
eld Manual
Abstract

This manual describes how programmers can use eld, the object file linker for TNS/E,
to create loadfiles for execution on HP Integrity NonStop™ NS-series servers.

Product Version

N.A.

Supported Release Version Updates (RVUs)

This publication supports J06.03 and all subsequent J-series RVUs and H06.01 and all
subsequent H-series RVUs, until otherwise indicated by its replacement publications.

Part Number Published
527255-009 February 2012

Document History
Part Number Product Version Published
527255-004 N.A. July 2005
527255-005 N.A. May 2010
527255-007 N.A. August 2010
527255-008 N.A. May 2011
527255-009 N.A. February 2012

Legal Notices
© Copyright 2012 Hewlett-Packard Development Company L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S.
Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks and IT DialTone and The
Open Group are trademarks of The Open Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the
Open Software Foundation, Inc.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED
HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in connection
with the furnishing, performance, or use of this material.
© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. This documentation and the software to
which it relates are derived in part from materials supplied by the following:
© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.
© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc.
© 1987, 1988, 1989, 1990, 1991 Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991,
1992 International Business Machines Corporation. © 1988, 1989 Massachusetts Institute of
Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989, 1990,
1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986, 1989,
1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.
This software and documentation are based in part on the Fourth Berkeley Software Distribution under
license from The Regents of the University of California. OSF acknowledges the following individuals
and institutions for their role in its development: Kenneth C.R.C. Arnold, Gregory S. Couch,
Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980, 1981, 1982, 1983,
1985, 1986, 1987, 1988, 1989 Regents of the University of California.
Printed in the US

eld Manual
Glossary Index Tables
Legal Notices

What’s New in This Manual v
Manual Information v
New and Changed Information v

About This Manual ix
Notation Conventions xi

1. Introduction to eld
eld Overview 1-1

Example Command Line 1-2
eld Functionality 1-2
Linker Version Information 1-3

Native Object Files 1-3
The Linker Command Stream 1-5

Obey Files and the Use of Standard Input 1-7
Example of Use 1-9

2. eld Input and Output
Host Platforms 2-1
Target Platforms 2-2
Filenames and The File Identifier 2-2
Output Object Files 2-4
The Creation of Output Object Files 2-5
Creating Segments of the Output Loadfile 2-6
Using a DLL Registry 2-8
Input Object Files 2-12
Using Archives 2-16

3. Binding of References
Overview 3-1
Presetting Loadfiles 3-5
To Preset or Not to Preset, and Creation of the LIC 3-7
 Hewlett-Packard Company—527255-009
i

Contents 4. Other eld Processing
Handling Unresolved References 3-8
Using User Libraries 3-10
Creating Import Libraries 3-11

Creating an Import Library at the Same Time That a DLL is Created 3-12
Creating Import Libraries From Existing DLLs 3-12

Ignoring Optional Libraries 3-14
 Merging Symbols Found in Input Linkfiles 3-16
Accepting Multiply-Defined Symbols 3-17

Rules For Data Items 3-17
Rules for Procedures 3-18

Using the -cross_dll_cleanup option 3-19
Specifying Which Symbols to Export, and Creating the Export Digest 3-20

Processing of Code and Data Sections 3-21
Concatenating Code and Data Sections Found in the Input Linkfiles 3-21

Public Libraries and DLLs 3-22
The Public Library Registry 3-23

Finding and Reading The Public DLL Registry (ZREG) File 3-23

4. Other eld Processing
Adjusting Loadfiles: The -alf Option 4-1
Additional rules about -alf 4-3
The -set and -change Options 4-8
eld Functionality for 64-Bit 4-12
Checking the C++ Language Dialect 4-12
Renaming Symbols 4-13
Creating Linker-Defined Symbols 4-14
Updating Or Stripping DWARF Symbol Table Information 4-14
Modifying the Data Sections that Contain Stack Unwinding Information 4-15
Creating the MCB 4-15
Processing of Floating Point Versions and Data Models 4-16
Specification of the Main Entry Point 4-17
Specifying Runtime Search Path Information for DLLs 4-18
Merging Source RTDUs 4-19

5. Summary of Linker Options

6.
Output Listings and Error Handling
General Information 6-1
 Error Messages 6-4
eld Manual—527255-009
ii

Contents A. TNS/E Native Object Files
Glossary of Errors 6-126

A. TNS/E Native Object Files
The Object File Format A-1

Basic Properties of Object Files A-1
Types of TNS/E Object Files A-2
How to Distinguish the Different Types of Object Files A-3
Summary of the Contents of an Object File A-3

Code and Data Sections A-11
User Code A-12
User Data A-13
The MCB (Master Control Block) A-14
Predefined Symbols A-14

Relocation Tables A-16
How -alf Updates DWARF A-24
Finding Information About Procedures and Subprocedures in Linkfiles A-26

The DWARF Symbol Table A-26
Archives A-27
Tools That Work With Object Files A-29

Glossary

Index

Tables
Table 2-1. Parameters to the -instance_data Option 2-7
Table 4-1. The -set and -change Options 4-8
Table 5-1. Set Attributes 5-8
Table 6-1. Completion Codes - The Severity Levels of Messages 6-1
Table A-1. Types of TNS/E Object Files A-2
Table A-2. Contents of a Loadfile or Import Library A-5
Table A-3. Additional Predefined Symbols Optionally Created By The Linker In

Loadfiles A-15
Table A-4. Relocation Types A-18
eld Manual—527255-009
iii

Contents
eld Manual—527255-009
iv

What’s New in This Manual
Manual Information

eld Manual

Abstract

This manual describes how programmers can use eld, the object file linker for TNS/E,
to create loadfiles for execution on HP Integrity NonStop™ NS-series servers.

Product Version

N.A.

Supported Release Version Updates (RVUs)

This publication supports J06.03 and all subsequent J-series RVUs and H06.01 and all
subsequent H-series RVUs, until otherwise indicated by its replacement publications.

Document History

New and Changed Information
Changes to the H06.24/J06.13 manual:

• In the section, The Steps in Looking for Archives and DLLs on page 2-17:

° Updated the fourth and fifth step and also added a new content on page 2-17.

° Updated information on 2-18.

• In the section, Additional rules about -alf on page 4-3:

° Updated the list on page 4-4.

• In the table, The -set and -change Options on page 4-8:

° Added a new entry on page 4-8.

Part Number Published
527255-009 February 2012

Part Number Product Version Published
527255-004 N.A. July 2005
527255-005 N.A. May 2010
527255-007 N.A. August 2010
527255-008 N.A. May 2011
527255-009 N.A. February 2012
eld Manual—527255-009
v

What’s New in This Manual Changes to the 527255-008 manual:
° Updated the information on the attributes for -set and -change option on
pages 4-9 and 4-10.

• Added eld Functionality for 64-Bit on page 4-12.

• In the table, Set Attributes on page 5-8:

° Added a new entry on page 5-8.

• In the title, Output Listings and Error Handling on page 6-1:

° Updated the message 1557 on page 6-95.

° Added a new message 1510 on page 6-77.

° Added a new message 1665 on page 6-124.

° Added a new message 1666 on page 6-124.

° Added a new message 1667 on page 6-125.

° Added a new message 1668 on page 6-125.

° Added a new message 1669 on page 6-125.

° Added a new message 1670 on page 6-125.

° Added a new message 1672 on page 6-125.

Changes to the 527255-008 manual:
• Added a new message 1132 on page 6-20.

Changes to the 527255-007 manual:
• Added the following linker options:

° -NS_extent_size extent-size on page 5-6

° -NS_max_extents max_extents on page 5-7

° -warn_common on page 5-12

• Updated systype attribute information under Target Platforms on 2-2.

• Added Using the -cross_dll_cleanup option on page 3-19.

• Added information about -cross_dll_cleanup on page 5-2.

• Added the following new messages:

° 1233 on page 6-39 to 1236 on page 6-39

° 1389 on page 6-69

° 1391 on page 6-69

• Updated error message 1519 on page 6-79.
eld Manual—527255-009
vi

What’s New in This Manual Changes to the 527255-005 Manual:
• Added applicability note for data2protected parameter support on page 2-7 and
3-16.

• Updated list of sections under Binding of References on page 3-1.

Changes to the 527255-005 Manual:
• Updated information on how the linker searches for indirect DLLs on page 2-12

and 2-19.

• Added consideration for -set libname on page 3-10.

• Added consideration for -change libname on page 4-10.

• Added the following error messages:

• 1229 to 1232 on page 6-38

• 1657, 1659, and 1660 on page 6-124
eld Manual—527255-009
vii

What’s New in This Manual Changes to the 527255-005 Manual
eld Manual—527255-009
viii

About This Manual
This publication describes how programmers can use eld, the object file linker for
TNS/E, to create loadfiles for execution on H-series software NonStop servers.

Section 1, Introduction to eld consists of the following topics:

• eld Overview - explains the general functionality of the product.

• Native Object Files - introduces the different types of object files.

• The Linker Command Stream - shows the conventions for entering tokens
(options, parameters and filenames) on the command line.

• Example of Use - presents an example of using eld to link a main program and
a DLL .

Section 2, eld Input and Output consists of the following topics:

• Host Platforms - where the linker may be used.

• Target Platforms - where the output from the linker may be used.

• Output Object Files - what forms (libraries, loadfiles and DLLs) that output may
take.

• The Creation of Output Object Files - how you control that process.

• Creating Segments of the Output Loadfile - how parts of a loadfile are created.

• Using a DLL Registry - how you can manage DLL addressing.

• Input Object Files - which files you can use as input.

• Using Archives - how you can group multiple input or output files together.

Section 3, Binding of References consists of the following topics:

• Overview - an overview of symbol resolution and code relocation.

• Presetting Loadfiles - the process of resolving references to DLLs at linktime.

• To Preset or Not to Preset, and Creation of the LIC - eld rules for presetting.

• Handling Unresolved References - what happens if a symbol is not found in
any loadfile in the linker’s search list?

• Using User Libraries - introduces the libname options.

• Creating Import Libraries - three types are available.

• Ignoring Optional Libraries - a command stream toggle is available.
eld Manual—527255-009
ix

About This Manual
• Finding and Reading The Public DLL Registry (ZREG) File - three ways to find
it.

Section 4, Other eld Processing consists of the following topics:

• Adjusting Loadfiles: The -alf Option - how to repeat the presetting of a loadfile
when DLLs change.

• The -set and -change Options - how to set various options within the loadfile.

• eld Functionality for 64-Bit - how the linker performs consistency checks.

• Renaming Symbols - how the linker treats each input file.

• Updating Or Stripping DWARF Symbol Table Information - from the input and
output object files.

• Modifying the Data Sections that Contain Stack Unwinding Information - when
concatenating sections to create a new loadfile.

• Creating the MCB - the Master Control Block contains key settings such as
product version numbers, valid file types, language dialects, and so on.

• Processing of Floating Point Versions and Data Models - more consistency
checks.

• Specification of the Main Entry Point - there are two ways to specify the main
entry point.

• Specifying Runtime Search Path Information for DLLs - eld tells rld where to
find the DLLs.

• Merging Source RTDUs - used with SQL/MP.

Section 5, Summary of Linker Options consists of a list and description of every linker
option.

Section 6, Output Listings and Error Handling consists of the following topics:

• General Information - when and how messages are created.

• Error Messages - individual cause, effect and recovery information.

• Glossary of Errors - a glossary of terms used in the error messages.

Appendix A, TNS/E Native Object Files consists of the following topics:

• The Object File Format - the types of object files and their content.

• Code and Data Sections - the "ordinary" code and data sections that come
from application source code, possibly with additions by the compiler or linker.
eld Manual—527255-009
x

About This Manual Notation Conventions
• Relocation Tables - when code is relocated, who resolves the address and
prepares relocation tables?

• Finding Information About Procedures and Subprocedures in Linkfiles - an
introduction to the .procinfo and .procnames sections of linkfiles.

• The DWARF Symbol Table - this table contains information used by debuggers
and the Cobol compiler.

• Archives - contains an extension of material covered in a previous section of
this manual.

• Tools That Work With Object Files - a quick look at which HP NonStop
operating system tools use object files.

Notation Conventions
The specific conventions for eld may be found in The Linker Command Stream on
page 1-5.

The conventions shown below are generic, applying to most manuals in the NonStop
Technical Library.

Hypertext Links
Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

This requirement is described under Backup DAM Volumes and Physical Disk
Drives on page 3-2.

General Syntax Notation
This list summarizes the notation conventions for syntax presentation in most NonStop
manuals. Some of these conventions may not apply to this particular manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words. Type
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words. Type these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c
eld Manual—527255-009
xi

About This Manual General Syntax Notation
italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

<filename>. TThis represents the name of a file. Filenames follow whatever rules apply to
the corresponding host platform when the linker needs to do something with the file.
For example, filenames are not case sensitive on Guardian or NT, but are case
sensitive on OSS. The linker keeps all filenames in the same form that they were
specified, unless otherwise stated in this document.

<symbol name> . This represents the name of a symbol as it appears within an object file.
It is case sensitive. There are rules that depend upon the source language for mapping
between the way the symbol appears in the source code and the way the symbol
appears within the object file. Each source language has its own rules for this.

<path> . This is the kind of string used in the -rld_L and -rld_first_L options.

<dllname>. This is the kind of string used in the -dllname option.

<location> . This is the kind of string used in the -L and -first_L options.

<number> . This indicates a 64-bit numerical value. It is interpreted as a hexadecimal
number if it begins with “0x”, “0X”, “%h”, or “%H”, in which case the rules given below
for a <hexadecimal number> apply. If it has none of these prefixes then it is interpreted
as a decimal number and the rest of the token must be a sequence of decimal digits.
The TNS/E linker does not accept octal numbers.

<hexadecimal number> . This indicates a 64-bit hexadecimal number, and may optionally
begin with “0x”, “0X”, “%h”, or “%H”. The letters “a” through “f” (representing the values
10 through 15) are not case sensitive. Periods are allowed in hexadecimal numbers to
subdivide the number for readability, using one of the following two methods. There
may be one period in the number, and then the period is assumed to divide the number
into two 32-bit portions. Or, there may be three periods, in which case the periods are
assumed to divide the number into four 16-bit portions.

<attribute> and <value>. These notations are explained under the description of the -set
option.

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on
eld Manual—527255-009
xii

About This Manual General Syntax Notation
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
 [-num]
 [text]

K [X | D] address

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list can be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…
[-] {0|1|2|3|4|5|6|7|8|9}…
An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be typed as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must type as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no
spaces are permitted between the period and any other items:

$process-name.#su-name
eld Manual—527255-009
xiii

About This Manual Notation for Messages
Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…

!i and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o. In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; !i,o

!i:i. In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

Notation for Messages
This list summarizes the notation conventions for the presentation of displayed
messages in this manual.

Bold Text. Bold text in an example indicates user input typed at the terminal. For example:

ENTER RUN CODE

?123

CODE RECEIVED: 123.00

The user must press the Return key after typing the input.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.
eld Manual—527255-009
xiv

About This Manual Change Bar Notation
lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-register

process-name

[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be
displayed, of which one or none might actually be displayed. The items in the list can
be arranged either vertically, with aligned brackets on each side of the list, or
horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

proc-name trapped [in SQL | in SQL file system]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list can be arranged
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

obj-type obj-name state changed to state, caused by
{ Object | Operator | Service }

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { OK | Failed }

% Percent Sign. A percent sign precedes a number that is not in decimal notation. The
% notation precedes an octal number. The %B notation precedes a binary number.
The %H notation precedes a hexadecimal number. For example:

%005400

%B101111

%H2F

P=%p-register E=%e-register

Change Bar Notation
Change bars are used to indicate substantive differences between this manual and its
preceding version. Change bars are vertical rules placed in the right margin of
changed portions of text, figures, tables, examples, and so on. Change bars highlight
new or revised information. For example:
eld Manual—527255-009
xv

About This Manual Change Bar Notation
The message types specified in the REPORT clause are different in the COBOL85
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for
old message types. In the CRE, the message type SYSTEM includes all
messages except LOGICAL-CLOSE and LOGICAL-OPEN.
eld Manual—527255-009
xvi

1 Introduction to eld
This section contains the following information topics:

eld Overview introduces the general functionality of the product.

Native Object Files introduces the different types of object files.

The Linker Command Stream shows the conventions for entering tokens (options,
parameters and filenames) on the command line.

Example of Use presents an example of using eld to link a main program and one
DLL.

eld Overview
The primary use of the linker eld, in the TNS/E development environments (Guardian,
OSS or PC), is to combine one or more TNS/E position-independent code (PIC) object
files into a new single loadfile.

eld manipulates both code and data, and then places all of the loadfile’s adjustable
references in tables outside the code to make them available to rld, the run-time
loader. This process, called linking, must be applied to linkfiles after they have been
compiled and before they can be loaded for execution.

Linkfiles are produced by a TNS/E compiler or assembler. The new loadfile created by
eld is either a program or a DLL. A loadfile contains certain information used to bind
references among loadfiles at load time. The linker may also look at other DLLs in
order to resolve references to them at link time (this is called “presetting”). A main
program, together with the DLLs that it needs directly or indirectly, is executed on the
HP NonStop operating system. A file type of 800 indicates that the code can only
execute on the TNS/E HP NonStop operating system platform.

The equivalent product for TNS/R PIC object files is known as ld and is documented
in the ld Manual.

rld is the run-time loader that may be used in either TNS/R or TNS/E environments.
rld is documented in the rld Manual.

As Guardian commands are case-insensitive you may use either upper (for example,
ELD) or lower-case (for example, eld) commands to invoke the linker. To comply with
UNIX conventions of lower-case usage, you may only use lowercase in the OSS
environment. This manual mostly uses lower-case versions of the linker names.

PIC native object files are generated by the native C, native C++, native COBOL, and
pTAL compilers. See the following manuals for information about these compilers:

• C/C++ Programmer’s Guide

• HP COBOL For NonStop Systems

• pTAL Reference Manual.
eld Manual—527255-009
1-1

Introduction to eld Example Command Line
Example Command Line
The following is an example of a linker command line:

eld myobj1 myobj2 -o myprog -lib mydll

This command specifies linkfiles myobj1 and myobj2 as inputs to the linker, which is
named eld. The linker will combine them into the program named myprog, and will
bind references against a DLL found from mydll.

For a longer example of using eld, see the Example of Use on page 1-9.

eld Functionality
eld can also :

• obtain its input linkfiles from archives.

• combine existing linkfiles into a new linkfile with the -r option.

• create an import library, including one that represents all the “implicit” libraries.

• bind references against user libraries and import libraries.

• update an existing loadfile with the -alf, -change, and -strip options.

The linker does not have a programmatic interface other than starting it as a new
process, providing it the appropriate inputs, and looking at the outputs that it produces.

There are various ways of invoking the linker, such as directly from the command line,
indirectly from other command line tools such as the C compiler, or through graphical
user interfaces. You can run eld in these ways:

Manually, at a command prompt.

Automatically, when using these compilers:

This publication explains only how to run eld manually. For information on running eld
automatically, see:

Environment Compiler
Guardian CCOMP

CPPCOMP
ECOBOL

OSS c89

c99

ecobol

Windows NT*
Windows 2000*
Windows XP*

All of the above and eptal

* By means of the Cross-Compiler CDs, ETK
eld Manual—527255-009
1-2

Introduction to eld Linker Version Information
• C/C++ Programmer’s Guide
• HP COBOL For NonStop Systems

eld runs in the following environments:

• Guardian

• OSS

• Windows NT, Windows 2000, and Windows XP, using either the Cross-Compiler
CDs or the HP Enterprise Toolkit—NonStop Edition (ETK), which is based on
Microsoft Visual Studio .NET

Linker Version Information
eld writes information about its version number into the .tandem_info section of its
output object file.

eld also contains a VPROC procedure that is a standard feature of Tandem tools.

The PC version of eld contains version information that you can see by looking at the
"properties" of the eld.exe file.

Native Object Files
eld operates on TNS/E native object files. Native object files are in Executable and
Linking Format (ELF), a standard format used for object files, with some HP
extensions.

This manual presents only basic information about these files. For details on the
structure of native object files for TNS/E, see Appendix A, TNS/E Native Object Files
and the enoft Manual.

Native object files are either Linkfiles or Loadfiles, but not both.

The native compilers create native object files called linkfiles from source code.
eld produces native object files called loadfiles from such linkfiles.

Native object files of TNS/E in the Guardian environment have a file code of 800.
Native object files of TNS/R in the Guardian environment have a file code of 700.

Note. eld has the same capabilities and syntax in each environment, but each environment
has its own rules, for example, filename syntax.

Can Be Linked to Produce a Loadfile Can Be Executed
Linkfiles Yes No
Loadfiles No Yes
eld Manual—527255-009
1-3

Introduction to eld Native Object Files
There are four types of TNS/E object file:

Collectively, programs and DLLs are called loadfiles. Loadfiles and import libraries are
built by the linker.

The main distinctions occur between linkfiles and loadfiles. There is little difference
between a program and a DLL as far as the file format is concerned, and an import
library is a subset of what is in a DLL.

A loadfile may refer by name to symbols that exist in other loadfiles in the same
process. Such references are resolved when the loadfiles are brought into memory by
the runtime loader (rld) or by the C/C++ runtime procedure named dlopen(). When
the loadfile was originally built by the linker it is also possible that the linker tried to
resolve such references. A loadfile whose references have been resolved by the linker
is said to be preset.

A process can also use one user library. A user library is a DLL. Nothing within a user
library distinguishes it from other DLLs, and a DLL that serves as the user library for
one program can also be used like any other DLL by other programs. The only
difference between the user library and other DLLs is in the way the program identifies
the user library that it uses. For a DLL to be used as a user library at runtime its
filename must be in the Guardian name space.

An import library can take the place of a DLL at link time. One use of import libraries is
to save space. Another use is for security, when it is necessary for the linker to read
the header information but it is not desirable for others to be able to see the code.
Import libraries are further categorized as complete or incomplete. The difference is
that an incomplete import library need not contain the correct addresses for symbols. A
complete import library can be used by the linker when presetting a loadfile. The linker
can use an incomplete import library to check for unresolved references, but not to
preset.

DLLs and import libraries can also be used at compile time by the COBOL compiler to
find out information about procedure call interfaces.

Type of Object File Description
Linkfile Object files that are produced by a compiler or by the

assembler that can be given as input to the linker. It is also
possible for the linker to produce a linkfile as output when
run with the -r option.

Program This is the main program. There is one program in every
process.

DLL This is a dynamic-link library. It is an object file that is not a
program but can also be part of a process. A process can
contain any number of DLLs. DLLs are also used by the
linker when building other programs or DLLs.

Import Library This is a file that contains just part of a DLL that is needed
at link time to build other DLLs or programs.
eld Manual—527255-009
1-4

Introduction to eld The Linker Command Stream
Some DLLs are called public libraries because they are provided as part of the TNS/E
implementation and are found in a special way by the linker and runtime loader. A
public library has the same format as any other DLL, and can have an import library to
represent it.

Some of the public libraries are called implicit libraries because they are used at link
time and run time without explicit mention on the part of the user. There are several
implicit libraries, and there is a bit in a DLL that tells if it is an implicit library. A single
implicit library never has an import library to represent it to the linker. Rather, at link
time, when building a loadfile that is not an implicit library, a single import library
represents the entire set of implicit libraries. That is called the import library that
represents the implicit libraries, and it is always a complete import library.

For detailed information about PIC programs and developing DLLs, see the DLL
Programmer’s Guide for TNS/E Systems.

There is also an equivalent manual for TNS/R systems, the DLL Programmer’s Guide
for TNS/R Systems.

The Linker Command Stream
The following definitions of terms such as option, parameters and filenames is specific
only to eld. In other environments and products, similar concepts might go under
different names, for example OSS calls options “flags”.

The linker obtains tokens from the command line by using the argc and argv
functions of C. The way this works may be dependent on the C runtime
implementation, but the general idea is that tokens are separated by spaces. On the
PC it may be useful to include a space within a filename, and that can be done by
placing quotation marks around the name. The C runtime gives the name to the linker
without the surrounding quotation marks.

Certain options, such as the -obey option, cause the linker to obtain tokens from files,
and the linker mostly treats them the same as if they were on the command line. The
linker’s command line, plus the other tokens it obtains in such ways from files, are
collectively called the linker’s command stream.

Tokens are categorized as options, parameters, or filenames. An option always starts
with a hyphen. A filename or parameter never starts with a hyphen. Each option
requires a certain number of parameters to immediately follow it. eld reports an error if
the linker cannot parse the command stream into a sequence of options and/or
filenames, where each option is followed by the required number of parameters.

Names of options and parameters must be spelled exactly as given in this manual.
Except for the options named -l and -L, options and keyword parameters are not
case sensitive.

Options may be placed into one of three categories:
eld Manual—527255-009
1-5

Introduction to eld The Linker Command Stream
• Repeatable options are options such that each occurrence of the option is
independent, such as providing another element of a list of information or making
the linker do a certain activity again.

• Toggle options are options that modify the linker’s behavior for the remainder of the
command stream, or until toggled again.

• One-time options are everything else.

Descriptions of repeatable options and toggle options within this manual explain the
significance of each occurrence of the option. If this manual does not explain why an
option might be given more than once in the command stream, it is a one-time option.
It is okay to specify a one-time option more than once if it doesn’t take any parameters,
and the repeated occurrences are ignored by the linker. It is similarly okay if the option
has a parameter and you specify the option more than once with the same parameter,
or with another parameter that is a “synonym” of it. eld reports an error if you specify a
one-time option more than once with non-synonymous parameters. With regard to one-
time options that take string parameters, “synonymous” means exactly the same,
including the same case of all the characters, even in situations (e.g., filenames on
Guardian) where the case wouldn’t be significant. Except, because the parameter to -
set libname is converted to upper case by the linker anyway, this particular check
is not case sensitive. On the other hand, when there is a numerical parameter,
“synonymous” means that the value comes out the same, regardless of how it is
written.

With regard to the -set option, each combination of the -set option with one of its
attributes is treated as a single one-time option as mentioned in the previous
paragraph. In other words, there are no restrictions on how many times the -set
option can be given with different attributes. If -set is specified more than once with
the same attribute, and a value is required, that is okay if a synonymous value is given
each time, otherwise eld reports an error.

With regard to the -b option, this is really treated as two different options. There is a
one-time -b option, whose possible parameter values are globalized, localized,
semi_globalized, and symbolic, where symbolic is a synonym for
semi_globalized. And there is also a toggle -b option, where the possible
parameter values are dllsonly, dynamic, and static.

Throughout this manual, rules are given for which combinations of options are legal.
Even if not stated explicitly, eld reports an error if you specify multiple options that are
mutually exclusive from their descriptions.

Whenever the name of an option is a single letter and the option has a single
parameter it is permissible to omit the space between the option name and the
parameter, combining them into a single token. This would be ambiguous for an option
that takes a filename or symbol name as a parameter when the result is the name of
some other option, so the rule is that it is only permitted to leave out the space if this
does not cause such an ambiguity. For instance, if the output file is to be named b, it
can be specified as either -o b or -ob. However, if the output file is to be named bey
then it must be written -o bey because there is another option named -obey.
eld Manual—527255-009
1-6

Introduction to eld Obey Files and the Use of Standard Input
If no tokens are given to the linker in its command stream then the linker writes out
messages to the output listing to give a one-line summary of each of the available
options and does nothing else.

If some tokens are given, and based on these tokens the linker should create a new
object file from one or more linkfiles, but no linkfiles are brought into the link, eld
reports an error.

Obey Files and the Use of Standard Input
The -obey option lets the user put tokens into a file that is read by the linker. This file
is a text file, and must be either a file code 101, or a code 180 file. The parameter to
the -obey option is the name of the file, and anything that could be given on the linker
command line is permissible in that file. In simple cases the contents of the file are
treated the same as if they were on the command line, in the place of the -obey
option. White space in the obey file, including ends of lines, serves to separate tokens.

Within obey files, if a token begins with two consecutive hyphens, those hyphens and
the rest of the line are treated as a comment (ignored).

There is also a special rule with regard to (double) quotation marks within obey files.
The special rule only applies to a quotation mark that comes at the beginning of a
token, i.e., it is either the first character in the obey file or it follows white space. In this
case, if it is the last quotation mark on that line, eld reports an error. Otherwise, the
characters between it and the next quotation mark are considered to be a single token,
even if they include white space. The linker will then start looking for the next token
immediately after the second quotation mark. For example, if a line in an obey file
contains the following:

-o “abc -def”ghi

then the linker will consider this to contain three tokens, namely, “-o”, “abc -def”, and
“ghi”. Note that there is a space between the ‘c’ and the ‘-’, and that the name of the
output file created by the linker is “abc -def”. On some platforms this will work, and on
other platforms it won’t. Also note that no space is required between the second
quotation mark and the ‘g’. As another example, if a line in an obey file contains the
following:

-o abc“d e”f

then this contains two tokens after the -o, where the first token is abc”d and the
second one is e”f. The quotation marks do not fall under the special rule here, because
they are not at the beginnings of tokens. Thus, the space between the d and e serves
to separate tokens.

Note that the above examples show that it is possible to put a space in the middle of a
token, and that it is possible to put a quotation mark in the middle of a token, but it is
not possible to have both of these things in the same token.

There can be multiple -obey options on the command line, each being processed as
explained above. There can be -obey options within obey files, with no limit on the
eld Manual—527255-009
1-7

Introduction to eld Obey Files and the Use of Standard Input
nesting. Recursive nesting is handled by the rule that an -obey option is ignored if its
parameter is identical to the parameter of an -obey option that is currently being
processed.

The -obey option has a synonym, -FL.

There is also an option named -stdin. This is the same as an -obey option except
that it doesn’t take a parameter and it signifies instead that the contents of the standard
input file are read at this point in the command stream. The linker reads from standard
input until it encounters end of file. If the runtime environment allows a process to read
standard input up to an end of file, and then read it some more until another end of file,
etc., then there can be more than one -stdin option in the linker command stream,
each one being processed the same way.

It is not an error if a -stdin option is found within the standard input file. It is simply
ignored, as a special case of the rule that recursive -obey options are ignored. The
linker doesn’t require input from the standard input file and the linker is often used
where standard input is interactive, with nothing being entered. Accordingly, it would be
a mistake for the linker to unconditionally read from standard input because then the
linker might wait forever, with the user not realizing that the linker was waiting for input.
That is why a special option such as -stdin is necessary, to say when input is
coming from standard input.

A special case is made, however, for the Guardian platform, where the linker
distinguishes an EDIT file from other types of input files. On the Guardian platform, if
the standard input file is an EDIT type file and nothing is specified on the command
line, the linker reads that EDIT type file to obtain its command stream.

Note that the -obey option is expanded like a macro, and can even be used to
provide the parameter to an option. For example, it is possible to say -rpath -obey
x, and then the initial token within the file named x would be used as the parameter
for the -rpath option. If the file named x contained additional contents after the
initial token, those additional tokens would be interpreted as additional filenames,
options, etc., following the -rpath option.

Similar considerations apply when an -obey option is a parameter to another -obey
option, for example, if you write -obey -obey x as part of the command stream. In
this case, the linker will first assume that x is the name of an obey file and expand the
contents of the file x in place of the -obey x. So, if the first token found within the file
x is, say, y (not starting with a hyphen), so that the expanded command stream now
looks like -obey y ..., the linker will assume that y is the name of an obey file and
expand the contents of the file y in place of the -obey y. Thus the command stream
will contain the contents of the file y , followed by the remaining contents of the file
named x after its initial token “y”.
eld Manual—527255-009
1-8

Introduction to eld Example of Use
Example of Use
This section shows an example of using the eld linker. This example shows the use of
a main program, mainstrc, and a library called mystrngc. Both will be compiled using
ccomp, then linked using eld. mystrngc will be loaded as a DLL.

Display the Source Code
Here is the code for the main program, mainstrc

#include <stdio.h> nolist
#include <stdlib.h> nolist
#include <string.h> nolist
int StrRev (char *s, char *r); /* declaration of external procedure */

char s[100];

/***
| main: given a list of strings, print out them reversed
| argv[1]...argv[argc-1] point to strings
|
| if no string passed, put out usage message and quit.
| for each string
| reverse it
| display it
|
***/
int main(int argc, char *argv[]) {
 char **ppStr;
 int strLeft;
 int outcome;

 if (argc < 2) /* no args passed */
 {
 printf("Usage: run rev <str1> [<str2>]\n \
 \twhere <str> is a string to reverse\n \
 \texample: run rev abc zyxw\n");
 exit(1);
 }

 for (strLeft= argc-1, ppStr=argv+1;
 strLeft;
 ppStr++, strLeft--) {
 strcpy(s, *ppStr);
 outcome = StrRev(s, s);
 (outcome == 0) ? printf("Reverse(%s) = (%s)\n", *ppStr, s) :
 printf("error in reversing the string\n");
 } /* for */

 printf("Hit enter to finish\n");

 getchar();

} /* of proc main */

Here is the source code for the library, mystrngc

#include <string.h> nolist
#include <stdlib.h> nolist

int StrRev (char *s, char *r) {
eld Manual—527255-009
1-9

Introduction to eld Example of Use
 char *pBegin;
 char *pEnd;
 char c;
 strcpy(r, s);
 pBegin = r;
 pEnd = r + strlen(r);
 while (--pEnd > pBegin)
 {
 c = *pBegin;
 *pBegin++ = *pEnd;
 *pEnd = c;
 }
 return (0);

} /* StrRev */

Compile the Program and Library
The first step is to compile the programs using ccomp, the native mode TNS/E
compiler, on the HP NonStop operating system to create the two object files, mainstro
and mystro.

We are using a fully-qualified filename to get to the TNS/E compiler, ccomp. On your
system, the pathname showing the location of your development tools will be quite
different.
run $data01.toolsy02.ccomp /in mainstrc /mainstro; suppress

TNS/E C - T0549H01 - 30AUG2004 (Oct 25 2004 14:47:23)

(C)2004 Hewlett Packard Development Company, L.P.

0 remarks were issued during compilation.

0 warnings were issued during compilation.

0 errors were detected during compilation.

Object file: mainstro

Compiler statistics

 phase CPU seconds elapsed time file name

 CCOMP \SPEEDY.$DATA01.TOOLSY02.CCOMP

 CCOMBE 0.2 00:00:07 \SPEEDY.$DATA01.TOOLSY02.CCOMBE

 total 0.2 00:00:09

All processes executed in CPU 05 (NSR-Y)

Swap volume: \SPEEDY.$DATA01
eld Manual—527255-009
1-10

Introduction to eld Example of Use
Here’s the creation of the object file called mystro.
run $data01.toolsy02.ccomp /in mystrngc /mystro;suppress

TNS/E C - T0549H01 - 30AUG2004 (Oct 25 2004 14:47:23)

(C)2004 Hewlett Packard Development Company, L.P.

0 remarks were issued during compilation.

0 warnings were issued during compilation.

0 errors were detected during compilation.

Object file: mystro

Compiler statistics

 phase CPU seconds elapsed time file name

 CCOMP \SPEEDY.$DATA01.TOOLSY02.CCOMP

 CCOMBE 0.2 00:00:06 \SPEEDY.$DATA01.TOOLSY02.CCOMBE

 total 0.2 00:00:06

All processes executed in CPU 04 (NSR-Y)

Swap volume: \SPEEDY.$DATA01

Build the DLL and the Program
First we build the DLL, then the main executable file called revstr. It has to be in that
order because the main executable could not refer to a DLL that did not yet exist. (If
the linker’s -allow_missing_libs option is specified, the main executable could be
linked befoe the DLL is linked.)

Note that the -lib option references the DLL called mystrdll. Note the -export_all
option. We could also individually reference the items to be exported, as follows:
 -export StrRev

Note the -shared option sent to eld. This creates the DLL. The -dll option can be
used to do the same task, and is probably more descriptive of what we want to
achieve. Either option can be used.
eld Manual—527255-009
1-11

Introduction to eld Example of Use
The following command input creates the DLL:
run $data01.toolsy02.eld mystro -o mystrdll -shared -export_all

eld - TNS/E Native Mode Linker - T0608H01 - 26OCT04

Copyright 2004 Hewlett-Packard Company

eld command line:

 \speedy.$data01.toolsy02.eld mystro -o mystrdll -shared -export_all

**** INFORMATIONAL MESSAGE **** [1530]:

 Using 'ImpImp' file: \speedy.$data01.toolsy02.zimpimp.

Output file: mystrdll (dll)

Output file timestamp: Nov 8 13:59:43 2004

No errors reported.

No warnings reported.

1 informational message reported.

Elapsed Time: 00:00:01

Now Build the Program
The next step is to create the loadfile (the whole program) by use of the linker.

ccplmain contains initialization code for the C and C++ run-time libraries. Your
version of that file will probably be located in $system.system.

ccplmain contains external references to errno and environ (which are defined in
ZCREDLL) and C_INT_INIT_COMPLETE_ , C_INT_INIT_START_ , and exit (which
are defined in ZCRTLDLL).

Note that each DLL must use an individual -lib option to be linked with eld. The
command syntax does not allow for a single -lib option followed by a list of DLLs, for
example: -lib zcredll, zcrtdll, mystrdll is not valid syntax.
eld Manual—527255-009
1-12

Introduction to eld Example of Use
60> run $data01.toolsy02.eld $data01.toolsy02.ccplmain mainstro -lib
mystrdll&

60> & -lib zcredll -lib zcrtldll -o revstr -L $users.patrick -L
$data01.toolsy02 -verbose

eld - TNS/E Native Mode Linker - T0608H01 - 26OCT04

Copyright 2004 Hewlett-Packard Company

eld command line:

 \speedy.$data01.toolsy02.eld $data01.toolsy02.ccplmain mainstro -lib

 mystrdll -lib zcredll -lib zcrtldll -o revstr -L $users.patrick -L

 $data01.toolsy02 -verbose

**** INFORMATIONAL MESSAGE **** [1019]:

 Using DLL: $users.patrick.mystrdll.

**** INFORMATIONAL MESSAGE **** [1019]:

 Using DLL: $data01.toolsy02.zcredll.

**** INFORMATIONAL MESSAGE **** [1019]:

 Using DLL: $data01.toolsy02.zcrtldll.

**** INFORMATIONAL MESSAGE **** [1530]:

 Using 'ImpImp' file: \speedy.$data01.toolsy02.zimpimp.

Output file: revstr (program file)

Output file timestamp: Nov 9 14:59:42 2004

No errors reported.

No warnings reported.

4 informational messages reported.

Elapsed Time: 00:00:02

Run The Program
RUN REVSTR XYZ
Reverse(XYZ) = (ZYX)
Hit enter to finish
eld Manual—527255-009
1-13

Introduction to eld Example of Use
eld Manual—527255-009
1-14

2 eld Input and Output
This section contains the following information:

Host Platforms - where the linker may be used.

Target Platforms - where the output from the linker may be used.

Output Object Files - what forms (libraries, loadfiles and DLLs) that output may take.

The Creation of Output Object Files - how you control the process.

