in a
new edition

Part Number Edition Published Release ID

109759 Second February 1996 D30.03

Document History

Edition Part Number Product Version
Earliest Supported
Release Published

First 029783 DSMS C21 C20 December 1990

Second 109759 DSNM D30 D30.01 February 1996

New editions incorporate any updates since the previous edition.

A plus sign (+) after a release ID indicates that this manual describes function added to the base release, either by an
interim product modification (IPM) or by a new product version on a .99 site update tape (SUT).
Ordering Information
For manual ordering information: domestic U.S. customers, call 1-800-243-6886; international customers, contact
your local sales representative.

Document Disclaimer
Information contained in a manual is subject to change without notice. Please check with your authorized Tandem
representative to make sure you have the most recent information.

Export Statement
Export of the information contained in this manual may require authorization from the U.S. Department of
Commerce.

Examples
Examples and sample programs are for illustration only and may not be suited for your particular purpose. Tandem
does not warrant, guarantee, or make any representations regarding the use or the results of the use of any examples
or sample programs in any documentation. You should verify the applicability of any example or sample program
before placing the software into productive use.

U.S. Government Customers
FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED
SOFTWARE:

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this
computer software, the rights of the Government regarding its use, reproduction and disclosure are as set forth in
Section 52.227-19 of the FARS Computer Software—Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions
as set forth in paragraphþ(b)(3)(B) of the rights in Technical Data and Computer Software clause in
DAR 7-104.9(a). This computer software is submitted with “restricted rights.” Use, duplication or disclosure is
subject to the restrictions as set forth in NASA FARþSUP 18-52þ227-79 (Aprilþ1985) “Commercial Computer
Software—Restricted Rights (Aprilþ1985).” If the contract contains the Clause at 18-52þ227-74 “Rights in Data
General” then the “Alternate III” clause applies.

U.S. Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract.

Unpublished — All rights reserved under the Copyright Laws of the United States.

New and Changed Information
This edition of the Distributed Systems Network Management (DSNM) Subsystem
Interface Development Guide has been updated to include functions and features added
to DSNM for the C31 and D30 releases of the product.

The operating system for Tandem NonStop systems, formerly called the Guardian
operating system, is now called the Tandem NonStop Kernel. This change reflects
Tandem’s current and future operating system enhancements that further enable open
systems and application portability.

The major changes to each section are as follows:

• Section 1, “Overview of DSNM,” has been expanded to include new components
such as the conversational interface process (CIP), and the list of supported products
has been expanded to include NonStop NET/MASTER Management Services (MS).
Section 1 now includes information on installation, process configuration, running
more than one copy of DSNM concurrently, and mixed network requirements.

• Section 2, “DSNM Commands,” has been expanded to include the INQUIRE and
UPDATE commands.

• In Section 3, “I Process Development Process,” references to
_COMMAND^CONTEXT^ADDRESS have been replaced with
_THREAD^CONTEXT^ADDRESS and minor changes have been made.

• In Section 4, “DSNM Command Requirements,” the DSNM command requirements
have been expanded to include INQUIRE and UPDATE.

• The configuration and process parameter descriptions in Section 5, “DSNM Process
Startup Functions,” have been updated, expanded, and reformatted.

• In Section 6, “Configuring a New Subsystem Into DSNM,” changes to the DSNM
configuration files and parameters are reflected where necessary.

• Section 7, “DSNMCom: The I Process Test Utility,” documents the new DSNMCom
commands and parameters.

• New DSNM error codes have been added to Appendix B, “DSNM Error Codes.”

• New DSNM SPI components have been added to Appendix C, “Data Definition
Language (DDL)-Defined DSNM SPI Components.”
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 iii

New and Changed Information
iv
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Contents
New and Changed Information iii

About This Manual xv

Notation Conventions xix

1. Overview of DSNM
Scope of This Section 1-1
What is DSNM? 1-1
Applications Supported by DSNM 1-1

NonStop NET/MASTER MS 1-3
NetCommand 1-3
NetStatus 1-4

The Network-Management Architecture 1-4
The Operations Layer 1-4
The Management Services Layer 1-8
The Subsystem Layer 1-10

Installing DSMS Products 1-12
Startup Sequence and Configuration Files 1-12
Running DSNM Products 1-13
Installing More Than One Copy of DSNM Concurrently 1-13
Mixed Network Requirements 1-14
Extending DSNM Support 1-14

2. DSNM Commands
Scope of This Section 2-1
Command Line Syntax 2-1

Commands 2-1
Object Specification 2-2
Modifiers 2-3
Parameters 2-5
Considerations 2-6

DSNM Object States 2-6
Canceling Commands 2-6
The ABORT Command 2-8
The AGGREGATE Command 2-10
The INFO Command 2-11
The INQUIRE Command 2-13
The START Command 2-15
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 v

3. I Process Development Process Contents
The STATISTICS Command 2-17
The STATUS Command 2-19
The STOP Command 2-21
The UPDATE Command 2-23

3. I Process Development Process
Scope of This Section 3-1
Function of the I Process 3-1
I Process Program Structure Concepts 3-3
General Command Processing Scheme 3-6
The Command Thread Source Environment 3-9

ASSIGN Statements Required for Compilation 3-11
User-Written Procedures 3-11

The _STARTUP^MODE Procedure 3-12
The _STARTUP Procedure 3-13
Declaring Thread Procedures: _THREAD^PROC and

_END^THREAD^PROC 3-14
The Initial Command Thread Procedure: _COMMAND^PROC 3-14
The Thread Termination Procedure: _COMMAND^TERMINATION^PROC 3-14

Command Context Space 3-15
Accessing the Command Context Space 3-17
Defining the Command Context Space 3-17
The Input Area: _INPUT 3-18
The Output Area: _OUTPUT 3-19

The Input and Output List Member Structures 3-20
Defining the Input List Member Structure: _INPUT^LM^HEADER 3-22
Defining the Output List Member Structure: _OUTPUT^LM^HEADER 3-22

Working With Lists 3-23
Declaring a List: _LIST 3-24
Initializing a List Structure: _INITIALIZE^LIST 3-24
Accessing the First Member of a List: _FIRST^LM 3-25
Accessing the Last Member of a List: _LAST^LM 3-25
Accessing the Next List Member: _SUCCESSOR^LM 3-25
Accessing the Previous List Member: _PREDECESSOR^LM 3-25
Declaring a Pointer to a List: _LISTPOINTER 3-25
Scanning a List 3-26
Processing a List 3-26
Maintaining a List 3-27
Requesting Status About a List 3-28
Initializing Object List Members: _FOBJECT^INIT 3-28
vi
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Contents 4. DSNM Command Requirements
Adding Text Items to an Output Object: _APPEND^OUTPUT 3-32
Releasing Output List Members to the Frame: _RELEASE^OUTPUT 3-32
Example: List Processing Library Services 3-32

Suspending and Dispatching Thread Procedures 3-34
Suspending Thread Procedures: Return Codes 3-34
Dispatching Thread Procedures: Events 3-35
Declaring Utility Procedures: _RC^TYPE 3-36

State Management 3-37
Determining Which Event(s) Caused the Current Dispatch 3-38
Altering the Current Thread Procedure and Thread State 3-39

Frame Services 3-45
CI Communications 3-45
Accessing Information About a CI Communication 3-48
Timeout Intervals 3-50

Command Thread Termination 3-51
Reporting Errors 3-51

Reporting Errors to the Frame 3-52
Command-Terminating Errors 3-53
Reporting Errors to EMS 3-53

Overview of the Library Services 3-54

4. DSNM Command Requirements
Scope of This Section 4-1
Command Flow 4-1
Command Components 4-1
Action to be Performed 4-2
Command Modifiers 4-2

Object List Modifiers 4-3
Response Modifiers 4-5
Action Modifiers 4-7

Object States 4-7
The Input Object List 4-8
Execution Objects 4-9

Applying Object List Modifiers 4-9
The User Area: Intermediate Lists 4-9

The Output Object List 4-10
Output Object Variable-Length Items 4-10
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 vii

5. DSNM Process Startup Functions Contents
Command Requirements 4-11
The ABORT Command 4-12
The AGGREGATE Command 4-13
The INFO Command 4-15
The START Command 4-16
The STATISTICS Command 4-17
The STATUS Command 4-18
The STOP Command 4-20

5. DSNM Process Startup Functions
Scope of This Section 5-1
DSNM Process Startup Message 5-1

Process Parameters 5-2
DSNM Configuration Parameters 5-3

Parameter Types and Search Criteria 5-4
Local Parameters and Search Patterns 5-4
Global Parameters and Search Patterns 5-5

Parameter Retrieval Library Services 5-6
Accessing Standard Process Parameters: _PROCESS^PARAMS 5-8
Accessing Standard Configuration Parameters: _DSNMCONF^PARAMS 5-8
Retrieving Non-Standard Process Parameters: _GET^PROCESS^PARAM 5-9
Retrieving Nonstandard Configuration Parameters: _GET^PARAM 5-10
Retrieving Subsystem Configuration Parameters 5-12
Retrieving CI Configuration Parameters 5-12

6. Configuring a New Subsystem Into DSNM
Scope of This Section 6-1
New and Changed DSNM Configuration Information 6-1
The $SYSTEM.SYSTEM.DSNM File 6-2
Format of the DSNMCONF File 6-4
DSNMCONF Records Relevant to I Processes 6-5

SUBSYSTEM Class Records 6-5
process-class-CONFIG Records 6-9

Adding Subsystem Objects to the DNS Database 6-12
Defining an I Process as a Pathway Server 6-12

7. DSNMCom: The I Process Test Utility
Scope of This Section 7-1
What is DSNMCom? 7-1
Before You Run DSNMCom 7-1
DSNMCom Command Syntax 7-1
viii
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Contents A. DSNM Library Services
The DSNMCom Prompt 7-3
Running DSNMCom Interactively 7-3
Running DSNMCom From an Input File 7-4
The Comment Character, COMMENT-CHAR 7-4
Using the Break Key 7-4
Setting Security Parameters in DSNMCom 7-5
The DSNMCom Commands 7-5

CLOSE Command 7-5
EXIT Command 7-5
FC Command 7-6
HELP Command 7-6
OPEN Command 7-7
QUIT Command 7-7
RESET Command 7-7
SET Command 7-7
SHOW Command 7-10

Executing DSNM Commands 7-11
DSNMCom Messages 7-12

DSNM Parser Errors 7-17

A. DSNM Library Services
Scope of This Appendix A-1

_ADD^CI A-5
_ADD^SUBSYS A-7
_ALLOFF A-9
_ALLON A-10
_ALLON^TURNOFF A-11
_ANYOFF A-12
_ANYON A-13
_ANYON^TURNOFF A-14
_APPEND^OUTPUT A-15
_BITDEF A-18
_CANCEL^SEND^CI A-20
_CANCEL^TIMEOUT A-21
_CI^DEF A-22
_CI^FILENUM A-24
_CI^ID A-25
_CI^IDPOINTER A-26
_CI^LASTERROR A-27
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 ix

A. DSNM Library Services Contents
_CI^REPLYADDRESS A-28
_CI^REPLYLENGTH A-29
_CI^REPLYTAG A-30
_CLOSE^CI A-31
_COMMAND^CONTEXT^HEADER A-32
_COMMAND^PROC A-33
_COMMAND^TERMINATION^PROC A-34
_COMPILED^IN^TESTMODE A-35
_DEALLOCATE^LIST A-36
_DELETE^LM A-37
_DEPOSIT A-38
_DISPATCH^THREAD A-39
_DSNMCONF^PARAMS A-40
_EMPTY^LIST A-41
_EMS^EVENT^CRITICAL A-42
_EMS^EVENT^FATAL A-42
_EMS^EVENT^INFO A-42
_END^THREAD^PROC A-43
_END^THREAD^TERMINATION^PROC A-44
_EV^CANCEL A-45
_EV^CONTINUE A-45
_EV^IODONE A-45
_EV^STARTUP A-45
_EV^TIMEOUT A-45
_EXTRACT A-46
_FIRST^LM A-47
FOBJECT A-48
 _FOBJECT^INIT A-50
_GET^LM A-54
_GET^PARAM A-55
_GET^PROCESS^PARAM A-58
_INITIALIZE^LIST A-59
_INPUT A-60
_INPUT^DEF A-61
_INPUT^LM^HEADER A-62
_ISNULL A-64
_JOIN^LIST A-65
KDSNDEFS A-66
_LAST^CI^ID A-67
x
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Contents A. DSNM Library Services
_LAST^EVENTS A-68
_LAST^LM A-69
_LAST^TIMEOUT^TAG A-70
_LIST A-71
_LISTPOINTER A-72
_MEMBERSOF^LIST A-73
_MOVE^LIST A-74
_NOTNULL A-75
_NULL A-76
_NULL^LIST A-77
OBJECTLIST A-78
_OFF A-79
_ON A-80
_OPEN^CI A-81
_OUTPUT A-84
_OUTPUT^DEF A-85
_OUTPUT^LM^HEADER A-86
_POP^LM A-87
_POP^THREAD^PROCSTATE A-88
_PREDECESSOR^LM A-89
_PRIVATE^THREAD^EVENT A-91
_PROCESS^PARAMS A-92
_PUSH^LM A-93
_PUSH^THREAD^PROCSTATE A-95
_PUT^LM A-97
_RC^ABORT A-99
_RC^NULL A-99
_RC^STOP A-99
_RC^TYPE A-100
_RC^WAIT A-100
_REAL^LAST^EVENTS A-101
_RELEASE^OUTPUT A-102
_REPORT^INTERNAL^ERROR A-103
_REPORT^STARTUP^ERROR A-104
_RESTORE^THREAD^AND^DISPATCH A-106
_SAVE^THREAD^AND^DISPATCH A-107
_SEND^CI A-108
_SET^THREAD^PROC A-111
_SET^TIMEOUT A-112
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 xi

B. DSNM Error Codes Contents
_SIGNAL^EVENT A-113
_STARTUP A-114
_STARTUP^MODE A-116
_ST^INITIAL A-118
_ST^MIN^THREAD^STATE A-119
_SUBSYS^DEF A-120
_SUCCESSOR^LM A-122
_THREAD^CONTEXT^ADDRESS A-124
_THREAD^PROC A-125
_THREAD^STATE A-126
_THREAD^TERMINATION^CODE A-127
_THREAD^TERMINATION^PROC A-128
_TURNOFF A-129
_TURNON A-130
_UNGET^LM A-131
_UNPOP^LM A-132
_XADR^EQ A-133
_XADR^NEQ A-134

B. DSNM Error Codes
Scope of This Appendix B-1
Reporting Errors B-1
What to Prepare Before Contacting Your Tandem Support Representative B-1
ZDSN Error Codes B-2

-nnn B-2
0 ZDSN^ERR^NOERR B-2
-30 ZDSN^ERR^CMD^MISMATCH B-2
-34 ZDSN^ERR^INTERNAL^ERR B-3
-35 ZDSN^ERR^SUBSYSTEM^ERR B-3
-44 ZDSN^ERR^TKN^VAL^INV B-3
-45 ZDSN^ERR^TKN^REQ B-3
-51 ZDSN^ERR^SPI^ERR B-4
-55 ZDSN^ERR^OBJNAME^INV B-4
-56 ZDSN^ERR^OBJTYPE^NOT^SUPPORTED or

 ZDSN^ERR^OBJ^NOT^SUPP B-4
-60 ZDSN^ERR^MEMORY or ZDSN^ERR^NO^MEM^SPACE B-4
-64 ZDSN^ERR^FS^ERR B-5
-67 ZDSN^ERR^CMD^TIMED^OUT B-5
-69 ZDSN^ERR^CMD^NOT^SUPP B-5
-71 ZDSN^ERR^ALLOCATESEGMENT^ERR B-5
xii
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Contents C. Data Definition Language (DDL)-Defined DSNM
SPI Components
-76 ZDSN^ERR^BADCOMMAND B-6
-77 ZDSN^ERR^UNSUPPORTED^BY^SUBSYS B-6
-78 ZDSN^ERR^UNSUPPORTED^BY^I B-6
-79 ZDSN^ERR^DATA^INTEGRITY B-6
-81 ZDSN^ERR^MISSING^OBJTYPE B-7
-82 ZDSN^ERR^BADOBJTYPE B-7
-86 ZDSN^ERR^REQ^KEYWORD^MISSING B-7
-88 ZDSN^ERR^DUP^KEYWORD B-7
-202 ZDSN^ERR^OBJECTTOOLONG or

 ZDSN^ERR^OBJTOOLONG B-8
-204 ZDSN^ERR^BADARGUMENT B-8
-206 ZDSN^ERR^NOTPUSHED B-8
-207 ZDSN^ERR^LIB^BADVALUE^OMITTED B-8
-212 ZDSN^ERR^SYNTAX B-9
-214 ZDSN^ERR^RESERVEDWORD B-9
-216 ZDSN^ERR^CMDERROR B-9
-217 DSN^ERR^BADLOGON B-9

Messages From the DSNM Parser B-10

C. Data Definition Language (DDL)-Defined DSNM SPI Components
Scope of This Appendix C-1
Commands C-1
Modifiers C-1

HMOD Values C-1
EMOD Values C-2
SMOD Values C-2
RMOD Values C-2
AMOD Values C-2

Command Object DDL C-3
DSNM State Values C-3
Error Codes C-4
AGGREGATE Counters C-4
Response Item Types C-4
DDL Definitions for DSNM Character String Components C-5
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 xiii

D. Sample I Process Program Code Contents
D. Sample I Process Program Code
Scope of This Appendix D-1
Overview of the SPIFFY Subsystem D-1

Characteristics of SPIFFY Objects D-1
SPIFFY Subsystem Programmatic Interface Commands D-2
Command and Response Message Formats D-3
SPIFFY Subsystem Literal Definitions D-5

SPIFFY I Process Design D-6
State Mapping D-6
Implementing DSNM Commands D-7

Managing SPIFFY Through DSNM: Sample Command Output D-8
Using DSNMCom to Test the SPIFFY I Process D-8
DSNM STATUS Command Output D-9

Sample User-Written Code for SPIFFY Subsystem Interface Process D-12
Configuring SPIFFY Into DSNM D-28

Index Index-1

Figures
Figure 1-1. Network-Management Application Components 1-2
Figure 1-2. DSNM and DSM Functional Connections 1-7
Figure 1-3. The Subsystem Layer 1-11
Figure 1-4. DSNM Process Startup and Configuration Components 1-13
Figure 3-1. Function of the I Process 3-2
Figure 3-2. Relationship Between the Frame and User-Written Procedures 3-4
Figure 3-3. Frame/Command Thread Interaction: Processing a DSNM

Command 3-8
Figure 3-4. Command Context Area 3-16
Figure 3-5. Object List Member Definitions 3-21
Figure 3-6. Logical View of a List 3-24
Figure 3-7. Altering Current Thread Procedure and Thread State Values 3-42
Figure 3-8. Dispatching New Thread Procedures 3-44

Tables
Table 3-1. Summary of I Process Development Library Services 3-54
Table 4-1. Command Modifiers 4-2
Table 4-2. HMOD Usage 4-4
Table 7-1. DSNMCom Commands 7-5
Table 7-2. DSNMCom SET Parameters 7-8
Table A-1. DSNM Library Services A-1
xiv
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

About This Manual
The Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide is written for programmers who develop the interface processes
(I processes) that allow subsystems or applications to be managed by network
management products that Distributed Systems Network Management (DSNM) services
support.

DSNM services support network management applications that automate and simplify
the management of Tandem systems and networks. This manual describes a program
frame, library services, and a detailed development model that facilitate the development
of the interface processes between the targeted subsystems and the DSNM services layer
within a network management application architecture.

The DSNM product is part of the Distributed Systems Management Solutions (DSMS)
package, which provides the capability of monitoring and managing a single Tandem
node or a network of Tandem systems from a single terminal. The Distributed Systems
Management Solutions (DSMS) System Management Guide is a companion manual to
the DSNM Subsystem Interface Development Guide.

How This Manual Is Organized
This manual serves as both a reference manual and a programmer's guide. It is
organized as follows:

• Section 1, “Overview of DSNM,” provides a functional overview of DSNM, and
explains how network management applications interact with the underlying DSNM
service layer processes and components to control and monitor objects.

• Section 2, “DSNM Commands,” describes the DSNM commands and provides
syntax descriptions in sufficient detail for testing I program code in an end-user
capacity.

• Section 3, “I Process Development Process,” introduces the conceptual model upon
which the program frame and library services are based. It also provides a detailed
development model and associated rules for using the I process development
software correctly and effectively.

• Section 4, “DSNM Command Requirements,” defines the DSNM requirements for
carrying out each supported DSNM operation.

• Section 5, “DSNM Process Startup Functions,” describes the library services that
take advantage of the expanded scope of the DSNM configuration file(s) to perform
process startup and subsystem configuration parameter retrieval.

• Section 6, “Configuring a New Subsystem Into DSNM,” documents the steps
necessary to configure a new subsystem into DSNM.

• Section 7, “DSNMCom: The I Process Test Utility,” describes how to use
DSNMCom, the I process test utility.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 xv

Where to Go for More Information About This Manual
• Appendix A, “DSNM Library Services,” describes the syntax and parameters (as
applicable) for each procedure call, define, literal, global variable, and structure
template.

• Appendix B, “DSNM Error Codes,” defines the ZDSN error codes.

• Appendix C, “Data Definition Language (DDL)-Defined DSNM SPI Components,”
lists the Subsystem Programmatic Interface (SPI) Data Definition Language (DDL)
constant and structure definitions for user-written procedures.

• Appendix D, “Sample I Process Program Code,” provides a sample I process
program, illustrating the program model and associated library services.

Where to Go for More Information
If you are writing an interface for an existing Tandem subsystem, you need the
documentation for the product you intend to manage with DSNM.

Although the purpose of the interface development software is to create interface
processes that make the Tandem Subsystem Programmatic Interface (SPI) protocol used
by DSNM transparent to your subsystem, you may also want to refer to the following
manuals for more information about the Distributed Systems Management (DSM)
architecture upon which DSNM is built:

• Introduction to Distributed Systems Management (DSM), which provides an
overview of DSM and its components. DSM products support the management of
system and network resources and operations.

• SPI Programming Manual, which describes the operating system procedures that
programmers call to process Subsystem Programmatic Interface (SPI) messages.
The manual also presents conventions that regulate message content and
interpretation, provides programming guidelines and examples, and describes the
common ZSPI data definitions.

• SPI Common Extensions Manual, which describes conventions that extend the basic
SPI interface, as described in the SPI Programming Manual.

• EMS Manual, which describes the Event Management Service (EMS). EMS is a
collection of processes, tools, and interfaces that provide event-message collection
and distribution in the DSM environment.

• Distributed Name Service (DNS) Management Operations Manual, which describes
the interactive DNS interface DSNCOM, used to maintain a database of object
names controlled by Tandem and other systems.

• NonStop NET/MASTER MS System Management Guide, which describes the
NonStop NET/MASTER MS configuration and security management processes, and
the specific tasks required to configure and secure NonStop NET/MASTER MS.

• NonStop NET/MASTER MS Operator’s Guide, which describes how to use the
various components of NonStop NET/MASTER MS to perform system and network
management tasks.
xvi
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

About This Manual Your Comments Invited
• NonStop TS/MP and Pathway System Management Guide, which provides
guidelines for configuring and controlling Pathway transaction processing systems.

The following manuals provide information about the DSMS network management
products that currently use the DSNM services layer:

• Distributed Systems Management Solutions (DSMS) System Management Guide,
which provides information for installing and managing DSNM, NetCommand, and
NetStatus software in both DSMS and NonStop NET/MASTER MS operations
environments.

• User's Guide to DSNM Commands, which discusses the syntax and use of the
DSNM commands.

• NetStatus User's Guide, which explains both usage and management of the
NetStatus monitoring software.

Your Comments Invited
After using this manual, please take a moment to send us your comments. You can do
this by returning a Reader Comment Card or by sending an Internet mail message.

A Reader Comment Card is located at the back of printed manuals and as a separate file
on the Tandem CD Read disc. You can either fax or mail the card to us. The fax
number and mailing address are provided on the card.

Also provided on the Reader Comment Card is an Internet mail address. When you
send an Internet mail message to us, we immediately acknowledge receipt of your
message. A detailed response to your message is sent as soon as possible. Be sure to
include your name, company name, address, and phone number in your message. If
your comments are specific to a particular manual, also include the part number and title
of the manual.

Many of the improvements you see in Tandem manuals are a result of suggestions from
our customers. Please take this opportunity to help us improve future manuals.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 xvii

Your Comments Invited About This Manual
xviii
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Notation Conventions
General Syntax Notation

The following list summarizes the notation conventions for syntax presentation in this
manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words; enter
these items exactly as shown. Items not enclosed in brackets are required. For example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list may be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

LIGHTS [ON]
 [OFF]
 [SMOOTH [num]]

K [X | D] address-1

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list may be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and separated
by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address-1 [, new-value]...

[-] {0|1|2|3|4|5|6|7|8|9}...
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 xix

General Syntax Notation Notation Conventions
An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char..."

Punctuation. Parentheses, commas, semicolons, and other symbols not previously described
must be entered as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must enter as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In the following
example, there are no spaces permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each continuation
line is indented three spaces and is separated from the preceding line by a blank line.
This spacing distinguishes items in a continuation line from items in a vertical list of
selections. For example:

ALTER [/ OUT file-spec /] CONTROLLER

 [, attribute-spec]...

!i and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o. In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; !i,o

!i:i. In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i
xx
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Notation Conventions Notation for Messages
!o:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

Notation for Messages
The following list summarizes the notation conventions for the presentation of displayed
messages in this manual.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.

lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-register

process-name

[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be displayed,
of which one or none might actually be displayed. The items in the list might be
arranged either vertically, with aligned brackets on each side of the list, or horizontally,
enclosed in a pair of brackets and separated by vertical lines. For example:

LDEV ldev [CU %ccu | CU %...] UP [(cpu,chan,%ctlr,%unit)]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list might be arranged
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

LBU { X | Y } POWER FAIL

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { OK | Failed }
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 xxi

Notation for Management Programming Interfaces Notation Conventions
% Percent Sign. A percent sign precedes a number that is not in decimal notation. The
%þnotation precedes an octal number. The %Bþnotation precedes a binary number.
The %Hþnotation precedes a hexadecimal number. For example:

%005400

P=%p-register E=%e-register

Notation for Management Programming Interfaces

UPPERCASE LETTERS. Uppercase letters indicate names from definition files; enter these
names exactly as shown. For example:

ZCOM-TKN-SUBJ-SERV

lowercase letters. Words in lowercase letters are words that are part of the notation, including
Data Definition Language (DDL) keywords. For example:

token-type

!r. The !r notation following a token or field name indicates that the token or field is
required. For example:

ZCOM-TKN-OBJNAME token-type ZSPI-TYP-STRING. !r

!o. The !o notation following a token or field name indicates that the token or field is
optional. For example:

ZSPI-TKN-MANAGER token-type ZSPI-TYP-FNAME32. !o

Change Bar Notation
Change bars are used to indicate substantive differences between this edition of the
manual and the preceding edition. Change bars are vertical rules placed in the right
margin of changed portions of text, figures, tables, examples, and so on. Change bars
highlight new or revised information. For example:

The message types specified in the REPORT clause are different in the COBOL85
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for old
message types. In the CRE, the message type SYSTEM includes all messages
except LOGICAL-CLOSE and LOGICAL-OPEN.
xxii
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

1 Overview of DSNM

Scope of This Section
This section provides an overview of the Distributed Systems Network Management
(DSNM) services, which collate information from multiple subsystems and provide a
consistent view between network-management applications and the diverse subsystems
being managed.

What is DSNM?
The DSNM product provides a management service layer between management
applications and individual management facilities for Tandem subsystems and user
applications. DSNM works with the DSM products to present network-management
applications with a uniform interface to Tandem subsystems and applications. It collates
information from multiple subsystems and provides a consistent view between the
operations environment and the diverse subsystems managed by various network-
management products. DSNM provides the following services and operations:

• Maintains a real-time database about subsystem objects defined to nodes in the
network.

• Processes a set of control, information, and update commands that it receives from
network-management applications.

• Translates command responses from different subsystems into standard DSNM
responses.

• Interprets subsystem events and forwards object state change information to the
requesting program.

NetCommand and NetStatus are complementary management applications that present
the major DSNM services to a human network operator and provide additional functions
of their own.

Applications Supported by DSNM
DSNM supports three network-management products—NonStop NET/MASTER MS,
NetCommand, and NetStatus. Figure 1-1 illustrates the relationship between the user
interface (NonStop NET/MASTER MS, NetCommand, or NetStatus), the DSNM
services layer, and the subsystems being managed.

Collectively, the NetCommand and NetStatus applications, along with the DSNM
services layer, compose supported networks and applications. The DSMS products

Note. In the context of Tandem systems, a subsystem is a process or set of processes that
manages a cohesive set of objects. Objects are items subject to independent reference and
control by a subsystem: for example, PATHMON-controlled applications and terminals handled
by a PATHMON process, communication lines controlled by a SNAX line-handler process, or
jobs managed by the spooler. Objects relate conceptually to the subsystems that control them,
and are often referred to as ”subsystem objects.”
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 1-1

Applications Supported by DSNM Overview of DSNM
address day-to-day network-management issues. The DSMS products are primarily
oriented toward early fault detection and recovery.

NonStop NET/MASTER MS provides comprehensive collections of network-
management services, such as automated operations, capacity and change management,
configuration management, problem management, and performance management.
DSMS products are used by and with NonStop NET/MASTER MS. In particular, the
DSNM command infrastructure provides the command interface to Tandem subsystems
for NonStop NET/MASTER MS.

Figure 1-1. Network-Management Application Components

and so on

DSNM DNSEMS

Guardian

Expand

SNAX

Pathway

AM3270

TR3271

X.25

Spooler

NetCommand NonStop NET/MASTER MS
or NetStatus

001

Command-Line
User Interface

Utilities

Applications

Full-Screen
User

Interface
1-2
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Overview of DSNM NetCommand
NonStop NET/MASTER MS

NonStop NET/MASTER MS is a network-management product that allows you to
monitor and manage a single Tandem system or an entire network from a single
terminal. Having NonStop NET/MASTER MS installed on your system also allows
your local system to be monitored and/or managed remotely as part of a network of
systems managed by NonStop NET/MASTER MS, SOLVE management services, and
NetView products.

With NonStop NET/MASTER MS, you can:

• View event messages generated by both local and remote systems throughout a
network.

• Issue commands to remotely control and gather information about any peer system
in the network, and have the responses displayed on your local terminal.

• Run Tandem NonStop Kernel utilities, TACL routines, and other external
conversational-mode utilities, and control Tandem block-mode applications.

• Write and execute custom applications and operations management automation
procedures with NonStop NET/MASTER Network Control Language (NCL), a
high-level language for automating system and network-management tasks.

• Browse activity log files, where messages arriving at your local NonStop
NET/MASTER MS system are logged.

NetCommand

The NetCommand management application is a conversational user interface to DSNM,
primarily for command and control operations. NetCommand provides a secure TACL
environment for operational control of subsystems throughout a distributed network.

As the manager of the system, you can define operator profiles and exercise control over
operator capabilities. NetCommand is extensible by using user-written TACL routines
and macros; these can be entered into any operator’s command set.

NetCommand allows an authorized operator direct access to the DSNM command set, as
well as access to individual subsystem command interfaces or other utilities, such as the
Peripheral Utility Program (PUP) or the Subsystem Control Facility (SCF). It also
maintains an audit trail of operator commands and command responses through every
operator session.

With the DSNM command set, you can:

• Control various subsystems in a network by removing resources from service and
restoring them later (ABORT, STOP, START).

• Display status information about network objects (AGGREGATE, INQUIRE,
STATUS).

• Gather information about how network objects are configured (INFO).
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 1-3

NetStatus Overview of DSNM
• Display operational statistics about network objects (STATISTICS).

• Define how the DSNM services layer monitors subsystem objects (UPDATE).

Use of NetCommand is discussed in the User’s Guide to DSNM Commands.

NetStatus

The NetStatus management application is a Pathway-environment application that uses
the monitoring facility of DSNM to provide a full-screen status display, which is
continuously updated. You can view the status of objects, a system, or an entire network
of systems from any point in the network. From the status display, you can use function
keys to perform a variety of operations: navigate, execute DSNM commands, query, and
control components. Frequently, you can correct an identified problem with a single
keystroke. NetStatus also allows access to the NetCommand conversational interface
directly from the block-mode Pathway screen.

The NetStatus operations environment is described in the NetStatus User’s Guide.

The Network-Management Architecture
A network-management architecture is generally divided into three layers:

• Operations layer

• Management services layer

• Subsystem layer

Each layer is a set of related or parallel services having a well-defined interface with the
other layers.

The Operations Layer
The operations layer provides the interface for human operators. It may consist of
command-line and full-screen user interfaces. NonStop NET/MASTER MS,
NetCommand, and NetStatus are examples of user interfaces to DSNM.

NonStop NET/MASTER MS

NonStop NET/MASTER MS is network and system management product. It is
composed of the following major services:

• Operator Control Services (OCS), which provides the central point of operational
control of your local Tandem system, your local NonStop NET/MASTER MS
system, and remote systems. OCS provides a command input line to enter NonStop
NET/MASTER MS commands.

• Edit Services, which provides access to the Tandem text editor, PS Text Edit
(TEDIT). Edit Services allows NCL programmers to create and check NCL
procedures and panel description files.
1-4
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Overview of DSNM The Operations Layer
• User ID Management Services (UMS), a security service that enables the definition
of authorized NonStop NET/MASTER MS users and their associated functions and
privileges.

• Inter-NET/MASTER Connection (INMC), which allows multiple NonStop
NET/MASTER MS and SOLVE management services systems to be connected and
controlled from one location.

• Remote Operator Control (ROC), which allows users to log on from a local NonStop
NET/MASTER MS system to a remote NonStop NET/MASTER MS or SOLVE
management services system, to execute commands on the remote system, and to
receive the results at the local NonStop NET/MASTER MS system.

• Inter-System Routing (ISR), which enables, disables, and controls system-level
message flows between multiple NonStop NET/MASTER MS and SOLVE
management services systems.

NetCommand
NetCommand is a command-line interface to DSNM. NetCommand is composed of the
following:

• The NetCommand configuration file (NETCONF), which contains the following
information about the NetCommand environment:

• The log file and limit on the length of log entries.

• The name of the DSNM command server process (discussed under “The
Management Services Layer” on page 1-8).

• The name of the NetStatus terminal start server process (discussed under
“NetStatus” on page 1-4).

• The command sets for specified groups of users and terminals.

• The node access restrictions for specified groups of users and terminals.

• Default NetStatus display sets for specified groups of users and terminals.

• A TACL requester process (NETCMD), which:

• Defines the user environment (such as the operator’s command set, what nodes
the operator can control, and the number of response lines logged).

• Secures DSNM by checking each command against the user environment.

• Executes TACL commands entered by the user or received from NetStatus.

• Passes DSNM commands to the NetCommand server process.

• TAL-based NetCommand server process (NETSVR), which:

• Parse DSNM commands into tokenized form.

• Pass control and status commands to DSNM.

• Invoke utilities.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 1-5

The Operations Layer Overview of DSNM
• Format responses to DSNM commands for the NetCommand requester process.

• Send display set information to NetStatus.

• Execute non-DSNM commands for NetStatus.

• Log commands and responses.

The Distributed Systems Management Solutions (DSMS) System Management Guide
contains additional information on NetCommand components.

NetStatus

NetStatus is a full-screen interface to DSNM. NetStatus runs in a PATHMON
environment composed of:

• A terminal start server (TERM-START-SVR), which:

• Initiates the terminal session.

• Retrieves information identifying the network objects to be monitored and
controlled and sends this information to the screen requester for display.

• Allocates and deallocates NetStatus threads (consisting of a NetStatus terminal
and its associated NetStatus server class as defined in DSMS PATHWAY) when
a user enters and exits NetStatus.

• A SCREEN COBOL screen requester, which:

• Displays object status information, help screens, and text response screens on
the operator's terminal.

• Passes commands to the NetStatus servers.

• NetStatus servers (NETSTATUS-SVR), which provide status, command, page
control, response formatting, notification, and command and response logging
services for NetStatus. NetStatus servers:

• Secure DSNM by checking each command against the user environment.

• Parse DSNM commands into tokenized form.

• Send control and status commands to and receive responses from the DSNM
command server.

• Deliver object state change information forwarded by the command server to the
designated screen requester for display.

• Send TACL commands to NetCommand.

The Distributed Systems Management Solutions (DSMS) System Management Guide
contains additional information on NetStatus components.
1-6
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Overview of DSNM The Operations Layer

Figure 1-2. DSNM and DSM Functional Connections

010

In-Memory
 Object Database

Command
Server

OMON

DNS Database

E Processes

CIPs Object Database

DB I

State
Changes

Events
(State Changes)

Configuration/
State Changes

Transport

Conversational Utility Interface

$0

Filter

EMS
Distributor

Event
Log

$ZDNS

OBJ OBJ OBJ OBJ

Subsystem
Processes

Subsystem Objects

Configuration
Information

Management Applications

DNS

EMS

Remote System

Command
Server

NetStatus

NonStop
NET/MASTER

MS

Logical Names /
Routing

NetCommand

OMON

I Processes

Subsystem
Control

Interfaces

Conversational
Utilities

Information

Acceptable states/
MONITORED/NOT-MONITORED flag

Monitor Function
(UPDATE)

Monitor
Function

(INQUIRE)

START
STOP
ABORT
STATUS
INFO
STATISTICS
AGGREGATE

∗

Legend

Control/
Information
Retrieval
Function ∗

I Processes
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 1-7

The Management Services Layer Overview of DSNM
The Management Services Layer

The management services layer performs services for the operations layer. It provides
for object resolution, the routing of commands to appropriate nodes and subsystems, and
the handling of event messages. Tandem's Distributed Systems Management (DSM)
services contribute object resolution and event management facilities. Figure 1-2
displays the DSNM and DSM functional connections.

DSM Components

• Distributed name service (DNS)

DNS is a subsystem that manages a distributed database of names, aliases, groups,
and composites of system and network objects. The DSNM command server
(discussed later in this subsection) communicates with the DNS name manager
process ($ZDNS) to resolve aliases, groups, and composite names into their
constituent subsystem-defined object names. DNS is described in the Distributed
Name Service (DNS) Management Operations Manual.

• Event management service (EMS)

EMS provides event-collection, logging, and distribution facilities:

• The EMS collector process ($0) receives event messages from the processes that
control subsystem devices and writes them to an event log.

• An EMS distributor process reads event messages from the event log, filters out
the messages for each DSNM-managed subsystem, and forwards them to the
appropriate event monitoring process (“E process,” discussed later in this
subsection). The locations of EMS filter files are defined to DSNM as part of
the installation procedure.

EMS is described in the EMS Manual.

DSNM Components

• The command server process, which performs the following operations:

• Receives commands from server processes.

• Communicates with the DNS name manager process to resolve object names
into subsystem object names.

• Sends command and object information to the interface process (I process)
associated with the targeted subsystem or to the object monitor process
(discussed next).

• Collects response information from the I process or the object monitor process
and forwards it to the server process that initiated the command.
1-8
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Overview of DSNM The Management Services Layer
• The object monitor process (OMON), which performs the following

• Receives state change information from the event monitoring processes
(E processes, discussed later in this subsection).

• Creates and maintains an in-memory database of current object state
information.

• Responds to command server requests for object state information.

• Receives update changes from the database interface process (discussed later in
this subsection).

• The object database, which stores the following information for each object:

• Whether the object is currently monitored.

• A description of the object, including its subsystem, object type, manager, and
parent within the subsystem hierarchy.

• Current subsystem status.

• Current high-level status (UP, DOWN, or PENDING).

• Acceptable states.

For each subsystem, the object database contains the following information:

• The status of the subsystem.

• Whether the subsystem has been acquired by the object monitor (OMON); this
affects what the E processes must do when a state change occurs.

The object database is originally configured by the E process for each supported
subsystem.

• The database interface process (DBI), which performs the following:

• Updates entries in the object database in response to requests from the command
server regarding which objects are to be monitored, how much error information
is to be displayed, and the criteria by which data is highlighted on the screen.

• Reports these types of update changes to the object monitor process.

• A subsystem interface process (I process) for each supported subsystem provides the
interface between the targeted subsystem and the DSNM command processing
services. The I processes:

• Convert DSNM commands affecting subsystem objects into a sequence of
syntactically correct subsystem-specific commands.

• Pass commands to the subsystem’s control interface process, which is
responsible for executing the commands.

• Translate subsystem responses and return them to the command server process.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 1-9

The Subsystem Layer Overview of DSNM
• The conversational interface processes (CIP), which provides access to
conversational utilities. It creates and terminates utility processes and emulates a
terminal from the utility’s point of view.

• An event monitoring process (E process) for each supported subsystem provides the
interface between the targeted subsystem and the DSNM object monitoring services.
The E processes:

• Forward state change information from the EMS distributor process to the object
monitor process.

• Update state change information and other operational statistics in the object
database.

• Rebuild the object data base after system reconfiguration.

The Subsystem Layer

The subsystem layer, an example of which is shown in Figure 1-3, comprises the
subsystems managed by the network-management application. This layer includes the
subsystem control interface processes (CIs) and the subsystem resources.

Control Interface Processes (CIs)

Subsystems support control and inquiry through their CI processes. In this manual, the
term “CI” is used in the general sense, to mean any gateway to the subsystem for control
and inquiry.

A CI is typically a management process such as PATHMON (the NonStop TS/MP
control process); a public interface management process such as the SCP
communications control facility, which further communicates with a private or
privileged subsystem manager process to actually execute commands; or possibly a set
of procedure calls such as are available for the Spooler.

A CI may execute as a server such as PATHMON or SCP, or as a requester such as PUP.
Requester CIs generally have a textual interface; servers variously use text, formatted
messages, or the subsystem programmatic interface (SPI).

Note. This release of the DSNM subsystem interface development software addresses
server-type CIs only.
1-10
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Overview of DSNM The Subsystem Layer

Subsystem Objects
A subsystem object is an entity subject to independent reference or control by a
subsystem CI process. Examples of subsystem objects include:

• SNAX lines, physical units, and logical units

• AM3270 lines and subdevices

• TR3271 lines and subdevices

• X25AM lines and subdevices

Figure 1-3. The Subsystem Layer

I Processes E Processes

DSNM

Manager
Process

OBJ OBJ OBJ OBJ

Other
Subsystem
Processes

Network-
Management
Applications

OBJ OBJ OBJ OBJ

Subsystem
Process

CI

EMS

Management
Process

004
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 1-11

Installing DSMS Products Overview of DSNM
• PATHMON-controlled terminal control processes, terminals, and server classes

• Expand paths and lines

• Tandem NonStop Kernel disks and processors

• Spooler devices

See the Tandem NonStop Kernel Documents (softdocs) for a complete list of the
subsystems supported by the current level of your DSNM software.

Installing DSMS Products
DSMS software arrives at your site on a site update tape (SUT). You install DSMS
software from the SUT onto your local node by running the system installation program,
Install, as directed in the INSTALL User’s Guide. Be certain to run the full system
Install, including the REPSUBSYS and SYSGEN phases.

The NonStop Kernel Install program places most of the DSNM files in the DSMS
installation subvolume ZDSMS. The default DSNM configuration file ZDSNCONF is
installed in $SYSTEM.SYSTEM.

You may choose to copy the ZDSMS files (except the default configuration file,
ZDSNCONF) to a working subvolume or to distribute them over several subvolumes. If
you distribute files over several subvolumes, certain files must be placed in the same
subvolume for proper operation.

Refer to the Distributed Systems Management Solutions (DSMS) System Management
Guide for more information about working with configuration files, including steps to
customize your DSNM environment.

Startup Sequence and Configuration Files
A major component of DSNM is its process configuration. There are four elements to
DSNM process configuration:

• The process startup message (the SERVER class STARTUP attribute in the DSNM
Pathway configuration file)

• The $SYSTEM.SYSTEM.DSNM file

• User-supplied DSNM configuration file(s)

• The $SYSTEM.SYSTEM.ZDSNCONF file delivered with DSNM

Figure 1-4 shows the startup sequence that each DSNM process goes through to
establish its running configuration. Section 6, “Configuring a New Subsystem Into
DSNM,” provides more information on the DSNM configuration files.
1-12
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Overview of DSNM Installing More Than One Copy of DSNM
Concurrently
Running DSNM Products
You can run DSMS products in a default configuration after the REPSUBSYS phase of
the Install program in the following operations environments:

• DSNM and NetCommand in a DSMS operations environment

• DSNM and NetCommand with NetStatus in a DSMS operations environment

• DSNM alone in a NonStop NET/MASTER MS operations environment

• DSNM with NetStatus in a NonStop NET/MASTER MS operations environment

• DSNM started externally, with or without NetStatus, in a NonStop NET/MASTER
MS operations environment

Refer to the Distributed Systems Management Solutions (DSMS) System Management
Guide for a discussion of each of these environments.

Installing More Than One Copy of DSNM Concurrently
Just as the DSNM product runs in an operations environment such as DSMS or NonStop
NET/MASTER MS, every DSNM process runs in a DSNM environment. A DSNM
environment defines configuration characteristics of the process. You can define any
number of DSNM environments, each of which may be run in a default configuration or
may be customized to any degree desired. For more information about customizing a
DSNM environment, refer to the Distributed Systems Management Solutions (DSMS)
System Management Guide.

You can have several copies of the same DSNM environment active on a Tandem node.
For example, you may want to use one DSNM copy for operations and another for
testing.

Figure 1-4. DSNM Process Startup and Configuration Components

015

$SYSTEM.SYSTEM.DSNM

. . .
DSNM Config FileDSNM Config File

ZDSNCONF

User-Supplied
DSNM Configuration Files

$SYSTEM.SYSTEM.ZDSNCONF
Configuration File

DSNM Process Startup Message
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 1-13

Mixed Network Requirements Overview of DSNM
To run concurrent copies with no DSNM configuration, use the standard names and
change only the process prefix character.

If you are running DSNM under NonStop NET/MASTER MS, no special configuration
is required. DSNM processes take their process prefix character from the first character
of the NonStop NET/MASTER NCP process (refer to the NonStop NET/MASTER MS
System Management Guide for more information).

If you are running DSNM as a PATHMON-controlled application, you must create a
separate PATHMON configuration for each concurrent copy of DSNM you wish to run.

Refer to the Distributed Systems Management Solutions (DSMS) System Management
Guide for more information on running multiple copies of DSNM.

Mixed Network Requirements
DSNM can operate in a network that includes systems running both C-series and
D-series versions of the Tandem Nonstop operating system. In such a mixed network,
the DSNM modules that access remote files or processes must run at low PINs
(processor identification numbers). All DSNM modules are released with the HIGHPIN
parameter set to OFF.

Refer to the Distributed Systems Management Solutions (DSMS) System Management
Guide and the documentation that accompanies your site update tape (SUT) for
information on system configuration and these DSNM modules.

Extending DSNM Support
Suitable subsystems can be added to the existing base of DSNM-managed subsystems in
a modular way, without modifying existing subsystem support, by providing an I process
and an E process for the targeted subsystem.

The remainder of this manual describes the development of I processes.
1-14
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

2 DSNM Commands

Scope of This Section
This section describes the DSNM commands that your subsystem interface process
(I process) must support. It provides syntax descriptions in sufficient detail to allow you
to test the commands in an end-user’s capacity, explains the effect of the valid modifiers
on each command, and defines what the outcome of each command should be. For
complete descriptions and syntax of all DSNM commands, see the User’s Guide to
DSNM Commands.

Command Line Syntax
All DSNM commands, except AGGREGATE, have the same general syntax, which
includes the following information:

• Command

• Object specification

• Modifiers

• Parameters

The DSNM command syntax is shown below:

Commands
command can be any one of the following:

• ABORT

• INFO

• INQUIRE

• START

• STATISTICS

• STATUS

• STOP

• UPDATE

command objectspec [, objectspec][, modifier][, parameter]
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-1

Object Specification DSNM Commands
Object Specification

An object specification gives information that DSNM uses to identify objects against
which a command is issued. If there is more than one object specification, each must be
separated from the other by a comma.

An object specification must include the name of at least one object. It can also include
optional qualifiers (which help identify the objects you are specifying) and a hierarchy
modifier (which determines—based on the subsystem object hierarchy—the objects to
be included).

The syntax of the object specification is shown in the following box:

subsys

is a qualifier that identifies the name of the subsystem that controls the objects you
are specifying. If you do not specify a subsystem, DSNM attempts to determine the
objects’ subsystems from the operating system, Distributed Name Service (DNS),
and the rest of the object specification.

type

is a qualifier that identifies the type of the object you are specifying. The object
type must be valid in the specified subsystem. If you do not specify an object type,
DSNM attempts to determine the object types from the operating system, DNS, and
the rest of the object specification.

[\node.]name

is one of the following:

• A subsystem object name.

• An alias for a subsystem object name defined in the DNS database.

• A group name defined in the DNS database.

• A composite name defined in the DNS database.

• A wild-card (*) specification, if permitted by the subsystem. (The wild card is
combined with the qualifiers to specify all objects that belong to the same
subsystem, object type, node, and—if applicable—subsystem manager.)

[subsys] [type] [\node.]name [[\node.]name] ...
 [UNDER [\node.]$manager] [hierarchy-modifier]
2-2
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Commands Modifiers
[\node.]$manager]

is a qualifier that identifies the name of the manager process for the objects you are
specifying. (Specify it only if it is applicable to the specified subsystem.)

hierarchy-modifier

determines which objects are to be included, based on the subsystem object
hierarchy:

Modifiers

Modifiers qualify the scope or output of the command. Possible modifiers are:

• Hierarchy modifier—determines, on the basis of the subsystem object hierarchy,
which objects are to be affected by the command. The hierarchy modifier values
are:

• Error modifier—determines how much information is reported when the command
is correct, but the objects against which the command is being executed produce
errors. The error modifier values are:

Note. You must specify the node if it is not the local node and if any of the following are
true:

• The name is a wild card(*).
• The name begins with a dollar sign ($).
• The name includes a manager.
• The name is not in the DNS database.

If the name is an alias, a group, or a composite, you can omit the node. DSNM determines
the node from the DNS database.

ALL Causes the command to affect both the specified objects and their
subordinate objects. This is the default value.

ONLY Causes the command to affect the specified objects, but not the
objects subordinate to them.

SUBONLY Causes the command to affect the objects subordinate to the
specified objects, but not the specified objects themselves.

ALL Applies the command to the object itself and to all subordinate
subsystem objects. This is the default value.

ONLY Applies the command to only the specified object(s).

SUBONLY Applies the command to the subordinate subsystem objects only, but
not the specified objects themselves.

ERROR-BRIEF Returns a single line of error text. This is the default value.

ERROR-DETAIL Returns all available error information.

ERROR-SUPPRESS Returns no error information.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-3

Modifiers DSNM Commands
• State modifier—restricts the scope of the command to a subset of the specified
objects on the basis of their states. The state modifier values are:

See “DSNM Object States” on page 2-6 for the DSNM definitions for UP, DOWN,
and PENDING states. The state modifiers are not used with the INFO and
STATISTICS commands.

• Response modifier—controls the response information from an INQUIRE or
STATUS command. The response modifier values are:

DOWN Applies the command to only the objects that are DOWN.

NOT-UP Applies the command to the objects that are DOWN or PENDING.

NOT-
DOWN

Applies the command to the objects that are UP or PENDING.

UP Applies the command to only the objects that are UP.

BRIEF Returns one line of status information for each
object, including the object’s DSNM state (see
“DSNM Object States” on page 2-6). Also returns
the object’s subsystem state, if it provides additional
information. This is the default value.

DETAIL Returns one line of status information for each
object, followed by available detailed status
information.

SUMMARY Returns a one-line display showing the total number
of objects that are UP, PENDING, DOWN,
UNDEFINED, and IN ERROR.

SUMMARY-BYOBJECT Returns one line of status information followed by a
summary status line for each subordinate object type.
Each summary status line includes the total number
of objects that are UP, PENDING, DOWN,
UNDEFINED, and IN ERROR.

SUMMARY-BYTYPE Returns one line for each object type showing the
total number of objects that are UP, PENDING,
DOWN, UNDEFINED, and IN ERROR. The value
of the hierarchy-modifier determines whether
the totals include the specified objects, subordinate
objects, or both.
2-4
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Commands Parameters
• Highlight modifier—limits the scope of the UPDATE and INQUIRE commands to a
subset of the objects, based on the objects’ attributes in the DSNM object database.
The highlight modifier values are:

Parameters

Parameters affect the action of a command and are used only with the UPDATE and
STATISTICS commands. Possible UPDATE command parameters are:

The STATISTICS command parameter is RESET. If you specify RESET, DSNM
directs the subsystem to reset the statistical counters for the specified objects after
executing the command.

FROM-DISPLAY Causes the command to use the names on the
NetStatus display instead of resolving them through
Distributed Name Service (DNS), thus speeding name
resolution. Refer to the User’s Guide to DSNM
Commands for restrictions on using this parameter.

DEFINED Limits the scope of the command to objects defined
in the DSNM object database.

UNDEFINED Limits the scope of the command to objects not
defined in the DSNM object database.

MONITORED Limits the scope of the command to objects recorded
in the DSNM object database as being monitored.

NOT-MONITORED Limits the scope of the command to objects recorded
in the DSNM object database as not being monitored.

ACCEPTABLE Limits the scope of the command to objects that are
recorded in the DSNM object database as being
monitored and currently in one of their acceptable
states.

UNACCEPTABLE Limits the scope of the command to objects that are
recorded in the DSNM object database as being
monitored and not currently in one of their acceptable
states.

ACCEPT Changes the acceptable state of the specified objects to the states
indicated.

MONITOR Determines whether the specified objects are monitored or not
when they appear on the NetStatus display.

NOMONITOR Determines whether the specified objects are not monitored when
they appear on the NetStatus display.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-5

Considerations DSNM Commands
Considerations

The following considerations apply to all DSNM commands except the AGGREGATE
command. For more information on object specification and modifiers, refer to the
User’s Guide to DSNM Commands.

• You can use parentheses to nest object lists. Any modifiers that appear inside
parentheses are limited to the object specifications within the parentheses,
overriding any modifiers that apply to the entire command.

• Modifiers can appear in any order as long as there is only one of each type. The
hierarchy modifier is the only exception; it can occur as part of the object
specification or as part of the command as a whole, or both.

• If you specify more than one modifier of the same type, DSNM only uses the last
one. You can specify a hierarchy modifier within any of the object specifications,
and you can apply one to the entire command. If a hierarchy modifier is specified
within an object specification, it overrides the command’s hierarchy modifier.

• If you enter a command that is syntactically correct, except that it includes an
incorrect or incomplete object specification, DSNM executes the command for all of
the objects that can be resolved.

DSNM Object States
One purpose of DSNM is to present a uniform representation of objects and their
subsystems for status displays. To this end, subsystem objects are classified into one of
a small set of DSNM states. This set of states may be smaller than the possible set of
subsystem states for the object. The subsystem interface process must be able to map
the states of the subsystem objects to the following DSNM object states:

Canceling Commands
If you are using NetCommand, you can cancel any command still in progress by
pressing the Break key. When you press the Break key, you see the following prompt:

Cancel?

Enter Y to cancel the command; enter N to permit it to continue. Pressing the Enter key
also permits the command to continue. If you enter Y, the command is immediately
canceled. Any portions of the command that were already completed remain in effect.

DOWN The object is unavailable or needs an operator to take action to make
it ready.

UP The object in use or available for immediate use.

PENDING The object is neither ready for use nor totally deactivated; it is in
some intermediate state such as STARTING.

UNDEFINED The object is not configured.

UNKNOWN The state of the object cannot be determined.
2-6
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Commands Canceling Commands
The command server initiates a cancellation by sending a cancel buffer (where
_INPUT.MOD.Z^AMOD = ZDSN^AMOD^CANCEL) to the frame. The frame then
redispatches the thread with an _EV^CANCEL event. The command thread is
responsible for cleaning up its environment.

Refer to the NetStatus User’s Guide to find out how to cancel commands issued from the
command line in NetStatus.

The remainder of this section provides syntax information by command, alphabetically.

Note. You cannot cancel a command that is in progress in the NonStop NET/MASTER MS
environment.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-7

The ABORT Command DSNM Commands
The ABORT Command
The ABORT command causes DSNM to issue the subsystem-specific command(s) that
stops each object. When an object is stopped, its state changes to the subsystem state
that corresponds to the DSNM DOWN state. The ABORT command stops objects
without waiting for any outstanding operations to be completed. This command is more
emergency-oriented than the STOP command, which stops objects after completing
outstanding operations.

If all objects specified in the command are stopped, there is no command response. If
the command fails to stop any object, a response message lists the objects that were not
stopped. If the command contains a syntax error, you receive an error message, and the
objects are not stopped.

objectspec

is the object specification. The syntax for the object specification is provided in
“Object Specification” on page 2-2.

hierarchy-modifier

determines which objects are affected by the command, based on the subsystem
object hierarchy: ONLY, SUBONLY, or ALL (default).

error-modifier

determines how much information is reported when the command is correct but the
objects against which the command is being applied produce errors. The error
modifier does not affect the command response for errors that result when a
command is entered incorrectly or when a name cannot be resolved. Possible error
modifiers are ERROR-BRIEF (default), ERROR-DETAIL, and
ERROR-SUPPRESS.

state-modifier

restricts the scope of the command to a subset of the specified objects, depending on
their states: UP, NOT-UP, DOWN, or NOT-DOWN.

If you do not specify a value for the state modifier, DSNM applies the command to
all objects that match your object specification, regardless of their states.

Considerations
Since the purpose of the ABORT command is to bring objects into the DOWN state, the
command has no effect on objects already in the DOWN state.

ABORT objectspec [, objectspec]...
 [, hierarchy-modifier]
 [, error-modifier]
 [, state-modifier]
2-8
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Commands The ABORT Command
Because subsystems generally must abort objects in a predetermined order, the ONLY
hierarchy modifier is ineffective with certain object types if their subordinate objects are
still up; that is, aborting certain object types forces their subordinates to be aborted also.

The ABORT command is not appropriate for all object types; refer to the User’s Guide
to DSNM Commands for details.

Example

The following command stops the Expand lines in the group ALL-EXPAND:

ABORT ALL-EXPAND

The default hierarchy modifier is ALL, but because the group consists only of lines that
have no subordinate objects, there are no subordinate objects to stop.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-9

The AGGREGATE Command DSNM Commands
The AGGREGATE Command
Use the AGGREGATE command to obtain the status of each object under the specified
manager process or subsystem. The response message comprises information that is
collated into a summary of the number of objects of each type that are in the state UP,
PENDING, DOWN, UNDEFINED, or IN ERROR.

subsys

is the subsystem for which you want the aggregate status.

\node

is the node for which you want the aggregate status.

[\node.]$manager

is the name of the manager process for which you want the aggregate status (specify
it only if it is applicable to the specified subsystem).

Considerations

If you specify a node each for both the name and manager process, the manager node
takes precedence.

Where you do not specify a node, DSNM uses the local node.

If the subsystem requires a manager process, you must specify it.

Example

The following command returns the aggregate status of all the SNAX objects on
\BERLIN:

AGGREGATE SNAX \BERLIN

A sample response to the command is:

SNAX LINE \BERLIN
 1 Up, 0 Pending, 1 Down, 0 Undefined, 0 In Error
SNAX PU \BERLIN
 1 Up, 0 Pending, 1 Down, 0 Undefined, 0 In Error
SNAX LU \BERLIN
 5 Up, 0 Pending, 5 Down, 0 Undefined, 0 In Error

AGGREGATE [subsys] [\node]... [[UNDER [\node.]$manager]]
 [,[subsys] [\node]... [[UNDER [\node.]$manager]]]...

2-10
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Commands The INFO Command
The INFO Command
Use the INFO command to obtain configuration information on objects.

The INFO command is not appropriate for all object types. Refer to the User’s Guide to
DSNM Commands for information on how the command is interpreted by each
subsystem.

objectspec

is the object specification. The syntax for the object specification is provided in
“Object Specification” on page 2-2.

hierarchy-modifier

determines which objects are affected by the command, based on the subsystem
object hierarchy: ONLY, SUBONLY, or ALL (default).

error-modifier

determines how much information is reported when the command is correct but the
objects against which the command is being applied produce errors. The error
modifier does not affect the command response for errors that result when a
command is entered incorrectly or when a name cannot be resolved. Possible error
modifiers are ERROR-BRIEF (default), ERROR-DETAIL, and
ERROR-SUPPRESS.

Example
The following command returns the configuration information for the PATHMON-
controlled terminal DPWT3 under \BERLIN.$PMD with the alias TERM-3:

INFO TERM-3

A sample response to the command is:

PATHWAY TERM DPWT3 UNDER \BERLIN.$PMD
 Autorestart: 0
 Break: off
 Diagnostic: on
 Displaypages: -1
 Echo: on
 Exclusive: off
 File: \BERLIN.$TM13B
 Initial: ENABLE-RELEASE
 Inspect: off
 Inspectfile:
 Ioprotocol: 0
 Maxinputmsgs: 0
 Printerattached: no

INFO objectspec [, objectspec]...
 [, hierarchy-modifier]
 [, error-modifier]
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-11

The INFO Command DSNM Commands
 Printerfile:
 Tclprog: \BERLIN.$SYSLOG.TRSYS.POBJ
 TCP: TCP2
 TMF: on
 Termtype: CONVERSATIONAL
 Termsubtype: 0
 Trailingblanks: on
2-12
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Commands The INQUIRE Command
The INQUIRE Command
Use the INQUIRE command to obtain the current status of objects as recorded in the
DSNM object database. Response time to the INQUIRE command can be faster than
that of the STATUS command, but the response to the STATUS command can be more
up-to-date than that of the INQUIRE command. See “Considerations” for details.

objectspec

is the object specification. The syntax for the object specification is provided in
“Object Specification” on page 2-2.

hierarchy-modifier

determines which objects are affected by the command, based on the subsystem
object hierarchy: ONLY, SUBONLY, or ALL (default).

error-modifier

determines how much information is reported when the command is correct but the
objects against which the command is being applied produce errors. The error
modifier does not affect the command response for errors that result when a
command is entered incorrectly or when a name cannot be resolved. Possible error
modifiers are ERROR-BRIEF (default), ERROR-DETAIL, and
ERROR-SUPPRESS.

state-modifier

restricts the scope of the command to a subset of the specified objects, depending on
their states: UP, NOT-UP, DOWN, or NOT-DOWN.

If you do not specify a value for the state modifier, DSNM applies the command to
all objects that match your object specification, regardless of their states.

response-modifier

determines how much status information is returned and its format. Possible
response modifiers are: BRIEF, DETAIL, SUMMARY, SUMMARY-BYOBJECT,
and SUMMARY-BYTYPE.

highlight-modifier

determines the scope of the command, based on information in the DSNM object
database. Possible highlight modifiers are: FROM-DISPLAY, DEFINED,
UNDEFINED, MONITORED, NOT-MONITORED, ACCEPTABLE, and
UNACCEPTABLE. There is no default for the highlight modifier.

INQUIRE objectspec [, objectspec]...
 [, hierarchy-modifier]
 [, error-modifier]
 [, state-modifier]
 [, response-modifier]
 [, highlight-modifier]
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-13

The INQUIRE Command DSNM Commands
FROM-DISPLAY causes the command to use the names on the NetStatus display
instead of resolving them through Distributed Name Service (DNS), thus speeding
name resolution. The FROM-DISPLAY parameter is valid only if you are issuing a
command from the NetStatus command line and all objects specified in the
command appear on the NetStatus screen. (Refer to the NetStatus User’s Guide for
more information on FROM-DISPLAY.)

Considerations

Because the INQUIRE command obtains status information from the object database, it
has a faster response time than the STATUS command. This is especially noticeable in
large networks. However, because the STATUS command obtains status information
from the subsystems directly, it produces more up-to-date information. Take your
immediate needs into account when choosing between using INQUIRE and STATUS.

Because the SUMMARY, SUMMARY-BYOBJECT, and SUMMARY-BYTYPE
response modifiers return the number of objects in each state, the state modifier is
ineffective with them. DSNM ignores the state modifier if it is combined with any of
these response modifiers.

Because the INQUIRE command retrieves status information from the in-memory copy
of the DSNM object database, it does not return the status of dynamic objects, such as
PATHMON-controlled terminals (which are not added to the database), or of objects
added to your network configuration after the DSNM object database was built.

Example

The following command returns status information for all the PATHMON-controlled
TCPs controlled by manager process \LONDON.$PMUK that are in either the UP or
PENDING state:

INQUIRE TCP * UNDER $PMUK, NOT-DOWN

Because no hierarchy modifier is specified, this command also returns the status of all
the UP or PENDING terminals controlled by that TCP. The default response modifier
BRIEF returns one line of information for each object. A sample response to this
command is:

PATHWAY TCP TCP1 UNDER \LONDON.$PMUK Up
PATHWAY TERM UKPWT1 UNDER \LONDON.$PMUK Up
PATHWAY TERM UKPWT4 UNDER \LONDON.$PMUK Pending
PATHWAY TERM UKPWT5 UNDER \LONDON.$PMUK Up
PATHWAY TERM UKPWT6 UNDER \LONDON.$PMUK Pending
PATHWAY TERM UKPWT7 UNDER \LONDON.$PMUK Pending
PATHWAY TERM UKPWT8 UNDER \LONDON.$PMUK Up
PATHWAY TERM UKPWT10 UNDER \LONDON.$PMUK Up
2-14
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Commands The START Command
The START Command
The START command causes DSNM to issue the subsystem-specific command(s) that
change each object to the subsystem state that corresponds to the DSNM UP state. If all
objects specified in the command are started, there is no command response. If the
command fails to start any of the objects, there is a response, listing the objects that
were not started. If the command line contains a syntax error, you receive an error
message.

objectspec

is the object specification. The syntax for the object specification is provided in
“Object Specification” on page 2-2.

hierarchy-modifier

determines which objects are affected by the command, based on the subsystem
object hierarchy: ONLY, SUBONLY, or ALL (default).

error-modifier

determines how much information is reported when the command is correct but the
objects against which the command is being applied produce errors. The error
modifier does not affect the command response for errors that result when a
command is entered incorrectly or when a name cannot be resolved. Possible error
modifiers are ERROR-BRIEF (default), ERROR-DETAIL, and
ERROR-SUPPRESS.

state-modifier

restricts the scope of the command to a subset of the specified objects, depending on
their states: UP, NOT-UP, DOWN, or NOT-DOWN.

If you do not specify a value for the state modifier, DSNM applies the command to
all objects that match your object specification, regardless of their states.

