

Hewlett-Packard Company 543427-002 1 of 15

Migrating from Inspect to Native Inspect
Revised for H06.08

Seth Hawthorne
NonStop Enterprise Division
Hewlett-Packard Company

Introduction
Native Inspect is the standard command-line
debugger for debugging natively compiled
programs on HP Integrity NonStop systems.
It fulfills the roles formerly played by
DEBUG and Inspect on S-series and TNS
systems.

If you are reading this, you are probably
migrating to Native Inspect for the first time.
If you are familiar with the GNU GDB
debugger, a de facto industry standard
debugger found on many platforms, you will
be able to get started with GDB-based
Native Inspect in no time. Just scan for the
notes that identify GDB differences.

If you are a long-time Inspect user, use the
information in this document to translate
common Inspect debugging operations to
Native Inspect. The underlying concepts are
the same, though expressed differently. If
you are accustomed to Inspect commands,
the biggest challenge may be retraining your
fingers to issue the new commands that you
learn.

Note: Before H06.06, Native Inspect did not
support TNS/E COBOL; it now supports the
TNS/E versions of COBOL, C/C++, and pTAL.

In this document, Native Inspect commands
appear in courier bold and command
parameters appear in times italics. You can
abbreviate most commands.

Paradigm Shift
Accurate expectations are a key success
factor in many endeavors, especially in this
case. When you migrate to Native Inspect,
keep a few things in mind:

 Native Inspect is a NonStop
implementation of the GNU GDB
debugger, not an Inspect descendent.

 Native Inspect is in its initial releases
and will evolve.

 Inspect is a scope-based debugger in
that code and data locations are
identified relative to the containing
procedure or function; Native Inspect
uses source file names and line numbers.

Preparing to Debug
Compiling Programs
You can compile programs on the NonStop
operating system or in a PC-based cross-
development environment. In the latter case,
you must transfer source files to the
NonStop system when debugging and might
have to define the location of source files to
the debugger.

As on S-series systems, the following
compilation optimization levels are
supported:

Level Description
O0 Limited optimizations and

best debugging.
O1 (default) Reasonable optimization

and debugging, but some
variables and locations
might not be available.

O2 Compiled for performance
with limited debugging.

Migrating from Inspect to Native Inspect

2 of 15 Hewlett-Packard Company 543427-002

During the development and debugging
phase, compile programs at optimize level 0
(O0).

Tip: Use the enoft lp * d command to
determine the optimization level of the functions
that compose your program.

Starting Programs
You start programs under control of the
debugger the same way as on earlier
systems.

 Guardian: use the rund command.
 OSS: use the –debug command-line

option

GDB Difference: GDB users commonly launch
their programs from within the debugger, which
has the benefit of breakpoints persisting across
debugging sessions. Native Inspect does not
support this capability at this time.

Debugger Selection Rules
The rules for selecting which debugger a
process is delivered to have changed
slightly:

 Processes are delivered to Visual Inspect
if you have established a client
connection with a matching user ID and
either:
o The process’ INSPECT ON

attribute is set.
o The process is a TNS process.

 Otherwise:
o TNS/E processes are delivered to

Native Inspect.
o TNS processes are delivered to

Inspect.

Note: If the Inspect subsystem ($IMON and
$DMxx) is not running, TNS processes are
delivered to Native Inspect, but available
debugging operations are limited to: tracing the
stack, stopping the process, creating a snapshot
file, or switching to Inspect once the Inspect
subsystem is started.

Debugging Running Processes
From a TACL prompt, use the DEBUG or
DEBUGNOW commands to force a program
under debugger control.

Note: The same NonStop security rules are used
to determine when the process can be delivered
to the debugger, and the previously described
debugger selection rules are applied.

Specify the TERM option to start the
debugger on your current terminal rather
than on the home terminal for the process.

From within Native Inspect, use the attach
command to obtain control of a running
process. For example, attach 235.