Creating Segments of the Output Loadfile - how parts of a loadfile are created.

Using a DLL Registry - how you can manage DLL addressing.

Input Object Files - which files you can use as input.

Using Archives - how you can group multiple linkfiles together for eld access.

Host Platforms
The TNS/E linker (eld) runs on several platforms, as follows.

• The TNS/E linker runs on the TNS/E version of the HP NonStop operating system,
with both the Guardian and OSS personalities.

• The TNS/E linker runs on TNS/R versions of the HP NonStop operating system.
This means you can link PIC object files into TNS/E loadfiles as part of your
development cycle on that platform - but you will not be able to execute those
loadfiles on TNS/R.

• The TNS/E linker runs on appropriate versions of the Windows operating system
on PC’s.

The TNS/E linker’s features are the same for all host platforms unless otherwise
specified in this manual. Differences often relate to the different types of filenames and
file characteristics on different platforms.

The Guardian namespace also exists as a subset of the OSS file system, where a
Guardian file named $a.b.c corresponds to an OSS file named /G/a/b/c.

The Guardian namespace is a set of rules use for naming files in the Guardian
filesystem. A complete description of those rules may be found in the OSS filename
(5) reference page in the OSS System Calls Reference Manual.

Those rules include:

• The Guardian namespace ignores lowercase, the OSS namespace uses
lowercase.

• $ and \ are not recognized in the OSS namespace

• If a filename contains a period in it, and a file of that name is to be created in a
Guardian subvolume, the period is deleted from the name.
eld Manual—527255-009
2-1

eld Input and Output Target Platforms
• Text files in Guardian subdirectories of OSS are code 180 files, not edit files.
When the linker creates a text file in a Guardian subvolume of OSS it is a code
180 file. When the linker reads a text file in a Guardian subvolume of OSS,
code 180 files always work, and edit files do not necessarily work.

• OSS has the concept of a “file mode” used to control UNIX file security and
access rules. This file mode does not apply to files in the Guardian
namespace.

Target Platforms
The loadfiles created by the TNS/E linker can only be loaded and run on the TNS/E
versions of the HP NonStop operating system. A process can be run in either one of
two environments “Guardian” and “OSS”, dependent on it’s process ID.

The -set systype option specifies the target environment for the loadfile being built
by the TNS/E linker. The systype attribute has no meaning for a DLL. A DLL may be
usable by a Guardian process, or an OSS process, or both, depending on how the
various parts of it were written and compiled. However, you must be aware of how the
different parts were written and compiled to use it appropriately. The target
environment does not affect anything else the linker does unless otherwise specified in
this document. The target environment is indicated within the loadfile by the
EF_TANDEM_SYSTYPE bit in the e_flags field of the ELF header.

The default target environment is guardian for the linker hosted on Guardian. The
default is oss on the PC. The default on OSS is either guardian or oss, depending
on whether the object file is being created in a Guardian subvolume.

Filenames and The File Identifier
In the Guardian environment, “filename” is defined as the complete descriptor
(pathname) of \NODE.$VOL.SUBVOL.FILEID. The actual file’s name is contained in
the FILEID, the file identifier.

In the OSS environment, filename id defined as any component of the pathname, that
is /filename/filename/filename. The actual file’s name or file identifier comes after the
rightmost slash.

Sometimes the linker is required to put or pull off the file identifier of a filename, and
that means the following:

• On Guardian, it is the part of the filename after the last period. If there is no
period in a name, the entire name is used.

• On OSS, it is the part of the filename after the last slash, if any.

• On the PC, it is the part of the filename after the last slash, backslash, or colon,
if any.
eld Manual—527255-009
2-2

eld Input and Output Filenames and The File Identifier
Sometimes the linker is required to put a filename back together from its two pieces.
The linker concatenates the two pieces using a period on Guardian, a slash on OSS,
or a backslash on the PC.

A Note About MAP DEFINES
A DEFINE is a collection of attributes to which a common name has been assigned.
These attributes can be passed to a process simply by referring to the DEFINE name
from within the process. The =_DEFAULTS DEFINE is an example of such a DEFINE;
this DEFINE passes the default node name, volume, and subvolume to a process.

The DEFINE mechanism can be used for passing file names to processes; this kind of
DEFINE is called a CLASS MAP DEFINE. The following example creates a CLASS
MAP DEFINE called =MYFILE and gives it a FILE attribute equal to
\SWITCH.$DATA.MESSAGES.ARCHIVE:

1> SET DEFINE CLASS MAP, FILE \SWITCH.$DATA.MESSAGES.ARCHIVE

2> ADD DEFINE =MYFILE

Whenever your process accesses the DEFINE =MYFILE, it gets the name of the file
specified in the DEFINE. For example, when your process opens =MYFILE, the file
that actually gets opened is \SWITCH.$DATA.MESSAGES.ARCHIVE.

There are various items on the eld command line that are filenames. These include the
parameters of various options, such as -o, -l, -strip, etc., as well as filenames
that are just written directly on the command line. For such command line items, eld
checks if they begin with equal signs. If so, in the Guardian case, the linker will
immediately do the expansion of the DEFINE, so that all uses thereafter are the same
as if the expanded name had been given originally (with one special case described
below). The expansion of the name should also be done in upper-case, and the linker
will put out an informational message. If the specified string cannot be expanded as a
MAP DEFINE, that is an error. And, on other platforms, such as the PC or OSS, if a
filename parameter begins with an equal sign, that is unconditionally an error.

On the other hand, there are certain items on the command line that are not filenames,
although they look similar to filenames. In such cases, if the string starts with an equal
sign, that is always an error, even on Guardian. Examples of this include the names of
subvolumes specified in options such as -L and -rpath, and the DLL name specifed
by the -soname option.

When it comes to parameters that are symbol names, no such rules apply. An equal
sign at the start of a symbol name has no special significance to the linker.

There is a special case. In the case of the -libname (or -set libname, or -
change libname) option, usually, it is an error if the parameter is not exactly of the
form $a.b.c. However, a DEFINE can be used for this, even though a DEFINE always
expands to the form \system.$a.b.c. In these contexts, after expanding the DEFINE,
the linker also removes the system name.
eld Manual—527255-009
2-3

eld Input and Output Output Object Files
Output Object Files
The linker can create a new object file or update an existing one in certain ways. When
the linker is creating a new object file, by default it creates a loadfile, but the -r option
instead tells the linker to create a linkfile. The TNS/E linker can also create an import
library, as described in Creating Import Libraries on page 3-11.

When the linker creates a new linkfile with the -r option, and there was only one input
file, the output file may be considered a new version of the input file. There are two
reasons why you might do this:

• To strip the file in place, with the -s or -x option.

• To change the specified floating point type with the -set floattype option.

When the linker creates a new linkfile with the -r option, and there was only one input
file, the linker is required to create the new file so that it has the same fingerprint as the
original file.

The two types of ELF loadfiles produced by the linker are programs and DLLs.
 These are both PIC (position independent code). The default is to create a PIC
program. The option named -call_shared means this, and so is the default for the
TNS/E linker. The option to create a DLL is -shared. The option -dll is accepted as
a synonym for -shared.

eld reports an error if you specify more than one of the -call_shared, -r, and -
shared options.

When a DLL is created, its DLL name can be specified with the -soname option.
If the -soname option is used, the linker accepts whatever string is given for the DLL
name, exactly as-is, and without imposing any rules as to which strings are legal DLL
names.

If the -soname option is not specified then the DLL name is determined to be the file
identifier of the output file. The name of the output file is determined as described in
The Creation of Output Object Files on page 2-5. And, in this case, when the linker is
running on a host platform where the case of filenames is not significant (i.e.,
Guardian or the PC), the linker converts the DLL name to lower case. Note that, on
OSS, the default name for the output file is “a.out”, so the default DLL name is similarly
“a.out”, and that is true even if this is a Guardian subvolume.

The linker places the DLL name into the DT_SONAME entry of the .dynamic section
of the DLL.

The option named -dllname is accepted as a synonym for -soname. eld reports an
error if you specify this option when not building a DLL.

A user library is a DLL that is found in a special way by programs, but otherwise is no
different from any other DLL. The -ul option is intended to be used when creating a
DLL that is used as a user library.
eld Manual—527255-009
2-4

eld Input and Output The Creation of Output Object Files
The -ul option is synonymous with -shared plus -export_all, that is, to create a
DLL and export all its symbols. See Using User Libraries on page 3-10 for an
explanation of how the linker uses user libraries.

Certain DLLs are called implicit libraries. If the linker is creating a DLL, it can also be
told to make it an implicit library with the -make_implicit_lib option. This option
causes the linker to set the EF_TANDEM_IMPLICIT_LIB bit in the ELF header and to
impose certain other rules, as mentioned in various other places in this manual.

The Creation of Output Object Files
The name of the output object file is specified by the -o option. If the -o option is not
specified, but the -soname option is specified, then the name specified for the -
soname option is also used for the -o option.

If neither the -o nor -soname option is specified, the default output file name is
“aout” on the Guardian host and “a.out” elsewhere. Note that, in a Guardian subvolume
of OSS, the created file would actually be named “aout”, because the period
automatically goes away.

On Guardian, and in Guardian subvolumes on OSS, the linker creates object files with
a file code of 800.

Output files on Guardian are odd unstructured files. The same is true for files created
in Guardian subvolumes on the OSS host platform.

On the TNS/E OSS host platform, when a loadfile is created with OSS as its target
personality, the linker gives it mode 777 because it is executable there. In all other
cases when the linker creates an object file on any version of OSS it gives it mode 666.
These modes are octal values, and they are AND’ed with the value returned by the
umask system call.

Whenever the TNS/E linker creates an object file it first creates a work file. This file is
in the same directory or subvolume as the output object file and will have a name of
the form ZLDAFnnn, where nnn is a 3-digit integer of the form 000, 001, etc. The linker
will choose the first name of this form that is not the name of an existing file, and it is
an error if all names of this form are already taken. The linker will attempt to do this in
an atomic way so that multiple links creating output object files for the same directory
or subvolume won’t choose the same name. The linker will remove the work file if it
detects any error before the work file is complete.

The -temp_o option specifies the name of an intermediate file. If the specified name
is just the file identifier then the name is interpreted to be within the same directory or
subvolume as the output object file. If the specified name is not the file identifier then
eld reports an error if you do not specify the same directory or subvolume as the
output object file.

If no error has occurred and the -temp_o option has been specified then the linker
will rename the completed work file to this intermediate file name. If there already was
a file with the name as specified in the -temp_o option, or if for any other reason the
linker is unable to rename the completed work file to the intermediate file name, then
eld Manual—527255-009
2-5

eld Input and Output Creating Segments of the Output Loadfile
the name of the work file is unchanged and the linker puts out a warning message.
Similarly, if the -temp_o option is not specified then the name of the work file is
unchanged.

Thus, the -temp_o option gives the user a way to specify the name of a file that will
only come into existence if the link is successful and will still be in existence if
something goes wrong when the linker tries to put the file in the designated output file
location.

Next, if there already was a file with the name of the output object file, the linker will try
to remove that file. If the linker cannot remove it, the linker will put out a warning
message saying that the output file of the link is in the location of the work file (possibly
renamed by -temp_o). If there was no file with the same name as the output file, or if
the linker was successful in removing that file, the work file is renamed to the output file
name.

The name of the output object file can be the same as the name of an input file. That
input file would therefore be removed if the link was successful.

It is possible that the linker might terminate unexpectedly, after creating a complete
work file, but before being able to rename it to the final output file name. You might
want to know where that file is, and that is the reason for the -temp_o option. In other
words, it tells the linker which name to use, so that you don’t have to search through all
files with names of the form ZLDAFnnn.

Alternatively, if you specify the -must_use_oname option, that means eld reports an
error if eld cannot delete the existing file and rename the workfile to it. This is a better
behavior if eld is called from an automated script that knows how to watch out for
errors, but not how to check for the file being left in a different place. The -
must_use_oname option cannot be specified with the -temp_o option.

Creating Segments of the Output Loadfile
A segment is a contiguous portion of memory. The linker creates the segments of the
loadfile, i.e., the text segment, the gateway segment, and the data segment(s).
Appendix A, TNS/E Native Object Files tells which sections go into each of the
segments, and which permissions are assigned by the linker to each of the segments.

A loadfile with callable procedures also has a gateway segment. There are two types
of gateways that the linker can create. One type is used for transitions from user mode
to exec mode, and the other for transitions from exec mode to kernel mode. All the
gateways within the same loadfile are of the same type. The linker creates the first type
of gateway, called a user gateway, if there are any procedures with the CALLABLE
attribute. It creates the other type of gateway, called a kernel gateway, if there are any
procedures with the KERNEL_CALLABLE attribute. eld reports an error if a mixture of
both of these occur among the linker’s input linkfiles.

By default, the linker knows how to create the gateways.

The linker option named -instance_data, which takes a single parameter for which
there are five possibilities, tells the linker whether to create one data segment or two
eld Manual—527255-009
2-6

eld Input and Output Creating Segments of the Output Loadfile
and what additional rules should be enforced, as shown in the following table. eld
reports an error if you specify the -instance_data option more than once with
different parameters. eld reports an error if you specify -instance_data with -r.

* The data2protected parameter is supported only on systems running J06.09 or earlier J-series RVUs and H06.20
or earlier H-series RVUs.

If the loadfile being created had no data that would go into the data variable segment
then the linker sets the data1constant bit in the e_flags field of the ELF file header.
Otherwise, the linker sets the bit that corresponds to which parameter was given to the
-instance_data option. The three different values set in the e_flags field in these
cases tell the HP NonStop operating system how to protect the data variable segment.

When the -make_implicit_lib option is used, -instance_data
data1constant is imposed, and eld reports an error if you specify
-instance_data with any other parameter value.

There is no special boundary between the initialized data and the uninitialized data in
the data (variable) segment. If the last portion of initialized data happens to be zero,
the linker considers it to be within the uninitialized data, because what is called
“uninitialized” data gets initialized to zero by the operating system. That possibly
makes the size of the initialized data smaller within the object file. Based on this, the
linker will fill in the p_filesz field of the appropriate program header. On the other hand,
the linker also rounds up this value to a multiple of 4 kilobytes, thus possibly making
the size of the initialized data larger. This tells the amount of space occupied by the
appropriate segment within the loadfile, and the portion rounded up by the linker is
initialized to zero in the loadfile.

The program header of type PT_TANDEM_RESIDENT points at the .restext section,
that is, the resident code. There is no special boundary between the resident and non-
resident code.

For a DLL the -t option specifies the starting address of the text segment of the DLL
in memory. If the -t option is not used then it is possible for the DLLs address to be
determined by using a DLL registry, as covered in the sub-section below.

Table 2-1. Parameters to the -instance_data Option
Parameter Meaning
data1 Create one data segment. (This is the

default.)
data2
data2protected*
data2hidden

These three cases tell the linker to create
two data segments, i.e., the “data
constant” segment and the “data variable”
segment.

data1constant It is an error to have any data that would
need to go into the data variable segment
if we were told to create two segments.
eld Manual—527255-009
2-7

eld Input and Output Using a DLL Registry
Note that this is a DLL registry under the user’s control, not the “public DLL registry”
covered in Finding and Reading The Public DLL Registry (ZREG) File on page 3-23.

If the -t option is not specified, and no DLL registry is specified, the DLL is placed at
the address 0x78000000.

If the -d option is not used, the data (constant) segment of a DLL is placed
immediately after the text segment at a 64KB boundary if it isn’t an implicit DLL, or
128KB if it is an implicit DLL. The -d option may be used to tell where the data
(constant) segment starts. eld reports an error if you specify the -d option for a DLL
without the -t option.

The two segment addresses for a program are always specified independently, with
the -t and -d options. The default value for -t is 0x70000000, and the default
value for -d is 0x08000000.

Note: In general, the -d option should not be used, because it will result in the
creation of a file that the operating system will refuse to load.

The values specified for the -t and -d options are rounded up, if necessary to a
multiple of 128KB for an implicit DLL, or 64KB for other types of loadfiles. If rounding
up is necessary, a warning message is produced.

eld reports an error if you specify the -t or -d option with -r.

Using a DLL Registry
The linker uses a DLL registry to manage DLL addresses so that the virtual addresses
of some or all of the DLLs being managed by a given registry do not overlap. Note that
this is a DLL registry managed by the individual user, not the “public” DLL registry
covered in Finding and Reading The Public DLL Registry (ZREG) File on page 3-23.
The linker can pick addresses on its own, or the registry can be modified by hand to tell
the linker what to do.

The -check_registry and -update_registry options tell the linker which
registry to use.

• The -check_registry option is used to tell the linker how the DLL must be
built, giving it no choice.

• The -update_registry option can make suggestions to the linker, but the
linker still has decisions to make, and the registry is updated as a result. If
neither option is used, the linker does not use a registry.

• eld reports an error if these options are used when the linker is not building a
DLL. eld reports an error if both options are used. eld reports an error if either
the -check_registry or -update_registry option is used with the -t
or -d option.

When a DLL registry is used the linker lays out data segment(s) of the DLL
immediately after the text segment, at a 64KB boundary if it isn’t an implicit DLL, or at a
128KB boundary if it is an implicit DLL.
eld Manual—527255-009
2-8

eld Input and Output Using a DLL Registry
It is possible to use the DLL registry with a DLL that has two data segments, or that
has a gateway. In such cases, when this discussion of the DLL registry refers to the
“data segment”, it means a fictitious segment that is the concatenation of the data
constant segment, data variable segment, and/or gateway segment (whichever of
these segments exist). The “(unrounded) size” of this fictitious segment includes any
space that gets added before the second or third of these segments in order to make
that segment start on a 64 KB boundary.

The -check_registry and -update_registry options attempt to open an
existing registry for reading. If they succeed in opening the file, they keep it open and
locked until they are through with the file. The time that the registry file would be open,
and therefore locked, would typically be a short time for the -check_registry
option, and a long time for the -update_registry option.

If the specified file exists but cannot be opened because it is currently in use (i.e., as
far as the operating system is concerned) or locked (by the linker’s locking
mechanism), the linker will pause for a brief time and try again. That could be helpful
when several links are being done in the same place, and the other links are using
-check_registry. If these opens don’t work after several attempts, eld reports an
error.

The registry is a text file. In a Guardian subvolume of OSS it must be a code 180 file.
Blank lines are treated as comments, as are lines whose first two non-blank characters
are hyphens. Each of the other lines of the registry must begin with one of the
keywords explained below, and the rest of the line provides the parameters for that
keyword. The keyword and parameters are separated by blanks or tab characters.

The keyword -dllarea, if used, must be the first keyword in the file. It takes two
numerical parameters whose format is the same as the format of a <hexadecimal
number> as described in The Linker Command Stream on page 1-5. The first
parameter tells the starting address for the placement of DLLs and the second
parameter tells the ending address. Whichever one of the two addresses is smaller
determines the lower bound for DLL addresses. The other one determines the upper
bound. The one called the starting address tells at which end of this region the linker
begins placing DLLs, so that the linker can either work upward from the bottom of the
region, or downward from the top of the region. The DLLs managed by this registry
must have addresses that fit within this range, meaning that the starting address of the
DLL must be at least as large as the lower bound and the starting address of the DLL
plus its reserved size (as explained below) must be no larger than the upper bound.

If the -dllarea keyword is not used, the default is the following:

-dllarea 0x80000000 0x70000000

In other words, by default, a DLL registry manages DLLs whose addresses lie between
0x70000000 and 0x80000000, and the linker lays out DLLs starting at the higher end.

Each of the remaining lines of the registry must have the keyword -range. Each such
line provides information about a DLL. The -range keyword has three parameters:

• a string, to tell the name of the DLL
eld Manual—527255-009
2-9

eld Input and Output Using a DLL Registry
• a <hexadecimal number> to tell the starting address of the DLL

• a <hexadecimal number> to tell the reserved size of the DLL

Together, the starting address and the reserved size tell the total range of addresses
that this DLL, or possibly a larger version of it in the future, occupies or is intended to
occupy.

Whenever the linker opens a registry, it checks for the following errors. eld reports an
error if any of the DLL ranges listed in the registry extend outside the range of
addresses that the registry allows for DLLs. It is also an error if any of the addresses or
ranges in the registry are not multiples of 64KB if the linker is not building an implicit
DLL, or 128KB if the linker is building an implicit DLL.

The linker determines whether the registry contains an entry for the DLL being built by
comparing the name of the file being created (as specified in the -o option) against
the names listed in the registry. eld reports an error if the name is found more than
once in the registry.

Note that the name comparison mentioned in the previous paragraph is by an exact
match. For example, if you have several DLLs that you store in sibling subdirectories,
named a, b, ..., you might choose to have a single registry file that lists all the DLLs
with names relative to that parent directory, such as a/libdll1.so, etc. In that case,
you would have to spell the filename of each DLL that way in the -o option when you
were creating it, which means that you’d have to be running the linker in the parent
directory. Or, if the filenames were unique in all these directories, you might choose to
put only the last part of the name into the registry, in which case you would have to be
within the appropriate subdirectory when building the DLL. Or, even if you have all your
DLLs in one place, you still need to be consistent in how you spell their names in -o
options, for example, not saying libdll1.so the first time you build it and
./libdll1.so the next time you expect to find it in the registry.

When -check_registry is used eld reports an error if a registry file of the specified
name does not exist, or cannot be opened for reading, or does not have the proper
format, as described above, or if the name of the DLL being built is not found in the
registry. The entry for that DLL then tells the starting address to use. eld reports an
error if the DLL does not fit within the size reserved for it in the registry. The registry is
not modified.

The rest of this section describes what happens when -update_registry is used.
In this case, a registry file of the specified name need not already exist. If it does not
exist then the linker creates it. If the registry file already exists eld reports an error if
the file does not have the proper format. The DLL name need not already be listed in
the file.

If the DLL name was already listed in the file then the address listed for the DLL in the
file is a suggested address. The DLL is placed at this address if the size required for it,
including the necessary rounding but not including any room for growth, is less than
the size reserved for it in the registry. In this case the registry is not updated.
Otherwise, the linker emits a warning message, chooses an address for the DLL as
eld Manual—527255-009
2-10

eld Input and Output Using a DLL Registry
described below (after, in effect, deleting the old entry for the DLL from the registry),
and updates the registry accordingly.

The -grow_limit option may only be specified if -update_registry is used. If
-grow_limit is not specified then the linker determines the reserved size of the DLL
from the following options, which are only allowed when -update_registry is used
and -grow_limit is not used:

• -grow_text_amount the absolute amount by which the text may grow

• -grow_data_amount the absolute amount by which the data may grow

• -grow_percent the percentage amount by which the text or data may grow

The defaults for -grow_text_amount and -grow_data_amount are 0. The
default for -grow_percent is 10. A size is calculated for each of text and data by
first adding the corresponding “amount” option to the size of that segment (before
rounding), or adding the percentage specified by the “percent” option to the size of that
segment (before rounding), and taking the maximum of these two values. The resulting
size for each segment is then rounded up to a multiple of 64KB (or, 128KB if the linker
is building an implicit DLL), and the sum of these two sizes is the reserved size of the
DLL.

When the linker is choosing a new place for a DLL, because it wasn’t specified in the
registry before or didn’t fit where the the registry previously specified, and the
-grow_limit option has been given, the reserved size that the linker gives to the
new entry in the registry is the value specified in the -grow_limit option, rounded
up to a multiple of 64KB (or, 128KB if the linker is building an implicit DLL). In this case
eld reports an error if the sum of the sizes of all the segments of the DLL (including
rounding) is larger then the value specified in this option (rounded up to a multiple of
64KB or 128KB, depending on whether it is an implicit DLL).

If the DLL name was not already listed in the file, or didn’t fit in the place previously
listed for it, then the linker chooses the address for the DLL by looking for blocks of
space that are at least as large as the reserved size for this DLL, that lie within the
range of addresses that the registry allows for DLLs, and that don’t overlap the space
reserved for any other DLLs in the registry. eld reports an error if there is no block
large enough. The linker chooses such a block that is closest to the starting address
for the registry. Thus, the linker searches upward from the lower bound of possible
addresses, or downward from the upper bound, depending on how the bounds were
specified for this registry. The registry is updated to tell the address and reserved size
of the new DLL.

If the user wishes to specify an address for a new DLL in the registry, rather than
letting the linker choose the address, the registry file can be edited by hand. It is
necessary to specify both the starting address of the DLL and its reserved size, as
multiples of 64KB. Or, if this is a registry that is being used for implicit DLLs, then they
should be multiples of 128KB. It is also possible to change these values for a DLL
already listed in the registry. It is permissible to edit a registry so that some DLLs have
overlapping address ranges. When the linker picks an address on its own it requires
that this DLL not overlap any other ones in the registry, but the linker doesn’t check
eld Manual—527255-009
2-11

eld Input and Output Input Object Files
whether entries already in the registry overlap. Whenever a DLL registry is updated by
the linker and the DLL had previously been mentioned in the file, the old entry is
replaced by the new one so that the DLL is not mentioned more than once in the
registry.

A new registry file is always created, mostly following the same rules as given earlier in
The Creation of Output Object Files on page 2-5.

One difference is that the name of the work file is ZLDARnnn rather than ZLDAFnnn
and the name of the intermediate file, if desired, is specified by the -temp_r option
rather than the -temp_o option. Also, there is a -must_use_rname option, instead
of -must_use_oname.

Also, if the linker cannot create a new DLL successfully (i.e., terminates in error before
that point), then the linker does not modify the existing DLL registry. However, once the
linker has succeeded in creating its output DLL, the linker will not consider any
subsequent problems with the DLL registry to be errors. If the linker cannot update the
registry as desired, that will only be reported as a warning.

Note that the linker must first read an existing private DLL registry before it writes out a
new version of it. As explained above, if the linker can’t read it, eld reports an error.
So, the -temp_r and -must_use_rname options are only relevant to situations
where the linker had permission to read the existing private DLL registry, but not delete
it.

Input Object Files
TNS/E linkfiles have no object file version number associated with them.

Loadfiles have a version number stored in the .tandem_info section, placed there by
the linker. At the present time the version number is zero. When the linker reads a
loadfile for any reason the linker considers it an error if the loadfile contains a version
number different from zero. This version checking is disabled by the -
no_version_check option.

On the Guardian platform the linker does not check that object files have the proper file
code. If the file was not the right kind of file, the linker would soon realize it in some
other way.

 How the Linker Finds Its Input Files and Creates the .liblist
Section
The linker locates linkfiles, archives, DLLs, and import libraries based on items
specified in its command stream. This section provides the rules for doing this. As part
of this process, the linker also creates the .liblist section for its output loadfile.

See Using Archives on page 2-16 for an explanation of how the linker decides which
files to use from an archive.
eld Manual—527255-009
2-12

eld Input and Output Input Object Files
See Presetting Loadfiles on page 3-5 for an explanation of how the linker also finds
indirect DLLs by using the .liblist sections of other DLLs that it has already found, and
for how the linker finds the import library that represents the implicit DLLs.

See Using User Libraries on page 3-10 for an explanation of how the linker finds user
libraries.

The linker does not have any built-in set of DLLs for which to look, other than the
import library that represents the implicit DLLs. Although other DLLs may typically be
needed for C/C++ runtime support, they must be specified explicitly in the linker’s
command stream. The user who invokes the linker indirectly through the C/C++
compiler may be unaware of this, because the C/C++ compiler automatically adds the
appropriate command stream items when it invokes the linker.

The linker looks for import libraries the same way it looks for DLLs. Unless mentioned
otherwise, when this section explains how the linker finds DLLs, the same remarks
apply to import libraries. The linker accepts archives, DLLs, or both, according to the
following options:

• -b static - only accept archives, not DLLs

• -b dllsonly - only accept DLLs, not archives

• -b dynamic - accept both archives and DLLs

These options form a three-way switch, selecting one of three modes for the linker at a
given point in the command stream. These options can be specified multiple times in
the command stream, each time setting the mode for subsequent items in the
command stream until the mode is changed again. At the beginning of the command
stream the mode is -b dynamic.

An item in the command stream that causes the linker to find a linkfile, archive, or DLL
is one of the following three things:

• a name specified directly in the command stream

• a -l option whose parameter is a file identifier

• a -l option whose parameter is not a file identifier

The definition of file identifier is given in Filenames and The File Identifier on page 2-2.

The -lib option is a synonym for -l, and may be preferred because the -lib
option is not case-sensitive, whereas -l is a different option from -L.

The linker uses one of the following two methods to find a file, based on the way it was
specified in the command stream:

• for a name specified directly in the command stream, or for a full filename
specified in a -l option, the linker opens the file normally.

• for a file identifier specified in a -l option, the linker searches for the file.

Opening a file normally means that the linker tries to open the name exactly as it is
specified. This means that the name may be interpreted relative to the current directory
eld Manual—527255-009
2-13

eld Input and Output Input Object Files
or subvolume, as is normally done for the corresponding host platform. eld reports an
error if the file does not exist, or if the linker cannot open it for reading.

In the case that the name was specified directly in the command stream, the file can be
a linkfile, archive, or DLL. In the case that the name was specified as a full filename in
a -l option, the file must be an archive or DLL. In either case, if -b static is in
effect then eld reports an error if the file is a DLL, and if -b dllsonly is in effect
then eld reports an error if the file is an archive.

The linker searches for a file by performing several steps. Most of these steps involve
looking for the file in a given directory or subvolume, although one step is a special
way to look for public DLLs. When the linker is looking in a directory or subvolume
there are certain filenames that it expects to find. If a desired file doesn’t exist, or if it
does exist but the linker cannot open it for reading, then the linker continues without
warning. More details of what the linker does during the search are provided in the
following sub-sections of this manual.

By default, if the linker gets to the end of its search without finding a file to satisfy a -l
option, eld reports an error. However, the -allow_missing_libs option tells the
linker that it is not an error unless this happens when the current mode is -b static.
If it isn’t an error, the linker instead emits an informational message.

When the -r option is specified, telling the linker to create a linkfile rather than a
loadfile, the linker looks for archives and DLLs the same way as in other cases, but
then the DLLs are ignored.

Informational messages tell the file names of all the archives and DLLs that were
opened by the linker, saying for each one whether it is an archive, a DLL, or an import
library. If it is an import library, the message tells whether the import library is complete
or incomplete.

Whenever the linker finds an import library from the command stream, it checks
whether the DLL name within this file is “__IMPLICIT_LIB__”. If so, it is recognized to
be the import library that represents the implicit libraries, and it is used as the last item
in the search list, as described in Presetting Loadfiles on page 3-5. It is always an
error if the linker finds a DLL, rather than an import library, whose DLL name is
“__IMPLICIT_LIB__”.

If the -make_implicit_lib option is given, eld reports an error if any of the DLLs
or import libraries that the linker finds in the command stream do not have the
EF_TANDEM_IMPLICIT_LIB bit set in their ELF headers. Also, when -
make_implicit_lib is used, eld reports an error if the linker finds an import library
whose DLL name is “__IMPLICIT_LIB__”.

The linker creates the .liblist section of its output loadfile. The .liblist section contains
one entry for each DLL (or import library) obtained from the command stream,
regardless of the method used to find it. The entry tells the name of the DLL, as
obtained from the DT_SONAME field of the DLLs .dynamic section. There is no
requirement that the name found within the DLL, and therefore stored in the .liblist
section, match the name that was used to find the DLL from the command stream.
eld Manual—527255-009
2-14

eld Input and Output Input Object Files
However, to simplify build processes, the user may find it convenient for these names
to be the same.

The .liblist section does not contain an entry corresponding to the user library, does not
contain an entry for the import library that represents the implicit libraries, and does not
contain entries for DLLs that the linker finds indirectly.

When the search to satisfy a -l option does not succeed, and this is not an error
(because the -allow_missing_libs option was specified and the mode is not -b
static), the .liblist section will still contain an entry for that -l option. In other words,
it is assumed that the name was intended to be a DLL as opposed to an archive.
Because the linker doesn’t have a DLL name to put into the .liblist section entry, it
instead will put in the string that was the parameter to the -l option. The linker also
sets the LL_NOT_FOUND bit in the .liblist section entry to identify this as an entry for a
-l option for which the search did not succeed.

Each .liblist section entry tells if it is reexported. The -reexport and -no_reexport
options form a two-way switch, selecting one of two modes for the linker at a given
point in the command stream. These options can be specified multiple times in the
command stream, each time setting the mode for subsequent items in the command
stream until the mode is changed again. When -reexport is in effect, the .liblist
section entry for a DLL found in the command stream says that it is re-exported. When
-no_reexport is in effect it is not re-exported. At the beginning of the command
stream the mode is -no_reexport. eld reports an error if you use either of these
options when not building a DLL.

The following rules apply to situations where the same file is found several times in the
command stream:

• It is not explicitly called out as an error if the same linkfile is specified more
than once in the command stream, but it may lead to the error of multiply
defined symbols, as explained later in Accepting Multiply-Defined Symbols on
page 3-17.

• It can be useful to specify the same archive more than once in the command
stream, as explained later in Using Archives on page 2-16.

• With regard to DLLs, a requirement is that the same DLL name cannot be
present more than once in the .liblist section. The rule is that, if the linker finds
the same DLL more than once in the command stream, where “same” means
that they have the same DLL name, the linker ignores all the instances after
the first one. However, the linker also checks whether the DLL was found with
the same export digest each time. If not, a warning message is provided.

• When a user library is used by the linker, it is treated like an additional DLL at
the beginning of the command stream. However, if the DLL name within the
user library matches the name of another DLL found later, that other DLL is still
used, and gets a .liblist entry 7 , although the linker puts out a warning
message about this.
eld Manual—527255-009
2-15

eld Input and Output Using Archives
The rules above, about finding the same DLL name more than once, also apply to the
special DLL name “__IMPLICIT_LIB__”.

Using Archives
An archive is a file that contains copies of linkfiles. The linker looks for files within the
archive to be used by the link. Linkfiles in the archive are used if they define global
symbols that are currently known about, but undefined, at this point in the command
stream. In each case, once the linker decides to use a file from the archive, that entire
file is used the same way it would be used if it had been specified directly in the
command stream.

It can be meaningful to specify the same archive more than once in the command
stream, because each time the linker opens the archive it only looks for linkfiles that
resolve symbols that are needed at that point.

When a linkfile is brought in from an archive, that can lead to additional needed
symbols. The archive is searched repeatedly to find such symbols. However, once the
linker has moved on to the next token in the command stream, this archive will not be
looked at again unless it is specified again in the command stream.

The -u option is used to specify the name of a symbol for which eld should look in
archives in the command stream, if eld had not already seen a definition of this
symbol before the archive was encountered. Note that this is similar to having a
hypothetical linkfile at the start of the command line that declared such a symbol
without defining it. However, one difference is that, when a symbol really does get
declared in a linkfile, that declaration tells if the symbol is globalized or not, but the
-u option does not imply anything about whether the symbol is globalized.

The -all option tells the linker to unconditionally use all linkfiles found in archives,
rather than only using those that provide needed symbols. The -none option turns
this off, so that files found in archives are used only if they provide needed symbols as
described above. These options form a two-way switch, selecting one of two modes for
the linker at a given point in the command stream. These options can be specified
multiple times in the command stream, each time setting the mode for subsequent
items in the command stream until the mode is changed again. At the beginning of the
command stream the mode is -none. One use of -all is to convert an archive into a
DLL by telling the linker to build a DLL that contains all the same files as are present in
the given archive.

The option -include_whole is accepted as a synonym for -all, and
-no_include_whole as a synonym for -none.

In general, users having 32-bit and 64-bit versions of their code are recommended to
maintain two separate versions to avoid confusion. For the archives, it is
recommended that the users do not mix up the 32-bit and 64-bit object files in the
same archive. Typically, a user has two archives with similar contents, one for the 32-
bit and the other for the 64-bit case. If the user links on to the OSS, two archives
can have the same name but, if the 32-bit archive is placed into /lib, /usr/lib,
or /usr/local/lib, while the 64-bit archive is placed into /lib64, /usr/lib64,
eld Manual—527255-009
2-16

eld Input and Output Using Archives
or /usr/local/lib64 then, the same -l option in the linker verifies the desired one
based on the type of link created. Otherwise, the user can decide the naming
convention for the archives and formulate the linker to find the right version.

Archives are a method of making loadfiles smaller, because the linker will automatically
bring into the link only those members of the archive which are needed. Archives are
also a way of packaging together multiple linkfiles, as an alternative to using the -r
option.

The Steps in Looking for Archives and DLLs
The linker performs the following steps, in the order given, to search for an archive or
DLL:

1. The linker first looks in the directories or subvolumes whose names are
specified in -first_L options in the command stream, in the same order that
those options occurred in the command stream.

2. The linker next looks for public libraries. However, the linker does not do this if
the -r option is specified or if -b static is in effect.

3. The linker next looks in the directories or subvolumes whose names are
specified in -L options in the command stream, in the same order that those
options occurred in the command stream. The -libvol option is a synonym
for -L, and preferred because the -libvol option is not case- sensitive,
whereas -L is a different option from -l.

4. On OSS, the linker looks in a list of standard places. If the linker is building a
64-bit object, or if the -alf option is processing a 64-bit loadfile, then the first
three places in this list are /lib64, /usr/lib64 and /usr/local/lib64.
In all other cases, the next three places in the list are /lib, /usr/lib, and
/usr/local/lib. Each of the above names is prefixed with the contents of
the COMP_ROOT environment variable, if the variable is defined.

5. Finally, on Guardian or OSS, if the linker is building a 64-bit object or if the
-alf option is processing a 64-bit loadfile, the linker looks into the
$SYSTEM.YDLL and in all other cases the linker looks into $SYSTEM.ZDLL.
However, the linker does not perform these actions if the -r option is specified
or if -b static is in effect.

The following sub-section tells the rules that are used for looking for public libraries
(step 2 above), and the sub-section after that tells what the linker does when it is
looking through other directories or subvolumes (all the steps above other than step 2).

If the -nostdlib option is specified, steps (2), (4), and (5) in the above list are
skipped, so that the linker would only look in the places specified by -first_L or -L
options. The option -no_stdlib is accepted as a synonym for -nostdlib.

The same search method is used for all searches. For example, it doesn’t matter
whether some of the -L options came later in the command stream than the -l
option for which the search is being performed.
eld Manual—527255-009
2-17

eld Input and Output Using Archives
The linker does not make use of any environment variables other than COMP_ROOT.

When eld is creating a new object file X from a set of linkfiles, or processing a loadfile
X with the -alf option, it is desired that DLL’s of the appropriate data model match the
data model of X. Therefore, if X is neutral then it is desired that all the DLL’s used are
neutral, and if X is not neutral then it is desired that all the DLL’s used are either neutral
or same as X. During a search, if a DLL that is not desired is encountered, the search
continues. If the search function later finds an archive or a DLL which is desired, the
previously found DLL that was not desired is ignored. If the search does not succeed,
the DLL found earlier is used, even though it is not desired. A warning is issued if a
DLL of the undesired model is used.

Finding Public DLLs
This section explains how the linker looks for a public DLL based on the file identifier.
(The file identifier may have been specified in a -l option in the command stream, or
may have been found in the liblist of some other DLL).

