
TNS/E Native
Application Conversion
Guide
Abstract

This manual introduces the TNS/E native development and execution environments
and explains how to convert existing TNS applications to TNS/E native applications.

Product Version

N.A.

Supported Release Version Updates (RVUs)

This publication supports H06.03 and all subsequent H-series RVUs until otherwise
indicated by its replacement publication.

Part Number Published

529659-003 August 2010

Document History
Part Number Product Version Published

529659-002 N.A. July 2005

529659-003 N.A. August 2010

TNS/E Native Application
Conversion Guide
Glossary Index Examples Figures Tables
What’s New in This Manual vii
Manual Information vii
New and Changed Information vii

About This Manual ix
Audience ix
Purpose x
Organization xi
For More Information xii

Notation Conventions xiii

1. Introduction to Native Mode
Summary of Execution Modes 1-2

Underlying Native Mode Structure for All Programs 1-3
Differences Between Accelerated and Native Object Code 1-4

Native Development Environment 1-4
pTAL Compiler 1-5
Native C Compiler 1-6
Native C++ Compiler 1-6
Native COBOL Compiler 1-7
 Native C Run-Time Library 1-7
Native Linker (eld Utility) 1-8
Native Object File Tool (enoft Utility) 1-8
ETK 1-9
Native Mode Debugging Tools 1-10
Visual Inspect 1-10
Native Inspect 1-11
SQL Compiler 1-12
Data Definition Language (DDL) 1-12

Native Architecture Features 1-12
Native Process Environment 1-12
Native Object File Format 1-16
 Hewlett-Packard Company—529659-003
i

Contents 2. Developing a Conversion Strategy
Native Architecture Features (continued)
Signals Facility 1-16

DLLs 1-17
Native Mode Conversion Considerations 1-18
KMSF 1-19

Benefits of Native Mode 1-21
Constraints of Native Mode 1-22

2. Developing a Conversion Strategy
Determining Which Programs to Convert 2-1
Preparing Programs for Conversion 2-2
Planning System Resources 2-2
Maintaining Common Source Code for TNS and TNS/E Native Compilers 2-3
Adjusting for Increased DCT Limits 2-4
Determining Optimization Levels 2-5
Determining Data Alignment 2-6
Converting Programs With Misaligned Data 2-7
Tuning the Performance of Native Programs 2-8

Detecting Compatibility Traps 2-8
Eliminating Compatibility Traps 2-8

3. C and C++ Conversion Tasks
Using the Native C and C++ Compilers 3-2
Converting Code to Use 32-Bit Pointers and Integers 3-3
Using IEEE Floating Point Format 3-4
Replacing Obsolete External Function Declarations 3-5
Replacing Obsolete Keywords 3-5
Changing Use of _cc_status for Return Values 3-5
Replacing Calls to Obsolete C Library Supplementary Functions 3-7
Replacing Calls to Obsolete C Library Guardian Alternate-Model I/O Functions 3-8
Checking Calls to Changed C Library Functions 3-10

Functions Having Different Behavior 3-10
Using the setjmp() and longjmp() Functions 3-11
Using the semctl() Function 3-11

Changing Programs That Use Guardian and OSS Environment Interoperability 3-12
Changing Code That Relies on Arithmetic Overflow Traps 3-12
Using Active Backup Programming in C 3-13
Replacing Obsolete C++ Library Operations 3-13
Using the Tools.h++ Class Library 3-13
Specifying Pragmas or Flags 3-14
TNS/E Native Application Conversion Guide—529659-003
ii

Contents 3. C and C++ Conversion Tasks (continued)
3. C and C++ Conversion Tasks (continued)
Checking Changed Pragmas 3-15
Removing Obsolete Pragmas 3-16

4. Converting COBOL Programs
COBOL Compiler Overview 4-1
Converting COBOL Programs 4-2
Changing the Source Program 4-4

General Conversion Tasks 4-4
Removal Required 4-4
Possible Changes Required 4-5
Removal Optional 4-9
New Features 4-10

5. Converting TAL to pTAL
Using the pTAL Compiler 5-1
Required Changes 5-1

6. Converting a TNS User Library
User Library Differences 6-1
Building a User Library 6-1
Specifying a User Library 6-3

7. Converting Data Definition Language (DDL)
Background Information 7-1
Generating New Host-Language Source Code Files 7-2
Compiling With New Host-Language Source Code Files 7-3

8. Converting Programs That Run in the Common Run-Time
Environment
Converting pTAL Programs to Run in the CRE 8-1
Specifying Header Files 8-2
Replacing Obsolete CRE Functions 8-2

Standard Math Functions 8-3
String Functions 8-5
Memory Block Functions 8-7
Exception-Handling Functions 8-8
$RECEIVE Functions 8-8
Sixty-Four-Bit Logical Operation Functions 8-8
Decimal-Conversion Functions 8-8
TNS/E Native Application Conversion Guide—529659-003
iii

Contents 9. Converting Programs That Share Data
9. Converting Programs That Share Data
Sharing Data Between TNS and TNS/E Native Programs 9-1
Sharing Data Between pTAL Programs and Native C or C++ Programs 9-2

10. Converting Programs With Guardian API Calls
Replacing Obsolete Procedures 10-1

ADDRTOPROCNAME 10-2
ARMTRAP 10-2
CHECKPOINT 10-3
CHECKPOINTMANY 10-3
CURRENTSPACE 10-4
FORMATDATA 10-4
LASTADDR 10-4
LASTADDRX 10-4
XBNDSTEST 10-4
XSTACKTEST 10-4

Using the INITIALIZER Procedure 10-5
Using Sequential I/O Procedures 10-5

CHECK^FILE 10-5
SET^FILE 10-6

Using Procedures Enhanced to Support the Native Architecture 10-7
Using Procedures Affected by KMSF 10-7
Using Procedures With pTAL Address Types 10-8
Writing Multithreaded Programs 10-9
Calling Code You Add to the System Library 10-9
Adjusting for Increased DCT Limits 10-9

11. OSS API and Utilities Conversion Tasks
Specifying Compilation System Flags 11-1

COBOL Compilation System 11-1
Native C Compilation System 11-3

Using System Calls Enhanced to Support the Native Architecture 11-4
Specifying Compiler Pragmas 11-4
Specifying Files in the Guardian File System (/G) 11-5
Specifying SQL Compilation 11-5
Compiling and Linking for Pthreads 11-6
TNS/E Native Application Conversion Guide—529659-003
iv

Contents Glossary
Glossary

Index

Examples
Example 3-1. Examining _cc_status 3-6
Example 5-1. pTAL Compiler Listing With Syntax Checking 5-2

Figures
Figure 1-1. Native Mode Benefits All Programs 1-3
Figure 1-2. Run-Time Library Organization 1-19

Tables
Table 1-1. Development Environment Comparison 1-5
Table 1-2. Comparing Swap for TNS and Native Processes 1-20
Table 3-1. Obsolete C Supplementary Functions 3-7
Table 3-2. Obsolete Guardian Alternate-Model I/O Functions 3-9
Table 3-3. Changed Pragmas 3-15
Table 3-4. Obsolete Pragmas 3-16
Table 8-1. Obsolete Standard Math Functions 8-3
Table 8-2. Obsolete String Functions 8-5
Table 8-3. Obsolete Memory Block Functions 8-7
Table 11-1. COBOL Flag Changes Required: TNS to TNS/E 11-2
Table 11-2. c89 Flag Changes Required: TNS to TNS/E Native 11-3
TNS/E Native Application Conversion Guide—529659-003
v

Contents
TNS/E Native Application Conversion Guide—529659-003
vi

What’s New in This Manual

Manual Information
TNS/E Native Application Conversion Guide

Abstract

This manual introduces the TNS/E native development and execution environments
and explains how to convert existing TNS applications to TNS/E native applications.

Product Version

N.A.

Supported Release Version Updates (RVUs)

This publication supports H06.03 and all subsequent H-series RVUs until otherwise
indicated by its replacement publication.

Document History

New and Changed Information

New in the H06.21/J06.10 revision:

• Added information throughout the manual to include c99 compiler support.

Part Number Published

529659-003 August 2010

Part Number Product Version Published

529659-002 N.A. July 2005

529659-003 N.A. August 2010
TNS/E Native Application Conversion Guide—529659-003
vii

What’s New in This Manual New in the H06.21/J06.10 revision:
TNS/E Native Application Conversion Guide—529659-003
viii

About This Manual
This manual introduces the TNS/E native development and execution environments
and explains how to convert existing TNS applications to TNS/E native applications.

This manual applies to all TNS programs; those that run on a TNS/R system and those
that run on a TNS/E system. The information in this manual applies only to conversion
to TNS/E native mode, although converting a TNS program to TNS/R native mode is
similar. For details on converting a TNS program to TNS/R native mode, see the
TNS/R Native Application Migration Guide.

This manual describes changes required to convert a program to TNS/E native mode.
It does not describe changes for other products and subsystems such as
NonStop SQL/MP, HP NonStop TS/MP, and HP NonStop TCP/IP, which must be made
regardless of whether a program runs in TNS mode or native mode. Depending on the
RVU from which you are migrating your program, additional changes might be
required. For more information, see a product or subsystem’s documentation set and
the RVU documentation.

Audience
This manual is intended for those who manage or write applications for HP NonStop
systems. The reader is assumed to be familiar with the HP documentation for the
languages in which the programs are written, which are:

HP Document Compiler T Number

C/C++ Programmer’s Guide TNS C T9255

TNS C++ T9541

TNS c89 T8629

TNS/E c89,c99 T8164

TNS/E CCOMP T0549

TNS/E CPPCOMP T0549

COBOL Manual for TNS/E Programs TNS COBOL85 T9257

TNS cobol T8498

TNS/E ECOBOL T0356

TNS/E ecobol T0356

Data Definition Language (DDL) Reference Manual DDL T9100

pTAL Reference Manual TNS/E EpTAL T0561

TAL Reference Manual TNS TAL T9250

TAL Programmer’s Guide
TNS/E Native Application Conversion Guide—529659-003
ix

About This Manual
Purpose
This document is designed to help you perform these tasks:

• Learn about the TNS/E native execution and development environment and how it
differs from the TNS environment.

• Determine which programs can be converted and the effort required to convert
them.

• Plan a conversion strategy.

• Convert programs written in C and C++ from TNS to native mode.

• Convert programs written in COBOL from TNS to native mode.

• Convert Transaction Application Language (TAL) programs to pTAL (portable TAL)
programs.

• Convert user libraries.

• Use the Data Definition Language (DDL) to support TNS and native programs.

• Make changes in the Guardian application program interface (API), Open System
Services (OSS) API and utilities, and Common Run-Time Environment (CRE) API
required to convert programs to TNS/E native mode.

• Enable TNS and native programs to share data.

The manual assumes that you are familiar with the programming languages, compilers,
and tools used to create the programs you plan to convert to TNS/E native mode.

This manual does not describe RVU installation, configuration, and conversion or
migration issues that are not related to converting an existing application to TNS/E
native mode. For information on these issues, see:

• H06.nn Release Version Update Compendium
• H06.nn Software Installation and Upgrade Guide for a given RVU
TNS/E Native Application Conversion Guide—529659-003
x

About This Manual
Organization

Section Explains

Section 1, Introduction to Native Mode TNS/E native development and execution
environments, features of TNS/E native
architecture, and benefits and constraints of
TNS/E native mode

Section 2, Developing a Conversion Strategy How to prepare programs for conversion,
plan system resources, determine which
programs to convert, maintain common
TNS and native source files, and maximize
the performance of TNS/E native programs

Section 3, C and C++ Conversion Tasks How to convert NonStop C and NonStop
C++ programs to TNS/E native mode

Section 4, Converting COBOL Programs How to convert NonStop COBOL programs
to TNS/E native mode

Section 5, Converting TAL to pTAL How to convert TAL programs to pTAL

Section 6, Converting a TNS User Library How to convert a TNS user library to a
TNS/E native user library

Section 7, Converting Data Definition
Language (DDL)

How to use DDL to generate files for TNS
and TNS/E native compilers

Section 8, Converting Programs That Run in
the Common Run-Time Environment

CRE API changes required to convert a
program to TNS/E native mode

Section 9, Converting Programs That Share
Data

How TNS and native programs can share
data

Section 10, Converting Programs With
Guardian API Calls

Guardian API changes required to convert
a program to TNS/E native mode

Section 11, OSS API and Utilities Conversion
Tasks

OSS API and utilities changes required to
convert an OSS program to TNS/E native
mode
TNS/E Native Application Conversion Guide—529659-003
xi

About This Manual
For More Information

Manual Explains (page 1 of 2)

Object Code Accelerator (OCA)
Manual

How to improve performance of TNS programs
running on TNS/E systems (converting them to
TNS/E native mode is preferable)

Binder Manual How to use the stand-alone Binder product to bind
compilation units (or modules) that were compiled
with TNS compilers

C/C++ Programmer’s Guide The NonStop C and NonStop C++ programming
languages, compilers, and run-time libraries

COBOL Manual for TNS/E Programs The COBOL programming language, compilers,
and run-time libraries

CRE Programmer’s Guide The Common Run-Time Environment (CRE), a set
of run-time services that enable mixed-language
programming and support the language-specific
run-time libraries

Data Definition Language (DDL)
Reference Manual

How to use the Data Definition Language (DDL) to
define data objects and translate them into source
code

eld Manual How to use the eld utility to link TNS/E native
object files.

eNOFT Manual How to use the enoft utility to view TNS/E native
object files

Guardian Procedure Calls Reference
Manual

The syntax and semantics of most Guardian
procedure calls

Guardian Programmer’s Guide How to write programs for the Guardian
environment

Guardian C Library Calls Reference
Manual

The syntax and semantics of the Guardian TNS
HP C run-time library

Guardian Native C Library Calls
Reference Manual

The syntax and semantics of the Guardian TNS/E
native HP C run-time library

H06.nn Release Version Update
Compendium

New features, migration issues, and fallback
considerations for RVU H06.nn

H-Series Application Migration Guide How to migrate TNS and TNS/R programs from G-
series systems to H-series systems.

H06.nn Software Installation and
Upgrade Guide

How to install an H06.nn RVU of the HP NonStop
operating system on an HP Integrity NonStop
server

Native Inspect Manual How to debug programs using the Native Inspect
symbolic debugger
TNS/E Native Application Conversion Guide—529659-003
xii

About This Manual Notation Conventions
Notation Conventions

Hypertext Links
Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

This requirement is described under Backup DAM Volumes and Physical Disk
Drives on page 3-2.

KMSF Manual How to use NSKCOM utility to configure and
manage the swap volumes used by the Kernel-
Managed Swap Facility (KMSF)

Inspect Manual How to debug programs using the Inspect source-
level and machine-level interactive debugger

Open System Services System Calls
Reference Manual

The syntax and semantics of part of the HP
NonStop Open System Services (OSS) API,
including the ISO/ANSI NonStop C run-time library
calls

Open System Services Porting Guide How to port C programs from other UNIX vendors
to the OSS environment

Open System Services Programmer’s
Guide

How to write programs for the OSS environment

Open System Services Shell and
Utilities Reference Manual

The OSS shell and utilities

Open System Services System Calls
Reference Manual

The syntax and semantics of part of the OSS API

pTAL Conversion Guide How to convert TAL code to pTAL code

pTAL Guidelines for TAL
Programmers

How to write TAL code that can be converted later
to pTAL with as few changes as possible

pTAL Reference Manual The syntax and semantics of the pTAL language
and how to run the pTAL compiler

Software Internationalization Guide Software internationalization standards and
facilities available on NonStop systems

TAL Reference Manual Syntax descriptions and error messages of TAL

TAL Programmer’s Guide How to write TAL programs

TACL Reference Manual The HP Tandem Advanced Command Language
(TACL), which provides an interface to the NonStop
operating system

Visual Inspect Online Help How to use the Visual Inspect PC-based symbolic
debugger

Manual Explains (page 2 of 2)
TNS/E Native Application Conversion Guide—529659-003
xiii

About This Manual HP Encourages Your Comments
HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to
providing documentation that meets your needs. Send any errors found, suggestions
for improvement, or compliments to docsfeedback@hp.com.

Include the document title, part number, and any comment, error found, or suggestion
for improvement that you have concerning this document.
TNS/E Native Application Conversion Guide—529659-003
xiv

1 Introduction to Native Mode
TNS/E native mode enables you to write programs that are fully optimized for Integrity
NonStop servers that use the TNS/E architecture. The term TNS/E native means the
program uses the process, memory, and instruction set architectures that are native to
Intel® Itanium® processors. Throughout the rest of this manual, the terms native and
native mode are used to mean TNS/E native and TNS/E native mode, respectively.
The TNS/E qualifier is used only when necessary to contrast or compare with TNS/R
native mode.

This manual applies to all TNS programs; those that run on a TNS/R systems and
those that sun on a TNS/E system. The information in this manual applies only to
conversion to TNS/E native mode, although converting a TNS program to TNS/R
native mode is similar. For details on converting a TNS program to TNS/R native
mode, see the TNS/R Native Application Migration Guide.

Native compilers and tools are used to generate native programs. Other tools have
been enhanced to support native programs. Native programs can be written in pTAL (a
variant of TAL), C, C++, and COBOL. Native programs consist entirely of Intel®
Itanium® instructions and do not have TNS architecture-specific attributes.

This section discusses:

• Summary of Execution Modes on page 1-2
• Native Development Environment on page 1-4
• Native Architecture Features on page 1-13
• Benefits of Native Mode on page 1-22
• Constraints of Native Mode on page 1-23
TNS/E Native Application Conversion Guide—529659-003
1-1

Introduction to Native Mode Summary of Execution Modes
Summary of Execution Modes
A TNS process—a process that runs in TNS interpreted mode or TNS accelerated
mode—is initiated by running a TNS interpreted or accelerated object file.

A native process—a process that runs in native mode—is initiated by running a native
object file. Native object files consist entirely of Intel® Itanium® instructions. Native
processes do not maintain TNS architecture-specific constructs.

TNS/E systems support these execution modes:

Because of architectural differences between the execution modes, TNS interpreted
object code, accelerated object code, and native object code cannot be mixed in one
program file. A native program can contain only native object code.

Mode Characteristics of Mode

TNS interpreted
mode

• Programs generated by TNS compilers.

• Programs use TNS process and memory architecture.

• Programs consist of TNS object code.

• Programs consist of TNS instructions. Millicode routines implement
TNS instructions on Itanium processors.

TNS accelerated
mode

• Programs generated by TNS compilers and processed by the Object
Code Accelerator (OCA).

• Programs use TNS process and memory architecture.

• Programs consist of TNS object code and accelerated object code.

• Programs consist of TNS instructions and equivalent OCA-
generated Itanium instructions. Programs execute Itanium
instructions directly on Itanium processors. Programs transition to
TNS mode when OCA is unable to generate equivalent Itanium
instructions.

Native mode • Programs generated by native compilers.

• Programs use native process and memory architecture.

• Programs consist of native object code.

• Programs consist of Itanium instructions which run directly on
Itanium processors.
TNS/E Native Application Conversion Guide—529659-003
1-2

Introduction to Native Mode Underlying Native Mode Structure for All Programs
Underlying Native Mode Structure for All Programs
As shown in Figure 1-1, in H-series RVUs, HP has converted nearly all system code,
system library routines, and other products to run in native mode. (Shaded regions in
the figure indicate code that runs in native mode.) Therefore, interpreted and
accelerated object code benefit from the increased performance of the native
architecture without a single line of source change or recompilation.

While native mode offers many benefits, you are not required to convert your programs
to native mode. H-series RVUs continue to support the TNS compilers and tools. You
can continue to create and run TNS interpreted and accelerated object code and gain
the performance benefits provided by HP software that has been converted to native
mode.

Figure 1-1. Native Mode Benefits All Programs

NonStop Operating System

Transaction
Services

Networking
Services

Database
Services

Guardian API Open System Services API

TNS Interpreted
Object Code

VST001.vsd

TNS Accelerated
Object Code

Native
Object Code
TNS/E Native Application Conversion Guide—529659-003
1-3

Introduction to Native Mode Differences Between Accelerated and Native Object
Code
Differences Between Accelerated and Native Object Code
While both accelerated and native object code execute Itanium instructions, most
native object code has a significant performance advantage over accelerated object
code. The OCA cannot produce Itanium instructions for TNS instruction sequences
whose exact meaning cannot be determined until run time. In such cases, a process
makes a transition into TNS code and executes the TNS instructions through millicode
routines. To enable this transition to occur, the accelerated object code maintains TNS
architecture-specific constructs, such as the P and ENV registers.

Native object code consists entirely of Itanium instructions. Transitions into TNS code
do not occur, so TNS architecture-specific constructs are not maintained. Additionally,
OCA must base its Itanium instruction sequences, data layout, and code optimizations
on object code. The native compilers base their Itanium instructions sequences, data
layout, and code optimizations on source code. For more information on OCA, see the
Object Code Accelerator (OCA) Manual.

Native Development Environment
A development environment comprises the tools used to compile, link, optimize, and
debug a program and the run-time libraries available to a program. The native
development environment includes:

• pTAL Compiler on page 1-5

• Native C Compiler on page 1-6

• Native C++ Compiler on page 1-6

• Native COBOL Compiler on page 1-7

• Native C Run-Time Library on page 1-8

• Native Linker (eld Utility) on page 1-8

• Native Object File Tool (enoft Utility) on page 1-9

• ETK on page 1-9

• Native Mode Debugging Tools on page 1-10

• SQL Compiler on page 1-12

• Data Definition Language (DDL) on page 1-12
TNS/E Native Application Conversion Guide—529659-003
1-4

Introduction to Native Mode pTAL Compiler
Table 1-1 compares the tools used in the TNS and native development environments:

The following subsections describe the components of the native development
environment.

pTAL Compiler
The Portable Transaction Application Language (pTAL) is a dialect of TAL. pTAL does
not depend on TNS architecture-specific constructs. pTAL introduces new constructs
that replace TNS architecture-specific TAL constructs. The pTAL compiler reads pTAL
source code and creates native object code. The command line syntax of the pTAL
compiler is similar to that of the TAL compiler.

The pTAL compiler syntax-checking mode helps you convert TAL to pTAL. In this
mode, the compiler identifies most source code changes and suggests a method to
recode in pTAL.

You can run the pTAL compiler in the Guardian environment and on the PC as part of
the HP Enterprise Toolkit - NonStop Edition (ETK) (the HP Tandem Development Suite
is not supported on H-series systems). The EPTAL command runs the compiler in the

Table 1-1. Development Environment Comparison

TNS Development Environment Native Development Environment

TNS C compiler (c) Native C compiler (CCOMP)

TNS c89 utility (TNS/R systems only) Native c89 utility

Native c99 utility (TNS/E only)

cprep and cfront for C++ Native C++ compiler (CPPCOMP)

TNS COBOL compiler (COBOL85) Native COBOL compiler (ECOBOL)

TNS cobol utility (TNS/R systems only) Native ecobol utility

TAL compiler pTAL compiler (EPTAL)

Binder Native linker (eld utility)
Native object file tool (enoft utility)

Object Code Accelerator Not needed because native compilers produce
optimized Itanium object code

Inspect and Visual Inspect symbolic
debuggers

Debug machine-level debugger (TNS/R
systems only)

Native Inspect and Visual Inspect symbolic
debuggers

Debug not supported

SQL compilers: SQLCOMP for SQL/MP,
MXCOMP for SQL/MX

SQL compilers: SQLCOMP for SQL/MP,
MXCOMP for SQL/MX

DDL DDL

CROSSREF Not needed because native compilers have
directives or pragmas to produce listings, and
enoft utility produces cross-reference listings
TNS/E Native Application Conversion Guide—529659-003
1-5

Introduction to Native Mode Native C Compiler
Guardian environment. The EPTAL compiler command line syntax is similar to that of
the TAL compiler command. The eptal utility runs the pTAL compiler on the PC.

ETK enables you to compile and link programs on a PC (for details, see the pTAL
Reference Manual). You can copy the object files to a TNS/R or TNS/E system and
execute them in the Guardian and OSS environments.

The TNS/E pTAL compiler provides a syntax-checking mode that helps you convert
TAL to pTAL. In this mode, the compiler identifies most source code changes and
suggests a method to recode pTAL.

Native C Compiler
The native C compiler accepts C language source files that comply with either the
ISO/ANSI C language standard (ISO/IEC 9899:1990), ISO/ANSI C language standard
(ISO/IEC 9899:1999), or Common Usage C (sometimes called Kernighan and
Ritchie C or K&R C). The native C compiler also accepts HP language extensions for
NonStop systems.

You can run the native C compiler in the Guardian and OSS environments and on the
PC as part of ETK (the Tandem Development Suite is not supported on H-series
systems). The CCOMP command runs the compiler in the Guardian environment. The
native C compiler command line syntax is similar to that of the TNS C compiler. The
native c89 or native c99 utility runs the compiler in the OSS environment. The native
c89 or native c99 utility syntax is similar to that of the TNS c89 utility or the TNS/E
c99 utility.

ETK provides cross compilers that enable you to compile and link programs on a PC
under the Microsoft Windows operating system for execution on the Integrity NonStop
server. You can compile programs targeted for either the TNS/R or TNS/E system,
copy the object files to the appropriate Integrity NonStop server, and execute them in
the Guardian and OSS environments.

The native C compiler supports programs that define the size of pointers and type int
as 32 bits (programs compiled with the pragma WIDE). Existing TNS C language
programs that define pointers or type int as 16 bits must be changed. Few other C
language source code changes are required to use the native C compiler.

The H-series RVUs do not support the NMCMT native mode conversion tool, which is
available on TNS/R systems for converting programs to TNS/R native mode.

Native C++ Compiler
The native C++ compiler accepts C++ language source files that comply with the
ISO/ANSI C++ language standard (ISO/IEC 14882:1998). The native C++ compiler
also accepts HP language extensions for NonStop systems.

You can run the native C++ compiler in the Guardian and OSS environments and on
the PC as part of ETK (the Tandem Development Suite is not supported on H-series
systems). The CPPCOMP command runs the compiler in the Guardian environment.
TNS/E Native Application Conversion Guide—529659-003
1-6

Introduction to Native Mode Native COBOL Compiler
The native C++ compiler command line syntax is similar to that of the TNS C compiler
and Cfront. The native c89 utility runs the compiler in the OSS environment and on the
PC. The native c89 utility syntax is similar to that of the TNS c89 utility.

ETK provides cross compilers that enable you to compile and link programs on a PC
under the Windows operating system for execution on the Integrity NonStop server.
You can compile programs targeted for either the TNS/R or TNS/E system, copy the
object files to the appropriate Integrity NonStop server, and execute them in the
Guardian and OSS environments.

The native C++ compiler supports programs that define the size of type int as 32 bits
(programs compiled with the pragma WIDE). Existing TNS C++ language programs
that define the type int as 16 bits must be changed. Few other C++ language source
code changes are required to use the native C++ compiler.

The native C++ compiler provides a more powerful and simplified development
environment than TNS Cfront. For example, you must run the C preprocessor, Cfront,
the TNS C compiler, Binder, and OCA to create an executable accelerated C++
program. In comparison, you run only the native C++ compiler and eld utility to create
an executable native C++ program.

The C and C++ native mode conversion tool, NMCMT, is not supported in H-series
RVUs.

Native COBOL Compiler
The native COBOL compiler accepts COBOL language source files that comply with
the ISO/ANSI COBOL85 Standard. The native COBOL compiler also accepts HP
language extensions for NonStop systems.

You can run the native COBOL compiler in the Guardian and OSS environments and
on the PC as part of ETK (the Tandem Development Suite is not supported in H-series
RVUs). The ECOBOL command runs the compiler in the Guardian environment. The
ECOBOL compiler command line syntax is similar to that of the TNS COBOL85
compiler command. The native ecobol utility runs the compiler in the OSS
environment and on the PC. The native ecobol utility syntax is similar to that of the
TNS cobol utility.

ETK provides cross compilers that enable you to compile and link programs on a PC
under the Windows operating system for execution on the Integrity NonStop server.
You can compile programs targeted for either the TNS/R or TNS/E system, copy the
object files to the appropriate Integrity NonStop server, and execute them in the
Guardian and OSS environments.
TNS/E Native Application Conversion Guide—529659-003
1-7

Introduction to Native Mode Native C Run-Time Library
 Native C Run-Time Library
The native C run-time library provides functions conforming to the ISO/ANSI C
Standard. It also contains functions conforming to the X/OPEN UNIX 95 specification
and HP extensions for NonStop systems to these standards.

The native C run-time library supports Guardian and OSS processes. The native C
run-time library is nearly identical for the Guardian and OSS environments and
therefore increases the interoperability between environments.

The native C run-time library does not have many of the nonstandard functions in the
Guardian TNS C run-time library. However, the native C library does have additional
functions from the X/OPEN UNIX 95 specification that are absent from the Guardian
and OSS TNS C libraries. The native C run-time library also provides additional local
sensitive functions and algorithmic code-set converters for use in internationalized
OSS applications. For details, see the Software Internationalization Guide.

The TNS and native C run-time libraries return the same error messages. The native C
run-time library returns additional errno return values.

Native Linker (eld Utility)
The native linker, eld, links one or more native position-independent code (PIC)
linkfiles (object files generated by the native compilers or by eld) to produce either a
loadfile or a linkable native object file. The loadfile is either a program or a dynamic-link
library (DLL) that can be loaded into memory and executed. (For more information, see
Native Object File Format on page 1-16.) eld can also modify process attributes, such
as HIGHPIN, of executable native object files and strip nonessential information from
native object files.

eld is used instead of Binder for native object files. Binder and eld have a different
syntax and operate on different object file types, but perform essentially the same
operations.

The TNS/E environment also provides a run-time loader, rld, that works with the
operating system to dynamically link and load PIC loadfiles and their requisite DLLs
into memory at execution time. You do not call rld directly (at the command prompt),
but you can access it programmatically through the rld run-time linking functions. For
more information about eld and rld, see the eld Manual and the rld Manual.