Inspect Difference: Native Inspect must run in
the same CPU as the processes it is debugging.

Multiprocess Debugging
In Inspect, you could debug multiple
processes with a single debugging session;
however, you could only view the state of
one process at a time, and you often had to
use the break key to switch between
processes.

Native Inspect support for multiprocess
debugging is more limited in that all
processes must execute in the same CPU.

Visual Inspect is the best tool for debugging
multiple processes, because it allows you to
view and easily switch among all processes.
Alternatively, you can use several terminal
sessions to run multiple instances of Native
Inspect.

Listing Source
One of the first things you will likely want
to do is list the source text surrounding the
current location in the currently selected
stack frame.

In Native Inspect, use the list command to
list source. The first invocation lists lines
surrounding the current location. The current
location is marked with an asterisk.
Subsequent invocations list following lines.
To list source at a specified location, specify
a line number and optional file name:

 Migrating from Inspect to Native Inspect

Hewlett-Packard Company 543427-002 3 of 15

 list line-number
 list file:line-number

Inspect Difference: Native Inspect does not
support the ability to search for text in source
files or to close open source files.

Gotcha: In Native Inspect, the source
command has the same meaning as the Inspect
OBEY command.

If Native Inspect cannot locate your source
files, see Locating Source and Symbols on
page 6.

To obtain information about source files,
use these Native Inspect commands:

info source List information about
current source file.

info sources List information about all
accessed source files.

Tracing the Stack
In Native Inspect, use the bt (back trace)
command to list the frames on the call stack.

When debugging, you often gain control of a
process in a low-level function and then
need to determine the circumstances that
lead to it being called. To select the
specified frame as the frame relative to
which the debugger displays program state,
use the command:
 frame frame-number
This command serves the same function as
the Inspect SCOPE frame-number command.
Native Inspect also has up and down
commands for selecting the preceding or
succeeding stack frame.

Tip: If you forget the location at which your
program is suspended, issue the frame 0
command, abbreviated fr 0, to display the
current execution location.

By default Native Inspect lists function
arguments in the stack trace. The following
command disables this behavior:

 set print args off

To obtain detailed information about a stack
frame, use the info frame command.

Controlling Program
Execution
Native Inspect supports the same concepts
as Inspect for stepping program execution
but uses different command names to refer
to the operations:

Inspect Native Inspect
STEP [OVER] next or n
STEP IN step or s
STEP OUT finish

Process-control commands are also
different:

Inspect Native Inspect
RESUME continue or c
STOP kill or k

Breakpoints
Native Inspect supports the same breakpoint
concepts as Inspect, though they are written
differently.

To set a breakpoint, use one of these forms
of the break command, abbreviated b:

break line-number Set breakpoint on a

line number.
break file:line Set a breakpoint on a

line number in the
specified file.

break function Set a breakpoint at the
entry to a function.

break label Set a breakpoint at a
code label.

break paragraph Set a breakpoint on a
COBOL paragraph.

break paragraph OF section
 Set a breakpoint on a

COBOL paragraph in
the specified section.

Inspect Difference: Unlike Inspect, code
location specifications are not prefixed with a #.

If there are multiple instances of a specified
function, Native Inspect displays a selection
menu.

To set a temporary breakpoint, use the
tbreak command.

Migrating from Inspect to Native Inspect

4 of 15 Hewlett-Packard Company 543427-002

To list currently set breakpoints, use the
info breakpoints command.

Like Inspect, breakpoints are identified to
related commands using ordinal numbers.
You can apply these commands:

condition breakpoint-ord condition
 Add or remove a breakpoint

condition.
ignore breakpoint-ord
 Ignore the breakpoint a specified

number of times (Inspect EVERY
clause).

commands breakpoint-ord
 Add a list of commands to be

executed when the breakpoint is hit.

To delete breakpoints, use one of these
commands:

delete breakpoint-ord Delete the
specified
breakpoint.

delete * Delete all
breakpoints.