As described in Finding and Reading The Public DLL Registry (ZREG) File on
page 3-23, the linker may or may not have located the public DLL registry file. If the
linker did not locate the public DLL registry file, it does not look for public DLLs. (It
continues to look for this DLL in other ways). The rest of this section assumes that the
linker did locate the public DLL registry file.

The linker verifies whether the file identifier matches with one of the public DLL
filenames found in the public DLL registry. If there is no such match and the linker is
either creating a 64-bit object file or the -alf option processes a 64-bit loadfile. The
linker verifies whether the name added with prefix “y” and suffix “DLL”, matches one of
the public DLL filenames found in the public registry. Later, the linker verifies whether
the name added with prefix “z” and suffix “DLL” matches the public DLL filenames
found in the public DLL registry.

If the linker does not find the file in the appropriate place as described above, or finds it
but cannot open it for reading, or if the file is not a DLL, eld reports an error.

If the linker is creating a 64-bit object file or the -alf option is processing a 64-bit
loadfile, and if a file exists with the name lib instead of “y” prepended, and y.so
instead of “DLL” appended, then linker uses this file. If a file exists, with the name
lib instead of “z” prepended and .so instead of “DLL” appended, then linker uses
this file. The linker considers it an error only if these files do not exist, or are not DLLs.

In other words, as a result of the special cases described above, it is possible to put a
copy of the real zreg file into a location on the PC or OSS so that it lists the public
DLLs with names like zcredll or ycredll, etc., but in the same location. Instead of
having files named zcredll or ycredll, etc., you can rename them as:
libcre.so, or libcrey.so, and so on. eld does not consider it as an error when

Note. All of these matches are case insensitive.

Note. There is also an exception which applies to platforms other than Guardian.
eld Manual—527255-009
2-18

eld Input and Output Using Archives
you enter the -l cre option or if it processes a DLL and as a result finds the name:
zcredll or ycredll in the liblist of the other loadfile.

The Rules to Find Files
This section tells the rules that the linker uses to decide which files to try to find and
open in each directory or subvolume that it is searching. This applies to all the steps
followed by the linker in searching for an archive or DLL, other than the special step for
the public DLLs.

This is the algorithm that the linker uses to look for a file within a directory or
subvolume:

• First, the linker looks for a file with the name as it was given in the -l option.

• Next, if the platform is not Guardian, and this is not a directory on OSS that is a
Guardian subvolume, and -b static is not in effect, the linker looks for a
filename of the form libx.so, where x was the name specified in the -l
option. This rule is not applicable for instances where the linker is searching for
an indirect DLL. While searching for an indirect DLL, eld searches files with
the name specified in the .liblist section.

• Finally, if the platform is not Guardian, and this is not a directory on OSS that is
a Guardian subvolume, and -b dllsonly is not in effect, the linker looks for
a filename of the form libx.a, where x was the name specified in the -l
option.

For example, on OSS, if the linker is given the -l ab option, and it is searching
through an OSS directory that is not a Guardian subvolume, it may find ab, libab.a,
or libab.so. Or, if given the -la.b option, it similarly may find a.b, liba.b.a, or
liba.b.so. On the other hand, if it is searching through a Guardian subvolume on
OSS, and it is given the -lab option, it will only look for ab, not libaba or libabso.
If given the -la.b, it won’t look for any of these things in a Guardian subvolume.

When the linker opens a file under the name as it was given in the -l option, if -b
static is in effect then eld reports an error if the file is a DLL, and if -b dllsonly
is in effect then eld reports an error if the file is an archive. When the linker opens a file
with the name libx.so, eld reports an error if the file isn’t a DLL. When the linker
opens a file with the name libx.a, eld reports an error if the file isn’t an archive.

The linker does not check whether some of the directory or subvolume names are
syntactically incorrect. It simply discovers that the files with the names constructed as
explained above can’t be opened, and then continues. For instance, the user may find
it convenient to use the same search path on several platforms, where the search path
contains some names valid for one host platform, and other names valid for another
host platform. On each host platform, the names valid for that platform may do
something meaningful, and the other ones would be ignored.
eld Manual—527255-009
2-19

eld Input and Output Using Archives
eld Manual—527255-009
2-20

3 Binding of References
This section contains the following topics:

• Overview -an overview of symbol resolution and code relocation.

• Presetting Loadfiles - the process of resolving references to DLLs at linktime.

• To Preset or Not to Preset, and Creation of the LIC - the linker’s rules for
presetting.

• Handling Unresolved References - what happens if a symbol is not found in any
loadfile in the linker’s search list?

• Using User Libraries - introduces the libname options.

• Creating Import Libraries - three types are available.

• Ignoring Optional Libraries - a command stream toggle is available.

• Merging Symbols Found in Input Linkfiles - merges the symbol information from
the input files into its output file.

• Accepting Multiply-Defined Symbols - how to accept multiple definitions for a
symbol?

• Using the -cross_dll_cleanup option - reduces the total size of a program and the
private DLLs that are used by a process.

• Specifying Which Symbols to Export, and Creating the Export Digest - to export
global and defined symbols.

• Public Libraries and DLLs - two types, namely implicit and explicit.

• The Public Library Registry - lists all public DLLs by name.

• Finding and Reading The Public DLL Registry (ZREG) File - how the linker finds
the file.

Overview
The primary job of the linker is to bind abstract (symbolic) names to real addresses.
For example, as a programmer you can use the name getfile in one module, while
the linker binds that to “a location 512 bytes from the start of module iosys”. This is
known as symbol resolution.

The other closely related function of eld is that of relocation. Compilers and
assemblers generally create each file of object code with the program address starting
at zero, an address you are unlikely to be able to use. Furthermore if a program is
created from multiple subprograms, all the subprograms have to be loaded at non-
overlapping addresses. These addressing problems are solved by relocation, the
process of assigning load addresses to the various parts of the program, adjusting the
code and data in the program to reflect the assigned addresses.
eld Manual—527255-009
3-1

Binding of References Overview
The functions are related because the linker can use symbol resolution to handle
relocation, by assigning a symbol to the base address of each part of the program then
treating the relocatable addresses as references to the base address symbols.

In the case of the HP NonStop operating system compilers; in TNS/R the addresses
started at zero and incremented for each section, in TNS/E all section addresses start
at zero, they don’t really contain addresses but rather contain section offsets.

eld is concerned with cases where the compiler or assembler does not know the
ultimate contents that the object file should contain for symbolic references. Such
cases are listed in the relocation tables that the compiler or assembler creates in
linkfiles. When -r is specified, the linker creates new linkfiles with the same kinds of
relocation tables.

This section considers how the linker creates a loadfile.

In order to fill in the proper values for symbolic references, the linker matches up
symbols across linkfiles, determines runtime addresses for the symbols defined in this
loadfile, and searches other DLLs to resolve references to symbols not defined within
the current object file. The loadfile that is built by the linker tells rld what needs
further examination when the loadfile is brought into virtual memory. The addresses
chosen by the linker are called the preferred addresses for this loadfile. A program is
always loaded at its preferred addresses, but that is not necessarily true for a DLL.

Here are two examples of references:

• A data item that is a pointer, initialized with the address of another data item. The
compiler or assembler doesn’t know the final address to put in, so it creates a
relocation table entry for this data item. The linker may fill in a value, but in any
case it propagates the same type of relocation table entry to the loadfile for rld to
use.

• An instruction that refers to some data item. This is different from the case above
because only the linker can modify executable code, not rld. The compiler or
assembler may generate code that looks up the address of the symbol in a data
location whose address is calculated by adding a 22-bit offset to the GP register,
and it creates a relocation table entry accordingly. The linker allocates that data
location as part of the .got section and updates the code so that it contains the right
22-bit GP-relative offset to reach the corresponding .got section entry. The linker
may also fill in a value in the .got section entry, but in any case it puts information
into the object file so that rld knows how to fill in or update the .got section entry
at load time.

There are various relocation types which tell the linker how to modify a given location
in code or data after it knows the address that need to be represented there. We often
say that the linker “fills in the address of the symbol at the relocation site”, but that isn’t
precisely correct. Depending on the relocation type, it may the actual address of the
symbol, or it may be something else, such as the GP-relative offset of the .got entry
that contains the address of the symbol, and so on.
eld Manual—527255-009
3-2

Binding of References Overview
The way references are fixed up across loadfile boundaries depends on the import
control of the loadfile being built. This controls how the search list is created, both at
link time and at load time, to find the DLLs that are needed to resolve symbols
referenced in the loadfile.

There are three choices for this, set by the following options:

-b localized (this is the default) means “localized”. The searchlist for the loadfile at link
time and load time is:

• loadfile itself

• If the loadfile is a program and has a user library, that user library.

• a breadth-first transitive closure of re-exported liblist-specified DLLs.

• DLLs specified in the liblist.

This is the the HP NonStop operating system default and gives you the most control
on how your undefined references are resolved at runtime.

-b globalized means “globalized”. The searchlist for the loadfile at link time is the
same as that of “localized” except that the transitive closure does not include re-
exported DLLs. At load time the searchlist order is as follows:

• The program

• If the program has a user library, that user library.

• The liblist of the program

• a breadth-first transitive closure of liblist-specified DLLs

• Other dynamically-loaded DLLs

The key thing to remember is that a globalized loadfile can have its own definitions
preempted by another loadfile. This is the UNIX default behavior.

-b semi_globalized or -b symbolic means “semi-globalized”. It is basically the
same as -bglobalized except that the loadfile itself is at the head of the searchlist at
load time. That means that its definitions cannot be preempted.

All three possibilities are allowed, whether building a program or a DLL, although for a
program the semi-globalized case means the same thing as globalized. eld reports an
error if more than one of these options is specified. If the -make_implicit_lib
option is given, eld reports an error if you specify an import control other than
localized.

The import control is stored in the EF_TANDEM_IMPORT_CONTROLS bits of the
e_flags field of the ELF header of the loadfile being built. This manual explains how
these options affect the linker’s actions, but does not explain all the details of how they
affect what rld does.

Do not confuse these uses of -b with the other uses of -b described earlier in How
the Linker Finds Its Input Files and Creates the .liblist Section on page 2-12.
eld Manual—527255-009
3-3

Binding of References Overview
The linker does not necessarily know the proper load time values to use for addresses,
because things can change between link time and load time for reasons such as these:

• The DLL currently being built, or the other DLLs to which it refers, will not
necessarily be loaded at the same (preferred) addresses as those assumed by the
linker.

• The other DLLs to which the current loadfile refers may not be the same DLLs
used at runtime, because they might be updated in the interim. Thus, a given DLL
may no longer provide the same set of symbols, or it may provide the same
symbols but at different addresses. This updating of DLLs may also change which
DLLs are indirectly found.

• Although the same DLLs may be in the same places at load time as at link time,
different ones may be used because rld looks for them with different path lists.

Also, the rules that are used for binding references at load time are not rules that could
be completely implemented by the linker, even if things didn’t change as described
above. For instance, it is possible for a reference from a globalized or semi-globalized
DLL to be resolved in the main program at load time, but the linker does not see the
main program when it is building that DLL. The rules are such that, if things don’t
change as described above, and if the linker is creating a main program or a localized
DLL, then it will search the same DLLs, and in the same order, as rld.

Some symbols are exported by the loadfile that contains them, and some are not. Only
the exported symbols are visible to other loadfiles.

The linker fills in all references to symbols that are defined in the same loadfile, using
the address of the symbol within this same loadfile.

In some cases what the linker fills in may need to be modified by rld, but the linker
still guarantees to fill in all these references that were within the same file. rld may
be able to decide that this much of what the linker did was correct, and therefore avoid
the need to recalculate those references at load time. Or, rld may recalculate the
references, because it wasn’t sure that what the linker did was correct, and in such
cases it can still be advantageous if the linker was correct.

The linker also may fill in other references, to symbols not defined within this same
loadfile. In particular, the linker may do this for symbols that are not globalized
symbols, and that process is called presetting. References to globalized symbols are
not filled in, and do not generate errors or warnings. When the linker fills in references
to undefined symbols rld may again be able to decide that what the linker did was
correct, and therefore avoid additional work at load time.

There is a concept that goes under various names, such as “delayed binding”, “lazy
evaluation”, etc. This refers to the situation where there can be procedure call
references that are purposely not resolved at link time, or even at load time. Instead,
the first time the procedure is called, the rld runtime support resolves its address. HP
NonStop systems do not support this capability.
eld Manual—527255-009
3-4

Binding of References Presetting Loadfiles
Presetting Loadfiles
This section discusses how the linker presets a loadfile. Except as mentioned
otherwise below, import libraries are used the same way that DLLs are, and remarks
made here about DLLs in the search list also apply to import libraries in the search list.

The search list begins with the loadfile itself. Next, for a program that has a user library,
comes the user library. The user library mostly acts the same as any other DLL, except
for its special placement at this point in the search list. After that come the entries in
this loadfile’s own .liblist section, namely, the DLLs that were obtained from the
command stream, in the order they were found in the command stream.

Then, each DLL that has already been placed into the search list after the loadfile itself
can specify other DLLs in its .liblist section. The linker finds these other DLLs by using
the names in the .liblist section. The linker performs a breadth-first traversal of all these
.liblist sections in order to add more entries to the search list. The names added to the
search list after the .liblist entries of the loadfile itself are called the indirect DLLs. A
DLL is only added to the search list if its DLL name is different from all of those already
in the search list. If the loadfile being built is localized then the traversal to find indirect
DLLs only pays attention to .liblist section entries that are re-exported. The linker
makes use of the DLL names found in one .liblist section in order to search for other
DLLs, but does not check that the DLL name found within a DLL matches the name
that was used to search for it.

The same kinds of rules that apply to DLLs found directly in the command stream, as
given in How the Linker Finds Its Input Files and Creates the .liblist Section on
page 2-12, also apply to indirect DLLs. This includes the following things:

• The rule that, when the -make_implicit_lib option is used, all the DLLs that
are found must be implicit.

• The rules about multiple DLLs with the same DLL name.

• The rules about which informational messages to write out.

• The rules about what to do if a search completes without finding a DLL.

The above rules about an indirect DLL are not enforced when the linker does not look
for that DLL. More specifically:

• The linker does not look up a name found in a .liblist section entry if that entry is
not reexported and the linker is building a localized file.

• The linker need not look up names in .liblist sections after it has decided that it is
neither going to preset nor check for unresolved references. (But the linker is
allowed to continue looking for DLLs in this case and do the usual checks on
them.)

Finally, if the -make_implicit_lib option has not been specified, the linker tries to
add the import library that represents the set of implicit libraries to the end of its search
list.
eld Manual—527255-009
3-5

Binding of References Presetting Loadfiles
There are several ways that the linker may find the import library that represents the
implicit libraries. Regardless of how the import library that represents the implicit
libraries is found, the linker always uses it the same way, placing it at the end of the
search list.

The linker may have found the import library that represents the implicit libraries from
the command stream, such as described in How the Linker Finds Its Input Files and
Creates the .liblist Section on page 2-12. The linker recognizes it as the import library
that represents the implicit libraries because it has the special DLL name
“__IMPLICIT_LIB__”. Note that it doesn’t matter where it was found in the command
stream, because it any case it is placed at the end of the search list.

In the previous paragraph, found “from the command stream” means that the linker
found it during the same process that the linker uses to find all the other DLLs, those
that come directly from the command stream and those found indirectly through entries
in liblists. If, during this process, an import library that represents the implicit libraries is
found more than once, the rules that are followed are the same as those followed when
that situation comes up for other DLLs. In particular, it is not an error, and the first
instance is the one that the linker will use, but if multiple occurrences of this library are
found via non-identical export digests then a warning will appear.

If the linker has not found the import library that represents the implicit libraries from
the command stream, it may also determine its name by a system call.

If the linker still has not found the import library that represents the implicit libraries, but
it has found a public DLL registry file the linker next looks for a file named zimpimp in
the same subvolume or directory as the public DLL registery file. On OSS, where case
matters, zimpimp is lower case. If that file does not exist, or the linker can’t open it for
reading, the linker continues processing.

If the linker finds the import library that represents the implicit libraries via the above
process, and successfully opens it, then eld reports an error if the file is not a DLL, or if
the DLL name within the file is not “__IMPLICIT_LIB__”.

If the linker has not found an import library that represents the implicit libraries by the
process described above, and has gotten to this point without considering it an error,
then the linker gives a warning message.

After constructing the search list the linker looks for each required symbol by searching
through each DLL in the list, stopping at the first DLL that exports a symbol of that
name. The address specified for the symbol in that DLL is the address that is used to
resolve references to the symbol. Or, if the relocation type says that the address of the
official function descriptor is required, the linker would require that the target symbol be
a procedure and then would fill in the address of the official function descriptor rather
than the address of the procedure itself.
eld Manual—527255-009
3-6

Binding of References To Preset or Not to Preset, and Creation of the LIC
To Preset or Not to Preset, and Creation of the
LIC

LIC is the ‘Library Import Characterisation’, a section in the object file that encodes
information about the current loadfile, plus each DLL or import library that was used to
do the presetting, in the search list order, noting its export digest and whether it was
used to resolve any references. The LIC is essentially a data string that characterizes
the information used by a linker or loader to bind the global symbols of a particular
loadfile. If the same loadfile is bound on two occasions, and its LIC has not changed,
the two bindings are the same. Thus it is possible to reuse a set of bindings if it has the
same LIC as that determined for this loadlfile in the presence of the other loadfiles with
which it is being loaded.

By default, the linker tries to preset the loadfile that it is creating. The following are
reasons why the linker will decide not to preset:

The linker will not preset if the -no_preset option is specified.

The linker will not preset if there is any address overlap among the DLLs or import
libraries in the search list, including this file itself. If there are any overlaps then the
linker emits a warning message. The linker always checks for this among the DLLs and
import libraries that it has opened, even if it is not trying to preset. However, the linker
does not check for overlap against the import library that represents the set of implicit
libraries (because, it can be assumed that the implicit libraries have been correctly built
in a separate place). Also, when some DLL has the same filename as the user library,
and their memory segments overlap, the linker does not consider that a reason to stop
presetting.

The linker will decide not to preset if it was unable to locate an item specified in a -l
option in the command stream or in a .liblist section entry of a DLL.

The linker will decide not to preset if this is a program that has a user library, but the
linker was unable to open the user library.

The linker will decide not to preset if it encountered any incomplete import libraries.
The linker will also decide not to preset in certain cases if there are unresolved
references, as explained in Handling Unresolved References on page 3-8.

The linker sets the EF_TANDEM_PRESET bit in the e_flags field of the ELF header of
the loadfile to tell that it was preset.

When the linker presets a file it calculates the LIC and stores it in the .lic section. The
LIC encodes information about this loadfile itself, plus each DLL or import library that
was used to do the presetting, in the search list order, noting its export digest and
whether it was used to resolve any references. Thus, the LIC begins with an entry for
this loadfile itself, then has an entry for the user library if this is a program that has a
user library, then has entries for each of the elements of the .liblist section, then has
entries for each of the additional elements the linker found by pursuing the transitive
closure of .liblist sections, and then has an entry for the import library that represents
eld Manual—527255-009
3-7

Binding of References Handling Unresolved References
the implicit libraries, if the linker found that library. If there was a DLL with the same
filename as the user library, then that DLL gets no LIC entry.

Note that, for each entry in the .lic, there is a bit that tells whether any references were
actually resolved by symbols exported from that DLL. The linker does not put out any
warning messages about DLLs that were “not used”. It is actually quite difficult to
decide which DLLs are “used”, because DLL A may indirectly bring in DLL B whose
symbols are used, even if that wasn’t true of DLL A. And, even that doesn’t mean that
DLL A was really “needed”, because there could also be other DLLs that similarly
cause DLL B to get brought into the link. (For ideas on related linker features, see
Ignoring Optional Libraries on page 3-14.)

The linker makes the .lic section larger than necessary so that it may be possible for
the object file to be modified by the -alf option when the LIC has to increase in size.

Even when the linker is not presetting it still creates the .lic section in a loadfile. The
section has no contents in this case, but it provides space for a subsequent -alf
option to create a LIC.

The -must_preset option tells the linker that it must be able to preset, or else it is to
be considered an error. eld reports an error if you give -must_preset with
-no_preset. Otherwise, if the linker can’t preset, and the -no_preset option was
not used, the linker generates a warning message.

Handling Unresolved References
This section discusses what the linker does when it is trying to bind a reference to a
symbol and that symbol is not found in any loadfile in the linker’s search list.

If an undefined symbol is mentioned only in the symbol table, with no references to it
from relocation tables, the linker continues processing. Checking for unresolved
references is only concerned with symbols that have references from code or data.

The treatment of an unresolved reference depends on whether the target symbol was
expected to be code or data. The linker knows this based on the symbol type listed for
the symbol in the ELF symbol table in the linkfile that refers to it. STT_OBJECT means
that it is data, and STT_FUNC means that it is code. No other possibilities are allowed.

The -unres_symbols option tells the linker how to treat unresolved references. It
takes a parameter value that is one of the following:

• error - treat unresolved references as errors

• warn - put out warning messages about unresolved references

• ignore - be silent about unresolved references

-error_unresolved is supported as a synonym for -unres_symbols error,
and -warning_unresolved as a synonym for -unres_symbols warn.

When eld is building a new loadfile and a public DLL registry has not been found the
default for the -unres_symbols option is warn. On the other hand, if a public DLL
eld Manual—527255-009
3-8

Binding of References Handling Unresolved References
registry has been found then the default for the -unres_symbols option is error. In
other words, eld only thinks it is unreasonable to have unresolved references if the
public DLL registry has been found.

On the other hand, regardless of what the default would have been, and regardless of
whether the -unres_symbols option actually was specified, the linker imposes -
unres_symbols ignore in the following cases:

• If the -allow_missing_libs option has been specified and there were any
missing DLLs.

• If the linker is building a program that has a user library and the linker has not been
able to open the user library.

The linker does not check for unresolved references when the -r option is specified,
and eld reports an error if you specify any of the options described above with -r.

Note that, even if the linker is not presetting, it will still try to resolve references for the
purpose of producing messages about unresolved symbols.

If there are unresolved references to symbols that are not globalized, and this is not
being considered an error, and the linker is presetting, then the linker must decide what
to do with those references. If the reference is to a symbol that is expected to be code,
the linker will look for a symbol named UNRESOLVED_PROCEDURE_CALLED_. The
linker looks for this symbol by first looking for a symbol of this name that is exported by
the loadfile being created, and then looks for the symbol in the usual way through
DLLs. If found, and it is a procedure, then the references to the desired symbol are
resolved to this symbol, and the file can still be preset. The references are still
considered to be unresolved as far as putting out messages about unresolved symbols
is concerned. If presetting is successful in this case, the LIC tells that there were
unresolved references.

If unresolved references to symbols that are not globalized cannot be handled as
described in the previous paragraph then the linker decides that the file cannot be
preset. Therefore, whenever a file is preset, it means that all references to symbols
that are not globalized were resolved to something.

The reason that unresolved references to code get more lenient treatment than
unresolved references to data is that it is possible to handle them in a more predictable
way at runtime. Specifically, the HP NonStop operating system provides an
implementation of UNRESOLVED_PROCEDURE_CALLED_ that generates a SIGILL
signal that can be caught but not deferred.

Whether or not the linker can preset is not affected by whether there are any
unresolved references to globalized symbols.
UNRESOLVED_PROCEDURE_CALLED_ is never used to handle unresolved references
to globalized symbols. UNRESOLVED_PROCEDURE_CALLED_ is also not used to
handle unresolved references to $n_EnterPrivN symbols from gateways.

There is also an option named -set rld_unresolved, with the same three
parameter values as for -unres_symbols, and with error as the default. The linker
places the value specified by this option into the RUNTIME_UNRES_CHECKING bits of
eld Manual—527255-009
3-9

Binding of References Using User Libraries
the flags field of the .tandem_info section. This tells rld how it should treat
unresolved references at runtime. Even if this loadfile is preset, and even if rld can
verify that the presetting is correct, rld will still repeat the presetting process in order
to generate the error or warning messages requested by the
RUNTIME_UNRES_CHECKING bits if the LIC says that there were unresolved
references.

The bits set by -set rld_unresolved also provide defaults for how -alf treats
unresolved references.

There is no option for specifying the treatment of unresolved references based on a
symbol’s name.

Using User Libraries
A user library is a DLL that is found in a special way by a program.

The -set libname option, given to the linker when it is building a program, tells the
filename for the user library as it needs to be present at runtime. eld reports an error if
you give this option when not building a program. The -set option is described The -
set and -change Options on page 4-8.

The option -libname may be used as a synonym for -set libname. The specified
user library name must always have the form $a.b.c, i.e., a valid Guardian file name,
fully qualified up to the volume name, and not including the system name, because this
is the only type of name that will work at runtime. Note that, when running the linker on
OSS, one would need to do something such as putting the name in single quotation
marks or preceding it with a backslash to avoid the special meaning of the dollar sign
to the shell. The linker places the name specified by the -set libnamee option into
the .tandem_info section of the program that it is creating. The linker also converts the
name to upper case, if not done already. On Guardian APIs, single quotes do not work
because they are not recognized by the HP Tandem Advanced Command Language
(TACL); therefore, it is not important to specify them.

The -local_libname option tells the linker the filename of the user library to use at
link time. Section 3, Binding of References explains how this user library is used,
similarly to other DLLs, when the linker is fixing up references. It is not an error if the
linker can’t find the user library, but it does mean that the linker cannot preset the
program that it is creating.

The locations of the -set libname and -local_libname options in the command
stream are irrelevant. These options may only be used when building a program.
Additional rules related to these options depend on the platform:

The PC hosted linker knows that it is building a program that uses a user library
because the -set libname option is used. If the -local_libname option is not
used then the linker can’t find the user library. eld reports an error if you specify -
local_libname without -set libname.
eld Manual—527255-009
3-10

Binding of References Creating Import Libraries
On Guardian, the linker knows that it is building a program that uses a user library
because either -set libname or -local_libname is given. If only one of these is
given, it provides a default for the other one. Specifically, if -local_libname is not
given, the linker uses the parameter of -set libname for the value of -
local_libname. Or, if -set libname is not given, the linker uses the name
specified for -local_libname, but fully qualifying it by adding the volume and
subvolume name if necessary, and omitting the system name. The volume and
subvolume names used are the defaults that this instance of the linker would use for
opening files with partially qualified names.

The rules on OSS are similar to those of Guardian. If -local_libname is not given,
the linker converts the name specified in -set libname to the form /G/a/b/c for use
at link time (not converting it to upper case). Conversely, if -set libname is not
given, the linker requires that the name specified for -local_libname be located in
the Guardian name space, and then the fully qualified Guardian name of the file, not
including the system name, is used for -set libname.

The linker is not required to open the -local_libname file unless it is either
presetting the main program or checking for unresolved references. If it can’t open the
file, that is handled the same way as if -allow_missing_libs was specified and
the linker couldn’t find a DLL, including the production of a warning message.

Creating Import Libraries
There are three kinds of import libraries:

A complete import library may represent a single DLL, providing the linker all the same
information at link time as if the DLL itself were present.

An incomplete import library similarly represents a DLL but with only some of the
information that the linker needs at link time.

A special import library with the DLL name “__IMPLICIT_LIB__” represents the entire
set of implicit libraries.

The linker can create an import library at the same time that it is creating the
corresponding DLL, and it can also create an import library from one or more DLLs that
already exist.

Whenever an import library is created, by default, it is a complete import library. If the
-set incomplete on option is provided then the import library is incomplete. This
doesn’t necessarily change what is in the import library; it just marks it incomplete to
indicate that the symbolic addresses within it are not to be considered reliable. The
import library that represents the implicit libraries must always be complete (so it is an
error to specify -set incomplete on in that case).

In all cases, the linker creates the import library file by following the same rules as
given earlier in The Creation of Output Object Files on page 2-5, except that the name
of the work file is ZLDAInnn rather than ZLDAFnnn, the name of the intermediate file, if
desired, is specified by the -temp_i option rather than the -temp_o option, and
eld Manual—527255-009
3-11

Binding of References Creating an Import Library at the Same Time That a
DLL is Created
there similarly is a -must_use_iname option instead of -must_use_oname. An
existing file of the same name is not replaced if the linker terminates with any errors.

The -change incomplete on option can be used to demote an import library from
complete to incomplete. It is not possible to demote the import library that represents
the implicit libraries. It is not possible to “un-demote” an incomplete import library so
that it becomes a complete import library.

The following subsections also tell how the linker decides whether to include DWARF
symbol table information in an import library when it creates it. As described in
Updating Or Stripping DWARF Symbol Table Information on page 4-14, the -strip
option may be used to remove DWARF symbol table information from an existing
loadfile or import library.

Creating an Import Library at the Same Time That a DLL is
Created

The following option:

-import_lib <filename>

tells the linker to create an import library at the same time that it creates the
corresponding DLL. If you use this option, and the DLL has DWARF symbols
information, then so will the import library. If the DLL is being created without DWARF
symbols information, through the use of the -s or -x options, then the import library
will also not have DWARF symbols information.

The following option:

-import_lib_stripped <filename>

similarly tells the linker to create an import library, but in this case the import library
does not contain DWARF symbol table information, even if the DLL does.

Creating Import Libraries From Existing DLLs
The following option:

-make_import_lib <filename>

tells the linker to make an import library out of one or more existing DLLs. The other
filenames in the command stream are the DLLs that the import library will represent.
eld reports an error if you specify -make_import_lib without specifying any DLLs
in the command stream.

If all the DLLs have the EF_TANDEM_IMPLICIT_LIB bit set in their ELF headers, the
linker creates the import library that represents the implicit libraries. In this case, the
EF_TANDEM_IMPLICIT_LIB bit is set in the import library that the linker is creating, it
is given the DLL name “__IMPLICIT_LIB__”, and eld reports an error if there is any
overlap among the names of the symbols exported by the various input DLLs, unless
all the copies of the symbol have the STO_MULTIPLE_DEF_OK bit set. It is also an
error if any of the implicit DLL's is not preset. If any of the implicit DLL's is preset, but
eld Manual—527255-009
3-12

Binding of References Creating Import Libraries From Existing DLLs
has unresolved references, that is either an error, warning, or ignored, depending on
what is specified for the -unres_symbols option, similar to how this option is used
when building a new loadfile. If the -unres_symbols option was not specified, the
default in this situation is error. The import library that represents the implicit DLL's
never has DWARF symbol table information.

The address of the import library that represents the implicit DLL's is specified the
same way as for the text segment of a DLL. In particular, this includes the use of a
DLL registry. The name of the entry to use in the registry file would be the same as the
filename specified in the -make_import_lib option.

Otherwise, not all the DLL's on the command line have the
EF_TANDEM_IMPLICIT_LIB bit set in their ELF headers. In this case, it is required
that there be only one DLL in the command stream, and the import library will
represent it with the same DLL name. By default, the import library created will have
the same DWARF symbols information as the existing DLL. However, if either the -s
or -x option is given, the import library will not contain DWARF symbols information.

The following are the options allowed when creating an import library that represents a
single DLL:

-must_use_iname
-no_banner
-no_verbose
-NS_extent_size
-NS_max_extents
-obey
-s
-set incomplete on
-stdin
-temp_i
-verbose
-vslisting

-warn
-x

The following are the options allowed when creating the import library that represents
the implicit DLL's:

-check_registry
-must_use_iname
-must_use_rname
-no_banner
-no_verbose
-NS_extent_size
-NS_max_extents
-obey
-stdin
-t
eld Manual—527255-009
3-13

Binding of References Ignoring Optional Libraries
-temp_i
-temp_r
-unres_symbols
-update_registry
-verbose
-vslising
-warn

Ignoring Optional Libraries
This section decribes the feature whereby eld can be told to omit certain DLL's from
the liblist if they appear to be unnecessary. Note that eld always does this processing,
regardless of whether it is presetting the file. eld does not fix up references to
globalized symbols found in other DLL's, since the fixups would always need to be
updated by rld anyway, but eld still looks up globalized symbols in DLL's in order to
see if some DLL would resolve a reference to an undefined globalized symbol, for the
purpose of deciding which DLL's are optional.

For every indirectly found DLL in the search list, there was one other DLL that was
already in the search list and that caused this DLL to be added to the search list. If
that other DLL was also an indirect DLL, then it similarly was pointed at by something
else, etc. In this way, every indirectly found DLL can trace its presence in the search
list back to one DLL that was explicitly given in the command stream, or to the user
library. The set of all the DLL's that trace their presence back in this way to a given
DLL A is called the search list addition set of A.

If a DLL that was named explicitly in the command stream was not actually used to
resolve any references, and furthermore none of the DLL's in its search list addition set
were used to resolve any references, then that DLL is called unnecessary, because the
presence of that DLL in the command stream did not affect how the linker preset the
file. For example, if that DLL had not been specified in the command stream, then it or
the other DLL's in its search list addition set might instead have been found some other
way, but in all cases they would have to come later in the search list then they actually
did, or be absent entirely. That means that they wouldn't have had any consequences
that they didn't have in the actual link: they wouldn't have resolved any references, and
they wouldn't have caused other DLL's to be added to the search list. The resulting
search list would still have been the same, at least with regard to the presence of the
DLL's that were used to resolve references, and to the ordering of those DLL's among
themselves.

The options named -optional_lib and -no_optional_lib are command stream
toggles that determine whether the linker considers a DLL that is specified in the
command stream to be optional. These options can be specified multiple times in the
command stream, each time setting the mode for subsequent DLL's in the command
stream until the mode is changed again. At the beginning of the command stream the
mode is -no_optional_lib. If an optional DLL turns out to be unnecessary, then
the linker will assume it is okay to ignore that DLL, and it will not be listed in the .liblist
section. If eld is presetting, and therefore creating a LIC, then the LIC is created as if
eld Manual—527255-009
3-14

Binding of References Ignoring Optional Libraries
the omitted .liblist entries had never been present. For example, some of the DLL's in
the search list addition set of such a .liblist entry may still be present in the LIC, and
some not, and if present their positions in the LIC may change, depending on other
ways of getting to those DLL's indirectly.

When some elements of the .liblist section have been omitted, with corresponding
changes to the LIC if present, we say that the .liblist and LIC have been abbreviated.

Note that eld always does this -optional_lib processing. It doesn't depend, for
example, on whether eld is presetting the loadfile.

If all the same direct and indirect DLL's as were found by the linker would also have
been found at runtime regardless of whether the .liblist was abbreviated, as described
above, and all these DLL's would have been found in the same order and with the
same export digests, then the linker's presetting would give the same results as what
would happen at runtime with no such abbreviation. In this case, the -optional_lib
option is just an optimization, preventing some DLL's from being loaded into a process
when those DLL's would not have affected how the loadfile would be fixed up when it
was loaded into memory. The abbreviated LIC, if present, corresponding to the
abbreviated .liblist, will similarly lead to the conclusion that the linker fixed up all the
reference sites correctly, so the file can run without being rebound at load time (except,
of course, that references to globalized symbols always need to be rebound).

In other cases, the use of the -optional_lib option is not just an optimization, but
rather can cause the loadfile to run differently. These are the cases where the DLL's
that were omitted from the abbreviated .liblist or abbreviated LIC would have been
found at runtime, and would have had different export digests from the ones that the
linker saw, or would have been found in a different order, or would have indirectly
brought in other DLL's that the linker didn't see. In such cases, the abbreviated .liblist
and abbreviated LIC might lead to the conclusion that the file was fixed up correctly by
the linker, and allowed to run without being rebound, even though if it were rebound at
load time based on a .liblist that had not been abbreviated then some of the bindings
might have been different. Or, if the abbreviated .liblist and abbreviated LIC don't lead
to the conclusion that the file had been correctly fixed up by the linker, the file is
rebound at load time, but the use of the abbreviated .liblist could still lead to different
bindings from what would have occurred with a .liblist that was not abbreviated.

The use of the -optional_lib option can also affect how things are fixed up at load
time with regard to globalized symbols, because eld does not take globalized symbols
into account when it decides which DLL's are unnecessary.

Also, even if the abbreviated .liblist and LIC don't affect how the loadfile itself is fixed
up at load time, the abbreviations will result in different DLL's being present in memory,
or being loaded in a different order, in a way that could cause the dlsym runtime routine
to give different results.

In any case, the use of the -optional_lib option can affect a program's semantics,
so it should not be used unless the consequences are understood.

A special case is when eld finds a DLL on the command line that is the same file as
what was specified for the user library. In such a case, an entry is still made in the
eld Manual—527255-009
3-15

Binding of References Merging Symbols Found in Input Linkfiles
.liblist section for such a DLL. With regard to the -optional_lib option, this option
ever causes such an entry to be removed from the .liblist. The point is that such an
entry is only significant if a different user library were to be used at runtime, and eld
does not try to analyze whether this .liblist entry would be "necessary" if a different
user library had been present.

The main intended use of these options is for -optional_lib to be placed before
the set of DLL names that a compiler may automatically place at the end of the
command stream that it sends to the linker, for a set of DLL's that it thinks the user
might generally need. Such DLL's would often be unnecessary, depending on which
language features the program used. Since these DLL's are at the end of the
command stream, they would come after all other DLL's in resolving references,
except for the implicit DLL's. Therefore, this use of -optional_lib would have no
runtime consequences, unless the user wanted to be able to get a different version of
one of these libraries at runtime, with additional symbols in it that hid symbols
otherwise found in the implicit libraries.

Note that this is not necessarily the most general way to define "unnecessary", nor is
there necessarily any one best way to do it. For example, suppose that DLL's A and B
both point at C, and C is used to resolve references, but neither A nor B themselves
resolve any references. You could argue that either A or B could be considered
unnecessary on its own, but you can't say that they are both unnecessary at the same
time without figuring out how you are going to get to C. The definition of "unnecessary"
given in this section can be applied separately to each DLL in the command stream,
without having to take into account such dependencies. As it actually would work in
this case, the linker could only ignore A or B if it was not the one that led to putting C
into the search list. For instance, suppose A came before B in the .liblist section of the
program, so that A caused C to be in the search list. Then, the linker would ignore B if
the user marked B optional, but there would be no way to tell the linker to ignore A (i.e.,
without changing other things in the linker's command stream, such as the ordering of
A and B).

 Merging Symbols Found in Input Linkfiles
TNS/E linkfiles contain ELF symbol tables. The linker merges the symbol information
from the input files into its output file, creating an ELF symbol table if the output file is a
linkfile, or creating the .dynsym and .dynsym.gblzd sections if the output file is a
loadfile.

In loadfiles, globalized symbols are placed into the .dynsym.gblzd section, while all
other symbols are placed into the .dynsym section.

If the -make_implicit_lib option is given then eld reports an error if you have any
globalized symbols. Also, if the -instance_data option is specified with a
parameter value of data2protected or data2hidden then eld reports an error if
you have any globalized symbols.