Considerations

In some cases, the SUBONLY modifier has no meaning when issued with the START
command. Some subsystems prevent you from requesting to start subordinate objects
without starting the objects to which they are subordinate. The SNAX/XF subsystem
requires that SNAX lines be started before PUs and LUs. PATHMON requires that
TCPs be started before terminals.

START objectspec [, objectspec]...
 [, hierarchy-modifier]
 [, error-modifier]
 [, state-modifier]
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-15

The START Command DSNM Commands
Example

The following command starts the SNAX lines identified by the aliases BERLIN-ATM-
LINE and PARIS-ATM-LINE but does not start any subordinate PUs or LUs:

START BERLIN-ATM-LINE PARIS-ATM-LINE, ONLY
2-16
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Commands The STATISTICS Command
The STATISTICS Command
Use the STATISTICS command to obtain operational statistics about objects. Some
subsystems return statistics on only objects that are up.

The STATISTICS command is not appropriate for all object types; refer to the User’s
Guide to DSNM Commands for details on this restriction.

objectspec

is the object specification. The syntax for the object specification is provided in
“Object Specification” on page 2-2.

hierarchy-modifier

determines which objects are affected by the command, based on the subsystem
object hierarchy: ONLY, SUBONLY, or ALL (default).

error-modifier

determines how much information is reported when the command is correct but the
objects against which the command is being applied produce errors. The error
modifier does not affect the command response for errors that result when a
command is entered incorrectly or when a name cannot be resolved. Possible error
modifiers are ERROR-BRIEF (default), ERROR-DETAIL, and
ERROR-SUPPRESS.

RESET

If you specify RESET, DSNM directs the subsystem to reset the statistical counters
for the specified objects after executing the command. Not all counters are
necessarily reset; the subsystems determine which counters are reset for different
types of objects.

Example

The following command returns the operational statistics for the Expand line
\PARIS.$LHD (local node is \LONDON):

STATISTICS \PARIS.$LHD

STATISTICS objectspec [, objectspec]...
 [, hierarchy-modifier]
 [, error-modifier]
 [, RESET]
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-17

The STATISTICS Command DSNM Commands
A sample response to the command is:

EXPAND LINE \PARIS.$LHD
 Current Timestamp: 21 Feb 1992, 16:07:52.044
 Last Resetstats Time: 21 Feb 1992, 16:03:36.351
 I Frames Sent: 17
 I Frames Rcvd: 8
 S Frames Sent: 25
 S Frames Rcvd: 39
 U Frames Sent: 0
 U Frames Rcvd: 0
 L2 I Frames Sent: 17
 L2 I Frames Rcvd: 8
 L2 I Frames Sent P: 0
 L2 I Frames Rcvd P: 0
 L2 RR Frames Sent: 25
 L2 RR Frames Rcvd: 39
 L2 RNR Frames Sent: 0
 L2 RNR Frames Rcvd: 0
 L2 REJ Frames Sent: 0
 L2 REJ Frames Rcvd: 0
 L2 SABM Frames Sent: 0
 L2 SABM Frames Rcvd: 0
 L2 DISC Frames Sent: 0
 L2 DISC Frames Rcvd: 0
 L2 CMDR Frames Sent: 0
 L2 CMDR Frames Rcvd: 0
 L2 UA Frames Sent: 0
 L2 UA Frames Rcvd: 0
 L2 DM Frames Sent: 0
 L2 DM Frames Rcvd: 0
 L2 SREJ Frames Sent: 0
 L2 SREJ Frames Rcvd: 0
 L2 FCS Errors: 0
 L2 Timeouts: 0
 L2 Address Errors: 0
 L2 Length Errors: 0
 L2 Receive Aborted: 0
 L2 Received Buffers: 0
 Driver Frames Total: 0
 Driver Frames Error: 0
 Driver NO Buffer: 0
 Driver BCC Errors: 0
 Driver Line Quality: 0
 Driver Receive Overrun: 0
 Driver Modem Errors: 0
 CTS State: On
 DCD State: On
 DSR State: On
 Primary PID: (2,44)
 Backup PID: (3,25)
2-18
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Commands The STATUS Command
The STATUS Command
Use the STATUS command to obtain the current subsystem status of objects, as obtained
from the subsystem. The STATUS command generates more up-to-date information
than the INQUIRE command, but the response time can be slower.

objectspec

is the object specification. The syntax for the object specification is provided in
“Object Specification” on page 2-2.

hierarchy-modifier

determines which objects are affected by the command, based on the subsystem
object hierarchy: ONLY, SUBONLY, or ALL (default).

error-modifier

determines how much information is reported when the command is correct but the
objects against which the command is being applied produce errors. The error
modifier does not affect the command response for errors that result when a
command is entered incorrectly or when a name cannot be resolved. Possible error
modifiers are ERROR-BRIEF (default), ERROR-DETAIL, and
ERROR-SUPPRESS.

state-modifier

restricts the scope of the command to a subset of the specified objects, depending on
their states: UP, NOT-UP, DOWN, or NOT-DOWN. If you do not specify a value
for the state modifier, DSNM applies the command to all objects that match your
object specification, regardless of their states.

response-modifier

determines how much status information is returned and it s format. Possible
response modifiers are: BRIEF, DETAIL, SUMMARY, SUMMARY-BYOBJECT,
and SUMMARY-BYTYPE.

Considerations

Because the STATUS command obtains status information from the subsystems directly,
it produces more up-to-date information than the INQUIRE command. However,
because the INQUIRE command obtains status information from the object database, it
has a faster response time than the STATUS command. This is especially noticeable in
large networks.

STATUS objectspec [, objectspec]...
 [, hierarchy-modifier]
 [, error-modifier]
 [, state-modifier]
 [, response-modifier]
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-19

The STATUS Command DSNM Commands
The state modifier is ignored if the response modifier has the value of SUMMARY,
SUMMARY-BYTYPE, or SUMMARY-BYOBJECT, because these values return totals
by subsystem state.

If the SUBONLY and SUMMARY modifiers are combined for object types on the
lowest level, counter values are 0. (Subordinate objects do not exist; therefore, the
summary of their counters is 0.)

DETAIL is not a valid response modifier for Tandem data communications subsystems
other than AM3270, Expand, SNAX, SNAX/CDF, TR3271, and X25AM.

The STATUS command is not appropriate for all object types; refer to the User’s Guide
to DSNM Commands for details on these restrictions.

Example

The following command returns the total number of objects in each state for TCP1 and
its subordinate terminals:

STATUS TCP1 UNDER $PMUK, SUMMARY

A sample response to the command is:

7 Up, 1 Pending, 2 Down, 0 Undefined, 0 In Error

The following command returns a summary line of status information for each object
type on each node included in the members of the group ALL-PATHWAY:

STATUS ALL-PATHWAY, SUMMARY-BYTYPE

A sample response to the command is:

PATHWAY SERVER \LONDON
 2 Up, 0 Pending, 0 Down, 0 Undefined, 0 In Error
PATHWAY TCP \LONDON
 1 Up, 0 Pending, 0 Down, 0 Undefined, 0 In Error
PATHWAY TERM \LONDON
 10 Up, 0 Pending, 0 Down, 0 Undefined, 0 In Error
PATHWAY SERVER \BERLIN
 1 Up, 1 Pending, 0 Down, 0 Undefined, 0 In Error
PATHWAY TCP \BERLIN
 0 Up, 1 Pending, 0 Down, 0 Undefined, 0 In Error
PATHWAY TERM \BERLIN
 0 Up, 10 Pending, 0 Down, 0 Undefined, 0 In Error
2-20
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Commands The STOP Command
The STOP Command
Use the STOP command to stop objects. The command causes DSNM to issue the
appropriate subsystem commands to stop each object after all current and outstanding
operations are complete.

If all objects specified in the command are successfully stopped, there is no command
response. If the command fails to stop any object, there is a response, listing the objects
that were not stopped. If the command contains a syntax error, you receive an error
message, and the objects are not stopped.

If you wish to stop objects immediately, regardless of outstanding operations, use the
ABORT command.

objectspec

is the object specification. The syntax for the object specification is provided in
“Object Specification” on page 2-2.

hierarchy-modifier

determines which objects are affected by the command, based on the subsystem
object hierarchy: ONLY, SUBONLY, or ALL (default).

error-modifier

determines how much information is reported when the command is correct but the
objects against which the command is being applied produce errors. The error
modifier does not affect the command response for errors that result when a
command is entered incorrectly or when a name cannot be resolved. Possible error
modifiers are ERROR-BRIEF (default), ERROR-DETAIL, and
ERROR-SUPPRESS.

state-modifier

restricts the scope of the command to a subset of the specified objects, depending on
their states: UP, NOT-UP, DOWN, or NOT-DOWN. If you do not specify a value
for the state modifier, DSNM applies the command to all objects that match your
object specification, regardless of their states.

Considerations

An object engaged in a lengthy operation can take a long time to stop. Therefore, the
subsystem commands issued by DSNM to stop the objects, and thus the DSNM STOP
command itself, can be complete before the objects actually stop. Consequently, some
of the objects can still be stopping for some time after the STOP command is issued,

STOP objectspec [, objectspec]...
 [, hierarchy-modifier]
 [, error-modifier]
 [, state-modifier]
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-21

The STOP Command DSNM Commands
during which time the objects can be reported by DSNM as in either the DOWN or the
PENDING state.

Because each subsystem must stop its objects in a predetermined order, the ONLY
hierarchy modifier is ineffective with certain object types if their subordinate objects are
still up; that is, stopping certain object types forces their subordinates to also be stopped.

The STOP command is not appropriate for all object types; refer to the User’s Guide to
DSNM Commands for details on these restrictions.

Example

The following command stops the PUs and LUs that are subordinate to the SNAX line
\WYJ.$STLR. It does not stop the SNAX line itself. No error information is returned if
a subsystem error occurs while the command is being executed.

STOP SNAX LINE \WYJ.$STLR, SUB-ONLY, ERROR-SUPPRESS
2-22
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Commands The UPDATE Command
The UPDATE Command
Use the UPDATE command to modify object attributes in the DSNM object database
that control:

• Whether an object is monitored when it appears on the NetStatus display

• What states cause an object to be highlighted on the NetStatus display

The UPDATE command returns a response for only those objects that are not
successfully updated.

The UPDATE command line must include a MONITOR, NOMONITOR, or ACCEPT
parameter.

objectspec

is the object specification. The syntax for the object specification is provided in
“Object Specification” on page 2-2.

hierarchy-modifier

determines which objects are affected by the command, based on the subsystem
object hierarchy: ONLY, SUBONLY, or ALL (default).

error-modifier

determines how much information is reported when the command is correct but the
objects against which the command is being applied produce errors. The error
modifier does not affect the command response for errors that result when a
command is entered incorrectly or when a name cannot be resolved. Possible error
modifiers are ERROR-BRIEF (default), ERROR-DETAIL, and
ERROR-SUPPRESS.

state-modifier

restricts the scope of the command to a subset of the specified objects, depending on
their states: UP, NOT-UP, DOWN, or NOT-DOWN. If you do not specify a value
for the state modifier, DSNM applies the command to all objects that match your
object specification, regardless of their states.

highlight-modifier

determines the scope of the command, based on information in the DSNM object
database. Possible highlight modifiers are: FROM-DISPLAY, DEFINED,

UPDATE objectspec [, objectspec]...
 [, hierarchy-modifier]
 [, error-modifier]
 [, state-modifier]
 [, highlight-modifier]
 [, MONITOR | NOMONITOR]
 [, ACCEPT [UP] [DOWN] [PENDING]]
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-23

The UPDATE Command DSNM Commands
UNDEFINED, MONITORED, NOT-MONITORED, ACCEPTABLE, and
UNACCEPTABLE. There is no default for the highlight modifier.

FROM-DISPLAY causes the command to use the names on the NetStatus display
instead of resolving them through Distributed Name Service (DNS), thus speeding
name resolution. The FROM-DISPLAY parameter is valid only if you are issuing
the UPDATE command from the NetStatus command line and all the objects
specified in the command appear on the NetStatus screen. (Refer to the NetStatus
User’s Guide for more information.)

MONITOR | NOMONITOR

determines whether the specified objects are to be monitored or not when they
appear on the NetStatus display.

ACCEPT [UP] [DOWN] [PENDING]

changes the acceptable state of the specified objects to the states indicated. If no
states are indicated, the current state becomes the acceptable state. Objects not in an
acceptable state are highlighted when they appear on the NetStatus display.

Considerations

If you specify ACCEPT with no parameters, DSNM replaces the values in the
acceptable states field of the object entry with the current state of the object. If you
specify more than one subsystem object in the UPDATE command line, DSNM replaces
the acceptable states for each object with that object’s current state. If you specify
ACCEPT followed by any combination of the keywords UP, DOWN, and PENDING,
DSNM replaces the current acceptable states for each object with the states that you
specify.

The UPDATE command is not supported in NonStop NET/MASTER MS.

Note. Objects not defined in the object database are excluded by all values of the
highlight modifier except UNDEFINED.

Note. The MONITOR and NOMONITOR parameters are similar in name to two values of
the highlight modifier; be careful to distinguish them:

• MONITOR and NOMONITOR are parameters that can be used with the UPDATE
command to switch monitoring on and off.

• MONITORED and NOT-MONITORED are values of the highlight modifier that limit the
scope of the command either to objects currently being monitored or to objects not
currently being monitored.
2-24
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Commands The UPDATE Command
Example

The following command replaces the current values of the acceptable states fields for the
SNAX PU \BERLIN.$SATM.#ATMCC with the current state of the PU:

UPDATE PU \BERLIN.$SATM.#ATMCC, ONLY, ACCEPT

Because the command line includes the ONLY modifier, it does not update the object
entries for any subordinate LUs.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-25

The UPDATE Command DSNM Commands
2-26
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

3 I Process Development Process

Scope of This Section
This section introduces the conceptual model upon which the I process program’s frame
and command thread interactions and supporting library services are based. Also
provided are a detailed development model and associated rules for using the I process
development software correctly and effectively.

The purpose of this section is to:

• Define central concepts of the I process program structure.

• Describe the environment and services provided for I process development, focusing
on the command thread and how it interacts with the program frame and library
services.

• Outline how to integrate your code with the frame code to produce a working
I process.

Complete syntax and parameter descriptions for all procedures, literals, defines, and
structure templates discussed in this section are provided in Appendix A, “DSNM
Library Services.” ZDSN error codes are described in Appendix B, “DSNM Error
Codes.” The SPI DDL constants and structure definitions that users must know about
are listed in Appendix C, “Data Definition Language (DDL)-Defined DSNM SPI
Components.”

Function of the I Process
You add a Tandem or customer-written subsystem to the existing base of DSNM-
managed subsystems by providing a DSNM subsystem interface process, commonly
referred to as an “I process.” An I process converts DSNM commands affecting
subsystem objects into a sequence of subsystem commands, sends them to the targeted
subsystem’s control interface for processing, and converts the result into a standard
DSNM form.

An I process is a member of a DSNM server class. As highlighted in Figure 3-1, it:

• Receives commands from a DSNM requester (usually the command server).

• Converts DSNM commands into syntactically correct subsystem commands.

• Presents commands to the subsystem CI for execution.

• Converts the result into a standard DSNM form.

• Returns responses to the requester.

Note. Appendix D, “Sample I Process Program Code,” contains an example of the user-written
portion of an I process program, illustrating the model and associated library services
described in this section. You may find it helpful to refer to this sample code when reading this
section.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-1

Function of the I Process I Process Development Process
You can think of an I process as being a translator from the DSNM language to the
language supported by the subsystem CI.

DSNM commands can be categorized by function as follows:

• Information retrieval commands—return various types of information about objects.
These are the AGGREGATE, INFO, STATISTICS, and STATUS commands.

• Control commands—change the state of objects. These are the START, STOP, and
ABORT commands.

• Monitoring commands—report information on the status of subsystem objects as
currently stored in the DSNM object database, and enable you to control certain
aspects of how objects are monitored. These are the INQUIRE and UPDATE
commands.

Note. This release of the DSNM subsystem interface development software addresses
server-type CIs only, which must be started outside the I process.

Figure 3-1. Function of the I Process

I process reads
command buffer

Converts DSNM command
into syntactically correct
subsystem command(s)

Command(s) sent to
subsystem CI for execution

Response returned

Response interpreted and
converted to standard DSNM

form

Response buffer returned to
requester

User issues DSNM command

Object name
resolutionCommand

server

Formatted response
returned for display

Command(s) executed

Subsystem
CI

I process

005

39

8

7 5

4

10 1

2

DNS
Database

6

3-2
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process I Process Program Structure Concepts
I Process Program Structure Concepts
The following concepts are central to the I process program structure:

Frame

 A frame is a set of compiled procedures supplied by Tandem into which user-written
subsystem-specific code is bound to produce an I process that conforms to DSNM
protocols. The frame carries out the following major functions:

• Initialization and configuration

• Thread management

• Communication with the DSNM requester (usually the command server)

• Communication with the subsystem CI (any gateway to the subsystem for control
purposes)

Thread

A thread is an independent instruction stream capable of being interleaved in execution
with other instruction streams (under the control of the frame). In this manual, an
executing instance of a command thread is called simply “a thread,” and the procedures
that compose it are called the “thread procedures.”

You use I process-development library services to write TAL procedures executed by the
frame as an independent thread, called the “command thread.” These procedures
collectively perform the following major functions:

• Translation of DSNM commands into subsystem-specific commands

• Construction of command buffers to be sent to the subsystem CI

• Interpretation of response buffers returned by the subsystem CI

The frame handles the bulk of the complexity of the requester-to-I process and process-
to-CI interactions. Library services support frame and user-written operations such as
memory management and list processing.

Figure 3-2 illustrates the relationship between the I process program frame supplied by
Tandem and the user-written procedures _COMMAND^PROC, _STARTUP,
_STARTUP^MODE, and _COMMAND^TERMINATION^PROC.

See Table 3-1 for an overview of the defines, procedures, structure templates, and user-
written procedure identifiers referenced in this illustration and in code examples
throughout this section.

Caution. All $RECEIVE operations are done by the frame on behalf of the I process; the
frame does this by calling internal DSNM library procedures. Do not perform any NonStop
Kernel file operations that affect $RECEIVE, such as FILE_OPEN_ or
FILE_GETRECEIVEINFO_. Processes may fail or behave unpredictably if you attempt to open
$RECEIVE.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-3

I Process Program Structure Concepts I Process Development Process
Dispatch

Dispatch means invoking a thread for execution.

A thread procedure periodically suspends execution until something occurs (for
example, the completion of an I/O operation) by returning to the frame with a RETURN
procedure and waiting for the frame to generate a particular event, at which point the
frame dispatches the current thread procedure. (See the “Event” discussion next in this
subsection.) As the thread executes, it can alter the current thread procedure to be called
by the frame at the next thread dispatch.

When execution proceeds after an event, the current thread procedure is reentered from
the beginning. The thread procedure determines its current state from the event that
occurred and information stored in its context area (see the “Command Context”
discussion later in this subsection).

Library routines help support state maintenance and restoration. Local variables are not
preserved and must be reinitialized on continuation after any return to the frame.

Event

An event is an occurrence that initiates a thread dispatch. Whenever a thread is
dispatched, the event that caused the dispatch is communicated to the thread.

Figure 3-2. Relationship Between the Frame and User-Written Procedures

006

I Process Program Frame

Command Thread
Procedure

Subprocedures

Command Thread
Procedure

Subprocedures

_COMMAND^PROC

_STARTUP^MODE_STARTUP

Command Thread
Procedures

Subprocedures

User-Written
Procedures

I PROCESS

_COMMAND^
TERMINATION^

PROC
3-4
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process I Process Program Structure Concepts
Command Context

A command context is a collection of data in memory reserved for a particular thread’s
exclusive use during its execution. When the frame receives a command, it creates an
instance of the command thread and dynamically allocates memory for a command
context area that is preserved for the life of the thread. Thread procedures must use
memory within their context area.

Formatted Object

A formatted object is the data structure, defined by the ZDSN^DDL^FOBJECT^DEF
DDL structure, that defines a subsystem object to DSNM. The fields within the
structure contain information about all the relevant attributes of a subsystem object.
Each object that a command has to act on is defined as a filled-in formatted object
structure.

List

A list is a double-ended queue structure that consists of a list declaration and list
members:

• The list declaration is a small data structure that holds control information for use by
the I process memory management services. Its size and structure are fixed.

• A list member is a block of memory, the size and description of which are
determined by the thread. Memory is allocated dynamically as members are added
to a list, and deallocated as members are removed from a list. List members can be
of any size.

Two predefined list structures are available in the thread's command context space:

• The input object list is the list of objects (each one of which is represented by a
formatted object structure) upon which a DSNM operation is performed.

• The output object list is produced by the command thread when processing the
command; it is initially empty.

Library functions support creation of additional lists for intermediate data storage.

CI

A CI is a control interface: any gateway to the subsystem that provides control. Within
the I process model, a CI is conceptually the name of a control interface, analogous to a
NonStop Kernel process name. Like a NonStop Kernel process, a CI can be opened for
communication. An open CI is referred to by a ciid, which is the functional
equivalent of a NonStop Kernel file number for an open NonStop Kernel process.
_SEND^CI is an operation that provides for communication with an open CI.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-5

General Command Processing Scheme I Process Development Process
General Command Processing Scheme
As an I process developer, you write a set of procedures that, when executed, form a
command thread that carries out a DSNM command. The general command processing
scheme is listed next. (See Figure 3-3 on page 3-8 for an illustrated example.)

1. When the frame receives a command, it extracts the following command
components and places them in the command context space it allocates to each
thread when it is created:

• The action to be performed.

• The command modifiers.

• A list of objects on which the operation is to be performed (the input object list).
The input object list is made up of a header and a linked list. Each list member
is a formatted object structure, defining one object to which the command is
applied.

2. The frame allocates the command context space, creates an instance of the command
thread, and dispatches the command thread.

3. The thread's overall task is to apply the command to each object in the input object
list by carrying out the following steps:

a. In its simplest form, the thread creates a subsystem command equivalent to the
DSNM command. If the subsystem does not support the operation, the thread
may:

• Perform the operation by means of a combination of subsystem commands.

• Simulate the operation. (If the subsystem doesn’t support a particular
operation, the I process itself might be coded to support it. For example, the
I process might keep its own statistics on subsystem objects for which a
STATISTICS operation is not supported.)

• Treat the operation as a no-operation (but still produce the output required
by the command).

• Reject the operation with an error.

b. The thread selects an object off the input list and sends it to an appropriate
subsystem CI.

c. The thread returns to the frame to await completion of the CI communication.

d. When a response is received from the CI, the frame redispatches the thread.

e. The thread interprets the response and creates an appropriate response for the
command (see Section 4, “DSNM Command Requirements”).
3-6
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process General Command Processing Scheme
f. The thread places the response (possibly empty, depending on the command
requirements) into a predefined output object list (defined as part of the
command context space).

Steps b through f are repeated until the input list is exhausted and the output list
represents a complete response to the original DSNM command. During the
process, the thread can define its own lists and add members to it for
intermediate results.

4. When the command has been completely processed, the thread must free all the
user-allocated lists and then stop by returning an appropriate return code to the
frame.

5. The frame then formats the response and returns it to the DSNM requester. The
frame is responsible for freeing the input and output object lists.

Note. Part of the command context space is a user-defined area where the thread
can define and manipulate intermediate lists.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-7

General Command Processing Scheme I Process Development Process
Figure 3-3. Frame/Command Thread Interaction: Processing a DSNM Command

007

I PROCESS PROGRAM FRAME

DSNM LIBRARY SERVICES

Create subsystem
operation for current

object.

Interpret response; build
formatted object structure and
append text as necessary for

each object.

When all objects have been
processed, terminate

thread.

COMMAND THREAD
(_COMMAND^PROC)

Initiate request for CI
communication and return to

frame (_CI^ID, _OPEN^CI,

_SEND^CI).

Release output object(s)
to frame

(_RELEASE^OUTPUT,
_CLOSE^CI*).

Extract command, modifiers, and
objects and create input object
list.

Build response.

Present operation to subsystem
CI.

Create instance of command
thread (CALL _COMMAND^PROC).

When operation completes,
generate I/O completion event
and redispatch thread.

Receive command.

Return response to requester.

Requester

* Depending on the subsystem, a CI may be closed inside or outside the object processing loop.
3-8
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process The Command Thread Source Environment
The Command Thread Source Environment
The source environment in which the command thread is written consists of source
definitions (DDL, literals, and defines), global definitions, and external declarations.
You must include the following ?SOURCE statements in your program:

?SOURCE KDSNDEFS (IPROCESS^DEFINITIONS)
?SOURCE KDSNDEFS (IPROCESS^GLOBALS)
?SOURCE KDSNDEFS (IPROCESS^EXTDECS)

Your program source file should be arranged as follows:

? < User compiler directives >

?SOURCE KDSNDEFS (IPROCESS^DEFINITIONS)

 < User-defined I-process globals >

The following templates should be defined:

BLOCK PRIVATE;
STRUCT in^lm^def (*);
 BEGIN ! Input list member definition
 _INPUT^LM^HEADER;

 < User-defined input list member fields for work space,
 if any >

 END;

STRUCT out^lm^def (*);
 BEGIN ! Output list member definition
 _OUTPUT^LM^HEADER;

 < User-defined output list member fields for work space,
 if any >

 END;

STRUCT cx^def (*);
 BEGIN ! Command context definition
 _COMMAND^CONTEXT^HEADER;
 INT .EXT inobj (in^lm^def);
 INT .EXT outobj (out^lm^def);

 < User-defined context fields >

 END;

INT .EXT ci^config (_CI^DEF);
INT .EXT ss^config (_SUBSYS^DEF);

Note. Because they are shared by all currently active threads, global definitions must be read-
only after initialization.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-9

The Command Thread Source Environment I Process Development Process
STRING .ciname[0:ZDSN^MAX^CICLASS-1] := [“xxxxxxx ”];
STRING .ssname[0:ZDSN^MAX^SUBSYS-1] := [“xxxxxxx ”];

END BLOCK;

?SOURCE KDSNDEFS (IPROCESS^GLOBALS)
?NOLIST, SOURCE EXTDECS0 (...)
?LIST
?SOURCE KDSNDEFS (IPROCESS^EXTDECS)

_THREAD^PROC(MYPROC1); FORWARD;
_THREAD^PROC(MYPROC2); FORWARD;

INT PROC _STARTUP (cx^length, in^lm^length) EXTENSIBLE;
INT .cx^length, .in^lm^length;

 BEGIN
 cx^length := $LEN(cx^def);
 in^lm^length := $LEN(in^lm^def);

 IF _ISNULL (@ci^config := _ADD^CI (ciname)) THEN
 RETURN ZDSN^ERR^INTERNAL^ERR;
 IF _ISNULL (@ss^config := _ADD^SUBSYS (ssname)) THEN
 RETURN ZDSN^ERR^INTERNAL^ERR;
 RETURN ZDSN^ERR^NOERR;
 END;

INT PROC _STARTUP^MODE (component, testmode,
 accept^startup^component,
 subject)
 EXTENSIBLE;

STRING .EXT component; -- ZDSN^DDL^COMPONENT^DEF,
INT .EXT testmode;
INT .EXT accept^startup^component;
STRING .EXT subject;

BEGIN
 < move subsystem name to COMPONENT >

 testmode := _COMPILED^IN^TESTMODE;
 accept^startup^component := 1;
 RETURN ZDSN^ERR^NOERR;
END;

_THREAD^PROC(_COMMAND^PROC);
 BEGIN
 INT .EXT cx (cx^def) = _THREAD^CONTEXT^ADDRESS;
 ...
_END^THREAD^PROC;

 < other command thread procedures >
3-10
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process User-Written Procedures
_THREAD^TERMINATION^PROC (_COMMAND^TERMINATION^PROC);
 BEGIN

 < clean up thread environment >

 _END^THREAD^TERMINATION^PROC;

ASSIGN Statements Required for Compilation

For compilation, you must assign the following subvolumes to be searched:

• $SYSTEM.SYSTEM—or the subvolume on your system that contains EXTDECS0.

• The volume(s) and subvolume(s) on your system that contain:

ZDSNDEFS
KDSNDEFS

ZDSNLIB
KDSNLIB

ZSPITAL
ZDSNTAL

• The volume and subvolume on your system that contains definitions for your
subsystem.

For example:

ASSIGN SSV1, $SYSTEM.SYSTEM
ASSIGN SSV2, $DSNM.IDEVLIB
ASSIGN SSV3, $DSNM.IDEVDDL

User-Written Procedures
As illustrated in Figure 3-2 on page 3-4, user-written I process procedures consist of:

• Two startup procedures: _STARTUP^MODE and _STARTUP.

• The initial command thread procedure (_COMMAND^PROC), and other command
thread procedures and utility procedures as necessary.

• An optional thread termination procedure: _COMMAND^TERMINATION^PROC.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-11

The _STARTUP^MODE Procedure I Process Development Process
The _STARTUP^MODE Procedure

The frame calls_STARTUP^MODE when it begins its startup processing.
_STARTUP^MODE performs the following tasks:

• Retrieves the component name of the subsystem(s) being handled by the I process.

• Determines whether the I process is running in test mode.

• Determines whether to use the COMPONENT process parameter value if one
appears in the startup message.

The format of the _STARTUP^MODE procedure is as follows:

component

is usually the name of the subsystem the I process handles. For I processes that
handle more than one subsystem, the component name is an arbitrary name chosen
by the developer of the process. For example, the SCP I process supplied by
Tandem handles multiple communications subsystems: COMM is its component
name. The component name is used for configuration parameter retrieval searches.

testmode

passes a value indicating whether the I process is running in test mode (which
affects startup parameter processing; see Section 5, “DSNM Process Startup
Functions”).

accept-startup-component

indicates whether a process COMPONENT parameter value in the startup message
should (nonzero) or should not (zero, the default) override the component value.

subject

identifies the I process name, up to ZDSN-MAX-COMPONENT characters (36),
terminated by a space or null. It is included as the subject value in all EMS
messages generated by the I process.

_STARTUP^MODE is discussed further in Section 5, “DSNM Process Startup
Functions.”

INT PROC _STARTUP^MODE (component
 ,testmode
 ,accept-startup-component
 ,subject)
 EXTENSIBLE;
3-12
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process The _STARTUP Procedure
The _STARTUP Procedure

The frame must supply the lengths of the command context space and the input list
member structures for which it allocates memory each time it creates an instance of a
thread. _STARTUP declares an initialization procedure that is called by the frame to
provide this information before it creates the first instance of the command thread.

_STARTUP also retrieves subsystem and CI configuration parameters from the
DSNMCONF file and places them into predefined structures for use by the frame. (See
“Command Context Space” on page 3-15 for a definition of the command context
space.)

The format of the _STARTUP procedure is as follows:

context-length

is the length, in bytes, of the user-defined command context structure.

input-lm-length

is the length, in bytes, of the user-defined input list member structure.

If no values are provided, the frame allocates only the space required for its own use; no
space is made available for user data.

The following procedures must be called in your _STARTUP procedure:

_ADD^SUBSYS

fills in a predefined structure with subsystem configuration parameters for the
subsystem(s) the I process handles. The frame uses this information when it gets a
command for that subsystem.

_ADD^CI

fills in a predefined structure with CI configuration parameters for the CI class with
which your I process communicates.

The _STARTUP procedure is described in more detail in Section 5, “DSNM Process
Startup Functions.”

INT PROC _STARTUP (context-length,input-lm-length)
 EXTENSIBLE;
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-13

Declaring Thread Procedures: _THREAD^PROC
and _END^THREAD^PROC

I Process Development Process
Declaring Thread Procedures: _THREAD^PROC and
_END^THREAD^PROC

Any procedure that might be dispatched as part of a thread must be declared with
_THREAD^PROC and _END^THREAD^PROC:

_END^THREAD^PROC issues RETURN _RC^WAIT, which returns the thread to the
frame until the occurrence of the next event causes it to be redispatched. (See
“Suspending and Dispatching Thread Procedures” later in this section for more
information.)

Use _THREAD^PROC in the following constructions:

_THREAD^PROC (procname); EXTERNAL;

_THREAD^PROC (procname); FORWARD;

The Initial Command Thread Procedure: _COMMAND^PROC

The first time it dispatches an instance of the thread, the frame invokes the command
thread as _COMMAND^PROC. You must declare the initial thread procedure with
_THREAD^PROC and _END^THREAD^PROC:

_THREAD^PROC (_COMMAND^PROC);
 BEGIN
 < procedure body <
 _END^THREAD^PROC;

The Thread Termination Procedure:
_COMMAND^TERMINATION^PROC

When a thread terminates, either because of a fatal error or because it has successfully
completed the processing of a command, the thread library looks for a user-written
procedure named _COMMAND^TERMINATION^PROC, which may be used for
cleaning up the thread’s environment. You must declare this procedure with
_THREAD^TERMINATION^PROC and _END^THREAD^TERMINATION^PROC:

_THREAD^PROC (procname);
 BEGIN
 < procedure body >
 _END^THREAD^PROC;

_THREAD^TERMINATION^PROC (_COMMAND^TERMINATION^PROC);
 BEGIN
 < procedure body >
 _END^THREAD^TERMINATION^PROC;
3-14
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process Command Context Space
Use _THREAD^TERMINATION^PROC in the following construction:

_THREAD^TERMINATION^PROC (_COMMAND^TERMINATION^PROC);
 BEGIN
 .
 .
 < procedure body >
 .
 ! for example, free lists, close the open CI(s) and
 ! return, leaving the input and output lists for the
 ! frame
 CALL _DEALLOCATE^LIST (...);
 CALL _CLOSE^CI (...);
 .
 _END^THREAD^TERMINATION^PROC;

Command Context Space
When the frame receives a command, it allocates memory for a command context space
and creates an instance of the command thread. You define the command context space
in your globals area to include the following:

• An input area, where the frame places the following command components for
access by the command thread: the command's action, modifiers, parameter list, and
the input list of objects on which the command operation is performed.

• An output area, where the frame predefines the output list. The thread will place the
objects with their associated states and/or text in response to the operation having
been performed in the output list.

• A user area, customized by the thread.

• A control context area reserved for use by the frame for state variable maintenance
and multithreading. The frame saves such variables as the current thread state, the
current thread procedure, and the event(s) that caused the current dispatch in the
control context area.

You define the input and output list members and the user area by specifying a structure
template for each. The first part of each structure is reserved for use by the frame.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-15

Command Context Space I Process Development Process
Figure 3-4. Command Context Area

008

_LIST(OBJECTLIST);

int action;
struct mod
 z^hmod
 z^rmod
 z^emod
 z^smod
 z^amod

_LIST (OBJECTLIST);

Control context area for
use by frame

_CI^IDPOINTER (_LAST^CI^ID);

_LAST^TIMEOUT^TAG;

_INPUT

_OUTPUT

Command Context Area

struct input^lm^def (*);
 begin
 _INPUT^LM^HEADER;
 ... <user-defined area>
 end;

struct output^lm^def (*);
 begin
 _OUTPUT^LM^HEADER;
 ... <user-defined area>
 end;

int .ext cx (command^context^def) =
 _THREAD^CONTEXT^ADDRESS;
int .ext in (_INPUT^DEF) :=
 @cx._INPUT;
int .ext out (_OUTPUT^DEF) :=
 @cx._OUTPUT;

struct command^context^def (*);
 begin
 _COMMAND^CONTEXT^HEADER;
 int .ext inobj (input^lm^def);
 int .ext outobj (output^lm^def);
 .
 <user-defined area>
 .
 end;

For example:

_INPUT.OBJECTLIST
members

Input Object List

_OUTPUT.OBJECTLIST
 members

Output Object List

User-Defined Data
 .
 .
 .

z^fmod
3-16
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process Defining the Command Context Space
Accessing the Command Context Space

_THREAD^CONTEXT^ADDRESS is an INT(32) global variable in which the frame
places the extended address of the command context space before each thread dispatch.

The thread can access the command context space with a data definition similar to the
following example:

INT.EXT cx (command^context^def) = _THREAD^CONTEXT^ADDRESS;

where

command^context^def

 is a user-defined structure that describes the command context space. The
definition of command^context^def is provided in the next subsection,
“Defining the Command Context Space.”

Defining the Command Context Space
The command context space contains both frame-defined areas and a user-defined area.
Your _STARTUP procedure provides the frame with the length of the command context
area.

Generating the Frame-Defined Variables:
_COMMAND^CONTEXT^HEADER

_COMMAND^CONTEXT^HEADER is a define that is required as part of the
command context structure definition. It declares the frame-defined input, output, and
control context areas.

Defining the User Area
You define the rest of the command context space according to your needs.

The following example declares a command context structure containing three user-
defined lists, a CIID structure (see “CI Communications,” later in this section), and
several work variables:

STRUCT COMMAND^CONTEXT^DEF (*);
 BEGIN
 _COMMAND^CONTEXT^HEADER;
 _LIST (objlist1);
 _LIST (objlist2);
 _LIST (objlist3);
 _CI^ID (subsys^mgr);
 INT work1[0:9];
 STRING work2;
 INT(32) work3;
 .
 .
 END;
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-17

The Input Area: _INPUT I Process Development Process
The Input Area: _INPUT

The input area is the portion of the command context space in which the frame places
the command components.

_INPUT is the name assigned to the _INPUT^DEF structure generated by
_COMMAND^CONTEXT^HEADER. This structure contains the _LIST declarations
for the input object list (OBJECTLIST), the action field, and a structure containing the
command modifiers.

_INPUT.ACTION is one of the following:

ZDSN^ACTION^ABORT
ZDSN^ACTION^AGGREGATE
ZDSN^ACTION^INFO
ZDSN^ACTION^STATUS
ZDSN^ACTION^START
ZDSN^ACTION^STATISTICS
ZDSN^ACTION^STOP

_INPUT.MOD is zero or more of the following:

Hierarchy modifier (.Z-HMOD):

ZDSN^HMOD^ALL
ZDSN^HMOD^ONLY
ZDSN^HMOD^SUBONLY

Error modifier (.Z-EMOD):

ZDSN^EMOD^BRIEF
ZDSN^EMOD^DETAIL
ZDSN^EMOD^SUPPRESS

Select state modifier (.Z-SMOD):

ZDSN^SMOD^UP | ZDSN^SMOD^GREEN
ZDSN^SMOD^NOT^UP | ZDSN^SMOD^NOT^GREEN
ZDSN^SMOD^DOWN | ZDSN^SMOD^RED
ZDSN^SMOD^NOT^DOWN | ZDSN^SMOD^NOT^RED

STRUCT _INPUT^DEF (*);
 BEGIN
 _LIST (OBJECTLIST);
 INT action;
 STRUCT mod (zdsn^mod^def);
END;
3-18
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process The Output Area: _OUTPUT
Response modifier (.Z-RMOD):

ZDSN^RMOD^BRIEF
ZDSN^RMOD^DETAIL

Action modifier (.Z-AMOD): ZDSN^AMOD^RESET

Flow modifier (.Z-FMOD)

Actions and modifiers are described in detail in Section 4, “DSNM Command
Requirements.”

Accessing the Input Area

Use data definitions similar to the following to access the input area:

INT .EXT cx (command^context^def) = _THREAD^CONTEXT^ADDRESS;
INT .EXT in (_INPUT^DEF) := @cx._INPUT;

The Output Area: _OUTPUT

The output area is the portion of the command context space in which the frame declares
the output object list that will be generated as a result of processing a command.

_OUTPUT is the name assigned to the _OUTPUT^DEF structure generated by
_COMMAND^CONTEXT^HEADER. This structure contains the _LIST declaration
for the output object list (OBJECTLIST).

Accessing the Output Area

Use data definitions similar to the following to access the output area:

INT .EXT cx (command^context^def) = _THREAD^CONTEXT^ADDRESS;
INT.EXT out (_OUTPUT^DEF) := @cx._OUTPUT;

Note. SUMMARY response modifiers are handled entirely by the I process frame and
are never seen by the command thread itself.

STRUCT _OUTPUT^DEF (*);
 BEGIN
 _LIST (OBJECTLIST);
 END;
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-19

The Input and Output List Member Structures I Process Development Process
The Input and Output List Member Structures
In addition to defining the command context area, you must also define the input and
output list member structures by specifying a structure template for each, as illustrated
in Figure 3-5. The first part of each structure is reserved for use by the frame; the thread
defines the rest of the structure.

Figure 3-5 shows the fields of interest to the command thread that are generated as part
of the input list formatted object structure (identified as FOBJ). The figure also shows
the fields that the command thread must fill in the output list member structures.
3-20
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process The Input and Output List Member Structures

Figure 3-5. Object List Member Definitions

009

_INPUT.OBJECTLIST members

_OUTPUT.OBJECTLIST members

struct input^lm^def (*);
 begin
 _INPUT^LM^HEADER;
 ... <user-defined area>
 end;

Input Object List

Output Object List

 z^hmod
 z^subsys
 z^objtype
 z^objname^occurs
 z^objname
 z^manager^occurs
 z^manager

struct FOBJ

User-defined output
list member fields

.

.

.

 z^result
 z^subsys
 z^objtype
 z^objname
 z^manager

struct FOBJ

Appended output text lines

User-defined output
list member fields

.

.

.

struct output^lm^def (*);
 begin
 _OUTPUT^LM^HEADER;
 ... <user-defined area>
 end;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-21

Defining the Input List Member Structure:
_INPUT^LM^HEADER

I Process Development Process
Defining the Input List Member Structure: _INPUT^LM^HEADER

_INPUT^LM^HEADER describes the first part of an input list member. It generates an
input list formatted object structure (FOBJ). It is required as part of the input list
member definition. Your _STARTUP procedure provides the frame with the length of
the input list member structure

The following is an example of an input list member structure declaration:

STRUCT input^list^member^def (*);
 BEGIN
 _INPUT^LM^HEADER;
 < user-definitions >
 ...
 END;

For each member in the input object list, the following FOBJ fields are available to the
thread:

In addition, internal information in each input list object structure is carried forward to
output list object structures when they are initialized with _FOBJECT^INIT (see
“Initializing Object List Members: _FOBJECT^INIT,” later in this section).

These fields are described in more detail in Section 4, “DSNM Command
Requirements.”

Defining the Output List Member Structure:
_OUTPUT^LM^HEADER

_OUTPUT^LM^HEADER describes the first part of the user-defined output list
member structure (reserved for use by the frame) and generates a DSNM formatted
object structure identified as FOBJ. It is required as part of the output list member
definition.

Z^HMOD Contains a hierarchy modifier for the object. If present,
it overrides the hierarchy modifier (Z-HMOD) value in
the _INPUT.MOD.Z^HMOD field for this object only.
Values are:

ZDSN^HMOD^ALL
ZDSN^HMOD^ONLY
ZDSN^HMOD^SUBONLY

Z^SUBSYS Is the subsystem to which the object belongs.

Z^OBJTYPE Is the subsystem object type of the object.

Z^OBJNAME^OCCURS Is the length of the object name.

Z^OBJNAME Is the object name.

Z^MANAGER^OCCURS Is the length of the manager name, if any.

Z^MANAGER Is the name of the manager, if any.
3-22
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process Working With Lists
The following is an example of an output list member structure definition:

STRUCT output^list^member^def (*);
 BEGIN
 _OUTPUT^LM^HEADER;
 ...
 END;

The following FOBJ fields must be filled in by the command thread for each object in
the output object list according to the specifications for the individual commands
(described in Section 4, “DSNM Command Requirements”):

Output objects may have lines of text associated with them as well (see “Adding Text
Items to an Output Object: _APPEND^OUTPUT,” later in this section).

These fields are described in more detail in Section 4, “DSNM Command
Requirements.”

Working With Lists
The thread's overall task is to take a command and the input list of objects, and
transform them into an output list of objects with associated states and/or text. The two
predefined list structures available in the command context area are:

• The input object list, extracted by the frame from the command buffer.

• The output object list, filled in by the thread as a result of processing the command;
it is initially empty.

As shown in Figure 3-6, list members are logically ordered. The first member is the
earliest item placed on the list; the last member is the latest. Each member has a
successor and a predecessor, the predecessor of the first and the successor of the last
being _NULL.

Z^RESULT Contains the result code for the object in the response buffer. It
may be a ZDSN^ERR value (see Appendix B, “DSNM Error
Codes”), a ZDSN^STATE value, or null (zero).

Z^SUBSYS Is the subsystem to which the object belongs.

Z^OBJTYPE Is the subsystem object type of the object.

Z^OBJNAME Is the object name, blank-filled.

Z^MANAGER Is the name of the manager, if any, blank-filled.

Note. Z^OBJNAME^OCCURS and Z^MANAGER^OCCURS are present in the output object
structure, but they need not be filled in.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-23

Declaring a List: _LIST I Process Development Process
Declaring a List: _LIST
Use _LIST to declare a list structure.

Initializing a List Structure: _INITIALIZE^LIST

Use _INITIALIZE^LIST to set a list structure to nulls.

Figure 3-6. Logical View of a List

_LIST (list);

CALL _INITIALIZE^LIST (list);

050

num := _MEMBERSOF^LIST (list);
length := _SIZE^OF^LM (list-member);

error := _DELETE^LM (list, @ list-member);

List Member Structure

@first := _FIRST^LM (list);

@previous := _PREDECESSOR^LM (list, last);

@next := _SUCCESSOR^LM (list ,first);

@last := _LAST^LM (list);

_PUSH^LM

_PUT^LM

_GET^LM

_POP^LM
3-24
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process Declaring a Pointer to a List: _LISTPOINTER
Accessing the First Member of a List: _FIRST^LM

Use _FIRST^LM to retrieve the address of the first member of a list.

Accessing the Last Member of a List: _LAST^LM

Use _LAST^LM to retrieve the address of the last (most recent) member of a list.

Accessing the Next List Member: _SUCCESSOR^LM

Use _SUCCESSOR^LM to retrieve the address of the next list member in first-to-last
(earliest to most-recent) order.

Accessing the Previous List Member: _PREDECESSOR^LM
Use _PREDECESSOR^LM to retrieve the address of the previous list member in first-
to-last (earliest to most-recent) order.

Declaring a Pointer to a List: _LISTPOINTER

Use _LISTPOINTER to declare an extended pointer to a _LIST-generated list structure.

Once a list pointer has been initialized with a list address, it may be used anywhere a
_LIST may be used. For example:

INT .EXT cx(command^context^def) = _THREAD^CONTEXT^ADDRESS;
_LISTPOINTER (outlist) := @cx._OUTPUT.OBJECTLIST;
INT .EXT out^lm (output^lm^def);
 .
 .
 .
IF _ISNULL (@out^lm := _PUT^LM (outlist,,$LEN (out^lm)))
 THEN ... <out of memory> ;
 .
 .

@first-list-member := _FIRST^LM (list);

@last-list-member := _LAST^LM (list);

@next-list-member := _SUCCESSOR^LM (list
 ,list-member);

@prev-list-member := _PREDECESSOR^LM (list
 ,list-member);

_LISTPOINTER (list);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-25

Scanning a List I Process Development Process
Scanning a List

The following examples illustrate methods of scanning lists:

• This example scans a list forward:

@lm := _NULL;
WHILE _NOTNULL (@lm := _SUCCESSOR^LM (list,lm) DO
 BEGIN
 ...
 END;

• In the next example, the user waits for a new last member to be added to the end of a
list by keeping a previous member pointer. After finding a _NULL, @lm is returned
to its previous setting. @lm can be used later in _SUCCESSOR^LM to retrieve a
new later member, if one has been added, or another _NULL, if one has not been
added.

@lm := @nextlm := _NULL;
WHILE _NOTNULL (@lm := _SUCCESSOR^LM (list,lm) DO
 BEGIN
 @nextlm := @lm;

 END;
@lm := @nextlm;

Processing a List

Normally, you process a list either by _PUT^LM plus _GET^LM or by _PUSH^LM
plus _POP^LM, but not both. _PUT^LM is identical to _PUS^†HLM, providing
different sets of primitives for first-in, first-out (FIFO) and last-in, first-out (LIFO)
processing, respectively. Adding a list member (_PUT^LM or _PUSH^LM) allocates
new memory for the member.

Removing a member (_GET^LM or _POP^LM) does not deallocate memory
immediately: the member's memory remains allocated and its contents usable until the
next successive member is removed from the same end of the list, or a new member is
added to the same end of the list. The removed member does not participate in list scans
with _SUCCESSOR^LM or _PREDECESSOR^LM.

_UNPOP^LM and _UNGET^LM replace the last list member removed from a list with
_POP^LM or _GET^LM, respectively.
3-26
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process Maintaining a List
First-In First-Out Processing: _PUT^LM / _GET^LM

Use _PUT^LM to allocate memory for a new last member of a list. Use _GET^LM to
remove the current first member from a list (the earliest member put on the list).

Last-In First-Out Processing: _PUSH^LM / _POP^LM

Use _PUSH^LM to allocate memory for a new last member of a list. Use _POP^LM to
remove the current last member from a list (the most recent member put on the list).

_PUSH^LM deallocates and reuses the memory assigned to the last element removed by
_POP^LM.

Maintaining a List

Use the following library services to delete list members or to join lists.

Deleting a List Member: _DELETE^LM

Use _DELETE^LM to delete a member of a list. Deleting a member removes it from
the list and deallocates its memory immediately; list-member is set to null.

Deleting All Members of a List: _DEALLOCATE^LIST
Use _DEALLOCATE^LIST to delete all members of a list. Memory for the list
members is deallocated immediately.

@list-member := _PUT^LM (list
 ,[length]
 ,initlength
 ,[initdata]);

@list-member := _GET^LM (list
 ,[length]);

@list-member := _PUSH^LM (list
 ,[length]
 ,initlength
 ,[initdata]);

@list-member := _POP^LM (list
 ,[length]);

error := _DELETE^LM (list
 ,@list-member);

CALL _DEALLOCATE^LIST (list);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-27

Requesting Status About a List I Process Development Process
Joining Two Lists: _JOIN^LIST

Use _JOIN^LIST to append all members of a source list to a destination list. When two
lists are joined, data is not moved in memory. The source list is empty afterwards.

Requesting Status About a List

Use the following library services to get information about lists.

Determining if a List is Empty: _EMPTY^LIST

_EMPTY^LIST is a Boolean value that is TRUE if list has no members.

Determining the Number of List Members: _MEMBERSOF^LIST

_MEMBERSOF^LIST is the type INT(32) number of members currently in a list.

Initializing Object List Members: _FOBJECT^INIT

Every subsystem object processed by DSNM is defined by the contents of a
ZDSN^DDL^FOBJECT^DEF structure, known as a “formatted object” or “FOBJECT
structure.” The FOBJECT structure contains fields used directly by the command thread
(and internal fields used by the I process frame and libraries).

It is important that every object processed by the command thread be represented in a
properly initialized FOBJECT structure. Objects on the input list sent to the command
thread by the frame are correctly initialized at the time the command thread is first
dispatched.

Each object on an intermediate list or on the output list must also be represented in an
FOBJECT structure that has been correctly initialized from a previously initialized
source FOBJECT.

The source FOBJECT structure may define the same object that the new FOBJECT
structure defines, or a parent object from which a new object has been derived. “Parent”
here means the parent of the new object in a name hierarchy, which includes the
subsystem hierarchy and an asterisk (*) object name, if supported by your I process.

error := _JOIN^LIST (dest-list
 ,source-list);

_EMPTY^LIST (list)

_MEMBERSOF^LIST (list)
3-28
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process Initializing Object List Members: _FOBJECT^INIT
You can produce new objects from objects on the input list in two ways:

1. The input object is a subsystem object, and new object names are subordinate
objects produced as a result of processing a hierarchy modifier (HMOD).

2. The input object is an wild card (*), and new object names are produced as a result
of expanding the wild card.

In either case, the input object is the parent of the new object in the name hierarchy
(which includes the subsystem hierarchy).

_FOBJECT^INIT initializes a new FOBJECT structure and determines required fields
from its source FOBJECT structure.

One of same-fobject or parent-fobject must be supplied in the call, but not
both:

• Use the same-fobject argument if the new FOBJECT structure is to define the
same object as an existing FOBJECT structure. The new object is the same if it has
the same subsystem, object type, name, and manager. Use the following syntax to
initialize the new FOBJECT structure:

error := _FOBJECT^INIT (new-fobject, same-fobject);

The following fields from the source FOBJECT structure are copied to
new-fobject when the same-fobject argument is supplied:

Z^SUBSYS
Z^OBJTYPE
Z^OBJNAME^OCCURS
Z^OBJNAME
Z^MANAGER^OCCURS
Z^MANAGER

• Use the parent-fobject argument if the new FOBJECT structure is to define a
different object from any previously initialized FOBJECT structure. Specify the
new object’s parent in the name hierarchy; as described earlier, as
parent-fobject. The new object is different if it differs in either object, type,
or name from its “name parent” (the name from which the new object was derived
by expanding a wild card or through the subsystem hierarchy). Use the following
syntax to initialize the new FOBJECT structure:

error := _FOBJECT^INIT (new-fobject,,parent-fobject);

Note. Outside the I process, there are higher levels possible in the name hierarchy made up of
(possibly nested) DNS groups and composites.

error := _FOBJECT^INIT (new-fobject
 ,[same-fobject]
 ,[parent-fobject]);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-29

Initializing Object List Members: _FOBJECT^INIT I Process Development Process
The following fields from the source FOBJECT structure are copied to
new-fobject when the parent-fobject argument is supplied:

Z^SUBSYS
Z^MANAGER^OCCURS
Z^MANAGER

Z^OBJTYPE, Z^OBJNAME, and Z^OBJNAME^OCCURS are set to null values
(zero or blanks, as appropriate). It is your responsibility to supply values for the
Z^OBJTYPE and Z^OBJNAME fields. It is not necessary to fill in
Z^OBJNAME^OCCURS, except for your own use.

In both cases, all required internal information is entered into the new-fobject
structure.

The name hierarchy may extend to multiple levels. A new object may be the
subordinate of an object that was in turn derived from processing a wild card object
name from the original input list.

Originally, only the input list contains initialized FOBJECT structures. Every
FOBJECT structure initialized with _FOBJECT^INIT must be able to be traced back to
an FOBJECT structure on the original input object list, as in the following illustration
(taken from the sample subsystem in Appendix D, “Sample I Process Program Code”):

Note. _FOBJECT^INIT does not allocate memory; memory for the new formatted object must
be previously allocated.

400

REACTOR *

BOILER1 BOILER2 BOILER3 BOILERA BOILERB BOILERC

REACTOR PURPLE

PARENT name of

PARENT name of

REACTOR AMBER

PARENT name of

PARENT name of
3-30
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process Initializing Object List Members: _FOBJECT^INIT
Example

In the following example, an output object is initialized. The output object is derived by
processing its source input object; its status, object type, and object name are filled in:

STRUCT input^lm^def (*);
 BEGIN
 _INPUT^LM^HEADER;
 ...
 END;

STRUCT output^lm^def (*);
 BEGIN
 _OUTPUT^LM^HEADER;
 ...
 END;

STRUCT command^context^def (*);
 BEGIN
 _COMMAND^CONTEXT^HEADER;
 INT .EXT inobj (input^lm^def);
 INT .EXT outobj (output^lm^def);
 END;

!Thread proc locals!

INT .EXT cx (command^context^def) = _THREAD^CONTEXT^ADDRESS;
INT .EXT in (input^lm^def) := @cx._INPUT;
INT .EXT out (output^lm^def) := @cx._OUTPUT;
 .
 .
 .
 ! Create output list member

IF _ISNULL (@cx.outobj := _PUT^LM (out.OBJECTLIST,,
 $LEN (cx.outobj)))
 THEN ... <out of available memory> ;
 .
 .
 .
 IF (error := _FOBJECT^INIT (cx.outobj.FOBJ,,
 cx.inobj.FOBJ))
 THEN ... <error exit> ;
 cx.outobj.FOBJ.Z^RESULT := <status of subordinate>;
 cx.outobj.FOBJ.Z^OBJTYPE ':=' <type of subordinate>;
 cx.outobj.FOBJ.Z^OBJNAME ':=' <name of subordinate>;
 .
 .
 .
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-31

Adding Text Items to an Output Object:
_APPEND^OUTPUT

I Process Development Process
Adding Text Items to an Output Object: _APPEND^OUTPUT

For some commands, text and other variable-length items must be appended to the
output object with _APPEND^OUTPUT:

Text items are described fully under the individual command descriptions in Section 4,
“DSNM Command Requirements.”

Releasing Output List Members to the Frame: _RELEASE^OUTPUT

_RELEASE^OUTPUT releases a member of the output list to the frame. Once released,
the output list member can be removed by the frame at the next frame return. Each
output list member should be released as soon as it has been filled in completely.

The frame cannot remove an output list member that has an unreleased predecessor.

Thread termination releases all output list members.

Example: List Processing Library Services

The following sample code illustrates _FOBJECT^INIT and some of the list processing
library services described above. In this example, each input object and its hierarchical
subordinates are to appear in the output for a STATUS command:

STRUCT input^lm^def (*);
 BEGIN
 _INPUT^LM^HEADER;
 ...
 END;

STRUCT output^lm^def (*);
 BEGIN
 _OUTPUT^LM^HEADER;
 ...
 END;

error := _APPEND^OUTPUT (output-list-member
 ,type
 ,[header]
 ,[header-len]
 ,[body]
 ,[body-len]);

_RELEASE^OUTPUT (output-list-member);
3-32
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process Example: List Processing Library Services
STRUCT command^context^def (*);
 BEGIN
 _COMMAND^CONTEXT^HEADER;
 INT .EXT inobj (input^lm^def);
 INT .EXT outobj (output^lm^def);
 END;

!Thread proc locals!

INT .EXT cx (command^context^def) = _THREAD^CONTEXT^ADDRESS;
INT .EXT in (input^lm^def) := @cx._INPUT;
INT .EXT out (output^lm^def) := @cx._OUTPUT;
 ...

! Get the next input object

IF _ISNULL (@cx.inobj := _GET^LM (in.OBJECTLIST))
 THEN ... <No more input> ;

!Create output list member

IF _ISNULL (@cx.outobj := _PUT^LM (out.OBJECTLIST,,
 $LEN (cx.outobj)))
 THEN ... <out of available memory> ;

! Now cx.inobj.fobj and cx.outobj.fobj are the current
! input and output objects. Since the output object is the
! same as an input object, use the same-fobject parameter:

IF (error := _FOBJECT^INIT (cx.outobj.FOBJ,cx.inobj.FOBJ))
 THEN ... <error exit> ;

! Send to CI, determine status of input object and its
! subordinates.
! Use state variables to return to this point after the
! _EV^IODONE event occurs.

cx.outobj.FOBJ.Z^RESULT := <status of input object>;

! Since this completes the current output object, release it

_RELEASE^OUTPUT (cx.outobj);

! Enter subordinates and their status into output list
! (Assuming one CI communication returns all subordinates)

WHILE <more subordinate objects>
 DO
 BEGIN
 IF _ISNULL (@cx.outobj := _PUT^LM (out.OBJECTLIST,,
 $LEN (cx.outobj)))
 THEN ... <out of available memory> ;
 ! Next output object

 ! Since the output object is not the same as the input
 ! object, use the parent-fobject parameter:
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-33

Suspending and Dispatching Thread Procedures I Process Development Process
 IF (error := _FOBJECT^INIT (cx.outobj.FOBJ,,
 cx.inobj.FOBJ))
 THEN ... <error exit> ;
 cx.outobj.FOBJ.Z^RESULT := <status of subordinate>;
 cx.outobj.FOBJ.Z^OBJTYPE ':=' <type of subordinate>;
 cx.outobj.FOBJ.Z^OBJNAME ':=' <name of subordinate>;
 _RELEASE^OUTPUT (cx.outobj);
 ...
 END;

Suspending and Dispatching Thread Procedures
The command thread must periodically suspend execution until something occurs; then
it continues at the point it left off. To temporarily suspend execution, such as for CI I/O,
the thread returns an _RC^WAIT return code to the frame.

The driving mechanism for dispatching a thread is the occurrence of an event, at which
point the frame calls the current thread procedure, which is entered at the top. (Any
procedure that is a candidate to be dispatched as part of a thread must be declared with
_THREAD^PROC and _END^THREAD^PROC.)

The command thread may return to the frame for the express purpose of having a new
thread procedure dispatched (see “State Management,” later in this section).

Thread procedures may also call utility procedures, which are not thread procedures.

Suspending Thread Procedures: Return Codes
When a thread procedure cannot or should not proceed, it returns one of the following
return codes to the frame:

_RC^WAIT Redispatch the current thread procedure on the next event.

_RC^STOP The command completed normally.

_RC^ABORT (error) The command terminated abnormally. error is a ZDSN^ERR
value indicating the reason for the abnormal command
termination. See Appendix B, “DSNM Error Codes.”

Note. The library functions _DISPATCH^THREAD, _SAVE^THREAD^AND^DISPATCH, and
_RESTORE^THREAD^AND^DISPATCH also result in a return to the frame with an _RC^WAIT
return code. See “State Management” for more information on library functions.
3-34
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process Dispatching Thread Procedures: Events
Dispatching Thread Procedures: Events

A thread dispatch is initiated by an event, such as the completion of a CI
communication. Events can be generated by the frame or by the thread itself:

• Events generated by the frame occur singly, with one dispatch per event.

• Events generated by the thread occur together, immediately after the next return to
the frame and before any frame-generated events.

Frame-Generated Service Completion Events

The frame generates one of the following service completion events when it completes a
request from the thread:

Frame-Generated Internal Events

The frame can generate internal events, not due directly to a request for service:

Examples of internal events are an event requesting cancellation of the command in
progress, or an event causing the thread to be redispatched (if it returns to the frame
without a pending outstanding event).

Thread-Generated Events: _SIGNAL^EVENT
The library procedure _SIGNAL^EVENT allows the thread to generate its own events.
The thread can generate private events or events simulating any frame event. When the
thread generates its own event(s), it is redispatched immediately when it returns
_RC^WAIT to the frame.

The thread may generate multiple simultaneous events with _SIGNAL^EVENT. All
events signaled by the thread before RETURN _RC^WAIT appear in _LAST^EVENTS
and _REAL^LAST^EVENTS together at the next thread dispatch. No frame events can
appear in this case.

_LAST^EVENTS and _REAL^LAST^EVENTS are defined in “State Management.”

_EV^IODONE Generated when I/O initiated by a _SEND^CI request completes

_EV^TIMEOUT Generated when a timeout interval set by a call to
_SET^TIMEOUT elapses

_EV^STARTUP Generated on the frame’s initial dispatch of the thread

_EV^CONTINUE Generated when the thread returns with an _RC^WAIT and no
outstanding requests are needed

_EV^CANCEL Generated when the frame receives a command cancellation
request

CALL _SIGNAL^EVENT (event(s));
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-35

Declaring Utility Procedures: _RC^TYPE I Process Development Process
Declaring Private Thread Events: _PRIVATE^THREAD^EVENT

_PRIVATE^THREAD^EVENT declares events, the values of which are different from
any frame-generated event values, with meanings private to the thread.

num is a number in the range 0 through 7.

For example:

LITERAL next^object = _PRIVATE^THREAD^EVENT (0);
LITERAL sub^object = _PRIVATE^THREAD^EVENT (1);

CALL _SIGNAL^EVENT (sub^object + next^object);
RETURN _RC^WAIT;
 .
! After the next dispatch ...
 .
IF _ALLON (_LAST^EVENTS, sub^object + next^object)
 THEN ...;

Simulating Frame-Generated Events
You may simulate any frame event by signaling it with _SIGNAL^EVENT. For
example:

CALL _SIGNAL^EVENT (_EV^IODONE);

Declaring Utility Procedures: _RC^TYPE

Thread procedures may call utility procedures, which are not themselves thread
procedures. It may be useful for such a procedure to return a valid frame return code as
a function value. Use _RC^TYPE to declare:

• Function procedures that can be called by a thread procedure (but which are not
themselves thread procedures) and that return a frame return code value.

• Variables to hold the frame return code (_RC^) values returned by _RC^TYPE
function procedures.

A special return code, _RC^NULL, may be returned by an _RC^TYPE procedure to
indicate that it has not returned any valid frame return code. _RC^NULL must not be
returned to the frame.

_PRIVATE^THREAD^EVENT (num);

Note. When you simulate a frame event, be careful not to use control variables set by frame-
generated events (such as _LAST^CI^ID or _LAST^TIMEOUT^TAG), unless they are set to
match the event simulated.

_RC^TYPE PROC procname ; |

_RC^TYPE var1 ,[var2 [,...]];
3-36
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process State Management
In the following example, a thread procedure calls an _RC^TYPE procedure. The called
procedure returns a frame return code, which is interpreted by the calling procedure.

_RC^TYPE PROC process^object (...);
 BEGIN
 .
 .
 END;

_THREAD^PROC (_COMMAND^PROC);
 BEGIN
 _RC^TYPE obj^rc;
 .
 .
 obj^rc := process^object (...);

 IF obj^rc <> _RC^NULL
 THEN
 RETURN obj^rc;
 .
 .
 _END^THREAD^PROC;

State Management
As described earlier, each thread is allocated a context space when created. The context
space exists until the thread terminates. The command context space and all
dynamically allocated memory areas are preserved between dispatches of the thread.

Local variables are not preserved between dispatches and must be reinitialized after any
dispatch before they are used. Global variables are shared among all concurrently
executing threads. There is no way for the user to order dispatching among active
concurrent threads; therefore, only read-only globals are practical as a general rule.

When the frame dispatches a thread, the current thread procedure is always entered from
the top. It is up to the thread procedure to determine its current state from the event that
occurred and from information it has kept in its command context area.

The frame maintains the following state variables:

• Event(s) that caused the current dispatch

• Current thread state

• Current thread procedure
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-37

Determining Which Event(s) Caused the Current
Dispatch

I Process Development Process
Determining Which Event(s) Caused the Current Dispatch

_REAL^LAST^EVENTS and _LAST^EVENTS allow the thread to determine which
event(s) caused the current dispatch.

_REAL^LAST^EVENTS

Each time the command is dispatched, _REAL^LAST^EVENTS is set to contain the
event(s) that caused the current dispatch. Each bit represents a different event.
_REAL^LAST^EVENTS is a define that returns a value; therefore it can only be tested,
not altered.

For example, to see if the thread is dispatched by a request to cancel the command:

IF _ON (_REAL^LAST^EVENTS, _EV^CANCEL)
 THEN ...;

Only one frame event occurs with one dispatch per event, so only one bit of
_REAL^LAST^EVENTS is ever on for a frame event.

The thread may generate multiple simultaneous events with _SIGNAL^EVENT. All
events signaled by the thread before _RC^WAIT appear in _LAST^EVENTS at the next
thread dispatch. No frame-generated events can appear in this case.

_LAST^EVENTS

Each time the command is dispatched, _LAST^EVENTS is set to contain the event(s)
that caused the current dispatch. _LAST^EVENTS is a global variable that can be
altered as well as tested.