Unlike Binder, eld cannot replace individual procedures and data blocks in an object
file or build an object file from individual procedures and data blocks. eld operates on
procedures and data blocks, but only in terms of an entire object file.

eld does not support the Binder SELECT SEARCH behavior. In most cases, you can
use archive files (files created by the ar utility) to replace this behavior. For more
information on the differences between Binder and eld, see the eld Manual.

eld runs in the Guardian and OSS environments and on the PC, either at the
command prompt or as part of ETK. eld syntax and capabilities are nearly identical in
each environment.
TNS/E Native Application Conversion Guide—529659-003
1-8

Introduction to Native Mode Native Object File Tool (enoft Utility)
Native Object File Tool (enoft Utility)
The native object file tool, enoft, reads and displays information about native object
files. You can use enoft to:

• Determine the optimization level of procedures
• Display object code with corresponding source code
• List object file attributes
• List unresolved references

enoft runs in the Guardian and OSS environments. The enoft syntax and
capabilities are nearly identical in each environment.

ETK
The Enterprise Toolkit - NonStop Edition (ETK) is an integrated development
environment that enables you to build NonStop applications, on a PC running the
Windows operating system, for execution on a Integrity NonStop server. ETK is an
extension package to Visual Studio.NET and provides a graphical user interface (GUI)
in which you use menus and dialog boxes to select tools and options. ETK was
introduced with the G06.20 RVU and coexists with the Tandem Development Suite
(TDS) in subsequent G-series RVUs. In the H-series RVUs, only ETK is supported.
You must convert TDS projects to ETK projects when converting G-series TNS
programs to H-series native mode as described under ETK Migration Tool.

ETK supports the native C/C++, pTAL, and COBOL cross compilers and related tools.
The cross compilers can compile programs for the Guardian and OSS environments.
TNS compilers and tools are not available on the PC.

ETK Migration Tool
If you are still using TDS on a G-series system, you must convert to ETK when
converting to an TNS/E native mode. A migration tool is available to help you convert
TDS projects to equivalent ETK projects. The tool plugs into TDS. It can be obtained
from IPM Scout at no charge.

The terminology used by TDS and ETK differs somewhat. TDS works with “projects,”
which contain multiple “targets.” ETK works with “solutions”, which contain multiple
“projects.” TDS projects are mapped to ETK solutions, and TDS targets are mapped to
ETK projects.

The migration procedure involves converting TDS targets to ETK projects, then adding
the projects to an ETK solution. The ETK solution could be a newly created solution or
an existing solution.

Note. The TDS-to-ETK migration tool runs as part of TDS; therefore, you must install the tool
and perform the migration on a G-series system with TDS installed. The migration tool does
not require ETK to perform the migration.
TNS/E Native Application Conversion Guide—529659-003
1-9

Introduction to Native Mode Native Mode Debugging Tools
As part of the migration process, the tool ensures that all files pertaining to the TDS
target remain part of the ETK project. However, file properties for file types that are
unknown to ETK are not migrated. For every such file type, users must explicitly add
these file properties in ETK. The migration tool supports the following file extensions:
.cpp, .css, .tal, .cob, and .cbl.

Native Mode Debugging Tools
The TNS/E native environment offers two symbolic debugging tools: Native Inspect
and Visual Inspect. The TNS/R machine-level Debug facility is not supported on TNS/E
systems. However, both Native Inspect and Visual Inspect have been enhanced with
machine-level debugging capabilities and can be used as replacements for Debug.

The Inspect debugger is available on TNS/E systems, but can be used only for
debugging TNS processes. After converting a program to native mode, you must use
either Visual Inspect or Native Inspect.

Visual Inspect
Visual Inspect supports high-level symbolic debugging of TNS (interpreted and
accelerated) and native processes through a PC-based (GUI). Visual Inspect can also
be used for debugging TNS and native snapshot files. Most Visual Inspect commands
apply to both TNS and native processes. You can use Visual Inspect to debug
programs created by the PC cross compilers (C, C++, COBOL, and pTAL). For native
mode debugging, you can invoke Visual Inspect from within ETK.

Visual Inspect is the preferred application debugging tool in the TNS/E native
environment, and you are encouraged to do as much as possible of your native mode
development and debugging on the PC platform. Visual Inspect offers a simpler and
more intuitive user interface and more capabilities than the command line debuggers.
For example, working from a PC, you can use Visual Inspect to debug multiple
processes residing on the same or on different nodes in a network. The processes can
be TNS, TNS/R native, or TNS/E native. Inspect and Native Inspect do not provide this
capability.

The H-series product version of Visual Inspect has been enhanced for machine-level
debugging; you can use it for low-level debugging tasks on the PC that needed to be
done in previous RVUs on the Integrity NonStop server using Debug or Inspect.

Note. In the TDS project system, a file type can be independent of the file extension. For
example, a file1.cpp file can have the file type set as .cob. In this case, although the file as
a .cpp extension, it behaves as a COBOL file and is recognized as such by the COBOL cross
compiler. In the ETK project system, file type information is based solely on the file extension;
for example, ETK will always treat file1.cpp as a C++ file. For the migration tool to preserve
file semantics while migrating TDS targets, there cannot be any file in the TDS target that has
a mismatch between its extension and its type. On encountering the first such file, the tool
generates an error and the TDS target is not migrated.
TNS/E Native Application Conversion Guide—529659-003
1-10

Introduction to Native Mode Visual Inspect
For code compiled at optimization level 0 (no optimization) or optimization level 1
(intermediate optimization), you can perform the same operations for native processes
(using Visual Inspect) as for TNS process (using Inspect), including:

• Step through code
• Set breakpoints
• Display source
• Display variables

In addition, H-series Visual Inspect provides these machine-level capabilities:

• Set instruction breakpoints
• Display instruction code
• Display and modify data using a numeric (nonsymbolic) address
• Modify, format, and monitor registers
• Display and format data buffers as SPI or EMS buffers

Differences in the TNS and native process architectures result in differences in
registers and address ranges. Unlike TNS interpreted and accelerated code, TNS
architecture-specific constructs, such as TNS environment registers, do not exist in
native mode code.

At optimization level 2 (full optimization), machine-level debugging might be necessary
because of the effects of optimization. For example, variables might remain in registers
and never be written to memory. For more details on compiler optimization, see
Determining Optimization Levels on page 2-5.

The Inspect and Visual Inspect symbolic debuggers differ in these respects:

• User interface

The Inspect debugger uses a line-oriented command interpreter, while the Visual
Inspect debugger uses a GUI environment consisting of menus and icons that you
can select and click to perform tasks.

• Features and functions

Visual Inspect supports many but not all Inspect capabilities. Many commands
have become part of the GUI (for example, the ENV command).

For details on Visual Inspect capabilities, see the Visual Inspect online help.
TNS/E Native Application Conversion Guide—529659-003
1-11

Introduction to Native Mode Native Inspect
Native Inspect
Native Inspect is a command-line symbolic debugging tool that can be used for
debugging TNS/E native processes and snapshot files. It can be used for source
statement level debugging as well as machine-level debugging. Native Inspect is
intended as a replacement for the G-series Debug facility and the G-series Inspect
debugger for native mode debugging. The command name for Native Inspect is
eInspect.

Native Inspect provides most of the functionality of Inspect and Debug. However, the
Native Inspect command syntax differs from that of Inspect and Debug. The Native
Inspect syntax is based on the Open Source Foundation GDB debugger, a tool that is
widely used throughout the industry and is familiar to many application developers. In
most cases, you are encouraged to use Visual Inspect as your primary application
debugger. The primary advantage of Native Inspect is that it provides enhanced
scripting support in the form of the Tool Command Language (TCL), a widely used
scripting language, which enables you to automate many debugging tasks.

Note that any Inspect command files that you are currently using to automate
debugging operations must be converted to Native Inspect syntax.

See the Native Inspect Manual for details.

SQL Compiler
The HP NonStop SQL/MP compiler supports embedded SQL in TNS and native C and
COBOL programs. The HP NonStop SQL/MX compiler, available in the OSS and PC
environments, supports embedded SQL in native C, C++, and COBOL programs. You
cannot use embedded SQL in pTAL source code. For more information, see the
NonStop SQL/MP and NonStop SQL/MX manual sets.

Data Definition Language (DDL)
The H-series product version of the DDL compiler generates host-language source
files that can be used with both TNS and native programs. The DDL compiler inserts
pragmas in C and directives in pTAL and COBOL host-language source files to ensure
that the same data alignment is generated, regardless of whether a TNS or native
compiler is used. For details, see Section 7, Converting Data Definition Language
(DDL).

Note. Native Inspect cannot currently be used to debug COBOL programs. The only debugger
available to H-series COBOL programs is Visual Inspect.
TNS/E Native Application Conversion Guide—529659-003
1-12

Introduction to Native Mode Native Architecture Features
Native Architecture Features
The native architecture introduces these new features:

• Native Process Environment
• Native Object File Format on page 1-16
• Signals Facility on page 1-17
• DLLs on page 1-17
• KMSF on page 1-19

Native Process Environment
A process that runs in TNS interpreted mode or TNS accelerated mode—a TNS
process—consists entirely of TNS instructions or both TNS instructions and Object
Code Accelerator-generated Itanium instructions. A TNS process is initiated by
executing a TNS interpreted or TNS accelerated program.

A process that runs in native mode—a native process—consists entirely of native-
compiled Itanium instructions. A native process is initiated by executing a native
program. Unlike TNS processes, native processes do not use or emulate TNS
architecture-specific constructs, such as TNS registers or 16-bit addressing.

Differences between native and TNS processes are discussed next:

• Process Attributes on page 1-13
• Process Organization on page 1-13
• Code Segments on page 1-14
• Data Segments on page 1-15

Process Attributes
Native processes have the process attributes HIGHPIN ON, HIGHREQUESTERS ON,
and INSPECT ON by default. For many TNS processes, these process attributes are
set to OFF by default.

Process Organization
Executable code for a TNS/E native process is contained in these objects:

• The initial program of the process, called user code. This code is read from the
program file.

• Dynamic-link libraries (DLLs). These include:

° The system library, which contains system-related procedures and operating
system code that is accessible by the process using system procedure calls.
The system library consists of a set of implicit DLLs.

° Other DLLs supplied by HP, such as the C run-time library.

° User-created DLLs.
TNS/E Native Application Conversion Guide—529659-003
1-13

Introduction to Native Mode Native Process Environment
When a process is created, it occupies space in virtual memory. The basic
organization of a process is discussed next in terms of code spaces, which are
associated with the objects in the preceding list, and data spaces.

Code Segments
A process has distinct code segments that contain executable code. (Segments is the
term used for TNS/R and TNS/E native processes. In the TNS environment, the term
code spaces is used.) This table compares the code segments for TNS and TNS/E
processes:

Process Type Code Segments

TNS process on TNS/R
processor

UC (user code)

UL (user library)

SC (system code)

SL (system library)

SCr (system code RISC)

SLr (system library RISC

TNS process on TNS/E
processor

UC (user code)

UL (user library)

SC (system code)

SL (system library)

implicit DLLs

TNS/E native process UC (user code)

UL (DLL user library)

Implicit DLLs (correspond to TNS SCr and SLr on TNS/R system,
SC and SL on TNS/E system)

Public DLLs

Ordinary DLLs
TNS/E Native Application Conversion Guide—529659-003
1-14

Introduction to Native Mode Native Process Environment
Data Segments
When a process is created, several data segments are allocated for its use. This table
compares the data spaces for TNS and TNS/E processors:

:

The globals-heap segment in native processes is comparable to the user data segment
and the automatic extended data segment in TNS processes.

Process Type Data Segments

TNS process on
TNS/R processor

A user data segment, containing global data (for TAL, COBOL85, and
small memory-model C programs) and the user data stack for TNS
procedures

An automatic (compiler-generated) extended data segment,
containing extended global data and local data, and optionally a heap
(for C and C++ programs)

A main RISC stack segment, containing the stack for nonprivileged
native procedures

A privileged RISC stack segment, containing the stack for privileged
native procedures

A process file segment (PFS), used by the operating system

Optional program-allocated extended data segments (selectable or
flat segments)

TNS process on
TNS/E processor

A user data segment, containing global data (for TAL, COBOL85, and
small memory-model C programs) and the user data stack for TNS
procedures

An automatic (compiler-generated) extended data segment,
containing extended global data and local data, and optionally a heap
(for C and C++ programs)

A main memory stack for nonprivileged TNS/E native procedures.

A privileged memory stack for privileged procedures.

TNS/E native
process

A globals-heap segment, containing program global data and,
optionally, a heap

A main memory stack for nonprivileged TNS/E native procedures.

A privileged memory stack for privileged procedures.

A main register stack engine (RSE) backing store for nonprivileged
procedures

A privileged RSE backing store for privileged procedures

Zero or more DLL data segments

A process file segment (PFS), used by the operating system

Optional program-allocated extended data segments (selectable or
flat segments)
TNS/E Native Application Conversion Guide—529659-003
1-15

Introduction to Native Mode Native Object File Format
For native C and C++ programs, the native Common Run-Time Environment (CRE)
automatically manages a heap in the globals-heap segment. The heap is optional for
other programs.

TNS and Itanium stack growth is as follows:

• TNS stacks grow upwards (from lower to higher addresses).
• The Itanium RSE backing store grows upwards.
• Itanium memory stacks grow downwards.

On TNS/E processors, the main memory stack and the heap grow automatically as
needed, to a maximum size. The maximum size of each can be specified when a
process is created. The default limit for the TNS/E main memory stack is 2 MB. You
can increase the maximum stack size via an eld or PROCESS_LAUNCH_ parameter
up to a limit of 32 MB.

The heap can grow to the maximum size of the globals-heap segment less the size of
the global data. The maximum globals-heap size is 1.5 GB.

See the Guardian Programmer’s Guide for more information on TNS/E native
processes.

Native Object File Format
Native object files use a different file format from that of TNS interpreted or accelerated
object files. Native object files are in 64-bit executable and linking format (ELF), a
standard format used for UNIX object files, with HP extensions for NonStop systems.
The native object file format is the same in the Guardian and OSS environments and
on the PC as part of ETK. In the Guardian environment, native object files are type 800
files.

Native object files are either relinkable or executable, but not both. (TNS interpreted
and accelerated object files, by contrast, can be both relinkable and executable.) As
the name implies, a relinkable object file can be linked to produce an executable object
file, but it cannot be run. Likewise, an executable object file can be run, but it cannot be
linked to produce another executable object file.

The native compilers produce only relinkable object files. The eld utility can produce
either relinkable or executable object files. Relinkable object files can be used as eld
input again. Executable object files can be used as eld input for modifying executable
object file attributes only. Both relinkable and executable object files can be used as
noft input.

For details on the structure of native object files, see the eld Manual.
TNS/E Native Application Conversion Guide—529659-003
1-16

Introduction to Native Mode Signals Facility
Signals Facility
Certain critical error conditions occurring during process execution prevent normal
process execution. Most of these error conditions are unrecoverable. In TNS
processes, these errors cause the process to receive a trap. In native processes, these
errors cause the process to receive a signal. Native processes do not receive traps.

Signals are software interrupts that provide a way of handling asynchronous events,
such as timer expiration, detection of a hardware fault, abnormal termination of a
process, or any trap condition normally detectable by a TNS process. Each TNS trap
has a corresponding signal, although the trap number and the signal number are
different.

The Debug (TNS/R systems only) and Inspect debuggers display a debugging prompt
when a TNS process receives a trap. The Native Inspect and Visual Inspect debuggers
display a prompt when a native process receives a signal only if the process has
previously entered Native Inspect or Visual Inspect (for example, with a TACL RUND
or RUNV command). Otherwise, a termination message with the signal name and
number is displayed. Native Inspect and Native Inspect can be used to display and set
signal information when debugging. For details, see the Native Inspect Manual or the
Visual Inspect online help.

For information on signal behavior, see:

• ARMTRAP on page 10-2
• Guardian Programmer’s Guide

DLLs
All libraries in the TNS/E native environment are dynamic-link libraries (DLLs). A DLL is
a type of library that is constructed of position-independent code (PIC). PIC is code
that can be relocated in virtual memory at load time without alteration. All references in
PIC files to global or external symbols are made indirectly through addresses stored in
a data area so that the loader can find and bind them to reflect their virtual-memory
location at load time without modifying code. Shared run-time libraries (SRLs), by
contrast, are constructed of non-PIC and are bound to fixed virtual addresses for
execution. They cannot have their addresses modified at load time.

An important attribute of DLLs is that they can be dynamically loaded; that is, a running
program can load a DLL and gain access to its symbols. This capability means that
you do not need to load infrequently loaded DLLs when the application is loaded.
Instead, you can load and use these DLLs when required during execution and unload
them when they are no longer needed.

Like other types of libraries, DLLs provide functions and data needed by a program or
other DLLs. A DLL might be any of these:

• A library that supports a single program
• A library that is available to a project or a group with common computational needs
• A library that is available to all users
TNS/E Native Application Conversion Guide—529659-003
1-17

Introduction to Native Mode Native Mode Conversion Considerations
PIC and DLLs were introduced in the G06.20 RVU. Non-PIC and SRLs continue to be
supported in the G06.2x RVUs. On H-series systems, all native code is PIC, and all
native libraries are DLLs. Non-PIC and SRLs are not supported. DLLs on H-series
systems include:

• The system library, which is packaged as a set of implicit DLLs
• Other libraries supplied by HP, such as compiler run-time libraries
• All user-created libraries.

The TNS/E native compilers generate PIC object files (linkfiles), the TNS/E linker eld
creates executable loadfiles (programs or DLLs), and the loader and operating system
load and execute the results.

 For more information about building and using DLLs, see the DLL Programmer’s
Guide for TNS/E Systems.

Native Mode Conversion Considerations
Code that is configured in the system library for TNS processes is packaged in DLLs
for TNS/E native processes. Public libraries, such as the C run-time library, the
COBOL run-time library, the TCP/IP sockets library, the Tools.h++ class library, and
the OSS API are also packaged as DLLs for TNS/E native processes. No code
changes are required to use these DLLs. Certain HP-supplied libraries that have been
repackaged as DLLs have new names, which means that build scripts that reference
these libraries will need to change.

If your application uses a TNS user library, that library must be rebuilt as a DLL. See
Section 6, Converting a TNS User Library, for more information.

Figure 1-2 on page 1-19 illustrates how code that is bound into TNS C programs or
configured in the system library is configured in DLLs for TNS/E native C programs.
TNS/E Native Application Conversion Guide—529659-003
1-18

Introduction to Native Mode KMSF
As shown in Figure 1-2, the TNS C and CRE libraries are located in the system library.
The native C and CRE libraries are DLLs.

The memory and data-model dependent TNS C run-time library code is linked into the
program. Native programs support only one memory model and one data model, so
linking in run-time library code is unnecessary. Native C programs do require C run-
time library initialization code, which is located in the CRTLMAIN file (in the Guardian
environment) or the crtlmain.o file (in the OSS environment and on the PC). For
details on linking C programs, see the C/C++ Programmer’s Guide.

KMSF
A swap file is a disk file used for copying data between physical memory and disk
storage. Pages of memory are swapped to disk when physical memory is needed, and
swapped back to physical memory when the data is needed.

Beginning with the D40 RVU and continuing with the G-series and H-series RVUs, the
Kernel-Managed Swap Facility (KMSF) manages virtual memory using swap files
under its control. Each processor in a node has one or more kernel-managed swap
files that provides the swap space needed by TNS and native processes running on
the processor.

Figure 1-2. Run-Time Library Organization

C Run-Time Library
(Model-Independent)

CRE Library

C Run-Time Library
(Initialization)

Application
Code

C Run-Time Library
(Model-Dependent)

Application
Code

C Run-Time Library DLL

CRE Library DLL

TNS C Programs TNS/E Native C Programs

Application Program

System

002VST .VSD
TNS/E Native Application Conversion Guide—529659-003
1-19

Introduction to Native Mode KMSF
KMSF manages:

• The globals-heap segment and DLL instance data segments (variable and
constant) for TNS/E native processes

• The memory stack segment, RSE backing store segment, and privileged backing
store segment for TNS/E native processes

• The main stack segment and the privileged stack segment for TNS processes

• The user data segment for TNS processes

• The default extended data segment for TNS processes, unless it is explicitly
specified not to be managed by KMSF

• Program-allocated extended data segments (selectable or flat segments), such as
those allocated with the SEGMENT_ALLOCATE_ procedure, for TNS and native
processes, unless you explicitly specify them not to be managed by KMSF

For details on how programs can specify that their extended data segments not be
managed by KMSF, see the SEGMENT_ALLOCATE_ procedure in the Guardian
Procedure Calls Reference Manual.

KMSF benefits include speeding up process creation and deletion and reducing the
total size of swap files on disks.

You configure and manage the swap volumes used by KMSF with the NSKCOM utility.
KMSF emits EMS warnings when swap space is running low. For more information on
KMSF, see the KMSF Manual.

KMSF changes the control you have over process swap files. You can still specify the
space you need, but you cannot decide at process creation where the data is
swapped. As a result of this change, commands and procedures related to swap files
might have reduced or no effects. Swap file information from procedures and
commands might have different meanings for native processes. Table 1-2 provides an
overview of these changes. For more details, see the specific procedure or command.
TNS/E Native Application Conversion Guide—529659-003
1-20

Introduction to Native Mode KMSF
Table 1-2. Comparing Swap for TNS and Native Processes

How Specified Effect on TNS Processes Effect on Native Processes

RUN command SWAP
option

SWAP DEFINEs

Swap file parameters in
process creation procedures,
such as NEWPROCESS,
PROCESS_CREATE_, and
PROCESS_LAUNCH_

Managed by KMSF.
Ignored.

Value passed for
informational purposes

In some cases, specifies
the volume for temporary
files created by a process

Managed by KMSF. Ignored.

Value passed for informational
purposes

In some cases, specifies the
volume for temporary files
created by a process

RUN command EXTSWAP
option

Extended swap file
parameters in process
creation procedures, such as
PROCESS_CREATE_ and
PROCESS_LAUNCH_

Specifies the volume or
file for a process’s default
extended data segment

Managed by KMSF unless
an option, value, or file is
specified

Ignored. Native process
architecture does not have
extended swap space.

RUN command MEM option

?DATAPAGES directive

Memory pages parameters
in process creation
procedures, such as
NEWPROCESS,
PROCESS_CREATE_, and
PROCESS_LAUNCH_

Specifies the number or
maximum number of data
pages to be allocated for a
process’ user data stack

Managed by KMSF. Ignored.

Similar heap attribute values
set with nld utility or
PROCESS_LAUNCH_
procedure

STATUS commands and
process information
procedures, such as
PROCESSINFO

Returns the default or
specified swap file name
for a process’ user data.
Actual swap file managed
by KMSF.

If managed by KMSF,
returns the volume name
and #0 for a process’
compiler-generated
(default) extended data
segment. Actual swap file
managed by KMSF.

Returns the default or specified
swap file name for a process’
user data. Actual swap file
managed by KMSF.

Returns the volume name and
#0 for a process’ compiler-
generated (default) extended
data segment. Actual swap file
managed by KMSF.

ALLOCATESEGMENT or
SEGMENT_ALLOCATE_
procedure with volume or file
name specified

Swap managed by
process

Swap managed by process

ALLOCATESEGMENT or
SEGMENT_ALLOCATE_
procedure without volume or
file name specified

Managed by KMSF Managed by KMSF
TNS/E Native Application Conversion Guide—529659-003
1-21

Introduction to Native Mode Benefits of Native Mode
Benefits of Native Mode
• General

° Native code often runs significantly faster than TNS interpreted or accelerated
code.

° Native object code does not need to be accelerated.

° Native processes support more global variables than TNS processes.

° Native processes support a default stack of 2 MB (expandable to 32 MB),
which is significantly larger than the 64 KB stack limit for TNS processes.

• C and C++

° The native C and C++ compilers and the eld utility run on the PC as part of
ETK. These native cross compilers generate code that runs on NonStop
systems.

° The native Guardian and OSS C run-time library functions provide greater
correspondence and interoperability than the TNS C library functions.

° The native Guardian and Open System Services C run-time library provide
much of the X/OPEN UNIX 95 application program interface (API).

° The native C++ compiler generates code that is easier to debug than the TNS
C++ preprocessor, Cfront.

• COBOL

° The code space limit for a native COBOL program is 32 MB, compared to
128 KB for a TNS COBOL program.

° The data space limit of approximately 60 KB for the sum of all the Working-
Storage Sections and File Sections of a TNS process does not apply to native
COBOL programs. The Working-Storage Section and the Extended-Storage
Section are the same in native COBOL, and there is no distinction between
user data space and user extended space.

° Native dynamic-link libraries (DLLs) are consulted automatically.

If a TNS COBOL program calls utility routines, it must put the libraries that
contain those routines (one or more of COBOLLIB, CBL85UTL, and CLULIB)
on search lists (using the compiler directives SEARCH, LIBRARY, and
CONSULT).

For a native COBOL program, search lists are optional. If a program does not
have search lists, or if the compiler cannot find an external reference in the
files on the search lists, the compiler automatically searches the DLLs
ZCOBDLL and ZCREDLL and then the file ECOBEXT (the native equivalent of
COBOLEXT).
TNS/E Native Application Conversion Guide—529659-003
1-22

Introduction to Native Mode Constraints of Native Mode
ZCOBDLL contains the COBOL utility routines which, for TNS COBOL, reside
in the system library, COBOLLIB, and CBL85UTL. ZCREDLL contains the
COBOL run-time routines which, for TNS COBOL, reside in the system library
or in CLULIB.

Constraints of Native Mode
Before you start converting applications to native mode, be aware of the constraints of
the native environment:

• pTAL, unlike TAL, cannot contain embedded SQL statements.

• C and COBOL programs that contain embedded SQL statements must use the
SQL release 2 feature set.

• TNS interpreted object code, TNS accelerated object code, and native object code
cannot be mixed in one program file.

• A program and its user library must both be native object files.

• Mixed-language programs can consist only of C, C++, COBOL, and pTAL.

• TNS/E native compilers and linkers are not hosted on TNS/R systems.

• TNS/E native object files cannot be executed on TNS/R systems.

• TNS/R native object files cannot be executed on TNS/E systems.
TNS/E Native Application Conversion Guide—529659-003
1-23

Introduction to Native Mode Constraints of Native Mode
TNS/E Native Application Conversion Guide—529659-003
1-24

2
Developing a Conversion Strategy

This section describes the decisions you must make to convert a program to native
mode, including:

• Determining Which Programs to Convert

• Preparing Programs for Conversion on page 2-2

• Planning System Resources on page 2-2

• Maintaining Common Source Code for TNS and TNS/E Native Compilers on
page 2-3

• Determining Optimization Levels on page 2-5

• Determining Data Alignment on page 2-6

• Tuning the Performance of Native Programs on page 2-8

Determining Which Programs to Convert
To determine which TNS programs to convert to native mode, follow these guidelines:

• If CPU performance is not an issue (for example, the program is I/O-bound), you
gain some but not much measurable performance by native-compiling the program
instead of accelerating the program with OCA. Where CPU performance is an
issue, the great advantage to native-compiling is that programs usually run
significantly faster.

• If your program consists mainly of calls on system code, you do not gain much
additional performance by native-compiling the program itself. Much of the
performance-critical and heavily-used HP system code has been native-compiled.

• If your program uses large amounts of memory, is very recursive, or makes many
function calls with a large number of local variables, you often gain additional
performance by native compiling the program instead of accelerating the program.
The native process architecture supports a much larger and more efficient process
heap and stack.

• If you want to compile and link your program on a PC using ETK, you must convert
to native mode.

• The OSS environment on TNS/E systems does not support TNS development and
execution. Therefore, if you are migrating a OSS TNS application to a TNS/E
system, you must convert the application to native mode. You can either convert
the application to native mode on the TNS/R system, and then migrate the
converted application to the TNS/E system (in most cases, a simple process) or
you can migrate and convert the application in a single step as described in this
manual.
TNS/E Native Application Conversion Guide—529659-003
2-1

Developing a Conversion Strategy Preparing Programs for Conversion
You can use the Measure system performance-analysis tool to determine which
programs can be significantly improved by native-compiling. When measuring program
performance, select a measurement window that coincides with some representative
portion of the system workload, usually the system’s peak time. For further verification,
take and compare multiple measurements to create a level of confidence with the data
collected.

Another issue to consider when converting to native mode is the effort required to
convert the program. It is not a trivial matter to convert programs that rely significantly
on TNS hardware and process architecture. For example, a program that explicitly
manipulates the P-register probably requires significant changes to convert to native
mode.

Preparing Programs for Conversion
If you are migrating your TNS programs from a TNS/R system, you must complete
these tasks before converting a program to native mode:

• Compile programs with a D20 or later TNS compiler version and resolve any
C-series to D-series conversion issues.

• Run your programs successfully on a system running the current version of the
operating system and resolve any migration issues.

• Run your program successfully on an Itanium-based NonStop system and resolve
any hardware variances between TNS and TNS/E systems. For information on
hardware variances, see the Object Code Accelerator (OCA) Manual. For general
information on migrating a Guardian TNS program to a TNS/E system, see the H-
Series Application Migration Guide.

• Convert your C or C++ program to use the 32-bit or wide data model if it does not
do so already. For details, see Converting Code to Use 32-Bit Pointers and
Integers on page 3-3.

This manual assumes that you have completed these tasks. For information on
C-series to D-series migration, see:

• Guardian Application Conversion Guide
• D-Series System Migration Planning Guide

Planning System Resources
In general, native object files use the same or slightly fewer disk resources than
accelerated object files (object files produced by a TNS compiler and processed by the
accelerator or OCA). Likewise, native processes use comparable processor memory to
TNS processes running in accelerated mode.

The TNS/E native environment is available only on systems running H-series versions
of the operating system. These systems include the NonStop NS-series servers.
TNS/E Native Application Conversion Guide—529659-003
2-2

Developing a Conversion Strategy Maintaining Common Source Code for TNS and
TNS/E Native Compilers
Maintaining Common Source Code for TNS
and TNS/E Native Compilers

If your program requires few changes to convert to native mode, you can often
maintain common source code for the TNS and native compilers. If your program
requires extensive or complex changes to convert to native mode, maintaining
common source code is impractical.

By using D3x or later versions of the TNS compilers and H-series versions of the
native compilers, you can maintain common source code for the D3x and H-series
operating system RVUs. (Because of differences between the D20 and D30 TNS
compilers, it is too difficult to maintain a common source between the D20 and
H-series operating system RVUs.)