Note. The data2protected parameter is supported on systems running J06.09 or
earlier J-series RVUs and H06.20 or earlier H-series RVUs.
eld Manual—527255-009
3-16

Binding of References Accepting Multiply-Defined Symbols
In linkfiles, entries in the ELF symbol table tell the source language for each symbol.

When there are multiple entries of the same name that have been defined and
allocated by the compiler or assembler, the rules followed by the linker in deciding
which copy to keep are found inAccepting Multiply-Defined Symbols on page 3-17.

If there is only one entry that has been defined and allocated by the compiler or
assembler, the linker keeps that one. If there are no such entries, but there is an entry
for the symbol as common data, the linker will choose such an entry and allocate the
symbol in the .bss section. If there are multiple common data entries for a symbol, the
linker chooses the first one among those with the largest size. Otherwise all the
entries are just external references, and the symbol remains an external reference in
the output file, with the linker keeping the first one it sees.

The -y option tells the linker to print out information about a symbol of a given name,
telling the names of the linkfiles that mentioned the symbol in their ELF symbol tables
and giving the information provided about the symbol in each of those files.

Object files also contain DWARF symbol table information for the use of debuggers.
See Updating Or Stripping DWARF Symbol Table Information on page 4-14.

Accepting Multiply-Defined Symbols
This section is only concerned with symbols that are defined and allocated by the
compiler or assembler, not with symbols that are external references or common data.
This section covers global definitions, which make it possible to have multiple
definitions of the same symbol. Multiple definitions are only allowed if all the definitions
are as data items, or if all the definitions are as procedures, with different rules for the
two cases as described below.

Rules For Data Items
Here are the rules concerning multiple definitions of a data item:

• A symbol of a given name that occurs in one the sections named .data, .sdata,
.bss, and .sbss, is allowed to come up in different sections among these four
possibilities in different linkfiles. Similarly, a symbol of a given name that occurs
in one of the sections named .rdata and .srdata is allowed to come up in
different setions among these two possibilities in different linkfiles. A symbol
that occurs in any other data section must only occur in that same named data
section in all the linker’s input linkfiles.

• eld reports an error if an initialized data item (including "zero-initialized" data
items found in the .bss or .sbss sections, which in the case of C++ also
includes data that was not explicitly initialized in the source) is defined in more
than one C or C++ file unless the STO_MULTIPLE_DEF_OK bit is set in all the
corresponding ELF symbol table entries. HP’s definitions of C and C++ say
that it is an error for users to create such situations, but the
STO_MULTIPLE_DEF_OK bit allows the compiler to do it.
eld Manual—527255-009
3-17

Binding of References Rules for Procedures
• The linker uses the st_size field in the ELF symbol tables of its input files to
understand the sizes of data items. When there are multiple definitions of a
data item eld reports an error if the sizes are not the same.

It is not an error if some of the definitions have initial values (i.e., in the .data or
.sdata sections) and others don’t (i.e., in the .bss or .sbss sections). However,
eld reports an error if the initial values are not the same in all the copies of the
data that are initialized. Data in the .bss and .sbss sections is considered to
have the initial value zero.

When there are multiple definitions of a data item, and it is not an error, the linker must
choose which copy to use. The linker makes this choice by comparing copies in the
following ways:

• Choose an instance that is initialized over one that isn’t (i.e., choose .data or
.sdata over .bss or .sbss).

• If that doesn’t narrow it down to one choice, choose an instance whose
language is C or C++ over one that isn’t. Doing this, after the previous rule, is
convenient for enforcing the rules given above about initialized definitions in C
and C++.

• If that doesn’t narrow it down to one choice, choose the first instance
encountered.

Note that the linker does not care whether various definitions are short data (namely,
the .sdata, .srdata, and .sbss sections) versus long data (namely, the .data,
.rdata, and .bss sections). If the above rules cause the linker to choose a copy of a
symbol that cannot be reached by 22-bit GP-relative addressing, and 22-bit GP-
relative addressing is used for the symbol, it is an error.

Rules for Procedures
Here are the rules concerning multiple definitions of a procedure:

• It is an error unless either the STO_MULTIPLE_DEF_OK bit is set in all the
corresponding ELF symbol table entries, or the -allow_duplicate_procs option
is used.

• It is an error if any copy of the procedure has the CALLABLE or
KERNEL_CALLABLE attribute.

• It is an error if the various copies do not all agree on the MAIN, SHELL,
EXTENSIBLE, and COMPILED_NONSTOP attributes.

There is no requirement that multiple definitions of the same procedure contain the
same code or have the same size.

When there are multiple definitions of a procedure, and it is not an error, the linker
must choose which copy to use.
eld Manual—527255-009
3-18

Binding of References Using the -cross_dll_cleanup option
If two copies of the procedure agree on the RESIDENT attributes, the linker prefers the
first one it sees.

The linker prefers one that is RESIDENT over one that is not RESIDENT. Note that the
linker doesn’t know why someone thought the procedure needed to be RESIDENT, but
as long as at least one copy said so, the linker assumes it is necessary.

In all cases, after the linker chooses which copy to use, that determines the contents of
the code for the procedure.

The above rules about duplicate symbols apply both when the linker is creating a
loadfile as well as when the linker is creating a linkfile with the -r option.

When there are multiple definitions of a symbol, the one chosen by the linker is the
only one still represented in the ELF symbol table of the output file (if it is a linkfile), or
in the .dynsym or .dynsym.gblzd section of the output file (if it is a loadfile).
All references to a symbol of this name get fixed up to this copy of the symbol.

Note that the linker never uses DWARF information to decide if multiple definitions are
allowed, or to decide which definition to keep. (The linker never uses DWARF
information to decide things outside of DWARF itself, because the DWARF information
can be stripped from linkfiles.) When the linker fills in addresses of symbols in the
DWARF information, it fills in -1 for the address of an unused copy of a symbol. The
linker does this for both linkfiles and loadfiles.

The information about unused copies of procedures is deleted from the .procinfo
section of a linkfile, and from the stack unwinding information of a linkfile or loadfile.

The -show_multiple_defs option tells the linker to print out information about global
symbols that are multiply defined. The result is similar to giving a -y option about each
such symbol, except that it isn’t necessary to know ahead of time which symbols they
are, and the information only comes out about the linkfiles that defined the symbol, not
about other linkfiles that only mentioned it as an external reference.

Using the -cross_dll_cleanup option
The -cross_dll_cleanup option is used to reduce the total size of a program and
the private DLLs that are used by a process. This option affects the behavior of the
eld program with regard to symbols eld finds in its input linkfiles that have all the
following properties:

• The symbol is a global symbol.

• The symbol is a definition (not an external reference).

• The symbol is a procedure.

• The symbol is marked STO_MULTIPLE_DEF_OK (implying that it is a multidef or
globalized symbol).

Without the -cross_dll_cleanup option, you can store multiple copies of a symbol
that have the above properties, and eld discards the code for all except one copy of
eld Manual—527255-009
3-19

Binding of References Specifying Which Symbols to Export, and Creating
the Export Digest
the symbol. When the -cross_dll_cleanup option is specified, eld also verifies if a
symbol of the same name is found in a DLL. If it finds a same name, eld deems the
last copy of the procedure as "unused", and its code can be cleaned up. The
references to the symbol are therefore resolved to the copy of the symbol in the DLL.

When the -cross_dll_cleanup option is used, it is necessary that all the input
linkfiles be compiled with the -Wglobalized option (the same as when eld is
specified to build a globalized DLL, since this new option is a form of preemption).

To get maximum benefit from the -cross_dll_cleanup option, list the DLLs that are
directly used (on the eld command line), and also DLLs that previously were only
indirectly used.

Specifying Which Symbols to Export, and
Creating the Export Digest

When creating a loadfile the linker must determine which symbols to export. If no
options related to this are given in the linker’s command stream then its default
behavior is that it exports a symbol if it is a global symbol and the STO_EXPORT bit is
set in some ELF symbol table entry for the symbol in the linker’s input files. This is the
way the compiler or assembler tells the linker that certain symbols should be exported.
If the STO_EXPORT bit is set in any ELF symbol table entry for a symbol in the linker’s
input linkfiles, and the linker is creating a linkfile, then this bit is set in the linker’s output
file.

If the -export_all option is used then the linker exports all defined, global symbols
except for those in the following categories:

• Procedures whose names begin with the special prefixes that mark them for
inclusion in the ctors, dtors, initz, or termz arrays.

• Symbols that are specially known to the linker and have names that are
intended to only be meaningful within the loadfile being created. This includes
all the predefined symbols created by the linker, such as the symbols that are
the names of the ctors, dtors, initz, and termz arrays. However, -export_all
does cause _MCB to be exported, if the linker has created that symbol.

The above rules can be overridden for specific symbols by name. If the -
exported_symbol option is specified then the symbol of the specified name is
unconditionally exported. If the -hidden_symbol option is specified then the symbol of
the specified name is unconditionally not exported. It is an error if the same symbol is
specified in both of these options. It is an error if the symbol specified in the
-exported_symbol option is not a global symbol that is defined in the loadfile being
created. It is a warning rather than an error if such a symbol is specified in the -
hidden_symbol option.

Note that globalized symbols are not treated specially with regard to these rules. That
means they are exported by default because they have the STO_EXPORT bit set, but
you can avoid exporting them by using the -hidden_symbol option.
eld Manual—527255-009
3-20

Binding of References Processing of Code and Data Sections
The option -export is accepted as a synonym for -exported_symbol, and -export_not as
a synonym for -hidden_symbol.

Exported symbols are identified in the .dynsym and .dynsym.gblzd sections by the fact
that they are marked STB_GLOBAL and not SHN_UNDEF. If a symbol that was
STB_GLOBAL in its input linkfile is not exported, that fact is indicated by marking it as
STB_LOCAL rather than STB_GLOBAL in the output loadfile.

The linker calculates the export digest based on the names and addresses of exported
symbols in the .dynsym section, and on the GP value for the loadfile, and stores it in
the export_digest field of the .tandem_info section. Globalized symbols are not
included in the calculation of the export digest.

The options described in this section are not allowed if -r is specified.

If you are starting with code that had been a single program before, perhaps built from
archives, and now you are changing it to be split up among several DLLs, you might
find it useful to build the program and DLLs with the -b globalized and -export_all
options, to assure that all symbolic references among the program and DLLs keep
referring to a single copy of each symbol.

Processing of Code and Data Sections
A text section contains procedures. A data section contains data that is allocated at a
certain address in virtual memory when the loadfile is brought into memory, as
opposed to data that is dynamically allocated on the stack or in the heap.

The linker checks that the sizes of all code and data sections are multiples of 16 bytes.

Concatenating Code and Data Sections Found in the Input
Linkfiles

A linkfile may have many text sections, with names beginning either .text or .restext.
When the linker is creating a new linkfile with the -r option, it concatenates text
sections of the same names in its input files to create text sections of those same
names in its output file. When section names are the same in different input linkfiles,
the linker concatenates them in the same order as the linker saw those linkfiles.

However, when the linker creates a loadfile, it combines all the input sections whose
names begin .text into a single output text section named .text, and similarly for
.restext. No guarantee is given as to the order in which different text sections whose
names begin .text are combined into a single text section named .text, and similarly for
.restext.

With regard to data sections, again, the linker usually concatenates data sections of
the same names in its input files into data sections of the same names in its output file,
and the linker does this whether creating a linkfile or a loadfile. Except, when an input
linkfile has a section named .rdata, and it contains no relocation sites, the linker
changes the name of that input section to .rconst, and combines all sections named
.rconst into a section of that name in its output file accordingly.
eld Manual—527255-009
3-21

Binding of References Public Libraries and DLLs
When creating a linkfile, the linker similarly concatenates the relocation tables that
accompany the code and data sections.

The linker’s input linkfiles may also contain common data. Such data items are defined,
but not assigned addresses within sections. If a normal definition of the same symbol is
found, the common data definitions are ignored. If there is no normal definition, and the
linker is creating a loadfile, the linker converts the common data symbol into a data
symbol that is allocated space in the .bss section. Common data cannot have initial
values.

If you are creating an implicit DLL (with the -make_implicit_lib option) eld reports an
error if you have any data that would need to go into the data variable segment (i.e., -
instance_data data1constant is imposed).

Public Libraries and DLLs
TNS/E supports public libraries. Public libraries are a set of (DLL) libraries, available to
all users of the system, and managed as part of the system software. They are mostly
supplied by HP, although you and third party software providers can also provide DLLs
to be added to the public DLLs. You use DSM/SCM to add your DLLs to the public
libraries. Note that these must be loadfiles, not linkfiles.

Public libraries include:

• TNS/E compiler run-time libraries.

• Libraries that support connections to TNS/E communication facilities.

• Certain TNS/E tools, utilities, and the loader library (rld).

TNS/E compilers generate needed linkages from PIC programs and DLLs to the
compilers’ run-time libraries.

In addition to accessing public libraries, PIC programs and DLLs will automatically
access the system and millicode libraries, without your specifying this linkage
requirement. The system and millicode libraries are PIC libraries that the system loads
before loading any application code, and the loader and operating system
automatically link your application to these libraries as appropriate. These are known
as implicit libraries because every loadfile is implicitly a user of them.

This can be contrasted with the public DLLs, which are explicit because a loadfile must
explicitly ask to use a public DLL, although you need not specify where to find the
public DLL. The combination of the ZREG file (the Public LIbrary Registry file) and
ZREGPTR (pointer) file specifies the location.

One main user of the ZREG file (and the ZREGPTR) is the preloader. Public DLLs are
preloaded during coldload, reload of a CPU or when a set of public DLLs is replaced
online. The other main user is the linker (eld). Typically, eld “finds” the DLLs by
finding the ZREG file that is in the same subdirectory, then searches the registry. The
linker does not use the ZREGPTR pointer directly, but acquires its information from the
preloader by use of a procedure call.
eld Manual—527255-009
3-22

Binding of References The Public Library Registry
Each set of public libraries is installed in a separate subvolume, separate from the
SYSnn subvolume and separate from any other set of public DLLs. This subvolume is
on the same disk as the SYSnn subvolume.

The SYSnn subvolume also contains the imp-imp file, named zimpimp. This is the
import file usable for resolving external references to the explicit libraries. The imp-imp
file can be copied to the public-DLL subvolume. This renders the public-DLL
subvolume portable. A portable public-DLL subvolume contains everything the linker
needs to link files to use these particular public libraries. A portable subvolume can be
copied for use by the linker (eld) on another system or another platform, such as a PC.

The Public Library Registry
The public-DLL registry file (ZREG) serves as an interface between DSM/SCM (that
you use), the public-library installation tool (that HP uses), the preloader and the linker.

DSM/SCM creates an initial registry file, listing all the public DLLs by name. This is an
edit file (filecode 101). Use DSM/SCM to add your public DLLs to those provided by
HP.

Entries to the file consist of a series of statements. The dll statement describes a public
DLL. In its simplest form, it is just a name, for example:

dll file ztestdll;

Here is another example; it contains the license attribute. A licensed DLL is one that
contains priviliged code. Unless you use this attribute along with the value “1”, the
default is “0”, which means the DLL is unlicensed.

dll license 1, file privdll;

There are other attributes which are created automatically, for example the timestamps
that you and the tools can use for version control. Here are two examples, the
link_timestamp (from when the linker first created the DLL), and the update_timestamp
(from when the linker last updated the DLL, or when another tool rebases or presets it):

dll file zredll,
link_timestamp 2004-08-01 16:34:41.213592,
update_timestamp 2004-08-01 17:15:17.119634;

From these examples you can see that attributes can be in any order, attributes are
separated by commas, and statements are terminated by semicolons.

Finding and Reading The Public DLL Registry (ZREG) File
The linker always tries to find the public DLL registry file whenever it is creating a
loadfile. There are three ways that the linker may find the public DLL registry file:

1. If the -public_registry option is specified, that tells the name of the public DLL
registry file. (This option could also be used to override another location of the zreg
file.) If the file does not exist, or the linker cannot open the specified file for
reading, eld reports an error.
eld Manual—527255-009
3-23

Binding of References Finding and Reading The Public DLL Registry
(ZREG) File
2. If the -public_registry option is not specified then the linker looks for a file named
zreg in its own directory or subvolume. If this location is a \bin or /bin, eld will also
look in a corresponding \lib or /lib location. This supports the practice, on PCs and
OSS, of putting eld in a bin directory and the public DLLs (together with the zreg
file) in a sibling lib directory.

On OSS, where case is significant, zreg is lower case. If the file exists and the
linker can open it for reading, this file is deemed to be the public registry file.
Otherwise, if the -nostdlib option has not been specified, the linker writes out a
warning message.

3. If still not found, and the host platform is TNS/E, the linker uses a system call
(pubLibSpecs_get_) to find the location of the zreg file.

If the linker finds the public DLL registry, it then determines a list of public DLL
filenames. This information is used elsewhere in the linker for two purposes.

First, it is used to locate public DLLs, as discussed in Finding Public DLLs on
page 2-18. Second, it is used to locate the import library that represents the implicit
libraries, as discussed in Presetting Loadfiles on page 3-5.

As explained in those two sections, a filename found within the public DLL registry file
may be used by the linker to search for a file on a platform where filenames are case
sensitive. In that case, the linker will interpret what it finds within the public DLL registry
to be lower case. So, to avoid confusion, it is strongly recommended that all filenames
mentioned in the public DLL registry be written in lower case, and that when
corresponding files exist on a platform where case is significant those files are given
lower case filenames, and furthermore that the DLL names found within such files are
also written in lower case.
eld Manual—527255-009
3-24

4 Other eld Processing
This section contains the following information:

Adjusting Loadfiles: The -alf Option - how to repeat the presetting of a loadfile when
DLLs change.

The -set and -change Options - how to set various options within the loadfile.

eld Functionality for 64-Bit - how the linker performs consistency checks.

Renaming Symbols - how the linker treats each input file.

Updating Or Stripping DWARF Symbol Table Information - from the input and output
object files.

Modifying the Data Sections that Contain Stack Unwinding Information - when
concatenating sections to create a new loadfile.

Creating the MCB - the Master Control Block contains key settings such as product
version numbers, valid file types, language dialects, and so on.

Processing of Floating Point Versions and Data Models - more consistency checks.

Specification of the Main Entry Point - there are two ways to specify the main entry
point.

Specifying Runtime Search Path Information for DLLs - eld tells rld where to find the
DLLs.

Merging Source RTDUs - used with SQL/MP.

Adjusting Loadfiles: The -alf Option
The main purpose of this option is to tell the linker to repeat the process of presetting
an existing loadfile. Most likely, this is done because some of the DLLs used by this
loadfile have changed, and therefore resolving the references against the newer set of
DLLs will allow the loadfile to load more quickly. The updating of the loadfile might
happen automatically at runtime, but this option provides a way of making sure the file
is updated by user request. It would also be possible to relink the file from its
constituent pieces, but -alf makes it possible to update the references even if those
pieces are no longer present and without knowing everything about how the original
link was done.

It is also possible that the loadfile had not been preset before, in which case this option
would be presetting it for the first time.

It is also possible to rebase a DLL while rebinding it. And, when a DLL is rebased by
-alf, it is also possible for the text and data segments to be rebased by different
amounts. If there are two data segments, they are always rebased by the same
amount. The gateway segment of a DLL is rebased together with the data segment.

-alf stands for “Adjust LoadFile”.
eld Manual—527255-009
4-1

Other eld Processing Adjusting Loadfiles: The -alf Option
-alf recreates the file by the usual linker mechanisms.

Certain relocation sites within a file must be set up by the linker, whether the file is
preset or not, and must never become inconsistent thereafter. That is because
rebinding makes use of the existing values at those sites. Such sites only need
modification if a file is being rebased. Because updating in place would run the risk of
terminating unexpectedly in the middle, leaving such sites inconsistent, we never
update in place when rebasing is being done. This is why -alf always recreates the
file, rather than updating it in place.

The -alf option can be applied to a DLL whose segments are not contiguous, i.e.,
when the DLL was created by using the -d option to place its data separate from its
code.

The parameter to the -alf option is the name of an existing program or DLL. eld
reports an error if this file does not exist, or if it is any other kind of file. This option
performs the same version number checking on this loadfile as is described in Input
Object Files on page 2-12.

When the -alf option is used, the names of input linkfiles cannot be specified. All the
code, data, symbols information, etc., comes from the existing loadfile. Archives and
DLLs cannot be specified, either directly in the command stream or with -l options.
The linker uses the DLL names found in the .liblist section of the existing loadfile as if
they were specified in the command stream with -l options.

When the -alf option is used, it is possible to put the name of the import library that
represents the implicit libraries directly on the command line. This is an exception to
the rule stated in the previous paragraph, that no filenames can be on the command
line. On the other hand, it keeps the processing of the -alf option consistent with
usual linker processing with regard to the ability to get the name of this import library
from the command line. The filename specified on the command line overrides any
other way the -alf option may have found the import library that represents the
implicit libraries. eld reports an error if you have more than one filename on the
command line with -alf . The -alf option always reset the goldsmith_region_info
and goldsmith_region_addr fields of the .tandem_info section to zero.

The -alf option updates the update_timestamp if there were any other changes
made to the file. It does not update the update_timestamp if that would be the only
change to the file. It never updates the creation_timestamp. An informational message
tells whether the file required any changes.

The -alf option cannot create an import library in parallel with updating a loadfile, nor
can they be used to update an import library. When the -alf option is used to rebase
a DLL, many things in the DLL change in ways that affect users of that DLL, such as
the addresses of its exported symbols. If you had an import library that matched the
previous version of that DLL, you would therefore probably want to run the linker with
the -make_import_lib command on the new DLL afterward in order to create a
new import library that matched it. Do not worry about this when using the
-alf option just to rebind a DLL, because in that case the only change to the DLL
that would be reflected in a corresponding import library is whether the ELF file header
eld Manual—527255-009
4-2

Other eld Processing Additional rules about -alf
said that the DLL was preset, and that bit isn’t really of any importance in an import
library.

The following are some things that cannot be specified with this option because they
are unconditionally inherited from the existing version of the loadfile:

• It is not possible to specify import controls.

• It is not possible to say which symbols are exported.

• If it is a DLL, it is not possible to say what its DLL name is.

Only one -alf option can be specified in the linker command stream.

Additional rules about the -alf option is given in the following subsection.

Additional rules about -alf
In addition to updating the references within an existing DLL or program to other DLLs,
the -alf option may be used to rebase an existing DLL. It is not possible to rebase a
program.

To rebase a DLL with -alf, specify the -t option to tell the new starting address for
the text segment. The data segment is moved by the same amount that the text
segment is moved.

With the -alf option it is permissible to specify -no_preset. It is also possible for
the -alf option to discover that it can’t preset, for the same reasons as described in
To Preset or Not to Preset, and Creation of the LIC on page 3-7, and the -alf option
acts similarly in that case to what the linker does when it is creating a new loadfile and
discovers that presetting is impossible.

The following are differences between the way the -alf option makes this decision,
and the way it is described in To Preset or Not to Preset, and Creation of the LIC on
page 3-7.

An additional reason that the -alf option cannot preset is that the new LIC would be
too large to fit into the size that the .lic section has in the existing loadfile.

Even if the -alf option is neither rebasing nor presetting, it may still produce
messages about unresolved symbols and it would turn off the EF_TANDEM_PRESET
bit if it previously was on.

The way the -alf option looks for DLLs or import libraries is the same as the way the
linker verifies for them when a file is originally linked the search path for -alf is the
following:

• The places specified in -first_L options.

• The places specified by the DT_TANDEM_RPATH_FIRST entry of the .dynamic
section.

• The public libraries.
eld Manual—527255-009
4-3

Other eld Processing Additional rules about -alf
• The location of the existing loadfile.

• The places specified in -L options.

• The places specified by the DT_RPATH entry of the .dynamic section.

• On OSS, if the existing file is a 64-bit data model: /lib64, /usr/lib64, and
/usr/local/lib64.

• On OSS, /lib, /usr/lib, and /usr/local/lib.

• On Guardian or OSS, if the existing file is a 64-bit data model: $SYSTEM.YDLL.

• On Guardian or OSS: $SYSTEM.ZDLL.

The -nostdlib option stops the -alf option from looking for public libraries or in
the standard places (i.e., the last two items in the above list), the same as when this
option is used when the linker is creating a new loadfile.

The search path makes use of the information in DT_TANDEM_RPATH_FIRST and
DT_RPATH entries of the .dynamic section so that its search path is similar to that of
rld, and so that the user need not specify any -L or -first_L options. However,
this can only be expected to work when -alf is used in the same environment as
where the program will run, which means not only that it is also the HP NonStop
operating system platform, but that it is the proper version of the operating system, etc.
The -L and -first_L options are provided so that the -alf option can be used
when the places specified by entries in the .dynamic section would not work.

It is also possible to specify the -rld_L and -rld_first_L options with -alf. As
with the linker’s normal processing of these options, you can specify them multiple
times, and the linker concatenates the strings given. Unlike the linker’s normal
processing of these options, the -alf option does not concatenate these strings with
the ones found in the dt_rpath and dt_tandem_rpath_first entries of the .dynamic
sections of other DLLs that it sees. Instead, if values are specified for -rld_L or -
rld_first_L with -alf, that is used instead of the strings found in the dt_rpath and
dt_tandem_rpath_first entries of the loadfile being updated by the -alf option, when
the -alf option is looking for DLLs. The contents of the dt_rpath and
dt_tandem_rpath_first entries of the .dynamic section of the loadfile being updated by
the -alf option are not updated by these options. The only way to update these
entries within the loadfile is to relink it from scratch.

Note that the linker still looks in all the places specified above, regardless of the
platform. For example, even though it may not accomplish anything, the linker does
look in the places specified by the dt_rpath and dt_tandem_rpath_first entries of the
.dynamic section, even when running on the PC platform. Colons are still used to
separate names in these entries, even on the PC platform.

If the limit_runtime_paths bit is set in the flags field of the .tandem_info section of the
loadfile then the -alf option does not look in the location of the existing loadfile.
eld Manual—527255-009
4-4

Other eld Processing Additional rules about -alf
Searches performed by the -alf option must always find DLLs rather than archives,
as if -b dllsonly had been specified. It is not possible to specify any -b options
with -alf.

The -alf option supports the -allow_missing_libs option. If a DLL that is listed
in the .liblist section cannot be found, the .liblist entry is left alone.

When the -alf option is operating on a program, it uses the user library the same as
when the linker created the program. By default, the library name stored within the file
is used for the filename of the user library. Or, the -local_libname option can be
specified with -alf, to override the name found within the file (this does not change
the filename that is stored in the file). The -set libname option cannot be specified
with -alf.

Note that the -alf option uses whatever user library name is currently within the file,
or specified by the -local_libname option. It isn’t necessarily the same as the one
that was there when the file was previously preset.

The -change libname option cannot be specified with -alf. If desired, one linker
invocation could be used to change the name stored within the program, by specifying
-change libname, and then a separate linker invocation could give the -alf
option.

If a program specifies the name of a user library, and the -local_libname option is
not used, then on the PC this always means that the linker can’t find the user library. If
the linker doesn’t have a name for the user library, or, on any platform, if it can’t open
such a file, it is treated like a missing DLL, the same as when a program is created. If
the -local_libname option is used, and the program doesn’t mention any user
library name, that is an error.

By default, the -alf option considers it an error if the loadfile has any relocation sites
in the text segment, which would indicate non-PIC code. However, if the
 -update_code option is specified, the -alf option does not consider this an error,
and it updates those relocation sites. The only relocation sites updated in the text
segment are 64-bit addresses of symbols found in the same DLL, which need to be
updated what that DLL is rebased, and is an error if the -update_code option is
specified when the -alf option is updating a program rather than a DLL.

By default, the way the -alf option treats unresolved references depends on the
value of the runtime_unres_checking bits of the .tandem_info section of the loadfile.
Note that, unlike the case of creating a loadfile, the default does not depend on
whether the public DLL registry was found. This can be overridden by specifying the -
unres_symbols option with the desired parameter value. When -unres_symbols
option is specified with -alf, the runtime_unres_checking bits of the .tandem_info
section are unchanged. The -change option can be used (in a separate run of the
linker) to change those bits within the file.

The meanings of the three choices for how unresolved references are handled is the
same for the -alf option as when the object file is first linked, except that the
decision as to whether an unresolved symbol is expected to be code or data is made
eld Manual—527255-009
4-5

Other eld Processing Additional rules about -alf
by looking at the dynamic symbol table of the existing loadfile rather than the ELF
symbol table of an input linkfile.

The following parts of the existing object file potentially need to change when the -alf
option is used without rebasing:

• In the ELF header, the EF_TANDEM_PRESET bit may be changed.

• In the .tandem_info section, the update_timestamp field may be updated. The
creation_timestamp and tim_dat fields are not updated. Some other fields may be
reset to zero, as mentioned earlier.

• The LIC is updated. It may end up with more or less entries than before. This
includes the case that the LIC now is empty, or no longer is empty, because the file
now can or cannot be preset. But the .lic section always has the same size as
before. As mentioned earlier, if this size would not be big enough to contain the
LIC, then the file is not preset, so there is no LIC to worry about.

• Throughout the data segment, all the references to undefined symbols are updated
as necessary.

The following additional parts of the existing object file also potentially need to change
when the -alf option is used with rebasing:

• In the ELF header, the address of the entry point (the e_entry field) needs to be
updated, if this is a DLL that has an entry point. It is updated to the new (rebased)
address of the same procedure that was the main entry point before. The -e
option is not allowed with -alf.

• In the program headers, the p_vaddr fields are updated.

• In the .tandem_info section, the gp_value, the export_digest, and the four fields to
tell the addresses of the ctors array, etc., are updated, if they are nonzero. In the
.dynamic section, all the entries that tell addresses of sections of the loadfile, and
the entry that tells the GP value, are updated.

• In the .dynsym and .dynsym.gblzd sections, the addresses of all the defined
symbols are updated. If they are exported procedures, their st_size fields (telling
the addresses of their official function descriptors) are similarly updated.

• In the .rela.dyn and .rela.gblzd sections, the addresses of all the relocation sites
are updated.

• Throughout the data segment, all the references to symbols defined within the
same loadfile are updated. This includes references that are explicitly identified by
relocation table entries as well as things that -alf finds in other ways, such as the
contents of the _ctors, etc. arrays and the official function descriptors.

• In the ELF section headers, the sh_addr fields are updated, if they are nonzero.

The following additional part of the existing object file would potentially need to be
updated, but only in the case when -alf was rebasing the code and data segments by
different amounts:
eld Manual—527255-009
4-6

Other eld Processing Additional rules about -alf
• GP-relative addressing from the gateways to the text segment, specifically, when
the gateway contains the 64-bit GP-relative address of the procedure for which it is
the gateway.

The way that the -alf option updates all the items listed above depends on the type
of item:

• If the target of the reference is identified by name, -alf updates the reference
based on that name.

• If the reference site is one that is filled in by the linker, and -alf only knows that it
needs to be updated by the amount that this DLL was rebased, -alf determines
which segment previously contained the target of the reference and then updates
the reference site by the amount that that segment moved.

eld reports an error if the existing file cannot be opened for reading. It is possible to
specify the -o option to tell the name of the new output file. If the -o option is not
specified then it defaults to the same name as the existing loadfile. Even if the existing
file is a DLL, its DLL name does not influence the output file name. The output file is
created by the same method as described in The Creation of Output Object Files on
page 2-5, including the use of the -temp_o option or the -must_use_oname option.

Here is a complete list of the user options that are allowed with the-alfoption:

-allow_missing_libs
-first_L
-L
-local_libname
-must_use_oname
-must_preset
-no_preset
-no_verbose
-no_version_check
-nostdlib
-o
-obey
-public_registry
-rld_first_L
-rld_L
-stdin
-t -temp_o
-unres_symbols
-verbose
-warn

For further information on -alf see Appendix , How -alf Updates DWARF for a
discussion of the debug.reloc section of the object file.
eld Manual—527255-009
4-7

Other eld Processing The -set and -change Options
The -set and -change Options
The -set option is used to set certain items in the file being created. These items are
called “file attributes”. The following chart lists the file attributes and tells what they
mean, usually telling the name of the section of this document that provides more
explanation. Each of the attributes is specified together with a parameter to tell the
value of the attribute.

Table 4-1. The -set and -change Options
Attribute Attribute Meaning
data_model For this attribute, allowed values are: ilp32,

lp64, and neutral.
See eld Functionality for 64-Bit on
page 4-12.

systype Specifies the target platform personality. See
Target Platforms on page 2-2.

libname Specifies the user library name.
highpin

highrequestors

oktosettype

runnamed

saveabend

user_buffers

For these attributes the possible values are
“ON” or “OFF”. These attributes correspond
to flag bits in the .tandem_info section. The
default is ON for highpin and highrequestors,
and OFF for runnamed, saveabend, and
oktosettype. There are several synonyms for
“highrequestors”.

oktosettype For this attribute the possible values are
"ON" and "OFF". For compatibility with the
past, eld accepts this attribute and checks
its syntax, but otherwise this attribute is
ignored.

inspect For this attribute the possible values are
“ON” and “OFF”. This determines which
debugging facility is made available.
(Internally the corresponding value within the
flags field of the .tandem_info section of the
file is INSPECT_SUBSYSTEM or GARTH,
respectively.) With a TNS/E native file, “ON”
will either start a Visual Inspect session or
pass the file to an already established
session. “OFF” will start Native Inspect.
eld Manual—527255-009
4-8

Other eld Processing The -set and -change Options
The only attributes of the -set option which can be specified with the -r option are
data_model, floattype, and process_subtype.

The linker produces a warning message if it is creating a loadfile with highpin on
and any of the DLLs or import libraries that it has opened have highpin off.

The -libname option is a synonym for -set libname.

When eld builds a new object file from a set of input linkfiles it combines the values of
the process_subtype attribute found in those input linkfiles. If an input linkfile has a
.tandem_info section that is abbreviated to four bytes then its process_subtype is
considered to be zero. A non-zero value in one input file is accepted in preference to a
zero value in another input file, but two distinct non-zero values among the input files

heap_max

mainstack_max

process_subtype

space_guarantee

These attributes have numerical values.
These attributes correspond to fields in the
.tandem_info section. If not specified, the
default value in each case is 0.
See the Guardian Procedure Calls Manual
for more information about how to use the
heap_max, mainstack_max, and
space_guarantee attributes. More
information about process_subtype is
provided in the notes following this table.

floattype

float_lib_overrule

See Processing of Floating Point Versions
and Data Models on page 4-16.

CPlusPlusDialect See eld Functionality for 64-Bit on
page 4-12.

pfssize This attribute has a numerical value. For
compatibility with the past, the linker accepts
this attribute and checks its syntax, but
otherwise this attribute is ignored.

rld_unresolved The setting of this attribute tells the -alf
option, as well as rld, how to treat
unresolved symbols. See Handling
Unresolved References on page 3-8.

incomplete For this attribute the only allowed (and
therefore required) parameter is “ON”. If this
attribute is specified, it means that the import
library being created by the linker is
incomplete. The incomplete attribute only
applies to import libraries. The -change flag
can be used to turn it ON, but cannot turn it
off. See Creating Import Libraries on
page 3-11.

Table 4-1. The -set and -change Options
Attribute Attribute Meaning
eld Manual—527255-009
4-9

Other eld Processing The -set and -change Options
are considered inconsistent. If -set process_subtype is specified then the value
specified is placed into the output file and if any of the input linkfiles had a nonzero
process subtype different from that then a warning message is produced. On the other
hand, if -set process_subtype is not specified then it is an error if the input
linkfiles were inconsistent, and if they are consistent then the value from the input
linkfiles is placed into the output file.

The -set incomplete on option is only allowed when the linker is creating an
import library that represents a single DLL. It tells the linker to create an incomplete
import library, rather than a complete one. This could either be when the linker is
creating the import library at the same time as the linker is creating the corresponding
DLL, or when the linker is creating the import library for a DLL that already existed. In
either case, all the other things that are controlled by the -set option are the same in
the import library as in the corresponding DLL.

All the other attributes listed above, except for libname, can be specified whether
building a program or a DLL, even though some of them may be meaningless for
DLL's. The libname attribute can only be specified when building a program.

The -change option is used to alter the same attributes that can be set by the -set
option. The difference is that -change modifies an existing file, whereas -set is used
when a new file is being created. The -change option takes the same parameters as
-set, plus the name of the existing file.

The -change option can be used with a linkfile, loadfile, or import library, with the
following rules:

• The -change attributes that are allowed with a linkfile are the data_model
and floattype attributes.

• The -change libname attribute is only allowed with programs. The linker
places the name specified by the-change libname option into the
.tandem_info section of the program that it is creating. The linker also converts
the name to upper case, if not done already. On Guardian APIs,single quotes
do not work because they are not recognized by TACL; therefore, it is not
important to specify them.

• The incomplete attribute of the -change option is only allowed with import
libraries. This tells the linker to demote the import library to an incomplete one,
if it was a complete one before. There is no way to “un-demote” an incomplete
import library.

• The data_model attribute of the -change option is only allowed with DLLs
and import libraries.

It is possible to give an empty string, or a string consisting just of a single double-quote
character ("), as the user library name in the -change libname option. This makes it
possible to remove the user library name from an existing program. From the PC or
OSS command line you can use two double-quote characters ("") to pass an empty
string. However, on the TACL command line, when you use two double-quote
characters (""), a single double-quote character (") gets passed to the process. That is
eld Manual—527255-009
4-10

Other eld Processing The -set and -change Options
why eld also allows a single double-quote character (") to be given with -change
libname, and interprets it as an empty string. Note that this is only allowed with
 -change libname, not with -set libname.

Except for the items listed above, there are no restrictions on which attributes can be
specified. Note that some attributes can be specified for DLLs even though they are
meaningless for DLLs.

Note that it is permissible to change any of the attributes of an import library, even
though only a few of these attributes are significant in an import library. (The ones that
are “significant” are the ones that the linker might look at when building a client of that
import library in order to check for consistency, namely, the highpin bit, the floating
point type, and the C++ dialect, as well as the bit that tells whether the import library is
complete.)

The -change option performs the same version number checking on a loadfile or
import library as is described in Input Object Files on page 2-12.

In all cases, the -change option only changes the specific information specified, and
has no other consequences. For example, when -change libname is specified for a
program, it only changes the user library name that is shown in the program. If the
program was previously preset, using a different user library, that fact is unchanged.
The newly specified user library would be used in the future when this program is run.
At that time, if the user library found with that name was not equivalent to (i.e.,
contained the same export digest as) the user library that had been used when the
program was preset, then the program would not have been preset correctly for its
runtime environment and would need to be updated accordingly. That is the same as
what would happen if the same user library filename were still being used, but the
contents of that user library file had changed (i.e., so that its export digest was
different).

The -change option overwrites the existing file without recreating it. eld reports an
error if the file cannot be opened for update. If an error occurs the specified change
may or may not have taken place, but the file will not have been modified in any other
way.

It is possible for the command stream to have multiple -change options. Each one is
executed independently, if the previous one succeeds, even if they refer to the same
filename. For example, two -change options may both specify the same attribute,
such as -change highpin, and they don’t have to agree on the value to which this
attribute is being set, whereas such a consistency check would occur if -set
highpin were specified more than once. The only other options allowed with the -
change option are - no_verbose, -obey, -stdin, -verbose, and -warn.