Gotcha: Inspect uses the c (clear)
command to clear breakpoints. Native Inspect
interprets the c command as the continue
command, which resumes process execution.

To set and clear memory-access breakpoints,
use the mab and dmab commands,
respectively.

Limitation: The memory-access breakpoint is
not currently listed in the breakpoint list nor can
a condition be applied to it.

To enable and disable breakpoints, use these
commands:
 enable breakpoint-ord
 disable breakpoint-ord

To set a breakpoint that is triggered when a
process ABENDs or stops, use these
commands:
 catch abend
 catch stop

Displaying Variables
In Native Inspect, you use the print
command to display a variable or the results
of an expression. Unlike Inspect, Native
Inspect does not have any constraints on the
C/C++ expressions that can be evaluated.
You can even perform assignments!

Gotcha: Native Inspect has a display
command, which adds a variable or expression to
the list that is automatically displayed whenever
the program is suspended. While useful, this
behavior is different from the correspondingly
named Inspect command.

Formatting Values
In Inspect, you used the IN clause to control
the display radix. In Native Inspect, you
must specify a /fmt option to the print
command, where fmt has one of these
values:

fmt Radix
a Address
c Character
d Decimal
f Float
o Octal
t Binary
u Unsigned decimal
x Hexadecimal

For example, print /x ptr

The Inspect DISPLAY AS command
allowed you to format the memory
associated with a variable using the type of
another variable. This command was
commonly used to format the contents of a
raw message buffer using the type of the
structure corresponding to the message. In
Native Inspect, you must use the following
GDB syntax:
 print {type}variable

In Native Inspect, unlike Inspect, you can
use C/C++ casts to change the type of a
C/C++ or pTAL variable. For example,
 print (char *) StrAddr

 Migrating from Inspect to Native Inspect

Hewlett-Packard Company 543427-002 5 of 15

Pointers
Like GDB, Native Inspect automatically
dereferences C/C++ character pointers
(char *).

Limitation: Whereas pTAL automatically
dereferences pointers, Native Inspect currently
treats them like C/C++ non-character pointers;
you must explicitly dereference them.

Arrays

Native Inspect does not directly support the
Inspect FOR clause. To constrain the number
of array elements displayed, use this
command:
 set print elements count

In C/C++ and pTAL programs, you can also
use the GDB “array operator” to specify the
subscript at which array display is to stop.
For example,

 print array@4

Native Inspect compresses repeated array
elements, displaying the element value
followed by the count. This command
controls the number of values that must be
repeated before they are compressed:
 set print repeats count

Expressions
The Native Inspect print command
accepts expressions in addition to variables.
Unlike Inspect, you do not need to enclose
expressions in parenthesis.

Variable Address
To obtain the address of a variable, use the
C/C++ & operator or the info address
command. In COBOL programs, you can
use the ADDRESS OF operator.

Variable Type
Instead of the Inspect INFO IDENTIFIER
command, Native Inspect provides several
commands for obtaining type information
about a variable:
 ptype variable
 whatis variable

Auto Display
In Inspect, you could use the SET STATUS
ACTION command to execute display
commands that automatically displayed
“interesting” variables each time a program
is suspended. In Native Inspect, use the
display command to add a variable or
expression to the “auto display list,” each
item of which is displayed when the
program is suspended.

Other useful commands:

display List items on the
auto display list.

delete display ordinal
 Delete the

specified item
from the list.

enable ordinal Enable display of
the specified item.

disable ordinal Disable display of
the specified item.

New Commands
Native Inspect provides several capabilities
not found in Inspect:

info locals Display all local
variables.

info args Display arguments
to the current stack
frame.

info variables pattern
 List all variables

matching pattern.

Scoping
Native Inspect does not support Inspect’s
ability to access static variables contained in
inactive scopes (procedures or functions for
which there is no instance on the call stack).
Specifically, with Inspect you could use the
scope command to select the scope or you
could qualify the variable name with the
name of the containing scope.