For example, since a command that terminates early due to a cancel event from the
frame is considered to have terminated normally, you might want to treat
_EV^CANCEL as _EV^IODONE by altering the contents of _LAST^EVENTS:

_TURNOFF (_LAST^EVENTS, _EV^CANCEL);
_TURNON (_LAST^EVENTS, _EV^IODONE);

_REAL^LAST^EVENTS

_LAST^EVENTS

Note. When a thread is invoked for the first time, _LAST^EVENTS and
_REAL^LAST^EVENTS are set to _EV^STARTUP.
3-38
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process Altering the Current Thread Procedure and Thread
State
Altering the Current Thread Procedure and Thread State

When the frame dispatches the thread, it calls the current thread procedure. You can
alter the current thread procedure (and, in some cases, the thread state also) to be called
by the frame at the next thread dispatch by using any one of the following procedures:

_SET^THREAD^PROC
_THREAD^STATE
_PUSH^THREAD^PROCSTATE
_POP^THREAD^PROCSTATE
_DISPATCH^THREAD
_SAVE^THREAD^AND^DISPATCH
_RESTORE^THREAD^AND^DISPATCH

Altering the current thread procedure is a high-level state change. As shown in the
following example, the initial thread procedure might examine a command passed to it
by the frame when it is first dispatched. The thread procedure determines if the
command is an informational or state-change command. Since these two types of
commands have considerably different output requirements, it may be convenient to
have different procedures perform their processing.

_THREAD^PROC (info^thread^proc);
 BEGIN
 < procedure body >
 _END^THREAD^PROC;

_THREAD^PROC (state^change^thread^proc);
 BEGIN
 < procedure body >
 _END^THREAD^PROC;

_THREAD^PROC (_COMMAND^PROC);
 BEGIN
 .
 .
 IF info-type-command
 THEN _SET^THREAD^PROC (@info^thread^proc)
 ELSE _SET^THREAD^PROC (@state^change^thread^proc);
 CALL _SIGNAL^EVENT (_EV^STARTUP);
 RETURN _RC^WAIT;
 .
 .
 _END^THREAD^PROC;

Setting the Current Thread Procedure: _SET^THREAD^PROC

_SET^THREAD^PROC allows you to set the thread procedure to be called by the frame
at the next thread dispatch.

_SET^THREAD^PROC (@procname);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-39

Altering the Current Thread Procedure and Thread
State

I Process Development Process
Determining and Setting the Current Thread State:
_THREAD^STATE

The frame sets the thread state to _ST^INITIAL when it creates a thread. Subsequently,
you may set the thread state as desired; the frame never uses it again. The current thread
state can be tested or set with _THREAD^STATE.

The following example tests the current state of the thread:

CASE _THREAD^STATE OF
 BEGIN
 _ST^INITIAL ->
 ...
 OTHERWISE ->
 ...
 END;

Currently, _ST^INITIAL is the only reserved thread state value.

Defining Thread States: _ST^MIN^THREAD^STATE

Thread state values are always nonnegative. The literal _ST^MIN^THREAD^STATE is
the minimum value to which a user-defined thread state can be set. Use this literal to
define thread states.

The following example declares several thread states and then sets the current thread
state:

LITERAL thr^state1 = _ST^MIN^THREAD^STATE, thr^state2,
 thr^state3;
 .
 .
 .
_THREAD^STATE := thr^state2;

Saving and Restoring Current Thread Procedure and State Values:
_PUSH^THREAD^PROCSTATE and
_POP^THREAD^PROCSTATE

_PUSH^THREAD^PROCSTATE and _POP^THREAD^PROCSTATE allow you to save
and restore the current thread procedure and thread state.

_PUSH^THREAD^PROCSTATE saves the current thread procedure and thread state. It
optionally sets new values for the current thread procedure and thread state.

_POP^THREAD^PROCSTATE restores the saved values.

In the following example, the frame dispatches PROC^X of the command thread in
_ST^INITIAL.

error := _PUSH^THREAD^PROCSTATE ([@procname] ,[state]);
error := _POP^THREAD^PROCSTATE ;
3-40
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process Altering the Current Thread Procedure and Thread
State
PROC^X calls PROC^Y in STATE^B by:

• Setting its return state to STATE^A.

• Saving the old current thread procedure and state values, and setting new current
thread procedure and thread state values.

• Signaling an event and returning to the frame to dispatch the new thread procedure
PROC^Y in the new state STATE^B.

PROC^Y checks for event _EV^STARTUP; resets the current thread procedure and
thread state to the previously saved values of PROC^X and STATE^A; and returns to the
frame to dispatch PROC^X in STATE^A.

_THREAD^PROC (PROC^X);
 BEGIN
 .
 CASE _THREAD^STATE OF
 BEGIN
 _ST^INITIAL -->
 _THREAD^STATE := STATE^A;
 IF (error :=_PUSH^THREAD^PROCSTATE (@PROC^Y,STATE^B))
 THEN ... <error> ;
 CALL _SIGNAL^EVENT (_EV^STARTUP);
 RETURN _RC^WAIT;

 STATE^A -->
 .
 .
 RETURN _RC^STOP;
 END;
 _END^THREAD^PROC;‘

_THREAD^PROC (PROC^Y);
 BEGIN
 .
 CASE _THREAD^STATE OF
 BEGIN
 STATE^B -->
 IF _ON (_LAST^EVENTS,_EV^STARTUP)
 THEN
 BEGIN
 .
 .
 IF (error := _POP^THREAD^PROCSTATE)
 THEN ... <error> ;
 CALL _SIGNAL^EVENT (_EV^CONTINUE);
 RETURN _RC^WAIT;
 END;
 END;
 _END^THREAD^PROC;

Figure 3-7 illustrates using _THREAD^STATE, _SET^THREAD^PROC,
_PUSH^THREAD^PROCSTATE, and _POP^THREAD^PROCSTATE.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-41

Altering the Current Thread Procedure and Thread
State

I Process Development Process

Figure 3-7. Altering Current Thread Procedure and Thread State Values

011

_THREAD^STATE := STATE^A;

_PUSH^THREAD^PROCSTATE (@PROC^Y, STATE^B);

_SIGNAL^EVENT; RETURN to dispatch PROC^Y in STATE^B.

_POP^THREAD^PROCSTATE;

_SIGNAL^EVENT; RETURN to dispatch PROC^X in STATE^A.

_PUSH^THREAD^PROCSTATE;

_SET^THREAD^PROC (@PROC^Z);
_THREAD^STATE := STATE^C;

PROC^X _ST^INITIALCurrent
PROC^X of command thread executing in
_ST^INITIAL.

PROC^X executing in STATE^A.

PROC^X executing in STATE^A, but next time
it RETURNs to frame, PROC^Y of command
thread is dispatched in STATE^B.

PROC^Y executing in STATE^B, but next time it
returns to frame, PROC^X of command thread is
dispatched in STATE^A.

PROC^X still executing in STATE^A.

PROC^X still executing in STATE^A, but next
time it returns to frame, PROC^Z of command
thread is dispatched in STATE^C.

PROC^X STATE^ACurrent

PROC^Y STATE^B

PROC^X STATE^A

Current

PROC^X STATE^ACurrent

PROC^X STATE^A

PROC^X STATE^A

Current

PROC^Z STATE^C

PROC^X STATE^A

Current
3-42
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process Altering the Current Thread Procedure and Thread
State
Dispatching a New Thread Procedure: _DISPATCH^THREAD

_DISPATCH^THREAD returns to the frame and causes a new dispatch.
_DISPATCH^THREAD does not save any information about the procedure from which
it was invoked.

Saving Context and Dispatching a New Thread Procedure:
_SAVE^THREAD^AND^DISPATCH

_SAVE^THREAD^AND^DISPATCH saves the current thread procedure and state,
optionally sets new thread procedure and state values, and returns to the frame for
immediate dispatch with the specified event (or _EV^CONTINUE if none specified).

Restoring and Dispatching Previous Context:
_RESTORE^THREAD^AND^DISPATCH

_RESTORE^THREAD^AND^DISPATCH restores the thread procedure and state last
saved, and dispatches it with the specified event (or _EV^CONTINUE if none
specified).

Figure 3-8 illustrates using _SAVE^THREAD^AND^DISPATCH,
_RESTORE^THREAD^AND^DISPATCH, and _DISPATCH^THREAD.

_DISPATCH^THREAD ([@procname]
 ,[state]
 ,[event]);

_SAVE^THREAD^AND^DISPATCH ([@procname]
 ,[state]
 ,[event]);

_RESTORE^THREAD^AND^DISPATCH ([event]);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-43

Altering the Current Thread Procedure and Thread
State

I Process Development Process

Figure 3-8. Dispatching New Thread Procedures

012

PROC^X of command thread executing in
_ST^INITIAL.

_REAL^LAST^EVENTS EVENT^B

PROC^Y of command thread executing in
STATE^A.

_REAL^LAST^EVENTS EVENT^B

PROC^Y of command thread executing in
STATE^A.

_DISPATCH^THREAD (@PROC^Y, STATE^A, EVENT^B);

Current PROC^Y STATE^A

_SAVE^THREAD^AND^DISPATCH (@PROC^Z, STATE^B, EVENT^C);

_RESTORE^THREAD^AND^DISPATCH (EVENT^B);

_SAVE^THREAD^AND^DISPATCH (@PROC^AA, STATE^D, EVENT^D);

_RESTORE^THREAD^AND^DISPATCH (EVENT^A);

Current PROC^Z STATE^B

PROC^Y STATE^A _REAL^LAST^EVENTS EVENT^C

PROC^Z of command thread executing in
STATE^B.

PROC^X _ST^INITIALCurrent

_REAL^LAST^EVENTS EVENT^D

PROC^AA of command thread executing in
STATE^D.

PROC^AA STATE^D

PROC^Z STATE^B

PROC^Y STATE^A

Current

_REAL^LAST^EVENTS EVENT^A

PROC^Z of command thread executing in
STATE^B.

PROC^Z STATE^B

PROC^Y STATE^A

Current

PROC^Y STATE^ACurrent
3-44
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process CI Communications
Frame Services
The frame transmits CI messages and sets timeout intervals for the command thread.

To request a frame service, such as CI communication, the command thread calls a
library procedure and eventually returns to the frame to wait for the event signaling the
completion of the service.

The frame generates a service completion event (_EV^IODONE or _EV^TIMEOUT) at
the completion of each service and then redispatches the thread.

The thread can initiate more than one service request before returning to the frame.

CI Communications

Communicating with a CI involves the following steps:

1. Declaring a global pointer to a structure (defined by the template _CI^DEF) for each
CI with which your I process communicates.

2. Retrieving CI configuration parameters from the DSNM configuration by calling
_ADD^CI in your _STARTUP procedure. The frame uses this information when it
opens a CI for communication. _ADD^CI allocates the memory for, fills in, and
returns a pointer to the _CI^DEF-defined structure.

3. Declaring a CIID structure with _CI^ID in which information about an open CI is
stored. (You may also find it convenient to declare an extended pointer to that
structure with _CI^IDPOINTER.)

4. Opening the CI for communication (_OPEN^CI).

5. Sending request buffer(s) to the CI (_SEND^CI).

6. Terminating the CI communication (_CLOSE^CI).

The CI Configuration Structure: _CI^DEF

_CI^DEF is a template for a CI configuration structure that is filled in by the _ADD^CI
procedure. You declare an extended pointer to the structure in globals; for example:

INT .EXT ci^config (_CI^DEF);

Note. The _CI^DEF-defined CI configuration structure plays a role in command thread CI
communications analogous to file name in NonStop Kernel interprocess communications. A CI
is identified by its CI configuration name.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-45

CI Communications I Process Development Process
The definition of the _CI^DEF-defined structure is:

DEFINITION ZDSN-DDL-PCLASS-CONFIG.
 02 Z-PCLASS TYPE ZDSN-DDL-PCLASS.
 02 Z-PUBLIC-NAME-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-PUBLIC-NAME TYPE ZDSN-DDL-PARAMNAME.
 02 Z-FLAGS TYPE ZSPI-DDL-ENUM.
 02 Z-PNAME-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-PNAME TYPE ZDSN-DDL-PNAME.
 02 Z-MAX-PROCESSES TYPE ZSPI-DDL-INT.
 02 Z-OPEN-PARAMS.
 03 Z-DEFAULT-QUALIFIER TYPE ZDSN-DDL-PQUAL.
 03 Z-NOWAIT-DEPTH TYPE ZSPI-DDL-INT.
 03 Z-OPEN-TIMEOUT TYPE ZSPI-DDL-INT2.
 02 Z-NEWPROCESS-PARAMS.
 03 Z-OBJECT-FILE TYPE ZDSN-DDL-OBJNAME.
 03 Z-LIBRARY-FILE TYPE ZDSN-DDL-OBJNAME.
 03 Z-SWAPVOL TYPE ZDSN-DDL-OBJNAME.
 03 Z-PRIORITY TYPE ZSPI-DDL-INT.
 03 Z-DATAPAGES TYPE ZSPI-DDL-INT.
 03 Z-NUM-CPUS TYPE ZSPI-DDL-INT.
 03 Z-CPUS TYPE ZSPI-DDL-INT OCCURS 16 TIMES.
 03 Z-HOMETERM TYPE ZDSN-DDL-OBJNAME.
 03 Z-FLAGS TYPE ZSPI-DDL-ENUM.
END

Retrieving CI Configuration Parameter Values: _ADD^CI

_ADD^CI allocates memory for the _CI^DEF-defined structure, fills it in with CI
configuration information from the DSNM configuration, and returns the address of the
filled-in structure.

You must call _ADD^CI in your _STARTUP procedure for each CI class with which
your I process communicates.

ciname is the process class name of the CI. The process class name is arbitrary; by
custom, the object file name of the subsystem manager is the logical name of the process
class: for example, PATHMON or SCP.

@ci-config := _ADD^CI (ciname
 ,[error]
 ,[error-filename]);

Note. The CI process class name is configured in the DSNMCONF file (in the COMPONENT
field in the class CI-CONFIG record for this CI). See Section 6, “Configuring a New Subsystem
Into DSNM,” for more information about CI configuration.
3-46
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process CI Communications
Declaring a CIID Structure: _CI^ID

To access a CI, first use _CI^ID to declare a structure, referred to as a “CIID structure.”
A later call to _OPEN^CI causes information about the CI to be stored in the CIID
structure.

ciid is the name (a valid TAL identifier) of the CIID structure by which an open CI
can be referred.

Declaring a Pointer to a CIID Structure: _CI^IDPOINTER

Use _CI^IDPOINTER to declare an extended pointer to a CIID structure.

Opening a CI for Communication: _OPEN^CI

_OPEN^CI opens a CI for communication.

Requesting a CI Communication: _SEND^CI

The frame sends messages to the CI. Use _SEND^CI to initiate sending a message:

You must allocate a message buffer large enough to hold the larger of the message and
its response. This buffer must be in the command context space or in an allocated list
member: it cannot be in globals or locals. If more than one operation is to be
outstanding (whether on the same or on separate CIs), you should also supply an
INT(32) tag for the operation, usually a pointer to some identifying data.

After initiating a request for CI communication, the thread must return to the frame to
wait for its completion with a RETURN _RC^WAIT.

_CI^ID (ciid);

Note. The CIID structure plays a role in command thread CI communication analogous to a
file number in NonStop Kernel interprocess communications. A particular instance of an open
CI is identified by its ciid in CI communications.

_CI^IDPOINTER (ciid);

error := _OPEN^CI (ci-config
 ,ciid
 ,[processname]
 ,[nowait-depth])

error := _SEND^CI (ciid
 ,buffer
 ,write-count
 ,reply-count
 ,[context-boolean]
 ,[tag]
 ,[timeout]);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-47

Accessing Information About a CI Communication I Process Development Process
When the communication is complete, the frame dispatches the thread with the event
_EV^IODONE.

Canceling a CI Communication Request: _CANCEL^SEND^CI

Use _CANCEL^SEND^CI to cancel an outstanding CI communication request:

The frame cancels any outstanding _SEND^CI operations when the thread terminates.

Terminating a CI Communication: _CLOSE^CI

You must close a CI before its CIID structure (ciid) is used in another _OPEN^CI
operation. _CLOSE^CI terminates a CI communication and cancels any outstanding I/O
operations.

Accessing Information About a CI Communication

Use the following library services to retrieve information about a CI communication:

error := _CANCEL^SEND^CI ([tag]);

 error := _CLOSE^CI (ciid);

_LAST^CI^ID Address of CI involved in last CI communication
when _EV^IODONE occurs

_CI^LASTERROR (ciid) INT file system error of last operation

_CI^REPLYADDRESS (ciid) INT(32) extended address of reply

_CI^REPLYLENGTH (ciid) INT length of reply

_CI^REPLYTAG (ciid) INT(32) tag of last operation

_CI^FILENUM (ciid) INT file number of CI
3-48
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process Accessing Information About a CI Communication
The Most-Recently Completed CI Communication: _LAST^CI^ID

_LAST^CI^ID is a field within the command context space giving the CI involved in the
CI communication terminated by the last _EV^IODONE event. Its type is
_CI^IDPOINTER.

_CI^IDPOINTER (mgr);
INT .EXT cx(command^context^def) = _THREAD^CONTEXT^ADDRESS;

IF _ON (_LAST^EVENTS, _EV^IODONE)
 THEN
 BEGIN
 @mgr := cx._LAST^CI^ID;
 IF _CI^LASTERROR (mgr) ! check for errors
 THEN ... ;
 END;

File System Error: _CI^LASTERROR

_CI^LASTERROR is the type INT file system error of the last CI operation (see
previous example).

Address of CI Reply Buffer: _CI^REPLYADDRESS

_CI^REPLYADDRESS is the type INT(32) extended address of the reply buffer
containing information read from a CI on completion of a _SEND^CI.

Length of CI Reply Buffer: _CI^REPLYLENGTH

_CI^REPLYLENGTH is the type INT length of the reply buffer containing information
read from a CI on completion of a _SEND^CI.

Tag of Last CI Operation: _CI^REPLYTAG

_CI^REPLYTAG is the type INT(32) tag associated with the last CI operation.

fserror := _CI^LASTERROR (ciid)

replyaddress := _CI^REPLYADDRESS (ciid)

replylen := _CI^REPLYLENGTH (ciid)

replytag := _CI^REPLYTAG (ciid)
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-49

Timeout Intervals I Process Development Process
File Number: _CI^FILENUM

_CI^FILENUM is the type INT file number of the CI involved with the most-recently
completed communication.

Timeout Intervals

The command thread may create a pause by arranging for a future timeout event and
then returning to the thread to wait for it.

Requesting a Timeout Interval: _SET^TIMEOUT

Use _SET^TIMEOUT to delay for a time interval:

After initiating the request, the thread returns to the frame with _RC^WAIT.

When the time interval elapses, the frame dispatches the thread with the event
_EV^TIMEOUT. time-interval establishes the time in hundredths (0.01)
of a second and is a type INT(32) expression.

tag is a type INT(32) expression.

Accessing the Timeout Request Tag: _LAST^TIMEOUT^TAG
Use _LAST^TIMEOUT^TAG to access the tag associated with a timeout request:

It is convenient to use the address of a list member as a timeout tag to hold information
about the purpose of the timeout, as illustrated in the following example:

STRUCT time^info^def (*);
 BEGIN
 .
 .
 END;

INT .EXT time^info (time^info^def);

IF _ISNULL (@time^info := _PUT^LM (cx.worklist,,
 $LEN (time^info)))
 THEN ... <out of memory> ;

 < fill in time^info data >

CALL _SET^TIMEOUT (time, @time^info);
RETURN _RC^WAIT; !Wait for _EV^TIMEOUT

filenumber := _CI^FILENUM (ciid)

CALL _SET^TIMEOUT (time-interval
 ,[tag]);

_LAST^TIMEOUT^TAG
3-50
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process Reporting Errors
 .
 .
 .
IF _ON (_LAST^EVENTS, _EV^TIMEOUT)
 THEN
 BEGIN
 @time^info := cx._LAST^TIMEOUT^TAG;
 <process time^info data >
 CALL _DELETE^LM (cx.worklist, @time^info);
 END;

_LAST^TIMEOUT^TAG is a type INT(32) expression.

Canceling a Timeout Request: _CANCEL^TIMEOUT
Cancel an outstanding timeout with _CANCEL^TIMEOUT:

tag is a type INT(32) expression.

Command Thread Termination
When the command thread terminates, the frame performs the following:

• Issues _CLOSE^CI for all open CIs.

• Issues _CANCEL^TIMEOUT for any outstanding _SET^TIMEOUT operation.

• Issues _CANCEL^SEND^CI for any outstanding _SEND^CI operation.

• Releases all output list members.

• Deallocates any remaining input object list members.

The thread must deallocate all lists containing current members other than input and
output lists (_COMMAND^TERMINATION^PROC is a convenient place to do this).

Reporting Errors
When a subsystem or DSNM error occurs, the command thread should:

• Attend to outstanding CI operations. This may involve sending a sequence of
commands to the CI to return it to a clean state. The frame cancels outstanding I/O
operations when a thread terminates. This is sufficient for context-free server CIs.

error := _CANCEL^TIMEOUT ([tag]);

Note. Since the error may involve running out of memory, sufficient memory should be
reserved for this purpose, either in the command context space or in a working list
member, before the first CI communication is initiated.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-51

Reporting Errors to the Frame I Process Development Process
• If appropriate, generate an EMS event (see “Reporting Errors to EMS” for
guidelines).

• Return to the frame with an appropriate _RC^ABORT error to describe the error.

The _EV^CANCEL event should be handled like an error except that it is a normal
thread termination (return code _RC^STOP is appropriate).

Reporting Errors to the Frame

Errors that do not terminate the command must be associated with some command
object (for instance, an object name unknown by the subsystem). Usually, errors
associated with an object should not terminate the command, although there may be
exceptions for individual subsystems.

Errors that do not terminate the command are reported in the FOBJECT result code field
(Z^RESULT) of the affected output object structure. The result code must be one of the
defined ZDSN^ERR token values (see Appendix B, “DSNM Error Codes”). The
structure must also contain all entries appropriate for the executed command, including
the fully qualified object name.

For errors generated by the subsystem, the result code should be
ZDSN^ERR^SUBSYSTEM^ERR. In addition, one line of result text
(ZDSN^VTY^RESULTTEXT), briefly describing the subsystem error, should be
appended to the output object. The result text must not duplicate the information of the
result code, but add to it. To formulate result text, assume that presentation services will
substitute the text listed in Appendix B, “DSNM Error Codes,” associated with each
ZDSN^ERR code in the error display.

If ZDSN^EMOD^DETAIL is in effect, and if there is more error information available
from the subsystem than can reasonably be given in the one line of result text, one or
more lines of error text (ZDSN^VTY^ERRTEXT) should be appended to the structure.
The decision to supply error text depends upon the information available from the
subsystem: it should be omitted unless there is genuine additional information to be
transmitted.

Errors returned from a subsystem or arising when accessing the subsystem should be
reported using the following ZDSN^ERR values:

• ZDSN^ERR^FS^ERR

Use this value to report file system errors that occur when accessing the subsystem
(for example, if the manager is not running) or that are passed through from the
subsystem about a subsystem object (for example, a security violation). The
file-system error number should be appended as ZDSN^VTY^RESULTTEXT.

If the file that caused the error is not the same as the object in the object structure,
the error file name should be given in the text also, as “node.$filename.”

Note. ZDSN^EMOD^SUPPRESS allows the user to suppress errors associated with the
subsystem (undefined objects, unreachable managers, and so on); when
ZDSN^EMOD^SUPPRESS is in effect, error objects should be omitted from the output object
list.
3-52
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process Reporting Errors to EMS
• ZDSN^ERR^OBJ^NOT^FOUND

Use this value to report an object unknown to the subsystem. No result text should
be included.

• ZDSN^ERR^SUBSYSTEM^ERR

Use this value to report all other subsystem errors. The error should be described as
result text.

Command-Terminating Errors

If an error causes a command to terminate, the command thread must clean up its
resources. Such an error should not affect commands that might be active on other
threads at the time. As a general rule, an error should terminate the thread in which it
occurs by returning _RC^ABORT (error) to the frame, but should not cause the I process
to terminate by calling PROCESS_STOP_.

Errors that are the result of logic or data errors in the command thread, or errors in any
component supplied by Tandem, should also be reported to EMS. Errors that represent
normal (although infrequent) conditions, such as running out of memory, should not be
reported to EMS.

Some errors, such as corrupted global data, may be so serious that there is no choice but
to terminate the process. These errors should always be reported to EMS.

Reporting Errors to EMS

Use _REPORT^STARTUP^ERROR and _REPORT^INTERNAL^ERROR to log
serious errors to the EMS collector process. These procedures are summarized in
Table 3-1, and described in detail in Appendix A, “DSNM Library Services.”
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-53

Overview of the Library Services I Process Development Process
Overview of the Library Services
Table 3-1 lists the library services that support the I process development model.

Table 3-1. Summary of I Process Development Library Services (page 1 of 6)

Function Arguments Description

Booleans and Bit Manipulation

Given that: A is an INT variable and B is an INT expression; F is a bit mask INT expression specifying which
bits of the other operands are affected or participate in the operation; X and Y are INT(32) expressions.

Bit test Booleans
(true/false)

_ON (B, F) TRUE if any one-bit of F is on in B.

_OFF (B, F) TRUE if any one-bit of F is off in B.

_ANYON (B, F) TRUE if any one-bit of F is on in B.

_ANYOFF (B, F) TRUE if any one-bit of F is off in B.

_ALLON (B, F) TRUE if every one-bit of F is on in B.

_ALLOFF (B, F) TRUE if every one-bit of F is off in B.

Functions
returning a value

_EXTRACT (B, F); Has value of those one-bits of F that
are on in B.

_BITDEF (B ,[max-bit] ,[min-bit]) Defines a bit within a specified range.

Executable
functions (no
value returned)

_TURNON (A, F); Turn on all one-bits of F in A.

_TURNOFF (A, F); Turn off all one-bits of F in A.

_DEPOSIT (A, B, F); Set bits in A equal to same bits in B as
selected by one-bits in F.

Executable
functions (value
returned)

_ALLON^TURNOFF (A, F); TRUE if every one-bit of F is on in A;
turns off every one-bit in A that is on in
F.

_ANYON^TURNOFF (A, F); TRUE if any one-bit of F is on in A;
turns off every one-bit in A that is on in
F.

Extended address
Booleans

_ISNULL (X) TRUE if X is a null extended memory
pointer.

_NOTNULL (X) TRUE if X is a nonnull extended
memory pointer.

_XADR^EQ (X, Y) TRUE if two valid extended addresses
are equal.

_XADR^NEQ (X, Y) TRUE if two valid extended addresses
are not equal.

Defining Objects

Generating
formatted object
structure

_INPUT^LM^HEADER ; Generates formatted object portion of
an input list member structure.

_OUTPUT^LM^HEADER ; Generates formatted object portion of
an output list member structure.

Initializing error := _FOBJECT^INIT (new-fobject
,[same-fobject] ,[parent-fobject]);

Initializes new object.
3-54
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process Overview of the Library Services
Appending text error := _APPEND^OUTPUT
(output-list-member, type
 ,[header] ,[header-len] ,[body]
,[body-len]);

Appends text and other variable-length
items to an output object.

Releasing _RELEASE^OUTPUT
 (output-list-member);

Releases a member of the output list to
the frame.

User-Written Procedure Declarations

Startup procedures INT PROC _STARTUP
(context-len , input-lm-len)
 EXTENSIBLE;

Supplies lengths of user context area
and input list members, and retrieves
subsystem and CI configuration
parameters for frame.

INT PROC _STARTUP^MODE
(component, testmode,
accept-startup-component,
subject) EXTENSIBLE;

Supplies startup processing
information to frame.

_COMPILED^IN^TESTMODE Literal set to 1 (TRUE) if source file is
compiled in test mode and 0 otherwise.
Used to set testmode parameter value
in _STARTUP^MODE procedure

Thread procedures _THREAD^PROC (procname);

_END^THREAD^PROC;

Declares any procedure that can be
dispatched by the frame.

Initial command
thread procedure

_THREAD^PROC (_COMMAND^PROC);

_END^THREAD^PROC;

Name of initial command thread
procedure.

Thread
termination
procedure

_THREAD^TERMINATION^PROC
(COMMAND^TERMINATION^PROC);

_END^THREAD^TERMINATION^PROC;

Declares thread termination procedure.

Command thread
utility procedures

_RC^TYPE procname ;

_RC^TYPE var1 [,var2 , [...]] ;

Declares procedures that return a valid
frame return code value but are not
themselves thread procedures. May
also be used to declare variables that
hold frame return code values.

_RC^NULL Special return code that may be
returned by a utility procedure that was
called by an _RC^TYPE thread utility
procedure, indicating that the
procedure has not returned any valid
frame return code.

Configuration

Parameter retrieval
structures

_CI^DEF Defines a CI configuration structure to
be filled in by _ADD^CI.

_SUBSYS^DEF Defines a subsystem configuration
structure to be filled in by
_ADD^SUBSYS.

Table 3-1. Summary of I Process Development Library Services (page 2 of 6)

Function Arguments Description
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-55

Overview of the Library Services I Process Development Process
Parameter retrieval
procedures

@ci-config := _ADD^CI (ciname
,[error] ,[error-filename]);

Fills in _CI^DEF-defined structure
with CI configuration information.

@ss-config := _ADD^SUBSYS (ssname
,[error] ,[error-filename]);

Fills in _SUBSYS^DEF-defined
structure with subsystem and object
type configuration information.

error := _GET^PARAM (scope , type
,[subsys] ,[class] ,[component]
, paramname , paramvalue:maxlen
,[len] ,[error-filename]);

Retrieves a DSNM configuration
parameter.

error := _GET^PROCESS^PARAM
(paramname , paramvalue:maxlen
,[len]);

Retrieves a process startup parameter.

Thread Procedure Control Flow

Return codes RETURN _RC^WAIT; Redispatches thread on next event.

RETURN _RC^STOP; Command completed normally.

RETURN _RC^ABORT (error); Command terminated abnormally.

Frame events _EV^CANCEL Cancel the current command.

_EV^CONTINUE Default event when no other event can
occur.

_EV^IODONE _SEND^CI request completed.

_EV^STARTUP Initial dispatch of thread after thread is
created.

_EV^TIMEOUT Timeout interval has elapsed.

Thread events CALL _SIGNAL^EVENT (event(s)); Lets thread generate its own event and
be redispatched immediately upon
return to frame.

_PRIVATE^THREAD^EVENT (num); Declares event different from any
frame-generated event.

Testing and
altering events

_LAST^EVENTS Tests or alters event(s) that caused
current thread dispatch.

_REAL^LAST^EVENTS Determines event(s) that caused current
thread dispatch.

List Processing

Declarations _LIST (list); Declares a list.

_LISTPOINTER (list); Declares extended pointer to a list.

Initializing CALL _INITIALIZE^LIST (list); Sets a list structure to nulls.

Scanning @lm := _FIRST^LM (list); Points to first member of list.

@lm := _LAST^LM (list); Points to last member of list.

@lm := _SUCCESSOR^LM
(list, list-member);

Points to next member in first-to-last
order.

@lm := _PREDECESSOR^LM
(list, list-member);

Points to next member in last-to-first
order.

Table 3-1. Summary of I Process Development Library Services (page 3 of 6)

Function Arguments Description
3-56
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process Overview of the Library Services
Processing @lm := _PUT^LM (list ,[length]
, initlength ,[initdata]);
@lm := _GET^LM (list ,[length])

FIFO processing (first in, first out):
adds new last member; removes current
first member.

@lm := _PUSH^LM (list ,[length] ,
initlength ,[initdata]);
@lm := _POP^LM (list ,[length]);

LIFO processing (last in, first out):
adds new last member; removes current
last member.

error := _UNGET (list ,
list-member);
error := _UNPOP (list ,
list-member);

Replaces last list member removed
from a list.

Maintenance error := _DELETE^LM (list,
 @list-member);

Deletes any member of list.

CALL _DEALLOCATE^LIST (list); Deallocates all members of list.

error := _JOIN^LIST (list1, list2); Concatenates lists.

Returns
information about
a list

IF _EMPTY^LIST (list) THEN ... TRUE if list has no members.

num := _MEMBERSOF^LIST (list); Number of current list members.

State Management

Altering current
thread procedure/
thread state

_SET^THREADPROC (@procname); Sets current thread procedure to be
called at next thread dispatch.

_THREAD^STATE Current thread state; may be tested or
altered.

_DISPATCH^THREAD ([@procname]
,[state] ,[event]);

Returns to frame for immediate
dispatch with specified event, after
optionally setting current thread
procedure and state.

_RESTORE^THREAD^AND^DISPATCH
([event]);

Restores thread procedure and state last
pushed, and returns to thread for
immediate dispatch with specified
event.

_SAVE^THREAD^AND^DISPATCH
([@procname] ,[state] ,[event]);

Saves current thread procedure and
state, and returns to frame for
immediate dispatch of new (or same, if
none specified) thread procedure in
specified state.

error := _PUSH^THREAD^PROCSTATE
([@procname] ,[state]);
error := _POP^THREAD^PROCSTATE;

Saves current thread procedure and
state and optionally sets new current
thread procedure and state; restores
previously pushed thread procedure
and state.

_ST^MIN^THREAD^STATE Minimum value of user-defined thread
state.

_ST^INITIAL Thread state value when thread created.

Table 3-1. Summary of I Process Development Library Services (page 4 of 6)

Function Arguments Description
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-57

Overview of the Library Services I Process Development Process
CI Communication

Given that INT .EXT ci-config (_CI^DEF) ...

Declarations _CI^ID (ciid); Declares CIID structure where
information about an open CI is stored.

_CI^IDPOINTER (ciid); Declares (extended) pointer to a CIID
structure.

Communication error := _OPEN^CI (ci-config, ciid
,[processname] ,[nowait-depth]);

Opens CI for communication.

error := _SEND^CI (ciid, buffer,
write-count, reply-count
,[context-boolean] ,[tag]
,[timeout]);

Initiates request for CI communication.

error := _CANCEL^SEND^CI ([tag]); Cancels outstanding CI communication
request.

error := _CLOSE^CI (ciid); Terminates CI communication.

Information _LAST^CI^ID Points to CI that caused last event.

fserror := _CI^LASTERROR (ciid) File system error of last CI operation.

replyaddress := _CI^REPLYADDRESS
(ciid)

Extended address of CI reply buffer.

replylen := _CI^REPLYLENGTH (ciid) Length of CI reply buffer.

replytag := _CI^REPLYTAG (ciid) Tag associated with last CI operation.

filenumber := _CI^FILENUM (ciid) File number of CI involved in most-
recently completed communication.

Timeout intervals CALL _SET^TIMEOUT (time-interval
,[tag]);

Initiates request for time interval delay.

error := _CANCEL^TIMEOUT ([tag]); Cancels outstanding timeout.

_LAST^TIMEOUT^TAG Accesses tag associated with timeout
request.

Command Context

Defining fixed
header portion of
command context

_COMMAND^CONTEXT^HEADER ; Required as part of command context
space structure definition to reserve
and define input, output, and command
context areas.

Accessing
command
context space

_THREAD^CONTEXT^ADDRESS Contains extended address of
command context space.

Table 3-1. Summary of I Process Development Library Services (page 5 of 6)

Function Arguments Description
3-58
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

I Process Development Process Overview of the Library Services
Frame-defined
input/output areas

_INPUT^DEF Structure template that defines the
input area of the command context
space.

_INPUT Name assigned to the _INPUT^DEF
structure by
_COMMAND^CONTEXT^HEADER.

_OUTPUT^DEF Structure template that defines the
output area of the command context
space.

_OUTPUT Name assigned to the _OUTPUT^DEF
structure by
_COMMAND^CONTEXT^HEADER.

Table 3-1. Summary of I Process Development Library Services (page 6 of 6)

Function Arguments Description
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-59

Overview of the Library Services I Process Development Process
3-60
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

4 DSNM Command Requirements

Scope of This Section
This section defines the requirements for carrying out DSNM operations. It specifies
what information is sent to the command thread and what information must be returned
for each command so that the frame can create a DSNM-formatted response to return to
the requester.

Command Flow
The typical flow for a DSNM command is from a user to the DSNM command server,
and then to one or more I processes. Command responses flow back from the
I processes through the command server and then to the user.

The command server is responsible for resolving objects of a command, which means
determining their complete set of characteristics and routing them to the correct
I process. The I process is responsible for direct communication with the subsystem to
carry out commands delivered to it by the command server.

The general command processing flow is as follows:

• The I process carries out the DSNM command for each input list object using
subsystem commands. Several subsystem commands may be required to carry out
one DSNM command. Input list objects are processed in the order they appear.

• Carrying out a command for an object means executing it for some selection of the
input list object and its subordinates in the subsystem hierarchy. The exact set of
objects involved is determined by the combination of the hierarchy and state
modifiers (see “Object List Modifiers” on page 4-3).

• The I process generates output objects as required by the command. Informational
commands other than AGGREGATE return an output object for each object. State-
change commands return an output object only in the case of errors. The
AGGREGATE command returns summary information rather than information
about individual objects.

Command Components
For each DSNM command, the frame places the following components in the command
thread context space:

• The action to be performed

• The command modifiers

• A list of objects on which the operation is to be performed
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 4-1

Action to be Performed DSNM Command Requirements
Action to be Performed
The action to be performed is determined by the value in the _INPUT.ACTION field in
the command context space. The command thread must be able to translate the
following DSNM operations into an equivalent subsystem-specific command or
command sequence:

Command Modifiers
Command modifiers specify whether a command is applied to subordinate objects in the
subsystem hierarchy, specify the state of objects to which a command is applied, specify
whether error responses are suppressed, and so on. The command modifiers are
determined by the values in the _INPUT.MOD structure (ZDSN^MOD^DEF) contained
within the command context space. The command modifiers relevant to I processes are
listed in Table 4-1.

ZDSN^ACTION^ABORT Brings objects to a nonoperational state, without
waiting for outstanding operations to complete.

ZDSN^ACTION^AGGREGATE Returns a summary of operational status of all
objects in the subsystem or under a specified
manager process.

ZDSN^ACTION^INFO Returns configuration information for each
object.

ZDSN^ACTION^STATUS Returns current operational status of each object.

ZDSN^ACTION^START Brings objects to an operational state.

ZDSN^ACTION^STATISTICS Returns operational statistics for each object.

ZDSN^ACTION^STOP Brings objects to a nonoperational state, once
outstanding operations are complete.

Table 4-1. Command Modifiers

Modifier Abbreviation Modifies/Specifies

Hierarchy HMOD Subsystem hierarchy

State SMOD State of affected objects

Response RMOD Response format

Error EMOD Error response format

Action AMOD Action of operation

Note: A value of 0 for any modifier indicates that the modifier is omitted.
4-2
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Command Requirements Object List Modifiers
These modifiers fall into the following categories:

• Object list modifiers, which limit or expand the scope of the original input object list
(HMOD and SMOD).

• Response modifiers, which determine the amount and type of information returned
for each object in the output object list (RMOD and EMOD).

• The action modifier, which indicates that statistics be reset (AMOD).

Object List Modifiers

Applying the hierarchy and state modifiers to the contents of the original input object
list returns a subset or superset of the list. The command thread must be able to resolve
the hierarchy and state command modifiers that limit or expand the scope of the input
object list.

The Hierarchy Modifier (_INPUT.MOD.Z^HMOD)

The hierarchy modifier (HMOD) controls whether the command is applied to subsystem
objects that are subordinate to the object(s) in the input object list. HMOD is valid for
all DSNM commands except AGGREGATE. Its values have the following meanings:

ZDSN^HMOD^ALL For each object on the input object list, apply the
command to the object itself and to all subsystem
objects subordinate to it. For consistency among
subsystems, this should be the default when HMOD is
omitted, unless there are overwhelming subsystem
reasons for a different default.

ZDSN^HMOD^ONLY Apply the command to each object on the input object
list, but not to subordinate objects.

ZDSN^HMOD^SUBONLY For each object on the input object list, apply the
command only to the subsystem objects that are
subordinate to it in the subsystem hierarchy (but not the
object itself).
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 4-3

Object List Modifiers DSNM Command Requirements
In addition to the HMOD value in the MOD structure supplied with the command
(MOD.Z^HMOD), there may also be an HMOD value in the FOBJECT structure
associated with each input list object (FOBJ.Z^HMOD). When both are present, the
HMOD in the object structure overrides the HMOD command modifier. Table 4-2
summarizes HMOD usage.

The State Modifier (_INPUT.MOD.Z^SMOD)

The state modifier (SMOD) selects objects for operation according to their current
DSNM state. There is no default for SMOD. If omitted, the command should be
applied to all objects determined by the HMOD.

SMOD is valid for all DSNM commands except AGGREGATE, INFO and
STATISTICS. Its values have the following meanings:

SMOD is applied after HMOD: that is, it can apply to subordinates of an input list
object even if the input list object itself does not satisfy the SMOD. For example, a
START command specifying a NOT^GREEN SMOD would start subordinates of a
GREEN state object in RED and YELLOW states without attempting to start the object
itself.

Table 4-2. HMOD Usage

FOBJ.Z^HMOD MOD.Z^HMOD HMOD Associated With Object

Omitted Omitted ZDSN^HMOD^ALL (default)

Omitted Present MOD.Z^HMOD

Present Omitted FOBJ.Z^HMOD

Present Present FOBJ.Z^HMOD

ZDSN^SMOD^UP |
ZDSN^SMOD^GREEN

Apply the command only to objects on the object
list that are UP (GREEN).

ZDSN^SMOD^NOT^UP |
ZDSN^SMOD^NOT^GREEN

Apply the command only to objects on the object
list that are DOWN (RED) or PENDING
(YELLOW).

ZDSN^SMOD^DOWN |
ZDSN^SMOD^RED

Apply the command only to objects on the object
list that are DOWN (RED).

ZDSN^SMOD^NOT^DOWN |
ZDSN^SMOD^NOT^RED

Apply the command only to the objects on the
object list that are UP (GREEN) or PENDING
(YELLOW)

Note. ZDSN^SMOD^GREEN and ZDSN^SMOD^UP have the same value and may be used
interchangeably. Similarly, NOT^GREEN/NOT^UP, RED/DOWN, and NOT^RED/NOT^DOWN
are interchangeable. Externally in DSNM commands, UP, NOT-UP, DOWN, and NOT-DOWN
designate these values.
4-4
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Command Requirements Response Modifiers
When SMOD is specified, only objects in UP/GREEN, DOWN/RED, and
PENDING/YELLOW states are included. So, for example, a STATUS command with a
NOT^RED SMOD value should not include UNDEFINED or UNKNOWN objects in
the response.

Response Modifiers

The response modifiers determine the amount and type of information returned for each
object in the output object list.

The Response Modifier (_INPUT.MOD.Z^RMOD)

The response modifier (RMOD) controls the level of detailed information returned for
informational commands. RMOD is valid for the STATUS command only; its values
have the following meanings:

Note. It is the responsibility of the command thread to map the set of states supported by the
subsystem into the set of DSNM states (see “Object States” on page 4-7).

Error reporting is independent of SMOD. Unreachable, undefined, or ill-formed objects should
be reported as errors according to the EMOD (see the error modifier discussion in “The Error
Modifier (_INPUT.MOD.Z^EMOD)” on page 4-6).

ZDSN^RMOD^BRIEF Return the DSNM object state for each object (UP,
DOWN, PENDING) and possibly one line of descriptive
text (ZDSN^VTY^RESULTTEXT); see “Object States”
on page 4-7. This is the default.

ZDSN^RMOD^DETAIL Return the object state and append as much additional
detailed status (ZDSN^VTY^TEXT) as available to each
object on the output object list (see individual command
descriptions in this section).

Note. SUMMARY-type response modifiers are handled entirely by the I process frame and are
never encountered by the command thread itself.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 4-5

Response Modifiers DSNM Command Requirements
The Error Modifier (_INPUT.MOD.Z^EMOD)

The error modifier (EMOD) controls how much information to return if a subsystem
error occurs during command processing. EMOD is valid for all DSNM commands
except AGGREGATE; its values have the following meanings:

Any output object that has an error associated with it must contain a ZDSN^ERR code
in the Z^RESULT field (see Appendix B, “DSNM Error Codes”).

If ZDSN^EMOD^BRIEF is in effect (the default if EMOD is omitted or has the
value 0), one line of result text (ZDSN^VTY^RESULTTEXT) describing the
ZDSN^ERR value in the Z^RESULT code field should be appended to the output object
(with _APPEND^OUTPUT). The result text must not duplicate the information of the
result code. To formulate result text, assume that presentation services will substitute
text (listed in Appendix B) for the result code in the error display.

If ZDSN^EMOD^DETAIL is in effect, and if more error information is available from
the subsystem than can fit on one line, additional lines of error text
(ZDSN^VTY^ERRTEXT) should be appended to the structure to describe the error in
detail. (Whether to supply error text depends on the information available from the
subsystem; it should be omitted unless there is useful additional information to
transmit.)

When the BRIEF response gives all the error information from the subsystem, the
DETAIL and BRIEF error responses are identical.

ZDSN^EMOD^BRIEF Append a single line of text
(ZDSN^VTY^RESULTTEXT) to describe the
ZDSN^ERR error code in the Z^RESULT field to
members on the output object list that generate an
error. This is the default.

ZDSN^EMOD^DETAIL Append as much available information about the error
(ZDSN^VTY^ERRTEXT) to members on the output
object list that generate an error, in addition to the
EMOD^BRIEF response.

ZDSN^EMOD^SUPPRESS Suppress the reporting of objects that cause subsystem
errors. If the command returns status, configuration, or
statistical information, do not create an output object
list member for any objects that generate errors.
4-6
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Command Requirements Object States
Action Modifiers

ZDSN^AMOD^RESET in the _INPUT.MOD.Z^AMOD field indicates that statistics
should be reset after being reported.

The Action Modifier (_INPUT.MOD.Z^AMOD)

The command thread must support the resetting of statistics as indicated by the
following action modifier:

Object States
Subsystem objects can have a number of possible states that are significant within the
context of the subsystem. To present uniform status displays of subsystems and their
objects, subsystem states are classified into a small set of DSNM states. This set of
states can be smaller than the set of subsystem states for an object. Subsystem states are
reported as text in the DSNM command response. The command thread must be able to
map the states of the subsystem objects to the following DSNM object states:

ZDSN^AMOD^RESET Reset subsystem statistics after reporting (valid for
STATISTICS command only).

ZDSN^STATE^UP |
ZDSN^STATE^GREEN

Object is in use or available for immediate use.

ZDSN^STATE^DOWN |
ZDSN^STATE^RED

The object is unavailable or needs an operator to take
action to make it ready.

ZDSN^STATE^PENDING |
ZDSN^STATE^YELLOW

The object is neither UP nor DOWN, but is in some
intermediate state (such as STARTING). Most
subsystems have one or more states to describe an
object that is neither ready nor totally deactivated.
PENDING corresponds to these subsystem states; an
object in this state may require special action to occur
or condition to be met.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 4-7

The Input Object List DSNM Command Requirements
In addition to the previous states, an object may not be configured, or it may be
configured but its state cannot be determined (because a manager is not running or the
object is not secured correctly, for instance). For these cases, the following DSNM
states are provided:

The Input Object List
An object in a DSNM command is a subsystem object name qualified with the
subsystem name, the object type, and possibly the object’s manager. Depending on the
subsystem, a manager may be required, optional, or not allowed.

The input object list consists of input list members, each of which includes a formatted
object structure named FOBJ (defined by ZDSN^DDL^FOBJECT^DEF) that describes
one object to which the command is to be applied. The command should be applied to
objects in the order they appear on the input list.

Subsystems usually have a hierarchy of object types. A DSNM command may specify
that the command is applied to only the specified objects, to only their subordinates, or
to both.

Each input object list member contains the following FOBJ fields:

ZDSN^STATE^UNDEFINED Object is not defined in the subsystem. An error
could have been made, either in configuring the
subsystem or entering the object name.

ZDSN^STATE^UNKNOWN State of the object cannot be determined.

ZDSN^STATE^NULL Subsystem may have one or more objects that act
only to group other objects rather than being
functional entities. These objects are represented in
DSNM as having a NULL operational state. (This
type of object usually doesn’t support state-change
commands.)

Note. ZDSN^STATE^UP and ZDSN^STATE^GREEN have the same value and may be used
interchangeably. Similarly, DOWN/RED and PENDING/YELLOW are interchangeable.
Externally in DSNM responses, UP, DOWN, and PENDING are used.

Z^HMOD Is an INT field that contains a hierarchy modifier
(HMOD) applying to this object only. If present, it
overrides the hierarchy modifier (for this object only)
associated with the command as a whole.

Z^SUBSYS Is a structure (defined by ZDSN^DDL^SUBSYS^DEF)
that identifies the subsystem to which the object
belongs.

Z^OBJTYPE Is a structure (defined by
ZDSN^DDL^OBJTYPE^DEF) that specifies the
subsystem object type of the object.
4-8
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Command Requirements The User Area: Intermediate Lists
Execution Objects
The input list objects and the hierarchy and state modifiers determine the final set of
objects to which the command is to be applied.

Applying Object List Modifiers

The final list of objects to which a command is eventually applied results from the
application of the hierarchy and state modifiers to the members of the input object list in
the following order:

1. Apply the Z^HMOD value associated with the command
(context-area._INPUT.MOD.Z^HMOD).

2. Apply the Z^HMOD value, if it exists, within the individual formatted object
structures (context-area.output-list-member.FOBJ.Z^HMOD).

3. Apply the Z^SMOD value associated with the command
(context-area._INPUT.MOD.Z^SMOD).

Use the list-processing library services described in “Processing a List” later in this
section to manipulate the original input list and to create intermediate lists.

The User Area: Intermediate Lists

A context space is allocated to each thread when created, and persists until the thread
terminates. The context space contains a fixed header area reserved for use by the
frame, followed by a user-defined area that can be used as workspace to manipulate
intermediate object lists. See “Command Context Space” on page 3-15 for information
on accessing the user-defined area of the context space.

Z^OBJNAME^ OCCURS Is an INT field that contains the length of the object
name.

Z^OBJNAME Is a structure (defined by
ZDSN^DDL^OBJNAME^DEF) that contains the object
name. If the subsystem permits it, the object name may
be *, meaning all objects of the object type specified
(under the manager specified, if any).

Z^MANAGER^ OCCURS Is an INT field that contains the length of the manager
name. If a manager is not present,
Z^MANAGER^OCURS is 0.

Z^MANAGER Is a structure (defined by
ZDSN^DDL^MANAGER^DEF) that contains the name
of the manager process, if any.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 4-9

The Output Object List DSNM Command Requirements
The Output Object List
The output object list is built by the command thread. Each member includes a
formatted object structure named FOBJ (defined by ZDSN^DDL^FOBJECT^DEF) that
describes one object to which the command was applied.

Depending on the command, and the hierarchy, state, and error modifiers, a single input
list object may produce many output objects (which may or may not include the original
input list object), or no output objects at all.

With minor exceptions (see detailed command descriptions in this section), the
command thread must always fill the following fields in each output object:

Output Object Variable-Length Items
Depending on specific command details, one or more of the following variable-length
items can be appended to an output object (with _APPEND^OUTPUT):

The maximum length of a text line (RESULTTEXT, TEXT, or ERRTEXT items) that
may be appended is 75 characters (ZDSN^MAX^TEXT).

Z^RESULT Is an INT field containing the result code for the output object. It
can be one of the ZDSN^ERR values (see Appendix B), a
ZDSN^STATE value (for the STATUS command), or null (0 value).

Except for STATUS command responses, ZDSN^ERR^NOERR
(0 value) is used in all responses when no error occurs.

Z^SUBSYS Is a structure (defined by ZDSN^DDL^SUBSYS^DEF) that
identifies the subsystem to which the object belongs.

Z^OBJTYPE Is a structure (defined by ZDSN^DDL^OBJTYPE^DEF) that
specifies the subsystem object type of the object.

Z^OBJNAME Is a structure (defined by ZDSN^DDL^OBJNAME^DEF) that
contains the object name, terminated with a blank or null.

Z^MANAGER Is a structure (defined by ZDSN^DDL^MANAGER^DEF) that
contains the name of the manager process (if any), terminated with a
blank or null. If there is no manager, this field should be blank or
null (0 value).

ZDSN^VTY^RESULTTEXT Interprets the Z^RESULT code, either describing the
subsystem state of the object (for STATUS
commands) or providing error information.

ZDSN^VTY^TEXT Is the response text for STATUS (DETAIL), INFO, or
STATISTICS commands.

ZDSN^VTY^ERRTEXT Is detailed error text.

ZDSN^VTY^COUNTERS Is the state summary counters for the AGGREGATE
command.
4-10
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Command Requirements Command Requirements
Command Requirements
The DSNM commands are often needed in daily operations and can be applied to widely
diverse objects. For the most part, subsystems support commands equivalent to the
DSNM commands for their objects. There are two categories of DSNM commands:
informational commands and state-change commands:

• Informational commands (AGGREGATE, INFO, INQUIRE, STATISTICS, and
STATUS) require that the output list contain a formatted object for each object on
the input list.

• State-change commands (ABORT, START, STOP, and UPDATE) require only
exception output.

The remainder of this section details the valid command modifiers and response
requirements for DSNM commands, except for the INQUIRE and UPDATE commands:
the I processes and the frame are not involved in these command operations.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 4-11

The ABORT Command DSNM Command Requirements
The ABORT Command

ABORT issues the subsystem command(s) that immediately bring objects to a
nonoperational state without waiting for outstanding operations to finish. (A
nonoperational state is the subsystem state equivalent to the DSNM state
ZDSN^STATE^DOWN or ZDSN^STATE^RED.)

Valid Modifiers

HMOD, EMOD, and SMOD.

RMOD does not apply and should be ignored if present.

Output Object Requirements

Commands to abort subsystem objects should be issued for objects obtained by applying
the hierarchy (HMOD) and state (SMOD) modifiers to each input list object.

ABORT must be performed on objects in the order they appear in the input list.

Build an output object structure for only those objects that cannot be aborted, consistent
with the EMOD value (see the error modifier discussion in the “The Error Modifier
(_INPUT.MOD.Z^EMOD)” on page 4-6).

Objects aborted successfully do not generate a response. ZDSN^EMOD^SUPPRESS
causes all objects to be omitted from the response.

Note. If the subsystem makes no distinction between stopping objects gracefully and
otherwise, the DSNM STOP and ABORT commands perform the same operation.

Note. Many subsystems produce a warning if an ABORT operation is issued for an object that
is already stopped. Such a warning should be ignored; do not report it as an error.
4-12
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Command Requirements The AGGREGATE Command
The AGGREGATE Command

AGGREGATE issues the subsystem command(s) that return the current operational
status of objects. This command summarizes the operational status of all objects in a
subsystem. If the subsystem employs a manager, the summary is for all objects
controlled by the manager. If there is no manager, Z^MANAGER^OCCURS is 0.

For the input list object, only the fields Z^SUBSYS, Z^MANAGER^OCCURS and
Z^MANAGER are relevant. Object type, object name, and HMOD are irrelevant and
should be ignored.

Valid Modifiers

None; any modifiers present should be ignored.

Output Object Requirements
For each input list object, return one output object for each object type in the subsystem,
designated as follows:

Append a type ZDSN^VTY^COUNTERS counters structure (described by
ZDSN^DDL^COUNTERS^DEF) containing the number of objects of Z^OBJTYPE in
each DSNM state. The relevant counters structure fields are:

Count objects in ZDSN^STATE^NULL in the Z^GREEN counter, which here is
interpreted as “exists.”

Accumulate objects in both ZDSN^STATE^UNDEFINED and
ZDSN^STATE^UNKNOWN in the Z^UNDEFINED counter.

Z^SUBSYS Subsystem

Z^OBJTYPE Object type

Z^OBJNAME Blank

Z^MANAGER Manager, if any; blank otherwise

Z^RESULT Null (0 value)

INT(32) Z^GREEN;

INT(32) Z^UP = Z^GREEN;

INT(32) Z^RED;

INT(32) Z^DOWN = Z^RED;

INT(32) Z^YELLOW;

INT(32) Z^PENDING = Z^YELLOW;

INT(32) Z^UNDEFINED;

INT(32) Z^INERROR;
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 4-13

The AGGREGATE Command DSNM Command Requirements
If an error occurs such that the subsystem or a manager cannot be reached to carry out
the AGGREGATE command, return one output object for that input object in the
ZDSN^EMOD^BRIEF format. If necessary, append one line of
ZDSN^VTY^RESULTTEXT, further describing the error. Designate the object
structure fields as follows:

If necessary, append one line of ZDSN^VTY^RESULTTEXT, further describing the
error.

Z^SUBSYS Subsystem

Z^OBJTYPE Blank

Z^OBJNAME Blank

Z^MANAGER Manager, if any; blank otherwise

Z^RESULT ZDSN^ERR code describing the error
4-14
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Command Requirements The INFO Command
The INFO Command

INFO issues the subsystem command(s) that return configuration information for
objects.

Valid Modifiers

HMOD and EMOD.

SMOD is not supported for the INFO command and should be ignored if present.

Output Object Requirements

Return one output object for each hierarchically derived input list object (unless
Z^EMOD = ZDSN^EMOD^SUPPRESS, which suppresses the reporting of objects that
cause subsystem errors).

Return Z^RESULT null (0 value) unless an error occurs. Do not append
ZDSN^VTY^RESULTTEXT except to further interpret a returned error value.

Append ZDSN^VTY^TEXT lines to report all normal configuration information for
each object.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 4-15

The START Command DSNM Command Requirements
The START Command

START issues the subsystem command(s) to bring objects to an operational state (the
subsystem state equivalent to the DSNM state ZDSN^STATE^UP or
ZDSN^STATE^GREEN).

Valid Modifiers
HMOD, EMOD, SMOD.

RMOD does not apply and should be ignored if present.

Output Object Requirements

Commands to start subsystem objects should be issued for objects obtained by applying
the hierarchy (HMOD) and state (SMOD) modifiers to each input list object.

START must be performed on objects in the order they appear in the input list.

Build an output object structure for only those objects that cannot be aborted, consistent
with the EMOD value (see the error modifier discussion in “The Error Modifier
(_INPUT.MOD.Z^EMOD)” on page 4-6).

Objects started successfully do not generate a response. ZDSN^EMOD^SUPPRESS
causes all objects to be omitted from the response.

Note. Many subsystems produce a warning if a START operation is issued for an object that is
already started. Such a warning should be ignored; do not report it as an error.
4-16
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Command Requirements The STATISTICS Command
The STATISTICS Command

STATISTICS issues the subsystem command(s) that return operational statistics for
objects.

Valid Modifiers

HMOD, EMOD, AMOD.

AMOD = ZDSN^AMOD^RESET (meaning statistics counters are to be reset after being
reported).

SMOD is not supported and should be ignored if present.

Output Object Requirements

Return one output object for each hierarchically derived input list object (unless
Z^EMOD = ZDSN^EMOD^SUPPRESS, which suppresses the reporting of objects that
cause subsystem errors).

Return Z^RESULT null (0 value) unless an error occurs. Do not append
ZDSN^VTY^RESULTTEXT except to further interpret a returned error value.

Append ZDSN^VTY^TEXT lines to report all normal statistical information for each
object.

If ZDSN^AMOD^RESET is in effect, reset object statistics after reporting them in the
response.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 4-17

The STATUS Command DSNM Command Requirements
The STATUS Command

STATUS issues the subsystem command(s) that return the current operational status of
objects. One output object should be returned for each subsystem object obtained by
applying the hierarchy (HMOD) and state (SMOD) modifiers to each input list object.

Valid Modifiers
HMOD, EMOD, SMOD, RMOD.

Output Object Requirements

Return one output object for each hierarchically derived input list object (unless
Z^EMOD = ZDSN^EMOD^SUPPRESS, which suppresses the reporting of objects that
cause subsystem errors).

The command thread must determine the subsystem state of each object and translate it
into a DSNM state. An object may have more than one subsystem state attribute, which
is relevant to the operational state of the object, and which is a factor in determining the
DSNM state. The command thread must translate subsystem-derived information into a
DSNM state.

Return the DSNM state of the object in the Z^RESULT field.

If the subsystem state(s) used to determine the DSNM state add relevant operational
information to the Z^RESULT code, report it by appending one line of
ZDSN^VTY^RESULTTEXT. (Result text should not repeat the DSNM state itself; it
should provide additional information). PENDING states most often require additional
interpretation.

If ZDSN^RMOD^DETAIL is in effect, append additional ZDSN^VTY^TEXT entries,
providing all operational information available from the subsystem. These additional
text lines should augment, not replace, the ZDSN^VTY^RESULTTEXT information
(see example below).

Example

The following command requests brief status information (the default) for a SNAX line
and its subordinate PUs and LUs:

STATUS SNAX LINE \WYJ.$STLR
 .
 .
SNAX LU \WYJ.$STLR.#TLR1 Pending, Stopping
 .
 .

In the resulting display, Stopping is the appended ZDSN^VTY^RESULTTEXT,
clarifying the PENDING state returned in Z^RESULT.

The following command line requests detailed status information:

STATUS SNAX LINE \WYJ.$STLR, DETAIL
4-18
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Command Requirements The STATUS Command
The resulting display might include something like the following. The text in bold is
ZDSN^VTY^TEXT appended to the output object.

 .
 .
SNAX LU \WYJ.$STLR.#TLR1 Pending, Stopping
 Lu State: Daclu Request Pending, Not in Session
 Session State: Not in Session
 Open State: Opens Forbidden
 Session Id: 2
 Sw Line Name : $STLR”
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 4-19

The STOP Command DSNM Command Requirements
The STOP Command

STOP issues the subsystem command(s) that bring objects to a nonoperational state (the
subsystem state equivalent to the DSNM state ZDSN^STATE^DOWN or
ZDSN^STATE^RED). Objects should be brought down gracefully if the subsystem
supports it, allowing current operations to terminate normally.

Valid Modifiers

HMOD, EMOD, SMOD.

RMOD does not apply and should be ignored if present.

Output Object Requirements

Commands to stop subsystem objects should be issued for objects obtained by applying
the hierarchy (HMOD) and state (SMOD) modifiers to each input list object.

STOP must be performed on objects in the order they appear in the input list.

Build an output object structure for only those objects that cannot be aborted, consistent
with the EMOD value (see the error modifier discussion in “The Error Modifier
(_INPUT.MOD.Z^EMOD)” on page 4-6).

Objects stopped successfully do not generate a response. ZDSN^EMOD^SUPPRESS
causes all objects to be omitted from the response.

Note. If the subsystem makes no distinction between stopping objects gracefully and
otherwise, the DSNM STOP and ABORT commands perform the same operation.

Note. Many subsystems produce a warning if a STOP operation is issued for an object that is
already stopped. Such a warning should be ignored; do not report it as an error.
4-20
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

5 DSNM Process Startup Functions

Scope of This Section
DSNM processes call a startup procedure as the first step in the main procedure.
Typically, the startup procedure reads parameters via library calls, and then continues
with other process-specific initialization.

Processes retrieve process parameters and configuration parameters from either the
startup message or the DSNMCONF file, depending on how the system is configured
and how the parameter-retrieval procedures are called. Processes retrieve subsystem and
CI configuration information from the DSNMCONF file.

The structure and content of the DSNMCONF file is discussed in Section 6,
“Configuring a New Subsystem Into DSNM.” This section describes:

• The startup message

• The ways in which startup messages and configuration files are searched

• How the structures into which processes retrieve startup and configuration
parameters are declared and defined

• The intended usage and syntax of the library procedures that retrieve the following
information into predefined structures for use by the frame and the command thread:

• Process parameters and configuration parameters from the startup message and
the DSNMCONF file

• Subsystem configuration information

• CI configuration information

DSNM Process Startup Message
The format of the parameter portion of the RUN command for DSNM processes appears
in bold next. These are the parameters that are sent to the new process in the startup
message.

[RUN] program-file [/ run-option [, run-option] ... /]
[process-parameter [, process-parameter] ...]
[; DSNM-config-parameter [, DSNM-config-parameter] ...]

Process parameters are specific to the particular process itself. These parameters are
accepted by the process, regardless of the STARTUP [PARAMS] value in the
$SYSTEM.SYSTEM.DSNM file (see Section 6, “Configuring a New Subsystem Into
DSNM”).

DSNM configuration parameters are ignored unless STARTUP [PARAMS] is YES in
the environment (see “DSNM Configuration Parameters” on page 5-3). If you specify
DSNM configuration parameters but no process parameters, the configuration parameter
list must begin with a semicolon (;).
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 5-1

Process Parameters DSNM Process Startup Functions
Process Parameters

The standard DSNM process parameters accepted from the startup message are
discussed next. (TESTMODE, CONFIG, STARTUP, and DEBUG are used for
development testing only.)

DSNM env-name

specifies the $SYSTEM.SYSTEM.DSNM section name to be used by this process.
The process uses the environment defined in ?SECTION env-name in
$SYSTEM.SYSTEM.DSNM. If both the DSNM and CONFIG parameters are
omitted, the unnamed section (blank) of $SYSTEM.SYSTEM.DSNM is used.

If $SYSTEM.SYSTEM.DSNM exists, it must contain a section named env-name
or a fatal error is reported.

COMPONENT component-name

specifies the process component name. This value is used for retrieval of parameter
values from the DSNMCONF file.

For I processes, COMPONENT is usually the name of the subsystem the I process
handles. For I processes that handle more than one subsystem (such as the SCP
I process), the component name is an arbitrary name chosen by the developer of the
process (for example, COMM is the component name for the SCP I process).

MYSYSTEM system-name

specifies the acting home system, if the process can act as if a remote system were
its home system.

TESTMODE num

any nonzero value specifies that the process is running in test mode; 0, the default,
specifies production mode. This parameter is valid only if the process is compiled
in test mode; you receive a fatal error if the process is compiled in production mode.

Test mode forces the STARTUP [PARAMS] value in $SYSTEM.SYSTEM.DSNM
to default to YES, and enables processing of the CONFIG, STARTUP, and DEBUG
process parameters.

CONFIG filename [filename] ...

specifies a DSNMCONF search list of up to three configuration files, which
overrides the DSNMCONF file pointed to in $SYSTEM.SYSTEM.DSNM.

CONFIG allows you to specify multiple configuration files for testing purposes
only. This allows you to maintain your subsystem, CI, and I process configuration
records separate from your installation’s site-specific production environment
configuration. CONFIG values are ignored if TESTMODE is not enabled.