Note: There are no -set or -change options that affect the procedure attributes that
are found in the .procinfo section of a linkfile or the stack unwinding information of a
loadfile. However, the -e option can be used to turn on the MAIN attribute in the
.procinfo section of a linkfile that is being created by the linker.
eld Manual—527255-009
4-11

Other eld Processing eld Functionality for 64-Bit
eld Functionality for 64-Bit
Object files can be 32-bit, 64-bit, or neutral. When eld is creating a new
object file out of a set of linkfiles, the desired data model for the output file is specified
by the following option:

 -set data_model [value]

where value can be ilp32, lp64, or neutral.

For lp64 input linkfiles, it is considered as an error, if -set data_model ilp32” is
specified. Conversely, for ilp32 input linkfiles, it is considered as an error, if lp64 is
specified. Specifying neutral, does not verify the data models for the input linkfiles and
the output file which is marked as neutral. The neutral option is allowed only while
creating a linkfile or a DLL, and not for a program.

If the input linkfiles contains a combination of ilp32 and lp64 linkfiles, it is considered
as an error if the -set data_model option is not specified. If this error does not
occur, either the output file is marked with the data models (ilp32 or lp64) which
occur within the input linkfiles, or is marked as neutral if all the input linkfiles are
neutral.

The -change data_model neutral option marks an object file neutral,
regardless of how it was marked before. This is allowed for linkfiles and DLL’s, but not
for programs.

The searching that is done for -l options or for liblist entries depends on the data
model of the file that is being created or processed by the -alf option, as discussed
in this manual.

When eld creates an import library that represents a single (non-implicit) DLL, the
import library is given the same data model as that DLL.

The import library that represents the implicit DLL’s is always neutral.

Checking the C++ Language Dialect
To build a new linkfile or loadfile, the linker performs consistency checks of C++
language dialects.

In a linkfile, the st_other fields of ELF symbol table entries tell which C++ language
dialects are used by that object file, if any. If more than one C++ dialect occurs among
all the input linkfiles, that is an error.

By default, if some dialect of C++ occurred in the input linkfiles, then that value is
placed into the .tandem_info section when eld is building a loadfile. If none of the
input files used C++ then the value cppneutral is placed into the .tandem_info
section.

CPlusPlusDialect is an attribute accepted by the -set option, and the only allowed
value of the attribute is cppneutral. Also, this option is only allowed when creating a
loadfile. If specified, it means that the loadfile will be marked cppneutral, even if the
eld Manual—527255-009
4-12

Other eld Processing Renaming Symbols
input files contained C++. An informational message is generated if the input files
contained C++.

When eld is creating a loadfile it also performs C++ dialect checking against all the
DLL's that it sees as part of that load. The check is that no DLL has the opposite C++
dialect from that seen in an input linkfile.
Note that the use of -set CplusPlusDialect cppneutral does not affect this
check. If this check fails a warning message is generated; it is not considered an error
because different DLL's might be used at runtime.

Renaming Symbols
The -rename option affects how the linker treats each input linkfile as it is reading it in.
This option takes two parameters, symbol-1 and symbol-2. The option has no effect
unless this linkfile defines a global symbol named symbol-1. eld reports an error if this
same linkfile also defines a global symbol named symbol-2. The linkfile that defined
symbol-1 is now considered to define a symbol named symbol-2, with the same
properties that symbol-1 had. The linkfile is still considered to declare a symbol named
symbol-1, with the same properties as before, except that it is now an external
reference rather than a definition.

As a result, if the object file being built would have defined a symbol named symbol-1,
it will now define symbol-2 instead. If there were references to symbol-1, those will still
refer to symbol-1, and therefore they could not be resolved within this same object file.
If a new linkfile is being built with the -r option, a future link could combine this linkfile
with another one that supplied a definition of symbol-1, to satisfy such references. Or,
in general, the references could be satisfied in other DLLs.

One purpose of this option is to allow one copy of symbol-1 to be replaced by another
one, without having to recompile the source that created the linkfile containing symbol-
1. For example, the given object file that defines symbol-1 may be put through the
linker with the -r and -rename options to create another linkfile that no longer
defines symbo1, and then that linkfile could be linked with another one that provides a
different definition of symbol-1. For this purpose it is not necessary that the name
symbol-2 ever be referenced. However, when a procedure is renamed, the new version
of symbol-1 might wish to do the same things that the older symbol-1 would have
done, plus some new things. It could do this by calling symbol-2 to do the old stuff, and
having additional code for the new stuff.

Any number of -rename options may be in the command stream. They all apply to all
the input linkfiles, regardless of where they occur in the command stream. As each
input linkfile is processed, the linker does the processing described above for each
 -rename option, in the order that the -rename options appeared in the command
stream.
eld Manual—527255-009
4-13

Other eld Processing Creating Linker-Defined Symbols
Creating Linker-Defined Symbols
Predefined Symbols on page A-14 lists the symbols that are automatically defined by
the linker when it creates a loadfile, and what they mean. The linker resolves
references to these symbols by using the value of the symbol as if it was an address.

As mentioned in Creating the MCB on page 4-15, eld reports an error if you define a
symbol named _MCB. For other linker-defined symbols the linker puts out a warning if
they are defined by the user. Note that, if such a symbol is defined by the user, then
the linker uses the symbol defined in the linkfile in the usual way, rather than creating
its own symbol of this name with a special meaning.

Updating Or Stripping DWARF Symbol Table Information
The linker concatenates the DWARF symbol tables of its input linkfiles into the DWARF
symbol table of its output file.

The linker fills in the addresses of symbols found in the DWARF symbol table
information. Such relocation sites are described in linkfiles by the same kinds of
relocation table entries as any other data, so that the linker doesn’t need to understand
the format of the DWARF symbol table to do this. In loadfiles, the addresses in the
DWARF symbol table are the usual addresses, not segment-relative addresses.

When there are multiple copies of a symbol, the DWARF addresses for the unused
copies are set to -1, as discussed in Accepting Multiply-Defined Symbols on
page 3-17.

The stripping of symbols information means that the linker does not create the DWARF
symbol table information in its output file(s). The reason to do this is to make object
files smaller, when the user is not concerned with debugging. For compatibility with the
past, this can be done with either the -s or -x option. In our TNS/R implementations,
-s strips all the symbols information, whereas -x strips only the symbols information
that the linker doesn’t need, but the distinction has disappeared with the segregation of
the debugging information into the DWARF symbol table. In other words, the TNS/E
linker does not depend on information in the DWARF symbol table for any of its other
activities.

When the linker is creating a linkfile and stripping the DWARF symbol table the linker
also omits the corresponding relocation table sections.

When the linker is creating an import library, that import library may or may not contain
DWARF symbol table information. See Creating Import Libraries on page 3-11.

The -strip option tells the linker to remove the DWARF symbol table from a loadfile
or import library that already exists. This option creates a new file in place of the old
file.

It is possible for the command stream to have multiple -strip options. Each one is
executed independently, if the previous one succeeds. The only other options allowed
with the -strip option are -must_use_oname, -no_verbose,
-no_version_check, -obey, -stdin, -temp_o, -verbose, and -warn. If
eld Manual—527255-009
4-14

Other eld Processing Modifying the Data Sections that Contain Stack
Unwinding Information
there are multiple -strip options, the temporary filename specified by -temp_o
applies to all of them.

The ELF symbol table can never be stripped from a linkfile, and the .dynsym and
.dynsym.gblzd sections can never be stripped from a loadfile, because they are
needed by the linker and/or runtime loader.

Modifying the Data Sections that Contain Stack Unwinding
Information

Linkfiles may contain an unwind function section, an unwind information section, and a
relocation table section for that unwind function section. The linker concatenates these
sections when creating another linkfile. The linker similarly concatenates the
information in .procinfo and .procnames sections.

When building a loadfile, the linker creates an unwind function section, unwind
information section, and string space. The format of the unwind function section in a
loadfile is different from the format that it has in a linkfile, containing additional
information that the linker obtains from the .procinfo and .procnames sections of its
input linkfiles.

If there were multiple copies of procedures, the information about unused copies is
omitted from the .procinfo and unwind function sections of linkfiles, and from the
unwind function sections of loadfiles. In the linkfile case, that also means doing
something about the corresponding relocation table entries.

Creating the MCB
The linker creates the MCB (“master control block”) as additional data in the .data
section. The internal name of the MCB is _MCB (one underscore), so this name can be
used to reference the MCB. The linker only creates the MCB if it is building a program,
and only if there is a reference to the symbol named _MCB. eld reports an error if a
symbol named _MCB is defined in any of the linker’s input object files, regardless of
the type of file the linker is creating.

Two linker options that specifically affect the value placed into the MCB are
-ansistreams and -nostdfiles. The value that the linker has decided to place
into the ELF header to describe the floating point type is also reflected in the MCB.

The TNS/E linker considers it an error if either of the above options is specified when
the linker is not creating a program. The option -no_stdfiles is accepted as a
synonym for -nostdfiles.

Further information on the MCB may be found in The MCB (Master Control Block) on
page A-14.
eld Manual—527255-009
4-15

Other eld Processing Processing of Floating Point Versions and Data
Models
Processing of Floating Point Versions and Data Models
When the linker builds a new linkfile or loadfile it performs consistency checks of
floating point versions. These checks use the floating point bits that are found in the
e_flags field of the ELF header.

The linker determines whether the input linkfiles are consistent, meaning that they do
not contain a mixture of both the tandem and ieee floating point types. If they are
consistent then the result type is determined to be whichever of tandem or ieee
occurred, or neutral if neither occurred.

If the -set floattype option is used, that determines the value that is placed into
the output linkfile or loadfile. The three values that can be specified with the -set
floattype option are ieee, neutral, and tandem, and they have the synonyms
ieee_float, neutral_float, and tandem_float, respectively. An informational
message is generated if the input files were not consistent, or if they were consistent
but with a result type different from what the option specified.

If a program is marked neutral, the HP NonStop operating system and CRE
consider that to mean the same thing as tandem. If the linker is creating a program
and -set_floattype neutral has been specified then the linker will put out a
warning message to say that floating point type neutral actually means tandem to
the HP NonStop operating system and CRE.

If the -set floattype option is not used, eld reports an error if the input files are
not consistent. If they are consistent, the result type is placed into the output file.

When the linker is building a loadfile, the -set float_lib_overrule option may
be used to turn on the EF_TANDEM_FLOAT_LIB_OVERRULE bit in the ELF header of
the loadfile. The linker allows this bit to be set in both programs and DLLs.

The linker performs additional floating point checks with regard to DLLs when it is
creating a new loadfile, as described in the following paragraphs. The same checks are
performed by the -alf option when they are updating an existing loadfile. These
checks result in warning messages, not errors, because different DLLs may be used at
runtime.

If the linker is building a program, or updating it with -alf, the intention is to be
consistent with the checks that the HP NonStop operating system will do. So, there is
no checking against DLLs if the linker has been told to turn on the
FLOAT_LIB_OVERRULE bit in the program. If this bit is not to be turned on then the
linker checks the program’s floating point type against all the DLLs that it has opened.
All DLLs must either be neutral or have the same floating point type as the one
indicated in the program. As mentioned above, if the program is marked neutral, the
linker considers that to mean tandem.

If the linker is building or updating a DLL then it checks that all the DLLs seen by the
linker, including the DLL that is being created or updated, do not contain a mixture of
both tandem and ieee.
eld Manual—527255-009
4-16

Other eld Processing Specification of the Main Entry Point
Checks are only performed against DLLs that the linker actually saw. For example, the
linker is not required to search for indirect DLLs if it is not presetting and not checking
for unresolved symbols, so in that case it is not required to perform floating point
consistency checking against such indirect DLLs.

Whenever the linker builds a new linkfile or loadfile it checks for the consistency of the
data model among its input linkfiles, because the two data models cannot be
intermixed in the same loadfile, and the data model of the input linkfiles determines the
data model for the output file. More specifically, at the present time, the linker does not
allow the 64-bit data model at all, but in the future that will be relaxed. There is no
checking for consistency against DLLs, because loadfiles with different data models
are allowed in the same process.

Specification of the Main Entry Point
There are two ways to specify the main entry point of a loadfile. One is to use the -e
option, specifying the name of a procedure. The other way is for a procedure to have
the MAIN attribute.

In a program, the e_entry field is filled in with the address of the real code for the main
entry point. In a DLL, if it has a main entry point, then that procedure must have an
official function descriptor, and the e_entry field contains the address of that official
function descriptor.

When the -e option is specified the linker checks that it is the name of a procedure
that is defined in this object file (otherwise it is an error). eld reports an error if this
procedure has the CALLABLE or KERNEL_CALLABLE attribute. Additional rules
depend on the type of file that the linker is building:

• If the linker is building a program then eld reports an error if no main entry
point has been specified by either of the above methods. The linker will put out
a warning if the -e option is used and the program has a procedure with the
MAIN attribute, unless the same procedure is indicated in both cases. The
linker uses the -e option to determine the main entry point, overriding the fact
that a procedure had the MAIN attribute.

• If the linker is building a DLL then eld reports an error if any procedure has the
MAIN attribute. However, the -e option is allowed. If the -e option is not
provided then the e_entry field contains zero.

• If the linker is building a linkfile then the -e option has a different purpose.
Namely, it turns on the MAIN attribute in the .procinfo entry for the specified
name. The e_entry field of the ELF header in a linkfile always contains zero.

When the linker is building a loadfile eld reports an error if more than one procedure
has the MAIN attribute, unless the -allow_multiple_mains option is used. When
there are multiple procedures with the MAIN attribute, and this is not an error, the linker
pays attention to the MAIN attribute on the first procedure that it sees with it. This
ordering is implied by the order in which the linker finds linkfiles from the command
stream and the ordering of the entries in the .procinfo sections of the linkfiles.
eld Manual—527255-009
4-17

Other eld Processing Specifying Runtime Search Path Information for
DLLs
When building a program in C or C++, and using the standard runtime library support
provided by these compilers, the usual method is to place in the linker command
stream an object file that is also supplied with these compilers and contains a
procedure that has the MAIN attribute. Users who invoke the linker through the
compiler may not realize this, because the compiler automatically adds the file name to
the linker command stream when it invokes the linker. Thus, for most users of C or
C++, the main procedure is not a procedure they’ve written themselves, and there is no
need to use the -e option. If you use the -e option and specify the wrong procedure
(for instance, the procedure named main that you’ve written) as the main entry point,
and you ignore the linker warning about this, then you will probably build a program
that will not run correctly because it will not start at the proper point.

Specifying Runtime Search Path Information for DLLs
The linker fills in the DT_RPATH and DT_TANDEM_RPATH_FIRST entries of the
.dynamic section to tell rld where to find DLLs at load time. Each of these fields is a
list of places to look, where a colon separates the names in the list. The individual
names cannot contain colons. The commands used for filling in these entries, and the
purposes of these entries, are as follows:

• DT_RPATH tells places to look after looking for public DLLs. The -rld_L
option specifies a string to place into DT_RPATH. -rpath is accepted as a
synonym for -rld_L.

• DT_TANDEM_RPATH_FIRST tells places to look before looking for public
DLLs. The -rld_first_L option specifies a string to place into
DT_TANDEM_RPATH_FIRST.

Each of the -rld_L and -rld_first_L options may be specified multiple times in
the command stream. The linker concatenates the information provided, in the order
the options were given. The linker understands that names are separated by colons,
and removes duplicate names from the list. eld reports an error if you specify these
options with -r.

Note that the linker does not try to detect names that are “invalid” for any reason and
remove them from the list.

Note that the -rld_L and -rld_first_L options are allowed whether building a
program or a DLL. rld only uses this information found in programs. However, the
linker looks at this information in each DLL that it uses in a link that is creating a
loadfile. The linker concatenates this information from DLLs the same as if the
corresponding values had been given in the command stream, considering them to
come at the end of the command stream and in the same order as the DLLs were
found by the linker.

The -limit_runtime_paths option is used to tell rld that its algorithm for looking
for DLLs is not to be concerned with the location of the program nor with any runtime
path specifications. When this option is specified the linker turns on the
LIMIT_RUNTIME_PATHS bit in the flags field of the .tandem_info section.
eld Manual—527255-009
4-18

Other eld Processing Merging Source RTDUs
The DT_RPATH and DT_TANDEM_RPATH_FIRST entries in the .dynamic section are
also used by -alf to decide where to look, although in this case they can be
overridden by giving the -rld_L or -rld_first_Loptions with -alf.

Merging Source RTDUs
Each input linkfile may contain a set of source RTDUs, which are used in the
implementation of SQL/MP. If so, then the linker creates source RTDUs in its output
file. This mostly involves concatenating the corresponding sections, although there are
also pointers into RTDU string spaces that need to be updated appropriately.
eld Manual—527255-009
4-19

Other eld Processing Merging Source RTDUs
eld Manual—527255-009
4-20

5 Summary of Linker Options
This section lists all the options supported by the TNS/E linker. For each one the
complete syntax is shown, a brief statement of its function is given, and a hyperlinked
reference is given to the main discussion of it elsewhere in this manual.

-alf <filename>

Rebase and/or rebind an existing loadfile, recreating the file.
See Additional rules about -alf on page 4-3.

-all

Use all members from archives. See Using Archives on page 2-16.

-allow_duplicate_procs

Do not consider it an error if there are multiple definitions of procedures with the
same name. See Accepting Multiply-Defined Symbols on page 3-17.

-allow_missing_libs

Do not consider it an error if a -l option cannot be resolved, except in situations
where -b static is in effect. See How the Linker Finds Its Input Files and
Creates the .liblist Section on page 2-12.

-allow_multiple_mains

Do not consider it an error if more than one procedure has the MAIN attribute.
See Specification of the Main Entry Point on page 4-17.

-ansistreams

At runtime, the program will use the ANSI version of C I/O.
See Creating the MCB on page 4-15.

-b { dllsonly | dynamic | static }

These options specify whether the linker accepts DLLs and/or archives.
See How the Linker Finds Its Input Files and Creates the .liblist Section on
page 2-12.

-b { globalized | localized | semi_globalized | symbolic }

These options affect how references are resolved across loadfiles.
See Overview on page 3-1.

-call_shared

Create a program. See Output Object Files on page 2-4.
eld Manual—527255-009
5-1

Summary of Linker Options
-change <attribute> <value> <filename>

Change the parts of an existing object file corresponding to things that the -set
option would set up. The <attribute> and <value> have the same possibilities as for
the -set option shown below. See The -set and -change Options on page 4-8.

-check_registry <filename>

Use the specified DLL registry to tell where the DLL being built must be placed in
memory. See Using a DLL Registry on page 2-8.

-cross_dll_cleanup

Discard a procedure if found in another DLL. For more information, see Using the -
cross_dll_cleanup option on page 3-19.

-d <hexadecimal address>

Use the specified value as the starting address of the data (constant) segment.
See Creating Segments of the Output Loadfile on page 2-6.

-data_resident

This is a special option that may be used when building a “proto-process”, also
known as a “sysgen process”.

-dll

synonym for -shared.

-dllname

synonym for -soname.

-e <symbol name>

Use the address of the specified procedure as the main entry point.
See Specification of the Main Entry Point on page 4-17.

-error_unresolved

synonym for -unres_symbols error.

-export

synonym for -exported_symbol.

-export_all

Export all symbols that one might normally want to have exported without naming
them explicitly. See Specifying Which Symbols to Export, and Creating the Export
Digest on page 3-20.
eld Manual—527255-009
5-2

Summary of Linker Options
-exported_symbol <symbol name>

Export the specified symbol from the loadfile being created. See Specifying Which
Symbols to Export, and Creating the Export Digest on page 3-20.

-export_not

synonym for -hidden_symbol.

-first_L <location>

The specified directory or subvolume is one of the places where the linker will look
for DLLs and archives before it looks for public DLLs. See The Steps in Looking for
Archives and DLLs on page 2-17.

-FL

synonym for -obey.

-grow_data_amount <number>

Leave the specified amount of slack space in virtual memory for the data of this
DLL. See Using a DLL Registry on page 2-8.

-grow_limit <number>

Use the specified value as the total amount of memory reserved for this DLL.
See Using a DLL Registry on page 2-8.

-grow_percent <number>

Leave the specified percentage of slack space in virtual memory for each of the
text and data segments of this DLL. See Using a DLL Registry on page 2-8.

-grow_text_amount <number>

Leave the specified amount of slack space in virtual memory for the text of this
DLL. See Using a DLL Registry on page 2-8.

-hidden_symbol <symbol name>

Do not export the specified symbol. See Specifying Which Symbols to Export, and
Creating the Export Digest on page 3-20

-import_lib <filename>

Build a complete or incomplete import library with the specified filename in addition
to creating a new DLL. See Creating Import Libraries on page 3-11.

-import_lib_stripped <filename>

Build a complete or incomplete import library with the specified filename in addition
to creating a new DLL, and strip the DWARF symbol table from the import library.
See Updating Or Stripping DWARF Symbol Table Information on page 4-14.
eld Manual—527255-009
5-3

Summary of Linker Options
-include_whole

synonym for -all.

-instance_data { data1 | data2 | data2protected | data2hidden |
data1constant }

This tells the linker whether to create one or two data segments, and whether to
require that the loadfile have no data that would need to go into the data variable
segment if two segments were created. See Creating Segments of the Output
Loadfile on page 2-6.

-l <filename>

Use the specified filename to locate a DLL or archive. The “-l” must be specified
in lower case. See How the Linker Finds Its Input Files and Creates the .liblist
Section on page 2-12.

-L <location>

The specified directory or subvolume is one of the places where the linker will look
for DLLs and archives, after it looks for public DLLs. The “-L” must be specified in
upper case. See The Steps in Looking for Archives and DLLs on page 2-17.

-lib

synonym for -l. This usage may be preferred because it is not case sensitive and
therefore cannot be confused with -L.

-libname

synonym for -set libname.

-libvol

synonym for -L.

-limit_runtime_paths

If this is specified then rld will not permit the user to override the places specified
at link time for where DLLs may be found.
See Specifying Runtime Search Path Information for DLLs on page 4-18.

-local_libname <filename>

Use the specified filename as the name of the user library that can be used to
resolve references in this program at link time.
See Using User Libraries on page 3-10.

-m

synonym for -map.
eld Manual—527255-009
5-4

Summary of Linker Options
-make_implicit_lib

Mark the DLL being created as an implicit library.
See Output Object Files on page 2-4.

-make_import_lib <filename>

Create a complete or incomplete import library with the specified filename, to
represent the other DLL or DLLs whose filename(s) are found in the command
stream. See Creating Import Libraries on page 3-11.

-map

Produce a map showing how memory has been laid out. See Creating Segments
of the Output Loadfile on page 2-6.

-must_preset

Consider it an error if presetting fails. See To Preset or Not to Preset, and Creation
of the LIC on page 3-7.

-must_use_iname

eld reports an error if the linker isn’t able to delete an existing file of the same
name when creating an import library. See Creating Import Libraries on page 3-11.

-must_use_oname

eld reports an error if the linker isn’t able to delete an existing file of the same
name when creating its main output object file. See The Creation of Output Object
Files on page 2-5.

-must_use_rname

 eld reports an error if the linker isn’t able to delete an existing file of the same
name when it is recreating a private DLL registry. See Using a DLL Registry on
page 2-8.

-no_include_whole

synonym for -none.

-none

Only include archive members in the link if they satisfy needed references. See
Using Archives on page 2-16.

-no_optional_lib

Do not consider later DLLs in the command stream to be optional. See Ignoring
Optional Libraries on page 3-14.
eld Manual—527255-009
5-5

Summary of Linker Options
-no_preset

Do not preset the loadfile being created. See To Preset or Not to Preset, and
Creation of the LIC on page 3-7.

-no_reexport

Do not reexport DLLs found after this point in the command stream. See How the
Linker Finds Its Input Files and Creates the .liblist Section on page 2-12.

-nostdfiles

At runtime, do not automatically open the standard C I/O files.
See Creating the MCB on page 4-15.

-no_stdfiles

synonym for -nostdfiles.

-nostdlib

Do not look in the standard places for DLLs and archives. See The Steps in
Looking for Archives and DLLs on page 2-17.

-no_stdlib

synonym for -nostdlib.

-noverbose

synonym for -no_verbose.

-no_verbose

Do not show warnings or informational messages unless they are requested by a
linker option. See General Information on page 6-1.

-no_version_check

Do not perform the object file version check. See Input Object Files on page 2-12.

-NS_extent_size extent-size

Changes the extent size from the default (32 pages) to the specified size.

extent-size

is an even number in the range 2 to 65534, inclusive.

A page has 2048 bytes.

eld uses extent-size for both primary and secondary extents.

Note. For Guardian environment only.
eld Manual—527255-009
5-6

Summary of Linker Options
-NS_max_extents max_extents

Changes the maximum number of extents from the default (900) to the specified

number.

max_extents

is a number in the range 16 to 900, inclusive.

-o <filename>

Use this as the name of the output object file. See The Creation of Output Object
Files on page 2-5.

-obey <filename>

Use the specified file as an obey file. See Obey Files and the Use of Standard
Input on page 1-7.

-optional_lib

Consider later DLLs in the command stream to be optional. See Ignoring Optional
Libraries on page 3-14.

-public_registry <filename>

Use the specified file as the public DLL registry file. See Finding Public DLLs on
page 2-18

-r

 Create a linkfile rather than a loadfile. See Output Object Files on page 2-4.

-reexport

Re-export DLLs found after this point in the command stream. See How the Linker
Finds Its Input Files and Creates the .liblist Section on page 2-12.

-rename <symbol name> <symbol name>

Change the name of a symbol while creating a new file. See Renaming Symbols
on page 4-13.

-rld_first_L <path>

The string specified by <path> should be a list of directories and/or subvolumes
separated by colons. At runtime, the specified directories and/or subvolumes are

Note. For Guardian environment only.

Note. The Guardian Procedure Calls Reference Manual recommends that max-
extents not exceed 500.
eld Manual—527255-009
5-7

Summary of Linker Options
places where rld will look for DLLs before it looks for public DLLs. See Specifying
Runtime Search Path Information for DLLs on page 4-18.

-rld_L <path>

The string specified by <path> should be a list of directories and/or subvolumes
separated by colons. At runtime, the specified directories and/or subvolumes are
places where rld will look for DLLs after it looks for public DLLs. See Specifying
Runtime Search Path Information for DLLs on page 4-18.

-rpath

synonym for -rld_L.

-s

Omit the DWARF symbol table when creating the output file. See Creating Import
Libraries on page 3-11.

-set <attribute> <value>

Set the specified attribute to have the specified value in the loadfile being created.
The following chart lists the attributes, their possible values, their defaults if not
specified, and the section of this document to look at for more information.

Table 5-1. Set Attributes

Attribute Name Allowable Values Default
See Section for
Details

CPPDialect |
CPlusPlusDialect

neutral | cppneutral These two names
and values are
synonymous. Use
one only. The value
comes from the
input linkfiles

eld Functionality for
64-Bit on page 4-12

data_model ilp32 | lp64 |neutral ilp32 See eld
Functionality for 64-
Bit on page 4-12

floattype ieee | neutral |
tandem

The value comes
from the input
linkfiles

Processing of
Floating Point
Versions and Data
Models on
page 4-16

float_lib_overrule on | off off Processing of
Floating Point
Versions and Data
Models on
page 4-16
eld Manual—527255-009
5-8

Summary of Linker Options
heap_max < number> 0 The -set and -
change Options on
page 4-8

highpin on | off on The -set and -
change Options on
page 4-8

highrequester |
highrequesters |
highrequestor |
highrequestors

on | off on The -set and -
change Options on
page 4-8

incomplete on
(note: only one
allowable value, so
it is therefore also
required)

If not specified, and
an import library is
being created, it is
a complete import
library.

Creating Import
Libraries on
page 3-11

inspect on | off on The -set and -
change Options on
page 4-8

interpose_user_library on | off off The -set and -
change Options on
page 4-8

libname <filename> If not specified,
there may be no
user library, or the
name may be
derived from what
is specified for the -
local_libname
option.

Using User
Libraries on
page 3-10

mainstack_max < number> 0 The -set and -
change Options on
page 4-8

oktosettype on | off off The -set and -
change Options on
page 4-8

pfs | pfssize <number> Option is a no-op. The -set and -
change Options on
page 4-8

process_subtype |
subtype

<number> 0 The -set and -
change Options on
page 4-8

Table 5-1. Set Attributes

Attribute Name Allowable Values Default
See Section for
Details
eld Manual—527255-009
5-9

Summary of Linker Options
-shared

Create a DLL. See Output Object Files on page 2-4.

-show_multiple_defs

Put information into the listing about symbols that are defined in more than one of
the input linkfiles. See Accepting Multiply-Defined Symbols on page 3-17

-soname <filename>

Specify the DLL name for the DLL being created. See Output Object Files on
page 2-4.

-stdin

Use the standard input file as an obey file. See Obey Files and the Use of
Standard Input on page 1-7.

-strip <filename>

Remove the DWARF symbol table from an existing loadfile or import library.
See Updating Or Stripping DWARF Symbol Table Information on page 4-14.

rld_unresolved error | warn | ignore error Handling
Unresolved
References on
page 3-8

runnamed on | off off The -set and -
change Options on
page 4-8

saveabend on | off off The -set and -
change Options on
page 4-8

space_guarantee < number> 0 The -set and -
change Options on
page 4-8

systype guardian | oss (depends on the
platform)

Target Platforms on
page 2-2

User_buffers on | off off The -set and -
change Options on
page 4-8

Table 5-1. Set Attributes

Attribute Name Allowable Values Default
See Section for
Details
eld Manual—527255-009
5-10

Summary of Linker Options
-t <hexadecimal number>

Use the specified value as the starting address of the text segment of the loadfile
being built. See Creating Segments of the Output Loadfile on page 2-6.

-temp_i <filename>

Use the specified filename as the name of the intermediate file during the creation
of an import library. See Creating Import Libraries on page 3-11.

-temp_o <filename>

Use the specified filename as the name of the intermediate file during the creation
of the linker’s main output object file. See The Creation of Output Object Files on
page 2-5.

-temp_r <filename>

Use the specified filename as the name of the intermediate file during the
recreation of a DLL registry. Using a DLL Registry on page 2-8.

-u <symbol name>

Consider the specified symbol to be needed when deciding which files to take from
archives. Using Archives on page 2-16

-ul

Create a user library. Actually, this option is a synonym for -shared plus
-export_all. See Output Object Files on page 2-4.

-unres_symbols { error | ignore | warn }

Handle unresolved references in the way specified. See Handling Unresolved
References on page 3-8

-update_registry <filename>

Use the specified DLL registry to suggest where the DLL being built may be placed
in memory and update it with the location chosen. See Using a DLL Registry on
page 2-8.

-verbose

Show all messages. See Output Listings and Error Handling on page 6-1.

-warn

Show all error and warning messages. See Output Listings and Error Handling on
page 6-1.
eld Manual—527255-009
5-11

Summary of Linker Options
-warn_common

Warn when a common symbol is combined with another common symbol of the
same name but of different size.

-warning_unresolved

synonym for -unres_symbols warn.

-x

Omit the DWARF symbol table when creating the output file. See Creating Import
Libraries on page 3-11.

-y <symbol name>

Provide information about how this symbol is mentioned in the ELF symbol tables of
the linker’s input files. See Merging Symbols Found in Input Linkfiles on page 3-16.
eld Manual—527255-009
5-12

6
Output Listings and Error Handling

This section contains the following topics:

General Information - when and how messages are created.

Error Messages - individual cause, effect and recovery information.

Glossary of Errors - further detail on some of the error message text .

General Information
The linker creates a listing file that is written to the C standard output file. eld does
not override whatever default rules are provided for the standard output file by the C
runtime on each platform. For example, if it is not possible to open the standard output
file, and the default behavior of the C runtime is to write out a message on standard
error in such a situation, then that is what will happen. Also, note that when you put
standard output into a file on Guardian, it gets appended to what was in that file before,
rather than overwriting the file (this is "normal" Guardian behavior; for example, FUP
does the same thing).

Messages that appear in the output listing fall into the following four severity levels:

On Guardian eld's return code is equal to the highest severity level that occurred
during the link, i.e., 0, 1, 2, or 3. That is done because this is a Guardian standard. On
the other hand, on the PC and OSS, users are accustomed to just checking whether
the value is 0 or 1, and considering 1 to be an error, and not caring about warnings.
So, on the PC and OSS, eld calls exit with a parameter value of 0 if the highest
severity was 0 or 1, and with a parameter value of 1 if the highest severity level was 2
or 3.

Table 6-1. Completion Codes - The Severity Levels of Messages
Severity
Level

Type of
Message Meaning

3 fatal error The linker cannot do what was requested of it and the linker
immediately stops. This includes all cases of command
stream syntax errors, I/O errors, and memory allocation
errors.

2 error The linker cannot do what was requested of it and will
eventually stop, but may continue for the purpose of
detecting additional errors before stopping.

1 warning The linker can do what was requested of it, but the linker isn’t
sure that this is what the user really wanted.

0 information This is not indicative of a problem.
eld Manual—527255-009
6-1

Output Listings and Error Handling General Information
Normally, eld cleans up any output files and flushes the standard output file.
However, if eld terminates unexpectedly, incomplete output files may still be in
existence and the standard output file may not be flushed.

It is also possible for the standard output file to disappear while eld is running. For
example, this could happen on Guardian if the standard output file is a process, and
that process is killed while eld is running. In that case, eld still goes on with what it
was doing, producing the same return code as described above, to tell if the output file
could be correctly created. The only difference is that there is no standard output file.

Versions of eld running on TNS/R and TNS/E are built (by the corresponding TNS/R
or TNS/E tools) with -set saveabend off, so by default these versions of eld do
not generate a saveabend file if they terminate in error. You may use the normal HP
NonStop OS command line mechanisms to request that eld generate a saveabend file
if it terminates in error.

Messages are numbered and tell their severity level. Messages can be understood in
conjunction with the other material in this document, including the following section that
lists the messages. It is not intended that people depend on the specific numbers or
contents of messages, since they are always subject to change. Messages related to
I/O errors contain the message text for the error returned from the C runtime.

Some messages are requested by specific linker options. Such messages always
appear in the output listing. The following are the options that do this:

-map
-show_multiple_defs
-unres_symbols (warn or error)
-y

The appearance of other messages in the output listing is controlled by the following
options:

-verbose

 show all messages (error, warning, and informational)

-warn

 show all error and warning messages (but not informational messages)

-no_verbose

 show error messages (but not warnings or informational messages)

It is an error if more than one of these options is specified. Since all messages created
by eld during command stream processing are errors, there is no need for a toggle.

If none of the above options is given, the default is -no_verbose on OSS and the
PC, and verbose on Guardian.

The option -noverbose is a synonym for -no_verbose.
eld Manual—527255-009
6-2

Output Listings and Error Handling General Information
In those cases where the default would be -verbose, the listing always begins with
banner information. In other cases, there is banner information at the top of the output
file if -verbose is explicitly specified or if any messages need to be written. The
banner information includes the following items:

• the name of eld itself (i.e., as provided to it by the argv [0] string)

• information that tells when this version of eld was built

• a copyright statement

• a statement about the GNU license, as required by that license

However, this banner information is omitted if either the -vslisting or -no_banner
option is given. If eld encounters a fatal error while processing the command line
then these options need to be earlier on the command line in order to have an effect.

The purpose of the -vslisting option is to guarantee that the format of the eld
listing satisfies the requirements of ETK, the Enterprise Tool Kit, as explained below.
This is a tool that causes eld to be invoked and also specifies the -vslisting
option.

The purpose of the -no_banner option is for c89 or c99 to use it at least in cases
where eld is in a directory that has a space in its name. In such a case, c89 or c99
does not need to set up argv [0] correctly for eld. Instead, c89 or c99 itself may print
out the correct name of eld and use the -no_banner option to stop eld from printing
out the incorrect string that c89 or c99 passed to it.

The next thing in the listing is a copy of the command line, without -obey options
expanded.

 After that come all the messages in the four categories shown above.

If the listing is not otherwise empty then it concludes with summary information. The
first summary line tells whether the link succeeded and what type of file was created or
updated. The next summary line tells the date when the file was created,
corresponding to the tim_dat field of the .tandem_info section.

After that there are counts of the number of errors, number of warnings, and number of
informational messages. This also tells how many warning and informational
messages were suppressed if the mode is not -verbose. It also tells the elapsed
time. This portion of the listing is omitted if the -vslisting option is given.

Each message that eld writes to the listing file occupies some number of lines. The
first line of the message does not begin with white space, while subsequent lines of a
message begin with three blanks. The first line of a numbered message has the
format:

**** <type> **** [number]:

where <type> is one of "FATAL ERROR", "ERROR", "WARNING", or
"INFORMATIONAL MESSAGE". When a message needs to extend over several lines,
eld Manual—527255-009
6-3

Output Listings and Error Handling Error Messages
eld breaks the message at a space if possible. When a message is broken at a
space, the space is left at the end of the broken line.

eld demangles C++ symbol names in listing messages, as follows. Any name that
contains two consecutive underscores is assumed to be a C++ name, and eld tries to
demangle it, using a demangling algorithm that tries to be consistent with the mangling
done by the C++ compiler. If a name cannot be successfully demangled, eld writes
out the name as it found it. If a name can be demangled, eld writes out both the
original and the demangled form.

 Error Messages
This section contains detailed error messages with cause, effect and recovery
information where necessary.

The table shows all the messages that could normally appear during eld's operation.
There is no particular significance to any of the message numbers. Following the table
there is a Glossary of Errors on page 6-126 that provides more help based directly on
the words that appear in the messages.

It is also possible that you may see a message that begins with the string "Internal
error" or "Bad input file", not listed in this section. In some cases, the message may
help you resolve the problem at hand. If you cannot resolve such a problem, or if any
other message appears that is not listed in the table below, or if eld terminates
abnormally, that is probably something to be reported as a possible eld bug to your
HP representative. If eld complained about an input file, that might also indicate a
bug in some other tool that created that input file.

Cause. This message may appear in one of two scenarios. One is that you gave the
 -make_import_lib option, specifying the names of one or more existing DLLs on
the command line, and the filename mentioned in the message is one of those names.
The other is that you gave the -change option, and the filename mentioned in the
message is the name of the existing file that you intend to update. In either case, the
specified file doesn’t exist or you don’t have permission to read it.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Check that you really intended to specify a file of the indicated name, that
you spelled it correctly, and that you have permission to read it.

1000 Cannot open file <filename>.

1004 The addresses of the two memory areas overlap: the text
memory area goes from <address> to <address>, and the data
memory area goes from <address> to <address>.
eld Manual—527255-009
6-4

Output Listings and Error Handling Error Messages
Cause. You gave options such as -t and -d to specifically provide the starting
addresses for the code and data segments of the program or DLL that you are
building. However, with these starting addresses, the segments overlapped.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Did you need to give these options in the first place? There is usually no
reason to use these options when building a program, and there is usually no reason to
use the -d option at all. But, if this is some special case where you do need to give
these options, and you know why you are doing it, then you should give different
values, so that the segments don’t overlap. You can tell from the error message how
big each segment was.