Migrating from Inspect to Native Inspect

6 of 15 Hewlett-Packard Company 543427-002

Modifying Variables
To modify a variable, use either of these
commands:

print variable = value
set variable variable = value

The value can be a constant, another
variable, or the result of an expression.

GDB Gotcha: The variable clause of the
set command is optional but must be specified
if the name of the variable is the same as a
debugger option, listed by the show command.

Locating Source and
Symbols

Locating Source
If executable files or the source files
compiled to create them are relocated,
Native Inspect displays an error indicating
that it cannot locate the source file at the
compiled location recorded in the object file.
You must then specify how to locate the file.

If the file was relocated to another
subvolume or directory but has the same
base name, use the command:
 dir dir-or-subvol

Native Inspect searches that location for
source files. When you specify the dir
command with no argument, Native Inspect
asks you if you want to clear the search path.

If the base filename has changed, which is
common when moving source files from a
cross-development environment to
Guardian, you must use the map command
to specify an alternative location:
 map [[original] = current]

You can specify fully qualified original and
current file names or (as of H06.07) you
can specify file name prefixes. When you
specify prefixes, Native Inspect attempts to
match the original prefix against
subsequently referenced source filenames. If
there is a match, the original prefix is
replaced by the current prefix and the file
mapping is added to the file mapping list.

Omitting all arguments lists the contents of
the file mapping list. You can omit the
current original name when defining a
mapping for the file from which you are
currently listing source. Use the umap
command to delete a mapping.

Inspect Difference: Native Inspect does not
support automatic rules for mapping file-name
extensions to Guardian file names.

Locating Symbols
When the development cycle is complete,
loadfiles are commonly stripped of symbols
to save disk space. When debugging such a
program, you might notice this message:
 (no debugging symbols found)...

You will also find that source file names and
line numbers are missing in the stack trace
and that you cannot reference variables or
list source.

Whereas Inspect required you to specify
alternative symbol files when adding or
selecting a program, Native Inspect allows
you to do so at any time during the
debugging session. Use this command:
 symbol-file filename

As with Inspect, you must make sure that
the symbols correspond to the loadfile being
debugged. (Native Inspect issues a warning
if the compilation timestamps differ.)

Note: You will also often need to load symbol
files when examining process snapshot files.

To list loaded symbol files, use this
command:
 info symbol-files

To delete a loaded symbol file, use this
command:
 unload-symbol-file

 Migrating from Inspect to Native Inspect

Hewlett-Packard Company 543427-002 7 of 15

Note: For DLL loadfiles, Native Inspect uses
the actual load address to address variables. If
you need to override use of the actual address,
the add-symbol command allows you to
specify a base address when loading the file.

DLLS
Dynamic link libraries (DLLs) are standard
on TNS/E systems. As a result, your
program run-time image will be composed
of system DLLs, language run-time DLLs,
and any DLLs that you define.

To list information about the DLLs that
compose your program, use this command:
 info dll

To load missing symbols for any DLLs, use
the symbol-file or add-symbol-
file commands (see Locating Symbols on
page 6).

As of H06.07, you can use the following
commands to suspend program execution
when a DLL is loaded or unloaded:
 catch load [dllname]
 catch unload [dllname]

Data Segments
The vq command is similar in function to
the Inspect INFO SEGMENTS command.
When specified with no arguments, vq lists
all data segments. Specifying a segment id
as an argument changes the selectable
segment relative to which Native Inspect
displays process state (Inspect SELECT
SEGMENT).

Snapshot Files
Snapshot files, also referred to as “save” or
“save abend” files, store the user process
state of a process for later “post-mortem”
debugging.

The system automatically creates snapshot
files when a process with the SAVEABEND
attribute set calls ABEND to terminate. To
create a snapshot file in Native Inspect, use
the save command.

To use Native Inspect to examine a TNS/E
snapshot file, start Native Inspect and use
this command to load the file:
 snapshot filename

Note: You will likely need to load symbols and
might need to point to alternative source file
locations. For more details, see Locating Source
and Symbols on page 6.