Note. To compile in test mode, set toggle 1 during compilation (SETTOG 1). Recompile
all programs without SETTOG 1 before placing them in production.
5-2
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Process Startup Functions DSNM Configuration Parameters
To start an I process for testing with DSNMCom (I process test utility), using site-
specific configuration parameters in $DSNM.NETW.DSNMCONF and I-process-
specific configuration parameters in $DSNM.IDEV.DSNMIDEV, use the
TESTMODE and CONFIG process parameters in an explicit RUN command. For
example:

RUN $DSNM.IDEV.SPIFI/NAME $SPFI,NOWAIT/TESTMODE 1, &
 CONFIG $DSNM.NETW.DSNMCONF $DSNM.IDEV.DSNMIDEV

STARTUP { YES | NO }

specifies whether DSNM configuration parameters from the startup message are
allowed to override parameters stored in the DSNMCONF file(s). (This is the same
as the STARTUP [PARAMS] value in the $SYSTEM.SYSTEM.DSNM file.) The
STARTUP value is ignored if TESTMODE is not enabled. DSNM configuration
parameters are discussed in the next subsection.

DEBUG num

enables DEBUG calls as specified by num. DEBUG num sets the
Z^DEBUG^LEVEL field in the _PROCESS^PARAMS structure to num (see
“Accessing Standard Process Parameters: _PROCESS^PARAMS” on page 5-8). Its
purpose is to call DEBUG under various externally specified circumstances unique
to the particular process. The process developer decides what each value of num
means; there are no external standards for it. This parameter is ignored if
TESTMODE is not enabled.

DSNM Configuration Parameters

DSNM configuration parameters are site-specific parameters such as SWAPVOL; these
parameters are described in the Distributed Systems Management Solutions (DSMS)
System Management Guide.

DSNM-config-parameter may be accepted from the startup message if either:

• STARTUP [PARAMS] is YES in the designated section of
$SYSTEM.SYSTEM.DSNM (in this case the DSNM-config-parameter
overrides or supplements the value of the corresponding parameter in the
DSNMCONF file).

• The process is running in test mode (compiled with SETTOG 1) and the process
parameters TESTMODE 1 (or any nonzero value) and STARTUP YES are specified.

DSNM configuration parameters are separated from standard process parameters by a
semicolon (;).

Note. If STARTUP [PARAMS] is NO in the designated section of $SYSTEM.SYSTEM.DSNM,
DSNM configuration parameters in the startup message are ignored, and no error is reported.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 5-3

Parameter Types and Search Criteria DSNM Process Startup Functions
Parameter Types and Search Criteria
The parameter retrieval library functions retrieve parameter values from the startup
message or the DSNMCONF file, according to the search criteria specified in the
arguments passed to the procedures. (See the syntax descriptions of the procedures in
“Parameter Retrieval Library Services” on page 5-6.) Such library functions return
either the first value set obtained or the union of value sets obtained, depending on
whether the parameter is local or global.

A value set is all the records retrieved from a single configuration file (or from the
startup message) by a generic key search that excludes the SEQUENCE field.

If STARTUP [PARAMS] is set to YES, and if at least one instance of the named
parameter is found in the startup message, the startup message values determine the
value set. If not, the configuration file is searched for the first key. The first successful
search determines the value set. If no search is successful with the first key, the
procedure is repeated with the second key, and so on.

Local Parameters and Search Patterns

Local parameters consist of a single value (for example, SWAPVOL) obtained from one
source: a DSNMCONF file or the startup message.

Local Component Parameters

A local component parameter is a parameter specific to this component and class. The
first value set found by the following generic key search is returned:

Local Class Parameters

A local class parameter is a parameter specific to this class. If component is blank, it is
specific to the class as a whole. The first value set found by the following generic key
search is returned:

Note. In the following discussion on local and global parameters, mysystem refers to either the
local system, or, if the process accepts the MYSYSTEM process parameter, the system that
acts as the home system. Also, if the process has no component name (“class component” is
identical to “class blank”), only one search is performed.

mysystem DSNM class component parameter

DSNM class component parameter

mysystem DSNM class component parameter

mysystem DSNM class blank parameter

 blank DSNM class component parameter

 blank DSNM class blank parameter
5-4
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Process Startup Functions Global Parameters and Search Patterns
Local General Parameters

A local general parameter is any instance of this parameter. It may be for this
component, for the class as a whole (if component is blank), or for any class (if both
class and component are blank). The first value set found by the following generic key
search is returned:

Global Parameters and Search Patterns

Global parameters consist of multiple value sets: the union of sets of values from all
sources in which instances of the parameter are found. The value set for a global
parameter typically contains multiple values (for example, command server SYSTEM
parameters).

Global Component Parameters

A global component parameter is all instances of this parameter specific to this
component and class. All value sets found by the following generic key searches are
returned:

Global Class Parameters
A global class parameter is all instances of this parameter specific to this class. If
component is blank, it is specific to the class as a whole. All value sets found by the
following generic key searches are returned:

mysystem DSNM class component parameter

mysystem DSNM class blank parameter

mysystem DSNM blank blank parameter

 blank DSNM class component parameter

 blank DSNM class blank parameter

 blank DSNM blank blank parameter

mysystem DSNM class component parameter

DSNM class component parameter

mysystem DSNM class blank parameter

mysystem DSNM class component parameter

 blank DSNM class component parameter

 blank DSNM class blank parameter
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 5-5

Parameter Retrieval Library Services DSNM Process Startup Functions
Global General Parameters

A global general parameter is all instances of this parameter. It may be for this
component, for the class as a whole (if component is blank), or for any class (if both
class and component are blank). All value sets found by the following generic key
searches are returned:

Parameter Retrieval Library Services
In the context of an I process, the frame performs the following steps in its startup
procedure:

1. The frame calls _STARTUP^MODE.

_STARTUP^MODE is a user-written procedure that provides the frame with:

• The COMPONENT name for configuration parameter retrieval searches. The
component name is usually the name of the subsystem the I process handles.
For I processes that handle more than one subsystem (such as the SCP I process)
the component name is an arbitrary name chosen by the developer of the process
(for example, COMM is the component name for the SCP I process).

• A value indicating whether the I process is running in test mode or production
mode.

• A value indicating whether a COMPONENT value in the startup message
should be accepted as an overriding value.

2. The frame then calls a frame procedure which:

• Opens $RECEIVE.

• Reads the startup message.

• Reads $SYSTEM.SYSTEM.DSNM (if indicated).

• Opens the appropriate configuration file.

mysystem DSNM class component parameter

mysystem DSNM class blank parameter

mysystem DSNM blank blank parameter

 blank DSNM class component parameter

 blank DSNM class blank parameter

 blank DSNM blank blank parameter
5-6
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Process Startup Functions Parameter Retrieval Library Services
• Uses the COMPONENT value passed from _STARTUP^MODE (or the startup
message, if indicated) to retrieve standard process parameters and configuration
parameters into predefined structures.

• Supplies appropriate defaults.

3. The frame calls the _STARTUP procedure.

_STARTUP is another user-written procedure that supplies the lengths of the user
context area and the input list members. It also retrieves and places subsystem and
CI configuration parameters into predefined structures for use by the frame.

The following procedures must be called in your I process _STARTUP procedure:

• _ADD^SUBSYS: fills in a predefined structure with subsystem configuration
parameters for the subsystem(s) the I process handles. The frame uses this
information when it gets a command for that subsystem.

• _ADD^CI: fills in a predefined structure with CI configuration parameters for
the CI class with which your I process communicates.

In addition, your I process _STARTUP procedure may call the following
procedures:

• _GET^PROCESS^PARAM: retrieves process parameter values that are not part
of the standard set retrieved by the frame and stored in _PROCESS^PARAMS.

• _GET^PARAM: retrieves configuration parameter values that are not part of the
standard set retrieved by the frame and stored in _DSNMCONF^PARAMS.

4. The frame then terminates startup processing, closes the open DSNMCONF file, and
frees resources allocated on behalf of the configuration library procedures.

Note. The command thread also has access to the information retrieved by the frame; see
the next two subsections for information on accessing _PROCESS^PARAMS and
_DSNMCONF^PARAMS parameters.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 5-7

Accessing Standard Process Parameters:
_PROCESS^PARAMS

DSNM Process Startup Functions
Accessing Standard Process Parameters: _PROCESS^PARAMS

As part of its startup processing, the frame retrieves values for these parameters and fills
in a structure declared by _PROCESS^PARAMS. The command thread may then
access these values for its own use.

The structure declared by _PROCESS^PARAMS is defined as follows:

DEFINITION ZDSN-DDL-PROCESS-PARAMS.
 02 Z-CLASS-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-CLASS TYPE ZDSN-DDL-CLASS.
 02 Z-COMPONENT-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-COMPONENT TYPE ZDSN-DDL-COMPONENT.
 02 Z-MYSYSTEM-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-MYSYSTEM TYPE ZDSN-DDL-SYSTEM.
 02 Z-MYREALSYSTEM-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-MYREALSYSTEM TYPE ZDSN-DDL-SYSTEM.
 02 Z-MYPROCESS-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-MYPROCESS TYPE ZDSN-DDL-PNAME.
 02 Z-TESTMODE TYPE ZSPI-DDL-INT.
 02 Z-DEBUG-LEVEL TYPE ZSPI-DDL-ENUM.
 02 Z-SECTION-NAME-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-SECTION-NAME TYPE ZDSN-DDL-PARAMNAME.
END

Accessing Standard Configuration Parameters:
_DSNMCONF^PARAMS

In addition to the startup message process parameters, a set of configuration parameters
also applies to many DSNM processes. The standard configuration parameters are:

DSNM-MANAGER
EMS-COLLECTOR
MAXOPENERS
OBJECT-DB
OBJECT-DB-INTERFACE
OBJECT-MONITOR
SEGEXT
SEGPAGES
SWAPVOL

As part of its startup processing, the frame retrieves values for these parameters and fills
in a structure declared by __DSNMCONF^PARAMS. The command thread may then
access these values for its own use.
5-8
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Process Startup Functions Retrieving Non-Standard Process Parameters:
_GET^PROCESS^PARAM
The structure declared by _DSNMCONF^PARAMS is defined as follows:

DEFINITION ZDSN-DDL-DSNMCONF-PARAMS.
 02 Z-DSNM-MANAGER-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-DSNM-MANAGER TYPE ZDSN-DDL-MANAGER.
 02 Z-SWAPVOL-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-SWAPVOL TYPE ZDSN-DDL-OBJNAME.
 02 Z-SEGPAGES TYPE ZSPI-DDL-INT2.
 02 Z-SEGEXT.
 03 Z-PRIMARY TYPE ZSPI-DDL-INT.
 03 Z-SECONDARY TYPE ZSPI-DDL-INT.
 02 Z-OBJECT-DB-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-OBJECT-DB TYPE ZDSN-DDL-OBJNAME.
 02 Z-OBJECT-MONITOR-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-OBJECT-MONITOR TYPE ZDSN-DDL-PNAME.
 02 Z-OBJECT-DB-INTERFACE-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-OBJECT-DB-INTERFACE TYPE ZDSN-DDL-PNAME.
 02 Z-MAX-OPENERS TYPE ZSPI-DDL-INT.
 02 Z-EMS-COLLECTOR-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-EMS-COLLECTOR TYPE ZDSN-DDL-PNAME.
 02 Z-SECPARAMS TYPE ZSPI-DDL-UINT.
END

Retrieving Non-Standard Process Parameters:
_GET^PROCESS^PARAM

You can call _GET^PROCESS^PARAM in your _STARTUP procedure to retrieve
process startup parameter values that are not part of the standard set stored in the
_PROCESS^PARAMS structure.

error output

is a ZDSN or NonStop Kernel error. (FEEOF means there are no more parameters
with this name.)

paramname input

STRING .EXT ! ZDSN^DDL^PARAMNAME^DEF !

is the parameter name, left-justified, blank-filled.

paramvalue output

STRING .EXT

is the parameter value.

Note. Values configured for Z-SEGEXT are ignored by all DSNM processes supplied by
Tandem.

error := _GET^PROCESS^PARAM (paramname
 , paramvalue:maxlen
 ,[len]);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 5-9

Retrieving Nonstandard Configuration Parameters:
_GET^PARAM

DSNM Process Startup Functions
maxlen input

INT

is the maximum number of bytes that can be returned in paramvalue.

len output

INT

is the number of bytes returned in paramvalue.

Retrieving Nonstandard Configuration Parameters: _GET^PARAM

You can call _GET^PARAM in your _STARTUP procedure to retrieve configuration
parameter values that are not part of the standard set stored in the
_DSNMCONF^PARAM structure.

error output

is a ZDSN or NonStop Kernel error. (FEEOF means there are no more parameters
with this name.)

paramscope input

INT

indicates whether the parameter is local or global:

error := _GET^PARAM (paramscope
 , paramtype
 ,[subsys]
 ,[class]
 ,[component]
 , paramname
 , paramvalue:maxlen
 ,[len]
 ,[error-filename]);

_LOCAL^PARAM Local parameters consist of a single value (for example,
SWAPVOL) obtained from one source—a DSNMCONF
file or the startup message.

_GLOBAL^PARAM Global parameters consist of multiple values (for example,
command server SYSTEM parameters) from all sources in
which instances of the parameter are found.
5-10
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Process Startup Functions Retrieving Nonstandard Configuration Parameters:
_GET^PARAM
paramtype input

INT

indicates how restrictive the search criteria is:

subsys input

STRING .EXT ! ZDSN^DDL^SUBSYS^DEF !

is the name of the subsystem whose associated parameter values are to be retrieved.
A blank subsystem name (all spaces) is valid; the default is “DSNM ”.

class input

STRING .EXT ! ZDSN^DDL^CLASS^DEF !

is the name of the class whose associated parameter values are to be retrieved. A
blank class name (all spaces) is valid; if omitted, the caller’s class name is used.

component input

STRING .EXT ! ZDSN^DDL^COMPONENT^DEF !

is the name of the component whose associated parameter values are to be retrieved.
A blank component name (all spaces) is valid; if omitted, the caller’s component
name (specified by the COMPONENT parameter in the _STARTUP^MODE
procedure or obtained from the process startup message) is used.

paramname input

STRING .EXT ! ZDSN^DDL^PARAMNAME^DEF !

is the name of the parameter, left-justified, blank-filled, whose value you want
returned.

paramvalue output

STRING .EXT

contains the parameter value if error = 0; otherwise undefined.

_COMPONENT^PARAM Component parameters are instances of a parameter
specific to this component and class.

_CLASS^PARAM Class parameters are instances of a parameter specific
to this class. If component is blank, it is specific to
the class as a whole.

_GENERAL^PARAM General parameters are any instance of this
parameter. It may be for this component, for the class
as a whole (if component is blank), or for any class
(if both class and component are blank).
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 5-11

Retrieving Subsystem Configuration Parameters DSNM Process Startup Functions
maxlen input

INT

the maximum length, in bytes, that can be returned in paramvalue.

len output

INT

the actual length, in bytes, of the value returned in paramvalue. If
len < maxlen, the remainder of paramvalue is blank-filled.

error-filename output

STRING .EXT ! ZDSN^DDL^OBJNAME^DEF !

is the name of the configuration file associated with the returned error value.

Retrieving Subsystem Configuration Parameters

For each subsystem it handles, the I process must declare an extended pointer to a
subsystem configuration structure defined by _SUBSYS^DEF in its global definitions.
Then, as part of its _STARTUP procedure, it must call _ADD^SUBSYS to retrieve
subsystem configuration information, and to allocate the memory for, fill in, and return
the address of each _SUBSYS^DEF-declared structure. The frame uses information
from this structure when it gets a command for that subsystem.

Retrieving CI Configuration Parameters

For each subsystem manager process (CI) it communicates with, the I process must
declare an extended pointer to a CI configuration structure defined by _CI^DEF in its
global definitions. Then, as part of its _STARTUP procedure, it must call _ADD^CI to
retrieve CI configuration information, and to allocate the memory for, fill in, and return
the address of each _CI^DEF-declared structure. The frame uses information from this
structure when it gets a request from the thread to open a CI for communication.
5-12
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

onf
6 C
DSNM
Scope of This Section

This section contains the steps necessary to configure a subsystem and its associated
I process into DSNM. More configuration and management details, including an
extended list of the DSNM process class configuration parameters, can be found in the
Distributed Systems Management Solutions (DSMS) System Management Guide.

As an I process developer, you must provide the person responsible for installing and
managing DSNM at your site with configuration information specific to your I process,
the subsystem(s) it manages, and the subsystem manager process (CI) with which it
communicates.

New and Changed DSNM Configuration Information
DSNM now runs “out-of-the-box,” which means DSNM can execute without
customization after the Install REPSUBSYS phase. DSMS processes use internal
default values that previously had to be specified in various configuration files. All user-
supplied configuration files are optional, and the post-Install function (DINSTALL) has
been eliminated.

Note the following important highlights of the DSNM customization changes:

• By default, DSMS now operates with most files in a single subvolume (the ISV or a
copy of the ISV) rather than being distributed among several subvolumes as in
previous releases.

• DSMS now creates the object database if it does not exist.

• $SYSTEM.SYSTEM.ZDSNCONF is a new file (since the C31 release) and is
installed by the REPSUBSYS phase of the Install program. This file is a key-
sequenced file and contains DSNM configuration parameters supplied by Tandem.

$SYSTEM.SYSTEM.ZDSNCONF may change at each release, but you should not
alter it yourself. If you need to override particular parameters for your installation,
refer to the Distributed Systems Management Solutions (DSMS) System
Management Guide.

• The $SYSTEM.SYSTEM.DSNM file is no longer a required file.

Note. For testing purposes, it is convenient to maintain all of your subsystem, CI, and
I process configuration records in a separate configuration file. If you compile in test mode,
you can then run your I process with the TESTMODE and CONFIG process parameters to
specify this file.

Note. Verify that your system is updated to the C30 DSMS release before installing C31 or a
later release. The C30 DSMS release contained major changes in the handling of DSMS
process and file names.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 6-1

The $SYSTEM.SYSTEM.DSNM File Configuring a New Subsystem Into DSNM
• The following are changes to the processing of the DSNM configuration file:

• If no DSNM configuration file is specified, each DSMS process uses the file
named DSNMCONF, located on the same subvolume as the object file of the
process.

• If a nonexistent DSNM configuration file is specified (explicitly or by default),
the DSNM processes behave as if the file is present, but empty.

• All DSNM configuration file parameters for DSMS processes supplied by
Tandem now have internal default values. Additionally, a number of DSNM
configuration file parameters have been added or altered for C31 and subsequent
releases. Refer to the Distributed Systems Management Solutions (DSMS)
System Management Guide for the complete description of a DSNM
configuration parameters.

• The following are changes to the processing of the $SYSTEM.SYSTEM.DSNM
file:

• If $SYSTEM.SYSTEM.DSNM does not exist or is unreadable, each DSMS
process uses the default DSNM configuration file (DSNMCONF) and the
default value STARTUP PARAMS YES.

• The CONFIG parameter in $SYSTEM.SYSTEM.DSNM is now optional. If
present, it may contain a search list of one to three files, all of which must be in
the format of a DSNM configuration file. (The specified files are searched for
parameters in the order listed.) If CONFIG is absent, the default DSNM
configuration file is used. In either case, $SYSTEM.SYSTEM.ZDSNCONF is
searched for parameters after all other DSNM configuration files. Refer to the
Distributed Systems Management Solutions (DSMS) System Management Guide
for details on the search order.

• Comments are now allowed in the $SYSTEM.SYSTEM.DSNM file.

The $SYSTEM.SYSTEM.DSNM File
$SYSTEM.SYSTEM.DSNM is an edit file that all DSNM processes in a production
environment read as part of their startup function. It points to the DSNMCONF file
from which configuration parameters are retrieved, and specifies whether parameter
values in the DSNMCONF file can be overridden by parameter values from the startup
message (startup message parameters are discussed in Section 5, “DSNM Process
Startup Functions”).

Note. In a test environment, you specify a DSNMCONF file with the CONFIG process
parameter in your I process RUN command.
6-2
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Configuring a New Subsystem Into DSNM The $SYSTEM.SYSTEM.DSNM File
The format of $SYSTEM.SYSTEM.DSNM is as follows:

?SECTION env-name

names the DSNM environment. Each section in $SYSTEM.SYSTEM.DSNM
defines a separate environment.

The first section in $SYSTEM.SYSTEM.DSNM is always the unnamed section.
The unnamed section defines the default environment. The ?SECTION statement is
optional for the unnamed section. An unnamed (blank) ?SECTION statement that is
not the first section in the file is ignored. If the file begins with a named ?SECTION
statement, an unnamed section is considered to be present but empty.

A ?SECTION statement is followed by zero or more lines of environment definition
statements and comments. A section is terminated by the next ?SECTION statement
or the end of the file. Blank lines are allowed.

The environment definition statements are:

CONFIG [FILE] filename [filename [filename]]
STARTUP [PARAMS] { YES | NO }

Both statements are optional. If more than one CONFIG or STARTUP statement is
present in the section, all but the first are ignored.

CONFIG [FILE] filename [filename [filename]]

defines a search list of up to three configuration files that the DSNM processes
search in the order listed for configuration parameters. The default for CONFIG
filename is objsubvol.DSNMCONF.

objsubvol is the subvolume on which the process program file resides.

A CONFIG statement with a blank search list is not valid. You must omit the
CONFIG statement altogether to default the search list to
objsubvol.DSNMCONF.

If a CONFIG statement is present but one or more of the file names is not fully
qualified, objsubvol qualifies the first file name (at the local node). The
remaining file names are qualified by the node, volume, and subvolume of the first
file name: this is true whether the first file name is fully qualified or is partially
qualified by the default objsubvol.

[?SECTION]
 [CONFIG [FILE] filename [filename [filename]]]
 [STARTUP [PARAMS] { YES | NO }]

[?SECTION env-name
 [CONFIG [FILE] filename [filename [filename]]]
 [STARTUP [PARAMS] { YES | NO }]]
 .
 .
 .
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 6-3

Format of the DSNMCONF File Configuring a New Subsystem Into DSNM
A CONFIG statement search list may specify nonexistent files; this is not an error.
A nonexistent file is treated as if it were present but empty. It is ignored, and the
search continues with the next configuration file. This is also true of the default
DSNM configuration file (objsubvol.DSNMCONF), if there is no CONFIG
statement for an environment.

The Tandem configuration file $SYSTEM.SYSTEM.ZDSNCONF is searched in
addition to the files listed in a CONFIG statement; it is always the last file on the
search list. $SYSTEM.SYSTEM.ZDSNCONF must be present.

STARTUP [PARAMS] { YES | NO }

determines whether DSNM configuration parameters from the startup message are
used:

• If STARTUP is YES, DSNM configuration parameters in the process startup
message override or supplement the value of the corresponding parameter in the
DSNM configuration search list. YES is the default.

• If STARTUP is NO, DSNM configuration parameters in the process startup
message are ignored.

Format of the DSNMCONF File
DSNMCONF files contain startup parameters for the various DSNM processes,
subsystem and subsystem object type configuration information, and subsystem CI
configuration information. A DSNMCONF file is a key-sequenced file with a
ZDSN^DDL^DSNMCONF^DEF record definition. Each record represents a single
instance of a parameter and contains the following fields:

Key Field Description

SYSTEM Identifies the Tandem node to which the parameter applies.

SUBSYS Identifies the product to which the parameter applies; for DSNM
components supplied by Tandem, the SUBSYS key field must be
“DSNM.”

CLASS Identifies the class of DSNM entities to which the parameter
applies.

COMPONENT Identifies the member of the class to which the parameter applies;
the component name often identifies the subsystem that the
DSNM entity supports.

PARAMETER Identifies the parameter defined by the record.

SEQUENCE Distinguishes multiple instances of a parameter. For multivalued
parameters, the valid range is 1 to 9999; for single-valued
parameters, this field is blank.

VALUE Contains the value of the parameter. Valid values depend on the
particular parameter.
6-4
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Configuring a New Subsystem Into DSNM SUBSYSTEM Class Records
Searching schemes provide various ways for library procedures to retrieve values from
these files. See Section 5, “DSNM Process Startup Functions,” for more information on
searching schemes.

DSNMCONF Records Relevant to I Processes
The classes of DSNM configuration parameters of concern for I process development
are SUBSYSTEM, SUBSYSTEM-INTERFACE-CONFIG, and CI-CONFIG. These are
described in detail in the following subsections.

In addition, to integrate your subsystem and I process into a production system, your
system administrator must add a COMMAND-SERVER class record and
SUBSYSTEM-INTERFACE class records to the DSNMCONF file. Refer to the
Distributed Systems Management Solutions (DSMS) System Management Guide for
definitions of these class records.

SUBSYSTEM Class Records
Parameter records that specify subsystem configuration parameters have SUBSYSTEM
in the CLASS field and the subsystem name in the COMPONENT field. Object type
configuration is part of subsystem configuration.

Parameter records with the CLASS key field set to SUBSYSTEM specify subsystem
characteristics. They are OBJTYPE, RANK, DEFAULT-OBJTYPE, DEVICETYPE,
FLAGS, MANAGER, subsystem-MANAGER, and SUBSYSTEM-INTERFACE. Each
of these is described next.

OBJTYPE

OBJTYPE describes the objects in the subsystem.

objtype

is the object type name:

parent-objtype

is the object type name of the object’s parent within the subsystem object
hierarchy.

relative-rank

is the object’s rank relative to other object types subordinate to the same parent.
Rank determines the starting and stopping sequence of objects within a

Caution. Do not alter the $SYSTEM.SYSTEM.ZDSNCONF file; however, you may override
certain parameters in this file. To do so, refer to the Distributed Systems Management
Solutions (DSMS) System Management Guide.

Class Component Parameter Value Formats

SUBSYSTEM subsystem OBJTYPE objtype [parent-objtype [relative-rank]]
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 6-5

SUBSYSTEM Class Records Configuring a New Subsystem Into DSNM
subsystem. Objects are started in increasing rank order and stopped in
decreasing order.

The default value is 0, indicating that the rank of the object is 1 greater than its
parent’s rank (this means that the object is one level below its parent in the
subsystem object hierarchy). Nonzero relative ranks may be used to specify
starting (increasing) and stopping (decreasing) orders for subordinates of the
same parent type.

Default: None

Considerations: An OBJTYPE record must be entered for each object type in the
subsystem.

RANK

This parameter ranks the subsystem within the DSNM hierarchy. It determines the order
in which subsystem objects are brought up and down by DSNM commands.

Default: The default is 16.

Considerations: The valid range is 0 through 31. Rank 0 subsystem objects are started
first and rank 31 last; stopping occurs in the reverse order.

Within a subsystem, starting and stopping order depends on relative rank. See the
OBJTYPE parameter, described earlier.

DEFAULT-OBJTYPE

DEFAULT-OBJTYPE specifies the default object type used if an object in the subsystem
cannot be resolved.

default-objtype

is the object type.

subordinate-objtype

is the default object type for an object name in the NonStop Kernel subdevice
format.

Default: None

Class Component Parameter Value Formats

SUBSYSTEM subsystem RANK number

Class Component Parameter Value Formats

SUBSYSTEM subsystem DEFAULT-
OBJTYPE

default-objtype [subordinate-objtype]
6-6
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Configuring a New Subsystem Into DSNM SUBSYSTEM Class Records
DEVICETYPE

DEVICETYPE is the NonStop Kernel device type and subtypes, if applicable, for
objects in the subsystem.

Default: None.

Considerations: Up to eight subtypes are permitted.

FLAGS
FLAGS indicates how object names for the subsystem are specified and resolved.

flagname

is one or more of the following values, each separated by one space:

[NOT] MANAGER-ALLOWED
[NOT] MGR-ALLOWED

indicates whether a manager is allowed with objects in the subsystem.

[NOT] MANAGER-REQ[UIRED]
[NOT] MGR-REQ[UIRED]

indicates whether a manager is required for objects in the subsystem.

[NOT] STAR-OBJ[ECT]-ALLOWED
[NOT] *-OBJ[ECT]-ALLOWED

indicates whether an asterisk (*) is accepted as a wild card for an object name in
the subsystem.

[NOT] STAR-MANAGER-REQ[UIRED]
[NOT] *-MANAGER-REQ[UIRED]
[NOT] STAR-MGR-REQ[UIRED]
[NOT] *-MGR-REQ[UIRED]

indicates whether a manager process is required if a wild card (*) object is
specified, thus restricting the wild card to a particular manager process.

[NOT] RESOLVE-OBJTYPE-WITHOUT-DNS

indicates whether the object name form is unique to the particular object type,
and it is not necessary for the command server to use DNS for object name
resolution.

Class Component Parameter Value Formats

SUBSYSTEM subsystem DEVICETYPE type [subtype ... [subtype]]

Class Component Parameter Value Formats

SUBSYSTEM subsystem FLAGS flagname ... [flagname]
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 6-7

SUBSYSTEM Class Records Configuring a New Subsystem Into DSNM
[NOT] RESOLVE-SUBOBJ-WITHOUT-DNS

indicates whether the subordinate object is unique within a subsystem, and it is
not necessary for DNS object name resolution.

[NOT] DUMMY-DNS-MGR
[NOT] DUMMY-DNS-MANAGER
[NOT] MGR-IN-DNS-IS-DUMMY
[NOT] MANAGER-IN-DNS-IS-DUMMY

indicates whether a manager name in DNS for the subsystem is used only to
determine the Tandem node on which the object is located. The DNS manager
name is ignored.

Default: All flags default to the NOT condition.

MANAGER
MANAGER is the unqualified file name of the subsystem manager program file, if the
subsystem uses a manager of which multiple instances can be run.

This parameter is used by the command server to assist name resolution. The command
server attempts to determine the subsystem of an object by comparing the file name of
the manager process to this parameter value when the manager is given in a command
but the subsystem is not.

The MANAGER parameter is not used to control or access the manager process.

Default: None.

Considerations: Only the file name is needed, not its node, volume, or subvolume. For
example, specify “PATHMON” for “$SYSTEM.SYSTEM.PATHMON.”

When this form is used for automation-I-supported subsystems, the *-MGR-REQ and
MGR-REQUIRED flags must be set (FLAGS parameter), and the UNDER $manager
qualifier is required in the DSNM command syntax. You must also include CI-CONFIG
class records to define the control interface process.

Note. If you modify the MANAGER parameter, you must also modify the CI-CONFIG class,
OBJECT-FILE parameter accordingly, if it exists.

Class Component Parameter Value Formats

SUBSYSTEM subsystem MANAGER unqualified-filename
6-8
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Configuring a New Subsystem Into DSNM process-class-CONFIG Records
subsystem-MANAGER

This is the name of the subsystem manager process, if the subsystem uses a single fixed
manager process for each Tandem node.

Default: None.

Considerations: When this form is used for automation-I-supported subsystems, do
not set the *-MGR-REQ and MGR-REQUIRED flags (FLAGS parameter), and do not
use the UNDER $manager qualifier in the DSNM command syntax. If SCP is the
control interface for the subsystem, you do not need to include CI-CONFIG class
records.

SUBSYSTEM-INTERFACE

This parameter is the component name of the CI-CONFIG class that describes the
control interface for the subsystem

Default: None.

Considerations: The SUBSYSTEM-INTERFACE name appears in the
COMPONENT key field of the SUBSYSTEM-INTERFACE-CONFIG parameter
record. It may or may not be the component of the corresponding subsystem interface
process class.

process-class-CONFIG Records

Parameter records with the CLASS key field set to process-class-CONFIG allow one
class of DSNM process to access processes in another class. Process class configuration
parameters are specific to a particular type of process but not to a particular installation.
You do not normally specify these parameters yourself unless you are configuring
additional subsystems for DSNM support.

You must provide necessary I process configuration information so that these records
can be added to the DSNMCONF file. The following process class configurations are
delivered in the DSNMCONF file:

• COMMAND-SERVER-CONFIG

Specifies fixed command server process configuration parameters (as opposed to
site-specific command server configuration information contained in COMMAND-
SERVER class records).

Class Component Parameter Value Formats

SUBSYSTEM subsystem subsystem-MANAGER unqualified-filename

Class Component Parameter Value Formats

SUBSYSTEM subsystem SUBSYSTEM-
INTERFACE

CI-CONFIG-component-name
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 6-9

process-class-CONFIG Records Configuring a New Subsystem Into DSNM
• SUBSYSTEM-INTERFACE-CONFIG

Specifies fixed subsystem interface process configuration parameters (as opposed to
site-specific configuration information contained in SUBSYSTEM-INTERFACE
class records).

• CI-CONFIG

Specifies control interface (subsystem management process or public interface
management process) configuration parameters. The process class name is a name
you assign to the CI and pass to _ADD^CI in your I process _STARTUP procedure.

The components associated with process-class-CONFIG class parameters are:

The process-class-CONFIG parameters are defined next. They are PUBLIC-NAME,
DEFAULT-PROCESSNAME, OBJECT-FILE, PROCESS-TYPE, MAX-PROCESSES,
and OPEN-PARAMS.

PUBLIC-NAME

PUBLIC-NAME is the logical identifier for the process class to be reported in error
messages about that process class.

Default: The public name defaults to the name in the COMPONENT field.

DEFAULT-PROCESSNAME

This is the default process name used to open a member of the process class if the
opening process has no overriding name.

Default: None.

Class Component

COMMAND-SERVER-CONFIG blank

SUBSYSTEM-INTERFACE-CONFIG CDFI
PWI
SCPI

CI-CONFIG CDF-MANAGER
PATHMON
SCP
SPOOLER-SUPERVISOR

Note: If additional subsystems are configured at your site for DSNM support, there will be associated
components defined for the SUBSYSTEM-INTERFACE-CONFIG and CI-CONFIG classes.

Class Component Parameter Value Formats

process-class-CONFIG component-name PUBLIC-NAME name

Class Component Parameter Value Formats

process-class-CONFIG component-name DEFAULT-
PROCESSNAME

$process-name
6-10
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Configuring a New Subsystem Into DSNM process-class-CONFIG Records
OBJECT-FILE

OBJECT-FILE is the program file of a process in the process class.

Default: None. Individual users of the class may provide their own defaults. For
Tandem processes accessing subsystem managers, the default volume and subvolume is
$SYSTEM.SYSTEM and $SYSTEM.SYSnn if the file cannot be found in
$SYSTEM.SYSTEM.

PROCESS-TYPE

This is the default process name used to open a member of the process class if the
opening process has no overriding name.

Default: SERVER.

MAX-PROCESSES

MAX-PROCESSES is the maximum number of times a member of this process class
can be opened.

Default: -1.

Considerations: A value less than zero (< 0) means there is no limit on the number of
opens; a value of zero (0) means all opens to the process classes are closed after
command completion; a value greater than zero (> 0) means up to the number specified
process class will be kept open.

Class Component Parameter Value Formats

process-class-CONFIG component-name OBJECT-FILE [$vol.][subvol.]file

Class Component Parameter Value Formats

process-class-CONFIG component-name PROCESS-TYPE { REQUESTER |
SERVER}

Class Component Parameter Value Formats

process-class-CONFIG component-name MAX-PROCESSES number
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 6-11

Adding Subsystem Objects to the DNS Database Configuring a New Subsystem Into DSNM
OPEN-PARAMS

OPEN-PARAMS specifies values to be used when the process class is opened.

QUALIFIER default-qualifier

is the qualifier added to the process name when the process is opened for
communication. The default is #ZSPI.

NOWAIT[-DEPTH] number

is the maximum concurrent operations allowed on the same open. The default value
is 1.

OPEN-TIMEOUT number

is the time, in .01-second units, that the opener should wait for a response to an
OPEN request. -1 means wait indefinitely. The default value is 0.

Default: If not configured, an appropriate internal default is supplied by each DSNM
component.

Adding Subsystem Objects to the DNS Database
You must provide your system administrator with the appropriate information for adding
your subsystem’s objects to the DNS database. DNSCOM, the interactive interface to
the DNS, and AUTOLOAD, the utility for constructing DNSCOM command (OBEY)
files, are described in the Distributed Systems Management Solutions (DSMS) System
Management Guide. The Distributed Name Service (DNS) Management Operations
Manual provides additional instructions on using DNSCOM.

Defining an I Process as a Pathway Server
If your I process is started by PATHMON in a production environment, the process must
also be defined as a Pathway server. The DSNM PATHMON configuration parameters

Class Component Parameter Value Format

process-class-CONFIG component-name OPEN-PARAMS [QUALIFIER default-
qualifier]
 [, NOWAIT[-DEPTH]
number]
[, OPEN-TIMEOUT
number]
6-12
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Configuring a New Subsystem Into DSNM Defining an I Process as a Pathway Server
are in a text file named ZCPWDSMS (if your installation includes NetStatus) or
ZCPWDSNM (if it does not). The following are settings for a Pathway server:

RESET SERVER Resets values for all server class attributes to
PATHMON defaults.

SET SERVER AUTORESTART {0..32767}; number of times PATHMON attempts
to restart server process after an abnormal
termination. Default is 0.

SET SERVER PRI {1..199}; priority at which server processes of
this server class run. Default is 10 less than the
priority of PATHMON.

SET SERVER CPUS primary-cpu:backup-cpu

SET SERVER LINKDEPTH maximum-number of concurrent links a server
process can have before PATHOM directs the TCP
link requests to another server process within the
server class. Default is 1.

SET SERVER MAXLINKS maximum-number of processes allowed in this
server class. Default is unlimited.

SET SERVER NUMSTATIC maximum-number of static server processes in this
class. Default is 0.

SET SERVER MAXSERVERS maximum-number of server processes in this
server class that can run at the same time. Default
is 1.

SET SERVER PROGRAM $volume.subvol.object-file for the server
class; this is a required parameter.

SET SERVER STARTUP “string” specifying process startup parameters.
For example, SET SERVER STARTUP “DSNM
idev” specifies the $SYSTEM.SYSTEM.DSNM
section from which the configuration file for this
process is obtained.

SET SERVER PROCESS $process-name within the server class that
PATHMON assigns to the server process when it
creates it.

ADD SERVER server-class-name; names server class and
adds its definitions to PATHMON control file.

 .

 .

START SERVER server-class-name; starts NUMSTATIC number of
server processes for this server class.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 6-13

Defining an I Process as a Pathway Server Configuring a New Subsystem Into DSNM
Defining server class configurations is described in detail in the Pathway System
Management Reference Manual, if you are running NonStop Kernel release D30.01, or
in the NonStop TS/MP and Pathway System Management Guide, if you are running
NonStop Kernel release D30.02 or later.
6-14
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

SN
7 D

Scope of This Section
This section describes DSNMCom, the I process test utility. It provides the syntax
descriptions for the DSNMCom commands and parameters.

What is DSNMCom?
DSNMCom is a user interface to DSNM. It enables you to bypass NetCommand and
send DSNM commands directly to a started process (such as a command server or an
I process). This lets you test your I process without having to set up a DSNM
environment. DSNMCom must be licensed before you can use it.

DSNMCom supports the DSNM commands described in Section 2, “DSNM
Commands.” If you are using DSNMCom to send commands directly to an I process,
object names must be fully qualified, because no name resolution takes place.

Before You Run DSNMCom
Before you run DSNMCom:

• Configuration records for the subsystem and its subsystem interface process must be
added to a DSNMCONF file (see Section 6, “Configuring a New Subsystem Into
DSNM”).

• The process(es) you wish to communicate with must be started before DSNMCom
can open them. For example, to start the I process associated with the SPIFFY
subsystem referred to in the examples that follow, type the following RUN
command:

> RUN $DSNM.IDEV.SPIFI/NAME $SPFI,NOWAIT/TESTMODE 1, &
 CONFIG $DSNM.IDEV.DSNMCONF

The TESTMODE and CONFIG process parameters are discussed in Section 5,
“DSNM Process Startup Functions.”

DSNMCom Command Syntax
DSNMCom can accept input interactively or from a specified file. To use the following
command syntax, the object code for DSNMCom must reside in one of the subvolumes
contained in your #PMSEARCHLIST file (if it does not, add the code to your
TACLCSTM file):

DSNMCOM [/ run-option [, run-option] .../]
 [DSNM [section-name] | CONFIG [filename]]
 [[,] $process-name]
 [[;] [.] command]
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 7-1

DSNMCom Command Syntax DSNMCom: The I Process Test Utility
run-option

is any run option for the TACL RUN command. Run options must be separated by
commas and set off in the command line by slashes (/). See the TACL Reference
Manual for descriptions of valid run options.

Two run options most often used with DSNMCom are:

IN filename
OUT filename

IN filename

causes DSNMCom to read and execute commands located in the specified file.

If you omit IN filename, DSNMCom uses the input file in effect for the
current TACL process: usually, the home terminal.

OUT filename

causes DSNMCom to send its output to the specified file.

If you omit OUT filename, the output is directed to the output file in effect
for the current TACL process: usually, the home terminal.

If filename does not exist, an EDIT file is created.

DSNM section-name

initializes the DSNMCom subsystem and object tables using the configuration file
pointed to in the named section-name of $SYSTEM.SYSTEM.DSNM. If you
do not specify a section name (blank value), the blank section of
$SYSTEM.SYSTEM.DSNM is used.

CONFIG filename

initializes the DSNMCom subsystem and object tables using the named
configuration file. Only one configuration file can be specified. If do not specify a
configuration file (blank value), the blank section of $SYSTEM.SYSTEM.DSNM is
used.

WARNING. DSNMCom and the process(es) you are testing must all be using the same
DSNMCONF file for the subsystem, CI, and I process configuration parameters. If you are
testing an I process, you must specify the same DSNMCONF file in both your I process RUN
command and your DSNMCom RUN command; otherwise, results are unpredictable.

If you specify more than one configuration file in your I process RUN command (for instance, if
you are maintaining your subsystem-specific configuration parameters separately from your
installation’s production DSNM configuration parameters), you must provide DSNMCom with
the configuration file that contains the subsystem-specific configuration information.
7-2
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNMCom: The I Process Test Utility Running DSNMCom Interactively
$process-name

is the name of the process to which DSNM sends commands.

If you omit $process-name, you must open the process with the DSNMCom
OPEN command before issuing any DSNM commands (see “The DSNMCom
Commands” on page 7-5).

$process-name must be preceded by a comma if you specify either DSNM or
CONFIG with a blank value.

command

is either one of the DSNMCom commands listed in Table 7-1, or a DSNM
command. Separate the command from the $process-name by a semicolon or at
least one space.

The DSNMCom Prompt
The DSNMCom prompt is one of the following:

• When you enter DSNMCOM at your TACL prompt without specifying a process
name to be opened, the following prompt appears:

DSNMCom >

• Once you open a process, either by including the process name in your run
command or by issuing an OPEN command from DSNMCom, the following prompt
appears:

DSNM $process-name >

• If DSNMCom is unable to open the specified process, the following prompt appears:

DSNM $process-name (filesystem-error) >

Running DSNMCom Interactively
You can run DSNMCom interactively in one of the following ways:

• By executing a DSNM command through DSNMCom at the TACL prompt. For
example:

> DSNMCOM CONFIG $DSNM.IDEV.DSNMCONF $SPFI &
 STOP VALVE PRT3 UNDER $SMGR
>

• By entering DSNMCom and executing DSNM commands at the DSNMCom
prompt. For example:

> DSNMCOM CONFIG $DSNM.IDEV.DSNMCONF $SPFI
DSNM $spfi > STOP VALVE PRT3 UNDER $SMGR
DSNM $spfi >
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 7-3

Running DSNMCom From an Input File DSNMCom: The I Process Test Utility
Running DSNMCom From an Input File
Use the IN file name option with the RUN command to provide DSNMCom with a set
of commands to execute. For example, to execute a set of DSNM commands in file
EXCMDS, using the configuration file pointed to in section TEST of
$SYSTEM.SYSTEM.DSNM, type:

> DSNMCOM /IN EXCMDS/ DSNM TEST $process-name
 .
 DSNM command output
 .
>

The end of file (EOF) of the input file terminates the DSNMCom process; control of the
terminal returns to TACL. (EOF is the same as typing EXIT.)

To execute the commands located in file EXCMDS and send the output to printer $HT1,
type:

> DSNMCOM /IN EXCMDS,OUT $S.#HT1,NOWAIT/ DSNM TEST &
 $process-name
>

The Comment Character, COMMENT-CHAR
To have input recognized as comments by DSNMCom, you must precede each comment
line with one COMMAND-CHAR character and one COMMENT-CHAR character. By
default, both are the period (.) and both are set using the DSNMCom SET command,
discussed later in this section.

To have an input line be interpreted as a comment by DSNMCom, use the following
syntax:

With both COMMAND-CHAR and COMMENT-CHAR set to a period (.), an example
would be the following:

..setting PAID is optional

Using the Break Key
Use the Break key to stop a command that is listing information to the screen.
DSNMCom then returns to the DSNMCom prompt.

If you press the Break key from within DSNMCom when a listing command is not
executing, control of the terminal returns to TACL. DSNMCom continues to run in the
background. From the TACL prompt, you can:

• Type PAUSE to return to DSNMCom.

• Type STOP to stop the running DSNMCom process.

COMMAND-CHAR COMMENT-CHAR comment-text
7-4
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNMCom: The I Process Test Utility EXIT Command
Setting Security Parameters in DSNMCom
To set security parameters in DSNMCom, use the DSNMCom SET command. To
display the current settings before setting or changing them, use the DSNMCom SHOW
command, followed by the parameter name. The SHOW command without a parameter
name displays the current settings of all these parameters. The security parameters are
discussed with the DSNMCom SET command definition, later in this section.

The DSNMCom Commands
With the exception of the FC command, DSNMCom commands must be preceded by
the COMMAND-CHAR character; otherwise, the command is not recognized. No
leading spaces are allowed.

The default COMMAND-CHAR character is the period (.). You can change the value of
COMMAND-CHAR with the DSNMCom SET command, which is discussed later in
this section. Table 7-1 lists the DSNMCom commands.

CLOSE Command

The CLOSE command closes the current server.

EXIT Command

The EXIT command terminates DSNMCom and returns control to the command
interpreter.

Table 7-1. DSNMCom Commands

Command Function

CLOSE Closes the current server.

EXIT Closes all files and terminates DSNMCom.

FC Allows you to edit and reexecute the previous command line.

HELP Displays all DSNMCom commands or the syntax of a particular command.

OPEN Opens a process.

QUIT Closes all files and terminates DSNMCom (same as EXIT).

RESET Returns all settable parameters to their default values.

SET Sets DSNMCom parameters.

SHOW Displays the current settings of DSNMCom parameters.

CLOSE

EXIT
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 7-5

FC Command DSNMCom: The I Process Test Utility
Considerations

• The DSNMCom process terminates when it reads the end of file (EOF) of an input
file: you do not have to end an input command file with an EXIT command.

• Entering Ctrl/Y at the terminal is the same as EOF. If you type Ctrl/Y at the
DSNMCom prompt, DSNMCom terminates.

• The DSNMCom QUIT command is synonymous with the EXIT command.

FC Command

FC (fix command) allows you to modify and resubmit the last command line entered.
The FC command is not recognized if preceded by a period (.).

Considerations

The FC subcommands (R, I, and D) are the same as those used for the TACL FC
command. See the TACL Reference Manual for further description.

HELP Command

The HELP command displays DSNMCom command and parameter names or the syntax
of a particular DSNMCom command. It also provides limited usage information for
commands and parameters.

OUT filename

is the output device for the listing. If omitted, the output is sent to your home
terminal.

command

is the name of the DSNMCom command whose syntax you want to see.

paramname

is the name of the DSNMCom parameter about which you want to see information.
The DSNMCom parameters are listed in the “SET Command” subsection, later in
this section.

FC

HELP [/ OUT filename /] [command or paramname]
7-6
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNMCom: The I Process Test Utility SET Command
OPEN Command

The OPEN command opens the specified process.

$process-name

is the name of the process to which you want to send DSNM commands.

Consideration

A previously opened process (if any) is closed upon successful completion of the OPEN
command.

QUIT Command

The QUIT command closes all files and terminates DSNMCom; it is synonymous with
the EXIT command.

Consideration

See the EXIT command considerations.

RESET Command

The RESET command returns all settable parameters to their default values. You might
find this command useful to quickly reset all the DSNMCom parameters to their defaults
before resetting just one parameter (for a specific test). For a specific test, use the
RESET command to restore all the default settings, then use the SET command to set a
single parameter.

SET Command

The SET command allows you to set DSNMCom parameters, most of which are
security attributes. The LICENSED, LOGGED-ON, REMOTE, SEND-SECINFO, and
TYPED-OUTPUT parameters can be set to YES, NO, TRUE, FALSE, ON, or OFF.

These security parameters allow you to establish a simulated test environment where
processes and commands appear to have certain characteristics or security attributes.
This allows you to test your I process or server process without establishing an entire
DSNM environment.

OPEN $process-name

QUIT

RESET

SET paramname paramvalue
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 7-7

SET Command DSNMCom: The I Process Test Utility
The values of paramname and paramvalue appear in Table 7-2, which lists the
DSNMCom SET parameters.

COMMAND-CHAR

COMMAND-CHAR is the character that must appear as the first character of each line
that contains a DSNMCom command or a comment. When setting COMMAND-
CHAR, enter the new character without quotes. For example, to set the command
character to the slash (/), use the following:

.SET COMMAND-CHAR /

Before processing the command in this example, COMMAND-CHAR was set to a
period (.); notice a period at the beginning of the command line. After DSNMCom
processes this command, COMMAND-CHAR becomes the slash. All subsequent
DSNMCom commands and comments must now begin with a slash (until the next
setting of this character or a DSNMCom RESET command).

Table 7-2. DSNMCom SET Parameters

Parameter Function Default

COMMAND-CHAR Required first character of each line that contains a
DSNMCom command or a comment (except for the
FC command).

. (period)

COMMENT-CHAR Character that must follow COMMAND-CHAR for a
comment line.

. (period)

LICENSED When set to TRUE, makes DSNM commands appear
to be from a licensed requester.

FALSE

LOGGED-ON When set to TRUE, makes DSNM commands appear
to be sent from a logged-on requester.

FALSE

PAID Process accessor ID value of an open request sent to
DSNM.

None

REMOTE When set to TRUE, makes DSNM commands appear
to be sent from a remote process or a process created
by a remote process.

FALSE

SEND-SECINFO When set to TRUE, DSNMCom sends commands
with security data consistent with that sent by the
DSNM CMDSVR process.

FALSE

TYPED-OUTPUT When set to TRUE, DSNMCom displays VTY type
information.

FALSE

USER NonStop Kernel user ID of the user under which the
command is to be processed.

None
7-8
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNMCom: The I Process Test Utility SET Command
COMMENT-CHAR

COMMENT-CHAR is the character that must follow COMMAND-CHAR for the
remainder of the line to be ignored (to be interpreted as a comment). When setting
COMMENT-CHAR, enter the new character without quotes. For example, to set the
comment character to the slash (/) use the following:

.SET COMMENT-CHAR /

After DSNMCom processes this command, COMMENT-CHAR becomes the slash
(until the next setting of this character or a DSNMCom RESET command).

LICENSED

When the LICENSED parameter is set to TRUE, all DSNM commands sent to the
server appear to be from a licensed requester. The LICENSED parameter is only
effective in this manner when the DSNMCom process is licensed and the security
parameter SEND-SECINFO is also TRUE.

LOGGED-ON

When LOGGED-ON is set to TRUE, all DSNM commands sent to the server appear to
be from a logged-on requester. The LOGGED-ON parameter is only effective in this
manner when the DSNMCom process is licensed and the security parameter SEND-
SECINFO is also TRUE.

PAID (Process Accessor ID)
The process-accessor-id (PAID) is the user ID under which the process gains access to
system objects: for example, files. The value of PAID is sent as the process-accessor-id
of the open operation over which the request was sent to DSNM.

The PAID parameter is only effective in this manner when the DSNMCom process is
licensed and the security parameter SEND-SECINFO is set to TRUE.

PAID can be set to groupname.username or groupnumber,usernumber.

REMOTE

When REMOTE is set to TRUE, the command sent to a server appears to be from a
remote process or one that was created by a remote process and has not logged on
locally. For a TRUE setting of REMOTE to have any effect, the DSNMCom process
must be licensed, and the security parameter SEND-SECINFO is also set to TRUE.

SEND-SECINFO
When SEND-SECINFO is set to TRUE, DSNMCom sends commands with
security information (internal DSNMCom security information:
ZDSN^TKN^SECURITY^INFO) consistent with that sent by the DSNM CMDSVR
process. DSNMCom must be licensed for SEND-SECINFO (when set to TRUE) to
support valid security testing.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 7-9

SHOW Command DSNMCom: The I Process Test Utility
When SEND-SECINFO is FALSE, DSNMCom sends logon information
(ZDSN^TKN^LOGON^INFO) in the same manner as an external DSNM requester
(such as NonStop NET/MASTER). Logon information is only sent if parameter USER
is set.

If you are testing an I process or a secondary command server, use TRUE for
SEND-SECINFO. If you are testing a primary command server, use FALSE for
SEND-SECINFO.

TYPED-OUTPUT
When TYPED-OUTPUT is set to TRUE, DSNMCom displays the VTY type
information for each line of output from a server response.

USER
USER is the NonStop Kernel user ID of the user under which the command is to be
processed by the server. USER can be set to groupname.username or
groupnumber,usernumber.

Consideration

USER is allowed only if DSNMCom is licensed.

SHOW Command
The SHOW command displays the current values of all the DSNMCom parameters. If
you follow the SHOW command with a parameter name, DSNMCom displays the
current setting of that parameter.

Considerations

None.

SHOW [paramname]
7-10
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNMCom: The I Process Test Utility Executing DSNM Commands
Executing DSNM Commands
Any command you enter from within DSNMCom other than CLOSE, EXIT, FC, HELP,
OPEN, QUIT, RESET, SET, or SHOW is assumed to be a DSNM command.

You can send DSNM commands directly from the DSNMCom RUN command line. For
example:

> DSNMCOM CONFIG $DSNM.IDEV.DSNMCONF $SPFI STATUS REACTOR * &
 UNDER $SMGR, DOWN
SPIFFY CHAMBER COMPOUND3 UNDER $SMGR Down
SPIFFY BOILER STUFFX UNDER $SMGR Down
SPIFFY VALVE FORMULAY UNDER $SMGR Down
SPIFFY BOILER INGREDTA UNDER $SMGR Down
SPIFFY BOILER INGREDTC UNDER $SMGR Down
SPIFFY VALVE XXX UNDER $SMGR Down
>

Or you can send DSNM commands from within DSNMCom. For example

> DSNMCOM CONFIG $DSNM.IDEV.DSNMCONF $SPFI
DSNMCom - T9216D30 12FEB95
Copyright Tandem Computers Incorporated 1995
DSNM $spfi > STATUS REACTOR PURPLE UNDER $SMGR, NOT-UP
SPIFFY BOILER ELEMENT1 UNDER $SMGR Pending
SPIFFY BOILER ELEMENT2 UNDER $SMGR Pending
SPIFFY BOILER ELEMENT3 UNDER $SMGR Pending
SPIFFY VALVE MIX3 UNDER $SMGR Pending
SPIFFY CHAMBER COMPOUND2 UNDER $SMGR Pending
SPIFFY CHAMBER COMPOUND3 UNDER $SMGR Down

DSNM $spfi > STATUS REACTOR AMBER UNDER $SMGR, NOT-DOWN
SPIFFY BOILER INGREDTB UNDER $SMGR Up
SPIFFY VALVE YYY UNDER $SMGR Up
SPIFFY VALVE ZZZ UNDER $SMGR Pending
SPIFFY CHAMBER AAA UNDER $SMGR Pending
SPIFFY CHAMBER BBB UNDER $SMGR Up
SPIFFY CHAMBER CCC UNDER $SMGR Pending

DSNM $spfi> EXIT
>
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 7-11

DSNMCom Messages DSNMCom: The I Process Test Utility
DSNMCom Messages
DSNMCom produces the following messages, which are displayed on the OUT listing
device.

Cause. You tried to issue a DSNM command without first opening a process.

Effect. You are returned to the DSNMCom prompt.

Recovery. Use the OPEN command to open a started process; then resubmit the
command.

Cause. You provided an invalid process name to DSNMCom.

Effect. You are returned to the DSNMCom prompt.

Recovery. Use the OPEN command and provide a valid process name.

Cause. You tried to open a process without providing a process name.

Effect. You are returned to the DSNMCom prompt.

Recovery. Reenter the command with a valid process name.

Cause. A file system error occurred when DSNMCom attempted a WRITEREAD to
either the input file, the output file, or the currently open process file.

Effect. If the error occurred on the input file, the message is written to the output file
and DSNMCom abnormally ends.

If the error occurred on the output file, the message is written to the home terminal and
DSNMCom abnormally ends.

If the error occurred on the currently open process file, the message is written to the
output file and the process file is closed. Any subsequent SEND commands result in an
“ERROR -- no server open” message until an OPEN command is successfully
processed.

Recovery. See the Guardian Procedure Errors and Messages Manual for a description
of the specific file system error and the appropriate recovery action.

ERROR -- no server open: use OPEN <process>

ERROR -- Invalid process name

ERROR -- process name expected

File System error nn ON filename
7-12
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNMCom: The I Process Test Utility DSNMCom Messages
Cause. DSNMCom was unable to open the specified file.

Effect. If the error occurred on the input or output file, DSNMCom abnormally ends
after writing a brief description of the error to the home terminal.

If the error occurred on the process file, the process file remains closed; any previously
opened process file remains open.

Recovery. See the Guardian Procedure Errors and Messages Manual for a description
of the specific file system or sequential I/O (SIO) error and the appropriate recovery
action.

Cause. DSNMCom was unable to open the specified STARTUP parameter value in the
$SYSTEM.SYSTEM.DSNM file (a section named env-name) during the DSNM
initialization process because the specified section name is too long. The maximum
acceptable length for env-name (ZDSN-MAX-PARAMNAME) is 32 bytes.

Effect. A fatal error is reported, and DNSM is not started.

Recovery. Correct and reissue the command. Refer to the Distributed Systems
Management Solutions (DSMS) System Management Guide for information on DSNM
process startup message parameters.

Cause. The command did not include an expected character.

Effect. DSNMCom is not started up.

Recovery. Correct and reissue the command.

Cause. During the initialization of DSNM, inappropriate configuration input was
submitted, or no configuration was submitted.

Effect. DSNM and DSNMCom cannot be started.

Recovery. Check your configuration files and try the DSNM initialization again. If the
problem persists, contact your Tandem representative. Be prepared to describe the
problem in detail as recommended in “What to Prepare Before Contacting Your Tandem
Support Representative” on page B-1.

OPEN ERROR nn ON filename

ERROR -- Section name too long

ERROR -- Expecting <space> <comma> or <semi-colon>

ERROR -- DSNMCom can't continue
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 7-13

DSNMCom Messages DSNMCom: The I Process Test Utility
Cause. You provided text that is not recognized or supported after the DSNMCom
command.

Effect. The command is not executed.

Recovery. Correct and reissue the command.

Cause. You provided a parameter value that is not recognized or supported.

Effect. The command is not executed.

Recovery. Correct and reissue the command.

Cause. You provided a parameter value that is not recognized or supported; DSNMCom
was expecting a single character.

Effect. The command is not executed.

Recovery. Correct and reissue the command.

Cause. You provided a user name that is unrecognizable, not supported, or in an
improper format.

Effect. The command is not executed.

Recovery. Correct and reissue the command. The user name must be in the format
groupnumber.usernumber, where both groupnumber and usernumber are no more than
eight characters and begin with a letter (A to Z or a to z). Also, a period (.) must appear
between groupnumber and usernumber.

Cause. You provided a user ID that is unrecognizable, not supported, or in an improper
format.

Effect. The command is not executed.

Recovery. Correct and reissue the command with a valid user ID.

ERROR -- unrecognized text following command

ERROR -- expecting one of: ON, OFF, TRUE, FALSE, YES or NO

ERROR -- invalid value for parameter

ERROR -- invalid username

ERROR -- invalid userid
7-14
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNMCom: The I Process Test Utility DSNMCom Messages
Cause. Userid is out of bounds or there is an I/O error on
$SYSTEM.SYSTEM.USERID.

Effect. The command is not executed.

Recovery. Check USERID or contact your system manager.

Cause. Username is out of bounds or there is an I/O error on
$SYSTEM.SYSTEM.USERID.

Effect. The command is not executed.

Recovery. Check USERNAME or contact your system manager.

Cause. You specified a user ID / user name that is undefined.

Effect. The command is not executed.

Recovery. Correct and reissue the command.

Cause. You provided a user ID or user name in a DSNMCom SET command that is not
recognized or supported.

Effect. The command is not executed.

Recovery. Correct and reissue the command.

Cause. You misspelled a parameter or issued a SET or SHOW command with a
parameter name that is not supported.

Effect. The command is not executed.

Recovery. Correct and reissue the command.

ERROR -- Unable to obtain userid

ERROR -- Unable to obtain username

ERROR -- non-existent user

ERROR -- expecting a valid userid or username

ERROR -- expecting a valid parameter name
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 7-15

DSNMCom Messages DSNMCom: The I Process Test Utility
Cause. DSNMCom is unable to recognize the command because the command line did
not begin with the current COMMAND-CHAR character, and the command is not a
valid DSNM command.

Effect. The command is not executed.

Recovery. Correct and reissue the command.

Cause. A DSNM error occurred during the file operation.

Effect. See the description in the error-text portion of the message.

Recovery. See the error-text portion of the message.

Cause. An SPI error occurred.

Effect. The command is not executed

Recovery. Check the SPI error identified in the message and refer to the SPI error
documentation in the SPI Programming Manual.

Cause. An SPI error occurred.

Effect. The command is sent without the security token.

Recovery. Check the SPI error identified in the message and refer to the SPI error
documentation in the SPI Programming Manual.

Cause. An SPI error occurred.

Effect. The command is sent without the security token.

Recovery. Check the SPI error identified in the message and refer to the SPI error
documentation in the SPI Programming Manual.

ERROR -- invalid DSNMCom command

DSNM error: error-text ON filename

SSGETTKN Error nn on LOGON^INFO token

Warning: SSPUTTKN Error nn adding the SECURITY-INFO token

Warning: Error nn trying to construct SECURITY-INFO token
SECURITY-INFO not added to command buffer
7-16
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNMCom: The I Process Test Utility DSNM Parser Errors
Cause. An SPI error occurred.

Effect. The command is sent without the security token.

Recovery. No recovery action required.

Cause. The CLOSE command was given when no server was open.

Effect. The command is not executed.

Recovery. No recovery action needed.

DSNM Parser Errors

The following errors may be generated by the DSNM parser, which interprets DSNM
commands before they are executed.

Cause. You misspelled a command or issued a command that is not supported.

Effect. The command is not executed.

Recovery. Correct and reissue the command.

Cause. Your command included more objects than are allowed in a single command.

Effect. The command is not executed.

Recovery. Break the command up into two or more commands.

Cause. You nested parentheses beyond the maximum allowable depth.

Effect. The command is not executed.

Recovery. Simplify the command or break it into two or more commands, if necessary.

SECURITY-INFO not added to command buffer

no server open

Command unrecognizable

Exceeded max objects

Exceeded max paren levels
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 7-17

DSNM Parser Errors DSNMCom: The I Process Test Utility
Cause. You entered too many parameters or an excessively long parameter.

Effect. The command is not executed.

Recovery. Simplify the command or break it into two or more commands, if necessary.

Cause. You specified an option that is not valid for any command.

Effect. The command is not executed.

Recovery. Correct and reissue the command.

Cause. You specified an option that is not valid for this command.

Effect. The command is not executed.

Recovery. Correct and reissue the command.

Cause. You entered a name that is longer than the maximum valid length.

Effect. The command is not executed.

Recovery. Correct the name and reissue the command.

Cause. You issued a command that requires operands, but did not specify any.

Effect. The command is not executed.

Recovery. Correct and reissue the command.

Exceeded param space

Invalid option

Invalid option for this command

Name too long

No operands
7-18
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNMCom: The I Process Test Utility DSNM Parser Errors
Cause. A consistency error was encountered in the parser object type table.

Effect. Commands cannot be correctly interpreted.

Recovery. Contact your Tandem representative. Be prepared to describe the problem in
detail as recommended in “What to Prepare Before Contacting Your Tandem Support
Representative” on page B-1.

Cause. A consistency error was encountered in the parser parameter data type table.

Effect. Commands cannot be correctly interpreted.

Recovery. Contact your Tandem representative. Be prepared to describe the problem in
detail as recommended in “What to Prepare Before Contacting Your Tandem Support
Representative” on page B-1.

Cause. A keyword, subsystem name, or object type was out of place.

Effect. The command is not executed.

Recovery. Correct and reissue the command. If the error was caused because an object
name is the same as a keyword, subsystem name, or object type, enclose it in quotation
marks.

Cause. A consistency error was encountered in the parser subsystem table.

Effect. Commands cannot be correctly interpreted.

Recovery. Contact your Tandem representative. Be prepared to describe the problem in
detail as recommended in “What to Prepare Before Contacting Your Tandem Support
Representative” on page B-1.

Cause. The command contains a serious syntax error.

Effect. The command is not executed.

Recovery. Correct and reissue the command.

Object type table error

Param datatype table error

Reserved word misplaced

Subsys table error

Syntax error
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 7-19

DSNM Parser Errors DSNMCom: The I Process Test Utility
Cause. Your command includes parentheses that are incorrectly paired.

Effect. The command is not executed.

Recovery. Correct and reissue the command.

Cause. The command did not include all required and expected information.

Effect. The command is not executed.

Recovery. Correct and reissue the command.