Cause. .You gave the -alf option, to repeat the process of fixing up references in
an existing program or DLL, but the symbol named in the message did not exist in that
same program or DLL, nor was eld able to find it by looking into other DLL's. This
may occur for many reasons, such as problems with DLL's that other people are
supposed to provide to you, which either they didn't provide or you didn't pass along to
eld when you first built this program or DLL, or "standard" things not set up correctly in
your installation. You also gave an option such as -unres_symbols warn, to say
that eld should not consider this an error situation.

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. You don’t necessarily need to do anything. A program can run correctly,
even if it has unresolved references at link time. But, you may prefer that your link be
clean. In that case, look at the names of the symbols that eld said it couldn’t find, and
see if they exist somewhere. They may be in DLLs, for example, that eld wasn’t
using, so you may need to relink your program or DLL again, supplying the names of
those DLLs. eld will print out informational messages about all the DLLs that it used if
you supply the -verbose option. A symbol in a DLL also needs to be exported from
that DLL for eld to find it. The -unres_symbols option specifies whether eld
should consider unresolved references to be errors, warnings, or neither.

Cause. You gave the -alf option, to repeat the process of fixing up references in an
existing program or DLL, but the symbol named in the message did not exist in that
same program or DLL, nor was eld able to find it by looking into other DLL's. This
may occur for many reasons, such as problems with DLL's that other people are
supposed to provide to you, which either they didn't provide or you didn't pass along to
eld when you first built this program or DLL, or "standard" things not set up correctly in
your installation. You did not give an option such as -unres_symbols warn, so by
default eld considered this an error situation.

1005 Unresolved reference to <symbol name>.

1006 Unresolved reference to <symbol name>.
eld Manual—527255-009
6-5

Output Listings and Error Handling Error Messages
Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. A program can run correctly, even if it has unresolved references at link
time. But, you may prefer that your link be clean. In that case, you need to look at the
names of the symbols that eld said that it couldn’t find, and see if they exist
somewhere. They may be in DLLs, for example, that eld wasn’t using, so you may
need to relink your program or DLL again, supplying the names of those DLLs. eld
will print out informational messages about all the DLLs that it used if you supply the
-verbose option. A symbol in a DLL also needs to be exported from that DLL for eld
to find it. The -unres_symbols option specifies whether eld should consider
unresolved references to be errors, warnings, or neither.

Cause. You gave the -libname, -set libname, or -change libname option.
The first two of these (which are synonyms) are used to tell the Guardian filename that
the user library will have when you run the program that you are buildling. The
-change libname option tells eld how to update that Guardian filename within an
existing program. However, along with either -libname or -set libname you have also
given the -dll, -shared, or -ul option to tell eld to build a DLL, rather than a
program, or you have given the -r option, to tell eld to build a “linkfile”, i.e., an object
file that can be used as eld input again, rather than a program. Or, in the case that
you gave the -change option, the filename that you specified with the -change option
is not a program but instead is either a DLL or a “linkfile”, such as is created by a
compilation.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to create a program then don’t specify options for
creating something that isn’t a program, such as the -dll, -shared, or -ul options
that tell eld to create a DLL, or the -r option that tells eld to create another object file
that can be used again as eld input. If you intended to create one of these other
types of object files, rather than a program, then don’t give the -libname or -set
libname option. If you intended to update the user library name within an existing
program, then figure out why the filename that you gave to eld was not the name of a
program. There is no user library name in any other kind of object file.

Cause. You gave the -set systype option, to specify the system type (Guardian or
OSS) for the program or DLL that you are creating, and you also used the -r option, to
tell eld to create another object file that can be used as linker input, rather than a
program or DLL.

Effect. Fatal error (eld immediately stops without creating an output file).

1007 A user library name can only be specified for programs.

1008 The 'systype' attribute is not allowed with the -r
option.
eld Manual—527255-009
6-6

Output Listings and Error Handling Error Messages
Recovery. If your intention is to create a program or DLL, then don’t specify the -r
option. If your intention is to use the -r option to create a new object file that can be
used again as eld input, then don’t specify the -set systype option.

Cause. You gave the -set float_lib_overrule option, to specify the type of
floating point consistency checking to perform at runtime for the program or DLL that
you are creating, and you also gave the -r option, to tell eld to create an object file
that can be used again as linker input, rather than a program or DLL.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to create a program or DLL, then don’t specify the -r
option. If your intention is to use the -r option to create a new object file that can be
used again as eld input, then don’t specify the -set float_lib_overrule option.

Cause. This can occur in one of two scenarios. In one case, you gave the -set
incomplete option, which is used to say that the import library that you are creating
should be marked “incompete”, but you did not give either the -import_lib or
-import_lib_stripped option to say that you wanted to make an import library at
the same time that you were making a DLL. The other case is that that you gave the
-change incomplete option, but the filename specified for the -change option was
not an import library. The ‘incomplete’ attribute only applies to import libraries.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to create an import library at the same time that you are
creating a DLL, you must specify the -import_lib or -import_lib_stripped
option. If you are not creating an import library, do not specify the -set incomplete
option. Or, if you intended to update an existing import library to say that it was
incomplete, then figure out why the filename that you gave to eld as not the name of
an import library. You cannot set the incomplete attribute in any other kind of object
file.

Cause. You gave options such as the -t and -d options to specify the starting virtual
addresses for the code and data segments of the program or DLL that you are
creating, and you specified addresses that wouldn’t fit into 32 bits. Or, as part of this

1009 The 'float_lib_overrule' attribute is not allowed with
the -r option.

1010 The 'incomplete' attribute is only allowed if you are
creating an import library or using the -change option to
update in import library.

1011 Input file <filename> specifies that the address of
<symbol name> is supposed to be placed into a 32-bit pointer,
but it doesn't fit into 32 bits.
eld Manual—527255-009
6-7

Output Listings and Error Handling Error Messages
link, eld looked at some other DLL whose addresses didn’t fit into 32 bits. In either
case, the program or DLL that you are trying to build contains 32-bit pointers that need
to be initialized with the addresses of symbols, in the file being built or in some other
DLL, whose addresses can’t be represented in 32 bits.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. Did you need to use the -t and -d options? There usually is no reason to
use these options when building a program, and there usually is no reason to use the -
d option at all. But, if you want to assign addresses to this program or DLL that don’t fit
into 32 bits, or make references to some other DLL that has a range of addresses that
doesn’t fit into 32 bits, then change your source code so that it doesn’t try to use 32-bit
pointers in those cases.

Cause. You gave options such as the -t and -d options to specify the starting virtual
addresses for the code and data segments of the program or DLL that you are
creating, and you specified addresses that wouldn’t fit into 32 bits. Or, as part of this
link, eld looked at some other DLL whose addresses didn’t fit into 32 bits. In either
case, the program or DLL that you are trying to build contains 32-bit pointers that need
to be initialized with the addresses of symbols, in the file being built or in some other
DLL, whose addresses can’t be represented in 32 bits, or at least not when the offset
mentioned in the message is added to their addresses.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. Did you need to use the -t and -d options? There usually is no reason to
use these options when building a program, and there usually is no reason to use the -
d option at all. But, if you want to assign addresses to this program or DLL that don’t fit
into 32 bits, or make references to some other DLL that has a range of addresses that
doesn’t fit into 32 bits, then change your source code so that it doesn’t try to use 32-bit
pointers in those cases.

Cause. You gave options such as the -t and -d options to specify the starting virtual
addresses for the code and data segments of the program or DLL that you are
creating, and you specified addresses that wouldn’t fit into 32 bits. Or, as part of this
link, eld looked at some other DLL whose addresses didn’t fit into 32 bits. In either
case, the program or DLL that you are trying to build contains 32-bit procedure pointers

1012 Input file <filename> specifies that the address of
<symbol name>, plus <number>, is supposed to be placed into a
32-bit pointer, but it doesn't fit into 32 bits.

1013 Input file <filename> specifies that the address of
<symbol name> is supposed to be placed into a 32-bit
procedure pointer, but it doesn't fit into 32 bits.
eld Manual—527255-009
6-8

Output Listings and Error Handling Error Messages
that need to be initialized with the addresses of procedures, in the file you are building
or some other DLL, whose addresses can’t be represented in 32 bits.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. Did you need to use the -t and -d options? There usually is no reason to
use these options when building a program, and there usually is no reason to use the -
d option at all. But, if you want to assign addresses to this program or DLL that don’t fit
into 32 bits, or make references to some other DLL that has a range of addresses that
doesn’t fit into 32 bits, then change your source code so that it doesn’t try to use 32-bit
procedure pointers in those cases.

Cause. You are building a program or DLL that has the HIGHPIN attribute set ON,
which is the default, but during the link one or more of the DLLs that eld looked at had
the HIGHPIN attribute set OFF.

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. This is only considered a warning by eld because what matters is which
DLLs you will be using at runtime. Determine which of your programs and DLLs
should have HIGHPIN ON, and which should have it OFF. The rule is that a program
or DLL with HIGHPIN ON cannot be a client of a DLL with HIGHPIN OFF. Your
program must satisfy this rule or NSK will not allow it to run. If you also satisfy this rule
at link time, your link won’t produce this warning message.

Cause. eld prints out informational messages about some of the files that it used and
what types of files they were. In this case, it is telling you about a complete import
library.

Effect. Information (This is not indicative of a problem).

Recovery. No action required.

Cause. eld prints out informational messages about some of the files that it used and
what types of files they were. In this case, it is telling you about an incomplete import
library.

Effect. Information (This is not indicative of a problem).

Recovery. No action required.

1014 The output program or DLL has highpin on, although DLL
<filename> has highpin off.

1017 Using complete import library <filename>.

1018 Using incomplete import library <filename>.
eld Manual—527255-009
6-9

Output Listings and Error Handling Error Messages
Cause. eld prints out informational messages about some of the files that it used and
what types of files they were. In this case, it is telling you about a DLL.

Effect. Information (This is not indicative of a problem).

Recovery. No action required.

Cause. The symbol _MCB is a special symbol that eld creates within a program if the
program makes a reference to it. User code is only allowed to make external
references to it, not to define it, but there was a definition of this symbol in your code.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to make a reference to the symbol named _MCB,
change your “definition” into an “external reference”. The syntax for that depends on
your source language.

Cause. This message can appear under various circumstances, when eld had
successfully opened a file but later had trouble reading it. That probably indicates that
there was something wrong with the contents of the file.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If the input file is bad, that may or may not be a problem you can fix
yourself. This might indicate an error in some other tool that created the input file. The
problem may need to be referred to your HP representative.

Cause. You gave the -make_import_lib option to tell the name of the import library that
you want to create, and you also gave more than one other filename on the command
line. That is only allowed if you are creating the zimpimp file that represents the
implicit DLLs that constitute system library. But, one of those other filenames on the
command line was not an implicit DLL.

Effect. Fatal error (eld immediately stops without creating an output file).

1019 Using DLL <filename>.

1021 Bad input file: the symbol named _MCB is defined in
<filename>, and that is not allowed.

1024 Error reading file <filename>.

1025 When multiple filenames are given on the command line in
addition to the -make_import_lib option, they must all be
filenames of implicit DLL's, but <filename> is not an
implicit DLL.
eld Manual—527255-009
6-10

Output Listings and Error Handling Error Messages
Recovery. If your intention is to create a zimpimp file, then the other filenames on the
command line should be implicit DLLs. If your intention is to create an import library to
represent an ordinary DLL (not one of the implicit DLLs), then correct your command
line syntax, because there are more filenames present than is allowed. If it is not your
intention to create any kind of import library then don’t give the -make_import_lib
option.

Cause. You specified the -make_import_lib option, telling the name of the import
library that you want to create, and you also specified one other filename on the
command line. That means that you are creating an import library to represent some
other (ordinary) DLL. The other filename you put on the command line should be the
DLL to be represented. It wasn’t a DLL, so that’s an error.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to create an import library to represent a single
(ordinary) DLL, then the other filename on the command line should be that DLL. If
you are not trying to create an import library, then don’t specify the -make_import_lib
option.

Cause. You specified the -make_import_lib option, in order to create the zimpimp file
that represents the multiple implicit DLLs that constitute system library, and you also
specified those implicit DLLs on the command line. There are some symbols that
legitimately exist in more than one of the implicit DLLs, because they are specially
marked by the C++ compiler, but other symbols may only come up in one of the implicit
DLLs. The indicated symbol was illegally present in more than one of the implicit
DLLs, so this is an error.

Effect. Error (The linker immediately stops).

Recovery. This indicates some problem with the procedure for building and installing
the NSK operating system, which is beyond the scope of this document.

Cause. You specified the -make_import_lib option, telling the name of the import
library that you want to create, but you didn’t specify any other filenames on the
command line. That is an error.

1026 The -make_import_lib option was given, so the other
filename on the command line should be a DLL, but <filename>
is not a DLL.

1041 The symbol named <symbol name> was found both in
<filename> and in <filename>.

1042 The -make_import_lib option was specified, but there
were no other filenames on the command line to tell the
DLL(s) to use as inputs.
eld Manual—527255-009
6-11

Output Listings and Error Handling Error Messages
Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to create a zimpimp file, which represents the multiple
implicit DLLs that constitute system library, or if you are trying to create an import file to
represent another (ordinary) DLL, then the names of one or more DLLs are required on
the command line. If you are not trying to do either of these things, you should not
specify the -make_import_lib option.

Cause. You are trying to create an import library. eld tries to create a workfile in the
same location (OSS directory, Guardian subvolume, or PC folder) as the place where
you specified that the import library should be created. eld could not create that
workfile and open it for writing.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Check that you have permission to create files in the indicated location,
and that it isn’t a Guardian subvolume that is full.

Cause. You are trying to create an import library. eld first creates a workfile in the
same location (OSS directory, Guardian subvolume, or PC folder) as the place where
you specified that the import library should be created. For some reason, eld had a
problem writing to the workfile, after it had been successfully created.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Check that the indicated location isn’t in a Guardian subvolume that is full.
If that doesn’t explain the problem, it probably needs to be reported to your HP
representative.

Cause. You are trying to create an import library. eld first creates a workfile in the
same location (OSS directory, Guardian subvolume, or PC folder) as the place where
you specified that the import library should be created. For some reason, eld had a
problem writing to the workfile, after it had been successfully created.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Check that the indicated location isn’t in a Guardian subvolume that is full.
If that doesn’t explain the problem, it probably needs to be reported to your HP
representative.

1043 Cannot open output workfile <filename>.

1044 Error seeking in output file <filename>.

1045 Error writing output file <filename>.
eld Manual—527255-009
6-12

Output Listings and Error Handling Error Messages
Cause. You are trying to create an import library on Guardian, and after creating the
import library eld tried to set its file code to 800, but was unable to do so.

Effect. Error (The linker cannot do what was requested of it and stops, deleting the file
that had been created up to that point).

Recovery. If you are not able to set the file code of a file, that is an NSK question that
is beyond the scope of this document.

Cause. This message comes out after message 1046 (see above). It means that,
after being unable to set the file code of the file, and then trying to delete the file, eld
was also unable to delete the file.

Effect. Fatal error (eld immediately stops, and the output file has not been deleted).

Recovery. If you are not able to delete a file that you just created, that is an operating
system question that is beyond the scope of this document.

Cause. When you specify the -temp_i option, eld still first creates a temporary file
in another place, and when that file is created eld then tries to rename it to the
filename specified in the -temp_i option. That renaming failed.

Effect. Warning (eld still creates the import library, but not using the file you
specified with the -temp_i option as an intermediate file).

Recovery. If you are not able to rename a file to another name in the same location
(Guardian subvolume, OSS directory, or PC folder), that is an operating system
question that is beyond the scope of this document.

Cause. You are trying to create an import library. eld first creates it in a temporary
location, deletes any file that previously existed with the name specified for the import
library, and then renames the temporary file to the final location. That process failed.
The file has instead been left in the place that the message calls the “object file
name”.

Effect. Warning (eld produces an output file, but not with the filename you intended).

1046 Could not set file code; deleting import library
<filename>.

1047 Error attempting to delete file <filename>.

1048 Cannot create -temp_i file <filename>.

1049 Cannot create -make_import_lib file <filename>; object
file name: <filename>.
eld Manual—527255-009
6-13

Output Listings and Error Handling Error Messages
Recovery. If there already was a file with the same name as the file you wanted to
create, and you didn’t have permission to delete it, either find some other way to delete
that old file, or specify a different filename for the import library that you want to create.
If there was no file of that name already, and you are not able to rename a file to
another name in the same location (Guardian subvolume, OSS directory, or PC folder),
that is an operating system question that is beyond the scope of this document.

Cause. As shown in the message, one of the input object files said it wanted the
“Tandem” type of floating point, and another one specified “IEEE”, and you didn’t
specify which one you wanted to take precedence on the eld command line. That is
an error.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If these files really do need to use the respective types of floating point,
then that is impossible, and you’ll have to change your source code to use one type of
floating point consistently. More often, one or both files specifies a floating point type
unnecessarily, because the compilers may do that by default. In that case, use the -set
floattype option to specify the type of floating point that eld should assume is really
needed, or “neutral” if neither type is required.

Cause. A filename was specified directly on the command line, for eld to open, but
either that file doesn’t exist or you don’t have permission to read it.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Check that you really intended to specify a file of the indicated name, that
you spelled it correctly, and that you do have permission to read it.

Cause. You specified the -l option, to tell eld to search for a DLL or archive based on
the string given as the parameter to the -l option, and eld could not find that DLL or
archive, and you also specified the -allow_missing_libs option, to say that it was not an
error if a DLL could not be found.

Effect. Information (This is not indicative of a problem).

Recovery. No action required (assuming you did specify the -allow_missing_libs
option on purpose, for a good reason).

1065 Floating point type inconsistency among input linkfiles.
File <filename> specifies 'tandem'. File <filename>
specifies 'ieee'.

1081 Cannot open <filename>: <reason>.

1082 Cannot find <name>.
eld Manual—527255-009
6-14

Output Listings and Error Handling Error Messages
Cause. You specified the -l option, to tell eld to search for a DLL or archive based on
the string given as the parameter to the -l option, and eld cound not find that DLL or
archive.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. The rules for searching for DLLs and archives are complicated. For
example, the DLL or archive may be present in your current location (Guardian
subvolume, OSS directory, or PC folder), but that is not a place where eld looks by
default. You can tell eld to look there with the appropriate -L option. More generally,
you may need to review all the rules by which eld does the search, to determine
where the DLL or archive should be placed, and how eld should be told to look there.
You might decide it’s easier to just put the fully qualified name of the DLL or archive
directly on the command line, without using the -l option at all. You might also decide
that you didn’t need that DLL or archive anyway. Or, you may be specifying everything
as you should, to tell eld how to find the DLL or archive in the location you expect it to
be, but the DLL or archive is not there, or you don’t have permission to read it.

Cause. eld has found a file, specified on the command line, possibly through a -l
option, and opened it, and found that it was a DLL, but the -b static option was in effect
at this point on the command line, which says that it is an error if eld finds a DLL as
opposed to an archive.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you really don’t want to find a DLL at this point on the command line,
possibly through a -l option, then you need to figure out why eld did find a DLL, rather
than an archive. If the DLL was found through a -l option that did a search, you may
need to review all the rules for how eld does that search, which is complicated. You
might decide it’s easier to just put the fully qualified name of the archive directly on the
command line, without using the -l option at all. On the other hand, if you really do
want to find a DLL, then don’t specify the -b static option, or at least not at this place on
the command line.

Cause. eld has found a file, specified on the command line, and opened it, and found
that it was a DLL, but the name of the file ends in “.a”. eld considers that an error,
since the convention is to use such filenames for achives rather than DLLs.

Effect. Fatal error (eld immediately stops without creating an output file).

1083 Cannot find <name>.

1098 <filename> is a DLL, but the -b static option was in
effect.

1099 <filename> is a DLL, but the filename ends in '.a'.
eld Manual—527255-009
6-15

Output Listings and Error Handling Error Messages
Recovery. You shouldn’t have a DLL whose filename ends in “.a”, so you need to fix
your build procedure.

Cause. You specified the -l option, to tell eld to search for a DLL or archive based on
the string given as the parameter to the -l option, and eld was able to find and open a
file, but the file was a linkfile, such as an object file produced from a compilation, not a
DLL or archive. eld considers that an error, since the convention is to only use -l
options to search for DLLs and archives, not linkfiles.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Perhaps there is a DLL or archive that you wanted eld to find, but instead
eld first found a linkfile of the same name. The rules for searching for DLLs and
archives are complicated. You may need to review all the rules by which eld does the
search, to determine where the DLL or archive should be placed, and how eld should
be told to look there. You might decide it’s easier to just put the fully qualified name of
the DLL or archive directly on the command line, without using the -l option at all. If
you really did intend to use the linkfile that was found, the easiest thing is to just put its
fully qualified name on the command line.

Cause. eld was searching for a DLL based on a liblist entry of some other previously
opened DLL, to indirectly bring another DLL into this link, and eld was able to find and
open a file, but the file was a linkfile, such as an object file produced from a
compilation, not a DLL.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Perhaps there is a DLL that you expected eld to find, but instead eld first
found a linkfile of the same name. The rules for searching for DLLs are complicated.
You may need to review all the rules by which eld does the search, to determine
where the DLL should be placed, and how eld should be told to look there.

Cause. You specified the -make_implicit_lib option, to build one of the implicit DLLs
that contain the contents of system library. Such implicit DLLs may refer to other
implicit DLLs, but not to any other DLLs. However, during this link, eld was given
another DLL to use, where that other DLL wasn’t marked as an implicit DLL, so that’s
an error.

Effect. Fatal error (eld immediately stops without creating an output file).

1100 <filename> is a linkfile, but it was found for a -l
option.

1101 <filename> is a linkfile, but it was found as an
indirect DLL.

1102 Making an implicit DLL, but <filename> isn't implicit.
eld Manual—527255-009
6-16

Output Listings and Error Handling Error Messages
Recovery. If you specified the -make_implicit_lib option for no reason, stop doing it.
Otherwise, this indicates some problem with the procedure for building and installing
the NSK operating system, which is beyond the scope of this document.

Cause. eld was searching for a DLL based on a liblist entry of some other already
opened DLL, to indirectly bring another DLL into this link, and eld was able to find and
open a file, but the file was an archive, not a DLL.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Perhaps there is a DLL that you expected eld to find, but instead eld first
found an archive of the same name. The rules for searching for DLLs are complicated.
You may need to review all the rules by which eld does the search, to determine
where the DLL should be placed, and how eld should be told to look there.

Cause. eld has found a file, specified on the command line, possibly through a -l
option, and opened it, and found that it was an archive, but the -b dllsonly option was
in effect at this point on the command line, which says that it is an error if eld finds an
archive as opposed to a DLL.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you really don’t want to find an archive at this point on the command line,
then you need to figure out why eld did find an archive, rather than a DLL. If the
archive was found through a -l option that did a search, you may need to review all the
rules for how eld does that search, which is complicated. You might decide it’s easier
to just put the fully qualified name of the DLL directly on the command line, without
using the -l option at all. On the other hand, if you really do want to find an archive,
then don’t specify the -b dllsonly option, or at least not at this place on the command
line.

Cause. eld has found a file, specified on the command line, possibly through a -l
option, and opened it, and found that it was an archvie, but the name of the file ends in
“.so”. eld considers that an error, since the convention is to use such filenames for
DLLs rather than archives.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. You shouldn’t have an archive whose filename ends in “.so”, so you need
to fix your build procedure.

1103 <filename> is an archive, but it was found as an
indirect DLL.

1104 <filename> is an archive, but the -b dllsonly option was
in effect.

1105 <filename> is an archive, but the filename ends '.so'.
eld Manual—527255-009
6-17

Output Listings and Error Handling Error Messages
Cause. eld prints out informational messages about some of the files that it used and
what types of files they were. In this case, it is telling you about an archive.

Effect. Information (This is not indicative of a problem).

Recovery. No action required.

Cause. eld used the archive mentioned in the message, and in more detail also tried
to use the member of the archive specified in the message, but that member was not a
valid TNS/E object file.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Perhaps there is something wrong with the archive, so that it looked like a
TNS/E archive, but didn’t have TNS/E object files in it. In that case, the process that
created the archive needs to be examined. Or, perhaps the archive has a mixture of
different types of object files in it, and you used the -all option, which tells eld to try to
use all the object files in the archive. In that case, you should build a different archive
that only contains TNS/E object files.

Cause. eld tries to create a workfile in the same location (OSS directory, Guardian
subvolume, or PC folder) as the place where you specified that the output file should
be created. For some reason, eld could not create that workfile and open it for
writing.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Check that you have permission to create files in the indicated location,
and that it isn’t a Guardian subvolume that is full.

Cause. You have given the -alf option, and in addition to the filename that was the
parameter for the -alf option you have also specified another filename on the
command line, which tells eld to use that file as the zimpimp file during this -alf
option, for resolving references to system library. However, either the file specified as
the zimpimp file doesn’t exist, or you don’t have permission to read it.

Effect. Fatal error (eld immediately stops without creating an output file).

1106 Using archive: <filename>.

1107 <archive filename>: member <member name> in archive is
not an object file.

1112 Cannot open output file <filename>: <reason>.

1117 Cannot open <filename>, the file specified to be the
zimpimp file on the -alf command line.
eld Manual—527255-009
6-18

Output Listings and Error Handling Error Messages
Recovery. Did you really intend to specify a special version of the zimpimp file? If you
did, check that you spelled it correctly, and that you do have permission to read it.

Cause. You have asked eld to create a main program. However, you have not
specified the -e option, and no procedure within the program has the MAIN attribute.
So, eld doesn’t know what the main entry point of the program should be, and that’s
an error.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your program contains C or C++ code then a certain object file is
supposed to be included in the link, and if you ask the compiler to invoke eld for you
then the compiler will supply that file automatically. If you invoke eld yourself, you
need to specify the same object file that the compiler would. For these languages, you
should not specify the -e option. You also should not specify the -e option for Cobol. If
your program only contains pTAL code then you can either put the MAIN attribute on
the main entry point in your pTAL source code, or you can specify the name of that
procedure to eld with the -e option. I

Cause. You used the -e option to tell eld the name of the procedure that is supposed
to be the main entry point for the program that you are building, but there is no symbol
of that name defined within the program.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your program contains C, C++, or Cobol code, you shouldn’t be using the
-e option at all. If your program only contains pTAL code then you can use the -e
option to tell the name of the pTAL procedure that should be the main entry point. Did
you spell the name wrong? Note that the pTAL compiler converts all names to upper
case, so you need to specify it as upper case to eld, regardless of how you spelled it
in the pTAL source code. Also note that, if you misspell some other option beginning
with an “e”, then eld will interpret that as a “-e” option, possibly leading to this
message. There are several such options, as described elsewhere in this manual, and
you have to spell them exactly as shown in this manual, except for case. Note that
there is no option spelled “-elf” in eld, although there was in nld. If you say “-elf” to
eld, eld will believe that you are saying that “lf” is the name of the main entry point.
So, don’t do that.

1129 No main entry point was specified when creating a
program.

1131 Name specified in the -e option not found: <symbol
name>.
eld Manual—527255-009
6-19

Output Listings and Error Handling Error Messages
Cause. Using the -b globalized option requires that all the input object files be
compiled with –Wglobalized option.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Compile the input object files with the –Wglobalized option.

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. If your program contains C, C++, or Cobol code, you shouldn’t be using the
-e option at all. In that case, this “warning” is probably indicative of a serious error, and
you should not specify the -e option. If your program only contains pTAL code then
this is okay, if that’s really what you meant to do. In other words, one of the
procedures in your source code has the MAIN attribute, but you are telling eld that
you want execution to begin someplace else.

Cause. You gave the -set interpose_user_library option more than once on the
command line, with different attribute values. (The possible values are “on” and “off”.)
You can give this option more than once, but only if you specify the same value each
time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, decide which value you want to specify,
and only specify that value.

Cause. You used the -set interpose_user_library option, which is an attribute you can
set when you build a DLL, but you are building some other type of object file rather
than a DLL.

Effect. Error (The linker cannot do was requested of it and will eventually stop, but
may continue for the purpose of detecting additional errors before stopping).

1132 Input file < filename> cannot be linked into a
globalized DLL; all of the code that went into that file must
be recompiled with the 'globalized' option.

1133 Procedure <symbol name> with the 'main' attribute was
overridden by an -e option for <symbol name>.

1136 Conflicting values given for ‘interpose_user_library’.

1138 The 'interpose_user_library' attribute is only allowed
if you are creating a DLL.
eld Manual—527255-009
6-20

Output Listings and Error Handling Error Messages
Recovery. If your intention is to create a DLL to be used as an interpose user library,
then specify an appropriate option, such as -dll, -shared, or -ul, to build a DLL. If
your intention is to build some other type of object file, not a DLL, then don’t specify the
-set interpose_user_library option.

Cause. The input object files consistently used one type of floating point, i.e., either
“Tandem” or “IEEE”. On the eld command line, you specified the -set floattype option,
either saying that the file was the opposite type, or that it was neutral. That’s okay, but
eld puts out an informational message about it.

Effect. Information (This is not indicative of a problem).

Recovery. None required, assuming you know that this object file really should be
marked the way you indicated, because you know that is the type of floating point it will
really need at runtime.

Cause. The input object files contained a mixture of both types of floating point, i.e.,
“Tandem” and “IEEE”. On the eld command line, you specified the -set floattype
option, to say which type the file really was, or to say it was neutral. That’s okay, but
eld puts out an informational message about it.

Effect. Information (This is not indicative of a problem).

Recovery. None required, assuming you know that this object file really should be
marked the way you indicated, because that is the type of floating point it will really
need at runtime.

Cause. You are building a DLL, and during this link eld is also looking at various
other DLLs, and among those other DLLs eld sees that at least one says that it
requires the “Tandem” version of floating point at runtime, while another says that it
requires the “IEEE” version of floating point at runtime.

Effect. Warning (eld produces an output file, but it thinks that you might want to see
this warning about what might go wrong at runtime with other DLLs).

1141 Floating point type inconsistency. The -set floattype
option specifies <string>, but the input linkfiles imply
<string>.

1142 Floating point type inconsistency among input linkfiles.
File <filename> specifies 'tandem'. File <filename>
specifies 'ieee'.

1143 Floating point type inconsistency among input DLL's.
File <filename> specifies 'tandem'. File <filename>
specifies 'ieee'.
eld Manual—527255-009
6-21

Output Listings and Error Handling Error Messages
Recovery. None required, because even though the DLLs say they require a specific
type of floating point at runtime, that might not really be true. You might want to look
into this further, though, with people who are familiar with what those DLLs actually do
need.

Cause. You are building a DLL, and it says that it needs the “Tandem” type of floating
point at runtime, but during this link eld is also looking at various other DLLs, and
among those other DLLs eld sees that at least one says that it requires the “IEEE”
version of floating point at runtime.

Effect. Warning (eld produces an output file, but it thinks that you might want to see
this warning about what might go wrong at runtime).

Recovery. If the DLL being built does not actually need the “Tandem” type of floating
point, it would be nicer to use the -set floattype neutral option, to say so. However,
even if this DLL does require the “Tandem” type of floating point at runtime, there isn’t
necessarily a problem here. Even though another DLL says that it requires the “IEEE”
version of floating point, that might not really be true. You might want to look into this
further, though, with people who are familiar with what that other DLL actually does
need.

Cause. You are building a DLL, and it says that it needs the “IEEE” type of floating
point at runtime, but during this link eld is also looking at various other DLLs, and
among those other DLLs eld sees that at least one says that it requires the “Tandem”
version of floating point at runtime.

Effect. Warning (eld produces an output file, but it thinks that you might want to see
this warning about what might go wrong at runtime).

Recovery. If the DLL being built does not actually need the “IEEE” type of floating
point, it would be nicer to use the -set floattype neutral option, to say so. However,
even if this DLL does require the “IEEE” type of floating point at runtime, there isn’t
necessarily a problem here. Even though another DLL says that it requires the
“Tandem” version of floating point, that might not really be true. You might want to look
into this further, though, with people who are familiar with what that other DLL actually
does need.

1144 Floating point type inconsistency. The DLL being
created specifies 'tandem'. DLL <filename> specifies 'ieee'.

1145 Floating point type inconsistency. The DLL being
created specifies 'ieee'. DLL <filename> specifies 'tandem'.

1146 The program being created is floating point type 'ieee'.
DLL <filename> is 'tandem'.
eld Manual—527255-009
6-22

Output Listings and Error Handling Error Messages
Cause. You are building a program, and it says that it needs the “IEEE” type of floating
point at runtime, but during this link eld is also looking at various other DLLs, and
among those other DLLs eld sees that at least one says that it requires the “Tandem”
version of floating point at runtime.

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. If the version of the DLL that is used at runtime still says that it requires the
“Tandem” type of floating point, your program will not be allowed to run. If the program
that you are building does not really require the “IEEE” type of floating point, it would
be better for you to specify -set floattype neutral when you build the program. If your
program really does need the “IEEE” type of floating point, though, there still may not
be a problem here. Even though the DLL says that it requires the “Tandem” version of
floating point, that may not really be true. You might want to look into this with people
who are familiar with what the DLL actually does need. You can avoid the runtime
check and make it possible to run your program despite the apparent inconsistency by
specifying the “-set float_lib_overrule on” option.

Cause. You are building a program, and it either says that it needs the “Tandem” type
of floating point at runtime, or that it is “neutral”, but during this link eld is also looking
at various other DLLs, and among those other DLLs eld sees that at least one says
that it requires the “IEEE” version of floating point at runtime.

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. If the version of the DLL that is used at runtime still says that it requires the
“IEEE” type of floating point, your program will not be allowed to run. Even though
your program may call itself “neutral”, that still is interpreted as meaning “Tandem” at
runtime, and NSK considers this to be inconsistent with what the DLL says. If you
know that all the DLLs used by the program say that they are either neutral or “IEEE”,
then you could lie by specifying the -set floattype ieee option to say that your program
also wants “IEEE”, and be able to run. But even if your program really does need the
“Tandem” type of floating point, that still may not mean there is a real problem here,
because even though a DLL says that it needs the “IEEE” type of floating point, that
may not be true. You might want to look into this with people who are familiar with
what the DLL actually does need. If you believe that it does make sense to run your
program, you can avoid the runtime check and make it possible to run your program by
specifying the “-set float_lib_overrule on” option.

Cause. You specified the -make_import_lib option, in order to create the zimpimp file
that represents the multiple implicit DLLs that constitute system library, and you also
specified those implicit DLLs on the command line. One of the checks that eld

1147 The program being created is floating point type
'tandem' or 'neutral'. DLL <filename> is 'ieee'.

1148 The implicit DLL <filename> has not been preset.
eld Manual—527255-009
6-23

Output Listings and Error Handling Error Messages
performs on these implicit DLLs is that they are “preset”, which would have to be true if
that implicit DLL was correctly fixed up at the time it was linked. But, the implicit DLL
mentioned in the message was not preset.

Effect. Fatal error (The linker cannot do what was requested of it and the linker
immediately stops).

Recovery. This indicates some problem with the procedure for building and installing
the NSK operating system, which is beyond the scope of this document.

Cause. As shown in the message, one of the input object files said it was using C++
dialect v2, and another said it was using dialect v3. Such a mixture is not allowed.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. Some of the source files need to be compiled, so that they are all using the
same dialect of C++.

Cause. The input files use C++, which means that they are either dialect v2 or v3, as
shown in the message, and you specified the -set cppdialect neutral option, to indicate
that the program or DLL that you are building should say that it doesn’t use C++. That
is okay, but eld puts out an informational message about it.

Effect. Information (This is not indicative of a problem).

Recovery. No action required, assuming you know that it would be okay for this
program or DLL to be included in a process where the program or other DLLs were
using the other dialect of C++. eld did not see any DLLs of the opposite C++ dialect
during this link, or else eld would have put out a warning message about that, but eld
doesn’t necessarily see all other DLLs that will be in the process at runtime, and if you
are building a DLL then eld similarly doesn’t see the program that will be in the
process.

Cause. The input files use the v2 dialect of C++, and during the link eld saw a DLL
that was using the v3 dialect of C++.

Effect. Warning (eld produces an output file, but it might not be what you intended).

1150 File <filename> is C++ dialect v2; file <filename> is
C++ dialect v3.

1151 The -set cplusplusdialect option specified <string>, but
the input linkfiles implied <string>.

1152 The loadfile being built has C++ dialect v2; DLL
<filename> has C++ dialect v3.
eld Manual—527255-009
6-24

Output Listings and Error Handling Error Messages
Recovery. In special cases, different loadfiles within the same process may be able to
use different dialects of C++. You may wish to check with someone who is familiar with
the DLL mentioned in the message, to see if there might be problems at runtime due to
this dialect inconsistency.

Cause. The input files use the v3 dialect of C++, and during the link eld saw a DLL
that was using the v2 dialect of C++.

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. In special cases, different loadfiles within the same process may be able to
use different dialects of C++. You may wish to check with someone who is familiar with
the DLL mentioned in the message, to see if there might be problems at runtime due to
this dialect inconsistency.

Cause. Before eld creates an output file, it first writes to a temporary workfile that is
in the same location (Guardian subvolume, OSS directory, or PC folder) as the final file
to be created. eld chooses a filename for the workfile of a certain pattern, as shown
in the message, where three of the characters will be filled in with a number from 000
to 999. eld was not able to create any file whose name matched this pattern, perhaps
because 1000 files with names matching the pattern already existed. They might exist
because previous runs of eld failed and left these files behind. eld doesn’t delete
such files that previously existed, it only tries to find an unused name.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Check that you have permission to create files in the indicated location,
and that it isn’t a Guardian subvolume that is full, and also see whether there already
are 1000 files in existence, with names matching the pattern. If so, delete some of
them.

Cause. Based on the options you specified, you are trying to use eld to create a new
object file from a set of existing object files. However, no existing object files were
specified on the command line, to be included in the output file. Perhaps you specified
DLLs on the command line, but DLLs are only referenced during the link, not included
in the output file. Perhaps you specified archives on the command line, but the object
files within an archive are only included in the link if the -all option is in effect, or if a
previous object file already in the link refers to a symbol that an archive member can
provide.

1153 The loadfile being built has C++ dialect v3; DLL
<filename> has C++ dialect v2.

1155 Could not create workfile of the form <string>.

1156 No input files.
eld Manual—527255-009
6-25

Output Listings and Error Handling Error Messages
Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to combine one or more existing object files into a new
object file, put their names on the command line. If you want to do something else,
such as stripping the symbols from an existing object file (for example), you need to
put the appropriate option for that purpose on the command line, and of course you
need to spell it correctly.