Note: You can only examine one snapshot file at
a time with an eInspect session. To examine
multiple files at the same time, run eInspect in
multiple terminal sessions.

Scripting
Inspect scripting capabilities were limited to
placing sequences of commands in a file that
you could then execute using the OBEY
command.

Like Inspect, Native Inspect allows you to
execute commands from a file.
Unfortunately, the command to do so is
named source, which has a much different
meaning in Inspect.

The integrated TCL (Tool Control
Language) interpreter in Native Inspect
supports the development of sophisticated
debugging scripts. For example:

File: myTCL:

proc allbases { args } {
 set result [matheval $args]
 set char [ASCII $result]
 PUT "\nOCT: [format %06o $result]"
 PUT "DEC: [format %-5d $result]"
 PUT "HEX: 0x[format %04x $result]"
 PUT "ASCII: \'$char\'\n"
}

From Native Inspect:

 (eInspect) tcl source mytcl
 (eInspect) allbases 304

 OCT: 000460 DEC: 304 HEX:
0x0130 ASCII: '...0'

Migrating from Inspect to Native Inspect

8 of 15 Hewlett-Packard Company 543427-002

Machine-Level Debugging
Sometimes viewing your program execution
at the source level might be insufficient, and
instead you need to see how the machine is
executing the compiler-translated
instructions. Doing so reveals the much
larger register file, longer instruction
sequences, and compiler optimizations
inherent to TNS/E processors.

Whereas Inspect supported a low-level
mode for this purpose, machine-level
debugging commands are integrated into
Native Inspect.

Examining Memory
Use the “eXamine”, x, command to display
memory at a specified address. It accepts an
optional formatting clause and address:

x [[/NFU] address]

N is an optional count of the number of
memory units to display.

F is an optional letter that controls the
formatting of the memory. The
following values are recognized in
addition to the fmt letters recognized by
the print command:

fmt Radix
i Instruction
s String

U is an optional letter that controls the
memory unit size to display:

Unit Size
b Byte
h Half-word
w Word
g Giant (8 bytes)

For example,
x /10 0x8001ac0
x /5cb 0x8001ac0

GDB Gotcha: When you do not specify a
format or size, the last value specified to the x
command is used. When you omit address, the
address following the last displayed address is
used.

To specify an address to the print command,
use this syntax:
 print *address

Listing Instructions

To list instructions corresponding to source
lines, use the disassemble command. By
default, it lists all instructions for the current
function. You can specify an address range,
however.

Tip: To determine the address range of a line, use
the info line command.

To display instructions surrounding the
current instruction pointer, it is often easier
to use the x command. For example:
 x /4i $ip
This command displays four instructions
starting at the address contained in the
Instruction Pointer register.

Inspect Difference: When a breakpoint is set,
you will see the breakpoint rather than the
instruction that it replaces.

Displaying Registers
A TNS/E processor has 128 general-purpose
registers, 64 predicate registers, floating-
point registers, and status registers. To see
the key registers associated with the current
stack frame, use this command:
 info frame

To display all general-purpose and status
registers, use this command:
 info registers

To display all registers including floating-
point registers, use this command:
 info all-registers

To use a register value in an expression,
prefix its name with a $. For example:
 print $gr4

 Migrating from Inspect to Native Inspect

Hewlett-Packard Company 543427-002 9 of 15

Execution Control
The step and next commands have
corresponding stepi and nexti
commands for stepping instructions.

To set a breakpoint at an address, use this
command:

 b *address

Privileged Debugging
Like DEBUG or Inspect, you can use Native
Inspect to perform privileged debugging.
To enable privileged debugging, you must
log on as super ID and issue this Native
Inspect command:
 priv on

Once enabled, you can examine privileged
memory regions. You can also load and use
symbols for privileged DLLs.