Unbalanced parens

Unexpected end
7-20
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

A DSNM Library Services

Scope of This Appendix
This appendix provides the following information (as applicable) for each define, literal,
procedure, global variable, and structure template listed in Table A-1 below:

• Description

• Syntax

• Parameter descriptions

• Considerations (additional information)

• Examples

Table A-1. DSNM Library Services (page 1 of 4)

Identifier Define Literal Procedure
Global
Variable

Structure
Template Miscellaneous

_ADD^CI X

_ADD^SUBSYS X

_ALLOFF X

_ALLON X

_ALLON^TURNOFF X

_ANYOFF X

_ANYON X

_ANYON^TURNOFF X

_APPEND^OUTPUT X

_BITDEF X

_CANCEL^SEND^CI X

_CANCEL^TIMEOUT X

_CI^DEF X

_CI^FILENUM X

_CI^ID X

_CI^IDPOINTER X

 _CI^LASTERROR X

_CI^REPLYADDRESS X

_CI^REPLYLENGTH X

_CI^REPLYTAG X

_CLOSE^CI X

_COMMAND^CONTEXT^HEADER X

_COMMAND^PROC Name of initial
command
thread
procedure
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-1

Scope of This Appendix DSNM Library Services
_COMMAND^TERMINATION^PROC Name of thread
termination
procedure

_COMPILED^IN^TESTMODE X

_DEALLOCATE^LIST X

_DELETE^LM X

_DEPOSIT X

_DISPATCH^THREAD X

_DSNMCONF^PARAMS X

_EMPTY^LIST X

_EMS^EVENT^CRITICAL X

_EMS^EVENT^FATAL X

_EMS^EVENT^INFO X

_END^THREAD^PROC X

_END^THREAD^TERMINATION^PROC X

_EV^CANCEL X

_EV^CONTINUE X

_EV^IODONE X

_EV^STARTUP X

_EV^TIMEOUT X

_EXTRACT X

_FIRST^LM X

FOBJECT Name assigned
to formatted
object structure

_FOBJECT^INIT X

_GET^LM X

_GET^PARAM X

_GET^PROCESS^PARAM X

_INITIALIZE^LIST X

_INPUT Name assigned
to command
context input
area

_INPUT^DEF X

_INPUT^LM^HEADER X

_ISNULL X

_JOIN^LIST X

KDSNDEFS Source file for
definitions and
declarations

_LAST^CI^ID X

Table A-1. DSNM Library Services (page 2 of 4)

Identifier Define Literal Procedure
Global
Variable

Structure
Template Miscellaneous
A-2
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services Scope of This Appendix
_LAST^EVENTS X

_LAST^LM X

_LAST^TIMEOUT^TAG X

_LIST X

_LISTPOINTER X

_MEMBERSOF^LIST X

_MOVE^LIST X

_NOTNULL X

_NULL X

_NULL^LIST X

OBJECTLIST Name assigned
to input and
output object
lists

_OFF X

_ON X

_OPEN^CI X

_OUTPUT Name assigned
to command
context output
area

_OUTPUT^DEF X

_OUTPUT^LM^HEADER X

_POP^LM X

_POP^THREAD^PROCSTATE X

_PREDECESSOR^LM X

_PRIVATE^THREAD^EVENT X

_PROCESS^PARAMS X

_PUSH^LM X

_PUSH^THREAD^PROCSTATE X

_PUT^LM X

_RC^ABORT X

_RC^NULL X

_RC^STOP X

_RC^TYPE X

_RC^WAIT X

_REAL^LAST^EVENTS X

_RELEASE^OUTPUT X

_REPORT^INTERNAL^ERROR X

_REPORT^STARTUP^ERROR X

_RESTORE^THREAD^AND^DISPATCH X

Table A-1. DSNM Library Services (page 3 of 4)

Identifier Define Literal Procedure
Global
Variable

Structure
Template Miscellaneous
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-3

Scope of This Appendix DSNM Library Services
_SAVE^THREAD^AND^DISPATCH X

_SEND^CI X

_SET^THREAD^PROC X

_SET^TIMEOUT X

_SIGNAL^EVENT X

_STARTUP User-supplied
initialization
procedure

_STARTUP^MODE User-supplied
startup
procedure

_ST^INITIAL X

_ST^MIN^THREAD^STATE X

_SUBSYS^DEF X

_SUCCESSOR^LM X

_THREAD^CONTEXT^ADDRESS X

_THREAD^PROC X

_THREAD^STATE X

_THREAD^TERMINATION^CODE X

_THREAD^TERMINATION^PROC X

_TURNOFF X

_TURNON X

_UNGET^LM X

_UNPOP^LM X

_XADR^EQ X

_XADR^NEQ X

Table A-1. DSNM Library Services (page 4 of 4)

Identifier Define Literal Procedure
Global
Variable

Structure
Template Miscellaneous
A-4
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _ADD^CI
_ADD^CI

_ADD^CI retrieves CI configuration information from the DSNM configuration file
(DSNMCONF). It allocates the memory for and completes a predefined CI
configuration structure with this information. It then returns the address of the
completed structure.

You must declare an extended pointer to a structure defined by _CI^DEF in your global
definitions for each CI with which your subsystem communicates.

You must call _ADD^CI in your _STARTUP procedure for each CI class with which
your I-process communicates.

ci-config output

INT .EXT ! (_CI^DEF) !

receives the address of the _CI^DEF-defined CI configuration structure that
_ADD^CI completes with configuration parameter values for the specified CI. If an
error occurs or no configuration is found for this CI process class, a null value is
returned.

ciname input

STRING .EXT

is the process class name associated with the CI. The string must be blank or null
terminated.

The process class name of the CI is the name in the COMPONENT field of the
CI-CONFIG class records in the DSNMCONF file that specifies the CI
configuration parameters. This name is arbitrary; by custom, the object file name of
the subsystem manager is the logical name of the process class (for example,
PATHMON or SCP).

error output

INT .EXT

is the ZDSN or file-system error, if an error occurs.

error-filename output

STRING .EXT ! (ZDSN^DDL^OBJNAME^DEF) !

is the name of the DSNM configuration file associated with the returned error
value.

@ci-config := _ADD^CI (ciname
 ,[error]
 ,[error-filename]);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-5

_ADD^CI DSNM Library Services
Example
< in global definitions >

INT .EXT scp (_CI^DEF);
INT .EXT snaxcdf (_SUBSYS^DEF);

STRING .scpclass[0:ZDSN^MAX^CICLASS-1] := [“SCP “];
STRING .cdf[0:ZDSN^MAX^SUBSYS-1] := [“SNAXCDF “];

< within _STARTUP procedure >

 .
 .
 IF _ISNULL (@scp := _ADD^CI (scpclass)) THEN
 RETURN ZDSN^ERR^INTERNAL^ERR;
 IF _ISNULL (@snaxcdf := _ADD^SUBSYS (cdf)) THEN
 RETURN ZDSN^ERR^INTERNAL^ERR;
 .
 .

< within _COMMAND^PROC procedure >

 .
 .
 CALL _OPEN^CI (scp, ...);
 .
 .
A-6
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _ADD^SUBSYS
_ADD^SUBSYS

_ADD^SUBSYS retrieves subsystem and object type configuration information from
the DSNM configuration file (DSNMCONF). It allocates the memory for and
completes a predefined subsystem configuration structure with this information. It then
returns the address of the completed structure.

You must declare an extended pointer to a subsystem configuration structure defined by
_SUBSYS^DEF in your global definitions for each subsystem your I-process handles.

You must call _ADD^SUBSYS in your _STARTUP procedure for each subsystem your
I-process handles.

ss-config output

INT .EXT ! (_SUBSYS^DEF) !

receives the address of the _SUBSYS^DEF-defined subsystem configuration
structure that _ADD^SUBSYS completed with configuration parameter values for
the specified subsystem. If an error occurs or no configuration is found for this
subsystem, a null value is returned.

ssname input

STRING .EXT

is the subsystem name. The subsystem name is the name in the COMPONENT field
of the SUBSYSTEM class records in the DSNMCONF configuration file that
specifies the subsystem configuration parameters.

error output

INT .EXT

is the ZDSN or file-system error, if an error occurs.

error-filename output

STRING .EXT ! (ZDSN^DDL^OBJNAME^DEF) !

is the name of the DSNM configuration file associated with the returned error
value.

@ss-config := _ADD^SUBSYS (ssname
 ,[error]
 ,[error-filename]);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-7

_ADD^SUBSYS DSNM Library Services
Example
< in global definitions >

INT .EXT scp (_CI^DEF);
INT .EXT snaxcdf (_SUBSYS^DEF);

STRING .scpclass[0:ZDSN^MAX^CICLASS-1] := [“SCP “];
STRING .cdf[0:ZDSN^MAX^SUBSYS-1] := [“SNAXCDF “];

< within _STARTUP procedure >

 .
 .
 IF _ISNULL (@scp := _ADD^CI (scpclass)) THEN
 RETURN ZDSN^ERR^INTERNAL^ERR;
 IF _ISNULL (@snaxcdf := _ADD^SUBSYS (cdf)) THEN
 RETURN ZDSN^ERR^INTERNAL^ERR;
 .
 .
A-8
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _ALLOFF
_ALLOFF

_ALLOFF is a Boolean define statement that is TRUE if every one-bit of bit-mask is
off in int-exp. TRUE is nonzero, not necessarily -1.

The _ALLOFF function is the same as the _OFF function. It is more descriptive to use
_ALLOFF when testing more than one bit.

int-exp input

INT:value

is the INT expression being compared with bit-mask.

bit-mask input

INT:value

is an INT expression, the one-bits of which identify the bits in int-exp to test.

Example

The following example tests if both bits 9 and 11 in var are off:

INT var;
LITERAL evta = %20; !evta.<11> on
LITERAL evtb = %100; !evtb.<9> on

IF _ALLOFF (var, evta + evtb)
 THEN ... !both var.<9> and var.<11> are zero
 ELSE ...; !at least one of var.<9> and var.<11> is one

_ALLOFF (int-exp , bit-mask)
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-9

_ALLON DSNM Library Services
_ALLON

_ALLON is a Boolean define statement that is TRUE if every one-bit of bit-mask is
on in int-exp. TRUE is nonzero, not necessarily -1.

int-exp input

INT:value

is the INT expression being compared with bit-mask.

bit-mask input

INT:value

is an INT expression, the one-bits of which identify the bits in int-exp to test.

Examples

The following example tests if both bits 9 and 11 in var are on:

INT var;
LITERAL evta = %20; !evta.<11> on
LITERAL evtb = %100; !evtb.<9> on

IF _ALLON (var, evta + evtb)
 THEN ... !both var.<9> and var.<11> are one
 ELSE ...; !at least one of var.<9> and var.<11> is
 !zero

The following example tests if the event _EV^IODONE caused the current dispatch of
the thread:

IF _ALLON (_LAST^EVENTS, _EV^IODONE)
 THEN ...;

_ALLON (int-exp , bit-mask)
A-10
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _ALLON^TURNOFF
_ALLON^TURNOFF

If every one-bit of bit-mask is on in int-var, _ALLON^TURNOFF returns TRUE
and turns off every one-bit of int-var that is on in bit-mask. TRUE is nonzero,
not necessarily -1.

int-var input/output

INT:ref

is the variable compared with bit-mask.

bit-mask input

INT:value

is an INT expression, the one-bits of which identify the bits in int-var to turn off.

_ALLON^TURNOFF (int-var , bit-mask)
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-11

_ANYOFF DSNM Library Services
_ANYOFF

_ANYOFF is a Boolean define statement that is TRUE if any one-bit of bit-mask is
off in int-exp. TRUE is nonzero, not necessarily -1.

int-exp input

INT:value

is the INT expression compared with bit-mask.

bit-mask input

INT:value

is an INT expression, the one-bits of which identify the bits in int-exp to test.

Example

The following example tests if at least one of bits 9 and 11 in var are off:

INT var;
LITERAL evta = %20; !evta.<11> on
LITERAL evtb = %100; !evtb.<9> on

IF _ANYOFF (var, evta + evtb)
 THEN ... !at least one of var.<9> and var.<11> is zero
 ELSE ...; !both var.<9> and var.<11> are one

_ANYOFF (int-exp , bit-mask)
A-12
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _ANYON
_ANYON

_ANYON is a Boolean define statement that is TRUE if any one-bit of bit-mask is on
in int-exp. TRUE is nonzero, not necessarily -1.

The _ANYON function is the same as the _ON function. It is more descriptive to use
_ANYON when testing more than one bit.

int-exp input

INT:value

is the INT expression compared with bit-mask.

bit-mask input

INT:value

is an INT expression, the one-bits of which identify the bits in int-exp to test.

Example

The following example tests if at least one of bits 9 and 11 in var are on:

INT var;
LITERAL evta = %20; !evta.<11> on
LITERAL evtb = %100; !evtb.<9> on

IF _ANYON (var, evta + evtb)
 THEN ... !at least one of var.<9> and var.<11> is one
 ELSE ...; !both var.<9> and var.<11> are zero

_ANYON (int-exp , bit-mask)
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-13

_ANYON^TURNOFF DSNM Library Services
_ANYON^TURNOFF

If any one-bit of bit-mask is on in int-var, _ANYON^TURNOFF returns TRUE
and turns off any one-bits in int-var that are on in bit-mask. TRUE is nonzero,
not necessarily -1.

int-var input/output

INT:ref

is the variable compared with bit-mask.

bit-mask input

INT:value

is an INT expression, the one-bits of which identify the bits in int-var to turn off.

_ANYON^TURNOFF (int-var , bit-mask)
A-14
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _APPEND^OUTPUT
_APPEND^OUTPUT

_APPEND^OUTPUT appends text and other variable-length items to an output list
member. The maximum allowed length of a character string (ZDSN-MAX-TEXT) is 75
characters.

Text and other variable-length items can only be appended to the frame output list.

error returned value

INT

is a ZDSN^ERR value indicating the outcome of the call. See Appendix B, “DSNM
Error Codes,” for error code definitions.

output-list-member input

INT .EXT

is the output list member to which an item is appended.

type input

INT:value

is one of the following ZDSN^VTY codes describing the appended item:

error := _APPEND^OUTPUT (output-list-member
 ,type
 ,[header]
 ,[header-len]
 ,[body]
 ,[body-len]);

ZDSN^VTY^RESULTTEXT One line of additional subsystem and object-
specific text that further explains the value in the
output object’s result code field. For the STATUS
command, describes subsystem state of object.
Provides brief error description if error occurs.

ZDSN^VTY^TEXT Additional lines of explanatory text for the
STATUS (DETAIL), INFO, and STATISTICS
commands.

ZDSN^VTY^ERRTEXT Text that describes error conditions for detailed
error requests.

ZDSN^VTY^NONTEXT Indicates that it is not possible to scan the header,
and the header length is required.

ZDSN^VTY^COUNTERS State summary counters for the AGGREGATE
command.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-15

_APPEND^OUTPUT DSNM Library Services
header input

STRING .EXT

is the appended item's header. If header is terminated with a null, then
header-len is not required.

header-len input

INT:value

is the length, in bytes, of the appended item’s header. Required only if header
does not terminate with a null byte.

body input

STRING .EXT

is the item to be appended to the output list member. If body terminates with a null
byte, body-len is not required. body should be appropriate to the value
represented.

body-len input

INT:value

is the length of the appended item, in bytes. Required only if body does not
terminate with a null byte.

Considerations

• header and body together represent a “keyword : value” pair. body with no
header is any other line of text. Text items appended to an object are displayed
with the object in the following form:

object [result-code] , body (ZDSN^VTY^RESULTTEXT)

[header] : body (ZDSN^VTY^TEXT)

[header] : body (ZDSN^VTY^ERRTEXT)

counter-values (ZDSN^VTY^COUNTERS)

• A response may have several text and/or error text lines (see individual command
requirements in Section 4, “DSNM Command Requirements”).
A-16
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _APPEND^OUTPUT
• A type ZDSN^VTY^COUNTERS structure is described by
ZDSN^DDL^COUNTERS^DEF and contains the number of objects of the
Z^OBJTYPE in each DSNM state. The relevant counters structure fields are:

For more information, see the description of the AGGREGATE command in
Section 4, “DSNM Command Requirements.”

Example
IF (err := _APPEND^OUTPUT (cx.outobj, ZDSN^VTY^COUNTERS,,,
 count, $LEN (count)))
 THEN RETURN err;

INT(32) Z^GREEN;

INT(32) Z^UP = Z^GREEN;

INT(32) Z^RED;

INT(32) Z^DOWN = Z^RED;

INT(32) Z^YELLOW;

INT(32) Z^PENDING = Z^YELLOW;

INT(32) Z^UNDEFINED;

INT(32) Z^INERROR;
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-17

_BITDEF DSNM Library Services
_BITDEF

_BITDEF defines a bit within a specified range of bits. A compile error is generated if
int falls outside of the range min-bit to max-bit, inclusive.

int input

the bit position to be defined within the range min-bit to max-bit, inclusive.

max-bit input

the leftmost bit position within the word that is now considered bit position 0. The
default is %100000.

min-bit input

the rightmost bit position within the range. The default is 1.

Examples

The following example assigns the value of bit position 2 within the range of bit
positions 3 and 7 in a word to evtb:

LITERAL maxval = _BITDEF (3); ! maxval = %10000
LITERAL minval = _BITDEF (7); ! minval = %400
LITERAL evtb = _BITDEF (2, maxval, minval); ! evtb = %2000

This is the same as:

LITERAL evtb = _BITDEF (2, %10000, %400); ! evtb = %2000

_BITDEF (int [,max-bit] [,min-bit])

401

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bit position 2 within range _BITDEF(3) and _BITDEF(7)

1

_BITDEF (3) _BITDEF (7)

Range

0 1 2 3 4
A-18
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _BITDEF
The next example generates a compile error because it attempts to assign a value to a bit
position outside of the designated range:

LITERAL z = BITDEF (4, %40, %10);

Bit position 4 requires a rightmost bit position range delimiter equal to or greater than
%2 (_BITDEF(14)).

402

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bit position 4 is outside range %40 and %10

%40 %10

Range

0 1 2 3 4
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-19

_CANCEL^SEND^CI DSNM Library Services
_CANCEL^SEND^CI

_CANCEL^SEND^CI cancels an outstanding _SEND^CI operation. The thread cancels
all outstanding _SEND^CI operations when the thread terminates.

error returned value

INT

is a file system error. File system errors are documented in the Guardian Procedure
Errors and Messages Manual.

tag input

INT(32):value

is the tag of an outstanding _SEND^CI operation.

If tag is omitted, the frame selects an outstanding operation on that CI from this
thread to be canceled.

Example
IF (error := _CANCEL^SEND^CI)
 THEN ... ;

error := _CANCEL^SEND^CI ([tag]);
A-20
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _CANCEL^TIMEOUT
_CANCEL^TIMEOUT

_CANCEL^TIMEOUT cancels an outstanding timeout set by a call to
_SET^TIMEOUT.

The tag of the canceled operation is stored in the command context space and can be
accessed with _LAST^TIMEOUT^TAG.

error returned value

INT

is a ZDSN^ERR value indicating the outcome of the call. See Appendix B, “DSNM
Error Codes,” for error code definitions.

tag input

INT(32):value

is the tag of an outstanding _SET^TIMEOUT operation.

If tag is omitted, the frame selects an outstanding timeout from this thread to
cancel, if any.

error := _CANCEL^TIMEOUT ([tag]);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-21

_CI^DEF DSNM Library Services
_CI^DEF

_CI^DEF is a template for a CI configuration structure, filled in by the _ADD^CI
procedure.

You must declare an extended pointer to a _CI^DEF-defined CI configuration structure
in globals for each CI with which your I process communicates.

_ADD^CI must be called in your _STARTUP procedure for each CI class your with
which your I process communicates. (_ADD^CI allocates the memory for, fills in, and
returns the address of the CI configuration structure.)

Considerations

The definition of the _CI^DEF-defined structure is:

DEFINITION ZDSN-DDL-PCLASS-CONFIG.
 02 Z-PCLASS TYPE ZDSN-DDL-PCLASS.
 02 Z-PUBLIC-NAME-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-PUBLIC-NAME TYPE ZDSN-DDL-PARAMNAME.
 02 Z-FLAGS TYPE ZSPI-DDL-ENUM.
 02 Z-PNAME-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-PNAME TYPE ZDSN-DDL-PNAME.
 02 Z-MAX-PROCESSES TYPE ZSPI-DDL-INT.
 02 Z-OPEN-PARAMS.
 03 Z-DEFAULT-QUALIFIER TYPE ZDSN-DDL-PQUAL.
 03 Z-NOWAIT-DEPTH TYPE ZSPI-DDL-INT.
 03 Z-OPEN-TIMEOUT TYPE ZSPI-DDL-INT2.
 02 Z-NEWPROCESS-PARAMS.
 03 Z-OBJECT-FILE TYPE ZDSN-DDL-OBJNAME.
 03 Z-LIBRARY-FILE TYPE ZDSN-DDL-OBJNAME.
 03 Z-SWAPVOL TYPE ZDSN-DDL-OBJNAME.
 03 Z-PRIORITY TYPE ZSPI-DDL-INT.
 03 Z-DATAPAGES TYPE ZSPI-DDL-INT.
 03 Z-NUM-CPUS TYPE ZSPI-DDL-INT.
 03 Z-CPUS TYPE ZSPI-DDL-INT OCCURS 16 TIMES.
 03 Z-HOMETERM TYPE ZDSN-DDL-OBJNAME.
 03 Z-FLAGS TYPE ZSPI-DDL-ENUM.
END

_CI^DEF
A-22
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _CI^DEF
Example
< in global definitions >
INT .EXT scp (_CI^DEF);
INT .EXT snaxcdf (_SUBSYS^DEF);

STRING .scpclass[0:ZDSN^MAX^CICLASS-1] := [“SCP ”];
STRING .cdf[0:ZDSN^MAX^SUBSYS-1] := [“SNAXCDF ”];

< within _STARTUP procedure >
 .
 .
 IF _ISNULL (@scp := _ADD^CI (scpclass)) THEN
 RETURN ZDSN^ERR^INTERNAL^ERR;
 IF _ISNULL (@snaxcdf := _ADD^SUBSYS (cdf)) THEN
 RETURN ZDSN^ERR^INTERNAL^ERR;
 .
 .
< within _COMMAND^PROC procedure >
 .
 .
 CALL _OPEN^CI (scp, ...);
 .
 .
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-23

_CI^FILENUM DSNM Library Services
_CI^FILENUM

_CI^FILENUM gives the type INT file number of the CI involved with the most-
recently completed communication.

filenumber output

INT

is the INT Guardian file number of the CI involved in the most-recently completed
communication.

ciid input

is the CIID structure (declared with _CI^ID) identifying an open CI.

Example
CALL FILEINFO (_CI^FILENUM (ciid), error);

filenumber := _CI^FILENUM (ciid)
A-24
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _CI^ID
_CI^ID

_CI^ID declares a structure (referred to as a “CIID” structure) in which _OPEN^CI
stores information about an open CI.

ciid user-provided identifier

is the name (a valid TAL identifier) given to the CIID structure with which an open
CI can be accessed.

The CIID structure plays a role in command-thread CI communication analogous to a
file number in Tandem NonStop Kernel interprocess communications. A particular
instance of an open CI is identified by its ciid in CI communications.

The following defines extract information from the CIID structure about the
communication just completed:

Example

The following example opens a CI:

_CI^ID (pm);
INT .EXT ci^config (_CI^DEF);

IF (error := _OPEN^CI (ci^config, pm)) THEN ...;

_CI^ID (ciid);

_CI^LASTERROR (ciid) INT file-system error of last operation

_CI^REPLYLENGTH (ciid) INT length of reply

_CI^REPLYADDRESS (ciid) INT(32) extended address of reply

_CI^REPLYTAG (ciid) INT(32) tag of last operation

_CI^FILENUM (ciid) INT Guardian file number of CI
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-25

_CI^IDPOINTER DSNM Library Services
_CI^IDPOINTER

_CI^IDPOINTER_CI^IDPOINTER declares an extended pointer to a CIID structure.

After the thread is dispatched by the frame with _EV^IODONE, _LAST^CI^ID is a type
_CI^IDPOINTER pointer, which gives access to information about the CI causing the
event.

ciid input

declares a pointer to a CIID structure (declared with _CI^ID).

Example

The following example declares a pointer to a CIID structure:

_CI^IDPOINTER (pm); !pointer to a CIID structure

IF _ON (_LAST^EVENTS, _EV^IODONE)
 THEN
 BEGIN
 @pm := _LAST^CI^ID; !pm gets address of CIID struct
 IF _CI^LASTERROR (pm) !check for errors
 THEN ... ;
 END;

_CI^IDPOINTER (ciid);
A-26
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _CI^LASTERROR
_CI^LASTERROR

_CI^LASTERROR is the type INT file-system error of the last CI operation.

fserror output

INT

is the file-system error of the last CI operation.

ciid input

is the CIID structure (declared with _CI^ID) identifying an open CI.

Considerations

If _CI^LASTERROR is not 0, the following actions occurred:

• Retriable errors were retried unsuccessfully.

• If the context flag of _SEND^CI was false (the send was context-free), an attempt
was made to reestablish communication with the CI process and to send the request
again.

If communication is reestablished, the file number returned by _CI^FILENUM can
be different from earlier CI communications.

If any of these actions results in a successful communication, _CI^LASTERROR
is 0; otherwise, it is the last error that occurred. File system errors are documented
in the Guardian Procedure Errors and Messages Manual.

Example
_CI^IDPOINTER (pm); !pointer to a CIID structure

IF _ON (_LAST^EVENTS, _EV^IODONE)
 THEN
 BEGIN
 @pm := _LAST^CI^ID; !pm gets address of CIID struct
 IF _CI^LASTERROR (pm) !check for errors
 THEN ... ;
 END;

fserror := _CI^LASTERROR (ciid)
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-27

_CI^REPLYADDRESS DSNM Library Services
_CI^REPLYADDRESS

_CI^REPLYADDRESS is the type INT(32) extended address of the reply buffer
containing information read from a CI on completion of a _SEND^CI.

replyaddress output

INT(32)

is the extended address of the reply buffer.

ciid input

is the CIID structure (declared with _CI^ID) identifying an open CI.

Example
In the following example, cireply is set to point to the reply buffer containing data
returned by the most-recently completed I/O operation:

INT .EXT cireply;

IF _ON (_LAST^EVENTS, _EV^IODONE)
 THEN
 BEGIN
 @cireply := _CI^REPLYADDRESS (_LAST^CI^ID);
 ...
 END;

@replyaddress := _CI^REPLYADDRESS (ciid)
A-28
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _CI^REPLYLENGTH
_CI^REPLYLENGTH

_CI^REPLYLENGTH is the type INT length of the reply buffer containing information
read from a CI on completion of a _SEND^CI.

replylength output

INT

is the length of the reply buffer.

ciid input

is the CIID structure (declared with _CI^ID) identifying an open CI.

Example
In the following example, replylen is the length of the reply buffer containing data
returned by the most-recently completed CI I/O operation:

INT replylen;

IF _ON (_LAST^EVENTS, _EV^IODONE)
 THEN
 BEGIN
 replylen := _CI^REPLYLEN (_LAST^CI^ID);
 ...
 END;

replylength := _CI^REPLYLENGTH (ciid)
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-29

_CI^REPLYTAG DSNM Library Services
_CI^REPLYTAG

_CI^REPLYTAG is the type INT(32) tag associated with the last CI operation.

replytag output

INT(32)

is the tag associated with the last CI operation.

ciid input

is the CIID structure (declared with _CI^ID) identifying an open CI.

Example

In the following example, replytag is the tag associated with the last CI operation:

INT(32) replytag;

IF _ON (_LAST^EVENTS, _EV^IODONE)
 THEN
 BEGIN
 replytag := _CI^REPLYTAG (_LAST^CI^ID);
 ...
 END;

replytag := _CI^REPLYTAG (ciid)
A-30
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _CLOSE^CI
_CLOSE^CI

_CLOSE^CI terminates a CI communication. In addition, _CLOSE^CI cancels all
outstanding I/O operations.

You must close a CI before its CIID structure (ciid) can be used in another _OPEN^CI
operation.

error returned value

INT

is a file-system error. File system errors are documented in the Guardian Procedure
Errors and Messages Manual.

ciid input

is the CIID structure (declared with _CI^ID) identifying an open CI.

Example
In the thread termination procedure:

 .
 .
CALL _CLOSE^CI (cx.spif);
 .
 .

error := _CLOSE^CI (ciid);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-31

_COMMAND^CONTEXT^HEADER DSNM Library Services
_COMMAND^CONTEXT^HEADER

_COMMAND^CONTEXT^HEADER defines and reserves the fixed header portion of
the command context space that is allocated to each thread when it is created and that
persists until the thread terminates. This part of the command context space is reserved
for the specific uses described in Section 3, “I Process Development Process.”

Considerations

All private data used by the command thread must be defined in the command context
space or members of lists. Data in global areas is shared by all active threads and may
only be used as read-only data. Data in the local procedure is destroyed with each return
to the frame by any of the following:

• _RETURN _RC^xxx

• _DISPATCH^THREAD

• _SAVE^THREAD^AND^DISPATCH

• _RESTORE^THREAD^AND^DISPATCH

The frame initializes the user-data area of the command context space to 0. Specify the
length of the command context structure in your _STARTUP procedure, as in the
following example:

INT PROC _STARTUP (context^length, input^lm^length) EXTENSIBLE;
INT .context^length, .input^lm^length;
 BEGIN
 context^length := $LEN (command^context^def);
 input^lm^length := $LEN (input^lm^def);
 .
 RETURN ZDSN^ERR^NOERR;
 END;

Example
The following example declares a command context structure:

STRUCT COMMAND^CONTEXT^DEF (*);
 BEGIN
 _COMMAND^CONTEXT^HEADER;
 <user-defined data>
 .
 END;

See the _FOBJECT^INIT description for another _COMMAND^CONTEXT^HEADER
example.

_COMMAND^CONTEXT^HEADER;
A-32
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _COMMAND^PROC
_COMMAND^PROC

_COMMAND^PROC is the name of the first command thread procedure to be
dispatched by the frame.

Considerations

The frame invokes the command thread as _COMMAND^PROC the first time it
dispatches an instance of the thread. It is required to have one thread defined with this
name in the I process.

You can change the procedure called at the next dispatch with:

• _DISPATCH^THREAD

• _PUSH^THREAD^PROCSTATE

• _POP^THREAD^PROCSTATE

• _SET^THREAD^PROC

• _SAVE^THREAD^AND^DISPATCH

• _RESTORE^THREAD^AND^DISPATCH

 Example
_THREAD^PROC (_COMMAND^PROC);
 BEGIN
 < procedure body >
 _END^THREAD^PROC;

_THREAD^PROC (_COMMAND^PROC);

Note. The thread procedure called at the next dispatch is referred to as the “current” thread.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-33

_COMMAND^TERMINATION^PROC DSNM Library Services
_COMMAND^TERMINATION^PROC

_COMMAND^TERMINATION^PROC is the name of the thread termination procedure
declared with _THREAD^TERMINATION^PROC.

Example

Use _COMMAND^TERMINATION^PROC in the following construction:

_THREAD^TERMINATION^PROC (_COMMAND^TERMINATION^PROC);
 BEGIN
 .
 < procedure body >
 .
 RETURN _RC^NULL;
 _END^THREAD^TERMINATION^PROC;

_THREAD^TERMINATION^PROC (_COMMAND^TERMINATION^PROC);
A-34
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _COMPILED^IN^TESTMODE
_COMPILED^IN^TESTMODE

_COMPILED^IN^TESTMODE is a literal with a value of 1, if a source file is compiled
with the SETTOG 1 compiler directive; otherwise, _COMPILED^IN^TESTMODE is 0.

Use _COMPILED^IN^TESTMODE to set the value of the testmode parameter in
your _STARTUP^MODE procedure.

Example
INT PROC _STARTUP^MODE (component, testmode,
 accept^startup^component) EXTENSIBLE;

STRING .EXT component;
INT .EXT accept^startup^component;
BEGIN
 testmode := _COMPILED^IN^TESTMODE;
 accept^startup^component := 1;
 RETURN ZDSN^ERR^NOERR;
END;

_COMPILED^IN^TESTMODE
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-35

_DEALLOCATE^LIST DSNM Library Services
_DEALLOCATE^LIST

_DEALLOCATE^LIST deletes all members of a list. Memory for the list members is
deallocated immediately.

list input

is the name of a _LIST.

Example
CALL _DEALLOCATE^LIST (cx.xc.input);

CALL _DEALLOCATE^LIST (list);
A-36
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _DELETE^LM
_DELETE^LM

_DELETE^LM deletes a member of a list, immediately deallocates its memory, and sets
the list-member pointer to null.

error returned value

INT

is a ZDSN^ERR value, indicating the outcome of the call. See Appendix B,
“DSNM Error Codes,” for error code definitions.

list input

is the name of a _LIST.

list-member input/output

INT .EXT

is a pointer to the member to be deleted from list.

list-member must point to a current member of list, or results are
unpredictable.

error := _DELETE^LM (list
 ,@list-member);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-37

_DEPOSIT DSNM Library Services
_DEPOSIT

_DEPOSIT sets selected bits in the first parameter equal to the same bits in the second
parameter.

int-var input/output

INT:ref

is INT variable, the selected bits of which are set equal to the same bits in
int-exp.

int-exp input

INT:value

is an INT expression, the selected bits to which int-var bits are set equal.

bit-mask input

INT:value

is an INT expression, the one-bits of which identify the bits in int-var and
int-exp participating in the operation.

Considerations

_DEPOSIT performs a function similar to the following, except that the affected bits
need not be contiguous:

a.<x:y> := b.<x:y>

Example
In the following example, bits 9 and 15 of evta are set equal to bits 9 and 15 of evtb:

INT evta, evtb;

_DEPOSIT (evta, evtb, %101); !sets evta.<9> := evtb.<9>
 !and evta.<15> := evtb.<15>.
 !Other bits of evta unchanged.

_DEPOSIT (int-var
 ,int-exp
 ,bit-mask);
A-38
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _DISPATCH^THREAD
_DISPATCH^THREAD

_DISPATCH^THREAD returns to the frame and causes a new dispatch. It is effective
only in a thread procedure, not in an auxiliary procedure or a subprocedure.

_DISPATCH^THREAD saves no information about the procedure from which it was
invoked.

This function cannot detect any failures and performs an unconditional RETURN
operation.

procname input

is the dispatched thread procedure. The default is the current procedure.

state input

INT: value

is an INT expression that designates the new current thread state when the thread is
dispatched. The default is the current state.

event input

INT:value

is an INT expression that designates the event(s) with which the new procedure is
dispatched. The default is _EV^CONTINUE.

To use _DISPATCH^THREAD with no arguments (accepting all defaults), you must use
the following construction:

_DISPATCH^THREAD ();

To immediately redispatch the current thread in the current state, use
_DISPATCH^THREAD with the first two arguments blank:

_DISPATCH^THREAD (, , event);

Example
_DISPATCH^THREAD (@next^proc, ,_REAL^LAST^EVENTS);

_DISPATCH^THREAD (@myproc, _ST^INITIAL, my^event);

_DISPATCH^THREAD (@myproc, my^state, my^event);

_DISPATCH^THREAD ([@procname]
 ,[state]
 ,[event]);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-39

_DSNMCONF^PARAMS DSNM Library Services
_DSNMCONF^PARAMS

_DSNMCONF^PARAMS is a global structure, defined and stored in the I process
globals. The frame retrieves these parameters as part of its startup function.

Considerations

The contents of the _DSNMCONF^PARAMS structure is as follows:

DEFINITION ZDSN-DDL-DSNMCONF-PARAMS.
 02 Z-DSNM-MANAGER-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-DSNM-MANAGER TYPE ZDSN-DDL-MANAGER.
 02 Z-SWAPVOL-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-SWAPVOL TYPE ZDSN-DDL-OBJNAME.
 02 Z-SEGPAGES TYPE ZSPI-DDL-INT2.
 02 Z-SEGEXT.
 03 Z-PRIMARY TYPE ZSPI-DDL-INT.
 03 Z-SECONDARY TYPE ZSPI-DDL-INT.
 02 Z-OBJECT-DB-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-OBJECT-DB TYPE ZDSN-DDL-OBJNAME.
 02 Z-OBJECT-MONITOR-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-OBJECT-MONITOR TYPE ZDSN-DDL-PNAME.
 02 Z-OBJECT-DB-INTERFACE-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-OBJECT-DB-INTERFACE TYPE ZDSN-DDL-PNAME.
 02 Z-MAX-OPENERS TYPE ZSPI-DDL-INT.
 02 Z-EMS-COLLECTOR-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-EMS-COLLECTOR TYPE ZDSN-DDL-PNAME.
 02 Z-SECPARAMS TYPE ZSPI-DDL-UINT.
END

STRUCT _DSNMCONF^PARAMS (ZDSN^DDL^DSNMCONF^PARAMS^DEF);
A-40
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _EMPTY^LIST
_EMPTY^LIST

_EMPTY^LIST is a Boolean define statement that is TRUE if list has no members.
TRUE is nonzero, not necessarily -1.

list input

is the name of a _LIST .

Example

The following example tests if list is empty:

_LIST (list);

IF _EMPTY^LIST (list)
 THEN ...;

_EMPTY^LIST (list)
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-41

_EMS^EVENT^CRITICAL DSNM Library Services
_EMS^EVENT^CRITICAL

_EMS^EVENT^CRITICAL is a value used in the _REPORT^INTERNAL^ERROR and
_REPORT^STARTUP^ERROR procedures, indicating that the event being logged to
EMS is critical but not fatal.

_EMS^EVENT^FATAL

_EMS^EVENT^FATAL is a value used in the _REPORT^INTERNAL^ERROR and
_REPORT^STARTUP^ERROR procedures, indicating that the event being logged to
EMS is fatal.

_EMS^EVENT^INFO

_EMS^EVENT^INFO is a value used in the _REPORT^INTERNAL^ERROR and
_REPORT^STARTUP^ERROR procedures, indicating that the event being logged to
EMS is a non-fatal informative message.

_EMS^EVENT^CRITICAL

_EMS^EVENT^FATAL

_EMS^EVENT^INFO
A-42
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _END^THREAD^PROC
_END^THREAD^PROC

_END^THREAD^PROC ends a thread procedure definition. Any procedure that can be
dispatched as part of a thread must be declared with _THREAD^PROC and
_END^THREAD^PROC.

_END^THREAD^PROC issues RETURN _RC^WAIT.

Example
_THREAD^PROC (procname);
 BEGIN
 < procedure body >
 _END^THREAD^PROC;

_END^THREAD^PROC;
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-43

_END^THREAD^TERMINATION^PROC DSNM Library Services
_END^THREAD^TERMINATION^PROC

_END^THREAD^TERMINATION^PROC ends a thread termination procedure
definition and issues RETURN _RC^NULL.

The thread termination procedure declared with _THREAD^TERMINATION^PROC
must end with _END^THREAD^TERMINATION^PROC.

Example

Use _END^THREAD^TERMINATION^PROC in the following construction:

_THREAD^TERMINATION^PROC (_COMMAND^TERMINATION^PROC);
 BEGIN
 < procedure body >
 _END^THREAD^TERMINATION^PROC;

_END^THREAD^TERMINATION^PROC;
A-44
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _EV^TIMEOUT
_EV^CANCEL

_EV^CANCEL is generated by the frame when it receives a command cancellation
request.

The command thread can be dispatched with _EV^CANCEL after any return to the
frame; the operation should be terminated immediately.

_EV^CANCEL should be handled like an error: you must perform clean-up operations,
such as freeing resources, returning the CI to a reasonable state, and so on. Since
_EV^CANCEL is a normal thread termination, the command thread should return to the
frame with an _RC^STOP return code.

_EV^CONTINUE

EV^CONTINUE is generated by the frame when the thread returns with _RC^WAIT,
and there is no outstanding request to complete.

_EV^IODONE

_EV^IODONE is generated by the frame when I/O initiated by _SEND^CI completes.
(cmd^context._LAST^CI^ID gets the address of the CIID structure of the completed
operation.)

_EV^STARTUP

_EV^STARTUP is generated by the frame on its initial dispatch of a command thread.

_EV^TIMEOUT

_EV^TIMEOUT is generated by the frame when a timeout interval set by a call to
_SET^TIMEOUT elapses. (cmd^context._LAST^TIMEOUT^TAG gets the tag of the
elapsed timeout.)

_EV^CANCEL

_EV^CONTINUE

_EV^IODONE

_EV^STARTUP

_EV^TIMEOUT

Note. The thread may simulate any frame event by signaling it with _SIGNAL^EVENT.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-45

_EXTRACT DSNM Library Services
_EXTRACT

_EXTRACT returns the value of those bits of bit-mask that are on in int-exp.
_EXTRACT performs a function similar to the TAL bit-extraction operation, except the
extracted bits need not be contiguous, nor are they shifted to the right.

int-exp input

INT:value

is an INT expression from which bits are extracted, according to the one-bits in
bit-mask.

bit-mask input

INT:value

is an INT expression, the one-bits of which identify the bits in int-exp to extract.

Example
LITERAL error^bits = %B1101;
INT sense^code, errors;

 !Suppose sense^code = %B111000

errors := _EXTRACT (sense^code, error^bits); !errors = %B1000

_EXTRACT (int-exp , bit-mask);
A-46
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _FIRST^LM
_FIRST^LM

_FIRST^LM returns the address of the first member of a list. _NULL is returned if the
list is empty.

first-list-member returned value

INT .EXT

is the address of the first member of list.

list input

is the name of a _LIST.

Example
_LIST (outlist);
INT .EXT list^member (list^member^def); !declare extended
 !pointer to list
 !member structure

@list^member := _FIRST^LM (outlist); !get address of first
 !member

@first-list-member := _FIRST^LM (list);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-47

FOBJECT DSNM Library Services
FOBJECT

Every subsystem object processed by DSNM is defined by the contents of a
ZDSN^DDL^FOBJECT^DEF structure, known as a “formatted object.” The
_INPUT^LM^HEADER and _OUTPUT^LM^HEADER defines assign the name FOBJ
to the formatted object structure portions of input and output list members.

It is important that every object processed by the command thread be represented in an
FOBJECT structure, properly initialized with the _FOBJECT^INIT procedure.

The FOBJECT structure contains fields used directly by the command thread; it also
contains internal fields used by the I process frame and libraries.

Example

In the following example, information about the subordinate of an input object is entered
into an initialized output object for release to the frame:

STRUCT input^lm^def (*);
 BEGIN
 _INPUT^LM^HEADER;
 ...
 END;

STRUCT output^lm^def (*);
 BEGIN
 _OUTPUT^LM^HEADER;
 ...
 END;

STRUCT command^context^def (*);
 BEGIN
 _COMMAND^CONTEXT^HEADER;
 INT .EXT inobj (input^lm^def);
 INT .EXT outobj (output^lm^def);
 END;

!Thread proc locals!

INT .EXT cx (command^context^def) = _THREAD^CONTEXT^ADDRESS;
INT .EXT in (input^def) := @cx._INPUT;
INT .EXT out (output^def) := @cx._OUTPUT;
 .
 .
A-48
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services FOBJECT
! Create output list member

IF _ISNULL (@cx.outobj := _PUT^LM (out.OBJECTLIST,,
 $LEN (cx.outobj)))
 THEN ... < out of available memory > ;
 .
 .
 IF (error := _FOBJECT^INIT (cx.outobj.FOBJ,,
 cx.inobj.FOBJ))
 THEN ... < error exit > ;
 cx.outobj.FOBJ.Z^RESULT := < status of subordinate >;
 cx.outobj.FOBJ.Z^OBJTYPE ':=' < type of subordinate >;
 cx.outobj.FOBJ.Z^OBJNAME ':=' < name of subordinate >;
 _RELEASE^OUTPUT (cx.outobj);
 .
 .
 END;
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-49

_FOBJECT^INIT DSNM Library Services
 _FOBJECT^INIT

_FOBJECT^INIT initializes a new FOBJECT structure and determines required fields
from its source FOBJECT structure. _FOBJECT^INIT does not allocate memory;
memory for the new formatted object must be allocated previously.

error returned value

INT

is a ZDSN^ERR value, indicating the outcome of the call. See Appendix B,
“DSNM Error Codes,” for error code definitions.

new-fobject user-provided identifier

is the name (a valid TAL identifier) of the new FOBJECT structure to initialize.

same-fobject input

is the name of an FOBJECT structure that contains the same object information as
new-fobject. In this case, new-fobject is identical to its source object.

parent-fobject input

is the name of an FOBJECT structure from which new-fobject is derived when
processing a hierarchy modifier or expanding a “*” object name.

Either same-fobject or parent-fobject must be supplied in the call, but not
both. In both cases, all required internal information is entered in the new-fobject
structure.

• Use the same-fobject argument if the new FOBJECT structure is to define the
same object as an existing FOBJECT structure. The new object is the same if it has
the same subsystem, object type, name, and manager. In this case, use the following
syntax to initialize the new FOBJECT structure:

error := _FOBJECT^INIT (new-fobject, same-fobject);

The following fields from the source FOBJECT structure are copied to
new-fobject when the same-fobject argument is supplied:

Z^SUBSYS
Z^OBJTYPE
Z^OBJNAME^OCCURS
Z^OBJNAME
Z^MANAGER^OCCURS
Z^MANAGER

error := _FOBJECT^INIT (new-fobject
 ,[same-fobject]
 ,[parent-fobject]);
A-50
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _FOBJECT^INIT
• Use the parent-fobject argument if the new FOBJECT structure is to define a
different object from any previously initialized FOBJECT structure. Specify the
new object’s parent in the name hierarchy as described above as the parent-
fobject. The new object is different if it differs in any of subsystem, object type,
name, or manager from its name parent (the name from which the new object was
derived by expanding a “*” or through the subsystem hierarchy). In this case, use
the following syntax to initialize the new FOBJECT structure:

error := _FOBJECT^INIT (new-fobject,,parent-fobject);

The following fields from the source FOBJECT structure are copied to
new-fobject when the parent-fobject argument is supplied:

Z^SUBSYS
Z^MANAGER^OCCURS
Z^MANAGER

Z^OBJTYPE, Z^OBJNAME, and Z^OBJNAME^OCCURS are set to null values (0
or blanks, as appropriate). You must supply values for Z^OBJTYPE and
Z^OBJNAME. Suppling a value for Z^OBJNAME^OCCURS is optional.

In both cases, all required internal information is entered into the new-fobject
structure.

Considerations

Parent means the parent of the new object in a name hierarchy, which includes the
subsystem hierarchy and a “*” object name, if supported by your I process. You can
produce new objects from objects on the input list in two ways:

1. The input object is a subsystem object, and new object names are subordinate
objects produced by processing a hierarchy modifier (HMOD).

2. The input object is a “*,” and new object names are produced by expanding the “*.”

In either case, the input object is the parent of the new object in the name hierarchy
(which includes the subsystem hierarchy).

Note. Outside the I process, there are higher levels possible in the name hierarchy: DNS
groups (possibly nested) and composites.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-51

_FOBJECT^INIT DSNM Library Services
Example

In the following example, each input object and its hierarchical subordinates appear in
the output for a STATUS command:

STRUCT input^lm^def (*);
 BEGIN
 _INPUT^LM^HEADER;
 ...
 END;

STRUCT output^lm^def (*);
 BEGIN
 _OUTPUT^LM^HEADER;
 ...
 END;

STRUCT command^context^def (*);
 BEGIN
 _COMMAND^CONTEXT^HEADER;
 INT .EXT inobj (input^lm^def);
 INT .EXT outobj (output^lm^def);
 END;

!Thread proc locals!

INT .EXT cx (command^context^def) = _THREAD^CONTEXT^ADDRESS;
INT .EXT in (input^def) := @cx._INPUT;
INT .EXT out (output^def) := @cx._OUTPUT;
 ...

! Get the next input object

IF _ISNULL(@cx.inobj := _GET^LM (in.OBJECTLIST))
 THEN RETURN _RC^STOP;

!Create output list member

IF _ISNULL (@cx.outobj := _PUT^LM (out.OBJECTLIST,,
 $LEN (cx.outobj)))
 THEN ... < out of available memory > ;

! Now cx.inobj.fobj and cx.outobj.fobj are the current
! input and output list members. Since the output object
! will be the same as the input object, use the same-fobject
! parameter:

IF (error := _FOBJECT^INIT (cx.outobj.FOBJ,
 cx.inobj.FOBJ))
 THEN ... < error exit > ;

! Now cx.inobj.fobj and cx.outobj.fobj are the current
! input and output objects.

 ! Send to CI, determine status of input object and its
 ! subordinates.
A-52
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _FOBJECT^INIT
 ! Use state variables to return to this point after the
 ! _EV^IODONE event occurs

cx.outobj.FOBJ.Z^RESULT := < status of input object >;

! Since this completes the current output object, release it

_RELEASE^OUTPUT (cx.outobj);

! Enter subordinates and their status into output list
! (Assuming one CI communication returns all subordinates)

WHILE < more subordinate objects >
 DO
 BEGIN
 IF _ISNULL (@cx.outobj := _PUT^LM (out.OBJECTLIST,,
 $LEN (cx.outobj)))
 THEN ... < out of available memory > ;
 ! Next output object

 ! Since the output object is not the same as the input
 ! object, use the parent-fobject parameter:

 IF (error := _FOBJECT^INIT (cx.outobj.FOBJ,,
 cx.inobj.FOBJ))
 THEN ... < error exit > ;

 cx.outobj.FOBJ.Z^RESULT := < status of subordinate >;
 cx.outobj.FOBJ.Z^OBJTYPE ':=' < type of subordinate >;
 cx.outobj.FOBJ.Z^OBJNAME ':=' < name of subordinate >;

 _RELEASE^OUTPUT (cx.outobj);
 ...
 END;

See Section 4, “DSNM Command Requirements,” for more information about
FOBJECT fields.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-53

_GET^LM DSNM Library Services
_GET^LM

_GET^LM removes the current first member (the earliest member put on the list) from a
list and returns its address. If the list is empty, _GET^LM returns _NULL.

list-member returned value

INT .EXT

is the address of the removed member.

list input

is the name of a _LIST.

length output

INT:ref

returns the length of the removed member, in bytes.

Considerations

• Removing a member with _GET^LM does not immediately deallocate memory.
The removed member's memory remains allocated and its contents useable until the
next successive member is removed from the same end of the list, or a new member
is added to the same end of the list.

• The removed member does not participate in list scans with _SUCCESSOR^LM or
_PREDECESSOR^LM.

• Normally, a list is processed either by _PUT^LM plus _GET^LM or by _PUSH^LM
plus _POP^LM, but not both.

• _UNGET^LM replaces the last list member removed by _GET^LM.

Example

In the following example, the first member of outlist is removed and
list^member is set to point to it:

_LIST (outlist);
INT .EXT list^member (list^member^def);
INT length;

IF _ISNULL (@list^member := _GET^LM (outlist, length))
 THEN <empty list> ;

See the _FOBJECT^INIT description for another of example of _GET^LM.

@list-member := _GET^LM (list
 ,[length]);
A-54
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _GET^PARAM
_GET^PARAM

_GET^PARAM retrieves one instance of a DSNM configuration parameter that is not
part of the standard set stored in the _DSNMCONF^PARAMS structure.

error returned value

INT

is a ZDSN^ERR or Guardian error. See Appendix B, “DSNM Error Codes,” for
ZDSN^ERR error code definitions. Refer to the Guardian Procedure Errors and
Messages Manual for Guardian error descriptions.

paramscope input

INT

indicates whether the parameter is local or global:

error := _GET^PARAM (paramscope
 , paramtype
 ,[subsys]
 ,[class]
 ,[component]
 , paramname
 , paramvalue:maxlen
 ,[len]
 ,[error-filename]);

_LOCAL^PARAM Local parameters consist of a single value (for
example, SWAPVOL) obtained from one source: a
DSNMCONF file or the startup message.

_GLOBAL^PARAM Global parameters consist of multiple values (for
example, command server SYSTEM parameters)
from all sources in which instances of the parameter
are found.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-55

_GET^PARAM DSNM Library Services
paramtype input

INT

indicates how restrictive the search criteria is:

subsys input

STRING .EXT ! ZDSN^DDL^SUBSYS^DEF !

is the name of the subsystem whose associated parameter values are retrieved. A
blank subsystem name (all spaces) is valid; the default is “DSNM ”.

class input

STRING .EXT ! ZDSN^DDL^CLASS^DEF !

is the name of the class whose associated parameter values are retrieved. A blank
class name (all spaces) is valid; if omitted, the caller’s class name is used.

component input

STRING .EXT ! ZDSN^DDL^COMPONENT^DEF !

is the name of the component whose associated parameter values are retrieved. A
blank component name (all spaces) is valid; if omitted, the caller’s component name
(specified by the COMPONENT parameter in your _STARTUP^MODE procedure
or obtained from the process startup message) is used.

paramname input

STRING .EXT ! ZDSN^DDL^PARAMNAME^DEF !

is the name of the parameter, left-justified, blank-filled, whose value you want
returned.

paramvalue output

STRING .EXT

if error= 0, contains the parameter value; otherwise, is undefined.

_COMPONENT^PARAM Component parameters are instances of a parameter,
specific to this component and class.

_CLASS^PARAM Class parameters are instances of a parameter,
specific to this class. If component is blank, it is
specific to the class as a whole.

_GENERAL^PARAM General parameters are any instance of this
parameter. It may be for this component, for the
class as a whole (if component is blank), or for
any class (if both class and component are
blank).
A-56
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _GET^PARAM
maxlen input

INT

is the maximum length returned in paramvalue, in bytes.

len output

INT

is the actual length of the value returned in paramvalue, in bytes. If
len < maxlen, the remainder of paramvalue is blank-filled.

error-filename output

STRING .EXT ! ZDSN^DDL^OBJNAME^DEF !

is the name of the configuration file associated with the returned error value.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-57

_GET^PROCESS^PARAM DSNM Library Services
_GET^PROCESS^PARAM

_GET^PROCESS^PARAM retrieves process startup parameters not part of the standard
set stored in the _PROCESS^PARAMS structure.

error returned value

INT

is a ZDSN^ERR or Guardian error. See Appendix B, “DSNM Error Codes,” for
ZDSN^ERR error code definitions. Refer to the Guardian Procedure Errors and
Messages Manual for Guardian error descriptions.

paramname input

STRING .EXT ! ZDSN^DDL^PARAMNAME^DEF !

is the name of the parameter, left-justified, blank-filled, whose value you want
returned.

paramvalue output

STRING .EXT

if error = 0, contains the parameter value; otherwise, is undefined.

maxlen input

INT

is the maximum length returned in paramvalue, in bytes.

len output

INT

is the actual length of the value returned in paramvalue, in bytes.
If len < maxlen, the remainder of paramvalue is blank-filled.

error := _GET^PROCESS^PARAM (paramname
 , paramvalue:maxlen
 ,[len]);
A-58
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _INITIALIZE^LIST
_INITIALIZE^LIST

_INITIALIZE^LIST sets a list structure to nulls. (Lists defined in the thread context do
not have to be initialized with _INITIALIZE^LIST.)

_INITIALIZE^LIST sets the list header structure to nulls. Do not use it to deallocate
members of a list (see the _DEALLOCATE^LIST description).

list input

is the name of a _LIST.

CALL _INITIALIZE^LIST (list);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-59

_INPUT DSNM Library Services
_INPUT

_INPUT is the name assigned to the _INPUT^DEF structure template within the
command context area (where the frame places the command components). The
_COMMAND^CONTEXT^HEADER define assigns the _INPUT name.

Example
The following example of a local data definition gives a thread procedure access to the
input area:

INT .EXT cx (command^context^def) = _THREAD^CONTEXT^ADDRESS;
INT .EXT in (_INPUT^DEF) := @cx._INPUT;

See the _FOBJECT^INIT description for another _INPUT example.
A-60
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _INPUT^DEF
_INPUT^DEF

_INPUT^DEF is a structure template into which the frame places the action and
command modifiers to be passed to the thread.

Example

The following example of a local data definition gives a thread procedure access to the
input area:

INT .EXT cx (command^context^def) = _THREAD^CONTEXT^ADDRESS;
INT .EXT in (_INPUT^DEF) := @cx._INPUT;

See the _FOBJECT^INIT description for another _INPUT^DEF example.

STRUCT _INPUT^DEF (*);
 BEGIN
 _LIST (OBJECTLIST);
 INT action;
 STRUCT mod (zdsn^mod^def);
END;
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-61

_INPUT^LM^HEADER DSNM Library Services
_INPUT^LM^HEADER

_INPUT^LM^HEADER describes the first part of the user-defined input list member
structure. It is required as part of the input list member definition.

_INPUT^LM^HEADER generates a formatted object structure
(ZDSN^DDL^FOBJECT^DEF); it identifies this object structure as FOBJ and identifies
other fields for the frame.

Considerations

The following FOBJECT fields are filled by the frame for each object in the input list:

Other FOBJECT fields and other data items generated by _INPUT^LM^HEADER are
reserved for use by the frame. See Section 4, “DSNM Command Requirements,” for
more information about FOBJECT fields.

The user-data area of each input list member following the _INPUT^LM^HEADER
portion is for the command thread’s use and is initialized to 0 by the frame. Specify the
length of the input list member structure in your _STARTUP procedure, as in the
following example:

INT PROC _STARTUP (context^length, input^lm^length) EXTENSIBLE;
INT .context^length, .input^lm^length;
 BEGIN
 context^length := $LEN (command^context^def);
 input^lm^length := $LEN (input^lm^def);
 .
 .
 RETURN ZDSN^ERR^NOERR;
 END;

_INPUT^LM^HEADER;

Z^HMOD Is the hierarchy modifier. If present, it overrides the
hierarchy value in _INPUT.MOD.Z^HMOD for this
object only.

Z^SUBSYS Is the name of the subsystem.

Z^OBJTYPE Is the object type.

Z^OBJNAME^OCCURS Is the length of the object name.

Z^OBJNAME Is the object name.

Z^MANAGER^OCCURS Is the length of the manager name.

Z^MANAGER Is the name of the manager, if any.
A-62
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _INPUT^LM^HEADER
Example

The following is an example of an input list member structure declaration:

STRUCT input^list^member^def (*);
 BEGIN
 _INPUT^LM^HEADER;
 < user-definitions >
 ...
 END;

See the _FOBJECT^INIT description for another _INPUT^LM^HEADER example.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-63

_ISNULL DSNM Library Services
_ISNULL

_ISNULL is a Boolean define statement that is TRUE if address is a null extended
memory pointer. TRUE is nonzero, not necessarily -1.

Always use either _ISNULL or _NOTNULL to test a pointer rather than comparing it to
the library literal _NULL. (There are multiple internal values that are accepted as
equivalent to _NULL.)

address input

INT(32):value

is the extended address being tested.

Example
Suppose command^context^def describing the command context area contains the
following:

INT. EXT next^in^lm (input^lm^def);

The following example removes objects from the input list until the list is empty:

INT .EXT cx (command^context^def) = _THREAD^CONTEXT^ADDRESS;
 .
 .
 .
IF _ISNULL (@cx.next^in^lm := _GET^LM (cx._INPUT.OBJECTLIST))
 THEN ... < out of input objects > ;

See the _FOBJECT^INIT description for another _ISNULL example.

_ISNULL (address)
A-64
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _JOIN^LIST
_JOIN^LIST

_JOIN^LIST appends all members of a source list to a destination list.

Data is not moved in memory; the source list is empty afterwards.

error returned value

INT

is a ZDSN^ERR value indicating the outcome of the call. See Appendix B, “DSNM
Error Codes,” for error code definitions.

dest-list input/output

is the name of the destination _LIST to which the members of source-list are
appended.

source-list input/output

is the name of the source _LIST whose members are appended to dest-list.

Example

The following example appends all the members of worklist to outlist:

_LIST (outlist);
_LIST (worklist);
 .
 .
 .
IF (error := _JOIN^LIST (outlist, worklist))
 THEN ... <error> ;

error := _JOIN^LIST (dest-list
 ,source-list);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-65

KDSNDEFS DSNM Library Services
KDSNDEFS

KDSNDEFS is the source file for all I process development definitions and declarations.
Your I process program code should have the following source structure:

? < user compiler directives >

? SOURCE KDSNDEFS (IPROCESS^DEFINITIONS)

BLOCK PRIVATE;

 < user-defined globals >

END BLOCK;

? SOURCE KDSNDEFS (IPROCESS^GLOBALS)

 < user external procedure declarations >

? SOURCE KDSNDEFS (IPROCESS^EXTDECS)

 _STARTUP^MODE procedure

 _STARTUP procedure

 _COMMAND^PROC procedure

 < other command thread procedures >

 _COMMAND^TERMINATION^PROC procedure
A-66
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _LAST^CI^ID
_LAST^CI^ID

_LAST^CI^ID is a command context field that points to the CIID structure from the last
_EV^IODONE event. Its type is _CI^IDPOINTER.

Example

In the following example, mgr is set to point to the CIID involved in the most-recently
completed CI communication:

_CI^IDPOINTER (mgr);
int .ext cx(command^context^def) = _THREAD^CONTEXT^ADDRESS;

IF _ON (_LAST^EVENTS, _EV^IODONE)
 THEN
 BEGIN
 @mgr := cx._LAST^CI^ID;
 IF _CI^LASTERROR (mgr) !check for errors
 THEN ... ;
 END;

command-context._LAST^CI^ID
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-67

_LAST^EVENTS DSNM Library Services
_LAST^EVENTS

_LAST^EVENTS is set each time a command thread is dispatched to contain the
event(s) that caused the dispatch. Each bit represents a different event.

Considerations

• _LAST^EVENTS is an INT global variable that can be tested and altered;
_REAL^LAST^EVENTS, which is also set to the current event(s) at each dispatch,
can only be tested.

• The following events are generated by the frame:

• Only one frame event at a time occurs with one dispatch per event, so only one bit of
_LAST^EVENTS is ever on for a frame event.

• The thread may generate multiple, simultaneous events with _SIGNAL^EVENT.
All events signaled by the thread before _RC^WAIT appear together in
_LAST^EVENTS at the next thread dispatch. In this case, no frame events can
appear.

Examples

The following example tests if the _EV^CANCEL bit is on in _LAST^EVENTS:

IF _ON (_LAST^EVENTS, _EV^CANCEL)
 THEN ... ;

In this example, the contents of _LAST^EVENTS are altered to reflect _EV^IODONE
instead of _EV^TIMEOUT:

_TURNOFF (_LAST^EVENTS, _EV^TMEOUT);
_TURNON (_LAST^EVENTS, _EV^IODONE);

See the _SIGNAL^TIMEOUT description for another example of _LAST^EVENTS.

_LAST^EVENTS

_EV^CANCEL When the frame receives a command cancellation request.

_EV^CONTINUE When the thread returns with an _RC^WAIT and there is no
outstanding I/O or timeout.

_EV^IODONE When an I/O initiated by a _SEND^CI request completes.

_EV^STARTUP On the frame’s initial dispatch of the thread.

_EV^TIMEOUT When a timeout interval set by a call to _SET^TIMEOUT
elapses.
A-68
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _LAST^LM
_LAST^LM

_LAST^LM returns the address of the last (most recent) member of a list. If a list is
empty, _NULL is returned.

last-list-member returned value

INT .EXT

is the address of the last member of list.

list input

is the name of a _LIST.

Example
INT .EXT cx(command^context^def) := _THREAD^CONTEXT^ADDRESS;
_LISTPOINTER (outlist) := @cx.OUTPUT.OBJECTLIST;
INT .EXT out^lm (output^lm^def); !Declare extended pointer
 !to list member structure

IF _ISNULL (@out^lm := _LAST^LM (outlist))
 THEN ... < list empty > ;

@last-list-member := _LAST^LM (list);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-69

_LAST^TIMEOUT^TAG DSNM Library Services
_LAST^TIMEOUT^TAG

_LAST^TIMEOUT^TAG is a command context field, set to the INT(32) timeout tag
associated with the _SET^TIMEOUT request, and completed by the last
_EV^TIMEOUT event. It is convenient to use the address of a list member as a timeout
tag to hold information about the purpose of the timeout, as illustrated in the example.

Example
STRUCT time^info^def (*);
 BEGIN
 .
 .
 END;

INT .EXT time^info (time^info^def);

IF _ISNULL(@time^info := _PUT^LM (cx.worklist,,$LEN(time^info)))
 THEN ... < out of memory > ;

 < fill in time^info data >

CALL _SET^TIMEOUT (time, @time^info);
RETURN _RC^WAIT; !Wait for _EV^TIMEOUT
 .
 .
 .
IF _ON (_LAST^EVENTS, _EV^TIMEOUT)
 THEN
 BEGIN
 @time^info := cx._LAST^TIMEOUT^TAG;
 < process time^info data >
 CALL _DELETE^LM (cx.worklist, @time^info);
 END;

command-context._LAST^TIMEOUT^TAG
A-70
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _LIST
_LIST

_LIST declares a list structure.

list user-provided identifier

is the name (a valid TAL identifier) of the structure that _LIST declares.

Considerations

• The data structure known as a “list” is the basis for the I process program-
development software memory-management facility. A list consists of the structure
declared with _LIST and the list members.

• The list structure holds control information, used by the list library procedures.
Its size and structure are fixed.

• A list member is a block of memory, the size and description of which are
determined when the member is created with _PUT^LM or _PUSH^LM.

• The following procedures and defines use list to extract information about and
perform operations on list members:

_DEALLOCATE^LIST (list)
_DELETE^LM (list, @list-member)
_EMPTY^LIST (list)
_FIRST^LM (list)
_GET^LM (list, [length])
_INITIALIZE^LIST (list)
_JOIN^LIST (source-list, dest-list)
_LAST^LM (list)
_MEMBERSOF^LIST (list)
_POP^LM (list, [length])
_PREDECESSOR^LM (list, list-member)
_PUSH^LM (list, [length], initlength ,[initdata])
_PUT^LM (list, [length], initlength, [initdata])
_SUCCESSOR^LM (list, list-member)
_UNGET^LM (list, list-member)
_UNPOP^LM (list, list-member)

Example
See the example for _FOBJECT^INIT for list and list member declarations.

_LIST (list);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-71

_LISTPOINTER DSNM Library Services
_LISTPOINTER

_LISTPOINTER declares an extended pointer to a _LIST structure.

Once a list pointer is initialized with a list address, it can be used anywhere _LIST is
used.

list user-provided identifier

is the name (a valid TAL identifier) of the list pointer.

Example
INT .EXT cx (command^context^def) = _THREAD^CONTEXT^ADDRESS;
_LISTPOINTER (outlist) := @cx._OUTPUT.OBJECTLIST;
INT .EXT out^lm (output^lm^def);
 .
 .
 .
IF _ISNULL (@out^lm := _PUT^LM (outlist,,$LEN (out^lm)))
 THEN ... < out of memory > ;
 .
 .

_LISTPOINTER (list);
A-72
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _MEMBERSOF^LIST
_MEMBERSOF^LIST

_MEMBERSOF^LIST is the type INT(32) number of members currently in a list.

list input

is the name of a _LIST.

Example

In the following example, num^members is the number of members in inlist:

_LIST (inlist);
INT(32) num^members;

num^members := _MEMBERSOF^LIST (inlist);

_MEMBERSOF^LIST (list)
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-73

_MOVE^LIST DSNM Library Services
_MOVE^LIST

_MOVE^LIST moves all members of a source list to the destination list. After the
operation, the source list is empty.

dest-list input/output

is the name of the destination _LIST to which the members of source-list are
moved.

list input/output

is the name of the source _LIST whose members are moved to the dest-list.

Considerations

dest-list should not have any members prior to the operation. If it does, these
members will not be accessible later on, as the pointer to them will be pointing to the
source members after the operation.

If source-list is initially empty, then, prior to the operation, it should be properly
initialized: for example, with _NULL^LIST.

Example

The following example moves all members of worklist to outlist:

_LIST (outlist);
_LIST (worklist);

_MOVE^LIST(outlist, worklist);

CALL _MOVE^LIST (dest-list, source-list)
A-74
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _NOTNULL
_NOTNULL

_NOTNULL is a Boolean define statement that is TRUE if address is a nonnull extended
memory pointer. TRUE is nonzero, not necessarily -1.

Always use either _NOTNULL or _ISNULL to test a pointer rather than comparing it to
the library literal _NULL. (There are multiple internal values that are accepted as
equivalent to _NULL.)

address input

INT(32)

is the tested extended address.