To maintain a common source, use features available in the D3x or later RVUs and
features available to TNS and TNS/E native programs. Features that you cannot use
include:

• C++ language features that the cfront C++ preprocessor cannot process

• pTAL language features that the TAL compiler does not support

• The small-memory model in C and the 16-bit data model in C and C++

• COBOL language features that are not supported by both the TNS COBOL and
native COBOL compilers

To maintain a common source, you must use:

• Separate build scripts to run the TNS and native compilers and other tools

• D3x versions of the TNS C compiler

• D32 or later versions of the TNS COBOL compiler

• D31 or later versions of the TAL compiler

• Versions of the Guardian procedure external declaration files (EXTDECS and
CEXTDECS) and the C header files that correspond to the RVU

• COBOL dummy files (COBOLEX0, COBOLEX1, COBOLEXT, ECOBEX0,
ECOBEX1, and ECOBEXT)
TNS/E Native Application Conversion Guide—529659-003
2-3

Developing a Conversion Strategy Adjusting for Increased DCT Limits
In some cases, two logically equivalent but syntactically different fragments of code
might be required: one for TNS compilers and one for native compilers. Such code can
be isolated within a source file for conditional compilation:

For source code compiled with both the pTAL and TAL compilers, you must first check
the syntax of the program with the pTAL compiler’s syntax checking option and then
compile the program with the TAL compiler. The D31 TAL compiler supports but does
not check most pTAL language features.

Adjusting for Increased DCT Limits
The Destination Control Table (DCT) contains entries for logical device numbers and
named processes. The DCT limit refers to the maximum number of logical device
numbers and named processes that the operating system can accommodate. As of the
G06.23 RVU, the size of the DCT can optionally be increased from its previous limit of
32,767 (a logical device number can have at most 15 bits) to 65,376 (a logical device
number can have up to 16 bits). This change can affect programs that you are
migrating to an H-series system and that call any of these C-series procedures:

In G06.23 and later G-series RVUs, the default setting for extended DCT limits is OFF
(extended limits are not in effect). In H-series RVUs, the default setting for extended
DCT limits is ON (extended limits are in effect). Therefore, if you have not yet changed
any affected applications to allow for increased limits, you must do one of the following:

• Ensure that the system default for or DCT limits extension is reset to OFF (enter an
SCF command).

• Change your program to allow for the increased DCT limits.

Language For conditional compilation, use: For more information, see:

C
C++

#ifdef macros C/C++ Programmer’s Guide

COBOL IF, IFNOT, ENDIF, SETTOG, and
RESETTOG directives

COBOL Manual for TNS/E
Programs

pTAL IF directives pTAL Reference Manual

C-Series Procedure Extended DCT limits affect calls that:

FILEINFO Use the optional ldevnum parameter

GETDEVNAME (Affects all calls)

GETPPDENTRY (Affects all calls)

GETSYSTEMNAME Use the return value as an ldev or check for specific error
codes

LOCATESYSTEM Use the return value as an ldev or check for specific error
codes

LOOKUPPROCESSNAME Pass a DCT index in the ppd parameter
TNS/E Native Application Conversion Guide—529659-003
2-4

Developing a Conversion Strategy Determining Optimization Levels
The recommended solution is to replace the affected procedures with updated
procedures that can handle increased DCT limits:

For more details using the replacement procedures, see the Guardian Procedure Calls
Reference Manual.

Determining Optimization Levels
The native C, native C++, COBOL, and pTAL compilers support three levels of
optimization:

Use optimization level 0 to debug a program, and then use optimization level 1 or 2.

The optimize pragma (in the Guardian environment), the -Woptimize c89 flag (in
the OSS environment), and the -Ooptlevel c99 flag (in the OSS environment) set
the optimization level for the native C and C++ compilers. The OPTIMIZE directive sets

C-Series Procedure Replacement Procedure

FILEINFO FILE_GETINFOLIST_

GETDEVNAME DEVICE_GETINFOBYLDEV_
CONFIG_GETINFOBYLDEV_
CONFIG_GETINFOBYLDEV2_
FILENAME_FINDSTART_
FILENAME_FINDNEXT_

GETPPDENTRY PROCESS_GETPAIRINFO_

GETSYSTEMNAME NODENUMBER_TO_NODENAME_

LOCATESYSTEM NODENAME_TO_NODENUMBER_

LOOKUPPROCESSNAME PROCESS_GETPAIRINFO_

Optimization Level Characteristics

0 (No optimization) • Slower execution

• Supports symbolic debugging

• Data always in memory

• Useful during development and migration; not intended for
production

1 (Intermediate
optimization)

• Faster execution
• Supports symbolic debugging
• Data not always in memory
• Useful in production

2 (Full optimization) • Fastest execution (on average, a 15 percent reduction in
pathlength over level 1)

• Limited support for symbolic debugging

• Data not always in memory

• Useful in production
TNS/E Native Application Conversion Guide—529659-003
2-5

Developing a Conversion Strategy Determining Data Alignment
the optimization level for the native COBOL and pTAL compilers. The native compilers’
default optimization level is 1.

For C, C++, and pTAL, optimization can be set on a module or procedure basis.
Therefore, native programs can contain modules or procedures compiled at different
optimization levels. This hybrid approach can be used to improve program
performance while maintaining as much symbolic debugging support as possible. With
this approach, you compile performance-critical code at optimization level 2 and the
remainder at optimization level 1. The Measure PROCESS entity can be used to select
the performance-critical procedures.

Use a hybrid approach (optimization level 2 and level 1):

• If performance is important
• IF symbolic debugging is important for analyzing failures

Use full optimization (optimization level 2):

• If performance is critical

• If failures can often be reproduced in a development environment using a less
optimized version of the program

Use intermediate optimization (optimization level 1):

• If performance is rarely critical

• If failures are difficult to reproduce in a development environment with a less
optimized version of the program

• If a hybrid approach is too complicated

For performance reasons, optimization level 0 is rarely used outside of a development
environment.

You can run Native Inspect on code compiled at optimization level 2. However, the
ability to set breakpoints, step through code, and display variables is limited. For more
details on how optimization impacts symbolic debugging, see the Native Inspect
Manual.

For additional performance information, see the performance document for a given
RVU.

Determining Data Alignment
By default, the native compilers align data and generate code assuming that data
misalignment traps do not occur. If a program is not sensitive to how a compiler
allocates consecutive fields in structures, use the default data alignment. Data
alignment is an issue for the COBOL compiler only when level-01 or level-77 data
items are used.

If a program is sensitive to how a compiler allocates structures, specify the
FIELDALIGN CSHARED2 and REFALIGNED 2 pragmas in C and C++ and the
TNS/E Native Application Conversion Guide—529659-003
2-6

Developing a Conversion Strategy Converting Programs With Misaligned Data
FIELDALIGN SHARED2 and REFALIGNED 2 directives in pTAL. These pragmas and
directives ensure that the native compilers use the same data alignment as TNS
compilers.

Another strategy is to set the FIELDALIGN CSHARED2 and REFALIGNED 2 pragmas
or the FIELDALIGN SHARED2 and REFALIGNED 2 directives when you first start
converting a program. After the program has been converted to native mode and runs
correctly, you can remove the pragmas or directives and recompile the program. You
can then resolve any problems caused by data misalignment.

The alignment of level-01 and level-77 data items is different in TNS and TNS/E native
COBOL. In TNS COBOL, level-01 and level-77 data items are aligned on a 2-byte
boundary. In TNS/E native COBOL, these items are aligned on an 8-byte boundary.
For consistency with TNS COBOL, you can direct the TNS/E native COBOL compiler
to align level-01 and level-77 items on a 2-byte boundary by adding the
SYNCHRONIZED clause to their declarations.

The data alignment you select depends on whether data is shared. See Section 9,
Converting Programs That Share Data, if data is shared between:

• TNS programs and native programs
• pTAL programs and native C or C++ programs

For more information on how the native compilers align data, see:

• C/C++ Programmer’s Guide
• pTAL Conversion Guide

Converting Programs With Misaligned Data
Programs compiled with the TNS and native compilers align data items according to
certain rules. TNS compilers align data on even-byte boundaries, while TNS/R and
TNS/E compilers align 4-byte data items on boundaries whose addresses are a
multiple of 4. TNS/E compilers also align 8-byte data items on 8-byte boundaries.
Additionally, TNS/E native GETPOOL and malloc procedures allocate buffers aligned
on 16-byte boundaries. Occasionally, however, a programming error or a run-time
event causes a data item to violate these alignment rules.

In TNS interpreted or accelerated programs on a TNS/R system, these misaligned
addresses are sometimes rounded down to the next lower even-byte address. This
“round-down” behavior can result in unexpected program behavior, including run-time
errors or incorrect results.

On a TNS/E system, in both TNS interpreted or accelerated programs and in native
programs, misaligned addresses are never rounded down. As a result, TNS program
with misaligned addresses that are rounded down on a TNS/R system might behave
differently when converted to TNS/E native mode (because the misaligned address will
not be rounded down). For this reason, you should ensure that TNS programs on
TNS/R systems do not contain data misalignments before converting them to native
mode.
TNS/E Native Application Conversion Guide—529659-003
2-7

Developing a Conversion Strategy Tuning the Performance of Native Programs
Both TNS/R and TNS/E systems offer facilities for detecting misaligned addresses and
for controlling program action if a misalignment is detected. For more information on
detecting and correcting data misalignments, see:

• Binder Manual
• C/C++ Programmer’s Guide
• pTAL Reference Manual
• TAL Programmer’s Guide Data Alignment Addendum

Tuning the Performance of Native Programs
To get the maximum performance from a native program, make sure that your program
does not spend excessive time in compatibility traps caused by data misalignment.

Detecting Compatibility Traps
Compatibility traps can be detected by using the Measure PROCESS entity during a
representative run of your program. The PROCESS entity COMP-TRAP counter
contains the number of compatibility traps.

If you detect significant compatibility traps, use the EPTRACE tool against the program
during another representative run. EPTRACE reports the type of each compatibility
trap and the code address of where each trap occurred. Next, use the enoft utility to
map the code address from EPTRACE to the source code location in the program.

Measure and EPTRACE run only in the Guardian environment. Use an OSS run
gtacl command to run them from the OSS environment.

Eliminating Compatibility Traps
In most cases, data misalignment in data objects and reference misalignment in
pointers cause traps. To eliminate compatibility traps caused by data misalignment in
data objects, specify a FIELDALIGN SHARED2 pragma or directive for the misaligned
data object.

By default, the native compilers generate code for pointer dereferencing operations
that expects the pointer to contain an address that satisfies the alignment requirements
of the data object being pointed to. For example, a 4-byte object should have an
address which is a multiple of four. If the data object is at an address that does not
satisfy its alignment requirements, a compatibility trap occurs. To avoid this
compatibility trap, specify a REFALIGNED 2 pragma or directive on the pointer to the
object. This directs the native compilers to generate code that assumes the
dereferenced object is not properly aligned and compensates for the improper
alignment. While REFALIGNED 2 always generates a few extra instructions for each
dereferencing operation, a compatibility trap results in hundreds of additional
instructions.
TNS/E Native Application Conversion Guide—529659-003
2-8

Developing a Conversion Strategy Eliminating Compatibility Traps
These directives and pragmas ensure that compatibility traps do not occur. For
additional information on data alignment, see:

• C/C++ Programmer’s Guide
• pTAL Conversion Guide
TNS/E Native Application Conversion Guide—529659-003
2-9

Developing a Conversion Strategy Eliminating Compatibility Traps
TNS/E Native Application Conversion Guide—529659-003
2-10

3 C and C++ Conversion Tasks
This section describes how to convert TNS C and C++ programs to TNS/E native
mode.

The C and C++ compilers to which this section applies are:

This section discusses:

• Using the Native C and C++ Compilers on page 3-2

• Converting Code to Use 32-Bit Pointers and Integers on page 3-3

• Replacing Obsolete External Function Declarations on page 3-5

• Replacing Obsolete Keywords on page 3-5

• Changing Use of _cc_status for Return Values on page 3-6

• Replacing Calls to Obsolete C Library Supplementary Functions on page 3-7

• Replacing Calls to Obsolete C Library Guardian Alternate-Model I/O Functions on
page 3-9

• Checking Calls to Changed C Library Functions on page 3-11

• Changing Programs That Use Guardian and OSS Environment Interoperability on
page 3-13

• Changing Code That Relies on Arithmetic Overflow Traps on page 3-13

• Using Active Backup Programming in C on page 3-14

• Replacing Obsolete C++ Library Operations on page 3-14

• Using the Tools.h++ Class Library on page 3-14

• Specifying Pragmas or Flags on page 3-15

• Checking Changed Pragmas on page 3-16

• Removing Obsolete Pragmas on page 3-17

Compiler T Number

TNS C T9255

TNS C++ T9541

TNS c89 T8629

TNS/E c89, c99 T8164

TNS/E CCOMP T0549

TNS/E CPPCOMP T0549
TNS/E Native Application Conversion Guide—529659-003
3-1

C and C++ Conversion Tasks Using the Native C and C++ Compilers
This section assumes your program can be compiled by the current TNS C compiler or
TNS C++ preprocessor. It also assumes your program runs on the current version of
the operating system. See the C/C++ Programmer’s Guide for information on
converting C programs to use the current TNS C compiler.

Using the Native C and C++ Compilers
Both the TNS and native C compilers conform to the following ISO/ANSI C language
standards: ISO/IEC 9899:1990 for C, ISO/IEC 9899:1999 for C, and ISO/IEC
14882:1998 for C++. Source code that compiles without warnings or errors with the
TNS C compiler or C++ preprocessor might get warnings or errors using the native C
and C++ compilers. (In most cases, the native compilers are better than the TNS
compilers in detecting violations to the ISO/ANSI C standard.) For example, the native
C and C++ compilers detect these errors that the TNS compilers do not detect:

• Characters trailing on a #include line, except nolist.

• Incorrect use of a NULL pointer. In C, NULL is defined as zero. In TNS programs,
address 0 exists. If you call a function, such as strlen() with a NULL pointer, the
function does not trap but returns an answer (typically 1). In native C programs,
address 0 does not exist. Such function calls fail, usually with a SIGSEGV. This
user bug is undetected on the TNS architecture.

It is possible, but highly unlikely, that you will need to make changes caused by
differences in the translation limits of the TNS and native compilers.

Program logic or behavior that depends on the knowledge of the underlying machine
architecture or uses undocumented features (mainly privileged features) might require
changes to compile and run correctly using the native compilers.

There is no correlation between either the text or the number of diagnostic messages
produced by the TNS and native compilers.

The TNS C compiler and C++ preprocessor support HP extensions for NonStop
systems to the C and C++ languages by default. The native C and C++ compilers do
not support these HP extensions by default. Specify the EXTENSIONS pragma or the
-Wextensions c89 or c99 flag to direct the native compilers to support these HP
extensions.

In the Guardian environment, the CCOMP command runs the native C compiler, and
the CPPCOMP command runs the native C++ compiler. In the OSS and PC
environments, the native c89 utility runs the native C and C++ compilers, and the
native c99 utility runs the native C compiler . On the PC, the c89 utility can be run
from within ETK.

The c89 and c99 commands for the PC and OSS environments provide an option to
specify the target platform for the compilation: specify -Wtarget=TNS/R to generate
RISC code or -Wtarget=TNS/E to generate Itanium code. The default for the PC is
-Wtarget=TNS/R, and the default for OSS is the same as the host platform. Note that
TNS/E Native Application Conversion Guide—529659-003
3-2

C and C++ Conversion Tasks Converting Code to Use 32-Bit Pointers and Integers
TNS/R code cannot be executed on a TNS/E platform, and TNS/E code cannot be
executed on a TNS/R platform.

For c89 and c99 conversion information, see Section 11, OSS API and Utilities
Conversion Tasks.

All code generated by the TNS/E native compilers is position-independent code (PIC).
PIC is code that need not be modified to run at different virtual addresses and is used
to create dynamic-link libraries (DLLs).

For details on compiling and linking native C and C++ programs, see the C/C++
Programmer’s Guide.

Converting Code to Use 32-Bit Pointers and
Integers

The memory model determines the size of pointers. In the TNS C environment, there
are two memory models: the small-memory model (16-bit pointers) and the large-
memory model (32-bit pointers).

The data model determines the size of type int. In the TNS C and C++ environments,
there are two data models: the 16-bit data model and the 32-bit (or wide) data model.

In the native C and C++ environments, there are only the large-memory model and the
32-bit data model.

You must convert existing Guardian C programs that use the small-memory model to
the large-memory model. You must also convert existing Guardian C and C++
programs that use the 16-bit data model to the 32-bit data model. (You do not need to
convert existing OSS C and C++ programs because OSS supports only the large-
memory model and the 32-bit data model.)

The memory and data models a program uses are determined by the environment in
which you run the compiler (Guardian or OSS), the version of the compiler, the
SYSTYPE pragma setting, and the explicit XMEM, NOXMEM, WIDE, or NOWIDE pragmas
in the source code. D-series versions of the Guardian TNS C compiler and D20
versions of the Guardian C++ preprocessor generate programs that use the large-
memory model and the 16-bit data model by default. See the C/C++ Programmer’s
Guide for further details.

Before compiling small-memory model or 16-bit data model programs with the native
compilers, it is often easier to first convert them to the large-memory model and 32-bit
data model using the TNS C compiler. Follow these guidelines for doing the
conversion:

• Specify the XMEM and WIDE pragmas in your source code.

• Use the TNS C compiler with the STRICT pragma.
TNS/E Native Application Conversion Guide—529659-003
3-3

C and C++ Conversion Tasks Converting Code to Use 32-Bit Pointers and Integers
• Ensure that the type of a function call argument matches the defined type of its
associated parameter. The TNS C compiler issues this warning message

for argument-parameter mismatches:

Warning 86: argument "name" conflicts with formal definition

• Write function prototypes for all user-written functions without prototypes. The TNS
C compiler issues this warning message for function calls without corresponding
function prototypes:

Warning 95: prototype function declaration not in scope:
"function-name"

• Ensure that the formal and actual parameters of pointer types are matched. The
TNS C compiler issues this warning message if pointers do not match:

Warning 30: pointers do not point to same type of object

For example:

int func1(short *);

In the 16-bit data model and the large-memory model, you can pass to func1 a
pointer of type short or int and get correct results. In the 32-bit data model, you
can pass to func1 only a pointer of type short; a pointer of type int generates
incorrect results.

Parameter mismatch is most often an issue for Guardian system procedures and
external TAL and pTAL procedures.

• Ensure that literals do not cause type mismatches, as illustrated in this example:

#include <cextdecs(MONITORCPUS)>
...
short get_cpu_number;
MONITORCPUS(0x8000 >> get_cpu_number);

In the 32-bit data model, if get_cpu_number is equal to zero, an arithmetic
overflow occurs because the compiler generates code to convert an unsigned
32-bit integer to a 16-bit signed integer. Declarations in the cextdecs header file
do not use the type unsigned short.

• Avoid using the type int in your program if possible. Use type long or short
instead. However, if you want to keep your program data-model independent, you
cannot avoid using type int completely. For example, C library calls, bit fields,
TCP/IP sockets library functions, and Guardian system procedures might require
type int.
TNS/E Native Application Conversion Guide—529659-003
3-4

C and C++ Conversion Tasks Using IEEE Floating Point Format
Using IEEE Floating Point Format
TNS C and C++ programs use the HP proprietary TNS floating-point format. The native
C and C++ compilers provide the option of using either the TNS or the IEEE floating-
point format. The default option is IEEE format. Programs that depend on TNS format
must specify the TANDEM_FLOAT pragma (or -Wtandem_float flag) when
converted to native mode. Differences between IEEE and TNS floating-point formats
include:

• Results of IEEE floating-point operations might differ slightly from those of TNS
floating-point operations.

• IEEE floating-point values can include not-a-number (NaN) and infinity.

• The sign of 0.0 (zero) in IEEE format can be either positive or negative.

Replacing Obsolete External Function
Declarations

External function declarations declare functions not written in the C language. Current
TNS C compilers recognize correctly, but issue warnings for, C-series external function
declaration syntax with newer replacements. The native compilers do not recognize the
C-series syntax. If you use FUNCTION pragma syntax or declarations with _language
name keywords (such as _tal and _c), no changes are required. See the C/C++
Programmer’s Guide for details.

Replacing Obsolete Keywords
Current TNS C compilers recognize, but issue warnings for, certain C-series keywords
with newer replacements. The native C compiler does not recognize the C-series
keywords. Replace the following C-series keywords with the equivalent replacement
keywords:

C-Series Keyword Replacement

cc_status _cc_status

extensible _extensible

extptr See the following paragraph

lowmem _lowmem

tal _tal

variable _variable

myproc ="alias-name" _alias("alias-name") myproc

(or use the FUNCTION pragma syntax instead—see the
C/C++ Programmer’s Guide for more information)
TNS/E Native Application Conversion Guide—529659-003
3-5

C and C++ Conversion Tasks Changing Use of _cc_status for Return Values
The extptr keywords identify 32-bit pointers in external function declarations for TAL.
Native programs support only 32-bit pointers, so this keyword is unnecessary. Delete
the extptr keyword.

Changing Use of _cc_status for Return Values
 _cc_status is used for calls to Guardian and TAL procedures that set a condition-
code register instead of returning a value. For TNS C and C++ programs, the CCL,
CCE, and CCG macros examine the results of a function declared with the
_cc_status type specifier. For native C and C++ programs, you must replace these
macros with the _status_lt(x), _status_eq(x), and _status_gt(x) macros.
These new macros are defined in the tal.h header and can be used in TNS and
native programs. These macros are:

• For native C and C++:

#define _status_lt(x) ((x) < 0)
#define _status_eq(x) ((x) == 0)
#define _status_gt(x) ((x) > 0)

• For TNS C and C++:

#define _status_lt(x) ((x) == 2)
#define _status_eq(x) ((x) == 1)
#define _status_gt(x) ((x) == 0)
TNS/E Native Application Conversion Guide—529659-003
3-6

C and C++ Conversion Tasks Replacing Calls to Obsolete C Library
Supplementary Functions
Example 3-1 shows the difference between using the new macros and the previous
macros to examine _cc_status.

Replacing Calls to Obsolete C Library
Supplementary Functions

The native C run-time library does not support the C library functions listed in
Table 3-1. None of the obsolete functions are specified in the ISO/ANSI C Standard,
the X/OPEN XPG4 Specification, or the X/OPEN UNIX Specification. In most cases,
you can replace the obsolete function with another function and a few additional lines
of code.

Example 3-1. Examining _cc_status

Previous macros (TNS Programs Only)

_tal _extensible _cc_status READX (...);
#include <tal.h>
...
_cc_status CC;

CC = READX (...);

if (CC == CCL) {
...
} else if (CC == CCG) {
...
}

Current macros (TNS and Native Programs)

_tal _extensible _cc_status READX (...);
#include <tal.h>
...
_cc_status CC;

CC = READX (...);

if (_status_lt(CC)) {
...
} else if (_status_gt(CC)) {
...
}

TNS/E Native Application Conversion Guide—529659-003
3-7

C and C++ Conversion Tasks Replacing Calls to Obsolete C Library
Supplementary Functions

Table 3-1. Obsolete C Supplementary Functions (page 1 of 2)

Obsolete Function Suggested Replacement

_is_system_trap() Delete _is_system_trap(). Trap handling mechanism is
replaced with signals in native processes. See the Guardian
Programmer’s Guide for details.

iscsym() Write your own function iscsym() to check whether a
character is a valid character in a C identifier.

iscsymf() Write your own function iscsymf() to check whether a
character is a valid first character in a C identifier.

memswap() Replace memswap() with a series of calls to memcpy() to
swap the blocks of memory using a temporary buffer. The
order and type of parameters for these two functions are
different.

movmem() Replace movmem() with a call to memmove(). The order and
type of parameters for these two functions are different.

repmem() Replace repmen() with a series of calls to memcpy() to
copy the block of memory the required number of times. The
order and type of parameters for these two functions are
different.

setmem() Replace setmem() with a call to memset(). The order and
type of parameters for these two functions are different.

setnbuf() Replace setnbuf() with a call to setbuf() with a buffer
parameter set to NULL.

stcarg() Replace stcarg() with a call to strcspn(). The return
values for these two functions are different.

stccpy() Replace stccpy() with a call to strncpy(). The type of
parameters and the return value for these two functions are
different.

stcd_i() Replace stcd_i() with a call to strtol(). The order and
type of parameters and the return value for these two functions
are different.

stcd_l() Replace stcd_l() with a call to strtol(). The order and
type of parameters and the return value for these two functions
are different.

stch_i() Replace stch_i() with a call to strtol(). The order and
type of parameters and the return value for these two functions
are different.

stci_d() Replace stci_d() with a call to sprintf() with a %d
conversion specifier.

stcis() Replace stcis() with a call to strspn().

stcisn() Replace stcisn() with a call to strcspn().

stclen() Replace stclen() with a call to strlen().
TNS/E Native Application Conversion Guide—529659-003
3-8

C and C++ Conversion Tasks Replacing Calls to Obsolete C Library Guardian
Alternate-Model I/O Functions
Replacing Calls to Obsolete C Library
Guardian Alternate-Model I/O Functions

The TNS Guardian C library alternate-model I/O functions provide an I/O facility similar
to but not identical to the UNIX file descriptor model. To enable improved
interoperability between the Guardian and OSS environments, the native environment
does not support the Guardian alternate-model I/O functions. Three options are
available to programs that use the alternate-model I/O functions:

• Rewrite your code to use the OSS versions of these functions.
• Rewrite your code to use ANSI-model I/O functions.
• Rewrite your code to call Guardian system procedures.

Using the OSS versions of these functions is usually the easiest. Instead of specifying
files in the Guardian file system using Guardian file name syntax
($VOL.SUBVOL.FILE), you specify files in the Guardian file system using OSS
pathname syntax (/G/VOL/SUBVOL/FILE). To use this option, OSS must be installed

stcpm() Replace stcpm() with a call to strstr(). The order and
type of parameters and the return value for these two functions
are different. Additional code might be required to support
pattern matching.

stcpma() Replace stcpma() with a call to strstr(). The order and
type of parameters and the return value for these two functions
are different. Additional code might be required to support
pattern matching.

stcu_d() Replace stcu_d() with a call to sprintf() with a %u
conversion specifier.

stpblk() Replace stpblk() with a call to strspn() with a string of
space characters.

stpbrk() Replace stpbrk() with a call to strpbrk().

stpchr() Replace stpchr() with a call to strchr(). The order and
type of parameters and the return value for these two functions
are different.

stpsym() Replace stpsym() with a call to strspn() with a string
containing alphanumeric characters. Pass the return value of
strspn() to strncpy() to copy the correct string length.

stptok() Replace stptok() with a series of calls to strtok() to find
a token and strncpy() to append a token to another string.

stscmp() Replace stscmp() with a call to strcmp().

trap_overflows() Delete trap_overflows(). The trap handling mechanism is
replaced by signals in native processes.

Table 3-1. Obsolete C Supplementary Functions (page 2 of 2)

Obsolete Function Suggested Replacement
TNS/E Native Application Conversion Guide—529659-003
3-9

C and C++ Conversion Tasks Replacing Calls to Obsolete C Library Guardian
Alternate-Model I/O Functions
on the system running the program. For details, see the function’s reference page
online or in the Open System Services Library Calls Reference Manual.

The obsolete Guardian alternate-model I/O functions and replacement options are
listed in Table 3-2.

Table 3-2. Obsolete Guardian Alternate-Model I/O Functions

Obsolete Function Suggested Replacement

close() Recode using ANSI-model I/O functions or Guardian system
procedures. Use OSS versions of function.

creat() Recode using ANSI-model I/O functions or Guardian system
procedures. Use OSS versions of function.

edlseek() Recode using ANSI-model I/O functions or Guardian system
procedures. Use OSS versions of function.

fcloseall() Recode using ANSI-model I/O functions or Guardian system
procedures. Use OSS versions of function.

fcntl() Recode using ANSI-model I/O functions or Guardian system
procedures. Use OSS versions of function.

fdopen() Recode using ANSI-model I/O functions or Guardian system
procedures. Use OSS versions of function.

fdtogfn() Replace with the gfileno() function.

fileno() Recode using ANSI-model I/O functions or Guardian system
procedures. Use OSS versions of function.

lastreceive() Recode using Guardian FILE_GETRECEIVEINFO_ procedure.

lseek() Recode using ANSI-model I/O functions or Guardian system
procedures. Use OSS versions of function.

open() Recode using ANSI-model I/O functions or Guardian system
procedures. Use OSS versions of function.

read() Recode using ANSI-model I/O functions or Guardian system
procedures. Use OSS versions of function.

readupdate() Recode using Guardian READUPDATEX procedure.

receiveinfo() Recode using Guardian FILE_GETRECEIVEINFO_ procedure.

reply() Recode using Guardian REPLYX procedure.

unlink() Recode using ANSI-model I/O functions or Guardian system
procedures. Use OSS versions of function.

write() Recode using ANSI-model I/O functions or Guardian system
procedures. Use OSS versions of function.

writeread() Recode using Guardian WRITEREADX procedure.
TNS/E Native Application Conversion Guide—529659-003
3-10

C and C++ Conversion Tasks Checking Calls to Changed C Library Functions
Checking Calls to Changed C Library
Functions

Functions Having Different Behavior
The following functions have changes in ISO/ANSI C standard implementation-defined
behavior. These changes affect only Guardian C functions and were made to match
the behavior of the TNS OSS environment and the UNIX computer industry

.

For more information, see the function’s reference page in the Guardian Native C
Library Calls Reference Manual.

The ecvt() function has changed to match the XPG4 Version 2 (X/OPEN UNIX)
specification.

For more information, see the ecvt(3) reference page online, in the Open System
Services Library Calls Reference Manual, or in the Guardian Native C Library Calls
Reference Manual.

Changed Function Changed Behavior Action Required

exit() In the TNS Guardian environment, a
nonzero status parameter value
indicates abnormal termination. In
the native Guardian environment,
any status parameter value indicates
normal termination.

Change calls to the
terminate_program()
function to use the status
parameter to indicate
abnormal termination.

fscanf()
scanf()
sscanf()

In the TNS Guardian environment,
the hyphen character in a scan set
denotes the hyphen character. In the
native Guardian environment, the
hyphen character might denote a
range of characters.

Make the hyphen the first or
last character in the scan set
to maintain the TNS Guardian
environment behavior.

remove() In the TNS Guardian environment,
the remove() function returns
Guardian error codes. In the native
Guardian environment, the function
sets standard errno values.

Change error handling code
following calls to the
remove() function to check
errno values.

Changed Function Changed Behavior Action Required

ecvt() In the TNS Guardian and OSS
environments, the second, third, and
fourth parameters are type short.
In the native Guardian and OSS
environments, these parameters are
type int.