Cause. You specified one of the -temp_i, -temp_o, or -temp_r options, to tell the
name that eld should use for an intermediate file during the process of creating some
other file, as shown in the message. You also specified the name of the temporary file
as a qualified name (not a simple name). When you do that, the name that you
specified for the temporary file is required to be in the same location (Guardian
subvolume, OSS directory, or PC folder) as the final file that you are trying to create,
and you must spell them both exactly the same way for eld to understand this. But,
the locations didn’t match.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you really want to use the -temp_* option, there is no need to specify a
fully qualified name. You can just specify a simple name, and then eld will put it in the
right place. But you probably also have no need for the -temp_* option at all, so you
can just omit it.

Cause. You used the -rpath or -rld_L option, to specify a place where NSK will
look for DLLs at runtime, and you also used the -r option, to tell eld to build another
object file that can be used as linker input, rather than a program or DLL.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a program or DLL, then don’t specify the -r
option. If your intention is to use the -r option to create an object file that can be used
again as eld input, then don’t specify the -rpath or -rld_L option.

1174 Output file <filename> and temporary file <filename>
must be in the same directory/subvolume (and spelled the same
way on the eld command line).

1176 The -rpath or -rld_L option is not allowed with the -r
option.

1177 The -rld_first_L option is not allowed with the -r
option.
eld Manual—527255-009
6-26

Output Listings and Error Handling Error Messages
Cause. You used the -r_first_L option, to specify a place where NSK will look for DLLs
at runtime, and you also used the -r option, to tell eld to build a another object file
that can be used as linker input, rather than a program or DLL.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a program or DLL, then don’t specify the -r
option. If your intention is to use the -r option to create another object file that can be
used as eld input, then don’t specify the -rld_first_L option.

Cause. You used the -limit_runtime_paths option, which affects the way NSK looks for
DLLs after it loads the program you are building, and you also used the -r option, to tell
eld to build another object file that can be used as linker input, rather than a program.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a program, then don’t specify the -r option. If
your intention is to use the -r option to create another object file that can be used as
eld input, then don’t specify the -limit_runtime_paths option.

Cause. You used the -soname or -dllname option, which tells the “DLL name” to be
placed inside the DLL that you are creating, but you did not specify any option to tell
eld to build a DLL.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a DLL, then specify an option to do that, such
as the -dll, -shared, or -ul option. If that is not your intention, then don’t specify
the -soname or -dllname option.

Cause. You used the -set cppdialect neutral option, which say that the program or DLL
that you are building does not need either dialect of C++, and you also used the -r
option, to tell eld to build another object file that can be used as linker input, rather
than a program or DLL.

1178 The -limit_runtime_paths option is not allowed with the
-r option.

1179 The -soname or -dllname option is only allowed when you
are building a DLL.

1180 The -set cplusplusdialect option is not allowed with the
-r option.
eld Manual—527255-009
6-27

Output Listings and Error Handling Error Messages
Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a program or DLL, then don’t specify the -r
option. If your intention is to use the -r option to create another object file that can be
used as eld input, then don’t specify the -set cppdialect option.

Cause. You used the -must_use_iname option, which tells eld that it should be an
error if it cannot create an import library with the name specified for it, but you did not
specify any option to tell eld to build an import library.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to create an import library, specify an appropriate option
to do that. If that is not your intention, don’t specify the -must_use_iname option.

Cause. You used the -temp_i option, to tell the name that eld should use for an
intermediate file during the process of creating an import library, but you did not specify
any option to tell eld to build an import library.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to create an import library, specify an appropriate option
to do that. If that is not your intention, don’t specify the -temp_i option.

Cause. You used the -libname or -set libname option, to tell eld the name of the
user library to place within the program that you are creating, but you have also used
some other option to tell eld to build another object file that can be used as linker
input, or a DLL, but not a program.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a program, which happens by default, don’t
specify an option such as -r, -dll, or -ul that would tell eld to do something else. If
you are not creating a program, don’t specify the -libname or -set libname option.

1181 The -must_use_iname option is only allowed when you are
making an import library.

1182 The -temp_i option is only allowed when you are making
an import library.

1183 You can only specify a user library name for a program.

1184 The 'highpin' attribute is not allowed with the -r
option.
eld Manual—527255-009
6-28

Output Listings and Error Handling Error Messages
Cause. You used the -set highpin option, which is an attribute you can set when you
build a program or DLL, and you also used the -r option, to tell eld to build another
object file that can be used as linker input, rather than a program or DLL.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a program or DLL, then don’t specify the -r
option. If your intention is to use the -r option to create another object file that can be
used as eld input, then don’t specify the -set highpin option.

Cause. You used the -set highrequestors option, which is an attribute you can set
when you build a program or DLL, and you also used the -r option, to tell eld to build
another object file that can be used as linker input, rather than a program or DLL.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a program or DLL, then don’t specify the -r
option. If your intention is to use the -r option to create another object file that can be
used as eld input, then don’t specify the -set highrequestors option.

Cause. You have specified the -alf option, together with the -t and -d options, to
rebase a DLL and move the two segments (the code segment and data segment) by
different amounts. Within this DLL, there are cases where, in one segment, a word
contains a value that is a self-relative offset into the other segment. Our TNS/E
compilers never generate such code, but if somehow you get such code into your DLL,
that can work. However, such words would need updating if the two segments were
rebased by different amounts, and the -alf option does not support that, so it reports
this as an error.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Did you compile code with some other compiler, and manage to get it to go
through eld to create this DLL? We don’t recommend doing that. In any case, no
matter how you created this DLL, you cannot rebase the two segments by different
amounts with the -alf option. Relink the DLL, correctly specifying the two segment
addresses that you want the first time, instead of using the -alf option to change
them.

1185 The 'highrequestors' attribute is not allowed with the -
r option.

1186 Cannot rebase the two segments by different amounts
because this file contains PC-relative relocations that go
between the code and data segments.
eld Manual—527255-009
6-29

Output Listings and Error Handling Error Messages
Cause. You used the -set runnamed option, which is an attribute you can set when
you build a program, and you also used the -r option, to tell eld to build another
object file that can be used as linker input, rather than a program.

Effect. Error (The linker cannot do was requested of it and will eventually stop, but
may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a program or DLL, then don’t specify the -r
option. If your intention is to use the -r option to create another object file that can be
used as eld input, then don’t specify the -set runnamed option.

Cause. You used the -set saveabend option, which is an attribute you can set when
you build a program, and you also used the -r option, to tell eld to build another
object file that can be used as linker input, rather than a program.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a program or DLL, then don’t specify the -r
option. If your intention is to use the -r option to create another object file that can be
used as eld input, then don’t specify the -set saveabend option.

Cause. You used the -set inspect option, which is an attribute you can set when you
build a program, and you also used the -r option, to tell eld to build another object file
that can be used as linker input, rather than a program.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a program or DLL, then don’t specify the -r
option. If your intention is to use the -r option to create another object file that can be
used as eld input, then don’t specify the -set inspect option.

1187 The 'runnamed' attribute is not allowed with the -r
option.

1188 The 'saveabend' attribute is not allowed with the -r
option.

1189 The 'inspect' attribute is not allowed with the -r
option.

1190 The 'heap_max' attribute is not allowed with the -r
option.
eld Manual—527255-009
6-30

Output Listings and Error Handling Error Messages
Cause. You used the -set heap_max option, which is an attribute you can set when
you build a program, and you also used the -r option, to tell eld to build another
object file that can be used as linker input, rather than a program.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a program or DLL, then don’t specify the -r
option. If your intention is to use the -r option to create another object file that can be
used as eld input, then don’t specify the -set heap_max option.

Cause. You used the -set mainstack_max option, which is an attribute you can set
when you build a program, and you also used the -r option, to tell eld to build another
object file that can be used as linker input, rather than a program.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a program or DLL, then don’t specify the -r
option. If your intention is to use the -r option to create another object file that can be
used as eld input, then don’t specify the -set mainstack_max option.

Cause. You have specified the -import_lib and the -import_lib_stripped options. The -
import_lib option tells eld to make an import library for a DLL, at the same time eld is
building that DLL, and not to strip the DWARF symbols from the import library. The -
import_lib_stripped option also says to make an import library, but to strip the DWARF
symbols. eld will only make one import library, and considers the -import_lib and -
import_lib_stripped options to be inconsistent with each other.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Specify only one of -import_lib and -import_lib_stripped, depending on
what you want to do.

Cause. You used the -set space_guarantee option, which is an attribute you can set
when you build a program, and you also used the -r option, to tell eld to build another
object file that can be used as linker input, rather than a program.

1191 The 'mainstack_max' attribute is not allowed with the -r
option.

1192 Both the -import_lib and -import_lib_stripped options
were specified.

1193 The 'space_guarantee' attribute is not allowed with the
-r option.
eld Manual—527255-009
6-31

Output Listings and Error Handling Error Messages
Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a program or DLL, then don’t specify the -r
option. If your intention is to use the -r option to create another object file that can be
used as eld input, then don’t specify the -set space_guarantee option.

Cause. You used the -set rld_unresolved option, which is an attribute you can set
when you build a program or DLL, to tell later invocations of the -alf option, and rld,
how they should handle unresolved references in that program or DLL, and you also
used the -r option, to tell eld to build another object file that can be used as linker
input rather than a program or DLL.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a program or DLL, then don’t specify the -r
option. If your intention is to use the -r option to create another object file that can be
used as eld input, then don’t specify the -set rld_unresolved option.

Cause. You used the -t or -d option, when building a program or DLL, to tell the
starting addresses of its segments, and you also used the -r option, to tell eld to build
another object file that can be used as linker input, rather than a program or DLL.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a program or DLL, then don’t specify the -r
option. If your intention is to use the -r option to create another object file that can be
used as eld input, then don’t specify the -t or -d option.

Cause. You used the -t option, which specifies the starting address of the code
segment of the program or DLL being built. It was rounded up to a multiple of 64K
bytes (or, 128K bytes if you are building an implicit DLL).

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. The starting address of the code segment of a program or DLL is required
to have the indicated alignment. No action is required if you understand that and are
satisfied with the rounding, although it would be cleaner if you specified a number with
the right alignment in the first place. If this doesn’t make sense to you, because you

1194 The 'rld_unresolved' attribute is not allowed with the
-r option.

1195 Specified the -t and/or -d option with the -r option.

1198 The value for the -t option was rounded up to <number>.
eld Manual—527255-009
6-32

Output Listings and Error Handling Error Messages
don’t understand the purpose of the -t option, read the documentation or contact HP
for more detailed advice. Perhaps you intended to make some code section come out
at a particular location, but there is no direct way to do that.

Cause. You used the -d option, which specifies the starting address of the data
segment of the program or DLL being built. It was rounded up to a multiple of 64K
bytes (or, 128K bytes if you are building an implicit DLL).

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. The starting address of the data segment of a pjrogram or DLL is required
to have the indicated alignment. No action is required if you understand that and are
satisfied with the rounding, although it would be cleaner if you specified a number with
the right alignment in the first place. More likely, there was no reason for you to use
this option in the first place. If this doesn’t make sense to you, because you don’t
understand the purpose of the -d option, read the documentation or contact HP for
more detailed advice. Perhaps you intended to make some data section come out at a
particular location, but there is no direct way to do that.

Cause. You used the -ansistreams option, which affects how the program that you are
building will do its I/O, but the file that you have told eld to create is not a program.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to create a program, specify that correctly. For example,
don’t specify the -dll, -shared, or -ul option, which means that you are telling eld
to build a DLL, rather than a program. And don’t specify the -r option, which tells eld
that you are building another object file that can be used as input to eld, rather than a
program. Or, if you don’t intend to create a program, then don’t specify the -
ansistreams option.

Cause. You used the -nostdfiles option, which affects how the program that you are
building will do its I/O, but the file that you have told eld to create is not a program.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to create a program, specify that correctly. For example,
don’t specify the -dll, -shared, or -ul option, which means that you are telling eld
to build a DLL, rather than a program. And don’t specify the -r option, which tells eld
that you are building another object file that can be used as input to eld, rather than a

1199 The value for the -d option was rounded up to <number>.

1200 Specified the -ansistreams option, but not building a
program.

1201 Specified the -nostdfiles option, but not building a
program.
eld Manual—527255-009
6-33

Output Listings and Error Handling Error Messages
program. Or, if you don’t intend to create a program, then don’t specify the -nostdfiles
option.

Cause. You specified the -dll, -shared, or -ul option, together with the -b
globalized or -b semiglobalized option, to build a globalized or semiglobalized DLL, and
you also specified the -make_implicit_lib option, to tell eld to make one of the implicit
DLLs that constitute system library. That’s not allowed, because the implicit DLLs are
never created as globlaized or semiglobalized DLLs.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you are not building one of the implicit DLLs that constitute system
library, then don’t specify the -make_implicit_lib option. If you are, then don’t specify
the -b globalized or -b semiglobalized option.

Cause. You specified the -shared, -dll, or -ul option, which are all ways of telling
eld to create a DLL. And you also specified the -r option, which tells eld to create
another object file that can be used as linker input, not a DLL.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to build a DLL, then don’t specify the -r option. If your
intention is to use the -r option to build.anoter object file that can be used as input to
eld, then don’t specify the -dll, -shared, or -ul option.

Cause. You gave the -change interpose_user_library option, to tell eld that
the DLL you are updating is to be marked as an interpose user library, but the filename
specified with the -change option is not a DLL.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to update a file that is not a DLL then don’t specify the -
set interpose_user_library option. If you intention is to update a DLL then you must
specify the name of a DLL.

1202 The -make_implicit_lib option is only allowed when you
are creating a localized DLL.

1206 The -shared or -ul option is not allowed with the -r
option.

1208 The 'interpose_user_library' attribute is only allowed
for DLLs.

1210 <filename>: unresolved reference to <symbol name>.
eld Manual—527255-009
6-34

Output Listings and Error Handling Error Messages
Cause. eld is building a program or DLL, and the program or DLL makes a reference
to the symbol mentioned in the message, but eld was unable to find a copy of that
symbol, either in the program or DLL being built, or in any other DLL that was looked at
during the link. This may occur for many reasons, ranging from spelling errors in your
source code, or things that you still need to write that you don’t yet have in your source
code, to problems with files that other people are supposed to provide to you, which
either they didn’t provide or you didn’t pass along for eld to use, or “standard” things
not set up correctly in your installation.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. You don’t necessarily need to resolve all references at link time. A
program may run correctly, even if it has unresolved references at link time. But, you
may prefer that your link be clean. In that case, you need to look at the names of the
symbols that eld said it couldn’t find, and see if they exist somewhere. The message
also told you the name of the input object file that had the reference to the symbol, and
the name of a code or data section within that object file where the reference occurred,
and the offset of the reference within that code or data section. That symbol may be in
a DLL, for example, that eld wasn’t using, so you need to supply those DLLs to eld.
eld will print out informational messages about all the DLLs that it used if you supply
the -verbose option. A symbol in a DLL also needs to be exported from that DLL for
eld to find it. A symbol might also be a member of an archive, but the archive needs
to come later on the command line than the reference to the symbol to guarantee that
eld finds the symbol in the archive. If you have unresolved references, to get an
error-free link you need to specify either -unres_symbols warn (to change these
messages into just warning messages) or -unres_symbols ignore (to not get any
messages at all).

Cause. eld is building a program or DLL, and the program or DLL makes a reference
to the symbol mentioned in the message, but eld was unable to find a copy of that
symbol, either in the program or DLL being built, or in any other DLL that was looked at
during the link. This may occur for many reasons, ranging from spelling errors in your
source code, or things that you still need to write that you don’t yet have in your source
code, to problems with files that other people are supposed to provide to you, which
either they didn’t provide or you didn’t pass along for eld to use, or “standard” things
not set up correctly in your installation.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. You don’t necessarily need to resolve all references at link time. A
program may run correctly, even if it has unresolved references at link time. But, you
may prefer that your link be clean. In that case, you need to look at the names of the
symbols that eld said it couldn’t find, and see if they exist somewhere. The message
also told you the name of the input object file that had the reference to the symbol.

1211 <filename>: unresolved reference to <symbol name>.
eld Manual—527255-009
6-35

Output Listings and Error Handling Error Messages
That symbol may be in a DLL, for example, that eld wasn’t using, so you need to
supply those DLLs to eld. eld will print out informational messages about all the
DLLs that it used if you supply the -verbose option. A symbol in a DLL also needs to be
exported from that DLL for eld to find it. A symbol might also be a member of an
archive, but the archive needs to come later on the command line than the reference to
the symbol to guarantee that eld finds the symbol in the archive. If you have
unresolved references, to get an error-free link you need to specify either -
unres_symbols warn (to change these messages into just warning messages) or -
unres_symbols ignore (to not get any messages at all)

Cause. You are creating a new object file out of a set of input files. eld creates a
temporary output file, before creating the real output file. When you specify the
-temp_o option, eld still first creates the temporary file in another place, and when
that file is created eld then tries to rename it to the filename specified in the -temp_o
option. That renaming failed. The temporary file that was created, and the filename
that you specifed in the -temp_o option, are both in the same location (Guardian
subvolume, OSS direction, or PC folder) as the new object file that you are trying to
create.

Effect. Warning (eld still creates the output object file, but not using the file you
specified with the -temp_o option as an intermediate file).

Recovery. If you are not able to rename a file to another name in the same location
(Guardian subvolume, OSS directory, or PC folder), that is an operating system
question that is beyond the scope of this document.

Cause. eld first creates the output object file in a temporary location, deletes any file
that previously existed with the name specified for the output object file, and then
renames the temporary file to the final location. That process failed. The file has
instead been left in the place that the message calls the “temporary file”.

Effect. Warning (eld produces an output file, but not with the filename you intended).

Recovery. If there already was a file with the same name as the file you wanted to
create, and you didn’t have permission to delete it, either find some other way to delete
that old file, or specify a different filename for the object file that you want to create. If
there was no file of that name already, and you are not able to rename a file to another
name in the same location (Guardian subvolume, OSS directory, or PC folder), that is
an operating system question that is beyond the scope of this document.

1212 Cannot create -temp_o file <filename>.

1213 Cannot create -o file <filename> by renaming the
temporary file <filename>.

1214 The implicit DLL <filename> has unresolved references.
eld Manual—527255-009
6-36

Output Listings and Error Handling Error Messages
Cause. You specified the -make_import_lib option, in order to create the zimpimp file
that represents the multiple implicit DLLs that constitute system library, and you also
specified those implicit DLLs on the command line. One of the checks that eld
performs on these implicit DLLs is that they don’t have unresolved references, which
would have to be true if that implicit DLL was correctly fixed up at the time it was
linked. But, the implicit DLL mentioned in the message had unresolved references.

Effect. Fatal error (The linker cannot do what was requested of it and the linker
immediately stops).

Recovery. This indicates some problem with the procedure for building and installing
the NSK operating system, which is beyond the scope of this document.

Cause. You specified the -make_import_lib option, in order to create the zimpimp file
that represents the multiple implicit DLLs that constitute system library, and you also
specified those implicit DLLs on the command line. One of the checks that eld
performs on these implicit DLLs is that they don’t have unresolved references, which
would have to be true if that implicit DLL was correctly fixed up at the time it was
linked. But, the implicit DLL mentioned in the message had unresolved references. It
is only a warning message, not an error message, because the -unres_symbols warn
option was also specified.

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. This issue involves the procedure for building and installing the NSK
operating system, which is beyond the scope of this document.

Cause. You specified the -show_multiple_def option, to tell eld to put information into
the listing about symbols that were defined more than once. This message reports the
first two definitions that eld saw for the symbol named in the message.

Effect. Information (This is not indicative of a problem).

Recovery. No action required.

Cause. You specified the -show_multiple_def option, to tell eld to put information into
the listing about symbols that were defined more than once. There was an instance of
message number 1227 earlier, which reported the first two definitions that eld saw for

1215 The implicit DLL <filename> has unresolved references.

1227 Multiple definition of <symbol name>: first definition
found in <filename>, second definition found in <filename>.

1228 Multiple definition of <symbol name>: third or later
definition found in <filename>.
eld Manual—527255-009
6-37

Output Listings and Error Handling Error Messages
the symbol named in this message. After that, there is an instance of this message
number 1228 for each additional definition that eld sees for the symbol.

Effect. Information (This is not indicative of a problem).

Recovery. No action required.

Cause. eld encountered global symbols of the same name, of which one is common
data and the other is a definition. The definition overrides the common data.

Effect. The application does not execute properly. See warning 1657 on page 6-124.

Recovery. Ensure that the application does not include duplicate global symbols of
different sizes. See warning 1230 on page 6-38 to know the name of the common data
and the file it is present in.

Cause. Multiple global symbols of the same name <symbol name> are present in
the link files, of which common data is present in <filename>.

Effect. For informational purposes only. (might indicate a problem, see warning 1657
on page 6-124).

Recovery. See the recovery step of warning 1229 on page 6-38.

Cause. eld encountered global symbols of the same name, of which one is common
data and the other is a definition. The definition overrides the common data.

Effect. The application does not execute properly. See warning 1657 on page 6-124.

Recovery. Ensure that the application does not include duplicate global symbols of
different sizes. For more information about the name of the common data and its
location, see warning 1232 on page 6-38.

Cause. Multiple global symbols of the same name <symbol name> are present in
the link files, of which common data is present in <filename>.

1229 Definition of <symbol name> from file <filename> is
overriding common of the same name.

1230 Common <symbol name> is in file <filename>.

1231 Common of <symbol name> in file <file name> is
overridden by definition.

1232 Common of <symbol name> is defined in file <file name>.
eld Manual—527255-009
6-38

Output Listings and Error Handling Error Messages
Effect. For informational purposes only (might indicate a problem, see warning 1657
on page 6-124).

Recovery. See the Recovery step of warning 1231 on page 6-38.

Cause. eld encountered global symbols of the same name, <symbol name>, both
of which are common data items and are of different size. The symbol of the larger size
is retained, overriding the smaller common data item.

Effect. Application might not function as expected.

Recovery. Correct the application to not include duplicate global symbols of different
sizes. To know the name of the file in which the larger common data is present, see
Warning 1234 on page 6-39.

Cause. Multiple global symbols of the same name are present in the link files, of which
larger common data is located in <file name>.

Effect. Information (might indicate a problem, see warning 1233).

Recovery. See Recovery step of Warning 1233 on page 6-39.

Cause. eld encountered global symbols of the same name, <symbol name>, both
of which are common data items and are of different sizes. The symbol of the larger
size is retained, overriding the smaller common data item.

Effect. Application might not function as expected.

Recovery. Correct the application to not include duplicate global symbols of different
sizes. To know the name of the file in which the larger common data is present, see
Warning 1234 on page 6-39.

Cause. Multiple global symbols of the same name are present in the link files, of which
smaller common data is located in <file name>.

Effect. Information (might indicate a problem, see Warning 1235 on page 6-39).

Recovery. See Recovery step of Warning 1235 on page 6-39.

1233 <file name>: common of <symbol name> overridden by
larger common.

1234 <file name>: larger common is here.

1235 <file name>: common of <symbol name> overriding smaller
common.

1236 <file name>: smaller common is here.
eld Manual—527255-009
6-39

Output Listings and Error Handling Error Messages
Cause. eld is building a program or DLL, and the program or DLL makes a reference
to the symbol mentioned in the message, but eld was unable to find a copy of that
symbol, either in the program or DLL being built, or in any other DLL that was looked at
during the link. This might occur for many reasons, ranging from spelling errors in your
source code, or things that you still need to write that you do not yet have in your
source code, to problems with files that other people are supposed to provide to you,
which either they did not provide or you did not pass along for eld to use, or
“standard” things not set up correctly in your installation.

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. You don’t necessarily need to do anything. A program may run correctly,
even if it has unresolved references at link time. But, you may prefer that your link be
clean. In that case, you need to look at the names of the symbols that eld said it
couldn’t find, and see if they exist somewhere. The message also told you the name of
the input object file that had the reference to the symbol, and the name of a code or
data section within that object file where the reference occurred, and the offset of the
reference within that code or data section. That symbol may be in a DLL, for example,
that eld wasn’t using, so you need to supply those DLLs to eld. eld will print out
informational messages about all the DLLs that it used if you supply the -verbose
option. A symbol in a DLL also needs to be exported from that DLL for eld to find it. A
symbol might also be a member of an archive, but the archive needs to come later on
the command line than the reference to the symbol to guarantee that eld finds the
symbol in the archive. Depending on the situation, you may be able to use the -
unres_symbols option to specify whether eld should consider unresolved
references to be errors, warnings, or neither.

Cause. eld is building a program or DLL, and the program or DLL makes a reference
to the symbol mentioned in the message, but eld was unable to find a copy of that
symbol, either in the program or DLL being built, or in any other DLL that was looked at
during the link. This may occur for many reasons, ranging from spelling errors in your
source code, or things that you still need to write that you don’t yet have in your source
code, to problems with files that other people are supposed to provide to you, which
either they didn’t provide or you didn’t pass along for eld to use, or “standard” things
not set up correctly in your installation.

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. You don’t necessarily need to do anything. A program may run correctly,
even if it has unresolved references at link time. But, you may prefer that your link be
clean. In that case, you need to look at the names of the symbols that eld said it
couldn’t find, and see if they exist somewhere. The message also told you the name of
the input object file that had the reference to the symbol. That symbol may be in a
DLL, for example, that eld wasn’t using, so you need to supply those DLLs to eld.

1254 <filename>: unresolved reference to <symbol name>.

1255 <filename>: unresolved reference to <symbol name>.
eld Manual—527255-009
6-40

Output Listings and Error Handling Error Messages
eld will print out informational messages about all the DLLs that it used if you supply
the -verbose option. A symbol in a DLL also needs to be exported from that DLL for
eld to find it. A symbol might also be a member of an archive, but the archive needs
to come later on the command line than the reference to the symbol to guarantee that
eld finds the symbol in the archive. Depending on the situation, you may be able to
use the -unres_symbols option to specify whether eld should consider unresolved
references to be errors, warnings, or neither.

Cause. You used the -y option, to ask eld to provide information about the symbol
mentioned in the message, and eld is telling you that there is a reference to that
symbol in the indicated file.

Effect. Information (This is not indicative of a problem).

Recovery. No action required.

Cause. You used the -y option, to ask eld to provide information about the symbol
mentioned in the message, and eld is telling you that there is a definition of that
symbol in the indicated file.

Effect. Information (This is not indicative of a problem).

Recovery. No action required.

Cause. Procedures are contained within code “sections”. The C++ compiler may
create duplicate copies of procedures, and eld can remove the duplicates if the
compiler gives permission. When this is done, the entire section containing the
unneeded copy of the procedure is removed. There may be references to the
procedure, but those references should be done by giving the name of the procedure,
and they will be fixed up to another copy of the procedure that was not removed. It is
also possible to make references to something within a code section by telling, not the
name of a symbol, but rather the name of the section and the offset within the section.
If there are such references into a section, the C++ compiler should not give eld
permission to remove it, because there would be no way to fix up the references. That
is what has happened. The message tells what input file this happened in, and where

1266 <filename>: reference to <symbol name>.

1267 <filename>: definition of <symbol name>.

1273 Bad input file: relocation table entry <number> for the
<section name> section of input file <filename> is a local
reference to the <section name> section. That is an error
because the <section name> section has been omitted from the
link, since it only contains an unneeded duplicate copy of a
procedure.
eld Manual—527255-009
6-41

Output Listings and Error Handling Error Messages
the reference was (in terms of its index in a table of relocation sites for some input
section), and which section it was pointing at (i.e., the section that was removed).

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Assuming this file was created by the C++ compiler, that indicates a
compiler error, to be reported to HP, or perhaps incorrect usage of the compiler.
ENOFT can provide more information about the parts of the object file mentioned in the
message.

Cause. While doing this link, and looking at other DLLs to resolve references, eld has
come upon the same DLL twice, where “same” means that it contains the same “DLL
name” inside it. These DLLs may have been found from items placed on the command
line, or indirectly through the liblist entries of other DLLs, or a combination of these
things. When looking for indirect DLLs, it is perfectly reasonable to find the same DLL
more than once, and usually eld is silent about that. In this case, eld put out a
warning message, because eld has not found the same file twice, nor two files that
look like copies of each other. In other words, it looks like there are two different DLLs
that just happen to have the same DLL name inside them, which is probably not
something you meant to do. The determination of whether two DLLs “look like copies
of each other” is based on whether they contain the same “export digest” within them.
Having the same export digest means that eld could use either copy of the DLL and
the resulting fixups of the file being created would come out exactly the same.

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. You should figure out what these two DLLs are and decide which one you
probably wanted eld to find, and which one you didn’t want eld to find, and change
your build procedure accordingly. You may want to use both of them, and to do that
you need to give them different DLL names, using the -soname option when you build
those DLLs.

Cause. You used the -obey option, but eld could not open the filename you specified.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Check that you really intended to specify a file of the indicated name, that
you spelled it correctly, and that you do have permission to read it.

Cause. You used the -obey option, and eld was reading that obey file, and eld found
a quotation mark (double quote character) within that obey file, either at the beginning
of a line or after white space in the middle of a line. eld assumes that a token begins

1276 <filename> contains the same DLL name as <filename>, and
is therefore being ignored.

1280 Can't open obey file <filename>.

1281 Unmatched double quotes in obey file.
eld Manual—527255-009
6-42

Output Listings and Error Handling Error Messages
after this quotation mark, and it terminated by the next quotation mark on the line, but
there was no additional quotation mark on the line.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Find the offending quotation mark in the obey file. What did you intend to
have there? You may need to review the rules in the eld manual about how eld
treats quotation marks in obey files.

Cause. You specified an option such as -L or -rpath, where the parameter is
supposed to be the name of a Guardian subvolume, OSS directory, or PC folder, or
you specified an option such as -soname, where the parameter is supposed to be a
DLL name. The parameter you specified began with an equal sign, but eld does not
allow parameters to begin with equal signs in these cases.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you really intended to give that kind of a name in these contexts, you
can’t. Choose another name that doesn’t begin with an equal sign.

Cause. You specified an option with a parameter, where the parameter began with an
equal sign. In the Guardian case this would be allowed, where eld would treat the
parameter as a “Guardian DEFINE”, and expand it to a filename But, you are running
eld on the PC or on OSS, and on these platforms this type of parameter is not
allowed.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you really wanted to use a name that begins with an equal sign in this
context, you can’t. On the PC or OSS, the Guardian DEFINE mechanism is not
present, so you need to directly specify the intended filename.

Cause. You specified an option with a parameter, where the parameter began with an
equal sign, and you are running eld on Guardian. In this situation, eld tries to treat
the parameter as a “Guardian DEFINE”. However, when eld tried to look up the name
as a Guardian DEFINE, that failed.

Effect. Fatal error (eld immediately stops without creating an output file).

1282 A string starting with an equal sign is not allowed as
the parameter for the <option name> option.

1283 A string starting with an equal sign is only allowed as
the filename parameter for the <option name> option in the
Guardian version of eld.

1284 The string <string> could not be expanded as a MAP
DEFINE.
eld Manual—527255-009
6-43

Output Listings and Error Handling Error Messages
Recovery. Check that you have issued a MAP DEFINE prior to running eld, where
this MAP DEFINE equated that string that began with an equal sign to a filename.
Also check that DEFMODE is ON.

Cause. You specified a string that began with an equal sign on the command line, and
you are running the Guardian version of eld. eld treated the string as a “Guardian
DEFINE”, and succeeded in expanding it to a filename. The message shows you how
it was expanded.

Effect. Information (This is not indicative of a problem).

Recovery. No action required.

Cause. You specified the option named in the message, and this option requires a
keyword parameter, but the option itself was the last thing on the command line, with
no keyword parameter after it.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, fix the syntax.

Cause. You specified the option named in the message, and this option requires a
keyword parameter, but the next token on the command line began with a hyphen,
indicating another option, not the parameter for this one.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, fix the syntax.

Cause. You specified the option named in the message, and this option requires a
number as a parameter, but the option itself was the last thing on the command line,
with no parameter after it. Or, it is also possible to get this message if the next thing on
the command line was a string such as “0x”, which is the prefix signifying the start of a
hexadecimal number, but immediately after the “0x” there was just a space, or the end
of the command line.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, fix the syntax.

1285 The MAP DEFINE <string> was expanded to <string>.

1286 Parameter required for <option name>.

1287 Keyword parameter required for <option name>.

1288 Number required for <option name>.
eld Manual—527255-009
6-44

Output Listings and Error Handling Error Messages
Cause. You specified the option named in the message, and this option requires a
number as a parameter, but the next token following the option contained characters
other than the allowed decimal or hexadecimal digits, depending on the situation.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, fix the syntax.

Cause. You used the -libname, -set libname, or -change libname option to
specify the name of a user library. A user library name must always have the form
$a.b.c, but either the name you specified didn’t start with a dollar sign, or it didn’t
contain two periods.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Are you sure you want to specify a user library name? If so, and you
entered the user library name incorrectly, fix it. Note that it must not contain a system
name.

Cause. You used the -libname, -set libname, or -change libname option to
specify the name of a user library. A user library name must always be a Guardian
filename specified in the form $a.b.c. eld has complained because at least one of “a”,
“b”, and “c” was longer than 8 characters.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Are you sure you want to specify a user library name? If so, and you
entered the user library name incorrectly, fix it.

Cause. You gave a -set highpin, -set highrequestors, -set runnamed, -set inspect, -set
saveabend, -set float_lib_overrule, -set oktosettype, -set interpose_user_library, or -set
user_buffers option. For each of these cases, the next token on the command line
must be either “on” or “off”, to tell the value for this -set attribute. However, the next
token on the command line was something other than these two possibilities.

Effect. Fatal error (eld immediately stops without creating an output file).

1289 Badly formed number for <option name>.

1291 A user library name must be of the form
'$vol.subvol.file'.

1292 Each of the volume, subvolume, and file name portions of
the user library name must have at most eight characters.

1293 Invalid value for <attribute name>; 'on' or 'off' is
required.
eld Manual—527255-009
6-45

Output Listings and Error Handling Error Messages
Recovery. If you want to specify this option, fix the syntax.

Cause. You gave a -set cppdialect option. The next token on the command line must
be either “neutral” or (synonymously) “cppneutral”, to tell the (only allowed) value for
this -set attribute. However, the next token on the command line was something other
than these two possibilities.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, fix the syntax.

Cause. There are multiple copies of the indicated procedure, and in particular at least
the copy of the procedure in the indicated file has the CALLABLE or
KERNEL_CALLABLE attribute. These attributes are not allowed for procedures that
have multiple copies. Procedures with these attributes are used to write system code,
and we believe it is better to only have one copy of such a procedure.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you didn’t really intend to write a CALLABLE (or KERNEL_CALLABLE)
procedure, remove that attribute from your source code. If you do want to write such a
procedure, make sure you only have one copy of it.

Cause. You gave the -set floattype neutral option when building a program. That is
allowed, but questionable. In fact, at runtime, a program is never “neutral”. It is always
set up to use either the Tandem or IEEE form of floating point. So, it would probably
be better for you to explicitly specify which one you want to have. As the message
says, you said “neutral”, but that really means “Tandem” at runtime.

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. If some DLL that is used at runtime says that it requires the “IEEE” type of
floating point, your program will not be allowed to run (unless you also specify “-set
float_lib_overrule on”). But there may not be a real problem here, because even
though a DLL says that it needs the “IEEE” type of floating point, that may not be true.
You might want to look into this with people who are familiar with what the DLL actually
does need. As already mentioned, this runtime check will be avoided if you also
specify the “-set float_lib_overrule on” option. Or, if you know that other DLLs used by
the program say that they are “IEEE”, or neutral, and none of them say “Tandem”, then
you will be able to run if you say -set floattype ieee, rather than -set floattype neutral.

1294 Invalid value <string> given for 'cplusplusdialect': .

1295 Duplicate procedure <symbol name> in <filename> is
callable.

1296 When a program is marked floating point neutral, it
really means tandem floating point at runtime.
eld Manual—527255-009
6-46

Output Listings and Error Handling Error Messages
Cause. You gave a -set floattype or -change floattype option. The next token on the
command line must be either “tandem”, “ieee”, or “neutral” (or the longer synonyms
“tandem_float”, etc.), to tell the value for this attribute. However, the next token on the
command line was something other than these possibilities.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, fix the syntax.

Cause. You gave the -set floattype option more than once on the command line, with
different attribute values. (The possible values are “tandem”, “ieee”, and “neutral”, or
the longer synonyms “tandem_float”, etc.) You can give the option more than once,
but only if you specify the same (or a synonymous) value each time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, decide which value you want to specify,
and only specify that value.

Cause. You gave the -set float_lib_overrule option more than once on the command
line, with different attribute values. (The possible values are “on” and “off”.) You can
give the option more than once, but only if you specify the same value each time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, decide which value you want to specify,
and only specify that value.

Cause. You gave the -set highpin option more than once on the command line, with
different attribute values. (The possible values are “on” and “off”.) You can give the
option more than once, but only if you specify the same value each time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, decide which value you want to specify,
and only specify that value.

1297 Invalid value for 'floattype': <string>.

1298 Conflicting values given for 'floattype'.

1299 Conflicting values given for 'float_lib_overrule'.

1300 Conflicting values given for 'highpin'.
eld Manual—527255-009
6-47

Output Listings and Error Handling Error Messages
Cause. You gave the -set highrequestors option more than once on the command line,
with different attribute values. (The possible values are “on” and “off”.) You can give
the option more than once, but only if you specify the same value each time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, decide which value you want to specify,
and only specify that value.

Cause. You gave the -set inspect option more than once on the command line, with
different attribute values. (The possible values are “on” and “off”.) You can give the
option more than once, but only if you specify the same value each time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, decide which value you want to specify,
and only specify that value.

Cause. You gave the -set runnamed option more than once on the command line, with
different attribute values. (The possible values are “on” and “off”.) You can give the
option more than once, but only if you specify the same value each time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, decide which value you want to specify,
and only specify that value.

Cause. You gave the -set saveabend option more than once on the command line,
with different attribute values. (The possible values are “on” and “off”.) You can give
the option more than once, but only if you specify the same value each time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, decide which value you want to specify,
and only specify that value.

1301 Conflicting values given for 'highrequestors'.

1302 Conflicting values given for 'inspect'.

1304 Conflicting values given for 'runnamed'.

1305 Conflicting values given for 'saveabend'.
eld Manual—527255-009
6-48

Output Listings and Error Handling Error Messages
Cause. You gave the -set heap_max option more than once on the command line,
with different numbers specified as the attribute value. You can give the option more
than once, but the numerical value that you specify must be the same each time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, decide which value you want to specify,
and only specify that value.

Cause. You gave the -set mainstack_max option more than once on the command
line, with different numbers specified as the attribute value. You can give the option
more than once, but the numerical value that you specify must be the same each time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, decide which value you want to specify,
and only specify that value.

Cause. You gave the -set space_guarantee option more than once on the command
line, with different numbers specified as the attribute value. You can give the option
more than once, but the numerical value that you specify must be the same each time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, decide which value you want to specify,
and only specify that value.