Example
The following example scans a list forward:

_LIST (list);
INT .EXT lm (list^member^def); !extended pointer to
 !list member structure
@lm := _NULL;
WHILE _NOTNULL (@lm := _SUCCESSOR^LM (list,lm)) DO
 BEGIN
 ...! while pointer is not null there are more members on
 ! the list
 END;

_NOTNULL (address)
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-75

_NULL DSNM Library Services
_NULL

_NULL is an INT(32) literal, defining a null value for an extended memory pointer.

Always use _NULL for a null pointer value. Never test a pointer for null by comparing
it to _NULL; always use _ISNULL or _NOTNULL for such tests. The I process
program-development libraries use a range of null values. _NULL is guaranteed to be in
the range, but is not the only possible null pointer value.

A pointer set to _NULL causes an address trap, if used, to access memory.

Example
_LIST (list);
INT .EXT lm (list^member^def); !extended pointer to
 !list member structure
@lm := _NULL;
WHILE _NOTNULL (@lm := _SUCCESSOR^LM (list,lm)) DO
 BEGIN
 ...
 END;

_NULL
A-76
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _NULL^LIST
_NULL^LIST

_NULL ^LIST initializes a list structure. It is useful to initialize a _LIST declared in an
uninitialized memory area.

list input/output

is the name of a _LIST.

Considerations

_NULL^LIST does not deallocate an existing list. Use _DEALLOCATE^LIST to
remove and deallocate all existing list members.

list must not have any members prior to the operation. If it does, these members will
not be accessible later on, because the pointer to them will be initialized.

Example
_LIST (worklist);
CALL _NULL^LIST(worklist);

CALL _NULL^LIST(list);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-77

OBJECTLIST DSNM Library Services
OBJECTLIST

OBJECTLIST is the name assigned to the input and output object lists by the
_COMMAND^CONTEXT^HEADER define.

Example

The following example gets a member off the input list and creates a member on the
output list:

STRUCT input^lm^def (*);
 BEGIN
 _INPUT^LM^HEADER;
 ...
 END;

STRUCT output^lm^def (*);
 BEGIN
 _OUTPUT^LM^HEADER;
 ...
 END;

STRUCT command^context^def (*);
 BEGIN
 _COMMAND^CONTEXT^HEADER;
 INT .EXT inobj (input^lm^def);
 INT .EXT outobj (output^lm^def);
 END;

! Thread proc locals!

INT .EXT cx (command^context^def) = _THREAD^CONTEXT^ADDRESS;
INT .EXT in (input^def) := @cx._INPUT;
INT .EXT out (output^def) := @cx._OUTPUT;
 .
 .
! Get the next input object

IF _ISNULL(@cx.inobj := _GET^LM (in.OBJECTLIST))
 THEN RETURN _RC^STOP; ! out of input list members

! Create output list member

IF _ISNULL (@cx.outobj := _PUT^LM (out.OBJECTLIST,,
 $LEN (cx.outobj)))
 THEN ... < out of available memory > ;
 .
 .
A-78
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _OFF
_OFF

_OFF is a Boolean define statement that is TRUE if any one-bit of bit-mask is off in
int-exp. TRUE is nonzero, not necessarily -1.

The _OFF function is the same as the _ALLOFF function. It is more descriptive to use
_ALLOFF when testing more than one bit.

int-exp input

INT:value

is the INT expression compared with bit-mask.

bit-mask input

INT:value

is an INT expression, the one-bits of which identify the bits in int-exp to test.

Example

The following example tests if the _EV^STARTUP bit is off in _LAST^EVENTS:

IF _OFF (_LAST^EVENTS, _EV^STARTUP)
 THEN ... ;

_OFF (int-exp , bit-mask)
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-79

_ON DSNM Library Services
_ON

_ON is a Boolean define statement that is TRUE if any one-bit of bit-mask is on in
int-exp. TRUE is nonzero, not necessarily -1.

The _ON function is the same as the _ANYON function. It is more descriptive to use
_ANYON when testing more than one bit.

int-exp input

INT:value

is the variable compared with bit-mask.

bit-mask input

INT:value

is an INT expression, the one-bits of which identify the bits in int-exp to test.

Example

The following example tests if the _EV^CANCEL bit is on in _LAST^EVENTS:

IF _ON (_LAST^EVENTS, _EV^CANCEL)
 THEN ...;

_ON (int-exp , bit-mask)
A-80
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _OPEN^CI
_OPEN^CI

_OPEN^CI opens a CI for communication.

error returned value

INT

If > 0, is the file system error returned from the FILE_OPEN_ procedure. File
system errors are described in the Guardian Procedure Errors and Messages
Manual.

If < 0, is a ZDSN error. See Appendix B, “DSNM Error Codes,” for ZDSN error
code definitions.

ci-config input

is the extended pointer (declared in globals). It points to the _CI^DEF-defined CI
configuration structure, containing CI configuration parameters.

ciid input

is the CIID structure (declared with _CI^ID), identifying an open CI.

processname input

STRING .EXT

is the name of an existing CI process. The process name is in external format and
must be terminated with a null or a blank.

nowait-depth input

INT:value

is the maximum number of concurrent _SEND^CI operations that can be executed
against this CI by this thread. The default is 1, if nowait-depth is omitted or
specified as a value < 1.

Considerations

• Your _STARTUP procedure must call _ADD^CI to fill the _CI^DEF-defined CI
configuration structure for each CI class opened by the command thread.

• ci-config and ciid play a role in command-thread CI communication that is
analogous to file name and file number in Tandem NonStop Kernel interprocess
communications. A CI is identified by its ci-config; a ciid refers to a
particular instance of an open CI.

 error := _OPEN^CI (ci-config
 ,ciid
 ,[processname]
 ,[nowait-depth])
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-81

_OPEN^CI DSNM Library Services
• To communicate with a server CI, you must allocate a message buffer large enough
to hold the larger of the message and its response. This buffer must be in the
command context space or in an allocated list member. It cannot be in globals or
procedure locals. If more than one operation is to be outstanding (whether on the
same or on separate CIs), you should also supply an INT(32) tag for the operation,
usually a pointer to some identifying data.

• After initiating a request for CI communication, the thread must return to the frame
to wait for its completion with a RETURN _RC^WAIT. When the communication
is complete, the frame dispatches the thread with the event _EV^IODONE.

• If multiple _SEND^CIs are outstanding concurrently, they are completed one at a
time and dispatched with _EV^IODONE. Threads must return to the frame with
_RC^WAIT to obtain completions of subsequent operations.

Example

The following example opens a CI:

< within user globals area >

STRUCT context^def (*);
 BEGIN ! Command thread context definition
 _COMMAND^CONTEXT^HEADER;
 INT .EXT input^lm (input^lm^def); ! Current input list
 ! member
 INT .EXT output^lm (out^lm^def); ! Current output list
 ! member
 _CI^ID (current^ci);
 INT cibuf[0:7];
 END;

 INT .EXT scp (_CI^DEF);
 INT .EXT snaxcdf (_SUBSYS^DEF);

 STRING .scpclass[0:ZDSN^MAX^CICLASS-1] := [“SCP ”];
 STRING .cdf[0:ZDSN^MAX^SUBSYS-1] := [“SNAXCDF ”];

< within _STARTUP procedure >
 .
 IF _ISNULL (@scp := _ADD^CI (scpclass)) THEN
 RETURN ZDSN^ERR^INTERNAL^ERR;
 IF _ISNULL (@snaxcdf := _ADD^SUBSYS (cdf)) THEN
 RETURN ZDSN^ERR^INTERNAL^ERR;
 .
 .
< within command thread >
 .
A-82
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _OPEN^CI
INT .EXT cx (context^def) = _THREAD^CONTEXT^ADDRESS;
INT error, cmd^len;
LITERAL max^cmd = ..., max^reply = ...;
 IF (error := _OPEN^CI (scp, cx.current^ci,
 cx.input^lm.FOBJ.Z^MANAGER);
 THEN ... < open error > ;
 .
 .
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-83

_OUTPUT DSNM Library Services
_OUTPUT

_OUTPUT is the name assigned to the _OUTPUT^DEF structure template within the
command context area where the frame declares the output object list (OBJECTLIST).
_OUTPUT is assigned by _COMMAND^CONTEXT^HEADER.

Example
The following example of a local data definition gives a thread procedure access to the
output area:

INT .EXT cx (command^context^def) = _THREAD^CONTEXT^ADDRESS;
INT .EXT out (_OUTPUT^DEF) := @cx._OUTPUT;

See the _FOBJECT^INIT description for another _OUTPUT example.
A-84
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _OUTPUT^DEF
_OUTPUT^DEF

_OUTPUT^DEF is a structure template where the frame declares the output object list
(OBJECTLIST).

Example

The following example of a local data definition gives a thread procedure access to the
output area:

INT .EXT cx (command^context^def) = _THREAD^CONTEXT^ADDRESS;
INT .EXT out (_OUTPUT^DEF) := @cx._OUTPUT;

See the _FOBJECT^INIT description for another _OUTPUT^DEF example.

STRUCT _OUTPUT^DEF (*);
 BEGIN
 _LIST (OBJECTLIST);
 END;
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-85

_OUTPUT^LM^HEADER DSNM Library Services
_OUTPUT^LM^HEADER

_OUTPUT^LM^HEADER describes the first part of the user-defined output list
member structure. It is required as part of the output list member definition.

_OUTPUT^LM^HEADER generates a formatted object structure
(ZDSN^DDL^FOBJECT^DEF); it identifies this object structure as FOBJECT and
identifies other fields for the frame.

The following FOBJECT fields should be completed by the command thread before
releasing an output object list member to the frame:

It is not necessary to fill in ZOBJNAME^OCCURS nor Z^MANAGER^OCCURS.

See Section 4, “DSNM Command Requirements,” for more information on FOBJECT
fields.

Example
Following is an example of an output list member structure declaration:

STRUCT output^list^member^def (*);
 BEGIN
 _OUTPUT^LM^HEADER;
 user-defined-area
 ...
 END;

See the _FOBJECT^INIT description for another _OUTPUT^LM^HEADER example.

_OUTPUT^LM^HEADER;

Z^RESULT Is the result code for this object.

Z^SUBSYS Is the name of the subsystem.

Z^OBJTYPE Is the object type.

Z^OBJNAME Is the object name, blank-filled.

Z^MANAGER Is the name of the manager, if any, blank-filled.
A-86
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _POP^LM
_POP^LM

_POP^LM removes the current last member (most recently added) from a list and
returns its address. If a list is empty, _POP^LM returns _NULL.

list-member returned value

INT .EXT

is the address of the removed member.

list input

is the name of a _LIST.

length output

INT:ref

returns the length of the removed member, in bytes.

Considerations

• Removing a member with _POP^LM does not immediately deallocate memory. The
removed member's memory remains allocated and its contents useable until the next
successive member is removed with _POP^LM, or a new member is added with
_PUSH^LM.

• The removed member does not participate in list scans with _SUCCESSOR^LM nor
_PREDECESSOR^LM.

• _PUT^LM, if used with _POP^LM, also deallocates memory for the last element
removed by _POP^LM.

• Normally, a list is processed either by _PUT^LM plus _GET^LM or by _PUSH^LM
plus _POP^LM, but not both.

• _UNPOP^LM replaces the last list member removed by _POP^LM.

Example

In the following example, the latest member of outlist is removed and
list^member is set to point to it:

_LIST (outlist);
INT .EXT list^member (list^member^def);
INT length;
IF _ISNULL (@list^member := _POP^LM (outlist, length));
 THEN ... < list empty > ;

@list-member := _POP^LM (list
 ,[length]);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-87

_POP^THREAD^PROCSTATE DSNM Library Services
_POP^THREAD^PROCSTATE

_POP^THREAD^PROCSTATE restores the values of the thread procedure and thread
state saved with the most recent _PUSH^THREAD^PROCSTATE.

error returned value

INT

is a ZDSN^ERR value indicating the outcome of the call. See Appendix B, “DSNM
Error Codes,” for error code definitions.

Example

See the example for _PUSH^THREAD^PROCSTATE.

error := _POP^THREAD^PROCSTATE ;
A-88
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _PREDECESSOR^LM
_PREDECESSOR^LM

_PREDECESSOR^LM returns the address of the list member placed on the list
immediately before the current list member was added.

prev-list-member returned value

INT .EXT

is the address of the predecessor of the current list member.

list input

is the name of a _LIST.

list-member input

INT .EXT

is a pointer to a current member of list.

Considerations

• List members are logically ordered. The first (or front or head) member is the
earliest put on the list and the last (or end or tail) member is the latest. Each
member has a successor and a predecessor, the predecessor of the first and the
successor of the last being _NULL.

• list-member must be a current member of list, or @list-member must be
_NULL. If @list-member is _NULL, the address of the last member of list
is returned.

• Predecessor list members are not necessarily stored at decreasing memory
addresses. You cannot determine the order of list members by comparing their
addresses.

• _PREDECESSOR^LM returns _NULL if one of the following is true:

• list-member is the first member of list.

• list is empty.

• An error occurs.

@prev-list-member := _PREDECESSOR^LM (list
 ,list-member);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-89

_PREDECESSOR^LM DSNM Library Services
Example

The following example sets two pointers, one to the last member of list, and another
to the next-to-last member:

_LIST (list);
INT .EXT lm (list^member^def); !extended pointer to list
 !member structure
INT .EXT prevlm (list^member^def); !another extended pointer
 !to list member struct
@lm := _LAST^LM (list);
@prevlm := _PREDECESSOR^LM (list, lm);
A-90
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _PRIVATE^THREAD^EVENT
_PRIVATE^THREAD^EVENT

_PRIVATE^THREAD^EVENT produces an INT constant with a single one-bit, suitable
for labeling an event to look different from any frame-generated event.

num is a number in the range 0 through 7.

Considerations

• Currently, the thread can declare eight events guaranteed to be different from all
frame-generated events.

• Thread procedures must call _SIGNAL^EVENT to generate private events. When
the thread generates its own event(s), it is redispatched immediately when it returns
_RC^WAIT to the frame.

Example
The following example causes two user-defined events, sub^object and
next^object, to be turned on in _LAST^EVENTS at the next dispatch:

LITERAL next^object = _PRIVATE^THREAD^EVENT (0);
LITERAL sub^object = _PRIVATE^THREAD^EVENT (1);

CALL _SIGNAL^EVENT (sub^object + next^object);
RETURN _RC^WAIT;
 .
!After the next dispatch ...
 .
IF _ALLON (_LAST^EVENTS, sub^object + next^object)
 THEN ...;

_PRIVATE^THREAD^EVENT (num);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-91

_PROCESS^PARAMS DSNM Library Services
_PROCESS^PARAMS

_PROCESS^PARAMS is a global structure defined in the I process globals in which the
frame stores standard process parameters it retrieves as part of its startup function.

Considerations

The contents of the _PROCESS^PARAMS structure is as follows:

DEFINITION ZDSN-DDL-PROCESS-PARAMS.
 02 Z-CLASS-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-CLASS TYPE ZDSN-DDL-CLASS.
 02 Z-COMPONENT-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-COMPONENT TYPE ZDSN-DDL-COMPONENT.
 02 Z-MYSYSTEM-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-MYSYSTEM TYPE ZDSN-DDL-SYSTEM.
 02 Z-MYREALSYSTEM-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-MYREALSYSTEM TYPE ZDSN-DDL-SYSTEM.
 02 Z-MYPROCESS-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-MYPROCESS TYPE ZDSN-DDL-PNAME.
 02 Z-TESTMODE TYPE ZSPI-DDL-INT.
 02 Z-DEBUG-LEVEL TYPE ZSPI-DDL-ENUM.
 02 Z-SECTION-NAME-OCCURS TYPE ZSPI-DDL-UINT.
 02 Z-SECTION-NAME TYPE ZDSN-DDL-PARAMNAME.
END

STRUCT _PROCESS^PARAMS (ZDSN^DDL^PROCESS^PARAMS^DEF);
A-92
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _PUSH^LM
_PUSH^LM

_PUSH^LM allocates memory for a new last member of a list and returns its address.
_NULL is returned if no memory is available for a new list member.

list-member returned value

INT .EXT

is the address of the new member.

list input

is the name of a _LIST.

length input

INT:value

is the length of the new member, in bytes.

initlength input

INT:value

is the number of bytes of the new member to be initialized (to the contents of
initdata, if present); otherwise, it is initialized to 0s.

initdata input

INT .EXT

is a structure or an array containing initial data for the list member.

Considerations

• If length is not provided, initlength is taken as the length of the new
member, as well as the initializing length.

• Normally, a list is processed either by _PUT^LM plus _GET^LM or by _PUSH^LM
plus _POP^LM, but not both.

• _PUSH^LM deallocates and reuses the memory assigned to the last element
removed by _POP^LM.

@list-member := _PUSH^LM (list
 ,[length]
 ,initlength
 ,[initdata]);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-93

_PUSH^LM DSNM Library Services
Example

The following example allocates space for a new list member initialized to binary 0s:

_LIST (list);
INT .EXT lm (list^member^def);

IF _ISNULL (@lm := _PUSH^LM (list,,$LEN (lm)))
 THEN <no memory available> ;
A-94
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _PUSH^THREAD^PROCSTATE
_PUSH^THREAD^PROCSTATE

_PUSH^THREAD^PROCSTATE saves the current thread procedure and thread state,
and optionally sets new values for the current thread procedure and thread state.

error returned value

INT

is a ZDSN^ERR value, indicating the outcome of the call. See Appendix B,
“DSNM Error Codes,” for error code definitions.

procname input

is a thread procedure that becomes the current thread procedure after the existing
thread procedure is saved.

state input

INT:value

is an INT expression that becomes the current thread state after the existing value is
saved.

Considerations

• If procname and state are not provided, the current thread procedure and thread
state are saved, and no new current thread procedure and state are set.

• The current thread procedure is defined as the procedure called by the frame the next
time the thread is dispatched.

• _POP^THREAD^PROCSTATE restores the values of the thread procedure and
thread state saved with the last _PUSH^THREAD^PROCSTATE.

Example

In the following example, the frame dispatches PROC^X of the command thread in
_ST^INITIAL. PROC^X calls PROC^Y in STATE^B by:

• Setting its return state to STATE^A.

• Saving the old current thread procedure and state values, and setting new current
thread procedure and thread state values.

• Signaling an event and returning to the frame to dispatch the new thread procedure
PROC^Y in the new state STATE^B.

error := _PUSH^THREAD^PROCSTATE ([@procname]
 ,[state]);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-95

_PUSH^THREAD^PROCSTATE DSNM Library Services
PROC^Y checks for event EV^STARTUP, resets the current thread procedure and thread
state to the previously saved values of PROC^X and STATE^A, and returns to the frame
to dispatch PROC^X in STATE^A.

_THREAD^PROC (PROC^X);
 BEGIN
 .
 .
 CASE _THREAD^STATE OF
 BEGIN
 _ST^INITIAL -->
 _THREAD^STATE := STATE^A;
 IF (error := _PUSH^THREAD^PROCSTATE(@PROC^Y,STATE^B))
 THEN ... < error > ;
 CALL _SIGNAL^EVENT (_EV^STARTUP);
 RETURN _RC^WAIT;

 STATE^A -->
 .
 .
 RETURN _RC^STOP;
 END;
 _END^THREAD^PROC;

_THREAD^PROC (PROC^Y);
 BEGIN
 .
 .
 CASE _THREAD^STATE OF
 BEGIN
 STATE^B -->
 IF _ON (_LAST^EVENTS, _EV^STARTUP)
 THEN
 BEGIN
 .
 .
 IF (error := _POP^THREAD^PROCSTATE)
 THEN ... < error > ;
 CALL _SIGNAL^EVENT (_EV^CONTINUE);
 RETURN _RC^WAIT;
 END;
 END;
 _END^THREAD^PROC;
A-96
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _PUT^LM
_PUT^LM

_PUT^LM allocates memory for a new last member of a list and returns its address.
_NULL is returned if no memory is available for a new list member.

list-member returned value

INT .EXT

is the address of the new member.

list input

is the name of a _LIST.

length input

INT:value

is the length of the new member, in bytes.

initlength input

INT:value

is the number of bytes of the new member to be initialized (to the contents of
initdata, if present): otherwise, it is initialized to 0s.

initdata input

INT .EXT

is a structure or an array containing initial data for the list member.

Considerations

• If length is not provided, initlength is taken as the length of the new
member, as well as the initializing length.

• Normally, a list is processed either by _PUT^LM plus _GET^LM or by _PUSH^LM
plus _POP^LM, but not both.

• _PUT^LM, if used with _POP^LM, deallocates and reuses the memory assigned to
the last element removed by _POP^LM.

@list-member := _PUT^LM (list
 ,[length]
 ,initlength
 ,[initdata]);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-97

_PUT^LM DSNM Library Services
Example

In the following example, the INIT^LM^VALUES structure is set to initializing values
for each worklist member; then a list member is allocated and initialized to
INIT^LM^VALUES:

STRUCT .init^lm^values (lm^def);
_LIST (worklist);
INT .EXT lm (lm^def);

IF _ISNULL(@lm :=_PUT^LM (worklist,,$LEN(lm),init^lm^values))
 THEN ... <memory error> ;

See the _FOBJECT^INIT description for another _PUT^LM example.
A-98
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _RC^STOP
_RC^ABORT

The thread returns _RC^ABORT to the frame when a command abnormally terminates.

error

INT

is a ZDSN^ERR value, indicating the reason for the abnormal command
termination. See Appendix B, “DSNM Error Codes,” for error code definitions.

_RC^NULL
_RC^NULL is a special return code that is not equal to any valid thread return code; it
must be returned to the frame in _COMMAND^TERMINATION^PROC.

_RC^NULL may be returned by an _RC^TYPE procedure (defined later in this
appendix) to indicate that it has not returned any valid frame return code.

_RC^NULL must not be returned to the frame by any thread procedure.

_RC^STOP
The thread returns _RC^STOP to the frame when a command ends normally.

A command that terminates early due to an _EV^CANCEL event from the frame is
considered to have terminated normally; the thread should return _RC^STOP to the
frame.

RETURN _RC^ABORT (error);

_RC^NULL;

RETURN _RC^STOP;
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-99

_RC^TYPE DSNM Library Services
_RC^TYPE

_RC^TYPE declares function procedures that can be called by a thread procedure (but
are not themselves thread procedures) and that return a frame return code value.

_RC^TYPE also declares variables to hold the frame return code (_RC^) values such as
values returned by _RC^TYPE function procedures.

The special return code _RC^NULL may be returned by an _RC^TYPE procedure to
indicate that it has not returned any valid frame return code. _RC^NULL must not be
returned to the frame by any thread procedure.

Example

In this example, a thread procedure calls an _RC^TYPE procedure. The called
procedure returns a frame return code, which is interpreted by the calling procedure.

_RC^TYPE PROC process^object (...);
 BEGIN
 .
 .
 END;

_THREAD^PROC (_COMMAND^PROC);
 BEGIN
 _RC^TYPE obj^rc;
 .
 .
 obj^rc := process^object (...);

 IF obj^rc <> _RC^NULL
 THEN
 RETURN obj^rc;
 .
 .
 _END^THREAD^PROC;

_RC^WAIT

The thread returns _RC^WAIT to the frame to wait for the next event.

_RC^TYPE PROC procname ;

_RC^TYPE var1, [var2 [,...]];

RETURN _RC^WAIT;
A-100
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _REAL^LAST^EVENTS
_REAL^LAST^EVENTS

_REAL^LAST^EVENTS is set each time the command thread is dispatched to contain
the event(s) that caused the current dispatch. Each bit represents a different event.

_REAL^LAST^EVENTS is a define that returns a value and as such, can only be tested;
it cannot be altered. _LAST^EVENTS, which is also set to the current event(s) at each
dispatch, is a global variable that can be tested and altered.

When a thread is invoked for the first time, _LAST^EVENTS and
_REAL^LAST^EVENTS are set to _EV^STARTUP.

Example

The following example tests if the _EV^IODONE bit is on in _REAL^LAST^EVENTS:

IF _ON (_REAL^LAST^EVENTS, _EV^IODONE)
 THEN ...;

_REAL^LAST^EVENTS
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-101

_RELEASE^OUTPUT DSNM Library Services
_RELEASE^OUTPUT

_RELEASE^OUTPUT releases a member of the output list to the frame. Once released,
the output list member can be removed by the frame at the next frame return.

Each output list member should be released as soon as it is completely completed.

output-list-member input

INT .EXT

is the output list member released to the frame.

Considerations

• The frame cannot remove an output list member that has an unreleased predecessor.

• Thread termination releases all output list members.

Example

See the _FOBJECT^INIT description for a _RELEASE^OUTPUT example.

_RELEASE^OUTPUT (output-list-member);
A-102
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _REPORT^INTERNAL^ERROR
_REPORT^INTERNAL^ERROR

_REPORT^INTERNAL^ERROR logs internal errors to the $0 EMS collector.

internalcode input

INT:value

is an internal code that you assign strictly for your own use.

severity input

INT:value

is one of the following values, indicating the severity of the event logged to EMS:

I1 .. I4 input

INT:value

are four optional integer values for you to report relevant information.

Considerations

• The internal code is designed to assign a code for locating the point of the error in
the program.

• The integer values are designed to display internal data values in the event message
to help trace the error.

Example
IF _NOTNULL (@inobj := _GET^LM (cx.current^in)) THEN
 BEGIN
 CALL _REPORT^INTERNAL^ERROR (1, _EMS^EVENT^INFO);
 RETURN _RC^ABORT (ZDSN^ERR^INTERNAL^ERR);
 END;

_REPORT^INTERNAL^ERROR ([internalcode]
 ,[severity]
 ,[I1]
 ,[I2]
 ,[I3]
 ,[I4]);

_EMS^EVENT^INFO The event is a nonfatal informative message; it is
defined earlier in this appendix.

_EMS^EVENT^CRITICAL The event reports a critical but nonfatal condition; it
is defined earlier in this appendix.

_EMS^EVENT^FATAL The event reports a fatal condition; it is defined
earlier in this appendix.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-103

_REPORT^STARTUP^ERROR DSNM Library Services
_REPORT^STARTUP^ERROR

_REPORT^STARTUP^ERROR reports fatal startup errors to the $0 EMS collector,
resulting from _STARTUP procedure startup parameter or configuration errors.

internalcode input

INT:value

is an internal code that you can assign strictly for your own use.

severity input

INT:value

is one of the following values, indicating the severity of the event logged to EMS:

text input

STRING .EXT

is the error text. The text string must be terminated by a null character.

Considerations

The internal code is designed to assign a code for locating the point of the error in the
program.

_REPORT^STARTUP^ERROR ([internalcode]
 ,[severity]
 ,[text]);

_EMS^EVENT^INFO The event is a nonfatal informative message; it is
defined earlier in this appendix.

_EMS^EVENT^CRITICAL The event reports a critical but nonfatal condition; it
is defined earlier in this appendix

_EMS^EVENT^FATAL The event reports a critical and fatal condition; it is
defined earlier in this appendix.
A-104
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _REPORT^STARTUP^ERROR
Example
INT PROC _STARTUP (cxl, inputl) EXTENSIBLE;
INT .cxl, .inputl;
 BEGIN
 STRING errtext[0:29] :=["Invalid SPIFFY configuration",0];
 cxl := $LEN (cx^def); ! Command thread context length
 inputl := $LEN (object^lm^def); ! Frame input object
 ! list member length

 ! Get CI and subsystem configurations
 IF _ISNULL (@spifmon := _ADD^CI (spifclass))
 OR _ISNULL (@spiffy := _ADD^SUBSYS (spifsys))
 THEN CALL _REPORT^STARTUP^ERROR (0, _EMS^EVENT^FATAL,
 errtext);
 RETURN ZDSN^ERR^NOERR;
 END;
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-105

_RESTORE^THREAD^AND^DISPATCH DSNM Library Services
_RESTORE^THREAD^AND^DISPATCH

_RESTORE^THREAD^AND^DISPATCH restores the thread procedure and state last
pushed and returns to the frame for immediate dispatch with the specified event.

event input

INT:value

is an INT expression that designates the event(s) with which the restored procedure
is to be dispatched. The default is _EV^CONTINUE.

When using _RESTORE^THREAD^AND^DISPATCH with all arguments omitted
(accepting the default event), you must use the following construction:

_RESTORE^THREAD^AND^DISPATCH ();

_RESTORE^THREAD^AND^DISPATCH can fail only with error
ZDSN^ERR^NOTPUSHED. When a failure occurs, code immediately following the
function is executed.

Example
IF _ISNULL(@inobj := @cx.currentobj :=
 _GET^LM(cx.current^in))
 THEN
 BEGIN
 ! Out of input objects; restore caller and continue.
 ! Note: Calling proc has set the state in which it
 ! desires to return before saving the thread
 ! state and dispatching this proc.
 _RESTORE^THREAD^AND^DISPATCH (_EV^CONTINUE);
 ! If _RESTORE^THREAD^AND^DISPATCH fails,
 ! we fall through to here and ...
 RETURN _RC^ABORT (ZDSN^ERR^NOTPUSHED);
 END;

_RESTORE^THREAD^AND^DISPATCH ([event]);
A-106
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _SAVE^THREAD^AND^DISPATCH
_SAVE^THREAD^AND^DISPATCH

_SAVE^THREAD^AND^DISPATCH saves the current thread procedure and state,
optionally sets new current thread procedure and state values, and returns to the frame
for immediate dispatch.

procname input

is the dispatched thread procedure. This procedure becomes the new current thread
procedure. The default is to redispatch the existing current thread procedure.

state input

INT: value

is an INT expression that designates what becomes the current thread state when the
specified thread is dispatched. The default is to keep the existing current state.

event input

INT:value

is an INT expression that designates the event(s) with which the new procedure is
dispatched. The default is _EV^CONTINUE.

When using _SAVE^THREAD^AND^DISPATCH with all arguments omitted
(accepting all the defaults), you must use the following construction:

_SAVE^THREAD^AND^DISPATCH ();

_SAVE^THREAD^AND^DISPATCH can fail only with the error
ZDSN^ERR^MEMORY. When a failure occurs, code immediately following the
function is executed.

Example
IF _ON (inobj.cf, c^info) THEN
 BEGIN
 ! Set state where we wish to return to this proc.
 _THREAD^STATE := st^done;
 _SAVE^THREAD^AND^DISPATCH (@info^proc, st^new^object,
 _EV^STARTUP);
 ! If _SAVE^THREAD^AND^DISPATCH fails,
 ! we fall through to here and ...
 RETURN _RC^ABORT (ZDSN^ERR^MEMORY);
END;

_SAVE^THREAD^AND^DISPATCH ([@procname]
 ,[state]
 ,[event]);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-107

_SEND^CI DSNM Library Services
_SEND^CI

_SEND^CI initiates sending a message to a server CI. After initiating _SEND^CI, the
thread must eventually return to the frame to wait for its completion with _RC^WAIT.

error returned value

INT

If > 0, is a file system error. File system errors are described in the Guardian
Procedure Errors and Messages Manual.

If < 0, is a ZDSN error. See Appendix B, “DSNM Error Codes,” for ZDSN error
code definitions.

ciid input

is the CIID structure (declared with _CI^ID) identifying an open CI.

buffer input

INT .EXT:ref:*

is an array containing information to be sent to the CI. On return, buffer contains
the information read from the CI (and is referred to as the “reply buffer”).

write-count input

INT:value

is the number of bytes to send to the CI.

reply-count input

INT:value

is the maximum number of bytes accepted from the CI in the reply buffer.

error := _SEND^CI (ciid
 ,buffer
 ,write-count
 ,reply-count
 ,[context-boolean]
 ,[tag]
 ,[timeout]);
A-108
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _SEND^CI
context-boolean input

INT:value

indicates whether the send is context-free, meaning it does not depend on any
previous communication with this ciid. Specifically:

• If context-boolean is 0 (FALSE), the send is context-free, which means it
may be sent to a new instance of the same CI if an error occurs.

• If context-boolean is nonzero (TRUE) or omitted, the command is
assumed to be contextually dependent on earlier commands sent to this CI, and
the frame will not send the command to a new instance of the CI if an error
occurs.

tag input

INT(32):value

uniquely identifies this _SEND^CI operation. tag is used to distinguish among
sends if more than one operation is outstanding at the same time (whether to the
same or to separate CIs). Normally, a tag is the address of a list member in which
the user places identifying information about the operation.

timeout input

INT(32):value

is the time in .01-second units that this I/O operation is allowed to remain
outstanding without a response. If the CI does not respond within this time, the I/O
operation completes with file system error 40 (cannot be retried).

If timeout is omitted or less than or equal to 0D, an indefinite wait is indicated.

Considerations

• If the communication is an SPI message containing a context token from a previous
communication, the message is contextually dependent on the previous message,
even though the CI is context-free. In this case, context-boolean must be true.

• The frame dispatches the thread with an _EV^IODONE event when a _SEND^CI
operation completes. At that time:

_CI^LASTERROR (ciid) Is the INT file system error of the operation.

_CI^REPLYLENGTH (ciid) Is the INT length of the reply.

_CI^REPLYADDRESS (ciid) Is the INT(32) extended address of the reply.

_CI^REPLYTAG (ciid) Is the INT(32) tag of the operation.

_CI^FILENUM (ciid) Is the INT Guardian file number of the CI.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-109

_SEND^CI DSNM Library Services
Example

In the following example, the command thread initiates a _SEND^CI request and returns
to the frame to wait for an I/O completion event:

< within user globals area >

STRUCT context^def (*);
 BEGIN ! Command thread context definition
 _COMMAND^CONTEXT^HEADER;
 INT .EXT input^lm (input^lm^def); ! Current input list
 ! member
 INT .EXT output^lm (out^lm^def); ! Current output list
 ! member
 _LIST (worklist);
 _CI^ID (current^ci);
 INT cibuf[0:<buffer word length>)];
 END;

< within command thread >

INT .EXT cx (context^def) = _THREAD^CONTEXT^ADDRESS;
INT .EXT currentobj (input^lm^def);
INT error, cmd^len;
LITERAL max^cmd = ..., max^reply = ...;

 IF _ISNULL (@currentobj := _FIRST^LM(cx._INPUT.OBJECTLIST))
 THEN ... < empty list > ;

 IF (error := _OPEN^CI (ci^config, cx.current^ci,
 cx.input^lm.FOBJ.Z^MANAGER);
 THEN ... < open error > ;
 .
< Allocate buffer for _SEND^CI >

 IF _ISNULL (@cx.cibuf := _PUT^LM (cx.worklist,,
 $MAX(max^cmd,max^reply)))
 THEN ... < memory error > ;
 .
< Construct buffer to execute command when sent to CI >
 .
 IF (error := _SEND^CI (cx.current^ci, cx.cibuf, cmd^len,
 max^reply,0));
 THEN ... < send error > ;

 RETURN _RC^WAIT; ! Wait for EV^IODONE
A-110
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _SET^THREAD^PROC
_SET^THREAD^PROC

_SET^THREAD^PROC sets the current thread procedure to be called by the frame at
the next thread dispatch.

procname input

is the name of the thread procedure called by the frame at the next thread dispatch.

Considerations

• Setting the current thread procedure is a high-level state change. For instance, the
initial thread procedure (_COMMAND^PROC) might examine the command passed
to it by the frame (when first dispatched) to determine if it is an informational
command or a state-change command. Since these commands have considerably
different output requirements, it may be convenient to have different procedures
perform their processing (see the provided example).

• The current thread procedure and thread state may be saved and later restored with
combinations of _DISPATCH^THREAD, _PUSH^THREAD^PROCSTATE,
_POP^THREAD^PROCSTATE, _SAVE^THREAD^AND^DISPATCH, and
_RESTORE^THREAD^AND^DISPATCH.

Example

The following example causes the thread procedure selected for the command type to be
dispatched immediately with the event _EV^STARTUP:

_THREAD^PROC (info^thread^proc);
 BEGIN
 < procedure body >
 _END^THREAD^PROC;

_THREAD^PROC (state^change^thread^proc);
 BEGIN
 < procedure body >
 _END^THREAD^PROC;

_THREAD^PROC (_COMMAND^PROC);
 BEGIN
 .
 IF info-type-command
 THEN _SET^THREAD^PROC (@info^thread^proc)
 ELSE _SET^THREAD^PROC (@state^change^thread^proc);
 CALL _SIGNAL^EVENT (_EV^STARTUP);
 RETURN _RC^WAIT;
 .
 _END^THREAD^PROC;

_SET^THREAD^PROC (@procname);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-111

_SET^TIMEOUT DSNM Library Services
_SET^TIMEOUT

_SET^TIMEOUT allows the command thread to delay for a time interval by arranging
for a future timeout event.

time-interval input

INT(32):value

specifies the timeout period, in .01-second units. This value must be greater than 0.

tag input

INT(32):value

is an identifier associated with the timer, which is placed into command context.

After the interval is set, the thread must return to the frame with _RC^WAIT. The thread
is dispatched with _EV^TIMEOUT when the interval elapses. If supplied, the tag is
placed into command context and can be accessed with _LAST^TIMEOUT^TAG.
Usually, a timeout tag is the address of a list member holding information about the
purpose of the timeout.

Example
The following example dispatches the current thread procedure with _EV^TIMEOUT
after a 1.00 second delay:

LITERAL asec = 100D;

CALL _SET^TIMEOUT (asec); !Wait one second
RETURN _RC^WAIT; !Wait for _EV^TIMEOUT

See the _LAST^TIMEOUT^TAG description for another _SET^TIMEOUT example.

CALL _SET^TIMEOUT (time-interval
 ,[tag]);
A-112
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _SIGNAL^EVENT
_SIGNAL^EVENT

_SIGNAL^EVENT generates private events or simulates frame events.

event(s) input

INT:value

is an INT expression, the one-bits of which designate the event(s) to be generated.

Considerations

• When the thread generates its own event(s) with _SIGNAL^EVENT, it is
redispatched immediately when it returns _RC^WAIT to the frame.

• You may simulate any frame event by signaling it with _SIGNAL^EVENT. For
example:

CALL _SIGNAL^EVENT (_EV^IODONE);

When you simulate a frame event, be careful not to use control variables set by
frame-generated events (such as _LAST^CI^ID or _LAST^TIMEOUT^TAG),
unless they are set to match the event simulated.

• Events generated by the frame occur singly, with one dispatch per event. All events
generated by the thread occur together, immediately after the next return to the
frame and before any frame-generated events.

Example
The following example causes two user-defined events, sub^object and
next^object, to be turned on in _LAST^EVENTS at the next dispatch:

LITERAL next^object = _PRIVATE^THREAD^EVENT (0);
LITERAL sub^object = _PRIVATE^THREAD^EVENT (1);

CALL _SIGNAL^EVENT (sub^object + next^object);
RETURN _RC^WAIT;
 .
!After the next dispatch ...
 .
IF _ALLON (_LAST^EVENTS, sub^object + next^object)
 THEN ...;

Since _PRIVATE^THREAD^EVENT generates a bit value different from all frame
events, the events that are on in _LAST^EVENTS mean this dispatch was caused by
_SIGNAL^EVENT.

CALL _SIGNAL^EVENT (event(s));
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-113

_STARTUP DSNM Library Services
_STARTUP

_STARTUP is a user-provided initialization procedure called by the frame. It supplies
the lengths of the user context area and input list members, and retrieves and places
subsystem and CI configuration parameters into predefined structures for use by the
frame.

You must call _ADD^SUBSYS in your _STARTUP procedure for each subsystem your
I process handles, as well as _ADD^CI for each CI class with which your I process
communicates.

context-length output

INT:ref

is the length of the command context structure, in bytes.

input-lm-length output

INT:ref

is the length of an input list member, in bytes.

The frame must know the lengths of the user-defined command context and input list
member structures, since it allocates these areas before it creates the first instance of the
command thread.

If no values are provided for context-length and input-lm-length, the frame
allocates only the space required for its own use (as defined by
__COMMAND^CONTEXT^HEADER and _INPUT^LM^HEADER). No space is
reserved for user data.

Example

The following example of an initialization procedure assumes that the user has defined
structure templates for the command context area (command^context^def), an input list
member (input^lm^def), pointers to a _CI^DEF-defined CI configuration structure (scp),
and a _SUBSYS^DEF-defined subsystem configuration structure (snaxcdf):

INT PROC _STARTUP (cx^length, in^lm^length) EXTENSIBLE;
INT .cx^length, .in^lm^length;

 BEGIN
 cx^length := $LEN (command^context^def);
 in^lm^length := $LEN (input^lm^def);

INT PROC _STARTUP (context-length , input-lm-length)
 EXTENSIBLE;
A-114
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _STARTUP
 IF _ISNULL (@scp := _ADD^CI (scpclass)) THEN
 RETURN ZDSN^ERR^INTERNAL^ERR;
 IF _ISNULL (@snaxcdf := _ADD^SUBSYS (cdf)) THEN
 RETURN ZDSN^ERR^INTERNAL^ERR;
 RETURN ZDSN^ERR^NOERR;
 END;
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-115

_STARTUP^MODE DSNM Library Services
_STARTUP^MODE

_STARTUP^MODE is a user-provided procedure called by the frame when it begins
startup processing. _STARTUP^MODE retrieves the component name of the
subsystem(s) being handled by the I process and determines if the I process is running in
test mode and whether to use the COMPONENT process parameter value (if one
appears in the startup message).

component output

STRING .EXT ! (ZDSN^DDL^COMPONENT^DEF) !

is the name, left justified, blank-filled, of the subsystem handled by the I process.

component is used for configuration parameter retrieval, and is usually the name
of the subsystem that the I process handles. For I processes that handle multiple
subsystems, component is an arbitrary name chosen by the developer of the process.
For example, the Tandem-supplied SCP I process handles multiple communications
subsystems: COMM is its component name.

testmode output

INT .EXT

indicates if the I process is running in test mode. A nonzero value indicates yes;
0 indicates no (default).

Use the literal _COMPILED^IN^TESTMODE as the value for the testmode
parameter. _COMPILED^IN^TESTMODE is automatically set to 1 if the source
file is compiled with SETTOG 1, and 0 otherwise (indicating that the I process is
running in production mode).

Test mode forces the STARTUP process parameter to default to yes, and enables
processing of the CONFIG, STARTUP, and DEBUG process parameters (see
Section 5, “DSNM Process Startup Functions”).

accept-startup-component output

INT .EXT

indicates whether a process COMPONENT value in the startup message should
override (nonzero) or should not override (0) the component value. 0 (zero) is the
default.

INT PROC _STARTUP^MODE (component
 , testmode
 , accept-startup-component
 , subject)
 EXTENSIBLE;
A-116
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _STARTUP^MODE
subject output

STRING .EXT

identifies the NULL-terminated value used in the EMS event messages. It can be
the I process name.

Example
 INT PROC _STARTUP^MODE (component, testmode,
 accept^startup^component, subject) EXTENSIBLE;
 STRING .EXT component;
 INT .EXT testmode;
 INT .EXT accept^startup^component;
 STRING .EXT subject;

 BEGIN

 testmode := _COMPILED^IN^TESTMODE;
 accept^startup^component := 0;
 component ':=' [" "] & component FOR
$LEN(ZDSN^DDL^COMPONENT^DEF) - 1;
 component ':=' ["PATHWAY"];
 subject ':=' ["PWI", 0];
 RETURN ZDSN^RETCODE^OK;
 END;
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-117

_ST^INITIAL DSNM Library Services
_ST^INITIAL

When the frame creates a thread, it sets the thread state to _ST^INITIAL. The thread
state value is stored in an INT context variable, accessible with the _THREAD^STATE
define.

See _ST^MIN^THREAD^STATE for information on defining your thread states.

Example

The following example tests the current state of the thread:

CASE _THREAD^STATE OF
 BEGIN
 _ST^INITIAL ->
 ...
 OTHERWISE ->
 ...
 END;
 .
 .
 .

_ST^INITIAL
A-118
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _ST^MIN^THREAD^STATE
_ST^MIN^THREAD^STATE

_ST^MIN^THREAD^STATE is the minimum value of a user-defined thread state.

Considerations

• Thread states are normally declared as literals.

• Values less than _ST^MIN^THREAD^STATE are reserved for use by the frame.

• _THREAD^STATE contains the current thread state.

Example

The following example declares several user-defined thread states and sets the current
thread state:

LITERAL thr^state1 = _ST^MIN^THREAD^STATE, thr^state2,
 thr^state3,...;

_THREAD^STATE := thr^state2;

_ST^MIN^THREAD^STATE
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-119

_SUBSYS^DEF DSNM Library Services
_SUBSYS^DEF

_SUBSYS^DEF is a template for a subsystem configuration structure, filled by the
_ADD^SUBSYS procedure with subsystem and object-type configuration data.
Declare an extended pointer to a _SUBSYS^DEF-defined subsystem configuration
structure in globals for each subsystem your I process handles.

_ADD^SUBSYS must be called in your _STARTUP procedure for each subsystem your
I process handles. _ADD^SUBSYS allocates the memory for, fills in, and returns the
address of the subsystem configuration structure.

The definition of the _SUBSYS^DEF-defined structure is:

STRUCT _SUBSYS^DEF (*);
 BEGIN
 STRUCT SUBSYS^CONFIG (ZDSN^DDL^SUBSYS^CONFIG^DEF);
 INT OBJTYPES;
 STRUCT OBJTYPE^CONFIG (ZDSN^DDL^OBJTYPE^CONFIG^DEF)
 [0:-1];
 END;

_SUBSYS^DEF fills in one OBJTYPE^CONFIG array for each object type configured
in the subsystem, and sets OBJTYPES to the number of object-type configuration
entries in the subsystem.

Definitions for the two structures contained within the _SUBSYS^DEF-defined
structure are as follows:

DEFINITION ZDSN-DDL-SUBSYS-CONFIG.
 02 Z-SUBSYS TYPE ZDSN-DDL-SUBSYS.
 02 Z-RANK TYPE ZSPI-DDL-INT.
 02 Z-DEFAULT-OBJTYPE TYPE ZDSN-DDL-OBJTYPE.
 02 Z-DEFAULT-SUBOBJTYPE TYPE ZDSN-DDL-OBJTYPE.
 02 Z-DEVTYPE OCCURS ZDSN-MAX-DEVTYPES TIMES.
 03 Z-TYPE TYPE ZSPI-DDL-INT.
 03 Z-SUBTYPE TYPE ZSPI-DDL-INT
 OCCURS ZDSN-MAX-SUBTYPES TIMES.
 02 Z-FLAGS TYPE ZSPI-DDL-ENUM.
 02 Z-MANAGER-OBJFILE TYPE ZDSN-DDL-OBJNAME.
 02 Z-DSNMI TYPE ZDSN-DDL-PCLASS.
END

DEFINITION ZDSN-DDL-OBJTYPE-CONFIG.
 02 Z-SUBSYS TYPE ZDSN-DDL-SUBSYS.
 02 Z-OBJTYPE TYPE ZDSN-DDL-OBJTYPE.
 02 Z-PARENT-OBJTYPE TYPE ZDSN-DDL-OBJTYPE.
 02 Z-RANK TYPE ZSPI-DDL-INT.
END

_SUBSYS^DEF
A-120
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _SUBSYS^DEF
Example
< in global definitions >

INT .EXT ci^config (_CI^DEF);
INT .EXT ss^config (_SUBSYS^DEF);

STRING .ciname[0:ZDSN^MAX^CICLASS-1] := [“XXX ”];
STRING .ssname[0:ZDSN^MAX^SUBSYS-1] := [“YYYYYY ”];

< within _STARTUP procedure >

BEGIN
 .
 .
 IF _ISNULL (@ci^config := _ADD^CI (ciname)) THEN
 RETURN ZDSN^ERR^INTERNAL^ERR;
 IF _ISNULL (@ss^config := _ADD^SUBSYS (ssname)) THEN
 RETURN ZDSN^ERR^INTERNAL^ERR;
 .
 .
END;
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-121

_SUCCESSOR^LM DSNM Library Services
_SUCCESSOR^LM

_SUCCESSOR^LM returns the address of the list member placed on the list
immediately after the current list member was added.

next-list-member returned value

INT .EXT

is the address of the successor list member.

list input

is the name of a _LIST.

list-member input

INT .EXT

is a pointer to a current member of list.

Considerations

• List members are logically ordered. The first (or front or head) member is the
earliest put on the list and the last (or end or tail) member is the latest. Each
member has a successor and a predecessor, the predecessor of the first and the
successor of the last being _NULL.

• list-member must be a current member, or @list-member must be _NULL.

If @list-member is _NULL, the address of the first member of list is
returned.

• Successive list members are not necessarily stored at increasing memory addresses.
You cannot determine the order of list members by comparing their addresses.

• _SUCCESSOR^LM returns _NULL if one of the following is true:

• list-member is the last member of list.

• list is empty.

• An error occurs.

@next-list-member := _SUCCESSOR^LM (list
 ,list-member);
A-122
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _SUCCESSOR^LM
Examples

The following examples use the declarations:

_LIST (list);
INT .EXT lm (list^member^def); !extended pointer to
 !list member structure
INT .EXT nextlm (list^member^def); !another extended pointer
 !to list member struct

This example scans a list in the forward direction:

@lm := _NULL;
WHILE _NOTNULL (@lm := _SUCCESSOR^LM (list,lm)) DO
 BEGIN
 ...
 END;

In this example, the user waits for a new last member to be added to the end of a list by
keeping a previous member pointer. After finding _NULL, @lm is set to its previous
value. Later, @lm can be used in _SUCCESSOR^LM to get a new later member, if one
has been added, or _NULL, if one has not been added.

@lm := @nextlm := _NULL;
WHILE _NOTNULL (@lm := _SUCCESSOR^LM (list,lm)) DO
 BEGIN
 @nextlm := @lm;

 END;
@lm := @nextlm;
 .
 .
 < lm can be used to find a new last member >
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-123

_THREAD^CONTEXT^ADDRESS DSNM Library Services
_THREAD^CONTEXT^ADDRESS

_THREAD^CONTEXT^ADDRESS is an INT(32) field, containing the extended
address of the command context area, which is allocated to each thread when it is
created and persists until the thread terminates. The context area contains a fixed
header, followed by a user-defined area.

Since globals are shared among all threads, the construction to access the thread context
must be done in the local data area of each procedure that requires access.

Example

The following example of a local data definition gives a thread procedure access to the
command context area:

INT.EXT cx (command^context^def) = _THREAD^CONTEXT^ADDRESS;

command^context^def is a user-defined structure template that begins with
_COMMAND^CONTEXT^HEADER.

See also the examples for _FOBJECT^INIT and _COMMAND^CONTEXT^HEADER.

_THREAD^CONTEXT^ADDRESS
A-124
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _THREAD^PROC
_THREAD^PROC

_THREAD^PROC defines a procedure dispatched as part of a thread
(a procedure that can be set as a new current thread with _SET^THREAD^PROC,
_PUSH^THREAD^PROCSTATE, _POP^THREAD^PROCSTATE,
_DISPATCH^THREAD or _SAVE^THREAD^AND^DISPATCH).

procname user-provided identifier

is the name (a valid TAL identifier) of the procedure.

Examples

Use _THREAD^PROC in the following constructions:

_THREAD^PROC(procname); EXTERNAL;

_THREAD^PROC(procname); FORWARD;

_THREAD^PROC(procname);
 BEGIN
 < procedure body >
 _END^THREAD^PROC;

_THREAD^PROC (procname);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-125

_THREAD^STATE DSNM Library Services
_THREAD^STATE

_THREAD^STATE accesses an INT variable that represents the current state of the
thread. _THREAD^STATE may be set or tested.

Considerations

• The frame sets the thread state to _ST^INITIAL when it creates a thread.
Subsequently, you may alter the thread state as desired; the frame never uses it
again.

• Thread state values less than the library literal _ST^MIN^THREAD^STATE are
reserved. State values are always nonnegative. At present, _ST^INITIAL is the
only reserved value.

• The current thread state may altered with _DISPATCH^THREAD,
_PUSH^THREAD^PROCSTATE, _POP^THREAD^PROCSTATE,
_SAVE^THREAD^AND^DISPATCH, or
_RESTORE^THREAD^AND^DISPATCH.

Example

The following example tests and alters the current state of the thread:

CASE _THREAD^STATE OF
 BEGIN
 _ST^INITIAL ->
 ...
 OTHERWISE ->
 ...
 END;
 .
 .
 .
_THREAD^STATE := thr^state2;

_THREAD^STATE
A-126
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _THREAD^TERMINATION^CODE
_THREAD^TERMINATION^CODE

_THREAD^TERMINATION^CODE is a define to access a context field that contains
the ZDSN^ERR value returned with _RC^ABORT or _RC^STOP. It is designed for use
in _COMMAND^TERMINATION^PROC to determine why the thread terminated.

In the case of an _RC^STOP, the _THREAD^TERMINATION^CODE value is 0.

_THREAD^TERMINATION^CODE
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-127

_THREAD^TERMINATION^PROC DSNM Library Services
_THREAD^TERMINATION^PROC

_THREAD^TERMINATION^PROC defines a procedure responsible for cleaning up the
thread’s environment after a command successfully completes or after a thread
abnormally terminates. It is the required name of the thread termination procedure for
the I process.

_THREAD^TERMINATION^CODE may be accessed and/or altered in the thread
termination procedure.

The thread termination procedure declared with _THREAD^TERMINATION^PROC
must end with _END^THREAD^TERMINATION^PROC.

Examples

Use _THREAD^TERMINATION^PROC in the following construction:

_THREAD^TERMINATION^PROC (_COMMAND^TERMINATION^PROC);
 BEGIN
 .
 .
 < procedure body >
 .
 ! For example, may free lists and return, leaving the
 ! thread’s original termination code
 ! (_THREAD^TERMINATION^CODE) unchanged, and leaving
 ! official input and output lists to the frame.

 CALL _DEALLOCATE^LIST (...);
 CALL _CLOSE^CI (...);
 RETURN _RC^NULL;
 _END^THREAD^TERMINATION^PROC;

_THREAD^TERMINATION^PROC (_COMMAND^TERMINATION^PROC);
A-128
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _TURNOFF
_TURNOFF

_TURNOFF turns off all the bits in int-var that are on in bit-mask.

int-var input/output

INT:ref

is a variable, the bits of which are turned off according to the contents of
bit-mask.

bit-mask input

INT:value

is an INT expression, the one-bits of which identify the bits in int-var to turn off.

Example

The following example turns off bits 9 and 11 in var:

INT var;
LITERAL evta = %20; ! evta.<11> on
LITERAL evtb = %100; ! evtb.<9> on
_TURNOFF (var, evta + evtb); ! var.<9> and var.<11>
 ! now off

_TURNOFF (int-var , bit-mask);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-129

_TURNON DSNM Library Services
_TURNON

_TURNON turns on all the bits in int-var that are on in bit-mask.

int-var input/output

INT:ref

is a variable, the bits of which are turned on according to the contents of
bit-mask.

bit-mask input

INT:value

is an INT expression, the one-bits of which identify the bits in int-var to turn on.

Example

The following example turns on bits 9 and 11 in var:

INT var;
LITERAL evta = %20; !evta.<11> on
LITERAL evtb = %100; !evtb.<9> on
_TURNON (var, evta + evtb); !var.<9> and var.<11> now on

_TURNON (int-var , bit-mask);
A-130
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _UNGET^LM
_UNGET^LM

_UNGET^LM replaces the last list member removed from a list using _GET^LM.

error returned value

INT

is a ZDSN^ERR value indicating the outcome of the call. See Appendix B, “DSNM
Error Codes,” for error code definitions.

list input

is the name of a _LIST.

list-member input

INT .EXT

is a pointer to the member most-recently removed from list with _GET^LM.

Specifying a list member that is not the most-recently removed with _GET^LM
invalidates the _UNGET^LM operation. Also, any intervening _PUT^LM or
_DEALLOCATE^LIST invalidates the _UNGET^LM operation. Results from any of
these are unpredictable.

Example

In the following example, members of worklist are examined and removed up to the
first member that does not match a particular control value:

_LIST (worklist);
INT .EXT list^member (list^member^def);
 ! list^member^def includes control^field

WHILE _NOTNULL (@list^member := _GET^LM (worklist))
 AND list^member.control^field = current^ctl^value
 DO
 BEGIN
 < process all list^members matching current^ctl^value>
 END;

! Put non-matching list^member back
IF _NOTNULL (@list^member)
 THEN IF (error := _UNGET^LM (worklist, list^member))
 THEN ... < data corrupted > ;

error := _UNGET^LM (list
 ,list-member);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-131

_UNPOP^LM DSNM Library Services
_UNPOP^LM

_UNPOP^LM replaces the last list member removed from a list using _POP^LM.

error returned value

INT

is a ZDSN^ERR value, indicating the outcome of the call. See Appendix B,
“DSNM Error Codes,” for error code definitions.

list input

is the name of a _LIST.

list-member input

INT .EXT

is a pointer to the member most-recently removed from list with _POP^LM.

Specifying a list member that is not the most-recently removed with _POP^LM
invalidates the _UNPOP^LM operation. Also, any intervening _PUT^LM or
_DEALLOCATE^LIST invalidates the _UNPOP^LM operation. Results from any of
these are unpredictable.

Example

In the following example, members of worklist are examined and removed up to the
first member that does not match a particular control value:

_LIST (worklist);
INT .EXT list^member (list^member^def);
 ! list^member^def includes control^field

WHILE _NOTNULL (@list^member := _POP^LM (worklist))
 AND list^member.control^field = current^ctl^value
 DO
 BEGIN
 < process all list^members matching current^ctl^value>
 END;

! Put non-matching list^member back
IF _NOTNULL (@list^member)
 THEN IF (error := _UNPOP^LM (worklist, list^member))
 THEN ... < data corrupted > ;

error := _UNPOP^LM (list
 ,list-member);
A-132
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _XADR^EQ
_XADR^EQ

_XADR^EQ is a Boolean define statement that is TRUE if two possibly null extended
addresses are equal (since _NULL can have more than one value).

address1 input

INT(32):value

is an extended address whose value is compared to address2.

address2 input

INT(32):value

is an extended address whose value is compared to address1.

_XADR^EQ (address1
 , address2)
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-133

_XADR^NEQ DSNM Library Services
_XADR^NEQ

_XADR^NEQ is a Boolean define statement that is TRUE if two possibly null addresses
are not equal (since _NULL can have more than one value).

address1 input

INT(32):value

is an extended address whose value is compared to address2 .

address2 input

INT(32):value

is an extended address whose value is compared to address1.

_XADR^NEQ (address1
 , address2)
A-134
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

B DSNM Error Codes

Scope of This Appendix
This appendix lists the ZDSN^ERR values that you may send back to the frame in the
Z^RESULT field of a formatted output object structure, or that may be returned to you
from a call to a DSNM library procedure.

Reporting Errors
Errors that do not terminate a command must be associated with an object (for instance,
an object name that is unknown to the subsystem) and are reported in the Z^RESULT
field of a formatted output object structure. In general, errors associated with a
particular object should not terminate the command, although there may be exceptions
for individual subsystems.

The Z^RESULT result code must be one of the ZDSN^ERR values defined in this
appendix. In addition, the output object structure must contain all entries appropriate for
the command being executed, including the fully qualified object name.

If the result code doesn’t fully describe the error, additional descriptive information
should be appended as result text (ZDSN^VTY^RESULTTEXT). The result text must
not duplicate the information of the result code itself: presentation services substitute
the text below for the result code in the user’s error display.

What to Prepare Before Contacting Your Tandem
Support Representative

Some of the problems you encounter might require assistance from a Tandem support
representative. Before you contact your representative, gather the following relevant
information:

• How DSNM is installed.

• Whether DSNM was started before starting NonStop NET/MASTER MS, or
NonStop NET/MASTER MS started DSNM.

• The VPROC of any utility executed by PROGRUN or OPSYS (with NonStop
NET/MASTER MS environments).

• History of the problem: has it happened before? If so, when and under what
conditions did it happen? Can you reproduce it? If so, state how to reproduce it.

• List of any recent changes to the system, including, but not limited to, new or
changed configuration parameters, new or upgraded software modules, new
hardware components, or changed NCL procedures (with NonStop NET/MASTER
MS environments).

• List of the output of any tracing associated with the problem, if appropriate to the
environment or nature of the problem.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 B-1

ZDSN Error Codes DSNM Error Codes
• List of any warning or error messages displayed before and after the problem
occurred.

• Any other information, as stated in the explanation of the pertinent error messages.

ZDSN Error Codes
The following ZDSN^ERR values may be returned to the frame by the command thread
in the Z^RESULT field of a formatted output object, or returned to the command thread
from a call to a library procedure. Error numbers -1 through -29 are standard SPI error
codes; refer to the SPI Programming Manual for information on SPI error codes.

-nnn

Cause. There is an internal problem in the software that issued the message.

Effect. The effects of this problem vary, depending on the individual situation.

Recovery. Note the error number and the message text and contact a Tandem
representative. Prepare the necessary information as suggested in “What to Prepare
Before Contacting Your Tandem Support Representative” on page B-1.

0 ZDSN^ERR^NOERR

Cause. This is not an error condition.

Effect. The operation completed successfully.

Recovery. None.

-30 ZDSN^ERR^CMD^MISMATCH

Cause. You issued a command against objects for which the command is not allowed.

Effect. Your command is not executed on the objects for which it is invalid.

Recovery. Refer to the User’s Guide to DSNM Commands for information on which
commands are valid for the object type you specified.

Unexpected Error: text

Invalid Command For This Object
B-2
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Error Codes -45 ZDSN^ERR^TKN^REQ
-34 ZDSN^ERR^INTERNAL^ERR

Cause. An internal program error or inconsistency occurred.

Effect. Command terminated abnormally due to an internal DSNM component error,
possibly due to memory corruption.

Recovery. Check the EMS event log for the error reported. Stop the I process and then
start it again. If the error persists, contact your Tandem representative.

-35 ZDSN^ERR^SUBSYSTEM^ERR

Cause. In attempting to execute your command, the subsystem generated an error. The
name of the subsystem appears in the error message.

Effect. The command is executed on all objects except the one for which the error
occurred. The state of the error object is subsystem-dependent.

Recovery. Refer to the subsystem documentation for error information.

-44 ZDSN^ERR^TKN^VAL^INV

Cause. Your command included something invalid in the position where a keyword or
operand is expected.

Effect. Your command is not executed.

Recovery. See Section 2, “DSNM Commands,” for the correct syntax of the command
and reissue it.

-45 ZDSN^ERR^TKN^REQ

Cause. Your command omitted something that is syntactically required.

Effect. Your command is not executed.

Recovery. See Section 2, “DSNM Commands,” for the correct syntax of the command
and reissue it.

Unexpected Error: DSNM Component Error

Subsystem Error

Invalid Token or Operand Value

Required Token or Operand Missing
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 B-3

-51 ZDSN^ERR^SPI^ERR DSNM Error Codes
-51 ZDSN^ERR^SPI^ERR

Cause. A subsystem SPI error occurred. Append the SPI error to the output object as
ZDSN^VTY^RESULTTEXT.

Effect. The command terminated abnormally. The state of the error object is
subsystem-dependent.

Recovery. Check the CI message SPI buffer for correctness. Refer to the subsystem
management programming documentation for information about the error.

-55 ZDSN^ERR^OBJNAME^INV

Cause. You specified a syntactically invalid object name.

Effect. Your command is not executed on the objects with the invalid name(s).

Recovery. Reissue the command with the correct object name.

-56 ZDSN^ERR^OBJTYPE^NOT^SUPPORTED or
 ZDSN^ERR^OBJ^NOT^SUPP

Cause. You specified an object type that is not supported by DSNM. It is possible for
DSNM to support a subsystem without supporting all of its object types.

Effect. Your command is not executed on objects of the unsupported type.

Recovery. None.

-60 ZDSN^ERR^MEMORY or ZDSN^ERR^NO^MEM^SPACE

Cause. There is insufficient memory to execute your command.

Effect. Your command might have been partially executed. Use the information
commands to determine to what extent the command was executed.

Recovery. Configure a larger segment size or break the command into several smaller
commands. For information on configuring a larger segment size, refer to the
Distributed Systems Management Solutions (DSMS) System Management Guide.

Unexpected Error: DSNM SPI Error

Invalid Object Name

Object Type not Supported

Out of Memory
B-4
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Error Codes -71 ZDSN^ERR^ALLOCATESEGMENT^ERR
-64 ZDSN^ERR^FS^ERR

Cause. The Guardian file system generated an error during the execution of your
command.

Effect. The effect depends on the specific file system error.

Recovery. Refer to the Guardian User’s Guide for an explanation of the error and its
recovery.

-67 ZDSN^ERR^CMD^TIMED^OUT

Cause. The command timed out before it could be executed.

Effect. Your command is not executed.

Recovery. Issue the command again.

-69 ZDSN^ERR^CMD^NOT^SUPP

Cause. You issued a command that is not supported in the specified subsystem or on the
specified object types.

Effect. Your command did not affect the objects for which the command is not
supported.

Recovery. Refer to the User’s Guide to DSNM Commands for information on which
commands are supported for the subsystem and objects you specified.

-71 ZDSN^ERR^ALLOCATESEGMENT^ERR

Cause. There was a segment allocation error during the execution of your command.

Effect. Your command is not executed.

Recovery. If there is not enough disk space, configure the SWAPVOL disk for more
space for the segment swap file. Refer to the Distributed Systems Management
Solutions (DSMS) System Management Guide for information.

File System Error

Command Timeout

Command not Supported

Segment Allocation Error
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 B-5

-76 ZDSN^ERR^BADCOMMAND DSNM Error Codes
-76 ZDSN^ERR^BADCOMMAND

Cause. The command is not valid for the subsystem.

Effect. The command is not executed.

Recovery. Refer to the User’s Guide to DSNM Commands for information on which
commands are supported for the subsystem you specified.

-77 ZDSN^ERR^UNSUPPORTED^BY^SUBSYS

Cause. The operation or command modifier is not supported by the subsystem you
specified.

Effect. Your command is not executed.

Recovery. Refer to the User’s Guide to DSNM Commands for information about the
commands supported by the specified subsystem.

-78 ZDSN^ERR^UNSUPPORTED^BY^I

Cause. You attempted to use an operation or command modifier that is not supported by
the DSNM interface.

Effect. Your command is not executed.

Recovery. Refer to the User’s Guide to DSNM Commands for information about the
commands you can use.

-79 ZDSN^ERR^DATA^INTEGRITY

Cause. Arguments are inconsistent or data structures have been corrupted.

Effect. The frame waits for the next event to redispatch the command thread. The
command may yield erroneous results.

Recovery. Stop and restart the I process. If the error persists, contact your Tandem
representative.

Unexpected Error: Invalid Command

Not Supported by Subsystem

Not Supported by DSNM Interface

Unexpected Error: Data Integrity Error
B-6
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Error Codes -88 ZDSN^ERR^DUP^KEYWORD
-81 ZDSN^ERR^MISSING^OBJTYPE

Cause. You issued a command without specifying the object type, and the object type
could not be determined from the information on the command line.