Change calls to the ecvt()
function to use type int
instead of type short.
TNS/E Native Application Conversion Guide—529659-003
3-11

C and C++ Conversion Tasks Using the setjmp() and longjmp() Functions
Using the setjmp() and longjmp() Functions
Calling the setjmp() function in a function marked as inline and then doing a
subsequent longjmp() to the location of the calling function is a practice that should
be avoided. Programs that use setjmp() and longjmp() in this way generally
expect that functions marked as inline are actually inlined, and that the longjmp()
call will restore the execution context of the function that called setjmp(). In TNS
programs compiled at optimization level 0, this is sometimes the case and the
longmp() call might work as expected. But in a TNS/E native program compiled at
optimization level 0, functions marked as inline are never actually inlined, and the
longjmp() call will not work as expected. A preferred practice is to use a macro
instead of an inline function.

Using the semctl() Function
The semctl() function has an optional fourth parameter that is required in certain
cases. As described in the Open System Services System Calls Reference Manual,
the value passed in that parameter must be defined in the calling program as a semun
union, as in this example:

union semun {
 int val;
 struct semid_ds *buf;
 unsigned short int *array;
}arg

union semun semopts;
semopts.val = 1;
if (semctl(semid, 0, SETVAL, semopts) ==-1)

On TNS/R systems, you can also pass a value directly, without the use of the semun
union (for example, as a simple scalar), as in this example:

if (semctl(semid, 0, SETVAL, 1) ==1)

A value passed in this way gives the expected results.

However, on TNS/E systems, you must define the parameter value as a semun union.
Code that does not do so will not function as expected.
TNS/E Native Application Conversion Guide—529659-003
3-12

C and C++ Conversion Tasks Changing Programs That Use Guardian and OSS
Environment Interoperability
Changing Programs That Use Guardian and
OSS Environment Interoperability

Because of differences in the Guardian and OSS file systems, six functions require
environment-specific parameters: fopen(), freopen(), remove(), rename(),
tmpnam(), and tmpfile(). Each of these base functions has a Guardian variant and
an OSS variant, such as fopen_guardian() and fopen_oss().

In TNS programs, the environment-specific parameters expected by these base
functions are determined at compile time. That is, the functions expect Guardian
parameters if called from a module compiled with SYSTYPE GUARDIAN and expect
OSS parameters if called from a module compiled with SYSTYPE OSS. The run-time
environment of the process the module is bound into does not affect the call. For
example, an fopen() call in a module compiled with SYSTYPE GUARDIAN and
bound into a program that runs as an OSS process expects a Guardian parameter at
run time.

In native programs, the environment-specific parameters expected by these base
functions are determined at run time. That is, the functions expect Guardian
parameters if called from a Guardian process and OSS parameters if called from an
OSS process. The compilation environment is ignored. This change was made to
simplify and enhance the usability of the Guardian and OSS environment
interoperability model.

In modules compiled with SYSTYPE OSS and linked into a program that runs as a
Guardian process, replace calls to the base function with calls to the _oss variant.
Likewise, in modules compiled with SYSTYPE GUARDIAN and linked into a program
that runs as an OSS process, replace calls to the base function with calls to the
_guardian variant. For example, replace calls to fopen() with either fopen_oss()
or fopen_guardian(), as appropriate.

Changing Code That Relies on Arithmetic
Overflow Traps

Guardian TNS C library functions, such as the tan() function, generate a trap on
arithmetic overflow. In the Guardian native C library, such functions generate neither a
trap nor a signal on arithmetic overflow. In most cases, the functions set errno to
[ERANGE] or [EDOM] to indicate arithmetic overflow. The behavior of Guardian native
C library functions now matches the behavior of the TNS and native OSS C library
functions. Change your code that relies on arithmetic overflow to evaluate either
errno or the parameters to the function call.

By default, the native C and C++ compilers do not generate code that traps on
arithmetic overflow. Specify an OVERFLOW_TRAPS pragma to generate code that traps
(raises a signal) on arithmetic overflow. The overflow traps occur in code generated by
the compiler, not code linked into the program (for example, C library functions).
TNS/E Native Application Conversion Guide—529659-003
3-13

C and C++ Conversion Tasks Using Active Backup Programming in C
Using Active Backup Programming in C
To convert a TNS program that uses the active backup programming functions to
native mode:

• Replace the header file nonstop.h with crtlns.h.
• Instead of binding in cnonstop, link the active backup support library:

For more details on writing programs that use the active backup functions, see the
Guardian Programmer’s Guide.

Replacing Obsolete C++ Library Operations
The TNS C++ run-time library uses the TNS Guardian C library alternate-model I/O
functions to provide an I/O facility similar to but not identical to the UNIX file descriptor
model. To improve interoperability between the Guardian and OSS environments, the
native environment does not support the Guardian alternate-model I/O functions.

Because of this change, the Guardian native C++ run-time library filebuf and
fstream classes cannot be used to specify an existing open file stream with the
attach function. Two options are available to programs that use the alternate-model
I/O functions:

• Rewrite your code to use the OSS versions of these classes.

• Open the file stream instead of using a file descriptor to attach to an existing open
stream.

The attach function’s use of file descriptors is nonstandard behavior.

Using the Tools.h++ Class Library
Two product versions of Tools.h++ (version 6.1 and version 7) are available since the
D45.00 and G05.00 RVUs. Only version 7 is available in H-series RVUs. If you are
converting a TNS program that uses an earlier version of Tools.h++ to TNS/E native
mode, you must convert to Tools.h++ version 7. Version 7 offers many new features
over earlier versions, but converting to version 7 requires extensive source code
changes. The C/C++ Programmer’s Guide provides an overview of Tools.h++ version 7
along with a summary of conversion tasks. See the Tools.h++ 7.0 User’s Guide for
detailed conversion information.

Environment Active Backup Support Library

Guardian CRTLNS

OSS or PC crtlns.o
TNS/E Native Application Conversion Guide—529659-003
3-14

C and C++ Conversion Tasks Specifying Pragmas or Flags
Specifying Pragmas or Flags
The native C and C++ compilers are multipass, multicomponent compilers. As such,
they require that the following pragmas be specified on the C or C++ compiler
Guardian RUN command line or as flags to the c89 or c99 utility. You cannot specify
these pragmas in source code files:

For the c89 or c99 flag that corresponds to each pragma, see the c89 or c99
reference page online or in the Open System Services Shell and Utilities Reference
Manual. Note that c89 and c99 do not support all these pragmas.

ANSISTREAMS [NO]INSPECT SQL

CPATHEQ LINES [NO]STDFILES

ERRORS OPTIMIZE [NO]SUPPRESS

HEAP RUNNABLE [NO]SYMBOLS

HIGHPIN RUNNAMED SYNTAX

HIGHREQUESTERS [NO]SAVEABEND SYSTYPE

[NO]INLINE SEARCH
TNS/E Native Application Conversion Guide—529659-003
3-15

C and C++ Conversion Tasks Checking Changed Pragmas
Checking Changed Pragmas
For the pragmas listed in Table 3-3, the native C and C++ compilers produce results
different from those of the TNS compilers. Verify that programs do not rely on any of
the changed behaviors and make appropriate changes.

Table 3-3. Changed Pragmas

Changed Pragma Changed Behavior Action Required

[NO]INLINE Native C and C++ compilers do
not generate inline code for
standard C function calls.
Native C++ compiler generates
inline code for functions with an
INLINE specified.

Remove pragma.

OPTIMIZE Native compilers perform a
different optimization than the
TNS compilers for the same
optimization level.

Remove pragma while converting
program. After program has been
converted, specify desired
optimization level.

SEARCH The eld utility is invoked
instead of the Binder. eld links
the entire object file (similar to a
Binder ADD * command) instead
of selectively linking only
portions of the object file (as in a
Binder SELECT SEARCH
command).

None, unless the way in which
you build your program requires
the select search behavior. See
the eld Manual for details.

SQL RELEASE1 is not supported as
an option. Native C does not
support NonStop SQL/MP RVUs
prior to Release 2.

Replace the RELEASE1 option
with RELEASE2 and convert your
application to use Release 2 or
later of NonStop SQL/MP.

SSV Native compilers do not ignore
SSV pragmas following a
skipped SSV pragma number.

Change SSV pragma use if you
rely on the changed behavior.

[NO]WARN Native compilers generate
different warnings than the TNS
compilers for the same warning
number.

Remove pragma or replace with
native compiler warning number
that corresponds to TNS compiler
warning. See the C/C++
Programmer’s Guide for a list of
compiler messages.
TNS/E Native Application Conversion Guide—529659-003
3-16

C and C++ Conversion Tasks Removing Obsolete Pragmas
Removing Obsolete Pragmas
The native C and C++ compilers do not support the pragmas in Table 3-4. In most
cases, you must remove the pragma from the source code. In a few cases, you might
need to write additional code.

Table 3-4. Obsolete Pragmas (page 1 of 2)

Pragma Reason pragma is obsolete Action Required

ANSICOMPLY Pragma has been replaced by
NOEXTENSIONS pragma.

None. The NOEXTENSIONS
pragma is set by default.

[NO]CHECK The native C run-time library does
not support the additional parameter
checking provided by the TNS C
run-time library.

Remove pragma.

CSADDR Native process memory architecture
does not require use of pragma.

Remove pragma.

LARGESYM Native compilers generate complete
symbols information. Pragma is
unnecessary.

Remove pragma.

[NO]LMAP Native compilers do not generate
load map information.

Remove pragma.

[NO]NEST Native compilers do not support
nested comments. The ISO/ANSI C
Standard does not support nested
comments.

Remove pragma and nested
comments.

OLDCALLS Native compilers do not support
B-series C language function calling
behavior.

Remove pragma and change
code to eliminate B-series C
language function calling
behavior.

SQLMEM Native process memory architecture
does not require use of pragma.

Remove pragma.

STRICT Native compilers perform similar
syntactic and semantic checking by
default.

Remove pragma.

TRIGRAPH Native compilers always translate
trigraph characters.

Remove pragma and change
code that treats each character in
a trigraph as a C token.

VERBOSE Native compilers in OSS
environment do not write compiler
banners.

Remove pragma.
TNS/E Native Application Conversion Guide—529659-003
3-17

C and C++ Conversion Tasks Removing Obsolete Pragmas
[NO]WIDE Native compilers generate
programs that use only the 32-bit
(or wide) data model.

Remove pragma and recode
programs that specify NOWIDE to
use the 32-bit (or wide) data
model.

[NO]XMEM Native compilers generate
programs that use only the large-
memory model.

Remove pragma and recode
programs that specify NOXMEM to
use the large-memory model.

[NO]XVAR Native process memory architecture
does not require use of pragma.

Remove pragma.

Table 3-4. Obsolete Pragmas (page 2 of 2)

Pragma Reason pragma is obsolete Action Required
TNS/E Native Application Conversion Guide—529659-003
3-18

4 Converting COBOL Programs
This section describes how to convert TNS COBOL programs to TNS/E native mode.

The compilers to which this section applies are:

This section discusses:

• COBOL Compiler Overview
• Converting COBOL Programs
• Changing the Source Program

COBOL Compiler Overview
Both the TNS COBOL compiler and the TNS/E native COBOL compiler comply with
the 1985 COBOL85 standard.

The TNS and TNS/E native COBOL support the same optimization levels:

Key differences between the TNS and native COBOL compilers include:

• The native COBOL compilers have new command names. The ECOBOL
command calls the Guardian native COBOL compiler, and the ecobol command
calls the OSS native and PC COBOL compilers.

• The TNS COBOL compilers produce TNS object code, and the TNS/E native
compilers produce Itanium object code.

• Code produced by the native compilers is position-independent code (PIC), which
can be used to create dynamic-link libraries (DLLs).

• The code space limit for a TNS COBOL program is 128 KB. The code space limit
for any single native COBOL program is 16 MB. This limit does not include any
contained programs, each of which has its own 16 MB limit. The object code space
limit for the combined program file and ordinary DLLs is 256 MB (this does not
include public DLLs, such as ZCOBDLL and ZCREDLL).

Compiler T Number

TNS COBOL85 T9257

TNS cobol T8498

TNS/E ECOBOL T0356

TNS/E ecobol T0356

OPTIMIZE 0 No optimization

OPTIMIZE 1 Optimizations that do not interfere with debugging

OPTIMIZE 2 Full optimization
TNS/E Native Application Conversion Guide—529659-003
4-1

Converting COBOL Programs Converting COBOL Programs
• The data space limit of approximately 60 KB for the sum of all the Working-Storage
Sections and File Sections of a TNS process does not apply to native COBOL
programs. The Working-Storage Section and the Extended-Storage Section are
the same in native COBOL.

• In TNS/E native COBOL, there is no distinction between the small data area and
the large data area.

Converting COBOL Programs
The recommended procedure for conversion from TNS COBOL to native COBOL is:

1. Change your program so that it runs in the Common Run-Time Environment
(CRE), if it does not already. (See the COBOL Manual for TNS/E Programs.)

2. Verify that you have adequate system resources for the converted programs.

Native object files use approximately the same amount of disk space as
accelerated object files. Native processes use approximately the same amount of
processor memory as TNS processes running in accelerated mode.

3. If necessary, change your source program (see Changing the Source Program on
page 4-4).

To learn whether you must change your source program, compile it with the native
COBOL compiler, which issues warnings when it encounters source constructs that
it does not accept. Running the native COBOL compiler with the DIAGNOSE-85
directive is especially recommended. This directive causes the native COBOL
compiler to issue warnings when it encounters source constructs that could cause
the program to produce different results than it would if it were compiled with the
TNS COBOL compiler. For a complete description of the DIAGNOSE-85 directive,
see the COBOL Manual for TNS/E Programs.

4. If your program calls TNS programs, convert them to native mode. Native
programs cannot call TNS programs. For the following list of languages, follow
these instructions. The last one, Data Alignment on page 4-3, applies to several
languages.

• C/C++

Recompile C and C++ programs with the native C and C++ compilers,
respectively. Specify the SYMBOLS pragma when recompiling a C or C++
program that your TNS COBOL program references in a CALL or ENTER
statement. This generates symbols for use by a symbolic debugger.

• TAL

Convert TAL programs to pTAL. (See the pTAL Conversion Guide.) Some CRE
library routines might no longer exist, so you might have to change calls to
them. Also, if you want to reference an object in a CALL or ENTER statement,
you must compile your pTAL program with symbols.
TNS/E Native Application Conversion Guide—529659-003
4-2

Converting COBOL Programs Converting COBOL Programs
If any of your TAL programs use the FORTRAN convention for determining the
length of a string parameter (that is, if they use the ENTER routine and do not
specify the language TAL), convert them to use another method. (For example,
use the string:length convention or pass the length as a separate
parameter.)

For information on tools that can help you convert TAL programs to pTAL
programs, see Section 5, Converting TAL to pTAL.

• FORTRAN and Pascal

There are no native FORTRAN or Pascal compilers. Rewrite FORTRAN and
Pascal programs in native C, native C++, native COBOL, or pTAL. You need
not use the same language for all of them.

• Data Alignment

The alignment of certain data items differs between TNS COBOL and native
COBOL. The native COBOL compiler aligns each level-01 and each level-77
item on a physical 8-byte boundary, whereas the TNS COBOL compiler aligns
these items on a physical 2-byte boundary. Offsets from the containing level-01
or level-77 item are the same in both compilers. The difference in alignment of
level-01 and level-77 items will not affect a program unless the program
depends on the relative placement in memory of particular level-01 or level-77
items. Any programs that have this dependency should be changed to remove
the dependency.

By default, the TNS compilers for C, C++, and TAL generate code with different
data alignment than the corresponding native compilers for C, C++, and pTAL.
To convert a TNS C, TNS C++, or TAL program to native mode, you must do
one of the following:

° If DDL was not used, use SHARED2 pragmas in pTAL programs and
CSHARED2 pragmas in native C programs.

° If DDL was used, regenerate DDL source files that TNS and native
programs share.

DDL adds pragmas to ensure that all compilers generate code with the
same data alignment. For more information, see Section 7, Converting
Data Definition Language (DDL).

5. If you want to put the routines that you converted to native mode in Step 4 in a DLL
(instead of in a TNS user library, which your program can no longer use), follow the
directions in the COBOL Manual for TNS and TNS/R Programs.
TNS/E Native Application Conversion Guide—529659-003
4-3

Converting COBOL Programs Changing the Source Program
6. Compile your source program with the native COBOL compiler. For instructions,
see the COBOL Manual for TNS/E Programs.

The native COBOL compiler needs more symbol table space than the TNS
COBOL compiler does. If the native COBOL compilation fails because of dictionary
overflow, use the PARAM SYMBOL-BLOCKS command to increase the space
available for the symbol table, local label table, and embedded SQL statements
and then recompile. The maximum value of the PARAM SYMBOL-BLOCKS
command’s count parameter is 25 for the native COBOL compiler (compared to
14 for the TNS COBOL compiler).

7. Run the COBOL program that you compiled in Step 6.

8. If necessary, debug the program.

The H-series native environment provides different debugging tools than the TNS
environments. See Native Mode Debugging Tools on page 1-10 for an overview of
TNS/E native debugging tools.

Changing the Source Program
Source program changes fall into these categories:

• General Conversion Tasks
• Removal Required
• Possible Changes Required
• Removal Optional
• New Features

General Conversion Tasks
If your TNS COBOL program calls obsolete or changed Guardian procedures, replace
them. Change calls to procedures affected by either the Kernel-Managed Swap Facility
(KMSF) or the native process architecture (for example, process creation calls). For
more information on obsolete or changed procedures, see Section 10, Converting
Programs With Guardian API Calls.

Note. The only debugger currently available to TNS/E native COBOL programs is Visual
Inspect.
TNS/E Native Application Conversion Guide—529659-003
4-4

Converting COBOL Programs Removal Required
Removal Required
Remove the following directives, statements, and library references from your TNS
COBOL source program before compiling it with the native COBOL compiler:

• ENV OLD directive

If you specify the ENV OLD directive, the native COBOL compiler reports an error.
Native COBOL programs always run in the CRE.

• SQL directive

If your program contains SQL statements, include the SQL directive in the native
ECOBOL compiler command line. Do not use the SQL option RELEASE1.

• USE DEBUGGING statement

The 1985 COBOL standard classifies the USE DEBUGGING statement as
obsolete, so you are advised not to use it even in TNS COBOL programs. The
native COBOL compiler does not recognize the USE DEBUGGING statement, and
the TNS COBOL compiler no longer recognizes the names of the debug items,
which are:

° DEBUG-CONTENTS
° DEBUG-ITEM
° DEBUG-LINE
° DEBUG-NAME
° DEBUG-SUB-1
° DEBUG-SUB-2
° DEBUG-SUB-3

Remove references to these TNS libraries, which native COBOL cannot use and does
not need.

• CBL85UTL
• COBOLLIB
• CLULIB

Make these substitutions:

References to the preceding libraries could appear in these contexts:

• CONSULT directive
• LIBRARY directive
• SEARCH directive
• FILE-MNEMONIC clause of the SPECIAL-NAMES paragraph
• OF or IN clause of the CALL or ENTER statement

Replace With

COBOLEX0 ECOBEX0

COBOLEX1 ECOBEX1

COBOLEXT ECOBEXT
TNS/E Native Application Conversion Guide—529659-003
4-5

Converting COBOL Programs Possible Changes Required
Possible Changes Required
The TNS and native COBOL compilers handle the following directives, the ENTER
statement, floating-point arithmetic, and checkpointing differently. Make any necessary
changes to them before compiling your COBOL source program with the native
COBOL compiler. For complete descriptions of the directives, see the COBOL Manual
for TNS/E Programs.

• Directives on page 4-6
• ENTER Statement on page 4-7
• Floating-Point Arithmetic on page 4-7

Directives

• BLANK and NOBLANK

For the TNS COBOL compiler, BLANK is the default. For the native COBOL
compiler, NOBLANK is the default.

• CONSULT

For the native COBOL compiler, each object-name in a CONSULT directive
must designate a native object file (otherwise the native COBOL compiler reports
an error). If a native COBOL program references the object in a CALL or ENTER
statement, the object must have been compiled with symbols.

• LARGEDATA

For the TNS COBOL compiler, the LARGEDATA directive determines whether
individual data items are located in the user data space or the user extended
space. The default value for the LARGEDATA directive’s parameter is 256.

The native COBOL compiler does not distinguish between user space and
extended space. The LARGEDATA directive is ignored, and a warning is reported.

• LIBRARY

The native COBOL compiler issues a warning for the LIBRARY directive.

In native COBOL, a user library is implemented as a dynamic-link library (DLL).
Instead of the LIBRARY directive, specify the name of your DLL as explained in
the COBOL Manual for TNS/E Programs.

• RUNNAMED

The RUNNAMED directive works in the native COBOL compiler only if you specify
the new RUNNABLE directive (see RUNNABLE directive on page 4-11).

• SAVEABEND and NOSAVEABEND

The SAVEABEND and NOSAVEABEND directives work in the native COBOL only
if you specify the new RUNNABLE directive (see RUNNABLE directive on
page 4-11).
TNS/E Native Application Conversion Guide—529659-003
4-6

Converting COBOL Programs Possible Changes Required
• SEARCH

For the native COBOL compiler, each object-name in a SEARCH directive must
designate a native object file (otherwise the native COBOL compiler reports an
error). If a native COBOL program references the object in a CALL or ENTER
statement, the object must have been compiled with symbols.

• SUBTYPE

The SUBTYPE directive works in the native COBOL compiler only if you specify
the new RUNNABLE directive (see RUNNABLE directive on page 4-11).

ENTER Statement
The language parameter of the ENTER statement is unnecessary, because the
native COBOL compiler can determine the language in which the program is written. If
you do specify language, it must be C or TAL. If you specify TAL, the native COBOL
compiler requires a pTAL program (it does not accept TAL programs). If you specify
FORTRAN or Pascal, the native COBOL compiler issues an error message. (You must
convert to native languages any FORTRAN, Pascal, or TAL programs that your
COBOL program calls, as Step 4 of Converting COBOL Programs on page 4-2
explains.) Although a native COBOL program can use the ENTER statement to call
C++ or pTAL programs, language cannot have the value C++ or pTAL.

Floating-Point Arithmetic
The TNS COBOL and native COBOL compilers can produce slightly different results
for floating-point arithmetic, partly because of different floating-point formats used by
the TNS and native COBOL compilers. TNS COBOL uses the HP proprietary TNS
format, while TNS/E native COBOL uses the IEEE format. This format difference can
cause problems for exponentiation with a negative or fractional exponent (such as
10**-3 or 2**0.3). To avoid these problems, include the ROUNDED phrase in
statements that perform floating-point arithmetic so that both compilers produce the
same results. For more information on the ROUNDED phrase, see the COBOL Manual
for TNS/E Programs.

Working-Storage Limits
TNS COBOL enforces a limit of slightly less than 64 KB on data defined in the
WORKING-STORAGE section and a limit of 127.5 KB on data defined in the
EXTENDED-STORAGE section. Native COBOL does not enforce a specific limit.
TNS/E Native Application Conversion Guide—529659-003
4-7

Converting COBOL Programs Possible Changes Required
Checkpointing
The TNS COBOL compiler automatically checkpoints data items that are stored
directly on the stack in two or fewer bytes (that is, if they are level-01 or level-77 items,
in the Working-Storage Section, and fewer than three characters long). The native
COBOL compiler checkpoints only those data items that one or more CHECKPOINT
statements specify explicitly. For more information on the CHECKPOINT statement,
see the COBOL Manual for TNS/E Programs.

Use of RENAMES Clause
As documented in both the COBOL Manual for TNS and TNS/R Programs and COBOL
Manual for TNS/E Programs, the RENAMES clause must not rename a level-01 data
item. However, if a TNS COBOL program uses a RENAMES clause in this way, the
error is not diagnosed and, in fact, the program executes normally. The TNS/E COBOL
compiler does detect this error. Therefore, if a TNS COBOL program uses a
RENAMES clause to rename a level-01 data item, you must change the source code
as follows before recompiling it with the TNS/E native COBOL compiler.

If the level-01 data item is elementary, change the RENAMES clause to a REDEFINES
clause. For example, change:

01 CARD-COUNTER PIC 9(6).
66 ITEM-COUNT RENAMES CARD-COUNTER.

To:

01 CARD-COUNTER PIC 9(6).
66 ITEM-COUNT PIC 9(6) REDEFINES CARD-COUNTER.

If the level-01 data item is a structure, rename the first subordinate data item through
the last subordinate data item. For example, change:

01 CARD-REC.
 05 REFERENCE-NUMBER PIC 9(6).
 05 CARD-CODES.
 10 STORE-CODE PIC 9.
 10 STATE-CODE PIC 9(4).
 05 ACCOUNT-NUMBER PIC 9(6).
 05 CHECK-DIGIT PIC 9.
 66 CARD-DATA RENAMES CARD-REC.

To:

01 CARD-REC.
 05 REFERENCE-NUMBER PIC 9(6).
 05 CARD-CODES.
 10 STORE-CODE PIC 9.
 10 STATE-CODE PIC 9(4).
 05 ACCOUNT-NUMBER PIC 9(6).
 05 CHECK-DIGIT PIC 9.

 66 CARD-DATA RENAMES REFERENCE-NUMBER THRU CHECK-DIGIT
TNS/E Native Application Conversion Guide—529659-003
4-8

Converting COBOL Programs Removal Optional
Use of PARAM SYMBOL-BLOCKS Command
The TNS/E COBOL compiler requires more space to describe a symbol that does the
TNS/R COBOL compiler; thus, the symbol dictionary requires more space on a TNS/E
system. If you use a PARAM SYMBOL-BLOCKS command to specify the amount of
space to allocate for the symbol dictionary in a TNS/R compilation, you might need to
increase the amount specified when compiling with the TNS/E compiler.

The default value for PARAM SYMBOL-BLOCKS has been increased for the TNS/E
COBOL compiler, so if you are not specifying it for a TNS/R compilation, you probably
will not need to specify it for a TNS/E compilation. See the COBOL Manual for TNS
and TNS/R Programs and the COBOL Manual for TNS/E Programs for details on the
amount of space allocated by the PARAM SYMBOL-BLOCKS command.

Removal Optional
The native COBOL compiler ignores the following items, so you can (but need not)
remove them from your source program. The native COBOL compiler issues a warning
when it finds these items, except as noted.

• CODE and NOCODE directives

The native COBOL compiler does not produce an octal code listing. If you need to
display an object file, use the enoft utility. (See the eNOFT Manual.)

• COMPACT and NOCOMPACT directives

These directives determine whether BINSERV attempts to compact the code
space of the target file. The native COBOL compiler does not use BINSERV.

• CROSSREF and NOCROSSREF

The native COBOL compiler does not produce a cross-reference listing. If you
need one, use the enoft utility with the XREFPROC flag. (See the eNOFT
Manual.)

• ENV COMMON directive

Native COBOL programs always run in the CRE. The native COBOL compiler
does not issue a warning if you use this directive.

• FLOAT and NOFLOAT directives

The native COBOL compiler determines whether to use floating-point arithmetic for
certain complex expressions. (The FLOAT option is always in effect.)

• LESS-CODE directive

Native COBOL does not support the option to use a system call to initialize the
Extended-Storage Section.

• ENV LIBRARY
TNS/E Native Application Conversion Guide—529659-003
4-9

Converting COBOL Programs Removal Optional
Instead of using the ENV LIBRARY directive to build a TNS user library, use the UL
or SHARED directive to build a PIC object file, which can be used by the linker to
create a DLL (see the COBOL Manual for TNS/E Programs).

• EXTENDED-STORAGE SECTION header

Native COBOL does not need an Extended-Storage Section. The native COBOL
compiler handles data items that are described in the Extended-Storage Section as
if they were described in the Working-Storage Section. The native COBOL
compiler does not issue a warning if you use the EXTENDED-STORAGE
SECTION header.

• HEAP directive

• HIGHPIN directive

Native COBOL programs always run at a high PIN.

• HIGHREQUESTERS directive

Native COBOL programs can always run as servers that communicate with
requesters running at high PINs.

• ICODE and NOICODE

The native COBOL compiler ignores these directives, warning you that it has done
so. Use the INNERLIST and NOINNERLIST directives instead (see INNERLIST
and NOINNERLIST directives on page 4-11).

• LMAP and NOLMAP directives

The LMAP and NOLMAP directives determine which load maps the compiler
obtains from BINSERV. The native COBOL compiler does not use BINSERV.

• NOCONSULT

• NOSEARCH

• NOSQL

This is the default for native COBOL programs.

• SQLMEM

The concept of extended memory does not exist in native mode.

• TRAP2 and NOTRAP2

Native COBOL85 programs have traps set by default.

• TRAP2-74 and NOTRAP2-74

Native COBOL programs cannot call COBOL 74 programs.
TNS/E Native Application Conversion Guide—529659-003
4-10

Converting COBOL Programs New Features
New Features
You can (but need not) add these new features to your COBOL source program before
you compile it with the native COBOL compiler. For more information on these
features, see the COBOL Manual for TNS/E Programs.

• DIAGNOSE-85 directive

The DIAGNOSE-85 directive directs the native COBOL compiler to issue warnings
when it encounters source constructs that could cause the program to produce
different results than it would if it were compiled with the TNS COBOL compiler.

• FMAP

The FMAP directive directs the native COBOL compiler to produce a source file
map, which shows the fully qualified name and timestamp of the IN file and each
file specified by a SOURCE directive or COPY statement.

• INNERLIST and NOINNERLIST directives

The INNERLIST and NOINNERLIST directives determine whether the compiler
lists the mnemonic version of each source statement immediately after that source
statement.

• RUNNABLE directive

The RUNNABLE directive causes the native COBOL compiler to use the eld utility
to produce an executable object file if there were no compilation errors, but that
action is not the default. If you run the native COBOL compiler without the
RUNNABLE directive and no compilation errors occur, you can produce an
executable object file by running the eld utility separately. If you do, you must
specify the COBOL DLL (ZCOBDLL) and CRE DLL (ZCREDLL). ZCOBDLL and
ZCREDLL reside in the active subvolume $SYSTEM.SYSnn. For instructions on
determining the active subvolume, see the eld Manual.

You must compile your native program with the RUNNABLE directive if you use the
SAVEABEND, NOSAVEABEND, or SUBTYPE directive.