When privileged debugging mode is
enabled, the attach command issues a
DEBUGNOW request.

Switching Debuggers
Occasionally, you might need temporary
functionality provided by another debugger
or a different debugger than you started.

You can switch TNS/E native processes
between Native Inspect and Visual Inspect,
which provides a graphical user interface for
debugging.

To switch a process from Native Inspect to
Visual Inspect, establish a Visual Inspect
connection and issue the Native Inspect
switch command.

To switch a process from Visual Inspect to
Native Inspect, select Program > Switch to
System Debugger.

Convenience Commands
Inspect Difference: Native Inspect does not
support Inspect convenience commands, such as:
SET STATUS, SET PROMPT, ADD KEY,
and so on.

Changing the Working Directory
Native Inspect uses the cd or volume
command to change the current working
directory used for resolving unqualified
filenames. Use the pwd command to list
the current working directory.

NonStop Gotcha: When the debugger is
started automatically, as a result of a rund
command or process debug request, its working
directory is your logon subvolume/directory
NOT your current subvolume/directory.

Logging Session Output
To log the output of your debugging session,
use this command:
 log file

If the log file already exists, output is
appended to it.

To disable logging, enter the command with
no arguments.

Command History
Native Inspect maintains a history of the
commands that you execute. To list
command history, use this command:
 show commands

To edit the previous or a specified
command, use the fc (fix) command
command. To invoke a specified command,
use !command-number.

As of H06.07, you can reissue the following
commands by pressing the RETURN key:
list, finish, next, nexti, print,
step, stepi, and x.

Migrating from Inspect to Native Inspect

10 of 15 Hewlett-Packard Company 543427-002

Value History
Native Inspect saves displayed values in a
value history list, which is analogous to the
command history list. Entries are identified
by a $-prefixed ordinal number that is
printed at the beginning of print command
output. Values can be recalled and used with
other commands. For example,
 print $3

Using Convenience Variables
Value history variables are one example of
GDB convenience variables, whose names
are prefixed with a $. To define variables to
hold values commonly used in your
debugging session, use the set command.
For example:
 set $curObj=obj->next->next

You can then use the variable name with
other debugging commands. For example:
 print $curObj->flags

Creating a Custom File
To automatically execute commands at the
startup of each Native Inspect session, place
them in this file in your logon default
subvolume:
 EINSCSTM

Controlling Output
By default, Native Inspect paginates output,
prompting you after each screen page of
output. To disable pagination, use the
command:

 set pagination off

Destructive commands often issue a
confirmation prompt before performing their
action. To disable the prompt, use this
command:

 set confirm off

Limitations
 Native Inspect does not yet support the

ability to list information about a
program’s open files. (Inspect INFO
OPENS).

 Native Inspect support for pTAL is
currently limited. In many respects,
pTAL is treated like C. You must use C-
style pointer dereferencing and
transform pTAL expressions to
corresponding C expressions.

 Online help reflects GDB online help,
which is not as complete as Inspect
online help.

 Native Inspect does not support the
following Inspect formatting
capabilities:

o PIC or FORMAT
o SPI formatting
o System types

 Native Inspect does not support
convenience commands, such as
defining function keys, displaying status
line information, and so on.

Resources
The Native Inspect Manual, part number
528122-005, is available in the NonStop
Technical Library at
http://www.hp.com/go/ntl.

A wide variety of resources are available on
the internet about GDB and WDB, the HP-
UX variant. Native Inspect is currently
based on GDB version 4.17.

 GDB Home
http://www.gnu.org/software/gdb/

 WDB Home
http:www.hp.com/go/wdb

 TCL Home
http://www.tcl.tk/

 GDB Quick Reference card
http://refcards.com/refcards/gdb/gdb-
refcard-letter.pdf

Several books are also available on GDB,
including an O’Reilly GDB Pocket
Reference.

http://www.hp.com/go/ntl
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://www.tcl.tk/
http://refcards.com/refcards/gdb/gdb-refcard-letter.pdf
http://refcards.com/refcards/gdb/gdb-refcard-letter.pdf

 Migrating from Inspect to Native Inspect

Hewlett-Packard Company 543427-002 11 of 15

Appendix A - Inspect to Native Inspect Command Mapping

In the following table, | is used to identify alternative choices.