Effect. Your command is not executed on the affected objects.

Recovery. Reissue the command, specifying the object type explicitly.

-82 ZDSN^ERR^BADOBJTYPE

Cause. You issued a command, specifying an object type that is not valid for the
subsystem.

Effect. Your command is not executed on the affected objects.

Recovery. Refer to the User’s Guide to DSNM Commands for information about valid
object types for the subsystem.

-86 ZDSN^ERR^REQ^KEYWORD^MISSING

Cause. The command has a required keyword missing.

Effect. The command is not executed.

Recovery. Refer to the User’s Guide to DSNM Commands for information about
command syntax and required keywords.

-88 ZDSN^ERR^DUP^KEYWORD

Cause. A keyword is repeated in the command.

Effect. The command is not executed.

Recovery. Refer to the User’s Guide to DSNM Commands for information about
command syntax.

Missing Object Type

Invalid Object Type

Required Keyword Missing

Duplicate keyword
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 B-7

-202 ZDSN^ERR^OBJECTTOOLONG or
ZDSN^ERR^OBJTOOLONG

DSNM Error Codes
-202 ZDSN^ERR^OBJECTTOOLONG or
 ZDSN^ERR^OBJTOOLONG

Cause. You typed an object name that is longer than the maximum allowable length.

Effect. Your command is not executed.

Recovery. Reissue the command with a shorter name.

-204 ZDSN^ERR^BADARGUMENT

Cause. There is an internal problem in the software that issued the message.

Effect. The effects of this problem vary, depending on the situation.

Recovery. Contact a Tandem representative. Prepare the necessary information as
suggested in “What to Prepare Before Contacting Your Tandem Support Representative”
on page B-1.

-206 ZDSN^ERR^NOTPUSHED

Cause. _POP^THREAD^PROCSTATE or _RESTORE^THREAD^AND^DISPATCH
was executed without a procedure having first been placed o n the stack.

Effect. Thread procedure not executed, and the command terminated abnormally.

Recovery. Check the source code to ensure that the thread procedure is saved before it
is dispatched again. If necessary, correct the source code.

-207 ZDSN^ERR^LIB^BADVALUE^OMITTED

Cause. One or more DSNM configuration parameter records contained an invalid
numeric value.

Effect. The library procedure reporting this error substitutes a value of -1 for the
erroneous value in the affected output parameter.

Recovery. You may be able to determine which value was unacceptable by looking for
a -1 returned in some field for which a positive value was expected. Using NETCOM,
check the DSNM configuration records in your DSNM configuration file, if any, and
correct the record.

Object Name too Long

Missing or Invalid Library Argument

Thread Proc was not pushed

Invalid DSNM configuration parameter values
B-8
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Error Codes -217 DSN^ERR^BADLOGON
-212 ZDSN^ERR^SYNTAX

Cause. Your command was syntactically incorrect.

Effect. Your command is not executed.

Recovery. Verify the syntax of the command, correct it as needed, and reissue the
command. See Section 2, “DSNM Commands,” for information.

-214 ZDSN^ERR^RESERVEDWORD

Cause. Your command included a reserved word in the wrong position.

Effect. Your command is not executed.

Recovery. Verify the syntax of the command, correct it as needed, and reissue the
command. See Section 2, “DSNM Commands,” for further information.

-216 ZDSN^ERR^CMDERROR

Cause. Your command or one of its options was not valid.

Effect. Your command is not executed.

Recovery. Verify the syntax of the command, correct it as needed, and reissue the
command. See Section 2, “DSNM Commands,” for further information.

-217 DSN^ERR^BADLOGON

Cause. The software from which you attempted to use DSNM may be incorrectly
configured. DSNM was invoked with incorrect data.

Effect. DSNM is not invoked.

Recovery. Notify your system manager.

Invalid Syntax

Reserved Word Misplaced

Unexpected Error: Invalid Command or Option

Invalid Logon Info
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 B-9

Messages From the DSNM Parser DSNM Error Codes
Messages From the DSNM Parser
The following errors may be generated by the DSNM parser, which interprets DSNM
commands before they are executed.

Cause. You misspelled a command or issued a command that is not supported.

Effect. Your command is not executed.

Recovery. Correct and reissue the command.

Cause. Your command includes more objects than are allowed in a single command.

Effect. Your command is not executed.

Recovery. Simplify the command, or break it into multiple commands if necessary.

Cause. You nested parentheses beyond the maximum allowable depth.

Effect. Your command is not executed.

Recovery. Simplify the command or break it into two or more commands, if necessary.

Cause. You entered too many parameters or an excessively long parameter.

Effect. Your command is not executed.

Recovery. Simplify the command, or break it into multiple commands if necessary.

Cause. An error that DSNM does not recognize occurred during the processing of your
command. This is the mechanism by which file system errors associated with Tandem
data communications subsystems other than AM3270, Expand, SNAX/CDF, SNAX/XF,
TR3271, or X25AM are reported.

Effect. The effects of this problem vary, depending on the situation.

Recovery. If the reporting subsystem is a Tandem data communications subsystem
other than AM3270, Expand, SNAX/XF, SNAX/CDF, TR3271, or X25AM, and the

Command not recognized

Exceeded max objects

Exceeded max paren levels

Exceeded param space

Invalid Error number: error
B-10
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Error Codes Messages From the DSNM Parser
error is a positive number, refer to the Guardian Procedure Errors and Messages
Manual for an explanation of the file system error and its recovery.

If the error is not a file system error, call your Tandem representative. Prepare the
necessary information as suggested in “What to Prepare Before Contacting Your
Tandem Support Representative” on page B-1.

Cause. You specified an object type that is not valid.

Effect. Your command is not executed.

Recovery. Correct and reissue the command.

Cause. You specified a modifier or parameter that is not valid for any command.

Effect. Your command is not executed.

Recovery. Correct and reissue the command.

Cause. A modifier or parameter was entered that is not valid with this command.

Effect. Your command is not executed.

Recovery. Correct and reissue the command.

Cause. You omitted the object type when it was required.

Effect. Your command is not executed.

Recovery. Correct and reissue the command.

Cause. You entered a name that is longer than the maximum legal length.

Effect. Your command is not executed.

Recovery. Correct the name and reissue the command.

Invalid Object Type

Invalid option

Invalid option for this command

Missing Object Type

Name too long
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 B-11

Messages From the DSNM Parser DSNM Error Codes
Cause. You issued a command that requires operands, but did not specify any.

Effect. Your command is not executed.

Recovery. Correct and reissue the command.

Cause. A keyword, subsystem name, or object type was out of place.

Effect. Your command is not executed.

Recovery. Correct and reissue the command. If the error was caused because an object
name is the same as a keyword, subsystem name, or object type, enclose the object name
in quotation marks.

Cause. The command contains a serious syntax error.

Effect. Your command is not executed.

Recovery. Correct and reissue the command.

Cause. Your command includes parentheses that are incorrectly paired.

Effect. Your command is not executed.

Recovery. Correct and reissue the command.

Cause. The command did not include all required and expected information.

Effect. Your command is not executed.

Recovery. Correct and reissue the command.

No operands

Reserved word misplaced

Syntax error

Unbalanced parens

Unexpected end
B-12
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Error Codes Messages From the DSNM Parser
Cause. There is an internal problem in the software that issued the message.

Effect. The effects of this problem vary, depending on the situation.

Recovery. Note the error text and contact a Tandem representative. Prepare the
necessary information as suggested in “What to Prepare Before Contacting Your
Tandem Support Representative” on page B-1.

Unexpected error: text
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 B-13

Messages From the DSNM Parser DSNM Error Codes
B-14
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

ata
C D
Defined DSNM SPI Components
Scope of This Appendix

Internally, DSNM uses the Tandem Subsystem Programmatic Interface (SPI) for
command and response message flows. DSNM SPI components (constants and data
definitions) are defined in the DSNM SPI Data Definition Language (DDL) and may be
identified by the prefix ZDSN^.

SPI messages are handled by the frame and are generally hidden from the user-written
command thread, but certain SPI DDL constants and structure definitions are required.
This appendix lists the SPI DDL constants and structure definitions that user-written
procedures must use.

Commands
The following action codes identify the DSNM commands:

ZDSN^ACTION^ABORT
ZDSN^ACTION^AGGREGATE
ZDSN^ACTION^INFO
ZDSN^ACTION^START
ZDSN^ACTION^STATISTICS
ZDSN^ACTION^STATUS
ZDSN^ACTION^STOP

Modifiers
The following structure definition defines the modifiers in a DSNM command.
STRUCT ZDSN^DDL^MOD^DEF contains the following fields of interest:

INT Z^AMOD
INT Z^EMOD
INT Z^HMOD
INT Z^RMOD
INT Z^SMOD

HMOD Values

The following constants are the possible Z^HMOD values:

Zero (omitted)—Default to ZDSN^HMOD^ALL
ZDSN^HMOD^ALL
ZDSN^HMOD^ONLY
ZDSN^HMOD^SUBONLY
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 C-1

EMOD Values Data Definition Language (DDL)-Defined DSNM SPI
Components
EMOD Values

The following constants are the possible Z^EMOD values:

Zero (omitted)—Default to ZDSN^EMOD^BRIEF
ZDSN^EMOD^BRIEF
ZDSN^EMOD^DETAIL
ZDSN^EMOD^SUPPRESS

SMOD Values

The following constants are the possible Z^SMOD values:

0 (omitted)—No default—Command applied regardless of object state
ZDSN^SMOD^GREEN / ZDSN^SMOD^UP
ZDSN^SMOD^NOT^GREEN / ZDSN^SMOD^NOT^UP
ZDSN^SMOD^RED / ZDSN^SMOD^DOWN
ZDSN^SMOD^NOT^RED / ZDSN^SMOD^NOT^DOWN

ZDSN^SMOD^GREEN and ZDSN^SMOD^UP have the same value and may be used
interchangeably. Similarly NOT^GREEN/NOT^UP, RED/DOWN, and
NOT^RED/NOT^DOWN are interchangeable.

RMOD Values
The following constants are the possible Z^RMOD values:

Zero (omitted)—Default to ZDSN^RMOD^BRIEF
ZDSN^RMOD^BRIEF
ZDSN^RMOD^DETAIL
ZDSN^RMOD^SUMMARY
ZDSN^RMOD^SUMMARY^BYCOMPONENT
ZDSN^RMOD^SUMMARY^BYNAME
ZDSN^RMOD^SUMMARY^BYOBJECT
ZDSN^RMOD^SUMMARY^BYTYPE

AMOD Values

The following constants are the possible Z^AMOD values:

Zero (omitted)—Default; do not reset statistics
ZDSN^AMOD^CANCEL
ZDSN^AMOD^RESET
C-2
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Data Definition Language (DDL)-Defined DSNM SPI
Components

DSNM State Values
Command Object DDL
The following structure definition defines an object in a DSNM command. STRUCT
ZDSN^DDL^FOBJECT^DEF contains the following fields of interest:

An object in a command contains an HMOD in the Z^HMOD field. In the response, the
Z^RESULT field (which redefines Z^HMOD) contains a state (for the STATUS
command) or a ZDSN^ERR error code.

DSNM State Values
The following constants are the DSNM object state values:

ZDSN^STATE^GREEN / ZDSN^STATE^UP
ZDSN^STATE^RED / ZDSN^STATE^DOWN
ZDSN^STATE^YELLOW / ZDSN^STATE^PENDING
ZDSN^STATE^NULL
ZDSN^STATE^UNKNOWN
ZDSN^STATE^UNDEFINED

ZDSN^STATE^GREEN and ZDSN^STATE^UP are interchangeable, as are
RED/DOWN and YELLOW/PENDING.

INT Z^RESULT

INT Z^HMOD = Z^RESULT

STRUCT Z^SUBSYS (ZDSN^DDL^SUBSYS^DEF)

STRUCT Z^OBJTYPE (ZDSN^DDL^OBJTYPE^DEF)

INT Z^OBJNAME^OCCURS

STRUCT Z^OBJNAME (ZDSN^DDL^OBJNAME^DEF)

INT Z^MANAGER^OCCURS

STRUCT Z^MANAGER (ZDSN^DDL^MANAGER^DEF)

Note. The ZDSN^ERR value ZDSN^ERR^NOERR (value zero) is the no-error value for all
responses except for the STATUS command.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 C-3

Error Codes Data Definition Language (DDL)-Defined DSNM SPI
Components
Error Codes
The following constants are the DSNM error codes used most often:

ZDSN^ERR^NOERR
ZDSN^ERR^INTERNAL^ERR
ZDSN^ERR^SUBSYSTEM^ERR
ZDSN^ERR^OBJNAME^INV
ZDSN^ERR^OBJTYPE^NOT^SUPPORTED | ZDSN^ERR^OBJ^NOT^SUPP
ZDSN^ERR^MEMORY
ZDSN^ERR^FS^ERR
ZDSN^ERR^CMD^NOT^SUPP
ZDSN^ERR^UNSUPPORTED^BY^SUBSYS
ZDSN^ERR^UNSUPPORTED^BY^I
ZDSN^ERR^MISSING^OBJTYPE

AGGREGATE Counters
The following structure definition defines counters returned in an AGGREGATE
command response. STRUCT ZDSN^DDL^COUNTERS^DEF contains the following
fields of interest:

INT(32) Z^GREEN;
INT(32) Z^UP = Z^GREEN;
INT(32) Z^RED;
INT(32) Z^DOWN = Z^RED;
INT(32) Z^YELLOW;
INT(32) Z^PENDING = Z^YELLOW;
INT(32) Z^UNDEFINED;
INT(32) Z^INERROR;

Response Item Types
Command responses often require items to be appended to the response object. The
following constants define the types of items that may be appended:

ZDSN^VTY^COUNTERS
ZDSN^VTY^ERRORTEXT
ZDSN^VTY^NONTEXT
ZDSN^VTY^RESULTTEXT
ZDSN^VTY^TEXT

The maximum length of a text line (RESULTTEXT, TEXT, or ERRORTEXT) that may
be appended is the DDL constant ZDSN^MAX^TEXT (75 characters).
C-4
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Data Definition Language (DDL)-Defined DSNM SPI
Components

DDL Definitions for DSNM Character String
Components
DDL Definitions for DSNM Character String
Components

Subsystems and object types in DSNM commands, responses, and configuration are
represented by character strings. In TAL, the representation of a character-string type
item has the following form:

LITERAL zdsn^max^item = length-of-item-in-bytes;

STRUCT zdsn^ddl^item^def;
 BEGIN
 STRING z^c[0:zdsn^max^item-1];
 INT z^i = z^c;
 END;

All character-string type items are defined this way: a constant (with the item's length in
bytes) and a uniform structure that allows it to be referred to as a structure, a string, or
an INT.

The major character-string items of interest are described by the following DDL items:

DSNM Configuration Items

Note. If one of these items is embedded in another structure, care must be taken to ensure
that the structure begins on a word boundary.

Item Describes DDL Name Length

System name ZDSN^DDL^SYSTEM^DEF ZDSN^MAX^SYSTEM

Subsystem name ZDSN^DDL^SUBSYS^DEF ZDSN^MAX^SUBSYS

Object type ZDSN^DDL^OBJTYPE^DEF ZDSN^MAX^OBJTYPE

Object name ZDSN^DDL^OBJNAME^DEF ZDSN^MAX^OBJNAME

Manager name ZDSN^DDL^MANAGER^DEF ZDSN^MAX^MANAGER

Process name ZDSN^DDL^PNAME^DEF ZDSN^MAX^PNAME

Process qualifier ZDSN^DDL^PQUAL^DEF ZDSN^MAX^PQUAL

Process class ZDSN^DDL^PCLASS^DEF ZDSN^MAX^PCLASS

CI class ZDSN^DDL^CICLASS^DEF ZDSN^MAX^CICLASS

Note. A CI class is an instance of a process class (pclass).

Item Describes DDL Name Length

Class ZDSN^DDL^CLASS^DEF ZDSN^MAX^CLASS

Component ZDSN^DDL^COMPONENT^DEF ZDSN^MAX^COMPONENT

Parameter name ZDSN^DDL^PARAMNAME^DEF ZDSN^MAX^PARAMNAME

Parameter value ZDSN^DDL^CONFPARAMVALUE
^DEF

ZDSN^MAX^CONFPARAM
VALUE
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 C-5

DDL Definitions for DSNM Character String
Components

Data Definition Language (DDL)-Defined DSNM SPI
Components
C-6
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

D Sample I Process Program Code

Scope of This Appendix
Appendix D provides a sample I process program for a pseudo-subsystem (SPIFFY),
illustrating the program model and associated I process development library services
described in this manual.

Overview of the SPIFFY Subsystem
The SPIFFY subsystem consists of SPIFFY manager processes, each controlling a set of
SPIFFY objects. A manager supports a programmatic interface consisting of formatted
messages. There are seven object types arranged in the following hierarchy:

 REACTOR ASSEMBLY
 / | \ / \
 BOILER VALVE CHAMBER COGWHEEL GEAR

The hierarchical parent of a SPIFFY object is known as the object’s “Pop.”

Characteristics of SPIFFY Objects

A REACTOR object comprises an internal group of objects and has no individual
characteristics of its own. The other objects have various individual characteristics, as
follows:

• BOILER, VALVE, and CHAMBER objects consist of a number of elements (each
of which is too insignificant to be considered a separate entity). When these
elements are raised to a temperature above absolute 0, they exert pressure.
BOILER, VALVE, and CHAMBER have the following characteristics:

• Pressure

• Volume

• Temperature

• Number of elements

• ASSEMBLY, COGWHEEL, and GEAR objects have the following characteristics

• Color: YELLOW, CYAN, MAGENTA, BLACK

• Composition: IRON, STEEL, COPPER, BRASS

• State for ASSEMBLY objects: STOPPED, GOING

• State for COGWHEEL and GEAR objects: IDLE, COASTING, ROTATING,
LOCKED

An object is LOCKED when its “Pop” object is STOPPED.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-1

SPIFFY Subsystem Programmatic Interface
Commands

Sample I Process Program Code
SPIFFY Subsystem Programmatic Interface Commands

The SPIFFY subsystem programmatic interface supports informational and state-change
commands.

Informational Commands

The SPIFFY subsystem programmatic interface supports one informational command,
TELLABOUT, which applies to objects of all types and returns everything known about
the object(s) specified by the command. TELLABOUT has the following operands:

Multiple objects can be specified in a TELLABOUT command by supplying an asterisk
(*) as the object name (NAME) or parent name (POP), and the ANYTHING type code
to specify objects of any type. (The asterisk allows you to specify objects and parents of
any name.)

NAME, POP, and TYPE may be used in the following combinations to retrieve
information about objects:

State-Change Commands

State-change commands behave differently for different object types. There are no
state-change commands for the REACTOR object. For the other objects, the following
operations are supported:

State-change commands do not support the asterisk (*) for NAME, nor do they support
the ANYTHING type code.

 NAME { objname | * }
 POP { objname | * }
 TYPE { typecode | ANYTHING }

NAME POP TYPE Returns

Objname1 Objname2 typecode Object Objname1 of type typecode with Pop
Objname2

 * Objname2 typecode All objects of type typecode with Pop Objname2

Objname1 * typecode All objects Objname1 of type typecode with any
Pop

 * * typecode All objects of type typecode

Objname1 Objname2 ANYTHING Object Objname1 of any type with Pop Objname2

 * Objname2 ANYTHING All objects of any type with Pop Objname2

Objname1 * ANYTHING All objects Objname1 of any type with any Pop

 * * ANYTHING All objects

BOILER, VALVE, CHAMBER WARMUP, HEATUP, COOLOFF, SHUTOFF

ASSEMBLY GO, DONTGO

COGWHEEL, GEAR LOOSENUP, SPEEDUP, SLOWUP, LOCKUP
D-2
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Sample I Process Program Code Command and Response Message Formats
The program code example in this appendix illustrates the processing of informational
commands. The processing of state-change operations is not explicitly illustrated;
however, the preliminary processing of NAME, POP, and TYPE values is included (to
determine the set of objects on which a state-change operation would be performed).

Command and Response Message Formats
A SPIFFY command is executed by sending a command message to a SPIFFY manager
process. The results of the command message are returned in a response message. A
single command may consist of several command-to-response exchanges.

Command Message Format

The command message has the same format for all commands and all SPIFFY object
types:

LITERAL spiffy^name^len= 20;

STRUCT spiffy^command^def (*); ! Command message, which also
 ! heads response message
 BEGIN
 INT cmd;
 INT type;
 INT response^context;
 STRING name[0:spiffy^name^len-1];
 STRING pop^name[0:spiffy^name^len-1];
 END;

The command message contains the following:

• A command code (CMD)

• A object type code to which the command applies (TYPE)

• The name and parent of the object to which the command applies (NAME and
POP^NAME)

RESPONSE^CONTEXT must be set to 0 when a command is originated.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-3

Command and Response Message Formats Sample I Process Program Code
Response Message Format

The response message begins with the command message, followed by an error code
(ERROR), a count of response objects (RESPONSE^THINGS), and response object
details in an object-characteristics array (THING):

LITERAL max^response^things = 2;

STRUCT spiffy^response^def (*); ! Response message, which
 ! contains cmd msg struct
 BEGIN
 STRUCT cmd (spiffy^command^def);
 INT error;
 INT response^things;
 STRUCT thing (spiffy^thing^def) [0:max^response^things-1];
 END;

If an error occurs, an error code is returned in the first response; see “SPIFFY
Subsystem Literal Definitions” later in this section. In this case, there are no response
objects. If the command succeeds, the code COMMAND^DONE (0) is returned, along
with response object(s).

If a TELLABOUT command specifies more objects than can be returned in a single
response, the RESPONSE^CONTEXT field in the response message CMD structure is
set to a nonzero value. In this case, returning the CMD structure exactly as it appears in
the response message causes the next set of response objects to be returned. This
process is repeated until the response message CMD.RESPONSE^CONTEXT is 0,
indicating the return of all objects.

The THING structure returns the characteristics of SPIFFY objects and is the same for
all object types:

 STRUCT spiffy^thing^def (*);
 BEGIN
 INT type; ! object type
 INT name^occurs; ! length of object name
 STRING name [0:spiffy^name^len-1]; ! object name
 INT pop^name^occurs; ! length of name of
 ! object’s parent
 STRING pop^name[0:spiffy^name^len-1]; ! parent name
 ! For ASSEMBLYs and subordinates
 INT state; ! ASSEMBLY state
 INT color; ! and other essentials
 INT composition;
 ! For the various REACTOR components
 INT(32) temp; ! Degrees Kelvin
 INT(32) press; ! MM Hg
 INT(32) vol; ! Liters
 INT(32) n; ! Number of elements
 END;
D-4
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Sample I Process Program Code SPIFFY Subsystem Literal Definitions
SPIFFY Subsystem Literal Definitions

Literal definitions for all codes and errors are provided when the SPIFFY subsystem is
delivered.

Codes: Object Types, States, Operations, Characteristics
LITERAL
 ! Types of objects
 LEAST^LITTLE^THING, REACTOR = LEAST^LITTLE^THING,
 BOILER, VALVE, CHAMBER, ASSEMBLY, COGWHEEL, GEAR, OTHER,
 ALMOST^ANYTHING = OTHER, ANYTHING,

 ! States of objects
 STOPPED, GOING, ! ASSEMBLY states
 LOCKED, ROTATING, COASTING, IDLE, ! COGWHEEL and GEAR
 ! states

 ! Operations on objects
 TELLABOUT, ! Operations for
 ! all objects
 WARMUP, HEATUP, COOLOFF, SHUTOFF, ! REACTOR component
 ! operations
 GO, DONTGO, ! ASSEMBLY operations
 LOOSENUP, SPEEDUP, SLOWUP, LOCKUP, ! COGWHEEL and GEAR
 ! operations

 ! Characteristics of objects
 BLACK, YELLOW, CYAN, MAGENTA, ! ASSEMBLY, COGWHEEL,
 ! GEAR in 4 colors
 IRON, STEEL, COPPER, BRASS; ! made 4 ways

Errors
LITERAL COMMAND^DONE, COMMAND^MSG^TOOSHORT, COMMAND^INVALID,
 TYPE^INVALID, COMMAND^INVALID^FOR^TYPE,
 COMMAND^IMPOSSIBLE, THING^NONEXISTENT,
 POP^NONEXISTENT;
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-5

SPIFFY I Process Design Sample I Process Program Code
SPIFFY I Process Design
To develop an I process, you must map the states of subsystem objects to DSNM states,
and a sequence of subsystem commands to the DSNM commands.

State Mapping

To map the many possible states of subsystem objects to DSNM states requires detailed
subsystem knowledge. The mapping should represent the operating state of the
subsystem object. The DSNM states GREEN, RED, YELLOW represent good, poor,
and transitional or borderline operational health. Suppose you enlisted the aid of a
SPIFFY subsystem expert, who tells you that:

• REACTOR objects cannot have a state; they only exist (or not).

• BOILER, VALVE, and CHAMBER operation depends only on temperature, which
must be neither too high nor too low.

• ASSEMBLY, COGWHEEL, and GEAR operation depends only on the SPIFFY
state at the moment.

The following state mapping is assigned:

Object Type Operating Condition
DSNM State
Assigned

REACTOR N.A. NULL

Temperature

BOILER / 0-297 Too low to operate RED

VALVE / 298-595 Low but operable YELLOW

CHAMBER 596-893 Optimum operating range GREEN

 894-1191 High but operable YELLOW

1192-up Too high to operate RED

State

ASSEMBLY STOPPED Inoperable RED

GOING Operable GREEN

COGWHEEL / LOCKED Unusable RED

GEAR IDLE Inoperable RED

COASTING Marginally operable YELLOW

ROTATING Operable GREEN

Note. Within a subsystem, it is possible for more than one set of conditions to map to the
same DSNM state. Also, not all DSNM states need be present for every object type.
D-6
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Sample I Process Program Code Implementing DSNM Commands
Implementing DSNM Commands

DSNM commands are implemented by SPIFFY subsystem commands as follows.

Implementing the Informational Commands

The DSNM STATUS and INFO commands can be issued by executing the
TELLABOUT command and selecting different informational details to return in the
output. The SPIFFY subsystem does not support a STATISTICS command or its
equivalent.

Implementing the Hierarchy Modifiers

Assuming that object names are unique under a given manager, the various
combinations of “*” names and the ANYTHING type code listed next can be used to
construct all of the possible DSNM hierarchy modifiers.

Implementing the State Modifiers

There is no SPIFFY equivalent of SMOD. The only way to implement something
analogous is by using the TELLABOUT command and selecting those objects whose
DSNM mapped state satisfies the DSNM SMOD.

DSNM Command
SPIFFY
Command Comment

INFO TELLABOUT Returns selected information fields according
to object type.

STATUS TELLABOUT Returns selected status information.

STATISTICS N.A. Returns “No STATISTICS Available” (see
following note).

AGGREGATE TELLABOUT Combines the results of:
 NAME * POP * TYPE ANYTHING
by object type.

Note. How you handle a DSNM command when no subsystem-equivalent command exists
depends on what is operationally reasonable and how much information you want to return.
For example, with the STATISTICS command here, you could return
ZDSN^ERR^UNSUPPORTED^BY^SUBSYS or ZDSN^ERR^NOERR, or possibly have the
I process keep its own statistics, thus simulating the operation.

TELLABOUT Command with

HMOD NAME POP TYPE

ONLY objname * typecode

SUBONLY * objname ANYTHING

ALL
 followed by

objname
 *

 *
objname

typecode
ANYTHING
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-7

Managing SPIFFY Through DSNM: Sample
Command Output

Sample I Process Program Code
Implementing an Informational Command on a “*” Operand

You can implement an informational command on a “*” operand by first issuing a
TELLABOUT command:

TELLABOUT NAME * POP * TYPE typecode

This ignores HMOD and SMOD. Perform the informational operation on each resulting
object, as described in the hierarchy modifier table above.

Implementing State-Change Commands
Since the SPIFFY subsystem state-change commands do not support a “*” objname for
NAME, such commands usually require that a TELLABOUT command be issued first
to determine the list of objects on which to carry out the state-change operation.
Essentially, this is an internal DSNM STATUS command (applying modifiers), followed
by a state-change command for each resulting object.

Managing SPIFFY Through DSNM: Sample Command
Output

The following examples illustrate how to test the DSNM STATUS command on various
SPIFFY subsystem objects, using DSNMCom to send commands to the SPIFFY
I process.

Using DSNMCom to Test the SPIFFY I Process

If they are not already running, start the SPIFFY I process and the SPIFFY manager
process(es). For example:

> RUN $DSNM.IDEV.SPIFI/NAME $SPFI,NOWAIT/TESTMODE 1 &
 CONFIG $DSNM.IDEV.DSNMCONF

> RUN $DSNM.IDEV.SPIFMGR/NAME $SMGR,NOWAIT/

See “Configuring SPIFFY Into DSNM” on page D-28 for a description of the
DSNMCONF file referred to in this example. See also Section 5, “DSNM Process
Startup Functions,” for information about DSNM process startup parameters.

Next start DSNMCom, opening the SPIFFY I process and specifying the configuration
file into which the SPIFFY subsystem records have been added. For example:

> DSNMCOM CONFIG $DSNM.IDEV.DSNMCONF
DSNMCom - T9216D30 12FEB95
Copyright Tandem Computers Incorporated 1995
DSNMCom> open $spfi
DSNM $spfi >

See Section 7, “DSNMCom: The I Process Test Utility,” for a description of
DSNMCom.
D-8
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Sample I Process Program Code DSNM STATUS Command Output
DSNM STATUS Command Output

Following are examples of STATUS command output:

DSNM $spfi > STATUS REACTOR * UNDER $SMGR
SPIFFY REACTOR PURPLE UNDER $SMGR
SPIFFY BOILER ELEMENT1 UNDER $SMGR Down
SPIFFY BOILER ELEMENT2 UNDER $SMGR Pending
SPIFFY BOILER ELEMENT3 UNDER $SMGR Up
SPIFFY VALVE MIX1 UNDER $SMGR Pending
SPIFFY VALVE MIX2 UNDER $SMGR Down
SPIFFY VALVE MIX3 UNDER $SMGR Pending
SPIFFY CHAMBER COMPOUND1 UNDER $SMGR Up
SPIFFY CHAMBER COMPOUND2 UNDER $SMGR Down
SPIFFY CHAMBER COMPOUND3 UNDER $SMGR Pending
SPIFFY REACTOR YELLOW UNDER $SMGR
SPIFFY BOILER STUFFX UNDER $SMGR Pending
SPIFFY BOILER STUFFY UNDER $SMGR Down
SPIFFY BOILER STUFFZ UNDER $SMGR Pending
SPIFFY VALVE FORMULAX UNDER $SMGR Down
SPIFFY VALVE FORMULAY UNDER $SMGR Up
SPIFFY VALVE FORMULAZ UNDER $SMGR Up
SPIFFY CHAMBER SECRETX UNDER $SMGR Down
SPIFFY CHAMBER SECRETY UNDER $SMGR Pending
SPIFFY CHAMBER SECRETZ UNDER $SMGR Pending
SPIFFY REACTOR AMBER UNDER $SMGR
SPIFFY BOILER INGREDTA UNDER $SMGR Pending
SPIFFY BOILER INGREDTB UNDER $SMGR Pending
SPIFFY BOILER INGREDTC UNDER $SMGR Pending
SPIFFY VALVE XXX UNDER $SMGR Pending
SPIFFY VALVE YYY UNDER $SMGR Down
SPIFFY VALVE ZZZ UNDER $SMGR Pending
SPIFFY CHAMBER AAA UNDER $SMGR Pending
SPIFFY CHAMBER BBB UNDER $SMGR Up
SPIFFY CHAMBER CCC UNDER $SMGR Pending

DSNM $spfi > STATUS REACTOR * UNDER $SMGR, ONLY
SPIFFY REACTOR PURPLE UNDER $SMGR
SPIFFY REACTOR YELLOW UNDER $SMGR
SPIFFY REACTOR AMBER UNDER $SMGR

DSNM $spfi > STATUS REACTOR * UNDER $SMGR, SUBONLY
SPIFFY BOILER ELEMENT1 UNDER $SMGR Down
SPIFFY BOILER ELEMENT2 UNDER $SMGR Pending
SPIFFY BOILER ELEMENT3 UNDER $SMGR Up
SPIFFY VALVE MIX1 UNDER $SMGR Pending
SPIFFY VALVE MIX2 UNDER $SMGR Down
SPIFFY VALVE MIX3 UNDER $SMGR Pending
SPIFFY CHAMBER COMPOUND1 UNDER $SMGR Up
SPIFFY CHAMBER COMPOUND2 UNDER $SMGR Down
SPIFFY CHAMBER COMPOUND3 UNDER $SMGR Pending
SPIFFY BOILER STUFFX UNDER $SMGR Pending
SPIFFY BOILER STUFFY UNDER $SMGR Down
SPIFFY BOILER STUFFZ UNDER $SMGR Pending
SPIFFY VALVE FORMULAX UNDER $SMGR Down
SPIFFY VALVE FORMULAY UNDER $SMGR Up
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-9

DSNM STATUS Command Output Sample I Process Program Code
SPIFFY VALVE FORMULAZ UNDER $SMGR Up
SPIFFY CHAMBER SECRETX UNDER $SMGR Down
SPIFFY CHAMBER SECRETY UNDER $SMGR Pending
SPIFFY CHAMBER SECRETZ UNDER $SMGR Pending
SPIFFY BOILER INGREDTA UNDER $SMGR Pending
SPIFFY BOILER INGREDTB UNDER $SMGR Pending
SPIFFY BOILER INGREDTC UNDER $SMGR Pending
SPIFFY VALVE XXX UNDER $SMGR Pending
SPIFFY VALVE YYY UNDER $SMGR Down
SPIFFY VALVE ZZZ UNDER $SMGR Pending
SPIFFY CHAMBER AAA UNDER $SMGR Pending
SPIFFY CHAMBER BBB UNDER $SMGR Up
SPIFFY CHAMBER CCC UNDER $SMGR Pending

DSNM $spfi > STATUS REACTOR * UNDER $SMGR, UP
SPIFFY BOILER ELEMENT3 UNDER $SMGR Up
SPIFFY CHAMBER COMPOUND1 UNDER $SMGR Up
SPIFFY VALVE FORMULAY UNDER $SMGR Up
SPIFFY VALVE FORMULAZ UNDER $SMGR Up
SPIFFY CHAMBER BBB UNDER $SMGR Up

DSNM $spfi > STATUS REACTOR * UNDER $SMGR, NOT-UP
SPIFFY BOILER ELEMENT1 UNDER $SMGR Down
SPIFFY BOILER ELEMENT2 UNDER $SMGR Pending
SPIFFY VALVE MIX1 UNDER $SMGR Pending
SPIFFY VALVE MIX2 UNDER $SMGR Down
SPIFFY VALVE MIX3 UNDER $SMGR Pending
SPIFFY CHAMBER COMPOUND2 UNDER $SMGR Down
SPIFFY CHAMBER COMPOUND3 UNDER $SMGR Pending
SPIFFY BOILER STUFFX UNDER $SMGR Pending
SPIFFY BOILER STUFFY UNDER $SMGR Down
SPIFFY BOILER STUFFZ UNDER $SMGR Pending
SPIFFY VALVE FORMULAX UNDER $SMGR Down
SPIFFY CHAMBER SECRETX UNDER $SMGR Down
SPIFFY CHAMBER SECRETY UNDER $SMGR Pending
SPIFFY CHAMBER SECRETZ UNDER $SMGR Pending
SPIFFY BOILER INGREDTA UNDER $SMGR Pending
SPIFFY BOILER INGREDTB UNDER $SMGR Pending
SPIFFY BOILER INGREDTC UNDER $SMGR Pending
SPIFFY VALVE XXX UNDER $SMGR Pending
SPIFFY VALVE YYY UNDER $SMGR Down
SPIFFY VALVE ZZZ UNDER $SMGR Pending
SPIFFY CHAMBER AAA UNDER $SMGR Pending
SPIFFY CHAMBER CCC UNDER $SMGR Pending

DSNM $spfi > STATUS REACTOR AMBER UNDER $SMGR, NOT-UP
SPIFFY VALVE INGREDTA UNDER $SMGR Pending
SPIFFY VALVE INGREDTB UNDER $SMGR Pending
SPIFFY VALVE INGREDTC UNDER $SMGR Pending
SPIFFY BOILER XXX UNDER $SMGR Pending
SPIFFY BOILER YYY UNDER $SMGR Down
SPIFFY BOILER ZZZ UNDER $SMGR Pending
D-10
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Sample I Process Program Code DSNM STATUS Command Output
SPIFFY CHAMBER AAA UNDER $SMGR Pending
SPIFFY CHAMBER CCC UNDER $SMGR Pending

DSNM $spfi > STATUS REACTOR * UNDER $SMGR, DOWN
SPIFFY BOILER ELEMENT1 UNDER $SMGR Down
SPIFFY VALVE MIX2 UNDER $SMGR Down
SPIFFY CHAMBER COMPOUND2 UNDER $SMGR Down
SPIFFY BOILER STUFFY UNDER $SMGR Down
SPIFFY VALVE FORMULAX UNDER $SMGR Down
SPIFFY CHAMBER SECRETX UNDER $SMGR Down
SPIFFY VALVE YYY UNDER $SMGR Down

DSNM $spfi > STATUS REACTOR * UNDER $SMGR, NOT-DOWN
SPIFFY BOILER ELEMENT2 UNDER $SMGR Pending
SPIFFY BOILER ELEMENT3 UNDER $SMGR Up
SPIFFY VALVE MIX1 UNDER $SMGR Pending
SPIFFY VALVE MIX3 UNDER $SMGR Pending
SPIFFY CHAMBER COMPOUND1 UNDER $SMGR Up
SPIFFY CHAMBER COMPOUND3 UNDER $SMGR Pending
SPIFFY BOILER STUFFX UNDER $SMGR Pending
SPIFFY BOILER STUFFZ UNDER $SMGR Pending
SPIFFY VALVE FORMULAY UNDER $SMGR Up
SPIFFY VALVE FORMULAZ UNDER $SMGR Up
SPIFFY CHAMBER SECRETY UNDER $SMGR Pending
SPIFFY CHAMBER SECRETZ UNDER $SMGR Pending
SPIFFY BOILER INGREDTA UNDER $SMGR Pending
SPIFFY BOILER INGREDTB UNDER $SMGR Pending
SPIFFY BOILER INGREDTC UNDER $SMGR Pending
SPIFFY VALVE XXX UNDER $SMGR Pending
SPIFFY VALVE ZZZ UNDER $SMGR Pending
SPIFFY CHAMBER AAA UNDER $SMGR Pending
SPIFFY CHAMBER BBB UNDER $SMGR Up
SPIFFY CHAMBER CCC UNDER $SMGR Pending
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-11

Sample User-Written Code for SPIFFY Subsystem
Interface Process

Sample I Process Program Code
Sample User-Written Code for SPIFFY Subsystem
Interface Process

The following is the user-written SPIFFY subsystem interface code, which, when
compiled, is bound in with the Tandem I process program frame code to create the
SPIFFY I process object file. This example does not illustrate the processing of any
state-change commands, nor does it illustrate how to handle command cancellation
(_EV^CANCEL).

?INSPECT,SYMBOLS,NOCODE,NOMAP,SAVEABEND

?SETTOG 1 ! Puts me in test mode

?SOURCE KDSNDEFS (IPROCESS^DEFINITIONS)

BLOCK PRIVATE; ! My globals

-- Error cache

-- CONSTANT ZDSN-ERR-INTERNAL-ERR VALUE -34.
-- CONSTANT ZDSN-ERR-OBJTYPE-NOT-SUPPORTED VALUE -56.
-- CONSTANT ZDSN-ERR-CMD-NOT-SUPP VALUE -69.
-- CONSTANT ZDSN-ERR-UNSUPPORTED-BY-SUBSYS VALUE -77.
-- CONSTANT ZDSN-ERR-UNSUPPORTED-BY-I VALUE -78.
-- CONSTANT ZDSN-ERR-MISSING-OBJTYPE VALUE -81.
-- CONSTANT ZDSN-ERR-BADOBJTYPE VALUE -82.

! SPIFFY subsystem definitions

?SOURCE SPIFDEFS

-------------- Contents of SPIFDEFS ------------------------------

! CODES.
LITERAL
 ! Types of objects
 LEAST^LITTLE^THING, REACTOR = LEAST^LITTLE^THING,
 BOILER, VALVE, CHAMBER, ASSEMBLY, COGWHEEL, GEAR, OTHER,
 ALMOST^ANYTHING = OTHER, ANYTHING,

 ! States of objects
 STOPPED, GOING, ! ASSEMBLY states
 LOCKED, ROTATING, COASTING, IDLE, ! COGWHEEL and GEAR
 ! states

 ! Operations on objects
 TELLABOUT, ! Operations for
 ! all objects
 WARMUP, HEATUP, COOLOFF, SHUTOFF, ! REACTOR component
 ! operations
 GO, DONTGO, ! ASSEMBLY operations
 LOOSENUP, SPEEDUP, SLOWUP, LOCKUP, ! COGWHEEL and GEAR
 ! operations

 ! Characteristics of objects
 BLACK, YELLOW, CYAN, MAGENTA, ! ASSEMBLY, COGWHEEL,
 ! GEAR in 4 colors
 IRON, STEEL, COPPER, BRASS; ! made 4 ways

Note. Refer to Section A, “DSNM Library Services,” for detailed descriptions of the library
services that appear in this example.
D-12
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Sample I Process Program Code Sample User-Written Code for SPIFFY Subsystem
Interface Process
! ERRORS
LITERAL COMMAND^DONE, COMMAND^MSG^TOOSHORT, COMMAND^INVALID,
 TYPE^INVALID, COMMAND^INVALID^FOR^TYPE,
 COMMAND^IMPOSSIBLE, THING^NONEXISTENT,
 POP^NONEXISTENT;

literal spiffy^name^len= 20, max^response^things = 2;

STRUCT spiffy^thing^things =
 INT type; ! object type
 INT name^occurs; ! length of object name
 STRING name [0:spiffy^name^len-1]; ! object name
 INT pop^name^occurs; ! length of name of
 ! object’s parent
 STRING pop^name[0:spiffy^name^len-1]; ! parent name
 ! For ASSEMBLYs and subordinates
 INT state; ! ASSEMBLY state
 INT color; ! and other essentials
 INT composition;
 ! For the various REACTOR components
 INT(32) temp; ! Degrees Kelvin
 INT(32) press; ! MM Hg
 INT(32) vol; ! Liters
 INT(32) n; ! Number of elements
DEFINE starname = “* “#;
DEFINE noname = “ “#;

STRUCT spiffy^thing^def (*); BEGIN
 spiffy^thing^things;
END;

STRUCT spiffy^command^def (*); ! Command message, which also
 ! heads response message
 BEGIN
 INT cmd;
 INT type;
 INT response^context;
 STRING name[0:spiffy^name^len-1];
 STRING pop^name[0:spiffy^name^len-1];
 END;

STRUCT spiffy^response^def (*); ! Response message, which
 ! contains cmd msg struct
 BEGIN
 STRUCT cmd (spiffy^command^def);
 INT error;
 INT response^things;
 STRUCT thing (spiffy^thing^def) [0:max^response^things-1];
 END;

-------------- End of SPIFDEFS -----------------------------------

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-13

Sample User-Written Code for SPIFFY Subsystem
Interface Process

Sample I Process Program Code
! Thread states

LITERAL st^new^object = _ST^MIN^THREAD^STATE, st^prilim^done, st^done,
 st^exec, st^exec^done;

! cx.cf Command flag bit definitions (see cx.def struct) ON OFF
LITERAL c^info = _BITDEF(0), ! Command: Info type Action type
 c^things = _BITDEF(1), ! Things found Not found
 c^fromcmd = _BITDEF(2), ! Object: From cmd From hierarchy
 c^replydetail = _BITDEF(3), ! Reply text: Detail Normal
 c^replystate = _BITDEF(4), ! State in reply: State No state
 c^errsuppress = _BITDEF(5), ! Error obj: Suppress Include
 c^errdetail = _BITDEF(6), ! Error text: Detail Brief
 c^resetstats = _BITDEF(7), ! Statistics: Reset Don't reset
 c^cmdobj = _BITDEF(8), ! Apply cmd to: Cmd obj Not cmd obj
 c^subobj = _BITDEF(9), ! Sub obj Not sub obj
 c^greenstate = _BITDEF(10),! Green obj Not gr obj
 c^redstate = _BITDEF(11),! Red obj Not red obj
 c^yellowstate = _BITDEF(12),! Yellow obj Not yellow obj
 c^anystate = _BITDEF(13),! Any state Colored states
 c^starobj = _BITDEF(14);! Object name *

! Input and general working list member definition

STRUCT object^lm^def (*);
 BEGIN
 _INPUT^LM^HEADER; ! generates FOBJ; see Section 3 and Appendix A
 INT cf; ! Command flags
 INT dsnmstate; ! DSNM state of this thing
 INT er; ! DSNM or FS Error
 INT spifer; ! SPIFFY subsystem error
 STRUCT thing (spiffy^thing^def); ! Particulars about this thing
 END;

! Frame output list member definition

STRUCT frame^output^lm^def (*);
 BEGIN
 _OUTPUT^LM^HEADER; ! generates FOBJ; see Section 3 and Appendix A
 END;

! Command thread context definition

STRUCT cx^def (*);
 BEGIN
 _COMMAND^CONTEXT^HEADER;
 _CI^ID (spif);
 INT .EXT inobj (object^lm^def);
 INT .EXT currentobj (object^lm^def);
 INT cf; ! Command flags
 INT hmodf; ! HMOD command flags
 STRUCT r (spiffy^response^def); ! Command and response area
 STRUCT cmd (spiffy^command^def) = r;
 _LISTPOINTER (current^in); ! Pointers to working lists
 _LISTPOINTER (current^out);
 _LIST (things); ! Working lists
 _LIST (other^things);
 END;
D-14
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Sample I Process Program Code Sample User-Written Code for SPIFFY Subsystem
Interface Process
! SPIFFY Subsystem CI and Subsystem configurations

STRING .spifclass[0:ZDSN^MAX^CICLASS-1] := "SPIFMON ";
STRING .spifsys[0:ZDSN^MAX^SUBSYS-1] := "SPIFFY ";
INT .EXT spifmon (_CI^DEF);
INT .EXT spiffy (_SUBSYS^DEF);

END BLOCK;

! Other toolkit necessities

?SOURCE KDSNDEFS (IPROCESS^GLOBALS)

?NOLIST, SOURCE EXTDECS0(DEBUG,PROCESS_STOP_?,DNUMOUT)

?SOURCE KDSNDEFS (IPROCESS^EXTDECS)

?LIST

-------------- TOOLKIT Required Procs ---------------------------

INT PROC _STARTUP^MODE (component, compiled^in^testmode,
 accept^startup^component,
 subject) EXTENSIBLE;

-- proc returns error code

STRING .EXT component; -- OUT:OPT component name, default blank
 -- defined by ZDSN^DDL^OBJNAME^DEF
INT .EXT compiled^in^testmode; -- OUT:OPT any non-zero = YES, default 0
INT .EXT accept^startup^component; -- OUT:OPT any non-zero = YES, default 0
STRING .EXT subject;

BEGIN
 compiled^in^testmode := _COMPILED^IN^TESTMODE;
 accept^startup^component := 0;
 RETURN 0;
END;

INT PROC _STARTUP (cxl, inputl) EXTENSIBLE;

INT .cxl, .inputl;

BEGIN
 STRING errtext[0:29] := ["Invalid SPIFFY configuration",0];
 cxl := $LEN (cx^def); ! Command thread context length
 inputl := $LEN (object^lm^def); ! Frame input object list member length

 ! Get CI and subsystem configurations

 IF _ISNULL (@spifmon := _ADD^CI (spifclass))
 OR _ISNULL (@spiffy := _ADD^SUBSYS (spifsys))
 THEN CALL _REPORT^STARTUP^ERROR (0, _EMS^EVENT^FATAL, errtext);

 RETURN ZDSN^ERR^NOERR;

END;
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-15

Sample User-Written Code for SPIFFY Subsystem
Interface Process

Sample I Process Program Code

-------------- Command Thread Auxiliary Procs -----------------------

INT PROC append^numeric^resulttext (frameobj^arg,num);
INT(32) num;
INT .EXT frameobj^arg;
BEGIN

 ! Use DNUMOUT for conversions because it returns the length of
 ! the converted field (and accepts an extended string pointer
 ! besides). Return ZDSN^ERR if error occurs, probably memory.

 INT .EXT frameobj (frame^output^lm^def) = frameobj^arg;

 INT len, error := 0;

 STRING text[0:23];

 IF (len := DNUMOUT (text, num, 10)) THEN
 error := _APPEND^OUTPUT (frameobj, ZDSN^VTY^RESULTTEXT,,,text, len);
 RETURN error;
END;

_RC^TYPE PROC format^error^object (obj^arg);
INT .EXT obj^arg;

BEGIN

 ! Generate an error output object for an input object in error.
 ! Er:
 ! < 0 - ZDSN^ERR number; caller must append resulttext if any
 ! > 0 - File system error. Generate ZDSN^ERR^FS^ERR and put
 ! file system err into resulttext. Its object is the manager,
 ! which is already in the response object.
 ! = 0 - Shouldn't occur, but treat as ZDSN^ERR^NOERR

 ! If spifer is present with ZDSN^ERR^SUBSYSTEM^ERR then put it
 ! into result text; otherwise ignore it.

 INT .EXT cx (cx^def) = _THREAD^CONTEXT^ADDRESS;
 INT .EXT inobj (object^lm^def) = obj^arg;
 INT .EXT frameobj (frame^output^lm^def);
 INT er;

 IF _ON (inobj.cf, c^errsuppress) THEN
 RETURN _RC^NULL;

 IF _ISNULL(@frameobj := _PUT^LM(cx._OUTPUT.OBJECTLIST,,$LEN(frameobj)))
 THEN RETURN _RC^ABORT (ZDSN^ERR^MEMORY);

 IF er := _FOBJECT^INIT (frameobj.FOBJ, inobj.FOBJ) THEN
 RETURN _RC^ABORT (er);

 IF (frameobj.FOBJ.Z^RESULT := inobj.er) <= 0 THEN
 BEGIN
 IF inobj.er = ZDSN^ERR^SUBSYSTEM^ERR
 AND (er := append^numeric^resulttext (frameobj,
 $DBL (inobj.spifer)))
 THEN RETURN _RC^ABORT (er);

 END
D-16
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Sample I Process Program Code Sample User-Written Code for SPIFFY Subsystem
Interface Process
 ELSE
 BEGIN ! FS Error
 frameobj.FOBJ.Z^RESULT := ZDSN^ERR^FS^ERR;
 IF (er := append^numeric^resulttext (frameobj, $DBL (inobj.er)))
 THEN RETURN _RC^ABORT(er);
 END;

 _RELEASE^OUTPUT (frameobj);

 RETURN _RC^NULL;

END;

_RC^TYPE PROC format^normal^object (obj^arg);

INT .EXT obj^arg;

BEGIN

 ! Generate output object for an input object
 INT .EXT cx (cx^def) = _THREAD^CONTEXT^ADDRESS;
 INT .EXT inobj (object^lm^def) = obj^arg;
 INT .EXT frameobj (frame^output^lm^def);
 INT er;

 IF _OFF (inobj.cf, c^info) THEN RETURN _RC^NULL;

 IF _ISNULL(@frameobj := _PUT^LM (cx._OUTPUT.OBJECTLIST,,$LEN (frameobj)))
 THEN RETURN _RC^ABORT (ZDSN^ERR^MEMORY);

 IF er := _FOBJECT^INIT (frameobj.FOBJ, inobj.FOBJ) THEN
 RETURN _RC^ABORT (er);

 IF _ON (inobj.cf, c^replystate) THEN
 frameobj.FOBJ.Z^RESULT := inobj.dsnmstate

 ELSE frameobj.FOBJ.Z^RESULT := 0;

 _RELEASE^OUTPUT (frameobj);

 RETURN _RC^NULL;

END;

-------------- Command Thread _THREAD Procs -------------------------

_THREAD^PROC (info^cmd^proc); FORWARD;

_THREAD^PROC (action^cmd^proc); FORWARD;

_THREAD^PROC (_COMMAND^PROC);
 BEGIN
 ! First command thread proc. Analyze command and process objects
 ! one at a time until we are done. Then stop.

 INT .EXT cx (cx^def) = _THREAD^CONTEXT^ADDRESS;
 INT .EXT inobj (object^lm^def), .EXT outobj (object^lm^def);
 INT .EXT thing (spiffy^thing^def);
 INT er,k;
 _RC^TYPE rc;
 INT smodf, amodf, rmodf, emodf;
 _LISTPOINTER (temp);

Note. This does not illustrate the processing of an INFO command, and shows incomplete
processing of the STATUS command. It only produces output for a BRIEF response modifier; it
does not produce the output for a DETAIL RMOD.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-17

Sample User-Written Code for SPIFFY Subsystem
Interface Process

Sample I Process Program Code
 ! Return cmd flags for HMOD value
 INT SUBPROC hmodflags (xhmod);
 INT xhmod;
 BEGIN
 CASE xhmod OF
 BEGIN
 ZDSN^HMOD^ONLY -> RETURN c^cmdobj;
 ZDSN^HMOD^SUBONLY -> RETURN c^subobj;
 OTHERWISE -> RETURN c^cmdobj + c^subobj;
 END;
 END;

 ! Return cmd flags for SMOD value
 INT SUBPROC smodflags (xsmod);
 INT xsmod;
 BEGIN
 CASE xsmod OF BEGIN
 ZDSN^SMOD^RED -> RETURN c^redstate;
 ZDSN^SMOD^GREEN -> RETURN c^greenstate;
 ZDSN^SMOD^NOT^RED -> RETURN c^greenstate + c^yellowstate;
 ZDSN^SMOD^NOT^GREEN -> RETURN c^redstate + c^yellowstate;
 OTHERWISE -> RETURN c^redstate + c^yellowstate +
 c^greenstate + c^anystate;
 END;
 END;

 ! Return cmd flags for EMOD value
 INT SUBPROC emodflags (xemod);
 INT xemod;

 BEGIN
 CASE xemod OF
 BEGIN
 ZDSN^EMOD^SUPPRESS -> RETURN c^errsuppress;
 ZDSN^EMOD^DETAIL -> RETURN c^errdetail;
 OTHERWISE -> RETURN 0;
 END;
 END;

 ! Return cmd flags for RMOD value
 INT SUBPROC rmodflags (xrmod);
 INT xrmod;
 BEGIN
 RETURN IF xrmod = ZDSN^RMOD^DETAIL THEN c^replydetail
 ELSE 0;
 END;

 ! Return cmd flags for AMOD value
 INT SUBPROC amodflags (xamod);
 INT xamod;
 BEGIN
 RETURN IF xamod = ZDSN^AMOD^RESET THEN c^resetstats
 ELSE 0;
 END;
D-18
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Sample I Process Program Code Sample User-Written Code for SPIFFY Subsystem
Interface Process
 ! Return SPIFFY type code for type name
 INT SUBPROC typecode (tname);
 STRING .EXT tname;
 BEGIN;
 IF tname = "REACTOR " THEN RETURN reactor
 ELSE IF tname = "BOILER " THEN RETURN boiler
 ELSE IF tname = "VALVE " THEN RETURN valve
 ELSE IF tname = "CHAMBER " THEN RETURN chamber
 ELSE IF tname = "ASSEMBLY" THEN RETURN assembly
 ELSE IF tname = "COGWHEEL" THEN RETURN cogwheel
 ELSE IF tname = "GEAR " THEN RETURN gear
 ELSE RETURN other;
 END;

 ! Boolean, true if type has subordinates
 INT SUBPROC has^subordinates (type);
 INT type;
 BEGIN
 CASE type OF
 BEGIN
 reactor, assembly, other, anything -> RETURN 1;
 OTHERWISE -> RETURN 0;
 END;
 END;

------------ Procedure Body ----------------------

 ! First analyze the command modifiers and the action code to
 ! set command flags that will determine the major paths through
 ! the thread procedure states.

 CASE _THREAD^STATE OF BEGIN
 _ST^INITIAL ->
 ! Flags for modifiers
 cx.hmodf := hmodflags (cx._INPUT.MOD.Z^HMOD);
 smodf := smodflags (cx._INPUT.MOD.Z^SMOD);
 emodf := emodflags (cx._INPUT.MOD.Z^EMOD);
 rmodf := rmodflags (cx._INPUT.MOD.Z^RMOD);
 amodf := amodflags (cx._INPUT.MOD.Z^AMOD);

 ! Set command flags by action
 CASE cx._INPUT.ACTION OF BEGIN
 ZDSN^ACTION^STATUS ->
 cx.cf := rmodf + emodf + smodf + c^info + c^replystate;
 ZDSN^ACTION^INFO ->
 cx.cf := rmodf + emodf + c^info;
 ZDSN^ACTION^STATISTICS ->
 cx.cf := rmodf + emodf + amodf + c^info;
 ZDSN^ACTION^START, ZDSN^ACTION^STOP, ZDSN^ACTION^ABORT ->
 cx.cf := emodf + smodf;
 ZDSN^ACTION^AGGREGATE ->
 cx.hmodf := hmodflags(0);
 cx.cf := smodflags(0) + emodflags(0) + cx.hmodf + c^info;
 OTHERWISE ->
 RETURN _RC^ABORT (ZDSN^ERR^CMD^NOT^SUPP);
 END;
 _TURNON (cx.cf, c^fromcmd); ! Everything comes from the command
 ! at first

 ! Having analyzed the command and modifiers, process command
 ! objects one at a time.
 ! Redispatch this thread procedure in the new^object state to get
 ! first command object for processing.

 _DISPATCH^THREAD (, st^new^object, _EV^CONTINUE);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-19

Sample User-Written Code for SPIFFY Subsystem
Interface Process

Sample I Process Program Code
 st^new^object ->
 ! Enter this state each time we need a new object from the
 ! frame's input object list, which occurs initially and after
 ! the preceding object has been processed completely.

 ! Get the next object from the _INPUT.OBJECTLIST; when it’s _NULL,
 ! we've processed them all.

 if _ISNULL (@cx.inobj := @inobj := _GET^LM (cx._INPUT.OBJECTLIST))
 THEN RETURN _RC^STOP;

 ! As soon as we get the next input object, process its hmod and
 ! set the command flags in the object lm. We must analyze the hmod
 ! now because it is redefined by the result code.

 inobj.cf := cx.cf + (IF inobj.FOBJ.Z^HMOD
 THEN hmodflags (inobj.FOBJ.Z^HMOD)
 ELSE cx.hmodf);
 inobj.FOBJ.Z^RESULT := 0;

 ! Set up the command elements and open the manager

 IF inobj.FOBJ.Z^SUBSYS <> "SPIFFY " THEN
 BEGIN
 ! Found an error. Put out an error object and redispatch
 ! this proc in the current state to process the next one.
 ! If format^error^object returns anything but _RC^NULL, it
 ! found an error of its own which supersedes this one to
 ! abort the thread.

 inobj.er := ZDSN^ERR^BADSUBSYS;

 IF (rc := format^error^object (inobj)) <> _RC^NULL THEN
 RETURN rc;

 _DISPATCH^THREAD (,,_EV^CONTINUE);

 END;

 IF (inobj.thing.type := typecode (inobj.FOBJ.Z^OBJTYPE)) = other
 THEN BEGIN
 inobj.er := ZDSN^ERR^OBJTYPE^NOT^SUPPORTED;
 IF (rc := format^error^object (inobj)) <> _RC^NULL THEN
 RETURN rc;
 _DISPATCH^THREAD (,,_EV^CONTINUE);
 END;

 IF NOT has^subordinates (inobj.thing.type) THEN
 BEGIN
 ! If object has no subordinates, don't look for them no
 ! matter what the hmod says. If further the hmod says not
 ! to process the object, there isn't much to do with it...

 _TURNOFF (inobj.cf,c^subobj);

 IF _OFF (inobj.cf,c^cmdobj) THEN
 _DISPATCH^THREAD (,,_EV^CONTINUE);
 END;

 IF inobj.FOBJ.Z^OBJNAME = starname THEN
 _TURNON (inobj.cf,c^starobj);

 IF (inobj.er := _OPEN^CI (spifmon, cx.spif, inobj.FOBJ.Z^MANAGER))
 THEN BEGIN
 IF (rc := format^error^object (inobj)) <> _RC^NULL THEN
 RETURN rc;
 _DISPATCH^THREAD (,,_EV^CONTINUE);
 END;
D-20
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Sample I Process Program Code Sample User-Written Code for SPIFFY Subsystem
Interface Process
 ! Set the current input and output lists for processing
 ! thread and put the inobj on the input.
 ! Note: The current^in and current^out list pointers may be
 ! exchanged several times while processing an object.
 ! Reference after this initialization should always be
 ! made through the current pointers rather than to the
 ! things/other^things lists directly.

 @cx.current^in := @cx.things;

 @cx.current^out := @cx.other^things;
 IF _ISNULL (_PUT^LM (cx.current^in,,$LEN (inobj),inobj)) THEN
 RETURN _RC^ABORT (ZDSN^ERR^MEMORY);

 ! Dispatch a proc to process the command.
 ! Note: All commands begin with (or consist entirely of) a
 ! TELLABOUT command with the exception of an action command on
 ! a single object (i.e., no subordinates, no *).

 IF _ON (inobj.cf, c^info) THEN
 BEGIN

 ! Command requires info (TELLABOUT) command only.
 ! Set state where we wish to return to this proc.

 _THREAD^STATE := st^done;
 _SAVE^THREAD^AND^DISPATCH (@info^cmd^proc, st^new^object,
 _EV^STARTUP);

 ! If _save^thread fails, we fall through to here and ...

 RETURN _RC^ABORT (ZDSN^ERR^MEMORY);
 END;

 ! Must be an action command

 IF _ANYOFF (inobj.cf, c^anystate) OR _ON (inobj.cf, c^subobj) THEN
 BEGIN
 ! Command requires info as a preliminary to its execution.
 _THREAD^STATE := st^prilim^done; ! State to return to this
 ! proc
 _SAVE^THREAD^AND^DISPATCH (@info^cmd^proc, st^new^object,
 _EV^STARTUP);
 RETURN _RC^ABORT (ZDSN^ERR^MEMORY);
 END;

 ! Can perform action directly

 _THREAD^STATE := st^done; ! State to return to this proc
 _SAVE^THREAD^AND^DISPATCH (@action^cmd^proc, st^new^object,
 _EV^STARTUP);
 RETURN _RC^ABORT (ZDSN^ERR^MEMORY);

 st^prilim^done ->
 ! We've done a preliminary command to produce a list of objects
 ! for the real command. Swap the current input and output lists
 ! and get on with the main event.

 @temp := @cx.current^in;
 @cx.current^in := @cx.current^out;
 @cx.current^out := @temp;

 _THREAD^STATE := st^done; ! Return state
 _SAVE^THREAD^AND^DISPATCH (@action^cmd^proc, st^new^object,
 _EV^STARTUP);
 RETURN _RC^ABORT (ZDSN^ERR^MEMORY);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-21

Sample User-Written Code for SPIFFY Subsystem
Interface Process

Sample I Process Program Code
 st^done ->
 ! Whatever objects resulted from executing the command on
 ! cx.inobj are now on the cx.current^out list. Build the
 ! thread output for return to the frame.

 CALL _CLOSE^CI (cx.spif);

 WHILE _NOTNULL (@outobj := _GET^LM (cx.current^out)) DO BEGIN
 IF outobj.er THEN rc := format^error^object (outobj)
 ELSE rc := format^normal^object (outobj);
 IF rc <> _RC^NULL THEN RETURN rc;
 END;

 ! Continue with next _input object.
 _DISPATCH^THREAD (, st^new^object, _EV^CONTINUE);

 END;

_END^THREAD^PROC;

_THREAD^PROC (info^cmd^proc);

 BEGIN

 ! Process info commands, including a command preliminary to an
 ! action command. Generate output list of all objects resulting
 ! from expanding the input list through hierarchy and * object
 ! names, together with info about the object from the subsystem
 ! and its DSNM state.