For information on running the eld utility, see the eld Manual.
TNS/E Native Application Conversion Guide—529659-003
4-11

Converting COBOL Programs New Features
TNS/E Native Application Conversion Guide—529659-003
4-12

5 Converting TAL to pTAL
HP TAL is a higher-level, block-structured language used to write system software and
transaction-oriented applications for NonStop systems.

pTAL is a dialect of TAL with these differences:

• pTAL does not depend on architecture-specific characteristics of NonStop
processors.

• pTAL has constructs that replace architecture-specific TAL constructs and that take
advantage of TNS/E processors.

• pTAL also enforces stricter rules on using certain TAL constructs and operations.

The compilers to which this section applies are:

This section discusses:

• Using the pTAL Compiler
• Required Changes

Using the pTAL Compiler
The EPTAL command runs the TNS/E pTAL compiler. The TNS/E pTAL compiler
generates Itanium code. Object code produced by the TNS/E pTAL compiler is
position-independent code (PIC), which can be used to create DLLs.

TNS/E pTAL provides a PC-based cross compiler, which is supported on the Windows
platform. You can run the cross compiler at the Microsoft Windows command prompt
(eptal command) or through ETK (eptal.exe command).

Required Changes
Some of the changes required to convert from TAL to pTAL include:

• Replace INT and INT(32) declarations holding addresses with new address types
WADDR, BADDR, and EXTADDR.

• Test condition codes, such as with IF $OVERFLOW, immediately following the
statement returning the condition.

• Add explicit returns at the bottom of functions.

• Declare procedure pointers using new pTAL syntax.

• Specify a RETURNSCC attribute in procedures that return condition codes.

Compiler T Number

TNS/E pTAL T0561

TNS TAL T9250
TNS/E Native Application Conversion Guide—529659-003
5-1

Converting TAL to pTAL Required Changes
• Remove CODE, STACK, and STORE statements.

• Rewrite code that uses G, S, or L-relative addresses.

pTAL does not support embedded SQL statements. To convert a TAL program with
embedded SQL to pTAL, write C functions that contain the embedded SQL statements
and call the C functions from pTAL.

Many TAL programs require few changes to create valid pTAL programs. However,
TAL programs that make use of low-level TNS architecture features might require
significant changes.

Use the pTAL compiler’s syntax checking option to produce a detailed list of TAL
constructs that must be changed to convert TAL code to pTAL code. In Example 5-1,
the variable I must be declared as a WADDR.

In some cases, you can maintain one set of source code for both TAL and pTAL. See
Maintaining Common Source Code for TNS and TNS/E Native Compilers on page 2-3
for details.

This manual does not describe the language-specific tasks required to convert from
TAL to pTAL. For detailed TAL-to-pTAL conversion information, see the appropriate
manual in the pTAL documentation set:

Example 5-1. pTAL Compiler Listing With Syntax Checking

 PROC myproc;
 BEGIN
 INT I;
*** Error: ^
--> I is declared to have type INT(16), but is used later as WADDR
[error 01023].
 INT .p1;
 I := @p1;

Manual Description

pTAL Guidelines for TAL Programmers Describes how to write TAL code that can be
converted to pTAL with minimal changes. Lists
the major differences between TAL and pTAL.

pTAL Conversion Guide Describes the differences between TAL and
pTAL. Explains in detail how to covert TAL
programs to pTAL.

pTAL Reference Manual Describes the syntax of the pTAL language.
Explains how to run the pTAL compiler.
TNS/E Native Application Conversion Guide—529659-003
5-2

Converting TAL to pTAL Required Changes
As an alternative to reading the lengthy pTAL Reference Manual and pTAL Conversion
Guide, you can convert the majority of TAL programs by following these steps:

1. Read pTAL Guidelines for TAL Programmers to familiarize yourself with the
difference between TAL and pTAL.

2. Process your source files with the pTAL compiler syntax checking option set. The
syntax is:

EPTAL / IN source-filename, OUT listing-filename / ;SYNTAX

See the pTAL Reference Manual for details on running the pTAL compiler.

3. Examine the pTAL compiler output listings to determine the changes that you must
make to the source files. Look up the items that require changes in the pTAL
Reference Manual and the pTAL Conversion Guide.
TNS/E Native Application Conversion Guide—529659-003
5-3

Converting TAL to pTAL Required Changes
TNS/E Native Application Conversion Guide—529659-003
5-4

6 Converting a TNS User Library
This section explains how to convert TNS user libraries to TNS/E native user libraries.

A user library is an object file that the operating system links to a program file at run
time. C, C++, COBOL, TAL, and pTAL programs can have a user library. There are two
types of user libraries on H-series systems: TNS user libraries and TNS/E native user
libraries. A TNS user library is available to TNS processes in the Guardian
environment. A TNS/E native user library is available to TNS/E native processes in the
Guardian and OSS environments.

A TNS/E native user library is a DLL that has a special relationship to a program. A
TNS/E native user library is architecturally identical to, and in most respects is treated
the same as, any other DLL. A program can have only one TNS/E native user library,
although it can load multiple ordinary DLLs.

This section discusses:

• User Library Differences
• Building a User Library
• Specifying a User Library

User Library Differences
The following table summarizes the differences between TNS and TNS/E native user
libraries:

TNS User Libraries TNS/E Native User Libraries

Either or both the program file and user
library file can be accelerated (processed by
AXCEL, OCA, or both).

Both the program file and user library file
must be compiled with TNS/E native
compilers.

Can contain embedded SQL statements. Cannot contain embedded SQL statements.
Move functions with embedded SQL
statements to user code before converting a
TNS user library to a TNS/E native user
library.

Can call a limited subset of the C run-time
library.

Can call any function in the C run-time
library.

A COBOL user library specified at
compilation time can be overridden at run
time.

A COBOL user library specified at
compilation time cannot be overridden at run
time.
TNS/E Native Application Conversion Guide—529659-003
6-1

Converting a TNS User Library Building a User Library
Building a User Library
Building a TNS/E native user library is similar to building a TNS user library. To build a
TNS/E native user library:

1. Remove pragmas and directives:

• In C and C++, remove ENV LIBRARY pragmas from source code files and the
compiler RUN command line.

• In COBOL and pTAL, remove ENV LIBRARY directives from source code files.

2. Add pragmas, directives, and flags:

• In C and C++:

° In the Guardian environment, add a CALL_SHARED pragma to the
compiler RUN command line.

° In the OSS or PC environment, add the -Wcall_shared flag to the c89
or c99 command.

• In COBOL:

° In the Guardian environment, add a SHARED directive to the ECOBOL
command line or the source code.

° In the OSS or PC environment, add a -Wshared flag to the c89 or c99
command, or add a SHARED directive to the source code.

• In pTAL:

° In the Guardian environment, add a CALL_SHARED directive to the
EPTAL command line or the source code.

° On the PC, add a -Wcall_shared flag to the c89 or c99 command, or
add a CALL_SHARED directive to the source code.

3. Compile the source files as relinkable files, not as executable files. Do not specify
the COBOL RUNNABLE directive or the C/C++ RUNNABLE pragma.

4. Link the object files using eld with the -shared and -ul and flags. The -shared
flag directs the linker to build a DLL, and the -ul flag causes eld to link the object
files into a native user library. If the user library calls functions in another DLL, you
must specify the DLL when linking. (This is true for any DLL, not just user libraries.)
Do not link the CRTLMAIN file (in the Guardian environment) or the crtlmain.o
file (in the OSS environment and on the PC) to a user library.

The preceding steps create a DLL in two steps: a compilation step and a linker step.
Alternatively, you can create a DLL in a single step by specifying appropriate compiler
directives to invoke the linker automatically after compilation is complete.
TNS/E Native Application Conversion Guide—529659-003
6-2

Converting a TNS User Library Specifying a User Library
See the following manuals for more details on building TNS/E native user libraries and
DLLs:

• Compiler manuals
• eld Manual
• DLL Programmer’s Guide for TNS/E Systems

Specifying a User Library
Only one user library can be associated with a program file at any time. Associating a
user library with a program file is nearly identical for TNS user libraries and TNS/E
native user libraries. This table describes how to specify a user library for TNS
processes and TNS/E native processes:

Unlike TAL, you cannot specify a user library in pTAL source code with the LIBRARY
directive. Remove LIBRARY directives from pTAL programs.

User libraries specified at run time override those specified at link time.

When TNS Processes TNS/E Native Processes

Compile time TAL programs: LIBRARY
directive at compile time.

LIBRARY directive not available

COBOL programs: Specify the
TNS/E native user library in a
CONSULT directive

Bind and link time Binder SET LIBRARY command

C/C++ programs: TNS c89 utility
-Wrunlib= pathname flag (for
Guardian programs compiled
using c89)

C/C++ programs: TNS/E c99
utility -Wrunlib= pathname
flag (for Guardian programs
compiled using c99)

eld utility -libname flag

eld utility -set libname and
-change libname flags

TNS/E native c89 utility -Weld=
"-libname library" flag

TNS/E native c99 utility -Weld=
"-libname library" flag

Run time TACL command interpreter RUN
command LIB option

OSS run gtacl command -lib
flag

TACL command interpreter RUN
command LIB option

OSS run gtacl command -lib
flag

COBOL programs: Specify the
same TNS/E native user library
that you specified at compile
time, using the LIB option of the
RUN command (in the Guardian
environment) or the -lib flag of
the ecobol utility (in the OSS or
PC environment)
TNS/E Native Application Conversion Guide—529659-003
6-3

Converting a TNS User Library Specifying a User Library
For more information on TNS user libraries, see the Binder Manual. For more
information on TNS/E native user libraries and DLLs, see the eld Manual and the DLL
Programmer’s Guide for TNS/E Systems.
TNS/E Native Application Conversion Guide—529659-003
6-4

7
Converting Data Definition
Language (DDL)

This section describes how to convert Data Definition Language (DDL) host language
source files that:

• Are shared between TNS and TNS/E native programs written in C, C++, TAL, or
pTAL

and

• Were generated by a pre-D40 product version of the DDL compiler

If these criteria apply to your DDL host language source files, follow the instructions in
this section to generate new host language source files and recompile your programs
with the new files. If your DDL host language source files are not shared between TNS
and native programs or were generated by a D4x, G-series, or H-series DDL compiler,
or your applications are written in COBOL, no actions are required.

This section discusses:

• Background Information
• Generating New Host-Language Source Code Files
• Compiling With New Host-Language Source Code Files

Background Information
DDL defines data objects and translates object definitions into source code for
programming languages and other products. Data objects can include parameters,
structures, messages, database entries, and disk records. Data objects in host-
language source code generated by DDL have the same physical layout, regardless of
host language.

The native compilers align data for optimal performance on NonStop systems by
default. This default alignment is the same on TNS/R and TNS/E systems. Except for
the TNS COBOL and TNS/E native COBOL compilers, this default alignment is
different from and incompatible with the default data alignment generated by the TNS
compilers.

The TNS COBOL and TNS/E native COBOL compilers generate code with the same
data alignment. You need not change any data alignment directives before converting
a TNS COBOL program to native COBOL. You need not regenerate DDL source files
that are shared only by TNS COBOL and native COBOL programs.

Because of the data alignment incompatibility for languages other than COBOL, the
D4x, G-series, and H-series DDL compilers have been enhanced to generate host-
language source code that produces the same data alignment, whether the TNS
TNS/E Native Application Conversion Guide—529659-003
7-1

Converting Data Definition Language (DDL) Generating New Host-Language Source Code Files
compilers or native compilers are used. To ensure the same data alignment, the D4x,
G-series, and H-series DDL compilers emit FIELDALIGN SHARED2 pragmas for C and
FIELDALIGN SHARED2 directives for TAL and pTAL.

Except for COBOL, host-language source files used by TNS/E native programs and
shared with TNS programs must be generated using the D4x, G-series, or H-series
DDL compiler. Host-language source files supplied by HP for H-series systems have
already been generated by the H-series DDL compiler.

Host-language source files used exclusively by TNS/E native programs or TNS
programs do not require changes. Only shared host-language source files must be
generated using the H-series DDL compiler.

If you deliver host-language source files to your customers or use a significant number
of host-language source files, plan and test your files carefully to ensure that you
generate new source files for all files shared by TNS and native programs.

The remainder of this section applies only to C, C++, TAL, and pTAL programs; it does
not apply to COBOL programs.

Generating New Host-Language Source Code
Files

If a TNS program uses host-language source files that HP supplies, you do not need to
generate new host-language source files. HP products that supply DDL files have been
generated by H-series DDL for you. Proceed to Compiling With New Host-Language
Source Code Files on page 7-3.

If a TNS program uses host-language source files that you created, you must generate
new files with the H-series DDL compiler. The DDL compiler requires a DDL source
schema file or a DDL dictionary to generate host-language source files. If you think
your DDL dictionary differs from your DDL source schema files, generate a new DDL
dictionary. Before generating a new DDL dictionary:

1. Make a complete backup of the existing DDL dictionary.

2. Generate new source schema files from the existing DDL dictionary.

3. Compare the existing source schema files with the new source schema files and
resolve any differences by making the appropriate changes in the source schema
files.

4. Generate the new DDL dictionary using the corrected source schema files.

To identify those DDL files that you have generated with the H-series DDL compiler,
you might want to add a comment to the DDL source schema files similar to that used
in HP source schema files:

DDL output recompiled with H-series DDL to allow native and non-
native applications to share structures.
TNS/E Native Application Conversion Guide—529659-003
7-2

Converting Data Definition Language (DDL) Compiling With New Host-Language Source Code
Files
See the Data Definition Language (DDL) Reference Manual for complete DDL usage
information.

Compiling With New Host-Language Source
Code Files

HP products that supply DDL host-language files have been generated with H-series
DDL.

You can recompile programs using the TNS/E pTAL, TNS/E native C, TNS/E native
C++, and TAL compilers. You must recompile programs using a D-series, G-series, or
H-series version of the TNS C compiler that supports the FIELDALIGN pragmas
emitted by DDL.

This table shows the product version updates (PVUs) that must be used with D2x and
D3x TNS C compiler versions. For D4x, G-series, and H-series compilers, the base
product version supports the new pragmas and no PVU is required.

Compile and (if necessary) accelerate your programs, specifying the new host-
language source code files. No other actions are required.

For details on how the native compilers align data, see the C/C++ Programmer’s Guide
and the pTAL Reference Manual.

Caution. Do not attempt to regenerate a DDL dictionary installed by the Pathmaker product
from DDL source code. Pathmaker application design information will be lost.

For this TNS C compiler product version: Use an PVU version of at least:

T9255D20 T9255ABN

T9255D30 T9255ABM

T8377D30 T8377AAA
TNS/E Native Application Conversion Guide—529659-003
7-3

Converting Data Definition Language (DDL) Compiling With New Host-Language Source Code
Files
TNS/E Native Application Conversion Guide—529659-003
7-4

8
Converting Programs That Run in
the Common Run-Time Environment

The Common Run-Time Environment (CRE) coordinates many run-time tasks on
behalf of the language-specific run-time libraries to provide a common environment for
all routines in a program, regardless of their languages. Most programs use CRE
services implicitly by calling language specific run-time libraries, such as the C run-time
library, which in turn call the CRE. You do not need to change TNS programs that use
CRE services implicitly to convert them to native mode.

This section describes the changes required to convert applications that make explicit
use of CRE services; that is, programs that make explicit calls to the CRE_, RTL_, and
CLU_ functions. TAL main routines that run in the CRE make explicit use of CRE
services and require changes. (Most programs with a TAL ‘main’ routine do not run in
the CRE.) This section discusses:

• Converting pTAL Programs to Run in the CRE
• Specifying Header Files on page 8-2
• Replacing Obsolete CRE Functions on page 8-2

Converting pTAL Programs to Run in the CRE
A program with a TAL main routine that runs in the CRE calls the
TAL_CRE_INITIALIZER_ procedure to initialize and establish the CRE. There is no
equivalent procedure for pTAL. Therefore, a pTAL procedure cannot be the main
procedure in a program that runs in the CRE. To convert a program that runs in the
CRE from TAL to pTAL:

• Delete the call to TAL_CRE_INITIALIZER_.

• Delete the MAIN keyword from the main procedure.

• Write a simple C main function that calls the pTAL procedure that previously was
declared as main.

The C main function automatically initializes the CRE. Because the program now has a
C main function, you must link to the SRLs and CRTLMAIN module required by native
C programs. See the CRE Programmer’s Guide and C/C++ Programmer’s Guide for
details.

Unlike the TAL compiler, which requires an ENV COMMON or ENV NEUTRAL
directive for programs that run in the CRE, the pTAL compiler does not require ENV
directives. The pTAL compiler issues a warning for any ENV directives that it finds.
Remove ENV COMMON and ENV NEUTRAL directives from pTAL programs.
TNS/E Native Application Conversion Guide—529659-003
8-1

Converting Programs That Run in the Common Run-
Time Environment

Specifying Header Files
Specifying Header Files
Separate TAL and pTAL header files describe the external declarations of CRE
functions. Change external declaration file references in SOURCE directives to use the
pTAL declaration files, as follows:

Replacing Obsolete CRE Functions
The obsolete CRE functions include:

• Standard Math Functions on page 8-3
• String Functions on page 8-5
• Memory Block Functions on page 8-7
• Exception-Handling Functions on page 8-8
• Sixty-Four-Bit Logical Operation Functions on page 8-8
• Decimal-Conversion Functions on page 8-8

In many cases, the obsolete functions have nearly identical replacements or, for
COBOL, equivalent intrinsic functions. The replacements match the functions in the
native C run-time library. To call these functions from pTAL, you must write your own
pTAL function declarations. See the C header files and the Guardian Native C Library
Calls Reference Manual for a description of each function’s definition and behavior.
See the pTAL Reference Manual for information on writing pTAL declarations for C
functions. See the COBOL Manual for TNS/E Programs for information on COBOL
intrinsic functions.

CRE functions that can generate arithmetic traps in TNS processes do not generate
arithmetic traps in native processes. In the native environment, the trap handling facility
has been replaced with a signal handling facility. Arithmetic overflow is detected
dynamically, and a default signal handler is provided. Programs must now evaluate
errno or the parameters to a function call. For native programs, the CRE provides a
default signal handler instead of a default trap handler.

For function names
beginning with

Use this TAL
declaration file

Use this pTAL
declaration file

CRE_ CREDECS CRERDECS

RTL_ RTLDECS RTLRDECS

CLU_ CLUDECS CLURDECS
TNS/E Native Application Conversion Guide—529659-003
8-2

Converting Programs That Run in the Common Run-
Time Environment

Standard Math Functions
Standard Math Functions
These CRE standard math functions cannot be called by native programs.Table 8-1
lists the obsolete functions and suggests replacement functions. COBOL programs can
call either the COBOL intrinsic functions or the other suggested replacement functions.

Table 8-1. Obsolete Standard Math Functions (page 1 of 3)

Obsolete Function

Suggested Replacement

COBOL
Only

All Languages
(including COBOL)

CRE_Arccos_Real32_
RTL_Arccos_Real32_
CRE_Arccos_Real64_
RTL_Arccos_Real64_

ACOS acos()

CRE_Arcsin_Real32_
RTL_Arcsin_Real32_
CRE_Arcsin_Real64_
RTL_Arcsin_Real64_

ASIN asin()

RTL_Arctan_Real32_
RTL_Arctan_Real64_

ATAN atan()

CRE_Arctan2_Real32_
RTL_Arctan2_Real32_
CRE_Arctan2_Real64_
RTL_Arctan2_Real64_

 atan2()

RTL_Cos_Real32_
RTL_Cos_Real64_

COS cos()

CRE_Cosh_Real32_
RTL_Cosh_Real32_
CRE_Cosh_Real64_
RTL_Cosh_Real64_

 cosh()

CRE_Exp_Real32_
RTL_Exp_Real32_
CRE_Exp_Real64_
RTL_Exp_Real64_

 exp()

CRE_Ln_Real32_
RTL_Ln_Real32_
CRE_Ln_Real64_
RTL_Ln_Real64_

LOG log()

CRE_Log10_Real32_
RTL_Log10_Real32_
CRE_Log10_Real64_
RTL_Log10_Real64_

LOG10 log10()

RTL_Lower_Real64_ floor()
TNS/E Native Application Conversion Guide—529659-003
8-3

Converting Programs That Run in the Common Run-
Time Environment

Standard Math Functions
CRE_Mod_Int16_
RTL_Mod_Int16_
CRE_Mod_Int32_
RTL_Mod_Int32_
CRE_Mod_Int64_
RTL_Mod_Int64_
RTL_Mod_Real32_
RTL_Mod_Real64_

MOD modf()

RTL_Normalize_Real64_ frexp()

RTL_Odd_Int32_ Write your own function that
determines whether a value is even or
odd.

RTL_Positive_Diff_Int16_
RTL_Positive_Diff_Int32_
RTL_Positive_Diff_Int64_
RTL_Positive_Diff_Real32_
RTL_Positive_Diff_Real64_

Write your own function that returns
the arithmetic difference between two
numbers.

CRE_Power_Int16_to_Int16_
RTL_Power_Int16_to_Int16_
CRE_Power_Int32_to_Int16_
RTL_Power_Int32_to_Int16_
CRE_Power_Int64_to_Int16_
RTL_Power_Int64_to_Int16_
CRE_Power_Real32_to_Int16_
RTL_Power_Real32_to_Int16_
CRE_Power_Real32_to_Real32_
RTL_Power_Real32_to_Real32_
CRE_Power_Real64_to_Int16_
RTL_Power_Real64_to_Int16_
CRE_Power_Real64_to_Real64_
RTL_Power_Real64_to_Real64_

 pow()

CRE_Power2_Real64_
RTL_Power2_Real64_

 ldexp()

CRE_Random_Next_ RANDOM rand()

CRE_Random_Set_ srand()

RTL_Round_Real32_
RTL_Round_Real64_

Write your own function that returns
the nearest whole number.

Table 8-1. Obsolete Standard Math Functions (page 2 of 3)

Obsolete Function

Suggested Replacement

COBOL
Only

All Languages
(including COBOL)
TNS/E Native Application Conversion Guide—529659-003
8-4

Converting Programs That Run in the Common Run-
Time Environment

String Functions
String Functions
These CRE string functions cannot be called by native programs. Table 8-2 lists the
obsolete functions and suggests replacement functions.

RTL_Sign_Int16_
RTL_Sign_Int32_
RTL_Sign_Int64_
RTL_Sign_Real32_
RTL_Sign_Real64_

Write your own function that returns its
first parameter with the sign set
according to its second parameter.

RTL_Sin_Real32_
RTL_Sin_Real64_

SIN sin()

CRE_Sinh_Real32_
RTL_Sinh_Real32_
CRE_Sinh_Real64_
RTL_Sinh_Real64_

 sinh()

RTL_Split_Real64_ MOD modf()

CRE_Sqrt_Real32_
RTL_Sqrt_Real32_
CRE_Sqrt_Real64_
RTL_Sqrt_Real64_

SQRT sqrt()

RTL_Tan_Real32_
RTL_Tan_Real64_

TAN tan()

CRE_Tanh_Real32_
RTL_Tanh_Real32_
CRE_Tanh_Real64_
RTL_Tanh_Real64_

 tanh()

RTL_Truncate_Real32_
RTL_Truncate_Real64_

Write your own function that returns
the nonfractional part of a number.

RTL_Upper_Real64_ ceil()

Table 8-2. Obsolete String Functions (page 1 of 3)

Obsolete Function Suggested Replacement

RTL_Atof_ atof() in the native C run-time library

RTL_Atoi_ atoi() in the native C run-time library

RTL_Atol_ atol() in the native C run-time library

RTL_Stcarg_
RTL_StcargX_

strcspn() with a string of bytes representing the characters
for which to search

Table 8-1. Obsolete Standard Math Functions (page 3 of 3)

Obsolete Function

Suggested Replacement

COBOL
Only

All Languages
(including COBOL)
TNS/E Native Application Conversion Guide—529659-003
8-5

Converting Programs That Run in the Common Run-
Time Environment

String Functions
RTL_Stccpy_
RTL_StccpyX_

strcpy()

RTL_Stcd_I_
RTL_Stcd_IX_

strtol() in the native C run-time library

RTL_Stcd_L_
RTL_Stcd_LX_

strtol() in the native C run-time library

RTL_Stch_I_
RTL_Stch_IX_

strtol() in the native C run-time library

RTL_Stci_D_
RTL_Stci_DX_

sprintf() with a %d conversion specifier. sprintf() is in
the native C run-time library.

RTL_Stcpm_
RTL_StcpmX_

strstr(). Additional code might be required to support pattern
matching.

RTL_Stcpma_
RTL_StcpmaX_

strstr(). Additional code might be required to support pattern
matching.

RTL_Stcu_D_
RTL_Stcu_DX_

sprintf() with a %u conversion specifier. sprintf() is in
the native C run-time library.

RTL_Stpblk_
RTL_StpblkX_

strpbrk() with a string of bytes representing the nonspace
characters

RTL_Stpsym_
RTL_StpsymX_

strspn() with a string containing alphanumeric characters.
Pass the return value of strspn() to strncpy() to copy the
correct string length.

RTL_Stptok_
RTL_StptokX_

Series of calls to strtok() to find a token and strcat() to
append a token to another string

RTL_Strcat_
RTL_StrcatX_

strcat()

RTL_Strchr_
RTL_StrchrX_

strchr()

RTL_Strcmp_
RTL_StrcmpX_

strcmp()

RTL_Strcpy_
RTL_StrcpyX_

strcpy()

RTL_Strcspn_
RTL_StrcspnX_

strcspn()

RTL_Strlen_
RTL_StrlenX_

strlen()

RTL_Strncat_
RTL_StrncatX_

strncat()

RTL_Strncmp_
RTL_StrncmpX_

strncmp()

Table 8-2. Obsolete String Functions (page 2 of 3)

Obsolete Function Suggested Replacement
TNS/E Native Application Conversion Guide—529659-003
8-6

Converting Programs That Run in the Common Run-
Time Environment

Memory Block Functions
Memory Block Functions
These CRE memory block functions cannot be called by native programs. Table 8-3
lists the obsolete functions and suggests replacement functions:

RTL_Strncpy_
RTL_StrncpyX_

strncpy()

RTL_Strpbrk_
RTL_StrpbrkX_

strpbrk()

RTL_Strrchr_
RTL_StrrchrX_

strstr()

RTL_Strspn_
RTL_StrspnX_

strspn()

RTL_Strstr_
RTL_StrstrX_

strstr()

CRE_Strtod_
CRE_StrtodX_

strtod() in the native C run-time library

CRE_Strtol_
CRE_StrtolX_

strtol() in the native C run-time library

CRE_Strtoul_
CRE_StrtoulX_

strtoul() in the native C run-time library

RTL_Substring_Search_ strstr()

Table 8-3. Obsolete Memory Block Functions

Obsolete Function Suggested Replacement

RTL_Memory_Compare_
RTL_Memory_CompareX_

memcmp()

RTL_Memory_Copy_
RTL_Memory_CopyX_

memcpy()

RTL_Memory_Findchar_
RTL_Memory_FindcharX_

memchr()

RTL_Memory_Move_
RTL_Memory_MoveX_

memmove()

RTL_Memory_Repeat_
RTL_Memory_RepeatX_

Series of calls to memcpy() to copy the block of memory the
required number of times

RTL_Memory_Set_
RTL_Memory_SetX_

memset()

RTL_Memory_Swap_
RTL_Memory_SwapX_

Series of calls to memcpy() to swap the blocks of memory

Table 8-2. Obsolete String Functions (page 3 of 3)

Obsolete Function Suggested Replacement
TNS/E Native Application Conversion Guide—529659-003
8-7

Converting Programs That Run in the Common Run-
Time Environment

Exception-Handling Functions
Exception-Handling Functions
The CRE_Stacktrace_ function has separate TAL and pTAL declarations to support
the TNS and native stack architectures. See the CRE Programmer’s Guide for details.

Sixty-Four-Bit Logical Operation Functions
You cannot call these CRE functions from native programs:

• RTL_Shift_Left_Int64_
• RTL_Shift_Right_Int64_
• RTL_Complement_Int64_
• RTL_And_Int64_
• RTL_Or_Int64_
• RTL_Xor_Int64_
• RTL_Remainder_Int64_

There are no equivalent replacements. You must write your own code to replace these
functions.

Decimal-Conversion Functions
You cannot call these CRE functions from native programs:

• RTL_Decimal_to_Int16_
• RTL_Decimal_to_Int32_
• RTL_Decimal_to_Int64_
• RTL_Int16_to_Decimal_
• RTL_Int32_to_Decimal_
• RTL_Int64_to_Decimal_

There are no equivalent replacements. You must write your own code to replace these
functions.
TNS/E Native Application Conversion Guide—529659-003
8-8

9
Converting Programs That Share
Data

This section describes the conversion tasks related to:

• Sharing Data Between TNS and TNS/E Native Programs

• Sharing Data Between pTAL Programs and Native C or C++ Programs on
page 9-2

Shared data objects can include parameters, structures, messages, database entries,
and disk records.

Sharing Data Between TNS and TNS/E Native
Programs

The native compilers align data for optimal performance on the TNS/E platform by
default. This default alignment is different and incompatible with the default data
alignment generated by the TNS compilers.

Because of this incompatibility, data objects shared between native programs and TNS
programs require FIELDALIGN SHARED2 pragmas for C and C++ and FIELDALIGN
SHARED2 directives for TAL and pTAL. These pragmas and directives cause both
TNS and native compilers to generate code with the same alignment.

FIELDALIGN SHARED2 produces code that is not optimally aligned for the TNS/E
platform. Therefore, specify FIELDALIGN SHARED2 only for shared data objects.
Otherwise, use the default native compiler alignment.

See the C/C++ Programmer’s Guide or the pTAL Reference Manual for more
information on controlling data alignment.

D-series, G-series, and H-series versions of the TAL compiler support FIELDALIGN
directives. D4x, G-series, and H-series versions of the TNS C compiler support
FIELDALIGN pragmas. Pre-D40 product versions of the TNS C compiler require these
PVUs to support FIELDALIGN pragmas:

Note. If DDL is used to define shared data objects and generate source code, see Section 7,
Converting Data Definition Language (DDL).

For this TNS C compiler product version Use a PVU version of at least

T9255D20 T9255ABN

T9255D30 T9255ABM

T8377D30 T8377AAA
TNS/E Native Application Conversion Guide—529659-003
9-1

Converting Programs That Share Data Sharing Data Between pTAL Programs and Native C
or C++ Programs
Sharing Data Between pTAL Programs and
Native C or C++ Programs

The native C and C++ compilers align data for the optimal performance of C and C++
programs on the TNS/E platform by default (pragma FIELDALIGN AUTO). The pTAL
compiler aligns data for the optimal performance of pTAL programs on the TNS/E
platform by default (directive FIELDALIGN AUTO). Although the default setting of the
pTAL, C, and C++ compilers is FIELDALIGN AUTO, the compilers generate different
and incompatible alignments for FIELDALIGN AUTO.