Inspect
Command

Native Inspect
Command Description

A a Display memory in ASCII.
(Native Inspect Debug compatibility command)

ADD ALIAS Not supported Add a command alias.

ADD KEY Not supported Add a command binding to a terminal
function key.

ADD PROGRAM attach |
snapshot

Debug a running process or load a
snapshot file.

ADD SOURCE
ASSIGN

dir | map Define how to locate a source file that
is not at its compile-time location.
(Note: Native Inspect does not support
partial source assigns.)

B[REAK] b[reak] |
tbreak

Set a breakpoint (or temporary
breakpoint) at the specified location.

BD mab Set a memory access breakpoint.

CD cd | volume Change the current directory, used to
resolve file names that are not fully
qualified.

C[LEAR] delete Delete a code breakpoint or memory
access breakpoint.

DELETE ALIAS Not supported Delete command alias.

DELETE KEYS Not supported Delete function key binding.

DELETE SOURCE
ASSIGN

Not supported Delete a source file name mapping
rule.

DELETE SOURCE
OPEN

Not supported Close an open source file so that
another program can access it.

D[ISPLAY] print Print the value of a variable or result
of an expression.

ENV env Display information about the
debugging session.

EXIT exit Terminate the debugging session

FC fc Fix command; edit and reexecute a
previous command.

Migrating from Inspect to Native Inspect

12 of 15 Hewlett-Packard Company 543427-002

Inspect
Command

Native Inspect
Command Description

FILES Not supported Display information about files opened
by the current process.

FA Not supported Edit a previously defined command
alias.

FB Not supported Edit a previously defined breakpoint.

FX Not supported Edit a previously defined function key
binding.

FN fn Find number; search memory for a
value.

HELP help Display online help.

HIGH N/A Enter symbolic debugging mode

HISTORY show
commands

List the history of most recently
executed commands.

HOLD hold Suspend execution of the currently
running process.

ICODE i | da |
disassemble
| x

Display disassembled machine
instructions.

IDENTIFIER ptype |
whatis

Display type information about an
identifier.

IF condition |
if

Define a condition that must be true
before a specified breakpoint is
triggered.

INFO
IDENTIFIER

ptype |
whatis

Display type information about an
identifier.

INFO LOCATION Not supported Display addresses of compiler-defined
statements.

INFO
OBJECTFILES

info dll Display information about the
loadfiles of the current process.

INFO OPENS Not supported Display information about files opened
by the current process.

INFO SAVEFILE Not supported Display information about a snapshot
file.

INFO SCOPE info frame Display information about a stack
frame or procedure/function/program
unit.

INFO SEGMENTS vq Display information about the current
process’ data segments.

Appendix A – Inspect Command Mapping Migrating from Inspect to Native Inspect

Hewlett-Packard Company 543427-002 13 of 15

Inspect
Command

Native Inspect
Command Description

INFO SIGNALS ih Display information about defined
signal handlers.

KEY Not supported List defined function key bindings.

LIST ALIAS Not supported List command aliases.

LIST
BREAKPOINTS

info
breakpoints

List defined breakpoints.
(Native Inspect Debug currently does
not list the memory access
breakpoint.)

LIST HISTORY show
commands

List the history of most recently
executed commands.

LIST KEY Not supported List defined function key bindings.

LIST PROGRAM info
sessions

List all processes being debugged.

LIST SOURCE
ASSIGN

map List defined source file mapping rules.

LIST SOURCE
OPENS

info source
|
info sources

List information about opened source
files.

LOG log Control logging of session input and
output to a file.

LOW N/A Switch to machine-level debugging
mode.