 INT .EXT cx (cx^def) = _THREAD^CONTEXT^ADDRESS;
 INT .EXT inobj (object^lm^def), .EXT outobj (object^lm^def);
 STRUCT .tempobj (object^lm^def);
 _LISTPOINTER (temp);
 INT er,k;
 _RC^TYPE rc;

 _RC^TYPE SUBPROC error^object (erno, spiferno) VARIABLE;
 INT erno, spiferno;

 BEGIN
 ! Generate an output object for an input object in error.
 ! @Inobj must point to the object from which the error resulted.
 ! Create an output object and put error info into it.
 ! If everything works, put thread into new^object state and return
 ! _RC^WAIT; otherwise return appropriate return code to abort
 ! the thread.
 ! Note: We can fiddle with the thread's state in a subproc
 ! which makes handling the return simpler than in a proc
 ! such as format^error^object.
 ! Erno: DSNM or FS error
 ! Spiferno: Spiffy error number, if present

 IF _ISNULL (@outobj := _PUT^LM (cx.current^out,,$LEN (outobj))) THEN
 RETURN _RC^ABORT (ZDSN^ERR^MEMORY);

 IF er := _FOBJECT^INIT (outobj.FOBJ, inobj.FOBJ) THEN
 RETURN _RC^ABORT (er);

 outobj.cf := inobj.cf;
 outobj.thing ':=' inobj.thing FOR $LEN (outobj.thing) BYTES;
 outobj.er := erno;

 IF $PARAM (spiferno) THEN outobj.spifer := spiferno;
 _THREAD^STATE := st^new^object;
 RETURN _RC^WAIT;

 END;
D-22
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Sample I Process Program Code Sample User-Written Code for SPIFFY Subsystem
Interface Process
 ! Return object type string from the SPIFFY type code
 SUBPROC typename (tname, typecode);
 STRING .EXT tname;
 INT typecode;
 BEGIN
 CASE typecode OF
 BEGIN
 reactor -> tname ':=' "REACTOR ";
 boiler -> tname ':=' "BOILER ";
 valve -> tname ':=' "VALVE ";
 chamber -> tname ':=' "CHAMBER ";
 assembly -> tname ':=' "ASSEMBLY";
 cogwheel -> tname ':=' "COGWHEEL";
 gear -> tname ':=' "GEAR ";
 OTHERWISE -> tname ':=' "OTHER ";
 END;
 END;

 ! Return DSNM state of a thing from its subsystem info
 INT SUBPROC dsnmstate (thing^arg);
 INT .EXT thing^arg;

 BEGIN
 INT .EXT thing (spiffy^thing^def) = thing^arg;

 CASE thing.state OF
 BEGIN
 -- stopped, going, ! ASSEMBLY states
 -- locked, idle, coasting, rotating, ! COGWHEEL, GEAR states

 stopped, locked, idle -> RETURN ZDSN^STATE^RED;
 coasting -> RETURN ZDSN^STATE^YELLOW;
 going, rotating -> RETURN ZDSN^STATE^GREEN;
 OTHERWISE ->
 CASE thing.type OF
 BEGIN
 reactor -> RETURN ZDSN^STATE^NULL;
 boiler, valve, chamber ->
 ! T 0-297 = red
 ! 298-595 = yellow
 ! 596-893 = green
 ! 894-1191 = yellow
 ! 1192-up = red
 IF thing.temp < 298D or thing.temp >= 1192D THEN
 RETURN ZDSN^STATE^RED
 ELSE IF thing.temp < 596D or thing.temp >= 894D THEN
 RETURN ZDSN^STATE^YELLOW
 ELSE
 RETURN ZDSN^STATE^GREEN;
 OTHERWISE -> RETURN ZDSN^STATE^UNKNOWN;
 END;
 END;
 END;

 ! Return true if xstate satisfies state flags (smodf flags) in
 ! in xcf; false otherwise.
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-23

Sample User-Written Code for SPIFFY Subsystem
Interface Process

Sample I Process Program Code
 INT SUBPROC state^ok (xstate,xcf);
 INT xstate, xcf;
 BEGIN
 CASE xstate OF
 BEGIN
 ZDSN^STATE^GREEN -> RETURN _ON (xcf,c^greenstate);
 ZDSN^STATE^YELLOW -> RETURN _ON (xcf,c^yellowstate);
 ZDSN^STATE^RED -> RETURN _ON (xcf,c^redstate);
 OTHERWISE -> RETURN _ON (xcf,c^anystate);
 END;

 END;

 ! Produce a normal (non-error) output object
 _RC^TYPE SUBPROC normal^object (thing^arg);

 INT .EXT thing^arg;
 INT er;

 BEGIN
 INT .EXT thing (spiffy^thing^def) = thing^arg;
 INT state;
 state := dsnmstate (thing);
 IF _OFF (inobj.cf, c^starobj) AND NOT state^ok (state, inobj.cf) THEN
 RETURN _RC^NULL;

 IF _ISNULL (@outobj := _PUT^LM (cx.current^out,,$LEN (outobj))) THEN
 RETURN _RC^ABORT (ZDSN^ERR^MEMORY);

 outobj.cf := inobj.cf;
 outobj.thing ':=' thing for $LEN (outobj.thing) BYTES;

 _TURNON (outobj.cf, c^things);

 outobj.dsnmstate := state;

 IF thing.name = inobj.FOBJ.Z^OBJNAME FOR spiffy^name^len BYTES THEN
 BEGIN
 ! Same as command thing.
 IF er := _FOBJECT^INIT (outobj.FOBJ, inobj.FOBJ) THEN
 RETURN _RC^ABORT (er);

 IF _OFF (inobj.cf, c^things) THEN
 BEGIN
 inobj.thing ':=' thing FOR $LEN (inobj.thing) BYTES;
 inobj.dsnmstate := state;
 _TURNON (inobj.cf, c^things);
 END;

 END

 ELSE
 BEGIN
 ! Subordinate of or derived from command thing
 IF er := _FOBJECT^INIT (outobj.FOBJ,, inobj.FOBJ) THEN
 RETURN _RC^ABORT (er);
 outobj.FOBJ.Z^OBJNAME ':=' [ZDSN^MAX^OBJNAME * [" "]];
 outobj.FOBJ.Z^OBJNAME ':=' thing.name FOR spiffy^name^len BYTES;
 CALL typename (outobj.FOBJ.Z^OBJTYPE,thing.type);

 IF _ON (inobj.cf, c^starobj) THEN _TURNOFF (outobj.cf, c^starobj)

 ELSE _TURNOFF (outobj.cf, c^fromcmd + c^subobj);

 END;

 RETURN _RC^NULL;

 END;
D-24
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Sample I Process Program Code Sample User-Written Code for SPIFFY Subsystem
Interface Process
 CASE _THREAD^STATE OF BEGIN
 st^new^object ->
 IF _ISNULL (@inobj := @cx.currentobj := _GET^LM (cx.current^in))THEN
 BEGIN
 ! Out of input objects; restore caller and continue.
 ! Note: Calling proc has set the state in which it
 ! desires to return before saving the thread state
 ! and dispatching this proc.
 _RESTORE^THREAD^AND^DISPATCH (_EV^CONTINUE);
 ! If _restore^thread fails, we fall through to here and ...
 RETURN _RC^ABORT (ZDSN^ERR^NOTPUSHED);
 END;

 ! If we already know things about the input object, it's been
 ! asked about earlier (probably from a * object). If c^cmdobj
 ! is off, we don't want to know things about it unless it's *.
 ! Either way, skip issuing a command for it and proceed
 ! directly to subordinate processing, if any.
 IF _ON (inobj.cf, c^things) OR _ALLOFF (inobj.cf, c^cmdobj +
 c^starobj)
 THEN
 BEGIN
 IF _ON (inobj.cf, c^cmdobj)
 AND (rc := normal^object (inobj.thing)) <> _RC^NULL
 THEN RETURN rc;
 _DISPATCH^THREAD (, st^exec^done, _EV^CONTINUE);
 END;

 ! Note: Star objects. A star object is replaced on the input
 ! list for this procedure (cx.current^in) by the things to
 ! which it expands. This is done without regard for modifiers
 ! (hmod, smod), which must be applied to the resulting objects
 ! rather than *. Fortunately, * can only come from the
 ! _COMMAND^PROC rather than from a later iteration of this one
 ! (that is to say, this proc never produces a * object in its
 ! output list). _COMMAND^PROC hands out objects one at a
 ! time, so * always appears alone on this proc's input.

 ! Therefore after processing a *, we put the output back onto
 ! the (now empty) input and iterate this procedure again, this
 ! time paying attention to the modifiers.

 cx.cmd.cmd := tellabout;
 cx.cmd.response^context := 0;
 cx.cmd.type := inobj.thing.type;
 cx.cmd.name ':=' inobj.FOBJ.Z^OBJNAME FOR spiffy^name^len BYTES;
 cx.cmd.pop^name ':=' starname;
 IF (er := _SEND^CI (cx.spif, cx.cmd, $LEN (cx.cmd),$LEN (cx.r))) THEN
 RETURN error^object (er);

 _THREAD^STATE := st^exec;

 RETURN _RC^WAIT; ! We'll get _EV^IODONE when I/O completes

 st^exec -> ! _EV^IODONE dispatched us
 @inobj := @cx.currentobj;
 IF _CI^LASTERROR (cx.spif) THEN
 RETURN error^object (_CI^LASTERROR (cx.spif));

 IF cx.r.error THEN
 RETURN error^object (ZDSN^ERR^SUBSYSTEM^ERR, cx.r.error);
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-25

Sample User-Written Code for SPIFFY Subsystem
Interface Process

Sample I Process Program Code
 FOR k := 0 to cx.r.response^things-1 DO
 BEGIN
 IF (rc := normal^object (cx.r.thing[k])) <> _RC^NULL THEN
 RETURN rc;
 END;

 IF cx.r.cmd.response^context THEN
 BEGIN
 ! Note: If _SEND^CI produces an error now, something happened
 ! to the SPIFFY manager after we last talked to it.
 ! Put object with error into output, even though it may
 ! have appeared earlier.
 IF (er := _SEND^CI (cx.spif, cx.cmd, $LEN (cx.cmd), $LEN (cx.r)))
 THEN RETURN error^object (er);
 RETURN _RC^WAIT;
 END;

 IF _OFF (inobj.cf,c^starobj) THEN
 _DISPATCH^THREAD (, st^exec^done, _EV^CONTINUE); ! Done with this
 ! obj

 ! Input was a star object. Input list now empty. Get next
 ! inobj to free the last inobj got, and to be sure it's
 ! really empty, then exchange the current input and
 ! output, which effectively replaces the star object with
 ! its expansion. See note in st^new^object state.

 IF _NOTNULL (@inobj := _GET^LM (cx.current^in)) THEN
 BEGIN
 CALL _REPORT^INTERNAL^ERROR (1, _EMS^EVENT^INFO);
 RETURN _RC^ABORT (ZDSN^ERR^INTERNAL^ERR);
 END;

 @temp := @cx.current^in;
 @cx.current^in := @cx.current^out;
 @cx.current^out := @temp;

 _DISPATCH^THREAD (, st^new^object, _EV^CONTINUE);

 st^exec^done ->
 ! If this wasn't the command object, or if subordinates aren't
 ! wanted, enter new^object state to process next input;
 ! otherwise issue command to get subordinates and return to
 ! exec state to put on output.

 @inobj := @cx.currentobj;

 IF _ANYOFF (inobj.cf, c^fromcmd + c^subobj) THEN
 _DISPATCH^THREAD (, st^new^object, _EV^CONTINUE);

 _TURNOFF (inobj.cf,c^subobj);

 cx.cmd.cmd := tellabout;
 cx.cmd.response^context := 0;
 cx.cmd.type := anything;
 cx.cmd.name ':=' starname;
 cx.cmd.pop^name ':=' inobj.FOBJ.Z^OBJNAME FOR spiffy^name^len BYTES;

 IF (er := _SEND^CI (cx.spif, cx.cmd, $LEN(cx.cmd),$LEN(cx.r))) THEN
 RETURN error^object (er);

 _THREAD^STATE := st^exec;
 RETURN _RC^WAIT;
 END;
_END^THREAD^PROC;
D-26
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Sample I Process Program Code Sample User-Written Code for SPIFFY Subsystem
Interface Process
_THREAD^PROC (action^cmd^proc);
 BEGIN
 -- ...
 _END^THREAD^PROC;

-------------- Command Thread Termination Proc ----------------------

_THREAD^TERMINATION^PROC (_COMMAND^TERMINATION^PROC);
 BEGIN
 INT .EXT cx (cx^def) = _THREAD^CONTEXT^ADDRESS;
 INT .EXT inobj (object^lm^def);

 ! Free our lists and return leaving the thread's original
 ! termination code (_THREAD^TERMINATION^CODE) unchanged.
 ! Leave freeing the official input and output lists to the frame.

 CALL _DEALLOCATE^LIST (cx.things);
 CALL _DEALLOCATE^LIST (cx.other^things);
 CALL _CLOSE^CI (cx.spif);
 RETURN _RC^NULL;
 _END^THREAD^TERMINATION^PROC;
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-27

Configuring SPIFFY Into DSNM Sample I Process Program Code
Configuring SPIFFY Into DSNM
Specify a file containing the following as an IN file to NETCOM:

add \SYS.dsnm.subsystem-interface-config.spifi.public-name, &
 SPIFFY-INTERFACE
add \SYS.dsnm.subsystem-interface-config.spifi.default-&
 processname, $?SPF
add \SYS.dsnm.subsystem-interface-config.spifi.open-params, &
 NOWAIT-DEPTH 15
add \SYS.dsnm.subsystem.spiffy.rank , 4
add \SYS.dsnm.subsystem.spiffy.default-objtype , cogwheel
add \SYS.dsnm.subsystem.spiffy.devicetype , 0
add \SYS.dsnm.subsystem.spiffy.manager , SPIFMON
add \SYS.dsnm.subsystem.spiffy.subsystem-interface, SPIFI
add \SYS.dsnm.subsystem.spiffy.flags , &
 *-OBJ-ALLOWED MGR-REQUIRED
add \SYS.dsnm.subsystem.spiffy.objtype.1 ,subsys
add \SYS.dsnm.subsystem.spiffy.objtype.2 ,reactor subsys
add \SYS.dsnm.subsystem.spiffy.objtype.3 ,boiler reactor
add \SYS.dsnm.subsystem.spiffy.objtype.4 ,valve reactor
add \SYS.dsnm.subsystem.spiffy.objtype.5 ,chamber reactor
add \SYS.dsnm.subsystem.spiffy.objtype.6 ,assembly subsys
add \SYS.dsnm.subsystem.spiffy.objtype.7 ,cogwheel assembly
add \SYS.dsnm.subsystem.spiffy.objtype.8 ,gear assembly

 This adds the SPIFFY I process and subsystem configuration records listed below to a
DSNMCONF file:

> NETCOM
NetCom 1> SET FILE $dsnm.idev.dsnmconf
Current config file: $DSNM.IDEV.DSNMCONF
NetCom 2> INFO

Record

 SYSTEM \SYS
 SUBSYS DSNM
 CLASS SUBSYSTEM
 COMPONENT SPIFFY
 PARAMETER DEFAULT-OBJTYPE
 SEQUENCE
 VALUE COGWHEEL

Record

 SYSTEM \SYS
 SUBSYS DSNM
 CLASS SUBSYSTEM
 COMPONENT SPIFFY
 PARAMETER DEVICETYPE
 SEQUENCE
 VALUE 0
D-28
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Sample I Process Program Code Configuring SPIFFY Into DSNM
Record

 SYSTEM \SYS
 SUBSYS DSNM
 CLASS SUBSYSTEM
 COMPONENT SPIFFY
 PARAMETER FLAGS
 SEQUENCE
 VALUE *-OBJ-ALLOWED MGR-REQUIRED

Record

 SYSTEM \SYS
 SUBSYS DSNM
 CLASS SUBSYSTEM
 COMPONENT SPIFFY
 PARAMETER MANAGER
 SEQUENCE
 VALUE SPIFMON

Record

 SYSTEM \SYS
 SUBSYS DSNM
 CLASS SUBSYSTEM
 COMPONENT SPIFFY
 PARAMETER OBJTYPE
 SEQUENCE 1
 VALUE SUBSYS

Record

 SYSTEM \SYS
 SUBSYS DSNM
 CLASS SUBSYSTEM
 COMPONENT SPIFFY
 PARAMETER OBJTYPE
 SEQUENCE 2
 VALUE REACTOR SUBSYS

Record

 SYSTEM \SYS
 SUBSYS DSNM
 CLASS SUBSYSTEM
 COMPONENT SPIFFY
 PARAMETER OBJTYPE
 SEQUENCE 3
 VALUE BOILER REACTOR
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-29

Configuring SPIFFY Into DSNM Sample I Process Program Code
Record

 SYSTEM \SYS
 SUBSYS DSNM
 CLASS SUBSYSTEM
 COMPONENT SPIFFY
 PARAMETER OBJTYPE
 SEQUENCE 4
 VALUE VALVE REACTOR

Record

 SYSTEM \SYS
 SUBSYS DSNM
 CLASS SUBSYSTEM
 COMPONENT SPIFFY
 PARAMETER OBJTYPE
 SEQUENCE 5
 VALUE CHAMBER REACTOR

Record

 SYSTEM \SYS
 SUBSYS DSNM
 CLASS SUBSYSTEM
 COMPONENT SPIFFY
 PARAMETER OBJTYPE
 SEQUENCE 6
 VALUE ASSEMBLY SUBSYS

Record

 SYSTEM \SYS
 SUBSYS DSNM
 CLASS SUBSYSTEM
 COMPONENT SPIFFY
 PARAMETER OBJTYPE
 SEQUENCE 7
 VALUE COGWHEEL ASSEMBLY

Record

 SYSTEM \SYS
 SUBSYS DSNM
 CLASS SUBSYSTEM
 COMPONENT SPIFFY
 PARAMETER OBJTYPE
 SEQUENCE 8
 VALUE GEAR ASSEMBLY
D-30
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Sample I Process Program Code Configuring SPIFFY Into DSNM
Record

 SYSTEM \SYS
 SUBSYS DSNM
 CLASS SUBSYSTEM
 COMPONENT SPIFFY
 PARAMETER RANK
 SEQUENCE
 VALUE 4

Record

 SYSTEM \SYS
 SUBSYS DSNM
 CLASS SUBSYSTEM
 COMPONENT SPIFFY
 PARAMETER SUBSYSTEM-INTERFACE
 SEQUENCE
 VALUE SPIFI

Record

 SYSTEM \SYS
 SUBSYS DSNM
 CLASS SUBSYSTEM-INTERFACE-CONFIG
 COMPONENT SPIFI
 PARAMETER DEFAULT-PROCESSNAME
 SEQUENCE
 VALUE $?SPF

Record

 SYSTEM \SYS
 SUBSYS DSNM
 CLASS SUBSYSTEM-INTERFACE-CONFIG
 COMPONENT SPIFI
 PARAMETER OPEN-PARAMS
 SEQUENCE
 VALUE NOWAIT-DEPTH 15

Record

 SYSTEM \SYS
 SUBSYS DSNM
 CLASS SUBSYSTEM-INTERFACE-CONFIG
 COMPONENT SPIFI
 PARAMETER PUBLIC-NAME
 SEQUENCE
 VALUE SPIFFY-INTERFACE
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-31

Configuring SPIFFY Into DSNM Sample I Process Program Code
D-32
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Index

A
ABORT command

command line syntax 2-8
output object requirements 4-12
valid modifiers 4-12

Action modifier
ZDSN^AMOD values 4-7

ADD^CI 3-13, 3-46, 5-12, A-5
ADD^SUBSYS 3-13, 5-12, A-7
AGGREGATE command

command line syntax 2-10
output object requirements 4-13
valid modifiers 4-13

ALLOFF A-9
ALLON A-10
ALLON^TURNOFF A-11
Altering current thread procedure 3-39
Altering current thread state 3-40
AMOD

See Action modifier
ANYOFF A-12
ANYON A-13
ANYON^TURNOFF A-14
APPEND^OUTPUT 3-32, 4-10, A-15
ASSIGN statements 3-11
AUTOLOAD 6-12

B
BITDEF A-18

C
Canceling

CI communication 3-48
timeout request 3-51

Canceling a DSNM command 3-35
CANCEL^SEND^CI 3-48, A-20

CANCEL^TIMEOUT 3-51, A-21
CI 1-10, 3-5

canceling communication request 3-48
closing 3-48
communication with

retrieving information about 3-48
steps involved 3-45

configuration
See Configuration

opening for communication 3-47
process class name 3-46
referenced by ciid 3-5
retrieving configuration in
_STARTUP 5-12
sending messages to 3-47

CI configuration structure 3-45
CIID structure 3-47, A-25
CI^DEF 3-45, 5-12, A-22
CI^FILENUM 3-50, A-24
CI^ID A-25
CI^IDPOINTER 3-47, A-26
CI^LASTERROR 3-49, A-27
CI^REPLYADDRESS 3-49, A-28
CI^REPLYLENGTH 3-49, A-29
CI^REPLYTAG 3-49, A-30
CLASS^PARAM 5-11, A-56
CLOSE^CI 3-48, A-31
Command context 3-5, 3-15

extended address of 3-17
input area 3-18
output area 3-19
required header 3-17
state management 3-37

Command server 1-8
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 Index-1

D Index
Command thread
definition 3-3
termination 3-51
See also Thread

Commands
DSNM

See DSNM commands and
individual command names

DSNMCom 7-5
See also DSNMCom

COMMAND^CONTEXT^HEADER 3-17,
A-32
COMMAND^PROC procedure 3-14, A-33
COMMAND^TERMINATION^PROC
procedure 3-14, A-34
COMPILED^IN^TESTMODE A-35
Compiling

in test mode 5-2
required ASSIGN statements 3-11
required ?SOURCE statements 3-9

Component name, defined 3-12
COMPONENT process parameter 5-2
COMPONENT^PARAM 5-11, A-56
CONFIG

DSNMCom process parameter 7-2
CONFIG process parameter 5-2
Configuration

adding objects to DNS database 6-12
CI, retrieving parameters 5-7, 5-12
DSNMCONF file

See DSNMCONF file
NETCOM utility

example D-28
of servers in Pathway environment 6-12
subsystem 6-1

retrieving parameters 5-7, 5-12
SUBSYSTEM class records 6-5

$SYSTEM.SYSTEM.DSNM
See $SYSTEM.SYSTEM.DSNM

Context space
See Command context

Control context area 3-15
Control interface process

See CI
CPWDSMS 6-12
CPWDSNM 6-12
Current thread 3-4

altering 3-39
restoring and dispatching 3-43
saving and dispatching new 3-43
saving and restoring 3-40

D
Data definition language

See DDL
Database interface process 1-9
DBI 1-9
DDL

representing character strings C-5
summary of constants and structure
defs C-1/C-5

DEALLOCATE^LIST 3-27, A-36
Declaring private thread events 3-36
DELETE^LM 3-27, A-37
DEPOSIT A-38
Dispatch 3-4
Dispatching a thread procedure 3-34, 3-35
DISPATCH^THREAD 3-43, A-39
Distributed Name Service

See DNS
Distributed Systems Management

See DSM
Distributed Systems Network Management

See DSNM
DNS 1-8
DNS database 6-12
DNSCOM 6-12
Index-2
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Index D
DSNM 1-1
commands

components of 4-1
executing from DSNMCom 7-11
overview of how processed 3-6

components of
command server 1-8
database interface process
(DBI) 1-9
E process 1-10
I process 1-9
object database 1-9
object monitor process
(OMON) 1-9

DSNMCom process parameter 7-2
environment

running multiple copies 1-13
extending support of 1-14
object states

See Object states
operations environments 1-13
parser errors 7-17, B-10
process configuration 1-12
process parameter 5-2
process startup functions 5-1
startup sequence 1-12

DSNM commands
command syntax 2-1

general considerations 2-6
example of mapping subsystem to
DSNM D-7
hierarchy modifier

See Hierarchy modifier
nesting object lists 2-6
processing flow 4-1
response modifier

See Response modifier
specifying more than one modifier 2-6

DSNM commands (continued)
state modifier

See State modifier
summary requests 2-4
when operation unsupported by
subsystem D-7
See also individual command names

DSNMCom 7-1
Break key 7-4
commands 7-5

CLOSE 7-5
EXIT 7-5
FC 7-6
HELP 7-6
OPEN 7-7
QUIT 7-7
RESET 7-7
SET 7-7
SHOW 7-10

DSNM parser errors 7-17, B-10
example of testing with D-8
executing DSNM commands 7-11
interactive 7-3
messages 7-12
noninteractive 7-4
process parameters 7-2
prompt 7-3
syntax 7-1

DSNMCONF file
classes of records 6-5
record format 6-4
retrieving parameters from 5-4
search list, for testing purposes 5-2
specifying to DSNMCom 7-2
SUBSYSTEM class records 6-5
used by _ADD^SUBSYS A-7
using NETCOM to add records to

example D-28
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 Index-3

E Index
DSNMCONF parameters 5-3
accessing nonstandard 5-10
accessing standard 5-8

DSNMCONF^PARAMS 5-9, A-40

E
E process

function within network management
architecture 1-10
object database configuration 1-9

EMOD
See Error modifier

EMPTY^LIST 3-28, A-41
EMS 1-8

logging errors to 3-53
EMS^EVENT^CRITICAL A-42, A-104
EMS^EVENT^FATAL A-42, A-104
EMS^EVENT^INFO A-42, A-104
END^THREAD^PROC 3-14, A-43
END^THREAD^TERMINATION^PROC 3
-14, A-44
Error codes

See ZDSN^ERR codes
Error modifier

in command line 2-3
ZDSN^EMOD values 4-6

Errors
reporting to EMS 3-53
reporting to the frame 3-52
that cause command to terminate 3-53
See also ZDSN^ERR codes

Event 3-4
declaring private thread events 3-36
dispatching a thread 3-34
generated by thread or frame 3-35
simulating frame events 3-36
thread-generated 3-35

See also _SIGNAL^EVENT

Event Management Service
See EMS

Event monitoring process
See E process

EV^CANCEL 3-35, 3-52, A-45
EV^CONTINUE 3-35, A-45
EV^IODONE 3-35, A-45
EV^STARTUP 3-35, A-45
EV^TIMEOUT 3-35, A-45
EXIT command, DSNMCom 7-5
EXTRACT A-46

F
FC command, DSNMCom 7-6
FIRST^LM 3-25, A-47
FOBJ

input list members 3-22
output list members 3-23
structure built by command thread 4-10

FOBJECT 3-20, 3-28
defined A-48
structure defined 3-28

FOBJECT^INIT 3-29, A-50
Formatted object 3-5

example of structure A-48
Frame 3-3

startup procedure 5-6

G
GENERAL^PARAM 5-11, A-56
GET^LM 3-27, A-54
GET^PARAM 5-7, 5-10, A-55
GET^PROCESS^PARAM 5-7, 5-9, A-58
Global data A-32
Global variables 3-37
GLOBAL^PARAM 5-10, A-55
Index-4
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Index L
H
HELP command, DSNMCom 7-6
Hierarchy modifier

example of implementing D-7
in command line 2-3
when used with hierarchy qualifier 2-6,
4-4
when used with state modifier 2-6, 4-4
ZDSN^HMOD values 4-3

Hierarchy qualifier
when used with hierarchy modifier 2-6

Highlight modifier
in command line 2-5

HMOD
See Hierarchy modifier

I
I process

function of 3-1
function within network management
architecture 1-9
testing

See DSNMCom
INFO command

command line syntax 2-11
output object requirements 4-15
valid modifiers 4-15

INITIALIZE^LIST 3-24, A-59
INPUT A-60

action modifier value 4-7
area of command context space 3-18
error modifier value 4-6
hierarchy modifier value 4-3

INPUT (continued)
MOD structure

Z^AMOD values 4-7
See also Z^AMOD

Z^EMOD values 4-6
See also Z^EMOD

Z^HMOD values 4-3
See also Z^HMOD

Z^RMOD values 4-5
See also Z^RMOD

Z^SMOD values 4-4
See also Z^SMOD

response modifier value 4-5
state modifier value 4-4

Input list member 3-22
Input object list 3-5

FOBJ object structures 4-8
in command context 3-15
_INPUT^DEF structure 3-18

INPUT structure
ACTION field 4-2

INPUT^DEF 3-18, A-61
INPUT^LM^HEADER 3-22, A-62
INQUIRE command

command line syntax 2-13
Interface process

See I process
ISNULL A-64

J
JOIN^LIST 3-28, A-65

K
KDSNDEFS 3-9, A-66

L
LAST^CI^ID 3-49, A-67
LAST^EVENTS 3-38, A-68
LAST^LM 3-25, A-69
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 Index-5

M Index
LAST^TIMEOUT^TAG 3-50, A-70
Library services, overview of 3-54
LIST 3-24, A-71
List 3-5

allocating memory for new last
member 3-27
declaring list structure 3-24
deleting a member of 3-27
deleting all members of 3-27
extended pointer to 3-25
finding out if empty 3-28
first member 3-25
initializing 3-24
joining two lists 3-28
last member 3-25
logical view of 3-23
next member 3-25
number of members 3-28
previous member 3-25
releasing members to frame 3-32
removing current first member 3-27
removing current last member 3-27
scanning 3-26

LISTPOINTER 3-25, A-72
Local variables 3-37
LOCAL^PARAM 5-10, A-55

M
MEMBERSOF^LIST 3-28, A-73
Mixed network requirements 1-14
MOVE^LIST A-74
Multiple copies of DSNM 1-13
MYSYSTEM process parameter 5-2

N
Name resolution 1-8
NETCMD 1-5
NetCommand 1-3

components of 1-5

NETCOM, example D-28
NETCONF 1-5
NetStatus 1-4

components of 1-6
NETSTATUS-SVR 1-6
NETSVR 1-5
Network management architecture

layers 1-4
management services layer 1-8
operations layer 1-4
subsystem layer 1-10

NonStop NET/MASTER MS 1-2, 1-3
NOTNULL A-75
NULL A-76
NULL^LIST A-77

O
Object 1-1

adding to DNS database 6-12
as defined by contentsof
FOBJECT 3-28
examples of 1-11
hierarchy 4-8
records in object database 1-9
states

See Object states
Object database 1-9
Object monitor process 1-9
Object states 2-6, 4-7, 4-8

DOWN 2-6
example of mapping subsystem states to
DSNM states D-6
PENDING 2-6
UNDEFINED 2-6
UNKNOWN 2-6
UP 2-6
values 4-7
when state cannot be determined 4-8
Index-6
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Index R
OBJECTLIST
declared by _OUTPUT^DEF A-85
example A-78
input object list 3-18
output object list 3-19

OFF A-79
OMON 1-9
ON A-80
OPEN command, DSNMCom 7-7
OPEN^CI 3-47, A-81
Operations environments 1-13
OUTPUT 3-19, A-84
Output list member 3-22
Output object list 3-5

fields filled in by command thread 4-10
in command context 3-15
releasing members to frame 3-32
_OUTPUT^DEF structure 3-19

OUTPUT^DEF 3-19, A-85
OUTPUT^LM^HEADER 3-22, A-86

P
Parameters

global 5-5
class 5-5
component 5-5
general 5-6

local 5-4
class 5-4
component 5-4
general 5-5

search criteria 5-4, 5-10
See also DSNMCONF parameters
See also Process parameters

Parser errors, returned by DSNMCom 7-17,
B-10
POP^LM 3-27, A-87
POP^THREAD^PROCSTATE 3-40, A-88
PREDECESSOR^LM 3-25, A-89

Private events 3-35
PRIVATE^THREAD^EVENT 3-36, A-91
Process class name

CI 3-46
Process configuration 1-12
Process parameters 5-2

accessing nonstandard 5-9
accessing standard 5-8
COMPONENT 5-2
CONFIG 5-2
DSNM 5-2
MYSYSTEM 5-2
TESTMODE 5-2

PROCESS^PARAMS 5-8, A-92
PUSH^LM 3-27, A-93
PUSH^THREAD^PROCSTATE 3-40, A-95
PUT^LM 3-27, A-97

R
RC^ABORT 3-34, 3-53, A-99
RC^NULL 3-36, A-99
RC^STOP 3-34
RC^TYPE 3-36, A-100
RC^WAIT 3-34, A-100
REAL^LAST^EVENTS 3-38, A-101
RELEASE^OUTPUT 3-32, A-102
Reporting errors B-1
REPORT^INTERNAL^ERROR A-103
REPORT^STARTUP^ERROR A-104
Response modifier

in command line 2-4
ZDSN^RMOD values 4-5

RESTORE^THREAD^AND^DISPATCH
3-43, A-106

RMOD
See Response modifier
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 Index-7

S Index
S
SAVE^THREAD^AND^DISPATCH 3-43,
A-107
Scanning a list 3-26
SEND^CI 3-47, A-108
SET^THREAD^PROC 3-39, A-111
SET^TIMEOUT 3-50, A-112
SHOW command, DSNMCom 7-10
SIGNAL^EVENT 3-35, A-113
Simulating frame events 3-36
SMOD

See State modifier
START command

command line syntax 2-15
output object requirements 4-16
valid modifiers 4-16

Startup message
DSNMCONF parameters 5-3

See also DSNMCONF parameters
format of 5-1
process parameters 5-2

See also Process parameters
retrieving parameters from 5-4
standard process parameters 5-8

STARTUP procedure
calling _GET&PARAM 5-10
format 3-13
format and example A-114
procedures to be called in 5-7
retrieving nonstandard values 5-9
_ADD^CI 3-13, 5-7, 5-12
_ADD^SUBSYS 3-13, 5-7, 5-12
_GET^PARAM 5-7
_GET^PROCESS_PARAM 5-7

Startup sequence 1-12
STARTUP^MODE procedure 3-12, 5-6,
A-116
State management 3-37

State modifier
in command line 2-4
when used with hierarchy modifier 2-6,
4-4
ZDSN^SMOD values 4-4

States
See Object states

STATISTICS command
command line syntax 2-17
output object requirements 4-17
valid modifiers 4-17

Statistics, resetting 4-7
STATUS command

command line syntax 2-19
output object requirements 4-18
valid modifiers 4-18

STOP command
command line syntax 2-21
output object requirements 4-20
valid modifiers 4-20

ST^INITIAL 3-40, A-118
ST^MIN^THREAD^STATE 3-40, A-119
Subsystem 1-1

configuring into DSNM 6-1
See also Configuration

records in object database 1-9
retrieving configuration in
_STARTUP 5-12

SUBSYSTEM class records
See DSNMCONF file

Subsystem interface process
See I process

SUBSYS^DEF 5-12, A-120
SUCCESSOR^LM 3-25, A-122
SUMMARY-BYOBJECT 2-4
SUMMARY-BYTYPE 2-4
Suspending thread procedures 3-34
Index-8
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Index Z
T
TERM-START-SVR 1-6
Test mode 5-2

compiling in 5-2
Test utility

See DSNMCom
TESTMODE process parameter 5-2
Thread 3-3

declaring thread procedures 3-14
See also Current thread

Thread state
altering 3-40
determining 3-40
initial state 3-40
restoring 3-43
saving 3-43
saving and restoring 3-40

THREAD^CONTEXT^ADDRESS 3-17
THREAD^PROC 3-14, A-125
THREAD^STATE A-126
THREAD^TERMINATION^CODE A-127
THREAD^TERMINATION^PROC 3-14,
A-128
Timeouts 3-50
TURNOFF A-129
TURNON A-130

U
UNGET A-131
UNPOP^LM A-132
UPDATE command

command line syntax 2-23
Utility procedures 3-34, 3-36

V
Variable-length text items 3-32

X
XADR^EQ A-133
XADR^NEQ A-134

Z
ZDSN-DDL-DSNMCONF-PARAMS A-40
ZDSN-DDL-OBJTYPE-CONFIG A-120
ZDSN-DDL-PCLASS-CONFIG A-22
ZDSN-DDL-SUBSYS-CONFIG A-120
ZDSN^ACTION^

ABORT 4-2
AGGREGATE 4-2
INFO 4-2
START 4-2
STATISTICS 4-2
STATUS 4-2
STOP 4-2

ZDSN^DDL^CLASS^DEF 5-11
ZDSN^DDL^COMPONENT^DEF 5-11
ZDSN^DDL^COUNTERS^DEF A-17, C-4
ZDSN^DDL^DSNMCONF^DEF 6-4
ZDSN^DDL^DSNMCONF^PARAMS 5-9
ZDSN^DDL^FOBJECT^DEF 3-28, 4-8,
4-10, C-3
ZDSN^DDL^MANAGER^DEF 4-9
ZDSN^DDL^OBJNAME^DEF 4-9
ZDSN^DDL^OBJTYPE^DEF 4-8
ZDSN^DDL^PARAMNAME^DEF 5-11
ZDSN^DDL^PCLASS^CONFIG 3-46
ZDSN^DDL^PROCESS^PARAMS 5-8,
A-92
ZDSN^DDL^SUBSYS^DEF 4-8, 5-11
ZDSN^EMOD^DETAIL 3-52
ZDSN^ERR codes

summary of B-1/B-13
ZDSN^ERR^FS^ERR 3-52
ZDSN^ERR^MEMORY A-107
ZDSN^ERR^NOTPUSHED A-106
ZDSN^ERR^OBJ^NOT^FOUND 3-53
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 Index-9

Special Characters Index
ZDSN^ERR^SUBSYSTEM^ERR 3-53
ZDSN^MAX^TEXT 4-10
ZDSN^MOD^DEF 4-2
ZDSN^STATE^DOWN 4-7
ZDSN^STATE^GREEN 4-7
ZDSN^STATE^NULL 4-8
ZDSN^STATE^PENDING 4-7
ZDSN^STATE^RED 4-7
ZDSN^STATE^UNDEFINED 4-8
ZDSN^STATE^UNKNOWN 4-8
ZDSN^STATE^UP 4-7
ZDSN^STATE^YELLOW 4-7
ZDSN^VTY^COUNTERS 4-10, 4-13,
A-15, A-16
ZDSN^VTY^ERRTEXT 4-10, A-15, A-16
ZDSN^VTY^RESULTTEXT 4-10, A-15,
A-16
ZDSN^VTY^TEXT 4-10, A-15, A-16
Z^HMOD

applying to object list members 4-9
Z^SMOD

applying to object list members 4-9

Special Characters
$0 1-8
$SYSTEM.SYSTEM.DSNM 5-2

format of 6-2
STARTUP PARAMS 5-2

$ZDNS 1-8
?SOURCE statements 3-9
_COMMAND^TERMINATION^PROC
procedure 3-51
Index-10
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Contents 2. DSNM Commands
New and Changed Information iii

About This Manual xv

Notation Conventions xix

1. Overview of DSNM
Scope of This Section 1-1
What is DSNM? 1-1
Applications Supported by DSNM 1-1

NonStop NET/MASTER MS 1-3
NetCommand 1-3
NetStatus 1-4

The Network-Management Architecture 1-4
The Operations Layer 1-4
The Management Services Layer 1-8
The Subsystem Layer 1-10

Installing DSMS Products 1-12
Startup Sequence and Configuration Files 1-12
Running DSNM Products 1-13
Installing More Than One Copy of DSNM Concurrently 1-13
Mixed Network Requirements 1-14
Extending DSNM Support 1-14

2. DSNM Commands
Scope of This Section 2-1
Command Line Syntax 2-1

Commands 2-1
Object Specification 2-2
Modifiers 2-3
Parameters 2-5
Considerations 2-6

DSNM Object States 2-6
Canceling Commands 2-6
The ABORT Command 2-8
The AGGREGATE Command 2-10
The INFO Command 2-11
The INQUIRE Command 2-13
The START Command 2-15
The STATISTICS Command 2-17
The STATUS Command 2-19
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 1

3. I Process Development Process Contents
The STOP Command 2-21
The UPDATE Command 2-23

3. I Process Development Process
Scope of This Section 3-1
Function of the I Process 3-1
I Process Program Structure Concepts 3-3
General Command Processing Scheme 3-6
The Command Thread Source Environment 3-9

ASSIGN Statements Required for Compilation 3-11
User-Written Procedures 3-11

The _STARTUP^MODE Procedure 3-12
The _STARTUP Procedure 3-13
Declaring Thread Procedures: _THREAD^PROC and

_END^THREAD^PROC 3-14
The Initial Command Thread Procedure: _COMMAND^PROC 3-14
The Thread Termination Procedure: _COMMAND^TERMINATION^PROC 3-14

Command Context Space 3-15
Accessing the Command Context Space 3-17
Defining the Command Context Space 3-17
The Input Area: _INPUT 3-18
The Output Area: _OUTPUT 3-19

The Input and Output List Member Structures 3-20
Defining the Input List Member Structure: _INPUT^LM^HEADER 3-22
Defining the Output List Member Structure: _OUTPUT^LM^HEADER 3-22

Working With Lists 3-23
Declaring a List: _LIST 3-24
Initializing a List Structure: _INITIALIZE^LIST 3-24
Accessing the First Member of a List: _FIRST^LM 3-25
Accessing the Last Member of a List: _LAST^LM 3-25
Accessing the Next List Member: _SUCCESSOR^LM 3-25
Accessing the Previous List Member: _PREDECESSOR^LM 3-25
Declaring a Pointer to a List: _LISTPOINTER 3-25
Scanning a List 3-26
Processing a List 3-26
Maintaining a List 3-27
Requesting Status About a List 3-28
Initializing Object List Members: _FOBJECT^INIT 3-28
Adding Text Items to an Output Object: _APPEND^OUTPUT 3-32
Releasing Output List Members to the Frame: _RELEASE^OUTPUT 3-32
2
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Contents 4. DSNM Command Requirements
Example: List Processing Library Services 3-32
Suspending and Dispatching Thread Procedures 3-34

Suspending Thread Procedures: Return Codes 3-34
Dispatching Thread Procedures: Events 3-35
Declaring Utility Procedures: _RC^TYPE 3-36

State Management 3-37
Determining Which Event(s) Caused the Current Dispatch 3-38
Altering the Current Thread Procedure and Thread State 3-39

Frame Services 3-45
CI Communications 3-45
Accessing Information About a CI Communication 3-48
Timeout Intervals 3-50

Command Thread Termination 3-51
Reporting Errors 3-51

Reporting Errors to the Frame 3-52
Command-Terminating Errors 3-53
Reporting Errors to EMS 3-53

Overview of the Library Services 3-54

4. DSNM Command Requirements
Scope of This Section 4-1
Command Flow 4-1
Command Components 4-1
Action to be Performed 4-2
Command Modifiers 4-2

Object List Modifiers 4-3
Response Modifiers 4-5
Action Modifiers 4-7

Object States 4-7
The Input Object List 4-8
Execution Objects 4-9

Applying Object List Modifiers 4-9
The User Area: Intermediate Lists 4-9

The Output Object List 4-10
Output Object Variable-Length Items 4-10

Command Requirements 4-11
The ABORT Command 4-12
The AGGREGATE Command 4-13
The INFO Command 4-15
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3

5. DSNM Process Startup Functions Contents
The START Command 4-16
The STATISTICS Command 4-17
The STATUS Command 4-18
The STOP Command 4-20

5. DSNM Process Startup Functions
Scope of This Section 5-1
DSNM Process Startup Message 5-1

Process Parameters 5-2
DSNM Configuration Parameters 5-3

Parameter Types and Search Criteria 5-4
Local Parameters and Search Patterns 5-4
Global Parameters and Search Patterns 5-5

Parameter Retrieval Library Services 5-6
Accessing Standard Process Parameters: _PROCESS^PARAMS 5-8
Accessing Standard Configuration Parameters: _DSNMCONF^PARAMS 5-8
Retrieving Non-Standard Process Parameters: _GET^PROCESS^PARAM 5-9
Retrieving Nonstandard Configuration Parameters: _GET^PARAM 5-10
Retrieving Subsystem Configuration Parameters 5-12
Retrieving CI Configuration Parameters 5-12

6. Configuring a New Subsystem Into DSNM
Scope of This Section 6-1
New and Changed DSNM Configuration Information 6-1
The $SYSTEM.SYSTEM.DSNM File 6-2
Format of the DSNMCONF File 6-4
DSNMCONF Records Relevant to I Processes 6-5

SUBSYSTEM Class Records 6-5
process-class-CONFIG Records 6-9

Adding Subsystem Objects to the DNS Database 6-12
Defining an I Process as a Pathway Server 6-12

7. DSNMCom: The I Process Test Utility
Scope of This Section 7-1
What is DSNMCom? 7-1
Before You Run DSNMCom 7-1
DSNMCom Command Syntax 7-1
The DSNMCom Prompt 7-3
Running DSNMCom Interactively 7-3
Running DSNMCom From an Input File 7-4
The Comment Character, COMMENT-CHAR 7-4
4
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Contents A. DSNM Library Services
Using the Break Key 7-4
Setting Security Parameters in DSNMCom 7-5
The DSNMCom Commands 7-5

CLOSE Command 7-5
EXIT Command 7-5
FC Command 7-6
HELP Command 7-6
OPEN Command 7-7
QUIT Command 7-7
RESET Command 7-7
SET Command 7-7
SHOW Command 7-10

Executing DSNM Commands 7-11
DSNMCom Messages 7-12

DSNM Parser Errors 7-17

A. DSNM Library Services
Scope of This Appendix A-1

_ADD^CI A-5
_ADD^SUBSYS A-7
_ALLOFF A-9
_ALLON A-10
_ALLON^TURNOFF A-11
_ANYOFF A-12
_ANYON A-13
_ANYON^TURNOFF A-14
_APPEND^OUTPUT A-15
_BITDEF A-18
_CANCEL^SEND^CI A-20
_CANCEL^TIMEOUT A-21
_CI^DEF A-22
_CI^FILENUM A-24
_CI^ID A-25
_CI^IDPOINTER A-26
_CI^LASTERROR A-27
_CI^REPLYADDRESS A-28
_CI^REPLYLENGTH A-29
_CI^REPLYTAG A-30
_CLOSE^CI A-31
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 5

A. DSNM Library Services Contents
_COMMAND^CONTEXT^HEADER A-32
_COMMAND^PROC A-33
_COMMAND^TERMINATION^PROC A-34
_COMPILED^IN^TESTMODE A-35
_DEALLOCATE^LIST A-36
_DELETE^LM A-37
_DEPOSIT A-38
_DISPATCH^THREAD A-39
_DSNMCONF^PARAMS A-40
_EMPTY^LIST A-41
_EMS^EVENT^CRITICAL A-42
_EMS^EVENT^FATAL A-42
_EMS^EVENT^INFO A-42
_END^THREAD^PROC A-43
_END^THREAD^TERMINATION^PROC A-44
_EV^CANCEL A-45
_EV^CONTINUE A-45
_EV^IODONE A-45
_EV^STARTUP A-45
_EV^TIMEOUT A-45
_EXTRACT A-46
_FIRST^LM A-47
FOBJECT A-48
 _FOBJECT^INIT A-50
_GET^LM A-54
_GET^PARAM A-55
_GET^PROCESS^PARAM A-58
_INITIALIZE^LIST A-59
_INPUT A-60
_INPUT^DEF A-61
_INPUT^LM^HEADER A-62
_ISNULL A-64
_JOIN^LIST A-65
KDSNDEFS A-66
_LAST^CI^ID A-67
_LAST^EVENTS A-68
_LAST^LM A-69
_LAST^TIMEOUT^TAG A-70
_LIST A-71
6
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Contents A. DSNM Library Services
_LISTPOINTER A-72
_MEMBERSOF^LIST A-73
_MOVE^LIST A-74
_NOTNULL A-75
_NULL A-76
_NULL^LIST A-77
OBJECTLIST A-78
_OFF A-79
_ON A-80
_OPEN^CI A-81
_OUTPUT A-84
_OUTPUT^DEF A-85
_OUTPUT^LM^HEADER A-86
_POP^LM A-87
_POP^THREAD^PROCSTATE A-88
_PREDECESSOR^LM A-89
_PRIVATE^THREAD^EVENT A-91
_PROCESS^PARAMS A-92
_PUSH^LM A-93
_PUSH^THREAD^PROCSTATE A-95
_PUT^LM A-97
_RC^ABORT A-99
_RC^NULL A-99
_RC^STOP A-99
_RC^TYPE A-100
_RC^WAIT A-100
_REAL^LAST^EVENTS A-101
_RELEASE^OUTPUT A-102
_REPORT^INTERNAL^ERROR A-103
_REPORT^STARTUP^ERROR A-104
_RESTORE^THREAD^AND^DISPATCH A-106
_SAVE^THREAD^AND^DISPATCH A-107
_SEND^CI A-108
_SET^THREAD^PROC A-111
_SET^TIMEOUT A-112
_SIGNAL^EVENT A-113
_STARTUP A-114
_STARTUP^MODE A-116
_ST^INITIAL A-118
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 7

B. DSNM Error Codes Contents
_ST^MIN^THREAD^STATE A-119
_SUBSYS^DEF A-120
_SUCCESSOR^LM A-122
_THREAD^CONTEXT^ADDRESS A-124
_THREAD^PROC A-125
_THREAD^STATE A-126
_THREAD^TERMINATION^CODE A-127
_THREAD^TERMINATION^PROC A-128
_TURNOFF A-129
_TURNON A-130
_UNGET^LM A-131
_UNPOP^LM A-132
_XADR^EQ A-133
_XADR^NEQ A-134

B. DSNM Error Codes
Scope of This Appendix B-1
Reporting Errors B-1
What to Prepare Before Contacting Your Tandem Support Representative B-1
ZDSN Error Codes B-2

-nnn B-2
0 ZDSN^ERR^NOERR B-2
-30 ZDSN^ERR^CMD^MISMATCH B-2
-34 ZDSN^ERR^INTERNAL^ERR B-3
-35 ZDSN^ERR^SUBSYSTEM^ERR B-3
-44 ZDSN^ERR^TKN^VAL^INV B-3
-45 ZDSN^ERR^TKN^REQ B-3
-51 ZDSN^ERR^SPI^ERR B-4
-55 ZDSN^ERR^OBJNAME^INV B-4
-56 ZDSN^ERR^OBJTYPE^NOT^SUPPORTED or

 ZDSN^ERR^OBJ^NOT^SUPP B-4
-60 ZDSN^ERR^MEMORY or ZDSN^ERR^NO^MEM^SPACE B-4
-64 ZDSN^ERR^FS^ERR B-5
-67 ZDSN^ERR^CMD^TIMED^OUT B-5
-69 ZDSN^ERR^CMD^NOT^SUPP B-5
-71 ZDSN^ERR^ALLOCATESEGMENT^ERR B-5
-76 ZDSN^ERR^BADCOMMAND B-6
-77 ZDSN^ERR^UNSUPPORTED^BY^SUBSYS B-6
-78 ZDSN^ERR^UNSUPPORTED^BY^I B-6
-79 ZDSN^ERR^DATA^INTEGRITY B-6
8
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Contents D. Sample I Process Program Code
-81 ZDSN^ERR^MISSING^OBJTYPE B-7
-82 ZDSN^ERR^BADOBJTYPE B-7
-86 ZDSN^ERR^REQ^KEYWORD^MISSING B-7
-88 ZDSN^ERR^DUP^KEYWORD B-7
-202 ZDSN^ERR^OBJECTTOOLONG or

 ZDSN^ERR^OBJTOOLONG B-8
-204 ZDSN^ERR^BADARGUMENT B-8
-206 ZDSN^ERR^NOTPUSHED B-8
-207 ZDSN^ERR^LIB^BADVALUE^OMITTED B-8
-212 ZDSN^ERR^SYNTAX B-9
-214 ZDSN^ERR^RESERVEDWORD B-9
-216 ZDSN^ERR^CMDERROR B-9
-217 DSN^ERR^BADLOGON B-9

Messages From the DSNM Parser B-10

C. Data Definition Language (DDL)-Defined DSNM SPI Components
Scope of This Appendix C-1
Commands C-1
Modifiers C-1

HMOD Values C-1
EMOD Values C-2
SMOD Values C-2
RMOD Values C-2
AMOD Values C-2

Command Object DDL C-3
DSNM State Values C-3
Error Codes C-4
AGGREGATE Counters C-4
Response Item Types C-4
DDL Definitions for DSNM Character String Components C-5

D. Sample I Process Program Code
Scope of This Appendix D-1
Overview of the SPIFFY Subsystem D-1

Characteristics of SPIFFY Objects D-1
SPIFFY Subsystem Programmatic Interface Commands D-2
Command and Response Message Formats D-3
SPIFFY Subsystem Literal Definitions D-5

SPIFFY I Process Design D-6
State Mapping D-6
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 9

Index Index-1 Contents
Implementing DSNM Commands D-7
Managing SPIFFY Through DSNM: Sample Command Output D-8

Using DSNMCom to Test the SPIFFY I Process D-8
DSNM STATUS Command Output D-9

Sample User-Written Code for SPIFFY Subsystem Interface Process D-12
Configuring SPIFFY Into DSNM D-28

Index Index-1
10
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Examples
Examples
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 1

Examples
2
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Figures
Figures
Figure 1-1. Network-Management Application Components 1-2
Figure 1-2. DSNM and DSM Functional Connections 1-7
Figure 1-3. The Subsystem Layer 1-11
Figure 1-4. DSNM Process Startup and Configuration Components 1-13
Figure 3-1. Function of the I Process 3-2
Figure 3-2. Relationship Between the Frame and User-Written Procedures 3-4
Figure 3-3. Frame/Command Thread Interaction: Processing a DSNM

Command 3-8
Figure 3-4. Command Context Area 3-16
Figure 3-5. Object List Member Definitions 3-21
Figure 3-6. Logical View of a List 3-24
Figure 3-7. Altering Current Thread Procedure and Thread State Values 3-42
Figure 3-8. Dispatching New Thread Procedures 3-44
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 1

Figures
2
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Tables
Tables
Table 3-1. Summary of I Process Development Library Services 3-54
Table 4-1. Command Modifiers 4-2
Table 4-2. HMOD Usage 4-4
Table 7-1. DSNMCom Commands 7-5
Table 7-2. DSNMCom SET Parameters 7-8
Table A-1. DSNM Library Services A-1
Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 1

Tables
2
109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

	System Software Library
	Distributed Systems Network Management (DSNM) Subsystem Interface Development Guide
	Abstract
	Product Version
	Supported Releases
	Part Number
	Edition
	Published
	Release ID
	Document History

	New and Changed Information
	Contents
	1.�Overview of DSNM
	2.�DSNM Commands
	3.�I Process Development Process
	4.�DSNM Command Requirements
	5.�DSNM Process Startup Functions
	6.� Configuring a New Subsystem Into DSNM
	7.� DSNMCom: The I Process Test Utility
	A.�DSNM Library Services
	B.�DSNM Error Codes
	C.� Data Definition Language (DDL)-Defined DSNM SPI Components
	D.�Sample I Process Program Code
	Index����Index�1
	Figures
	Tables

	About This Manual
	How This Manual Is Organized
	Where to Go for More Information
	Your Comments Invited

	Notation Conventions
	General Syntax Notation
	Notation for Messages
	Notation for Management Programming Interfaces
	Change Bar Notation

	1 Overview of DSNM
	Scope of This Section
	What is DSNM?
	Applications Supported by DSNM
	Figure�1�1.� Network-Management Application Components
	NonStop NET/MASTER MS
	NetCommand
	NetStatus

	The Network-Management Architecture
	The Operations Layer
	Figure�1�2.� DSNM and DSM Functional Connections

	The Management Services Layer
	The Subsystem Layer
	Figure�1�3.� The Subsystem Layer

	Installing DSMS Products
	Startup Sequence and Configuration Files
	Figure�1�4.� DSNM Process Startup and Configuration Components

	Running DSNM Products
	Installing More Than One Copy of DSNM Concurrently
	Mixed Network Requirements
	Extending DSNM Support

	2 DSNM Commands
	Scope of This Section
	Command Line Syntax
	Commands
	Object Specification
	Modifiers
	Parameters
	Considerations
	DSNM Object States
	Canceling Commands
	The ABORT Command
	The AGGREGATE Command
	The INFO Command
	The INQUIRE Command
	The START Command
	The STATISTICS Command
	The STATUS Command
	The STOP Command
	The UPDATE Command

	3 I Process Development Process
	Scope of This Section
	Function of the I�Process
	Figure�3�1.� Function of the I Process

	I Process Program Structure Concepts
	Figure�3�2.� Relationship Between the Frame and User-Written Procedures

	General Command Processing Scheme
	Figure�3�3.� Frame/Command Thread Interaction: Processing a DSNM Command

	The Command Thread Source Environment
	ASSIGN Statements Required for Compilation

	User-Written Procedures
	The _STARTUP^MODE Procedure
	The _STARTUP Procedure
	Declaring Thread Procedures: _THREAD^PROC and _END^THREAD^PROC
	The Initial Command Thread Procedure: _COMMAND^PROC
	The Thread Termination Procedure: _COMMAND^TERMINATION^PROC

	Command Context Space
	Figure�3�4.� Command Context Area
	Accessing the Command Context Space
	Defining the Command Context Space
	The Input Area: _INPUT
	The Output Area: _OUTPUT

	The Input and Output List Member Structures
	Figure�3�5.� Object List Member Definitions

	Defining the Input List Member Structure: _INPUT^LM^HEADER
	Defining the Output List Member Structure: _OUTPUT^LM^HEADER
	Working With Lists
	Figure�3�6.� Logical View of a List

	Declaring a List: _LIST
	Initializing a List Structure: _INITIALIZE^LIST
	Accessing the First Member of a List: _FIRST^LM
	Accessing the Last Member of a List: _LAST^LM
	Accessing the Next List Member: _SUCCESSOR^LM
	Accessing the Previous List Member: _PREDECESSOR^LM
	Declaring a Pointer to a List: _LISTPOINTER
	Scanning a List
	Processing a List
	Maintaining a List
	Requesting Status About a List
	Initializing Object List Members: _FOBJECT^INIT
	Adding Text Items to an Output Object: _APPEND^OUTPUT
	Releasing Output List Members to the Frame: _RELEASE^OUTPUT
	Example: List Processing Library Services
	Suspending and Dispatching Thread Procedures

	Suspending Thread Procedures: Return Codes
	Dispatching Thread Procedures: Events
	Declaring Utility Procedures: _RC^TYPE
	State Management

	Determining Which Event(s) Caused the Current Dispatch
	Altering the Current Thread Procedure and Thread State
	Figure�3�7.� Altering Current Thread Procedure and Thread State Values
	Figure�3�8.� Dispatching New Thread Procedures
	Frame Services
	CI Communications
	Accessing Information About a CI Communication
	Timeout Intervals

	Command Thread Termination
	Reporting Errors
	Reporting Errors to the Frame
	Command-Terminating Errors
	Reporting Errors to EMS

	Overview of the Library Services
	Table�3�1.� Summary of I Process Development Library Services�(page�1 of�6)

	4 DSNM Command Requirements
	Scope of This Section
	Command Flow
	Command Components
	Action to be Performed
	Command Modifiers
	Table�4�1.� Command Modifiers

	Object List Modifiers
	Table�4�2.� HMOD Usage

	Response Modifiers
	Action Modifiers
	Object States
	The Input Object List
	Execution Objects

	Applying Object List Modifiers
	The User Area: Intermediate Lists
	The Output Object List

	Output Object Variable-Length Items
	Command Requirements

	The ABORT Command
	The AGGREGATE Command
	The INFO Command
	The START Command
	The STATISTICS Command
	The STATUS Command
	The STOP Command

	5 DSNM Process Startup Functions
	Scope of This Section
	DSNM Process Startup Message
	Process Parameters
	DSNM Configuration Parameters
	Parameter Types and Search Criteria

	Local Parameters and Search Patterns
	Global Parameters and Search Patterns
	Parameter Retrieval Library Services

	Accessing Standard Process Parameters: _PROCESS^PARAMS
	Accessing Standard Configuration Parameters: _DSNMCONF^PARAMS
	Retrieving Non-Standard Process Parameters: _GET^PROCESS^PARAM
	Retrieving Nonstandard Configuration Parameters: _GET^PARAM
	Retrieving Subsystem Configuration Parameters
	Retrieving CI Configuration Parameters

	6 Configuring a New Subsystem Into DSNM
	Scope of This Section
	New and Changed DSNM Configuration Information
	The $SYSTEM.SYSTEM.DSNM File
	Format of the DSNMCONF File
	DSNMCONF Records Relevant to I�Processes
	SUBSYSTEM Class Records
	process-class-CONFIG Records

	Adding Subsystem Objects to the DNS Database
	Defining an I�Process as a Pathway Server

	7 DSNMCom: The I Process Test Utility
	Scope of This Section
	What is DSNMCom?
	Before You Run DSNMCom
	DSNMCom Command Syntax
	DSNMCOM [/ run-option [, run-option] .../]
	[DSNM [section-name] | CONFIG [filename]]
	[[,] $process-name]
	[[;] [.] command]

	The DSNMCom Prompt
	Running DSNMCom Interactively
	Running DSNMCom From an Input File
	The Comment Character, COMMENT-CHAR
	COMMAND-CHAR COMMENT-CHAR comment-text

	Using the Break Key
	Setting Security Parameters in DSNMCom
	The DSNMCom Commands
	Table�7�1.� DSNMCom Commands
	CLOSE Command
	CLOSE

	EXIT Command
	EXIT

	FC Command
	FC

	HELP Command
	HELP [/ OUT filename /] [command or paramname]

	OPEN Command
	OPEN $process-name

	QUIT Command
	QUIT

	RESET Command
	RESET

	SET Command
	SET paramname paramvalue
	Table�7�2.� DSNMCom SET Parameters

	SHOW Command
	SHOW [paramname]

	Executing DSNM Commands
	DSNMCom Messages
	DSNM Parser Errors

	A DSNM Library Services
	Scope of This Appendix
	Table�A�1.� DSNM Library Services�(page�1 of�4)
	_ADD^CI
	_ADD^SUBSYS
	_ALLOFF
	_ALLON
	_ALLON^TURNOFF
	_ANYOFF
	_ANYON
	_ANYON^TURNOFF
	_APPEND^OUTPUT
	_BITDEF
	_CANCEL^SEND^CI
	_CANCEL^TIMEOUT

	_CI^DEF
	_CI^FILENUM
	_CI^ID
	_CI^IDPOINTER
	_CI^LASTERROR
	_CI^REPLYADDRESS
	_CI^REPLYLENGTH
	_CI^REPLYTAG
	_CLOSE^CI
	_COMMAND^CONTEXT^HEADER
	_COMMAND^PROC
	_COMMAND^TERMINATION^PROC
	_COMPILED^IN^TESTMODE
	_DEALLOCATE^LIST
	_DELETE^LM
	_DEPOSIT
	_DISPATCH^THREAD
	_DSNMCONF^PARAMS
	_EMPTY^LIST
	_EMS^EVENT^CRITICAL
	_EMS^EVENT^FATAL
	_EMS^EVENT^INFO
	_END^THREAD^PROC
	_END^THREAD^TERMINATION^PROC
	_EV^CANCEL
	_EV^CONTINUE
	_EV^IODONE
	_EV^STARTUP
	_EV^TIMEOUT
	_EXTRACT
	_FIRST^LM
	FOBJECT
	_FOBJECT^INIT
	_GET^LM
	_GET^PARAM
	_GET^PROCESS^PARAM
	_INITIALIZE^LIST
	_INPUT
	_INPUT^DEF
	_INPUT^LM^HEADER
	_ISNULL
	_JOIN^LIST
	KDSNDEFS
	_LAST^CI^ID
	_LAST^EVENTS
	_LAST^LM
	_LAST^TIMEOUT^TAG
	_LIST
	_LISTPOINTER
	_MEMBERSOF^LIST
	_MOVE^LIST
	_NOTNULL
	_NULL
	_NULL^LIST
	OBJECTLIST
	_OFF
	_ON
	_OPEN^CI
	_OUTPUT
	_OUTPUT^DEF
	_OUTPUT^LM^HEADER
	_POP^LM
	_POP^THREAD^PROCSTATE
	_PREDECESSOR^LM
	_PRIVATE^THREAD^EVENT
	_PROCESS^PARAMS
	_PUSH^LM
	_PUSH^THREAD^PROCSTATE
	_PUT^LM
	_RC^ABORT
	_RC^NULL
	_RC^STOP
	_RC^TYPE
	_RC^WAIT
	_REAL^LAST^EVENTS
	_RELEASE^OUTPUT
	_REPORT^INTERNAL^ERROR
	_REPORT^STARTUP^ERROR
	_RESTORE^THREAD^AND^DISPATCH
	_SAVE^THREAD^AND^DISPATCH
	_SEND^CI
	_SET^THREAD^PROC
	_SET^TIMEOUT
	_SIGNAL^EVENT
	_STARTUP
	_STARTUP^MODE
	_ST^INITIAL
	_ST^MIN^THREAD^STATE
	_SUBSYS^DEF
	_SUCCESSOR^LM
	_THREAD^CONTEXT^ADDRESS
	_THREAD^PROC
	_THREAD^STATE
	_THREAD^TERMINATION^CODE
	_THREAD^TERMINATION^PROC
	_TURNOFF
	_TURNON
	_UNGET^LM
	_UNPOP^LM
	_XADR^EQ
	_XADR^NEQ

	B DSNM Error Codes
	Scope of This Appendix
	Reporting Errors
	What to Prepare Before Contacting Your Tandem Support Representative
	ZDSN Error Codes
	-nnn
	0�ZDSN^ERR^NOERR
	-30�ZDSN^ERR^CMD^MISMATCH
	-34�ZDSN^ERR^INTERNAL^ERR
	-35�ZDSN^ERR^SUBSYSTEM^ERR
	-44 ZDSN^ERR^TKN^VAL^INV
	-45 ZDSN^ERR^TKN^REQ
	-51�ZDSN^ERR^SPI^ERR
	-55�ZDSN^ERR^OBJNAME^INV
	-56�ZDSN^ERR^OBJTYPE^NOT^SUPPORTED or ZDSN^ERR^OBJ^NOT^SUPP
	-60�ZDSN^ERR^MEMORY or ZDSN^ERR^NO^MEM^SPACE
	-64�ZDSN^ERR^FS^ERR
	-67�ZDSN^ERR^CMD^TIMED^OUT
	-69�ZDSN^ERR^CMD^NOT^SUPP
	-71 ZDSN^ERR^ALLOCATESEGMENT^ERR
	-76�ZDSN^ERR^BADCOMMAND
	-77�ZDSN^ERR^UNSUPPORTED^BY^SUBSYS
	-78�ZDSN^ERR^UNSUPPORTED^BY^I
	-79�ZDSN^ERR^DATA^INTEGRITY
	-81�ZDSN^ERR^MISSING^OBJTYPE
	-82�ZDSN^ERR^BADOBJTYPE
	-86�ZDSN^ERR^REQ^KEYWORD^MISSING
	-88�ZDSN^ERR^DUP^KEYWORD
	-202 ZDSN^ERR^OBJECTTOOLONG or ZDSN^ERR^OBJTOOLONG
	-204 ZDSN^ERR^BADARGUMENT
	-206�ZDSN^ERR^NOTPUSHED
	-207�ZDSN^ERR^LIB^BADVALUE^OMITTED
	-212 ZDSN^ERR^SYNTAX
	-214 ZDSN^ERR^RESERVEDWORD
	-216 ZDSN^ERR^CMDERROR
	-217 DSN^ERR^BADLOGON

	Messages From the DSNM Parser

	C Data Definition Language (DDL)- Defined DSNM SPI Components
	Scope of This Appendix
	Commands
	Modifiers
	HMOD Values
	EMOD Values
	SMOD Values
	RMOD Values
	AMOD Values

	Command Object DDL
	DSNM State Values
	Error Codes
	AGGREGATE Counters
	Response Item Types
	DDL Definitions for DSNM Character String Components

	D Sample I Process Program Code
	Scope of This Appendix
	Overview of the SPIFFY Subsystem
	Characteristics of SPIFFY Objects
	SPIFFY Subsystem Programmatic Interface Commands
	Command and Response Message Formats
	SPIFFY Subsystem Literal Definitions

	SPIFFY I Process Design
	State Mapping
	Implementing DSNM Commands

	Managing SPIFFY Through DSNM: Sample Command Output
	Using DSNMCom to Test the SPIFFY I Process
	DSNM STATUS Command Output

	Sample User-Written Code for SPIFFY Subsystem Interface Process
	Configuring SPIFFY Into DSNM

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	X
	Z
	Special Characters
	1.�Overview of DSNM
	2.�DSNM Commands
	3.�I Process Development Process
	4.�DSNM Command Requirements
	5.�DSNM Process Startup Functions
	6.� Configuring a New Subsystem Into DSNM
	7.� DSNMCom: The I Process Test Utility
	A.�DSNM Library Services
	B.�DSNM Error Codes
	C.� Data Definition Language (DDL)-Defined DSNM SPI Components
	D.�Sample I Process Program Code
	Index����Index�1
	Examples
	Figures
	Tables

	1 Overview of DSNM
	2 DSNM Commands
	3 I Process Development Process
	4 DSNM Command Requirements
	5 DSNM Process Startup Functions
	6 Configuring a New Subsystem Into DSNM
	7 DSNMCom: I�Process Test Utility
	A DSNM Library Services
	B DSNM Error Codes
	C DDL-Defined DSNM SPI Components
	D Sample I Process Program Code
	Index
	DSNM
	DSNM Subsystem Interface Development Guide
	D30.03