Because of this data alignment incompatibility, data objects shared between pTAL
programs and native C or C++ programs require FIELDALIGN SHARED8 pragmas for
C and C++ and FIELDALIGN SHARED8 directives for pTAL. This pragma and directive
cause the native compilers to generate code with the same alignment.

Instead of using FIELDALIGN SHARED8, you can also use FIELDALIGN PLATFORM
for programs that do not contain pTAL WADDR, BADDR, or EXTADDR address types
in structures.

If the data objects are also shared with TNS programs, use the pragmas and directives
described under Sharing Data Between TNS and TNS/E Native Programs on page 9-1
instead.
TNS/E Native Application Conversion Guide—529659-003
9-2

10
Converting Programs With Guardian
API Calls

This section describes the changes you must make to Guardian application program
interface (API) calls in programs you convert to TNS/E native mode.This section
discusses:

• Replacing Obsolete Procedures on page 10-1

• Using the INITIALIZER Procedure on page 10-5

• Using Sequential I/O Procedures on page 10-5

• Using Procedures Enhanced to Support the Native Architecture on page 10-7

• Using Procedures Affected by KMSF on page 10-7

• Using Procedures With pTAL Address Types on page 10-9

• Writing Multithreaded Programs on page 10-9

• Calling Code You Add to the System Library on page 10-9

• Adjusting for Increased DCT Limits on page 10-10

Replacing Obsolete Procedures
These Guardian procedures cannot be called by native programs:

ADDRTOPROCNAME on page 10-2

ARMTRAP on page 10-2

CHECKPOINT on page 10-3

CHECKPOINTMANY on page 10-3

CURRENTSPACE on page 10-4

FORMATDATA on page 10-4

LASTADDR on page 10-4

LASTADDRX on page 10-4

XBNDSTEST on page 10-4

XSTACKTEST on page 10-5

The following subsections describe how to replace these obsolete functions.
TNS/E Native Application Conversion Guide—529659-003
10-1

Converting Programs With Guardian API Calls ADDRTOPROCNAME
ADDRTOPROCNAME
The ADDRTOPROCNAME procedure takes a P register value and stack marker ENV
value and returns the associated symbolic procedure name and various optional items
that describe the procedure in detail.

Native processes cannot call the ADDRTOPROCNAME procedure because native
processes do not have P or ENV registers. Remove calls to ADDRTOPROCNAME
from your program. No direct replacement is available, but a comparable service is
provided for accelerated and native programs by the HIST_INIT_, HIST_FORMAT_,
and HIST_GETPRIOR_ procedures.

These three procedures display process state, including register contents and
procedure activation history or stack traces. The HIST_INIT_ procedure called with the
HO_Init_Address option provides results comparable to the ADDRTOPROCNAME
procedure. See the Guardian Procedure Calls Reference Manual for details.

ARMTRAP
Native processes cannot call the Guardian procedure ARMTRAP. For native
processes, the trap facility based on the TNS architecture has been replaced with a
different yet comparable signals facility. Native processes receive signals when run-
time events occur that require immediate attention; they cannot receive traps. Signals
are software interrupts that provide a way for handling asynchronous events, such as
timer expiration, detection of a hardware fault, abnormal termination of a process, or
any trap condition normally detectable by a TNS process. Each TNS trap has a
corresponding signal.

Guardian system procedures that previously trapped on error conditions emit signals in
native processes. For details, see the Guardian Procedure Calls Reference Manual.

If a program has trap handlers to handle trap conditions, you must write signal
handlers to handle the equivalent signals.

Native programs in the Guardian environment can use these functions and procedures
to receive and handle signals:

• Signals functions in the POSIX.1 standard.

These are the signals functions in the OSS API. All of these functions can be
called in C and C++, and most can be called in pTAL.

These functions include longjmp(), raise(), setjmp(), signal(), and
sigaction() in C and LONGJMP_, RAISE_, SETJMP_, SIGNAL_, and
SIGACTION_ in pTAL.

• HP signals extensions to the POSIX.1 standard.

These extensions are especially written for applications that focus on handling
signals indicating conditions known as traps in TNS processes (those applications
that call ARMTRAP). These procedures can be called in pTAL, C, and C++.
TNS/E Native Application Conversion Guide—529659-003
10-2

Converting Programs With Guardian API Calls CHECKPOINT
These procedures include sigactioninit(), sigactionrestore(), and
sigactionsupplant() in C and SIGACTION_INIT_, SIGACTION_RESTORE_,
and SIGACTION_SUPPLANT_ in pTAL.

The HP signals extensions are provided as convenience tools that allow native
processes to catch signals corresponding to trap conditions in TNS processes. The HP
signals extensions provide shortcuts to the same base functions provided by the
standard signals API.

If you are concerned about conforming to the POSIX.1 standard and application
portability, use the standard functions. If you are mainly interested in the performance
gains of converting from TNS to native processes but want to focus on handling those
signals known as trap conditions in TNS processes, use the signals extensions.

For more information on writing signal handlers, see the Guardian Programmer’s
Guide.

CHECKPOINT
The CHECKPOINT procedure is called by a primary process to send information about
its current executing state to its backup process.

Native processes cannot call the CHECKPOINT procedure. Replace calls to the
CHECKPOINT procedure with calls to the CHECKPOINTX procedure. CHECKPOINTX
is the same as CHECKPOINT, except for an additional optional parameter to allow
checkpointing data in extended data segments.

Because of differences between TNS and TNS/E native stack architecture, additional
changes might be required. For details, see the CHECKPOINTX procedure in the
Guardian Procedure Calls Reference Manual.

CHECKPOINTMANY
The CHECKPOINTMANY procedure is called by a primary process to send information
about its current executing state to its backup process. The CHECKPOINTMANY
procedure is used in place of the CHECKPOINT procedure when more than 13 pieces
of information need to be sent.

Native processes cannot call the CHECKPOINTMANY procedure. Replace calls to the
CHECKPOINTMANY procedure with calls to the CHECKPOINTMANYX procedure.
CHECKPOINTMANYX is the same as CHECKPOINTMANY, except for an additional
optional parameter to allow checkpointing data in extended data segments.

Because of differences between the TNS and native stack architecture, additional
changes might be required. For details, see the CHECKPOINTMANYX procedure in
the Guardian Procedure Calls Reference Manual.
TNS/E Native Application Conversion Guide—529659-003
10-3

Converting Programs With Guardian API Calls CURRENTSPACE
CURRENTSPACE
The CURRENTSPACE procedure returns the ENV register (as saved in the stack
marker) and the space ID of the caller. Native processes do not have the same register
and space ID architecture as TNS processes. Remove calls to CURRENTSPACE from
your program. If your program’s logic relies on TNS process architecture, significant
recoding of your application to support native process architecture is required.

FORMATDATA
The FORMATDATA procedure converts data item values between internal and external
representations. The FORMATDATA procedure requires that all its reference
parameters be 16-bit addresses. The native architecture does not support 16-bit
addresses. Replace calls to FORMATDATA procedure with calls the FORMATDATAX
procedure. The FORMATDATAX procedure requires that all of its reference parameters
be 32-bit addresses. For details, see the Guardian Procedure Calls Reference Manual.

LASTADDR
The LASTADDR procedure returns the ‘G’[0] relative address of the last word in the
application process’ data area. Native processes do not support G-relative addressing.
Replace calls to the LASTADDR procedure with calls to the ADDRESS_DELIMIT_
procedure. For details, see the Guardian Procedure Calls Reference Manual.

LASTADDRX
The LASTADDRX procedure allows user programs to check stack limits or parameter
addresses. LASTADDRX returns the last extended address available in the specified
relative segment. Replace calls to the LASTADDR procedure with calls to the
ADDRESS_DELIMIT_ procedure. For details, see the Guardian Procedure Calls
Reference Manual.

XBNDSTEST
The XBNDSTEST procedure enables programs to check stack limits and parameter
addresses. To check parameter addresses, replace calls to the XBNDSTEST
procedure with calls to the REFPARAM_BOUNDSCHECK_ procedure. The
REFPARAM_BOUNDSCHECK_ procedure checks the validity of parameter addresses
passed to the procedure that calls it. Primarily, it verifies that a specified memory area
is valid for a specified type of access, such as read only or read/write. For details, see
the Guardian Procedure Calls Reference Manual.
TNS/E Native Application Conversion Guide—529659-003
10-4

Converting Programs With Guardian API Calls XSTACKTEST
XSTACKTEST
The XSTACKTEST procedure ensures that adequate stack space is available and
returns a set of constants to be used with the XBNDSTEST procedure.

If XSTACKTEST is called to return constants passed to the XBNDSTEST procedure,
delete the XSTACKTEST procedure, because native programs cannot call the
XBNDSTEST procedure. For details, see XBNDSTEST on page 10-4 for more details.

If XSTACKTEST is called to ensure that adequate stack space is available, replace
XSTACKTEST with calls to the HEADROOM_ENSURE_ procedure. The
HEADROOM_ENSURE_ procedure enables you to make sure that the current main
stack or privileged stack has enough room for the needs of your process. For details,
see the Guardian Procedure Calls Reference Manual.

Using the INITIALIZER Procedure
The INITIALIZER procedure reads the startup message, and optionally requests
receipt of the ASSIGN and PARAM messages sent by the starting process (which is
often a TACL process). The INITIALIZER procedure optionally initializes file control
blocks (FCBs) with the information read from the startup and ASSIGN messages.

You must change calls to the INITIALIZER procedure that pass the first parameter (the
RUCB, run-unit control block). Such programs must specify two additional parameters.
You need not change other callers to the INITIALIZER procedure. For details, see the
Guardian Procedure Calls Reference Manual.

Using Sequential I/O Procedures
Many of the sequential I/O (SIO) procedures accept file control blocks (FCBs) as
parameters. TNS and native programs have FCBs of different sizes. These SIO
procedures have separate TAL and pTAL declarations to support FCBs of different
sizes:

CLOSE^WRITE
OPEN^FILE
READ^FILE
WAIT^FILE
WRITE^FILE

You do not need to change your programs for different FCB sizes. The TAL and pTAL
compilers automatically select the correct procedure version.

Callers to the CHECK^FILE and SET^FILE SIO procedures must make the changes
described next.
TNS/E Native Application Conversion Guide—529659-003
10-5

Converting Programs With Guardian API Calls CHECK^FILE
CHECK^FILE
The CHECK^FILE procedure retrieves the file characteristics of a specified file. There
are two versions of the CHECK^FILE procedure: one for TNS programs and one for
native programs. Separate TNS and native versions are required because pTAL uses
separate data types for passing and returning integer and address parameter values.

For TNS programs, the procedure passes integer and address values through a type
INT parameter. For native programs, the procedure returns integer values through a
type INT parameter and address values through a new optional parameter of type
WADDR. pTAL type WADDR is equivalent to C type short. When converting to native
mode, change your programs to use the native version of CHECK^FILE.

To maintain common TNS and native source code, use the
CALL_CHECK^FILE_ADDRESS_ DEFINE in the GPLDEFS declarations file. This
DEFINE calls the correct version of CHECK^FILE, depending on which environment
the program is compiled in.

 For more information about the CHECK^FILE procedure, see the Guardian Procedure
Calls Reference Manual.

SET^FILE
The SET^FILE procedure alters file characteristics and checks the old values of the
characteristics being altered. There are two version of the SET^FILE procedure: one
for TNS programs and one for native programs. Separate TNS and native versions are
required because pTAL uses separate data types for passing and returning integer and
address parameter values.

For TNS programs, the procedure returns integer and address values through a pointer
of type INT. For native programs, the procedure returns integer values through a type
INT parameter and address values through a new optional parameter of type WADDR.
pTAL type WADDR is equivalent to C type short. When converting to TNS/E native
mode, change your programs to use the native version of SET^FILE.

To maintain common TNS and native source code, use the
CALL_SET^FILE_ADDRESS_ DEFINE in the GPLDEFS declarations file. This
DEFINE calls the correct version of SET^FILE, depending on which environment the
program is compiled in.

For more information about the SET^FILE procedure, see the Guardian Procedure
Calls Reference Manual.
TNS/E Native Application Conversion Guide—529659-003
10-6

Converting Programs With Guardian API Calls Using Procedures Enhanced to Support the Native
Architecture
Using Procedures Enhanced to Support the
Native Architecture

These procedures have been enhanced to support native processes, native object
files, and DLLs:

NEWPROCESS
NEWPROCESSNOWAIT
OBJECTFILE_GETINFOLIST_
PROCESS_CREATE_
PROCESS_GETINFOLIST_
PROCESSINFO
PROCESS_SETINFO_
PROCESS_SPAWN_

Depending on the operations performed by these procedures, you might need to
specify new or different parameters. For details, see the procedure’s description in the
Guardian Procedure Calls Reference Manual.

Additionally, the NEWPROCESS, NEWPROCESSNOWAIT, and
PROCESS_CREATE_ procedures have been superseded by the
PROCESS_LAUNCH_ procedure. The PROCESSINFO procedure has been
superseded by the PROCESS_GETINFOLIST_ procedure. You might need to replace
calls to these superseded procedures with calls to the replacement procedures to
specify parameters specific to the TNS/E native architecture.

Using Procedures Affected by KMSF
KMSF manages the swap space for native processes and, to a lesser extent, TNS
processes. For more information on this facility, see KMSF on page 1-19. KMSF affects
procedures that specify and return information on swap space.

Use the following procedures to specify or return the swap volume or file of the user
data segment for a TNS process:

NEWPROCESS
NEWPROCESSNOWAIT
PROCESS_CREATE_
PROCESSINFO
PROCESS_GETINFO_

Note. Because the PROCESS_LAUNCH_ procedure is the only procedure to fully support
native process creation, you should replace calls to the NEWPROCESS,
NEWPROCESSNOWAIT, and PROCESS_CREATE_ procedures with calls to the
PROCESS_LAUNCH_ procedure when converting to native mode.
TNS/E Native Application Conversion Guide—529659-003
10-7

Converting Programs With Guardian API Calls Using Procedures Affected by KMSF
Native processes do not use swap volume or file values specified by these procedures,
so those input values are ignored. The PROCESSINFO and PROCESS_GETINFO_
procedures return the volume and file names (if specified). The values returned are the
names specified when the process was created, not the actual swap volume managed
by KMSF.

Use these procedures to specify or return the number or maximum number of data
pages to be allocated for the user data stack for a TNS process:

CHECKMONITOR
GETSYNCINFO
NEWPROCESS
NEWPROCESSNOWAIT
PROCESS_CREATE_
PROCESS_SPAWN_
SETSYNCINFO

Native processes do not use these data page values, so they are ignored. Similar heap
attribute values for native processes can be set with eld utility or the
PROCESS_LAUNCH_ procedure.

Use these procedures to specify or return the volume or file of the default extended
data segment for a TNS process:

PROCESS_CREATE_
PROCESS_GETINFOLIST_
PROCESS_SPAWN_

Native processes do not use these volume or file values, so they are ignored. The
PROCESS_GETINFOLIST_ procedure returns the volume name (if specified) and #0.
The value returned is the name specified when the process was created, not the actual
swap volume managed by KMSF. Depending on the operations performed by these
procedures, you might need to specify new or different parameters. See the
procedure’s description in the Guardian Procedure Calls Reference Manual for details.

Note. You can continue to use the NEWPROCESS, NEWPROCESSNOWAIT, and
PROCESS_CREATE_ procedures to specify the volume for temporary files created by TNS
and native processes.
TNS/E Native Application Conversion Guide—529659-003
10-8

Converting Programs With Guardian API Calls Using Procedures With pTAL Address Types
Using Procedures With pTAL Address Types
These procedures use pTAL data types that support the address types WADDR,
BADDR, EXTADDR, and PROCPTR:

When converting TAL programs, use the pTAL compiler SYNTAX directive to enable
syntax checking. That detects whether the program requires changes.

C and C++ programs do not require changes.

For more details, see the procedure’s description in the Guardian Procedure Calls
Reference Manual.

Writing Multithreaded Programs
Native processes do not maintain the TNS register and stack architecture. Therefore,
user-written multithreaded programs that directly manipulate TNS registers and the
stack require changes to be converted to native mode. Programs must use a new set
of multithreaded support procedures. The multithreaded support procedures enable
programs to save and restore thread context and to create the context for new threads.
Both TNS and native programs can use the multithread support procedures. See
Support Note S96001, “T9050: User-Level TNS/R Native Thread Primitives” for details.

Calling Code You Add to the System Library
If a TNS program calls code that you have added to the system library, the code added
to the system library must be converted to TNS/E native code when you convert the
program.

If both TNS processes (running in interpreted mode or accelerated mode) and native
processes call code you add to the system library, you need two versions of the code:
one that has been accelerated and one that has been compiled with a TNS/E native
compiler. The accelerated and TNS/E native versions can contain the same procedure

ADDRESS_DELIMIT_ INITIALIZER SORTERROR

AWAITIO MEASWRITE_DIFF_ SORTERRORDETAIL

AWAITIOX NUMIN SORTERRORSUM

CHECK^FILE POOL_CHECK_ SORTMERGEFINISH

DNUMIN PROCESS_SPAWN_ SORTMERGERECEIVE

ENFORMSTART SEGMENT_ALLOCATE_ SORTMERGESEND

GETPOOL SEGMENT_GETINFO_ SORTMERGESTART

HEAPSORT SEGMENT_USE_ SORTMERGESTATISTICS

HEAPSORTX SET^FILE
TNS/E Native Application Conversion Guide—529659-003
10-9

Converting Programs With Guardian API Calls Adjusting for Increased DCT Limits
names. See the H06.nn Software Installation and Upgrade Guide for installation
details.

Adjusting for Increased DCT Limits
This change can affect TAL programs that you are converting to TNS/E pTAL.

The destination control table (DCT) contains entries for logical device numbers and
named processes. The DCT limit refers to the maximum number of logical device
numbers and named processes that the operating system can accommodate. As of the
G06.23 RVU, the size of the DCT can optionally be increased from its previous limit of
32,767 (a logical device number can have at most 15 bits) to 65,376 (a logical device
number can have up to16 bits). This change can affect TAL programs that call any of
these C-series procedures:

In G06.23 and later RVUs, the default setting for extended DCT limits is OFF; that is,
the extended limits are not in effect. In H-series RVUs, the default setting for extended
DCT limits is ON; that is, the extended limits are in effect. Therefore, if you have not
yet changed any affected applications to allow for the increased limits, you must do
one of the following:

• Ensure that the system default DCT limits extension is reset to OFF (do this
through an SCF command).

or

• Change your program to allow for the increased DCT limits.

C-Series Procedure Extended DCT limits affect calls that:

FILEINFO Use the optional ldevnum parameter.

GETDEVNAME (Affects all calls.)

GETPDENTRY (Affects all calls.)

GETSYSTEMNAME Use the return value as an ldev or check for specific error
codes.

LOCATESYSTEM Use the return value as an ldev or check for specific error
codes.

LOOKUPPROCESSNAME Pass a DCT index in the ppd parameter.
TNS/E Native Application Conversion Guide—529659-003
10-10

Converting Programs With Guardian API Calls Adjusting for Increased DCT Limits
The recommended solution is to replace the affected procedures with updated
procedures that can handle the increased DCT limits. The recommended replacement
procedures are:

For more details on the use of these replacement procedures, see the Guardian
Procedure Calls Reference Manual.

C-Series Procedure Replacement Procedure

FILEINFO FILE_GETINFOLIST_

GETDEVNAME DEVICE_GETINFOBYLDEV_
CONFIG_GETINFOBYLDEV_
CONFIG_GETINFOBYLDEV2_
FILENAME_FINDSTART_
FILENAME_FINDNEXT_

GETPDENTRY PROCESS_GETPAIRINFO_

GETSYSTEMNAME NODENUMBER_TO_NODENAME_

LOCATESYSTEM NODENAME_TO_NODENUMBER_

LOOKUPPROCESSNAME PROCESS_GETPAIRINFO_
TNS/E Native Application Conversion Guide—529659-003
10-11

Converting Programs With Guardian API Calls Adjusting for Increased DCT Limits
TNS/E Native Application Conversion Guide—529659-003
10-12

11
OSS API and Utilities Conversion
Tasks

The OSS environment provides an industry-standard API and set of utilities for Integrity
NonStop servers..

This section describes the OSS API changes required to convert TNS programs to
TNS/E native mode. It also describes changes required to the cobol, c89 and c99
utility command lines to run the TNS/E native COBOL and C/C++ compilers.

Make the changes described in Section 3, C and C++ Conversion Tasks or Section 4,
Converting COBOL Programs before making the changes described in this section.
This section discusses:

• Specifying Compilation System Flags on page 11-1
• Using System Calls Enhanced to Support the Native Architecture on page 11-5
• Specifying Compiler Pragmas on page 11-5
• Specifying Files in the Guardian File System (/G) on page 11-6
• Specifying SQL Compilation on page 11-6

Specifying Compilation System Flags
The TNS and TNS/E native compilation systems use different components, as
described in Native Development Environment on page 1-4. Following are descriptions
of the differences in the compilation system flags.

COBOL Compilation System
To use the TNS/E native COBOL compilation system components, use the ecobol
utility instead of the cobol utility. You must also change certain flags. Table 11-1 on
page 11-2 shows the compilation system flags that must be changed when moving
from TNS mode to TNS/E native mode.
TNS/E Native Application Conversion Guide—529659-003
11-1

OSS API and Utilities Conversion Tasks COBOL Compilation System
The ecobol utility provides new flags that are not supported by the cobol utility. For
details, see the Open System Services Shell and Utilities Reference Manual or the
ecobol(1) reference pages.

Table 11-1. COBOL Flag Changes Required: TNS to TNS/E

Changed TNS
cobol Utility Flag Reason for Change Action Required

-Waxcel Accelerator unnecessary
because TNS/E native
compilers generate
Itanium instructions.

Remove flag.

-Wbind eld utility used instead of
Binder for TNS/E native
programs.

Remove flag.

Some -Wbind arguments (such as for
setting object file attributes) have
corresponding ecobol or eld flags.
Specify corresponding ecobol flags or
pass corresponding arguments to eld
using -Weld flag.

See eld(1) and ecobol(1) reference
pages for details.

-Wrunlib TNS/E native compilers
cannot specify user library.

Specify user library with a
-Weld="-libnamelibrary" flag.
TNS/E Native Application Conversion Guide—529659-003
11-2

OSS API and Utilities Conversion Tasks Native C Compilation System
Native C Compilation System
Table 11-2 shows the c89 flags that must be changed when moving from TNS mode
to TNS/E native mode.

Table 11-2. c89 Flag Changes Required: TNS to TNS/E Native (page 1 of 2)

Changed TNS
c89 Utility Flag Reason for Change Action Required

-O Accelerator unnecessary
because TNS/E native
compilers generate Itanium
instructions. Flag now
specifies native compiler
optimization level.

Remove flag. Use default native compiler
optimization level of 1 during conversion.

-Waxcel Accelerator unnecessary
because TNS/E native
compilers generate Itanium
instructions.

Remove flag.

-Wbind eld utility used instead of
Binder for TNS/E native
programs.

Remove flag.

Some -Wbind arguments (such as for
setting object file attributes) have
corresponding native c89, c99, or eld
flags. Specify corresponding TNS/E
native c89 or c99 flags or pass
corresponding arguments to eld using
-eld flag.

See eld(1), c89(1), and c99(1)
reference pages for details.

-Wccom All compiler pragmas and
arguments must be
specified using c89 or c99
flags so that they can be
validated.

Remove flag.

Most -Wccom arguments (such as
pragmas) have corresponding native c89
or c99 flags. Specify corresponding c89
or c99 flags.

See c89(1) or c99(1) reference page
for details.

-Wcfonly cfront function performed
by component of TNS/E
native compilers.

Replace with -WP flag.
TNS/E Native Application Conversion Guide—529659-003
11-3

OSS API and Utilities Conversion Tasks Native C Compilation System
-Wcfront cfront function performed
by component of TNS/E
native compilers.

Replace with -WP flag. No arguments
can be passed.

Most -Wcfront arguments (such as
pragmas) have corresponding native c89
or c99 flags. Specify corresponding c89
or c99 flags.

See c89(1) or c99(1) reference page
for details

-Wcprep cprep function performed
by component of TNS/E
native compilers.

Replace with -WP flag. No arguments
can be passed.

Most -Wcprep arguments (such as
pragmas) have corresponding native c89
or c99 flags. Specify corresponding c89
or c99 flags.

See c89(1) or c99(1) reference page
for details

-Wnobind eld utility used instead of
Binder for TNS/E native
programs.

Replace with -Wnolink flag.

-Wrunlib TNS/E native compilers
cannot specify user library.

Specify user library with a
-Weld="-libnamelibrary" flag.

-Wsql -Wsql now implements
SQL pragma (c89).

-Wsql is not supported
(c99).

Replace with -Wsqlcomp flag (c89).

See Specifying SQL Compilation on
page 11-6 for details.

Table 11-2. c89 Flag Changes Required: TNS to TNS/E Native (page 2 of 2)

Changed TNS
c89 Utility Flag Reason for Change Action Required
TNS/E Native Application Conversion Guide—529659-003
11-4

OSS API and Utilities Conversion Tasks Using System Calls Enhanced to Support the Native
Architecture
Using System Calls Enhanced to Support the
Native Architecture

These OSS system calls have been enhanced to support native processes, native
object files, and DLLs:

tdm_execve
tdm_execvep
tdm_fork
tdm_spawn
tdm_spawnp

Depending on the operations that your TNS programs perform with these functions,
you might need to specify new or different parameters. Also, any returned error values
should not be depended upon. For details, see the function’s reference page online or
in the Open System Services System Calls Reference Manual.

Specifying Compiler Pragmas
On G-series systems, there are two versions of the OSS c89 utility: one version for the
TNS compilation system and one version for the native compilation system. H-series
systems support only the native compilation system, either the native c89 utility or the
native c99 utility (beginning with H06.21/J06.10 and later versions). The native c89
utilities are nearly identical on G-series and H-series systems.

The TNS c89 utility has two flags that support compiler pragmas, -Wsystype and
-Wverbose. For all other pragmas, you either place pragmas in the source text or
pass pragmas to compilation system components by using the -Wccom flag and an
argument string, such as:

-Wccom="runnamed,nomap,inline"

The native c89 and c99 utilities have flags that support most compiler pragmas
because native compilers require most pragmas to appear on the command line. The
flags also enable c89 and c99 to validate pragmas before invoking compilation system
components. For example, the TNS c89 -Wccom flag in the preceding example is
replaced with these flags:

-Wrunnamed -Wnomap -Winline

Flags that support compiler pragmas begin with -W to identify them as HP extensions
for NonStop systems. For information on mapping pragmas to native c89 or c99 flags,
see the native 89 or c99 reference page online or in the Open System Services Shell
and Utilities Reference Manual.
TNS/E Native Application Conversion Guide—529659-003
11-5

OSS API and Utilities Conversion Tasks Specifying Files in the Guardian File System (/G)
Specifying Files in the Guardian File System
(/G)

To specify files in the Guardian file system, use OSS pathname syntax
(/G/volume/subvol/file). Product versions of the TNS c89 utility prior to D40 do
not require files in the Guardian file system to be identified with a suffix. (The OSS file
system requires files to be identified with a suffix.) D40 and later versions of the TNS
c89 utility and the H-series native c89 and c99 utilities require a suffix. For example,

/G/MYVOL/MYSUBVOL/FILE.c

identifies the Guardian source file FILEC (in the Guardian environment, the suffix
becomes the last character of the filename).

Therefore, when converting TNS programs written prior to D40, you must add the
correct suffix to files in the Guardian file system (if it is not already present). For a list of
valid file suffixes, see either the c89(1) or c99(1)reference page online or in the
Open System Services Shell and Utilities Reference Manual.

Specifying SQL Compilation
As noted in Table 11-2, the TNS and TNS/E native c89 utilities use different flags to
run the SQL compiler. The required changes are shown in this example:

• To compile a program with embedded SQL using the TNS c89 utility, specify the
SQL pragma in the -Wccom flag and the -Wsql flag to run the SQL compiler, as
follows:

c89 -Wccom="sql(sqlmap,release2)"
 -Wsql="compile program" prog.c

• To compile a program with embedded SQL using the native c89 utility, specify the
SQL pragma with a -Wsql flag and the -Wsqlcomp flag to run the SQL compiler,
as follows:

c89 -Wsql="sqlmap,release2"
 -Wsqlcomp="compile program" prog.c

Compiling and Linking for Pthreads
When compiling a TNS program on a TNS/R system using T1248 pthreads and the
C++ exception handling mechanism, you need to explicitly link the object
/usr/lib/sptcpp.o. to ensure that exception handling continues to work with all
C++ versions. However, for programming in native C++ on a TNS/E system, linking
/usr/lib/sptcpp.o is not necessary.
TNS/E Native Application Conversion Guide—529659-003
11-6

Glossary
accelerate. To speed up emulated execution of a TNS object file by applying the

Accelerator for TNS/R system execution or the Object Code Accelerator (OCA) for
TNS/E system execution before running the object file.

accelerated mode. See TNS accelerated mode.

accelerated object code. The MIPS RISC instructions (in the MIPS region) that result from
processing a TNS object file with the Accelerator, or the Intel® Itanium® instructions
(in the Itanium region) that result from processing a TNS object file with the Object
Code Accelerator (OCA).

accelerated object file. A TNS object file that, in addition to its TNS instructions and
symbol information, has been augmented by either the Accelerator, with equivalent but
faster MIPS RISC instructions, or the Object Code Accelerator (OCA), with equivalent
but faster Intel® Itanium® instructions, or both.

Accelerator. A program optimization tool that processes a TNS object file and produces an
accelerated object file that also contains equivalent MIPS RISC instructions (called the
MIPS region). TNS object code that is accelerated runs faster on TNS/R processors
than TNS object code that is not accelerated. See also Object Code Accelerator
(OCA).

API. See application program interface (API).

application program interface (API). A set of services (such as programming language
functions or procedures) that are called by an application program to communicate with
other software components. For example, an application program in the form of a client
might use an API to communicate with a server program.