MATCH
IDENTIFIER

info
variable

List identifiers whose names match a
specified pattern.

MATCH SCOPE info func List information about
procedures/functions/program units
whose names match a specified
pattern.

M[ODIFY] m |
set variable
var = value

Modify the value of a variable.

MODIFY SIGNAL mh Modify a signal handler.

OBEY source Execute commands from the specified
input file.

OBJECT info dll Display information about the current
executable.

OPENS Not supported Display information about files opened
by the current process.

Migrating from Inspect to Native Inspect

14 of 15 Hewlett-Packard Company 543427-002

Inspect
Command

Native Inspect
Command Description

OUT log Log session output to a file.
(Native Inspect does not support only
logging output.)

PAUSE wait Suspend debugger prompting until a
process debug event occurs, or the user
presses the break key.

PROGRAM vector Select the specified program as the
current program, on which all
debugger operations apply.

RESUME continue Continue execution of the process.

SAVE save Save process state to a snapshot file
for later “post-mortem” debugging.

SCOPE fr[ame] |
select-frame

Select a specified stack frame as the
frame relative to which program state
is displayed.

SELECT
DEBUGGER DEBUG

switch Switch the current process to another
debugger.

SELECT SEGMENT vq Select an extended data segment as the
“current” segment relative to which
the debugger displays program state.

SELECT
LANGUAGE

set language Set the current language used to parse
and evaluate expressions. (Useful
when debugging mixed-language
programs.)

SELECT PROGRAM vector Select which program is the current
program.

SELECT SOURCE
SYSTEM

Not supported Read source files from specified
system.

SELECT SYSTYPE Determined by
the path type
supplied to the
last cd
command.

Set whether file names are resolved
using Guardian or OSS rules.

SET set Set a debugger option.

SET RADIX base Set default input or output radix.
(Native Inspect Debug compatibility
command)

SHOW show List debugger options and their values.

SIGNALS ih Display information about defined
signal handlers.

Appendix A – Inspect Command Mapping Migrating from Inspect to Native Inspect

Hewlett-Packard Company 543427-002 15 of 15

Inspect
Command

Native Inspect
Command Description

SOURCE list List program source text.

STEP IN step, stepi, Step program execution a statement or
an instruction at a time, stepping in to
function/procedure/program unit calls.

STEP OUT finish Step program execution out of the

current function/procedure/program
unit call.

STEP OVER next, nexti Step program execution a statement or
an instruction at a time, stepping in to
function/procedure/program unit calls.

STOP kill Terminate program execution.

SYSTEM Not supported Set the system to be used when
resolving Guardian file names.

TERM Not supported Redirect terminal output to the
specified terminal.

TIME Not supported Report the current time

TRACE bt List the frames on the program call
stack.

VOLUME Volume | cd Change the default Guardian volume
used to resolve unqualified file names.

XC ! Execute the specified command from
the history list.

	Introduction
	�Paradigm Shift
	Preparing to Debug
	
	Compiling Programs
	Starting Programs
	Debugger Selection Rules
	�Debugging Running Processes
	Multiprocess Debugging

	Listing Source
	Tracing the Stack
	Controlling Program Execution
	Breakpoints
	Displaying Variables
	
	Formatting Values
	Pointers
	Arrays
	Expressions
	Variable Address
	Variable Type
	Auto Display
	New Commands
	Scoping

	�Modifying Variables
	Locating Source and Symbols
	
	Locating Source
	Locating Symbols

	DLLS
	Data Segments
	Snapshot Files
	Scripting
	Machine-Level Debugging
	
	Examining Memory
	Displaying Registers
	�Execution Control

	Privileged Debugging
	Switching Debuggers
	�Convenience Commands
	
	Changing the Working Directory
	Logging Session Output
	Command History
	Value History
	Using Convenience Variables
	Creating a Custom File
	Controlling Output

	Limitations
	Resources
	Appendix A - Inspect to Native Inspect Command Mapping