Binder. A programming utility that combines one or more compilation units’ TNS object
code files to create an executable TNS object code file for a TNS program or library.
Used only with TNS object files. See also nld utility, ld utility, and eld utility.

CISC. See complex instruction-set computing (CISC).

complex instruction-set computing (CISC). A processor architecture based on a large
instruction set, characterized by numerous addressing modes, multicycle machine
instructions, and many special-purpose instructions. Contrast with reduced instruction-
set computing (RISC) and Explicitly Parallel Instruction Computing (EPIC).

DLL. See dynamic-link library (DLL).

DWARF. An industry-standard format for symbol table information. It is added to TNS/E
object files, and is used primarily for debugging (not for most linking activities).

dynamic-link library (DLL). A collection of procedures whose code and data can be loaded
and executed at any virtual memory address, with run-time resolution of links to and
TNS/E Native Application Conversion Guide—529659-003
Glossary-1

Glossary eld utility
from the main program and other independent libraries. The same DLL can be used by
more than one process. Each process gets its own copy of DLL static data. Contrast
with shared run-time library (SRL). See also position-independent code (PIC).

eld utility. A utility that collects, links, and modifies code and data blocks from one or more
TNS/E object files to produce a target TNS/E native loadfile. See also nld utility, ld
utility, and Binder.

ELF. See executable and linking format (ELF).

emulate. To imitate the instruction set and address spaces of a different hardware system
by means of software. Emulator software is compatible with and runs software built for
the emulated system. For example, a TNS/R or TNS/E system emulates the behavior
of a TNS system when executing interpreted or accelerated TNS object code.

enoft utility. A utility that reads and displays information from TNS/E native object files. See
also noft utility.

EPIC. See Explicitly Parallel Instruction Computing (EPIC).

executable and linking format (ELF). A standard format used for POSIX object files.
TNS/R and TNS/E native object files are in ELF format with HP extensions.

execution mode. The emulated or real instruction set environment in which object code
runs. A TNS system has only one execution mode: TNS mode using TNS compilers
and 16-bit TNS instructions. A TNS/R system has three execution modes: TNS/R
native mode using TNS/R native compilers and RISC instructions, emulated TNS
execution in TNS interpreted mode, and emulated TNS execution in TNS accelerated
mode. A TNS/E system also has three execution modes: TNS/E native mode using
TNS/E native compilers and Intel® Itanium® instructions, emulated TNS execution in
TNS interpreted mode, and emulated TNS execution in TNS accelerated mode.

Explicitly Parallel Instruction Computing (EPIC). The technology that forms the basis for
the Intel® Itanium® architecture. EPIC technology enables parallel processing
opportunities to be explicitly identified by the compiler before the software code is
executed by the processor.

Guardian. An environment available for interactive or programmatic use with the NonStop
operating system. Processes that run in the Guardian environment use the Guardian
system procedure calls as their application program interface. Interactive users of the
Guardian environment use the HP Tandem Advanced Command Language (TACL) or
another HP product’s command interpreter. Contrast with Open System Services
(OSS).

Guardian environment. The Guardian application program interface (API), tools, and
utilities.

HP NonStop™ Open System Services (OSS). An open system environment available for
interactive or programmatic use with the HP NonStop™ operating system. Processes
TNS/E Native Application Conversion Guide—529659-003
Glossary-2

Glossary HP NonStop Open System Services (OSS)
environment
that run in the OSS environment usually use the OSS application program interface.
Interactive users of the OSS environment usually use the OSS shell for their command
interpreter. See also HP NonStop Open System Services (OSS) environment. Contrast
with Guardian.

HP NonStop Open System Services (OSS) environment. The HP NonStop™ Open
System Services (OSS) application program interface (API), tools, and utilities.

HP NonStop™ operating system. The operating system for HP NonStop systems.

HP Transaction Application Language (TAL). A systems programming language with
many features specific to stack-oriented TNS systems.

hybrid shared run-time library (hybrid SRL). A shared run-time library (SRL) that has
been augmented by the addition of a dynamic section that exports SRL symbols in a
form that can be used by position-independent code (PIC) clients. A hybrid SRL looks
like a dynamic-link library (DLL) to PIC clients (except it cannot be loaded at other
addresses and cannot itself link to DLLs). The code and data in the SRL are no
different in a hybrid SRL, and its semantics for non-PIC clients are unchanged.

Intel® Itanium® instructions. Register-oriented EPIC machine instructions in the Itanium
instruction set that are native to and directly executed by a TNS/E system. Itanium
instructions do not execute on TNS and TNS/R systems. Contrast with TNS
instructions and RISC instructions.

TNS Object Code Accelerator (OCA)-generated Itanium instructions are produced by
accelerating TNS object code. Native-compiled Itanium instructions are produced by
compiling source code with a TNS/E native compiler.

ld utility. A utility that collects, links, and modifies code and data blocks from one or more
position-independent code (PIC) object files to produce a target TNS/R native PIC
object file. See also eld utility, ld utility, and Binder.

linker. (1) The process or server that invokes the message system to deliver a message to
some other process or server. (2) A programming utility that combines one or more
compilation units’ linkfiles to create an executable loadfile for a native program or
library. See also ld utility, nld utility, and eld utility.

linkfile. (1) A file containing object code that is not yet ready to load and execute. Linkfiles
are combined by means of a linker to make an executable loadfile for a program or
library. (2) For native C/C++ compilers in the Guardian environment, a command file
for input to the eld, ld, or nld utility. Compiling creates one linkfile per independent
source module. Contrast with loadfile.

linking. The operation of examining, collecting, linking, and modifying code and data blocks
from one or more object files to produce a target object file.

loader. A programming utility that transfers a program into memory so that it can run. The
mechanism that brings loadfiles into memory for execution, maps them into virtual
TNS/E Native Application Conversion Guide—529659-003
Glossary-3

Glossary loadfile
address space, and resolves symbol references among them. Synonyms include
run-time loader and run-time linker. The loader for TNS and for TNS/R native programs
and libraries that are not position-independent code (PIC) is part of the operating
system. For PIC loadfiles, a loader called rld works with the operating system to load
programs and libraries.

loadfile. An executable object code file that is ready for loading into memory and executing
on the computer. Loadfiles are further classified as executable programs (containing a
main routine at which to begin execution of that program) or executable libraries
(supplying routines or variables to multiple programs or separately loaded libraries). A
TNS code file might be both a loadfile and a linkfile. Native code files are never both.
Contrast with linkfile.

native linker. Often used to refer generically to the ld, nld or eld utility. In this manual, the
term is used as shorthand for the eld utility. See also ld utility, nld utility, and eld utility.

native mode. Often used to refer generically to TNS/R or TNS/E native mode. In this
manual, the term is used as shorthand for TNS/E native mode. See also TNS/R native
mode and TNS/E native mode.

native object code. Often used to refer generically to TNS/R or TNS/E native object code.
In this manual, the term is used as shorthand for TNS/E native object code. See also
TNS/R native object code and TNS/E native object code.

native object file. Often used to refer generically to a TNS/R or TNS/E native object file. In
this manual, the term is used as shorthand for TNS/E native object file. See also
TNS/R native object file and TNS/E native object file.

native object file tool. Often used to refer generically to the noft or enoft utility. In this
manual, the term is used as shorthand for enoft. See also noft utility and enoft utility.

native process. Often used to refer generically to a TNS/R or TNS/E native process. In this
manual, the term is used as shorthand or TNS/E native process. See also TNS/R
native process and TNS/E native process.

nld utility. A utility that collects, links, and modifies code and data blocks from one or more
non-position-independent code (non-PIC) object files to produce a target TNS/R native
non-PIC object file. See also ld utility, eld utility, and Binder.

noft utility. A utility that reads and displays information from TNS/R native object files. See
also enoft utility.

NonStop™ Open System Services (OSS). See HP NonStop™ Open System Services
(OSS).

NonStop™ operating system. See HP NonStop™ operating system.

Object Code Accelerator (OCA). A program optimization tool that processes a TNS object
file and produces an accelerated file for a TNS/E system. OCA augments a TNS object
TNS/E Native Application Conversion Guide—529659-003
Glossary-4

Glossary Object Code Interpreter (OCI)
file with equivalent Itanium instructions. TNS object code that is accelerated runs faster
than TNS object code that is not accelerated. See also Accelerator and Object Code
Interpreter (OCI).

Object Code Interpreter (OCI). A program that processes a TNS object file and emulates
TNS instructions on a TNS/E system without preprocessing the object file. See also
Object Code Accelerator (OCA).

object file. A file generated by a compiler, Binder, or linker that contains machine
instructions and other information needed to construct the executable code spaces and
initial data for a process. The file might be a complete program that is ready for
immediate execution, or it might be incomplete and require linking with other object
files before execution.

OCA. (1) The command used to invoke the TNS Object Code Accelerator (OCA) on a
TNS/E system. (2) See Object Code Accelerator (OCA).

OCI. See Object Code Interpreter (OCI).

Open System Services (OSS). See HP NonStop™ Open System Services (OSS)

operating system. See HP NonStop™ operating system.

OSS. See Open System Services (OSS).

PIC. See position-independent code (PIC).

position-independent code (PIC). Executable code that need not be modified to run at
different virtual addresses. External reference addresses appear only in a data area
that can be modified by the loader; they do not appear in PIC. PIC makes it possible
for programmers to create dynamic-link libraries, which can be loaded and unloaded by
an executing program. See also dynamic-link library (DLL).

process. (1) A program that has been submitted to the operating system for execution or a
program that is currently running in the computer. (2) An address space, a single
thread of control that executes within that address space, and the system resources
required by that thread of control.

program file. An executable object code file containing a program’s main routine plus
related routines statically linked together and combined into the same object file. Other
routines shared with other programs might be located in separately loaded libraries. A
program file can be named on a RUN command; other code files cannot. See also
object file.

pTAL. Portable Transaction Application Language. A machine-independent system
programming language based on Transaction Application Language (TAL). The pTAL
language excludes architecture-specific TAL constructs and includes new constructs
that replace the architecture-specific constructs. Contrast with HP Transaction
Application Language (TAL).
TNS/E Native Application Conversion Guide—529659-003
Glossary-5

Glossary pTAL compiler
pTAL compiler. An optimizing native-mode compiler for the pTAL language.

public dynamic-link library (public DLL). Optional native-mode executable code modules
available to all native user processes. A TNS/E public library is specified in the public
library registry, supplied by HP or optionally a user.

public library. A dynamic-link library (DLL) or shared run-time library (SRL) that is known to
the operating system, available for execution by any process or user, and is not an
implicit library.

public shared run-time library (public SRL). A TNS/R library supplied by HP.

reduced instruction-set computing (RISC). A processor architecture based on a
relatively small and simple instruction set, a large number of general-purpose registers,
and an optimized instruction pipeline that supports high-performance instruction
execution. Contrast with complex instruction-set computing (CISC) and Explicitly
Parallel Instruction Computing (EPIC).

RISC. See reduced instruction-set computing (RISC).

RISC instructions. Register-oriented 32-bit machine instructions in the MIPS-1 RISC
instruction set that are native to and directly executed on TNS/R systems. RISC
instructions do not execute on TNS systems and TNS/E systems. Contrast with TNS
instructions and Intel® Itanium® instructions.

Accelerator-generated RISC instructions are produced by accelerating TNS object
code. Native-compiled RISC instructions are produced by compiling source code with a
TNS/R native compiler.

RISC word. An instruction-set-defined unit of memory. A RISC word is 4 bytes (32 bits)
wide, beginning on any 4-byte boundary in memory. Contrast with TNS word. See also
ld utility.

shared run-time library (SRL). A collection of procedures whose code and data can be
loaded and executed only at a specific assigned virtual memory address (the same
address in all processes). SRLs use direct addressing and do not have run-time
resolution of links to and from the main program and other independent libraries. SRLs
are not supported on TNS/E systems. Contrast with dynamic-link library (DLL). See
also TNS shared run-time library (TNS SRL) and TNS/R native shared run-time library
(TNS/R native SRL).

SRL. See shared run-time library (SRL).

TAL. See HP Transaction Application Language (TAL).

TAL compiler. The nonnative compiler that takes TAL or pTAL source code as input and
generates TNS object code. Compare to pTAL compiler.
TNS/E Native Application Conversion Guide—529659-003
Glossary-6

Glossary TNS
TNS. Fault-tolerant HP computers that support the HP NonStop™ operating system and are
based on microcoded complex instruction-set computing (CISC) technology. TNS
systems run the TNS instruction set. Contrast with TNS/R and TNS/E.

TNS accelerated mode. A TNS emulation environment on a TNS/R or TNS/E system in
which accelerated TNS object files are run. TNS instructions have been previously
translated into optimized sequences of RISC or Intel® Itanium® instructions. TNS
accelerated mode runs much faster than TNS interpreted mode. Accelerated or
interpreted TNS object code cannot be mixed with or called by native mode object
code. See also Object Code Accelerator (OCA). Contrast with TNS/R native mode and
TNS/E native mode.

TNS C compiler. The C compiler that generates TNS object files. Compare to TNS/R native
C compiler and TNS/E native C compiler.

TNS COBOL compiler. The COBOL compiler that generates TNS object files. Compare to
TNS/R native COBOL compiler and TNS/E native COBOL compiler.

TNS instructions. Stack-oriented, 16-bit machine instructions that are directly executed on
TNS systems by hardware and microcode. TNS instructions can be emulated on
TNS/E and TNS/R systems by using millicode, an interpreter, and either translation or
acceleration. Contrast with RISC instructions and Intel® Itanium® instructions

TNS interpreted mode. A TNS emulation environment on a TNS/R or TNS/E system in
which individual TNS instructions in a TNS object file are directly executed by
interpretation rather than permanently translated into RISC or Itanium instructions.
TNS interpreted mode runs slower than TNS accelerated mode. Each TNS instruction
is decoded each time it is executed, and no optimizations between TNS instructions
are possible. TNS interpreted mode is used when a TNS object file has not been
accelerated for that hardware system, and it is also sometimes used for brief periods
within accelerated object files. Accelerated or interpreted TNS object code cannot be
mixed with or called by native object code. See also Object Code Interpreter (OCI).
Contrast with TNS accelerated mode, TNS/R native mode, and TNS/E native mode.

TNS object code. The TNS instructions that result from processing program source code
with a TNS language compiler. TNS object code executes on TNS, TNS/R, and TNS/E
systems.

TNS object file. An object file created by a TNS compiler or the Binder. A TNS object file
contains TNS instructions. TNS object files can be processed by the Accelerator or by
the Object Code Accelerator (OCA) to produce accelerated object files. A TNS object
file can be run on TNS, TNS/R, and TNS/E systems.

TNS process. A process whose main program object file is a TNS object file, compiled
using a TNS compiler. A TNS process executes in interpreted or accelerated mode
while within itself, when calling a user library, or when calling into TNS system libraries.
A TNS process temporarily executes in native mode when calling into native-compiled
parts of the system library. Object files within a TNS process might be accelerated or
TNS/E Native Application Conversion Guide—529659-003
Glossary-7

Glossary TNS shared run-time library (TNS SRL)
not, with automatic switching between accelerated and interpreted modes on calls and
returns between those parts. Contrast with TNS/R native process and TNS/E native
process.

TNS shared run-time library (TNS SRL). An SRL available to a TNS process in the OSS
environment on TNS/R systems. A TNS process can have only one TNS SRL. A TNS
SRL is implemented as a special user library that allows shared global data.

TNS user library. A user library available to TNS processes in the Guardian environment.
See also user library.

TNS word. An instruction-set-defined unit of memory. A TNS word is 2 bytes (16 bits) wide,
beginning on any 2-byte boundary in memory. See also RISC word.

TNS/E. Fault-tolerant HP computers that support the HP NonStop™ operating system and
are based on the Intel® Itanium® processor. TNS/E systems run the Itanium instruction
set and can run TNS object files by interpretation or after acceleration. TNS/E systems
include all HP NonStop™ systems that use NSE-x processors. Contrast with TNS and
TNS/R.

TNS/E native C compiler. The C compiler that generates TNS/E object files. Compare to
TNS C compiler and TNS/R native C compiler.

TNS/E native COBOL compiler. The COBOL compiler that generates TNS/E object files.
Compare to TNS COBOL compiler and TNS/R native COBOL compiler.

TNS/E native mode. The primary execution environment on a TNS/E system, in which
native-compiled Itanium object code executes, following TNS/E native-mode compiler
conventions for data locations, addressing, stack frames, registers, and call linkage.
Contrast with TNS interpreted mode and TNS accelerated mode. See also TNS/R
native mode.

TNS/E native object code. The Intel® Itanium® instructions that result from processing
program source code with a TNS/E native compiler. TNS/E native object code
executes only on TNS/E systems, not on TNS systems or TNS/R systems.

TNS/E native object file. An object file created by a TNS/E native compiler that contains
Intel® Itanium® instructions and other information needed to construct the code
spaces and the initial data for a TNS/E native process.

TNS/E native process. A process initiated by executing a TNS/E native object file. Contrast
with TNS process and TNS/R native process.

TNS/E native user library. A user library available to TNS/E native processes in the
Guardian and OSS environments. A TNS/E native user library is implemented as a
dynamic-link library (DLL).

TNS/E pTAL compiler. An optimizing native-mode compiler for the TNS/E pTAL language.
Compare to TNS/R pTAL compiler and TAL compiler.
TNS/E Native Application Conversion Guide—529659-003
Glossary-8

Glossary TNS/R
TNS/R. Fault-tolerant HP computers that support the HP NonStop™ operating system and
are based on 32-bit reduced instruction-set computing (RISC) technology. TNS/R
systems run the MIPS-1 RISC instruction set and can run TNS object files by
interpretation or after acceleration. TNS/R systems include all HP systems that use
NSR-x processors. Contrast with TNS and TNS/E.

TNS/R native C compiler. The C compiler that generates TNS/R object files. Compare to
TNS C compiler and TNS/E native C compiler.

TNS/R native COBOL compiler. The COBOL compiler that generates TNS/E object files.
Compare to TNS COBOL compiler and TNS/E native COBOL compiler.

TNS/R native mode. The operational environment in which native-compiled RISC
instructions execute.

TNS/R native object code. The RISC instructions that result from processing program
source code with a TNS/R native compiler. TNS/R native object code executes only on
TNS/R systems, not on TNS or TNS/E systems.

TNS/R native object file. A file created by a TNS/R native compiler that contains RISC
instructions and other information needed to construct the code spaces and the initial
data for a TNS/R native process.

TNS/R native process. A process initiated by executing a TNS/R native object file. Contrast
with TNS process and TNS/E native process.

TNS/R native shared run-time library (TNS/R native SRL). A shared run-time library
(SRL) available to TNS/R native processes in both the Guardian and HP™ NonStop
Open System Services (OSS) environments. TNS/R native SRLs can be either public
or private. A TNS/R native process can have multiple public SRLs but only one private
SRL.

TNS/R native user library. A user library available to TNS/R native processes in both the
Guardian and HP NonStop™ Open System Services (OSS) environments. A TNS/R
native user library is implemented as a special private TNS/R native shared run-time
library (TNS/R native SRL).

TNS/R pTAL compiler. An optimizing native-mode compiler for the TNS/R pTAL language.
Compare to TNS/E pTAL compiler and TAL compiler.

user library. An object file that the operating system links to a program file at run time. A
program can have only one user library. See also TNS user library and TNS/R native
user library.
TNS/E Native Application Conversion Guide—529659-003
Glossary-9

Glossary user library
TNS/E Native Application Conversion Guide—529659-003
Glossary-10

Index

Numbers
16-bit data model 1-6, 1-7, 3-3, 3-18
32-bit data model 1-6, 1-7, 3-3, 3-18
32-bit pointers 3-5
64-bit logical operation functions 8-8

A
Accelerated mode 1-2
Accelerator utility 11-2, 11-3
ACOS function 8-3
Active backup 3-14
ADDRESS_DELIMIT_ procedure 10-4,
10-9
ADDRTOPROCNAME procedure 10-2
alias keyword 3-5
Alignment, data 2-6, 2-8
Allocation, data objects 7-1
Alternate-model I/O 3-9, 3-14
and function 8-8
ANSICOMPLY pragma 3-17
ANSISTREAMS pragma 3-15
ANSI-model I/O 3-9
arccos function 8-3
Architecture, native 1-13
arcsin function 8-3
arctan function 8-3
arctan2 function 8-3
Arithmetic overflow 3-9, 3-13, 8-2
ARMTRAP procedure 10-2
ASIN function 8-3
ASSIGN messages 10-5
ATAN function 8-3
atof function 8-5
atoi function 8-5
atol function 8-5
Attributes, process 1-13
AWAITIO procedure 10-9
AWAITIOX procedure 10-9

B
Backup, active 3-14
BADDR data type 10-9
Banners, compiler 3-17
Binder utility 1-8, 3-16, 6-3, 11-2, 11-3
Binding 1-8
BLANK directive 4-6

C
C language

active backup 3-14
alignment 7-1
cc_status keyword 3-5
common source 2-3
compiler 1-6, 3-2
condition codes 3-6
conversion tasks 3-1/3-18
data model 1-6, 3-3, 3-18
extensible keyword 3-5
external functions 3-5
HP extensions 1-6, 1-7, 3-2
interoperability 1-8
ISO/ANSI Standard 1-6, 1-7
Kernighan and Ritchie 1-6, 1-7
keywords 3-5
library functions

See C library functions
lowmem keyword 3-5
memory model 1-6, 3-3, 3-18
messages 3-2, 3-16
native mode conversion tool 1-6
NMCMT 1-6
NULL pointer 3-2
preprocessor 11-4
run-time library 1-8
tal keyword 3-5
TNS/E Native Application Conversion Guide—529659-003
Index-1

Index C
user library 6-1
variable keyword 3-5
warnings 3-2, 3-16
#include 3-2
_cc_status keyword 3-5
_lowmem keyword 3-5
_tal keyword 3-5
_variable keyword 3-5

C library functions
alternate-model I/O 3-9
close 3-10
creat 3-10
ecvt 3-11
edlseek 3-10
exit 3-11
fcloseall 3-10
fcntl 3-10
fdopen 3-10
fdtogfn 3-10
fileno 3-10
fscanf 3-11
internationalization 1-8
iscsym 3-8
iscsymf 3-8
ISO/ANSI C Standard 3-7
I/O 3-9
lastreceive 3-10
lseek 3-10
memswap 3-8
movmem 3-8
open 3-10
read 3-10
readupdate 3-10
receiveinfo 3-10
remove 3-11
reply 3-10
repmem 3-8
scanf 3-11
setmem 3-8

setnbuf 3-8
sscanf 3-11
standards compliance 3-7
stcarg 3-8
stccpy 3-8
stcd_i 3-8
stcd_l 3-8
stch_i 3-8
stcis 3-8
stcisn 3-8
stci_d 3-8
stclen 3-8
stcpm 3-9
stcpma 3-9
stcu_d 3-9
stpblk 3-9
stpbrk 3-9
stpchr 3-9
stpsym 3-9
stptok 3-9
stscmp 3-9
supplementary functions 3-7
terminate_program 3-11
trap_overflows 3-9
unlink 3-10
write 3-10
writeread 3-10
_is_system_trap 3-8

c89 flags
-Weld 6-3
-Wenv 6-2
-Wextensions 3-2
-Woptimize 2-6

c89 utility
conversion tasks 11-5/11-6
pragma support 3-15

CALL_CHECK^FILE_ADDRESS_
define 10-6
CALL_SET^FILE_ADDRESS_ define 10-6
TNS/E Native Application Conversion Guide—529659-003
Index-2

Index C
CALL_SHARED directive 6-2
CALL_SHARED pragma 6-2
CCE macro 3-6
CCG macro 3-6
CCL macro 3-6
CCOMP command 3-2
cc_status keyword 3-5
CEXTDECS 2-3
Cfront 11-3
CHECK pragma 3-17
Checking condition codes 3-6
CHECKMONITOR procedure 10-8
CHECKPOINT procedure 10-3
Checkpointing 10-3
CHECKPOINTMANY procedure 10-3
CHECKPOINTMANYX procedure 10-3
CHECKPOINTX procedure 10-3
CHECK^FILE procedure 10-6, 10-9
Class library, Tools.h++ 3-14
close function 3-10
CLOSE^WRITE procedure 10-5
CLUDECS files 8-2
CLURDECS file 8-2
CLU_ functions

See also function name without prefix
header files 8-2

cnonstop library 3-14
COBOL

compiler 1-7
conversion tasks 4-1/4-11
statements

ENTER 4-5, 4-7
USE DEBUGGING 4-5

COBOL directives
BLANK 4-6
CODE 4-9
COMPACT 4-9
CONSULT 4-5, 4-6
CROSSREF 4-9
DIAGNOSE-85 4-11
ENV 4-5, 4-9

FMAP 4-11
HIGHPIN 4-10
HIGHREQUESTERS 4-10
ICODE 4-10
INNERLIST 4-11
LARGEDATA 4-6
LIBRARY 4-5, 4-6
LMAP directive 4-10
NOBLANK 4-6
NOCODE 4-9
NOCOMPACT 4-9
NOCONSULT 4-10
NOCROSSREF 4-9
NOICODE 4-10
NOINNERLIST 4-11
NOLMAP 4-10
NOSAVEABEND 4-6
NOSEARCH 4-10
NOSQL 4-10
NOTRAP2 4-10
NOTRAP2-74 4-10
RUNNABLE 4-11
RUNNAMED 4-6
SAVEABEND 4-6
SEARCH 4-5, 4-7
SQL 4-5
SQLMEM 4-10
SUBTYPE 4-7
TRAP2 4-10
TRAP2-74 4-10
UL 4-10

CODE directive 4-9
Code segments 1-14
Code spaces

See Code segments
Comments 3-17
Common Run-Time Environment

See CRE
Common source
TNS/E Native Application Conversion Guide—529659-003
Index-3

Index C
GPLDECS file 10-6
maintaining 2-3

Common source, maintaining 10-6
Common Usage C 1-6, 1-7
COMPACT directive 4-9
Compatibility traps 2-8
Compilation system, specifying 11-1
Compilers

C 1-6
COBOL 1-7
C++ 1-6
load maps 3-17
pragmas 11-5
pTAL 1-5
SQL 1-12, 3-16, 11-6
TAL 1-5
warnings 3-2

complement function 8-8
Condition codes 3-6
CONSULT directive 4-5, 4-6
Conversion

preparation 2-2
strategy 2-1/2-9

Conversion tasks
C 3-1/3-18
COBOL 4-1/4-11
CRE 8-1/8-8
C++ 3-1/3-18
DDL 7-1/7-3
Guardian 10-1/10-9
OSS 11-1/11-6
shared data 9-1/9-2
strategy 2-1/2-9
user library 6-1/6-4

Conversion tool, pTAL 1-5
Converting

32-bit pointers 3-3
data models 3-3

COS function 8-3
cos function 8-3

cosh function 8-3
CPATHEQ pragma 3-15
CPPCOMP command 3-2
cprep 11-4
CRE

64-bit logical operations 8-8
and function 8-8
arccos function 8-3
arcsin function 8-3
arctan function 8-3
arctan2 function 8-3
arithmetic traps 8-2
atof function 8-5
atoi function 8-5
atol function 8-5
complement function 8-8
conversion tasks 8-1/8-8
cos function 8-3
cosh function 8-3
decimal-conversion function 8-8
exception-handling functions 8-8
exp function 8-3
external declarations 8-2
header files 8-2
ln function 8-3
log10 function 8-3
lower function 8-3
math functions 8-3
memory block functions 8-7
memory_compare function 8-7
memory_copy function 8-7
memory_findchar function 8-7
memory_move function 8-7
memory_repeat function 8-7
memory_set function 8-7
memory_swap function 8-7
mod function 8-4
normalize function 8-4
obsolete functions 8-2/8-8
TNS/E Native Application Conversion Guide—529659-003
Index-4

Index C
odd function 8-4
or function 8-8
positive_diff function 8-4
power function 8-4
power2 function 8-4
pTAL procedures 8-1
random_next_ function 8-4
random_set_ function 8-4
remainder function 8-8
round function 8-4
shift_left function 8-8
shift_right function 8-8
sign function 8-5
signal handler 8-2
sin function 8-5
sinh function 8-5
split function 8-5
sqrt function 8-5
stcarg function 8-5
stccpy function 8-6
stcd_i function 8-6
stcd_l function 8-6
stch_i function 8-6
stci_d function 8-6
stcpm function 8-6
stcpma function 8-6
stcu_d function 8-6
stpblk function 8-6
stpsym function 8-6
stptok function 8-6
strcat function 8-6
strchr function 8-6
strcmp function 8-6
strcpy function 8-6
strcspn function 8-6
string functions 8-5
strlen function 8-6
strncat function 8-6
strncmp function 8-6

strncpy function 8-7
strpbrk function 8-7
strrchr function 8-7
strspn function 8-7
strstr function 8-7
strtod function 8-7
strtol function 8-7
strtoul function 8-7
substring_search function 8-7
TAL_CRE_INITIALIZER_ 8-1
tan function 8-5
tanh function 8-5
truncate function 8-5
upper function 8-5
xor function 8-8

CRE functions 8-2
creat function 3-10
Creating processes 10-7
CREDECS file 8-2
CRERDECS file 8-2
CRE functions

See also function name without prefix
CRE_ function header files 8-2
CRE_Stacktrace_ function 8-8
crltns library 3-14
Cross compilers and ETK 1-9
CROSSREF directive 4-9
CRTLMAIN 6-2
crtlnsh header file 3-14
CSADDR pragma 3-17
CSHARED2 2-6
CURRENTSPACE procedure 10-4
C++

alignment 7-1
benefits 1-7
common source 2-3
compiler 1-6, 3-2
compiling with Cfront 11-3
condition codes 3-6
conversion tasks 3-1/3-18
TNS/E Native Application Conversion Guide—529659-003
Index-5

Index D
data model 1-7, 3-3, 3-18
errors 3-2
external functions 3-5
filebuf class 3-14
fstream class 3-14
HP extensions 3-2
keywords 3-5
memory model 1-7, 3-3, 3-18
messages 3-2, 3-16
NMCMT 1-7
NULL pointer 3-2
preprocessor 11-4
run-time library 3-14
user library 6-1
warnings 3-2, 3-16
#include 3-2

D
Data alignment

default 2-6
determining 2-6
misaligned data 2-7
performance 2-8
round-down behavior 2-7
shared data 9-1

Data blocks 1-8
Data Definition Language

See DDL
Data layout 7-1
Data misalignment 2-7, 2-8
Data models 1-6, 1-7, 3-3, 3-18
Data objects

generated by DDL 7-1
shared 9-1

Data pages 10-8
Data segments 1-1, 1-15, 10-8
Data spaces

see Data segments
Data types, pTAL 10-9

DCT limits, increased 2-4
DDL

conversion tasks 7-1/7-3
definition 7-1
generating source files 7-2
overview 1-12

Debugging
in general 1-10
symbolic 2-6

Debugging tools
Native Inspect 1-12
Visual Inspect 1-10

Decimal-conversion functions 8-8
Declarations, external 3-5, 8-2
Descriptors, file 3-14
Determining optimization level 2-5
Determining programs to convert 2-1
Development environments, comparing
TNS and native 1-13
DIAGNOSE-85 directive 4-11
Dictionary overflow 4-4
Disk resources 2-2
Displaying native code 1-9
DLLs

and PIC 1-17
compared to SRLs 1-17
data segments 1-15
general description 1-17
implicit 1-13
instance data 1-20

DNUMIN procedure 10-9
Dynamic-link libraries

See DLLs

E
ECOBOL compiler command 1-7
ecobol compiler command 1-7
ecvt function 3-11
edlseek function 3-10
eld utility 1-18
TNS/E Native Application Conversion Guide—529659-003
Index-6

Index F
invoked from c89 utility 11-2, 11-3
overview of 1-8
specifying heap attributes 10-8
using SEARCH pragma 3-16
-libname flag 6-3
-ul flag 6-2

ELF format 1-16
Eliminating compatibility traps 2-8
ENFORMSTART procedure 10-9
enoft utility 1-9, 2-8
ENTER statement 4-5, 4-7
Enterprise Toolkit - NonStop Edition 1-9
ENV directive

in COBOL 4-5, 4-9, 6-2
in pTAL 6-2
in TAL 8-1

ENV pragma 6-2
ENV register 10-4
Environments

development 1-4
execution 1-2

Environment-specific parameters 3-13
errno 3-13
ERRORS pragma 3-15
Errors, compiler 3-2
ETK 1-9
ETK migration tool for TDS projects 1-9
Exception-handling functions 8-8
Executable and linking format (ELF) 1-16
Executable object files 1-16
Execution modes 1-2
exit function 3-11
exp function 8-3
Exponentiation operator 4-7
EXTADDR data type 10-9
EXTDECS 2-3
Extended data segment 1-15, 1-20, 10-8
Extended-Storage Section 4-10
extensible keyword 3-5
EXTENSIONS pragma 3-2
External declarations 8-2

External functions 3-5
extptr keyword 3-5

F
Fastsort procedures 10-9
FCBs 10-5
fcloseall function 3-10
fcntl function 3-10
fdopen function 3-10
fdtogfn function 3-10
FIELDALIGN directive 2-6, 2-8, 9-1, 9-2
FIELDALIGN pragma 2-6, 2-8, 9-1, 9-2
File control blocks 10-5
File descriptors 3-14
File streams 3-14
fileno function 3-10
Files

header 8-2
stripping 1-8
swap 1-19, 10-7
type 800 1-16

FILE-MNEMONIC clause 4-5
Flags 11-5

See also c89 utility and eld utility
FMAP directive 4-11
fopen function 3-13
fopen_guardian function 3-13
fopen_oss function 3-13
FORMATDATA procedure 10-4
FORMATDATAX procedure 10-4
freopen function 3-13
fscanf function 3-11
Full optimization 2-6
Functions

64-bit logical operations 8-8
C supplementary 3-7
decimal-conversion 8-8
exception-handling 8-8
external declarations 3-5
math 8-3
TNS/E Native Application Conversion Guide—529659-003
Index-7

Index G
memory block 8-7
string 8-5

G
GETPOOL procedure 10-9
GETSYNCINFO 10-8
Global data 1-20
Globals-heap segment 1-15, 1-16
GPLDECS file 10-6
gtacl command 6-3
Guardian conversion tasks 10-1/10-9
Guardian file system 11-6
Guardian procedure condition codes 3-6
Guardian procedures

ADDRESS_DELIMIT_ 10-4, 10-9
ADDRTOPROCNAME 10-2
ARMTRAP 10-2
AWAITIO 10-9
AWAITIOX 10-9
CHECKMONITOR 10-8
CHECKPOINT 10-3
CHECKPOINTMANY 10-3
CHECKPOINTMANYX procedure 10-3
CHECKPOINTX procedure 10-3
CHECK^FILE 10-6, 10-9
CLOSE^WRITE 10-5
CURRENTSPACE 10-4
DUMIN 10-9
ENFORMSTART 10-9
FORMATDATA 10-4
FORMATDATAX 10-4
GETPOOL 10-9
GETSYNCINFO 10-8
HEADROOM_ENSURE_ 10-5
HEAPSORT 10-9
HEAPSORTX 10-9
INITIALIZER 10-5, 10-9
LASTADDR 10-4
LASTADDRX 10-4

MEASWRITE_DIFF_ 10-9
NEWPROCESS 10-7
NEWPROCESSNOWAIT 10-7
NUMIN 10-9
OBJECTFILE_GETINFOLIST_ 10-7
obsolete 10-1/10-5
OPEN^FILE 10-5
POOL_CHECK_ 10-9
PROCESSINFO 10-7
PROCESS_CREATE_ 10-7
PROCESS_GETINFOLIST_ 10-7, 10-8
PROCESS_GETINFO_ 10-7
PROCESS_LAUNCH_ 10-7, 10-8
PROCESS_SETINFO_ 10-7
PROCESS_SPAWN_ 10-7, 10-8, 10-9
READ^FILE 10-5
REFPARAM_BOUNDSCHECK_ 10-4
SEGMENT_ALLOCATE_ 10-9
SEGMENT_GETINFO_ 10-9
SEGMENT_USE_ 10-9
SETSYNCINFO 10-8
SET^FILE 10-6, 10-9
SORTERROR 10-9
SORTERRORDETAIL 10-9
SORTERRORSUM 10-9
SORTMERGEFINISH 10-9
SORTMERGERECEIVE 10-9
SORTMERGERSTATISTICS 10-9
SORTMERGESEND 10-9
SORTMERGESTART 10-9
WAIT^FILE 10-5
WRITE^FILE 10-5
XBNDSTEST 10-4
XSTACKTEST procedure 10-5

Guardian procedures affected by increased
DCT limits 2-5
Guardian procedures affected by
KMSF 10-7
Guardian procedures with pTAL data
types 10-9
TNS/E Native Application Conversion Guide—529659-003
Index-8

Index H
H
Header files

CLUDECS 8-2
CLURDECS 8-2
CRE 8-2
CREDECS 8-2
CRERDECS 8-2
crtlnsh 3-14
nonstoph 3-14
RTLDECS 8-2
RTLRDECS 8-2
tal.h 3-6

HEADROOM_ENSURE_ procedure 10-5
Heap 1-15, 1-16
Heap attributes 10-8
HEAPSORT procedure 10-9
HEAPSORTX procedure 10-9
HIGHPIN directive 4-10
HIGHREQUESTERS directive 4-10
HP extensions 1-6, 1-7, 3-2
Hybrid optimization 2-6

I
ICODE directive 4-10
Implicit DLLs 1-13
INITIALIZER procedure 10-5, 10-9
Inline code, generation of 3-16
INLINE pragma 3-16
INNERLIST directive 4-11
Inspect debugging tool 1-10
Intermediate optimization 2-6
Internationalization 1-8
Interoperability 1-8
int, size of 1-6, 1-7, 3-3, 3-18
iscsym function 3-8
iscsymf function 3-8
ISO/ANSI C Standard 1-6, 1-7, 3-2
Itanium instructions 1-4, 1-13
I/O

alternate-model 3-9, 3-14

ANSI-model 3-9

K
Kernel-Managed Swap Facility

See KMSF
Kernighan and Ritchie C 1-6, 1-7
Keywords

alias 3-5
cc_status 3-5
extensible 3-5
extptr 3-5
lowmem 3-5
obsolete 3-5
tal 3-5
variable 3-5
_alias 3-5
_cc_status 3-5
_extensible 3-5
_lowmem 3-5
_tal 3-5
_variable 3-5

KMSF
affects of 10-7
overview of 1-19

K&R C 1-6, 1-7

L
Language extensions, C and C++ 3-2
Languages

C 1-6
COBOL 1-7
C++ 1-6
pTAL 1-5

LARGEDATA directive 4-6
LARGESYM pragma 3-17
Large-memory model 1-6, 1-7, 3-3, 3-18
LASTADDR procedure 10-4
LASTADDRX procedure 10-4
lastreceive function 3-10
TNS/E Native Application Conversion Guide—529659-003
Index-9

Index M
Layout, data 7-1
level 2-5
Libraries

cnonstop 3-14
crtlns 3-14
See also DLLs
supplied by HP 1-18
See also user library

LIBRARY directive
in COBOL 4-5, 4-6
in TAL 6-3

Linking
user library 6-2
with c89 flags 11-2, 11-3
with eld utility 1-8

LMAP directive 4-10
LMAP pragma 3-17
ln function 8-3
Load maps 3-17
LOG function 8-3
LOG10 function 8-3
log10 function 8-3
longjmp() and setjmp() use in inline
functions 3-12
lower function 8-3
lowmem keyword 3-5
lseek function 3-10

M
Macros

CCE 3-6
CCG 3-6
CCL 3-6
_status_eq(x) 3-6
_status_gt(x) 3-6
_status_lt(x) 3-6

MAIN keyword 8-1
Main memory stack 1-15, 1-16
Main RISC stack 1-15
Main stack segment 1-20

Maintaining common source 2-3
Maps, load 3-17
Math functions 8-3
Measure utility 2-1, 2-6, 2-8
MEASWRITE_DIFF_ procedure 10-9
Memory

resource requirements 2-2
SQLMEM pragma 3-17
virtual 1-19

Memory block functions 8-7
Memory model 1-6, 1-7, 3-3, 3-18
Memory stack segment 1-20
memory_compare function 8-7
memory_copy function 8-7
memory_findchar function 8-7
memory_move function 8-7
memory_repeat function 8-7
memory_set function 8-7
memory_swap function 8-7
memswap functions 3-8
Misaligned data

and compatability traps 2-8
in TNS programs 2-7
in TNS/E native programs 2-7

MOD function 8-4, 8-5
mod function 8-4
Mode

accelerated 1-4
interpreted 1-4
native 1-2, 1-4, 1-13
TNS accelerated 1-2, 1-13
TNS interpreted 1-2, 1-13

Module optimization 2-6
movmem function 3-8
Multithreaded programs 10-9

N
Native architecture 1-13, 10-7
Native c89 utility

compiler pragmas 11-5
TNS/E Native Application Conversion Guide—529659-003
Index-10

Index O
Guardian files 11-6
SQL compilation 11-6
-O flag 11-3
-Weld flag 11-2, 11-4
-Wnolink flag 11-4
-WP flag 11-3
-Wsqlcomp flag 11-4
-Wsqlmx flag 11-4

Native compilers
C 1-6, 1-7
COBOL 1-7
C++ compiler 1-6
data alignment of 9-1
DDL data alignment 7-1
default optimization 2-6
object file format 1-16
optimization

determining level of 2-5
pTAL 1-5

Native development 1-4
Native Inspect debugging tool 1-12
Native linker 1-8
Native mode

benefits of 1-22
compared to accelerated mode 1-4
constraints of 1-23
definition of 1-1
overview 1-2
process environment 1-13

Native object code 1-8
Native object file

format of 1-16
tool 1-9

Native processes
definition of 1-13
environment 1-13
heap 10-8
KMSF 1-19
overview of 1-2

signals 10-2
Native user library 6-1
NEST pragma 3-17
Nested comments 3-17
NEWPROCESS procedure 10-7
NEWPROCESSNOWAIT procedure 10-7
NMCMT native mode conversion tool 1-6,
1-7
NOBLANK directive 4-6
NOCHECK pragma 3-17
NOCODE directive 4-9
NOCOMPACT directive 4-9
NOCONSULT directive 4-10
NOCROSSREF directive 4-9
NOEXTENSIONS pragma 3-17
NOICODE directive 4-10
NOINLINE pragma 3-16
NOINNERLIST directive 4-11
NOLMAP directive 4-10
NOLMAP pragma 3-17
NONEST pragma 3-17
NonStop SQL/MP 1-12, 3-16
NonStop SQL/MX 1-12
NonStop systems 2-2
nonstoph header file 3-14
normalize function 8-4
NOSAVEABEND directive 4-6
NOSEARCH directive 4-10
NOSQL directive 4-10
NOTRAP2 directive 4-10
NOTRAP2-74 directive 4-10
NOWARN pragma 3-16
NOWIDE pragma 3-3, 3-18
NOXMEM pragma 3-3, 3-18
NOXVAR pragma 3-18
NSKCOM utility 1-20
NULL pointer 3-2
NUMIN procedure 10-9

O
Object Code Accelerator 1-2, 2-2, 11-3
TNS/E Native Application Conversion Guide—529659-003
Index-11

Index P
Object files
executable 1-16
format of 1-16
relinkable 1-16

OBJECTFILE_GETINFOLIST_
procedure 10-7
Obsolete

C functions 3-7
C keywords 3-5
Guardian procedures 10-1/10-5
pragmas 3-17

OCA 1-2, 2-1
odd function 8-4
OLDCALLS pragma 3-17
open function 3-10
Open System Services

See OSS conversion tasks and OSS
fucntions

OPEN^FILE procedure 10-5
Optimization and pTAL 1-5
Optimization level 2-5
OPTIMIZE directive 2-6
OPTIMIZE pragma 2-6, 3-16
or function 8-8
OSS conversion tasks 11-1/11-6
OSS functions

tdmspawnp 11-5
tdm_execve 11-5
tdm_execvep 11-5
tdm_fork 11-5
tdm_spawn 11-5

OSS gtacl command 6-3
Overflow, arithmetic 3-9, 3-13, 8-2

P
PARAM messages 10-5
PARAM SYMBOL-BLOCKS command 4-4
Parameters, environment-specific 3-13
PCs 1-5, 1-6, 1-7, 1-8, 1-9
Performance

and optimization levels 2-6
as conversion criterion 2-1
tuning of native programs 2-8

PFS 1-15
PIC

See Position-independent code
Planning system resources 2-2
PLATFORM option 9-2
Pointers

32-bit 3-5
NULL 3-2
reference misalignment 2-8

POOL_CHECK_ procedure 10-9
Position-independent code

and DLLs 1-17
defined Glossary-5
description of 1-17

positive_diff function 8-4
power function 8-4
power2 function 8-4
Pragmas

ANSICOMPLY 3-17
ANSISTREAMS 3-15
changed behavior 3-16
CHECK 3-17
CPATHEQ 3-15
CSADDR 3-17
ENV 6-2
ERRORS 3-15
EXTENSIONS 3-2
FIELDALIGN 2-6, 2-8, 9-1, 9-2
INLINE 3-16
LARGESYM 3-17
LMAP 3-17
NEST 3-17
NOCHECK 3-17
NOEXTENSIONS 3-17
NOINLINE 3-16
NOLMAP 3-17
NONEST 3-17
TNS/E Native Application Conversion Guide—529659-003
Index-12

Index R
NOWARN 3-16
NOWIDE 3-3, 3-18
NOXMEM 3-3, 3-18
NOXVAR 3-18
obsolete 3-17
OLDCALLS 3-17
OPTIMIZE 2-6, 3-16
REFALIGNED 2-6, 2-8
SEARCH 3-16
SQL 3-16, 11-4
SQLMEM 3-17
SSV 3-16
STRICT 3-17
SYSTYPE 3-3
TRIGRAPH 3-17
VERBOSE 3-17, 11-4
WARN 3-16
WIDE 3-3, 3-18
XMEM 3-3, 3-18
XVAR 3-18

Pragmas, specifying to c89 11-5
Preparing for conversion 2-2
Preprocessor, C and C++ 11-4
Privileged memory stack 1-15
Privileged RISC stack 1-15
Privileged stack segment 1-20
Procedure optimization 2-6
Process creation functions 11-5
Process file segment 1-15
Process pairs 10-3
Processes

attributes of 1-8, 1-13
comparing TNS and native 1-13
creation of 10-7
initialization of 10-5
KMSF 1-19
native 1-1, 1-2
retrieving information on 10-7
startup message for 10-5
TNS 1-1, 1-2

PROCESSINFO procedure 10-7
PROCESS_CREATE_ procedure 10-7
PROCESS_GETINFOLIST_
procedure 10-7, 10-8
PROCESS_GETINFO_ procedure 10-7
PROCESS_LAUNCH_ procedure 10-7,
10-8
PROCESS_SETINFO_ procedure 10-7
PROCESS_SPAWN_ procedure 10-7,
10-8, 10-9
PROCPTR data type 10-9
pTAL

alignment 7-1
common source 2-3
compiler 1-5
conversion tool 1-5
data types 10-9
SOURCE directive 8-2
user library 6-1

R
RANDOM function 8-4
random_next_ function 8-4
random_set_ function 8-4
read function 3-10
readupdate function 3-10
READ^FILE procedure 10-5
receiveinfo function 3-10
REFALIGNED directive 2-6, 2-8
REFALIGNED pragma 2-6, 2-8
Reference misalignment 2-8
REFPARAM_BOUNDSCHECK_
procedure 10-4
Relinkable object files 1-16
remainder function 8-8
remove function 3-11, 3-13
rename function 3-13
RENAMES clause 4-8
reply function 3-10
repmem functions 3-8
Retrieving process information 10-7
TNS/E Native Application Conversion Guide—529659-003
Index-13

Index S
RISC stack 1-15
round function 8-4
ROUNDED phrase 4-7
Round-down behavior of misaligned
data 2-7
RSE backing store segment 1-15, 1-20
RTLDECS file 8-2
RTLRDECS file 8-2
RTL_ functions

See also function name without prefix
header files 8-2

RUN command, LIB option of 6-3
RUNNABLE directive 4-11
RUNNAMED directive 4-6

S
SAVEABEND directive 4-6
scanf function 3-11
SEARCH directive 4-5, 4-7
SEARCH pragma 3-16
Search subvolume 3-16
Segments, data 10-8
SEGMENT_ALLOCATE_ procedure 10-9
SEGMENT_GETINFO_ procedure 10-9
SEGMENT_USE_ procedure 10-9
semctl() function 3-12
Sequential I/O procedures 10-5/10-6
setjmp() and longjmp() use in inline
functions 3-12
setmem functions 3-8
setnbuf functions 3-8
SETSYNCINFO procedure 10-8
Setting condition codes 3-6
SET^FILE procedure 10-6, 10-9
Shared data

between native programs 9-2
between TNS and native programs 9-1
conversion tasks 9-1/9-2

SHARED directive 6-2
SHARED2 2-6, 2-8, 9-1
SHARED8 9-2

shift_left function 8-8
shift_right function 8-8
sign function 8-5
Signal handlers 8-2, 10-2
Signals 1-17, 3-8, 3-9, 3-13, 10-2
SIN function 8-5
sin function 8-5
sinh function 8-5
SIO procedures

See Sequential I/O procedures
16-bit data model 1-6, 1-7, 3-3, 3-18
64-bit logical operation functions 8-8
Small-memory model 1-6, 3-3, 3-18
Snapshot files, debugging 1-12
SORTERROR procedure 10-9
SORTERRORDETAIL procedure 10-9
SORTERRORSUM procedure 10-9
SORTMERGEFINISH procedure 10-9
SORTMERGERECEIVE procedure 10-9
SORTMERGESEND procedure 10-9
SORTMERGESTART procedure 10-9
SORTMERGESTATISTICS
procedure 10-9
SOURCE directive 8-2
Source, common 2-3, 10-6
SPECIAL-NAMES paragraph 4-5
split function 8-5
SQL compiler 1-12, 3-16, 11-6
SQL directive 4-5
SQL pragma 3-16, 11-4
SQLMEM directive 4-10
SQLMEM pragma 3-17
SQRT function 8-5
sqrt function 8-5
sscanf function 3-11
SSV pragma 3-16
Stack 1-15, 1-16, 10-8, 10-9
Standard math functions 8-3
Standards compliance 1-8, 3-2, 3-7
Startup message 10-5
stcarg function 8-5
stcarg functions 3-8
TNS/E Native Application Conversion Guide—529659-003
Index-14

Index T
stccpy function 8-6
stccpy functions 3-8
stcd_i function 8-6
stcd_i functions 3-8
stcd_l function 8-6
stcd_l functions 3-8
stch_i function 8-6
stch_i functions 3-8
stcis functions 3-8
stcisn functions 3-8
stci_d function 8-6
stci_d functions 3-8
stclen functions 3-8
stcpm function 8-6
stcpm functions 3-9
stcpma function 8-6
stcpma functions 3-9
stcu_d function 8-6
stcu_d functions 3-9
stpblk function 8-6
stpblk functions 3-9
stpbrk functions 3-9
stpchr functions 3-9
stpsym function 8-6
stpsym functions 3-9
stptok function 8-6
stptok functions 3-9
strcat function 8-6
strchr function 8-6
strcmp function 8-6
strcpy function 8-6
strcspn function 8-6
Streams, file 3-14
STRICT pragma 3-17
String functions 8-5
String:length parameters 4-3
strlen function 8-6
strncat function 8-6
strncmp function 8-6
strncpy function 8-7
strpbrk function 8-7

strrchr function 8-7
strspn function 8-7
strstr function 8-7
strtod function 8-7
strtol function 8-7
strtoul function 8-7
stscmp functions 3-9
substring_search function 8-7
SUBTYPE directive 4-7
Subvolume search 3-16
Supplementary functions 3-7
Supported systems 2-2
Swap files 1-20, 10-7
Symbolic debugging 1-10, 2-6
Symbols 3-17
Syntax, external functions 3-5
System library

adding code to 10-9
and DLLs 1-18

System resources 2-2
Systems, supported 2-2
SYSTYPE pragma 3-3

T
TACL 6-3
TAL

alignment 7-1
compiler 1-5
MAIN keyword 8-1
procedures that set condition
codes 3-6
SOURCE directive 8-2
user library 6-1

tal keyword 3-5
tal.h header file 3-6
TAL_CRE_INITIALIZER_ procedure 8-1
TAN function 8-5
tan function 8-5
Tandem Development Suite

migration tool 1-9
TNS/E Native Application Conversion Guide—529659-003
Index-15

Index U
replaced by ETK 1-9
tanh function 8-5
tdm_execve function 11-5
tdm_execvp function 11-5
tdm_fork function 11-5
tdm_spawn function 11-5
tdm_spawnp function 11-5
terminate_program function 3-11
32-bit data model 1-6, 1-7, 3-3, 3-18
Threads, using 10-9
tmpfile function 3-13
tmpnam function 3-13
TNS accelerated mode 1-4, 1-13
TNS architecture

characteristics of 1-4
ENV register 10-4
’G’ relative address 10-4

TNS c89 utility
compiler pragmas 11-5
conversion tasks 11-5/11-6
Guardian files 11-6
SQL compilation 11-6
-O flag 11-3
-Waxcel flag 11-3
-Wbind flag 11-2, 11-3
-Wccom flag 11-3
-Wcfonly flag 11-3
-Wcfront flag 11-4
-Wcprep flag 11-4
-Wnobind flag 11-4
-Wrunlib flag 11-2, 11-4
-Wsql flag 11-4

TNS compilers, data alignment of 9-1
TNS Inspect 1-10
TNS interpreted mode 1-4, 1-13
TNS mode 1-2
TNS processes

definition of 1-1
environment 1-13
KMSF 1-19

TNS registers 10-9
TNS user library 6-1
TNS/E processes

See Native processes
TNS/E systems 1-1
Tools.h++ class library 3-14
Translation limits 3-2
Trap handlers 8-2, 10-2
TRAP2 directive 4-10
TRAP2-74 directive 4-10
Traps

arithmetic overflow 3-13
compatibility 2-8
replacement for 1-17
replacing 3-8
trap_overflows function 3-9
_is_system_trap function 3-8

trap_overflows functions 3-9
Trigraph characters 3-17
TRIGRAPH pragma 3-17
truncate function 8-5
Tuning performance 2-8
Type 800 files 1-16
Type int 1-6, 1-7, 3-3, 3-18
Type specifier 3-6

U
UL directive 4-10
unlink function 3-10
upper function 8-5
USE DEBUGGING statement 4-5
User data segment 1-15, 1-20
User data stack 10-8
User library

conversion tasks 6-1/6-4
linking 6-2, 6-3
specifying 6-3
types 6-1
TNS/E Native Application Conversion Guide—529659-003
Index-16

Index V
V
variable keyword 3-5
VERBOSE pragma 3-17, 11-4
Virtual memory 1-19
Visual Inspect symbolic debugger 1-10
Volumes

search 3-16
swap 10-7

W
WADDR data type 10-9
WAIT^FILE procedure 10-5
WARN pragma 3-16
Warnings, C and C++ compilers 3-2
WIDE pragma 3-3, 3-18
write function 3-10
writeread function 3-10
WRITE^FILE procedure 10-5

X
XBNDSTEST procedure 10-4
XLTRACE tool 2-8
XMEM pragma 3-3, 3-18
xor function 8-8
XPG4 Specification 3-2
XPG4 specification 3-7
XSTACKTEST procedure 10-5
XVAR pragma 3-18
X/OPEN UNIX 95 specification 1-8
X/OPEN UNIX specification 3-7

Special Characters
#include 3-2
-Wcall_shared flag 6-2
-Wextensions flag 3-2
-Woptimize flag 2-6
/G 11-6
_alias keyword 3-5
_cc_status keyword 3-5

_cc_status type specifier 3-6
_is_system_trap function 3-8
_lowmem keyword 3-5
_status_eq(x) macro 3-6
_status_gt(x) macro 3-6
_status_lt(x) macro 3-6
_tal keyword 3-5
’main’ procedure 8-1
TNS/E Native Application Conversion Guide—529659-003
Index-17

Index Special Characters
TNS/E Native Application Conversion Guide—529659-003
Index-18

	What’s New in This Manual
	Manual Information
	New and Changed Information
	New in the H06.21/J06.10 revision:

	About This Manual
	Notation Conventions
	Hypertext Links

	HP Encourages Your Comments

	1 Introduction to Native Mode
	Summary of Execution Modes
	Underlying Native Mode Structure for All Programs
	Differences Between Accelerated and Native Object Code

	Native Development Environment
	pTAL Compiler
	Native C Compiler
	Native C++ Compiler
	Native COBOL Compiler
	Native C Run-Time Library
	Native Linker (eld Utility)
	Native Object File Tool (enoft Utility)
	ETK
	Native Mode Debugging Tools
	Visual Inspect
	Native Inspect
	SQL Compiler
	Data Definition Language (DDL)

	Native Architecture Features
	Native Process Environment
	Native Object File Format
	Signals Facility

	DLLs
	Native Mode Conversion Considerations
	KMSF

	Benefits of Native Mode
	Constraints of Native Mode

	2 Developing a Conversion Strategy
	Determining Which Programs to Convert
	Preparing Programs for Conversion
	Planning System Resources
	Maintaining Common Source Code for TNS and TNS/E Native Compilers
	Adjusting for Increased DCT Limits
	Determining Optimization Levels
	Determining Data Alignment
	Converting Programs With Misaligned Data
	Tuning the Performance of Native Programs
	Detecting Compatibility Traps
	Eliminating Compatibility Traps

	3 C and C++ Conversion Tasks
	Using the Native C and C++ Compilers
	Converting Code to Use 32�Bit Pointers and Integers
	Using IEEE Floating Point Format
	Replacing Obsolete External Function Declarations
	Replacing Obsolete Keywords
	Changing Use of _cc_status for Return Values
	Replacing Calls to Obsolete C Library Supplementary Functions
	Replacing Calls to Obsolete C Library Guardian Alternate-Model I/O Functions
	Checking Calls to Changed C Library Functions
	Functions Having Different Behavior
	Using the setjmp() and longjmp() Functions
	Using the semctl() Function

	Changing Programs That Use Guardian and OSS Environment Interoperability
	Changing Code That Relies on Arithmetic Overflow Traps
	Using Active Backup Programming in C
	Replacing Obsolete C++ Library Operations
	Using the Tools.h++ Class Library
	Specifying Pragmas or Flags
	Checking Changed Pragmas
	Removing Obsolete Pragmas

	4 Converting COBOL Programs
	COBOL Compiler Overview
	Converting COBOL Programs
	Changing the Source Program
	General Conversion Tasks
	Removal Required
	Possible Changes Required
	Removal Optional
	New Features

	5 Converting TAL to pTAL
	Using the pTAL Compiler
	Required Changes

	6 Converting a TNS User Library
	User Library Differences
	Building a User Library
	Specifying a User Library

	7 Converting Data Definition Language (DDL)
	Background Information
	Generating New Host-Language Source Code Files
	Compiling With New Host-Language Source Code Files

	8 Converting Programs That Run in the Common Run-Time Environment
	Converting pTAL Programs to Run in the CRE
	Specifying Header Files
	Replacing Obsolete CRE Functions
	Standard Math Functions
	String Functions
	Memory Block Functions
	Exception-Handling Functions
	Sixty-Four-Bit Logical Operation Functions
	Decimal-Conversion Functions

	9 Converting Programs That Share Data
	Sharing Data Between TNS and TNS/E Native Programs
	Sharing Data Between pTAL Programs and Native C or C++ Programs

	10 Converting Programs With Guardian API Calls
	Replacing Obsolete Procedures
	ADDRTOPROCNAME
	ARMTRAP
	CHECKPOINT
	CHECKPOINTMANY
	CURRENTSPACE
	FORMATDATA
	LASTADDR
	LASTADDRX
	XBNDSTEST
	XSTACKTEST

	Using the INITIALIZER Procedure
	Using Sequential I/O Procedures
	CHECK^FILE
	SET^FILE

	Using Procedures Enhanced to Support the Native Architecture
	Using Procedures Affected by KMSF
	Using Procedures With pTAL Address Types
	Writing Multithreaded Programs
	Calling Code You Add to the System Library
	Adjusting for Increased DCT Limits

	11 OSS API and Utilities Conversion Tasks
	Specifying Compilation System Flags
	COBOL Compilation System
	Native C Compilation System

	Using System Calls Enhanced to Support the Native Architecture
	Specifying Compiler Pragmas
	Specifying Files in the Guardian File System (/G)
	Specifying SQL Compilation
	Compiling and Linking for Pthreads

	Glossary
	Index