Cause. You gave a -set incomplete or -change incomplete option. The next token
on the command line must be “on”, to tell the (only allowed) value for this attribute.
However, the next token on the command line was something other than this.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, fix the syntax.

1306 Conflicting values given for 'heap_max'.

1307 Conflicting values given for 'mainstack_max'.

1308 Conflicting values given for 'space_guarantee'.

1309 Only 'on' is valid with 'incomplete'.

1310 Conflicting values given for 'libname'.
eld Manual—527255-009
6-49

Output Listings and Error Handling Error Messages
Cause. You gave the -libname or -set libname option(s) more than once on the
command line, with different filenames specified for the user library. You can give
these options more than once, but the name that you specify must be the same each
time (except for lower case versus upper case).

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, decide what name you want to specify,
and only specify that name.

Cause. You gave the -set process_subtype option more than once on the command
line, with different numbers specified as the attribute value. You can give the option
more than once, but the numerical value that you specify must be the same each time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, decide which value you want to specify,
and only specify that value.

Cause. You gave a -set rld_unresolved or -change rld_unresoloved
option. The next token on the command line must be either “error”, “warn”, or “ignore”,
to tell the value for this attribute. However, the next token on the command line was
something other than these possibilities.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, fix the syntax.

Cause. You gave the -set rld_unresolved option more than once on the
command line, with different attribute values. (The possible values are “error”, “warn”,
and “ignore”.) You can give the option more than once, but only if you specify the
same value each time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, decide which value you want to specify,
and only specify that value.

1311 Conflicting values given for 'process_subtype'.

1312 Invalid value for 'rld_unresolved': <string>.

1313 Conflicting values given for 'rld_unresolved'.

1314 Invalid value for 'systype': <string>.
eld Manual—527255-009
6-50

Output Listings and Error Handling Error Messages
Cause. You gave a -set systype or -change systype option. The next token on
the command line must be either “guardian” or “oss”, to tell the value for this attribute.
However, the next token on the command line was something other than these
possibilities.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, fix the syntax.

Cause. You gave the -set systype option more than once on the command line, with
different attribute values. (The possible values are “guardian” and “oss”.) You can give
the option more than once, but only if you specify the same value each time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, decide which value you want to specify,
and only specify that value.

Cause. You gave the -set or -change option on the command line. The next token
on the command line must be one of the possible attributes that you can set or change
with this option, but eld didn’t recognize the attribute specified.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Fix the spelling of the attribute. Case doesn’t matter, but other than that it
must be exactly as shown in the manual.

Cause. You gave more than one of the options named -b localized, -b globalized, and
-b semi_globalized (or, -b symbolic, a synonym for -b semi_globalized). You can give
the same option more than once if you wish, including synonyms for the same option,
but otherwise you must not specify more than one of these options.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify one of these options, decide which one you want to
specify, and only specify that one, not any other ones along with it.

1315 Conflicting values given for 'systype'.

1316 Invalid attribute for <option name> option: <string>.

1317 Multiple, inconsistent specifications for import
control.

1318 The -alf option was given more than once.
eld Manual—527255-009
6-51

Output Listings and Error Handling Error Messages
Cause. You specified the -alf option more than once on the command line. That is
not allowed.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to run multiple -alf options, do each one in a separate eld
command.

Cause. Each of the two files mentioned in the message defined data items of the
same name, as shown in the message. Various rules apply to such a situation. One
rule is that the two copies of the data item must have the same size (or, they can each
have size 0, which is a way for the compiler to not actually tell what the size is). But, in
this case, the sizes were different.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Did you really intend to define data items with the same name in each of
these two files, and have both definitions visible across separate compilations? If not,
change the name of one of them, or change the declaration of one of them so that it is
only visible within its own compilation. If you are using the same data item in more
than one place, only one of those places needs to be a definition, and the other places
can just be external references to that definition. Review the rules for what makes a
declaration a definition, depending on the source language that you are using,
because the rules are different for each language. If you really do intend to have two
definitions of this data item, visible across separate compilations, then the sizes must
be the same. If the sizes are different because the two files were created from
different versions of the source code, or by using different compiler options, repeat the
compilations doing things more consistently. If the two copies of the symbol are in
different source languages, you may need to review the rules for how different
language compilers lay out data, to get them to both give the data item the same size.

Cause. You specified the indicated option, but eld didn’t recognize it.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Fix the spelling of the option. Case doesn’t matter, but other than that it
must be exactly as shown in the manual.

Cause. You gave the -b option on the command line. The next token on the command
line must be one of the possible keyword parameters that you can give with this option,

1320 Illegal duplicate definition of the data item <symbol
name> in <filename> and <filename> because they are different
sizes.

1321 Unrecognized option: <string>.

1322 Unrecognized parameter to the -b option.
eld Manual—527255-009
6-52

Output Listings and Error Handling Error Messages
but eld didn’t recognize the parameter specified. (The possibilities are “localized”,
“globalized”, “semi_globalized”, “symbolic”, “static”, “dynamic”, and “dllsonly”.)

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Fix the spelling of the parameter. Case doesn’t matter, but other than that
it must be exactly as shown in the manual.

Cause. You gave the -change option. Along with a -change option, the only other
options that are allowed are -no_banner, -no_verbose, -obey, -stdin, -verbose, -
vslisting, and -warn. But, you specified some other option besides these.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Remove the offending option.

Cause. You gave the -update_registry or -check_registry option, telling the name of a
private DLL registry to use during the link. A private DLL registry is used to calculate
the address at which to place a DLL. It is only allowed when you are doing one of the
things listed in the message, and you weren’t doing any of those things.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to do one of the things listed in the message, provide the
appropriate option to specify that. If you are not doing any of those things, do not
specify the -update_registry or -check_registry option.

Cause. You used the -map option, which provides information about addresses in the
program or DLL that you are creating, and you also used the -r option, to tell eld to
build a another object file that can be used as linker input, rather than a program or
DLL.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a program or a DLL, then don’t specify the -r
option. If your intention is to use the -r option to create another object file that can be
used as eld input, then don’t specify the -map option.

1323 One or more options were given that are not allowed with
the -change option.

1324 You specified the name of a DLL registry, but that is
only allowed if you are (a) building a DLL, (b) updating a
DLL with the -alf option, or (c) building the zimpimp file
with the -make_import_lib option.

1325 The -map option is not allowed with the -r option.
eld Manual—527255-009
6-53

Output Listings and Error Handling Error Messages
Cause. You gave the -dllname option (or its synonym, the -soname option) more than
once on the command line. This option tells the “DLL name” to be placed inside the
DLL that you are creating, but you specified different DLL names. You can give this
option more than once, but only if you specify the same DLL name. Also note that
case is significant for this check.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, decide which DLL name you want to put
inside the DLL, and only specify that name.

Cause. You are using the OSS version of eld, and you are building a program that
uses a user library. You specified the -local_libname option, to tell eld where the
user library currently exists, for eld to fix up refernces to it during the link. It is also
necessary for eld to place a Guardian file name for the user library within the program
being built, to tell where the user library will exist in the Guardian namespace at
runtime. You could specify this with the -libname option, but you didn’t. In this case,
eld tries to use the name you specified for the -local_libname option, converting it
to the form of a Guardian filename. But, for that to work, the name you specify with the
-local_libname option needs to be a Guardian file (i.e., it needs to be a name such
as /G/a/b/c). But, it wasn’t, so that’s the error.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you don’t intend for your program to use a user library, don’t specify the -
local_libname option. If you are using a user library, you must decide what its
Guardian filename will be at runtime. If you move the file there now, and specify it with
the format -local_libname /G/a/b/c, that will work. Or, if the file isn’t there now, you
can tell eld where it will be in the future with an option of the form -libname $a.b.c,
in addition to still giving the -local_libname option, to tell eld where the file is now.

Cause. The options that you gave to eld said that you wanted to build a new object
file out of existing object files. Those object files would be object files, such as those
created by a compilation, perhaps found in archives, and you can also tell eld about
DLLs to look at during this process. But, the file mentioned in the message, whose
name you put on the command line, is none of those things, but rather is a program.

1326 Multiple specifications of -soname or -dllname options
with different filenames.

1327 On OSS, if you specify -local_libname, you must either
also specify -set libname, or else the string specified for
-local_libname must be in the Guardian namespace, to be used
as the name of the user library at runtime.

1328 The specified input file <filename> is a program.
eld Manual—527255-009
6-54

Output Listings and Error Handling Error Messages
Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to build a new object file out of existing files, to be able
to use this new object file as eld input, then don’t specify the name of a program on
the command line. You can’t add more stuff to an existing program, you can only
rebuild a different program from scratch. The options that you can apply to an existing
program are -alf, -change, and -strip. If you want to do one of these things,
specify the appropriate option.

Cause. You are using the Guardian version of eld, and you are building a program
that uses a user library. You specified the -local_libname option, to tell eld where
the user library currently exists, for eld to fix up refernces to it during the link.
However, the name that you specified for the -local_libname option was not a valid
Guardian filename. (This particular message comes out when you specify the -
local_libname option and you don’t also specify the -libname option. Otherwise,
a different message would appear, saying that eld could not open the file specified for
the -local_libname option, although the underlying problem would be the same.)

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option then you must enter a valid Guardian
filename for its parameter.

Cause. You gave the -e option more than once on the command line. This option tells
eld the name of the procedure that should be where execution begins for the program
you are building, but you specified different names at different places on the command
line. You can give this option more than once, but only if you specify the same name
each time. Also note that case is significant for this check.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. Are you sure you want to specify the -e option at all? There usually is no
need to give this option, and specifying it is a mistake. You can validly use it to tell the
main entry point for a pTAL program, if you didn’t put the MAIN attribute into the source
code. But you must only specify one such name with -e options. Also note that, if you
misspell some other option beginning with an “e”, then eld will interpret that as a “-e”
option, possibly leading to this message. There are several such options, as described
elsewhere in this manual, and you must spell them exactly as described in this manual,
except for case. Note that there is no option spelled “-elf” in eld, although there was

1329 The parameter of the -local_libname option could not be
converted to Guardian format.

1330 The -e option was given multiple times with different
procedure names: <symbol name> and <symbol name>.
eld Manual—527255-009
6-55

Output Listings and Error Handling Error Messages
in nld. If you say “-elf” to eld, eld will believe that you are saying that “lf” is the name
of the main entry point. So, don’t do that.

Cause. You specified a -change option, and this message tells you that it
succeeded, changing a certain attribute within a certain file to a certain value, as
shown in the message.

Effect. Information (This is not indicative of a problem).

Recovery. No action required.

Cause. You specified the -t or -d option, to explicitly tell eld what the starting
address should be for the text or data segment. You also specified the -check_registry
or -update_registry option, to tell eld that it should figure out what address to give the
DLL that you are creating based on what a private DLL registry says. You can’t do
both at the same time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to use a private DLL registry to decide what the DLLs
address should be, don’t specify the -t or -d option. If you want to explicitly tell eld
where to place the new DLL, without using a private DLL registry, then the -t or -d
options can be used to do that, although there is rarely any reason to use the -d
option. If you want to build a DLL, and explicitly say where it should go, and also have
a private DLL registry updated with that information, you can use the -t option to
build the DLL, and separately put that information into the private DLL registry file by
hand. Or, you can put the information by hand into the private DLL registry first, and
then tell eld to do what the registry says by using the -check_registry option.

Cause. You specified either the -temp_r option, the -must_use_rname option, or one
of the options whose names begin “-grow”. These options relate to how eld chooses
an address for a DLL and updates a private DLL registry accordingly. However, you
did not specify the -update_registry option, which tells eld about a private DLL registry
that it should update.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to have eld create or update a private DLL registry with
information about the DLL that you are building, specify the -update_registry option. If

1331 <attribute name> has been changed to <attribute value>
in file <filename>.

1332 The -t and -d options cannot be given when using a DLL
registry.

1333 The <option name> option can only be given when you are
updating a DLL registry.
eld Manual—527255-009
6-56

Output Listings and Error Handling Error Messages
you are not trying to do that, then don’t specify the -temp_r option, the -
must_use_rname option, or any option whose name begins “-grow”.

Cause. You specified both the -check_registry and -update_registry options. The -
check _registry option tells eld that it must assign a DLL an address as specified in a
private DLL registry, and the registry is unchanged. The -update_registry option tells
eld to use information in the registry to decide what address to use for the DLL, and
then update the registry accordingly. You can’t do both at the same time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to use a private DLL registry, decide which of the two ways you
want to be using it, and specify the correct option accordingly.

Cause. You have specified the -update_registry option, to tell eld to calculate the
address for a DLL and store it in a private DLL registry, also allocating a certain
amount of space for future growth of that DLL. You specified the -grow_limit option,
which tells eld what that future size should be. But you also specified the -
grow_data_amount, -grow_text_amount, or -grow_percent option, and these options
are used to tell eld which formula to use to calculate the future growth if the -
grow_limit option is not given. You can’t give the -grow_limit option at the same time
as any of these other options whose names begin “-grow”.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Decide what formula you want eld to use, to calculate the amount of
future growth of this DLL, and specify the proper options accordingly, as explained
elsewhere in this manual.

Cause. You gave the -change option, telling the name of the file that you want to
modify, and the name of the attribute that you want to modify inside that file. The file
that you specified is a linkfile, such as a file created by a compilation, not a program or
a DLL. The only attribute that you are allowed to modify in a linkfile is “floattype”, but
you specified a different attribute from that.

Effect. Fatal error (eld immediately stops without modifying the file).

Recovery. The attribute that you specified cannot set or modified in linkfiles. To set up
that attribute value in a program or DLL, you must give it in the eld command that
creates that program or DLL.

1334 The -check_registry and -update_registry options cannot
both be given.

1335 Cannot specify -grow_limit with other -grow* options.

1336 <filename> is a linkfile. Only -change floattype is
valid for a linkfile.
eld Manual—527255-009
6-57

Output Listings and Error Handling Error Messages
Cause. You gave the -instance_data option more than once on the command line,
and you specified a different value for it each time. You can give this option more than
once, but only if you specify the same value each time.

Effect. Fatal error (eld immediately stops without modifying the file).

Recovery. The -instance_data option is a speical option that should only be used
when you know why you are using it. If you need to use it, decide which value you
need to specify, and specify only that value.

Cause. You specified the -check_registry or -update_registry option, and the file that
you specified as the private DLL registry does exist, but you don’t have permission to
open it for reading. The problem is not that the file was in use by another link, because
eld would give a different message about that.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Check that you spelled the name correctly and that you do have
permission to read it.

Cause. You specified the -make_import_lib option, which means that you are either
making an import library to represent a single DLL, or that you are making the zimpimp
file that represents all the implicit DLLs that constitute system library. You also
specified either the -temp_r, -must_use_rname, -check_registry, -update_registry, or -
t option, and these are options that are allowed when you are creating the zimpimp
file, but not when creating other kinds of import libraries. On the other hand, you also
put the name of a DLL on the command line, and this DLL isn’t an implicit DLL, but
only implicit DLLs are allowed when you are creating the zimpimp file. So, this set of
conditions is inconsistent.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to create a zimpimp file, then the other filenames on the
command line should be implicit DLLs. If you are trying to create an import library to
represent a single (ordinary) DLL, then don’t use the option that was mentioned in the
message. If you are not trying to create an import library, don’t specify the -
make_import_lib option.

1337 Multiple values specified for the -instance_data option.

1338 Error opening DLL registry <filename>.

1339 The <option name> option would be allowed if you were
making a zimpimp file, but because the DLL on the command
line isn't an implicit DLL, you are instead making an
ordinary import library, in which case this option isn't
allowed.
eld Manual—527255-009
6-58

Output Listings and Error Handling Error Messages
Cause. You specified the -make_import_lib option, which means that you are either
making an import library to represent a single DLL, or that you are making the zimpimp
file that represents all the implicit DLLs that constitute system library. You also
specified either the -s, -x, or -set incomplete option, and these are options that are only
allowed when you are creating some other kind of import library, not the zimpimp file.
On the other hand, the DLLs that you listed on the command line are implicit DLLs, and
that’s only allowed when you are creating the zimpimp file. So, this set of conditions is
inconsistent.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to create a zimpimp file, then don’t use the option that
was mentioned in the message. If you are trying to create an import library to
represent a single DLL, then that should be the only DLL listed on the command line,
and it should not be an implicit DLL. If you are not trying to create an import library,
don’t specify the -make_import_lib option.

Cause. You have specified the -make_implicit_lib option, which means that you are
building one of the DLLs that constitute system library. These DLLs are not allowed to
contain writeable data. However, the input file mentioned in the message contained
writeable data.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Assuming you really do want to specify the -make_implicit_lib option, you
need to examine your input files to determine why they contain variable data, modify
them, and recompile them, to fix that.

Cause. You gave the -instance_data option on the command line. The next
token on the command line must be one of the parameters that you can specify for this
option (the possibilities are “data1”, “data2”, “data2protected“, “data2hidden”, and
“data1constant”), but eld didn’t recognize the parameter specified.

Effect. Fatal error (eld immediately stops without creating an output file).

1340 The <option name> option would be allowed if you were
making an ordinary import library, but because the DLL's on
the command line are implicit DLL's, you are instead making a
zimpimp file, in which case this option isn't allowed.

1341 <filename>: <message about why this input file contains
something that would lead to the existence of variable data
in the output file>, which is not allowed when the
-make_implicit_lib option is specified.

1342 Unrecognized parameter to the -instance_data option.
eld Manual—527255-009
6-59

Output Listings and Error Handling Error Messages
Recovery. The -instance_data option is a speical option that should only be used
when you know why you are using it. If you need to use it, decide which value you
need to specify, and spell it correctly. Case doesn’t matter, but other than that it must
be exactly as shown in the manual.

Cause. You gave the -change option, but the file that you specified for this option is
not any kind of valid TNS/E object file.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Use the correct object file.

Cause. You gave the -local_libname option more than once on the command line,
and you specified a different filename parameter for it each time. You can give this
option more than once, but only if you specify the same filename each time.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. The -local_libname option tells the name of a user library that eld will
use during this link to fix up references from the program that it is creating. There can
only be one user library. If you have a user library, specify its name on the command
line, and no other name. If you use this option to specify the name more than once, it
must be written exactly the same way each time.

Cause. You gave the -import_lib, the -import_lib stripped, or the -make_import_lib
option more than once on the command line. Each of these options takes a filename
as a parameter, and you specified different names each time that option was used.
You can give each of these options more than once, but only if you specify the same
filename each time for that option.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. These are three different options that tell eld to create an import library,
and the parameter tells the name of that import library. Decide what name you want to
give the import library, and specify just that name on the command line.

1343 <filename> is neither a linkfile, DLL, or program.

1345 Multiple specifications of the -local_libname option
with different filenames.

1346 Multiple specifications of the <option name> option with
different filenames.
eld Manual—527255-009
6-60

Output Listings and Error Handling Error Messages
Cause. You gave the -check_registry option, to tell eld the name of an existing
private DLL registry for eld to use during the link, but no such file exists.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Check that you spelled the name of the private DLL registry correctly.

Cause. The program or DLL that you are building contains writeable data and you
have not specified the -instance_data option with an appropriate parameter value
to cause eld to separate the writeable data from other data so that NSK can give them
different types of protection. Also, you have resident code in your program or DLL, and
you have not specified the -data_resident option, to tell NSK that the data for this
program needs to be resident. That combination of conditions is considered an error.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Yes, this is tricky. Most users who have both writeable data and resident
code should specify the -instance_data data2 option to make things work. It is
beyond the scope of this manual to explain when you might instead prefer to specify -
instance_data data2protected or -instance_data data2hidden, which is
the other possible choice for the -instance_data option that also makes eld create
two data segments. And, none of this is the right thing to do for certain special
programs that are called “proto-processes” or “sysgen’ed processes”. It is similarly
beyond the scope of this manual to explain what these things are, but if you are
creating a proto-process then you should know that you are doing that. In that case,
do not specify the -instance_data option, but rather the -data_resident option.

Cause. You have specified the -make_implicit_lib option, to make one of the implicit
DLLs that constitute system library. When an implicit DLL is created, eld does not use
the zimpimp file, which is the import library that represents the entire set of implicit
DLLs after they have all been created. So, when you are making an implicit DLL, eld
doesn’t try to find the zimpimp file on its own. However, one of the files that eld found,
when it was looking for normal DLLs, turned out to be a zimpimp file. That’s the error.

Effect. Fatal error (eld immediately stops without creating an output file).

1348 DLL registry <filename> not found.

1349 You are building a program or a DLL, and you have both
resident code and writeable data. To build such a file you
are required to specify the -instance_data data2 option.
Except, if you are building a 'proto-process' (also known as
a 'sysgen'ed process'), then instead you should specify the
-data_resident option.

1350 A zimpimp file (<filename>) is not allowed when you are
building an implicit DLL.
eld Manual—527255-009
6-61

Output Listings and Error Handling Error Messages
Recovery. This indicates some problem with the procedure for building and installing
the NSK operating system, which is beyond the scope of this document.

Cause. The -verbose, -warn, and -no_verbose options are mutually exclusive, and you
specified more than one of them. You can specify the same one of these options more
than once if you wish, but you cannot specify different ones as part of the same eld
invocation.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. These options tell eld which messages you want to see, other than error
messages, which you cannot turn off. Decide which option you want and only specify
that one.

Cause. You specified the -check_registry or -update_registry option, to tell eld to use
a private DLL registry. Such a file did exist, and the first thing that eld tried to do with
it was to open the file for reading. However, eld could not do that, because the file
was being used exclusively by another process, perhaps by another link that was using
the -update_registry option. In this situation, eld waits and tries again, and that
should work. If that doesn’t work after a certain number of tries, then eld gives up,
resulting in this message.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Look into the status of the file that you specified. Perhaps someone has it
opened for an extended period of time in an editing session. Run eld again when it is
possible for eld to read that file.

Cause. You gave the -o option more than once on the command line, specifying
different filenames. You can give this option more than once, but only if you specify the
same filename each time.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. This option tells the name for the main object file that eld is creating
Decide what name you want, and specify just that name on the command line. Also
note that, if you misspell some other option beginning with an “o”, then eld will
interpret that as a “-o” option, possibly leading to this message. The only other valid

1351 Conflicting verbosity options: <string> and <string>.

1353 DLL registry <filename> is in use. Giving up.

1355 Multiple specifications of the -o option with different
filenames.
eld Manual—527255-009
6-62

Output Listings and Error Handling Error Messages
option names beginning with an “o” are “-obey” and “-optional_lib”, and they must be
spelled exactly that way, except for case.

Cause. You specified the -make_import_lib option, which means that you are either
making an import library to represent a single DLL, or that you are making the zimpimp
file that represents all the implicit DLLs that constitute system library. You also
specified either the -unres_symbols, -error_unresolved, or -warning_unresolved option,
and these are options that are allowed when you are creating the zimpimp file, but not
when creating other kinds of import libraries. On the other hand, you also put the
name of a DLL on the command line, and this DLL isn’t an implicit DLL, but only
implicit DLLs are allowed when you are creating the zimpimp file. So, this set of
conditions is inconsistent.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to create a zimpimp file, then the other filenames on the
command line should be implicit DLLs. If you are trying to create an import library to
represent a single (ordinary) DLL, then don’t use the option that was mentioned in the
message. If you are not trying to create an import library, don’t specify the -
make_import_lib option.

Cause. You have specified the -instance_data data1constant option, which
means that you want eld to consider it an error if the program or DLL that you are
building contains any writeable data. And, indeed, the input file mentioned in the
message contains writeable data.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Assuming you really don’t want to have any writeable data, you need to
examine your input files to determine why they contain variable data, modify them, and
recompile them, to fix that.

1356 Options to specify how unresolved references should be
handled would be allowed if you were making a zimpimp file,
but because the DLL on the command line is not an implicit
DLL, you are instead making an ordinary import library, in
which case such options are not allowed.

1357 <filename>: <message about why this input file contains
something that would lead to the existence of variable data
in the output file>, which is not allowed when -instance_data
data1constant is specified.

1358 The -instance_data option cannot be specified with the
-r option.
eld Manual—527255-009
6-63

Output Listings and Error Handling Error Messages
Cause. You used the -instance_data option, which affects the layout of the
program or DLL that you are creating, and you also used the -r option, to tell eld to
build another object file that can be used as linker input, rather than a program or DLL.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a program or DLL, then don’t specify the -r
option. If your intention is to use the -r option to tell eld to make another object file
that can be used as eld input, then don’t specify the -instance_data option.

Cause. While reading the private DLL registry that was specified for this link in the -
check_registry or -update_registry option, eld ran off the end of the file when it was
expecting that the next thing in the file would be a number. Presumably, the format of
the file is bad because it was incorrectly edited by hand.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Fix the format of the file, as explained elsewhere in this manual.

Cause. You gave the -rename option, which requires two symbol name parameters.
However, the next two things on the command line were not symbol name parameters.
Either there were no symbol name parameters, or there was only one, and then it was
either the end of the command line or the next token on the command line started with
a hyphen, indicating another option rather than another parameter to this one.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, fix the syntax.

Cause. While reading the private DLL registry that was specified for this link in the -
check_registry or -update_registry option, at the line indicated in the message, eld
expected to see a number, but the next thing in the file was not a number with the
correct format. Presumably, the format of the file is bad because it was incorrectly
edited by hand.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Fix the format of the file, as explained elsewhere in this manual.

1359 DLL registry line <number>: encountered end of file when
expecting a number.

1360 Two symbol names are required for the -rename option.

1361 DLL registry line <number>: number expected but not
found.
eld Manual—527255-009
6-64

Output Listings and Error Handling Error Messages
Cause. While reading the private DLL registry that was specified for this link in the -
check_registry or -update_registry option, at the line indicated in the message, eld
expected to see a number, and the next thing in the file looked like the beginning of a
number, but then invalid characters were seen. A number needs to be followed by
white space to show where the number ends. Presumably, the format of the file is bad
because it was incorrectly edited by hand.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Fix the format of the file, as explained elsewhere in this manual.

Cause. You gave the -rename option, to tell eld how it should change the definition
of a symbol of one name into the definition of a symbol of another name, but you
specified the same symbol name twice.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, the two symbol names must be different.

Cause. You gave the -strip option, to tell eld to remove the DWARF symbols from
an existing program or DLL. The parameter to the -strip option is the name of the
file to be stripped. When you give the -strip option, you can also give the -o, -obey,
and -temp_o options, which also have filenames as parameters. However, except for
these reasons, you are not allowed to have any other filenames on the command line.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Why did you specify the filename mentioned in the message? Assuming it
was for one of the possible reasons listed above, provide the proper syntax.

Cause. You gave the -temp_i option more than once on the command line. This
option tells the name of a file to use as a temporary file while creating an import library.
You can give this option more than once, but only if you specify the same filename.

Effect. Fatal error (eld immediately stops without creating an output file).

1362 DLL registry line <number>: encountered a bad character
within a number.

1363 The same symbol, <symbol name>, was specified twice in
the same -rename option.

1365 A lone filename (<filename>) is not allowed on the
command line with the -strip option.

1369 Multiple specifications of the -temp_i option with
different filenames.
eld Manual—527255-009
6-65

Output Listings and Error Handling Error Messages
Recovery. If you want to specify this option, only specify one filename.

Cause. You gave the -temp_o option more than once on the command line. This
option tells the name of a file to use as a temporary file while creating the output file.
You can give this option more than once, but only if you specify the same filename.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, only specify one filename

Cause. You have specified the -make_implicit_lib option, which means that you are
building one of the DLLs that constitute system library. These DLLs are not allowed to
contain writeable data. In other words, the -instance_data data1constant
option is imposed, to say that the file cannot contain any writeable data. You can
specify the -instance_data option if you wish, but only if you specify data1constant
as the parameter, and you specified something else.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Assuming you really do want to specify the -make_implicit_lib option, do
not specify the -instance_data option with a parameter value other than
data1constant.

Cause. You are trying to create an object file. eld first creates it in a temporary
location, deletes any file that previously existed with the name specified for the object
file, and then renames the temporary file to the final location. That process failed. In
such a situation, eld would usually leave the file in another location and tell you about
it. However, you also specified the -must_use_oname option, to say that it should be
considered an error if the file could not be created in the named location. So, that is
what happened.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If there already was a file with the same name as the file you wanted to
create, and you didn’t have permission to delete it, either find some other way to delete
that old file, or specify a different filename for the object file that you want to create. If
there was no file of that name already, and you are not able to rename a file to another
name in the same location (Guardian subvolume, OSS directory, or PC folder), that is
an operating system question that is beyond the scope of this document..

1370 Multiple specifications of the -temp_o option with
different filenames.

1371 With -make_implicit_lib, -instance_data must be
data1constant.

1372 Cannot create -o file <filename>.
eld Manual—527255-009
6-66

Output Listings and Error Handling Error Messages
Cause. You gave the -unres_symbols option on the command line. The next token on
the command line must be one of the possible keyword parameters that you can give
with this option, but eld didn’t recognize the parameter specified. (The possibilities
are “error”, “warn”, and “ignore”.)

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Fix the spelling of the parameter. Case doesn’t matter, but other than that
it must be exactly as shown in the manual.

Cause. You gave the -temp_r option more than once on the command line. This
option tells the name of a file to use as a temporary file while creating a private DLL
registry. You can give this option more than once, but only if you specify the same
filename.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, only specify one filename.

Cause. The option mentioned in the message takes a numerical parameter. You gave
this option more than once on the command line, with different numbers specified as
the parameter value. You can give the option more than once, but the numerical value
that you specify must be the same each time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, decide which value you want to specify,
and only specify that value.

Cause. You gave the -update_registry option more than once on the command line,
with different names given for the parameter, to tell the name of the private DLL
registry file. You can give the option more than once, but the filename that you specify
must be the same each time.

Effect. Fatal error (eld immediately stops without creating an output file).

1373 Unrecognized parameter to the -unres_symbols option.

1374 Multiple specifications of the -temp_r option with
different filenames.

1375 Multiple specifications of the <option name> option with
different values.

1376 Multiple specifications of the -update_registry option
with different values.
eld Manual—527255-009
6-67

Output Listings and Error Handling Error Messages
Recovery. If you want to specify this option, decide which filename you want to
specify, and only specify that one.

Cause. You gave the -check_registry option more than once on the command line,
with different names given for the parameter, to tell the name of the private DLL
registry file. You can give the option more than once, but the filename that you specify
must be the same each time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, decide which filename you want to
specify, and only specify that one.

Cause. The private DLL registry that was specified for this link in the -check_registry
or -update_registry option contained more than one -dllarea command. That is not
allowed. Presumably, the format of the file is bad because it was incorrectly edited by
hand.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Fix the format of the file, as explained elsewhere in this manual.

Cause. You did not give an option such as -dll, -shared, or -ul, which would tell
eld that you want to make a DLL, but you specified the -make_implicit_lib option,
which tells eld more specifically what kind of DLL to make, namely, one of the implicit
DLLs that constitute system library.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is not to build one of the implicit DLLs that constitute
system library, then don’t specify the -make_implicit_lib option. If you are trying to do
that, then this indicates some problem with the procedure for building and installing the
NSK operating system, which is beyond the scope of this document.

1377 Multiple specifications of the -check_registry option
with different values.

1380 DLL registry line <number>: two -dllarea commands in the
registry file.

1381 The -make_implicit_lib option is only allowed when
creating a new DLL.

1382 The <option name> option is not allowed with the
-make_import_lib option.
eld Manual—527255-009
6-68

Output Listings and Error Handling Error Messages
Cause. The-make_import_lib option creates an import library to represent one or
more other DLLs that already exist. Only certain other options are allowed in
conjunction with the -make_import_lib option, and the one mentioned in the error
message is not one of them.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you are not trying to create an import library to represent one or more
other DLLs that already exist, don’t specify the -make_import_lib option. If you are
trying to do that, don’t specify the other option mentioned in the error message.

Cause. The symbol <symbol name> is a cross_dll_cleanup symbol but is not
allowed because of any of the following reasons:

• It is an initerm symbol

• It has the CALLABLE attribute

• It has the MAIN attribute

• Not all copies of the <symbol name> are marked STO_MULTIPLE_DEF_OK.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Check that the attributes of the <symbol name> are as required. If not,
update the attributes to comply with the rules that are mandated by the -
cross_dll_cleanup option. If the attributes are not as required, the -
cross_dll_cleanup option cannot be used.

Cause. Using the -cross_dll_cleanup option requires that all the input object files
be compiled with -Wglobalized option.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Compile the input object files with the -Wglobalized option.

Cause. The MAIN attribute is one of the attributes that can be assigned to a procedure
within an object file. That can be done by using the appropriate syntax in pTAL or

1389 The symbol named <symbol name> is a cross_dll_cleanup
symbol, but that's not allowed because <reason>.

1391 Input file <file name> was not compiled with the -
Wglobalized option, but all input object files must be
compiled with this option when the -cross_dll_cleanup option
is used.

1393 Multiple procedures with the 'main' attribute: <symbol
name> and <symbol name>.
eld Manual—527255-009
6-69

Output Listings and Error Handling Error Messages
Cobol source code, and can also be done by a link a link step that uses both the -e
and -r options. The procedure so marked is the one where execution begins, when
your object file is linked into a program. eld found two different procedures that were
each marked this way, as indicated in the message, and that is an error.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If you were linking together two different pTAL object files, each of which
had a procedure with the MAIN attribute, are you sure you wanted to do that? It
usually makes sense to have one of these, if you are writing pTAL, but not more than
one. If you used a link with the -e and -r options to create an object file with a
procedure marked with the MAIN attribute, are you sure you wanted to do that? There
usually is no reason to do that. Did you include more than one copy of the special
object file that C and C++ include when creating a main program? If so, get rid of the
extra copies of that file. Did you include an object file created by pTAL, containing a
procedure with the MAIN attribute, when you were building a program whose main
language was C, C++, or Cobol? If so, don’t do that. Or, if you really do want to link
together the object files you specified, despite the fact that they contain more than one
procedure with the MAIN attribute, you can do that with the -allow_mulitple_mains
option. In that case, eld will choose one of those procedures to be the one where
execution begins, so you would need to check that eld chose the one you wanted.
eld will choose the “first” one it sees, which you can control by changing the order of
object files on the command line, assuming the different procedures with the MAIN
attribute are in different object files.

Cause. The MAIN attribute is one of the attributes that can be assigned to a procedure
within an object file. For example, this can be done by using the appropriate syntax in
pTAL or Cobol source code. The procedure so marked is the one where execution
begins, when your object file is linked into a program. But you also specified, with an
option such as -dll, -shared, or -ul, that you wanted eld to build a DLL, not a
program. That is considered an error.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a DLL, then you cannot have any procedure
with the MAIN attribute in your input object files. If you really want those object files in
your DLL, rebuild them so that they don’t contain any procedures with the MAIN
attribute. Perhaps, when building your DLL, you incorrectly included the special object
file that C, C++, and Cobol include when creating a main program? If so, leave out
that object file. Or, if you want to build a program, rather than a DLL, don’t specify an
option such as -dll, -shared, or -ul, that tells eld to create a DLL.

1394 A procedure with the 'main' attribute cannot be included
in a DLL: <symbol name>.
eld Manual—527255-009
6-70

Output Listings and Error Handling Error Messages
Cause. This message indicates a problem with the contents of the specified input
filename, so that eld refuses to process the file.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. This is a bug that needs to be reported to HP. Was the specified input file
created by a compilation, or by a previous link step? That would indicate which tool
created the bad file, and therefore had a bug that needs to be fixed.

Cause. The data in the program or DLL that you are creating is divided into various
data “sections”. Some of the sections are called “GP-relative”, meaning that the data is
to be addressed by adding an offset to the contents of the GP register. A single region
of data is reserved for this purpose, and all the GP-relative data sections need to fit
within it. Some of these GP-relative sections come directly from compilations, because
the compiler decides that the data can be referenced by GP-relative addressing.
There also are tables created by the linker, to be referenced by GP-relative addressing,
related to the number of different symbols to which you have references. Also, if you
used the -instance_data option, specifying two data segments, that causes data to
be rearranged in a way that requires more data to fit in the area reserved for GP-
relative addressing. In any case, at most 4 megabytes of data can be in the area
reserved for GP-relative addressing, and your program or DLL has exceeded that.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. You need to make your program or DLL smaller, so that it contains less
data, or makes references to fewer symbols, or perhaps you don’t need to use the -
instance_data option (if you specified that option). Or, you might decide to split a
single large DLL into multiple DLLs. Each program and DLL gets its own region of GP-
addressable data.

Cause. Some of the data in a program or DLL is called “GP-relative”, meaning that it is
to be addressed by adding an offset to the contents of the GP register. A single region
of data is reserved for this purpose, and all the GP-relative data needs to fit within it.
eld chooses the value for the GP register so that it can reach all the data in this
region, if possible. However, your program or DLL also included a symbol named

1395 <filename>: <procedure name> is in <section name>, which
is not a code section.

1447 <output filename>: the range of data that requires GP-
relative addressing is too large (<number> >= 0x400000).

1448 <output filename>: the value specified for the GP
register, due to the definition of a symbol named __gp, does
not make it possible to reach all the data that requires
GP-relative addressing.
eld Manual—527255-009
6-71

Output Listings and Error Handling Error Messages
__gp. That tells eld to lay out this symbol in the usual way, like any other data item,
but then use its address as the value to put in the GP register. After doing this, all the
GP-relative data could not be reached from that address.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Do you really need to DEFINE a symbol named __gp? If you want to write
code that figures out the value that in the GP register, you can do that just be having a
REFERENCE to the symbol named __gp, not a DEFINITION of it. The rules for what
makes the declaration of a symbol a “definition”, versus a “reference”, depend on the
source language, and that is beyond the scope of this manual. If you really do need to
define the symbol named __gp, that would be for some very special reason that is also
beyond the scope of this manual.

Cause. Each of the two files mentioned in the message defined data items of the
same name, as shown in the message. Various rules apply to such a situation. One
rule is that, if the two copies of the data item are initialized, then they must have the
same initial value. However, these two copies of the data item had different initial
values. It is also possible, in C++, for a data item to appear to be uninitialized, but in
that case it is treated as being initialized with the value 0.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Did you really intend to define data items with the same name in each of
these two files, and have both definitions visible across separate compilations? If not,
change the name of one of them, or change the declaration of one of them so that it is
only visible within its own compilation. If you are using the same data item in more
than one place, only one of those places needs to be a definition, and the other places
can just be external references to that definition. Review the rules for what makes a
declaration a definition, depending on the source language that you are using,
because the rules are different for each language. If you really do intend to have two
definitions of this data item, visible across separate compilations, then the initial values
must be the same. Or, if you are not writing in C++, it would also be possible for some
copies of the data item to be uninitialized. If the initial values are different because the
two files were created from different versions of the source code, or by using different
compiler options, repeat the compilations doing things more consistently.

Cause. Each of the two files mentioned in the message defined data items of the
same name, as shown in the message. Various rules apply to such a situation. One
rule is that the two data items must look like the same “kind” of data, which eld judges

1462 Illegal duplicate definition of the data item <symbol
name> in <filename> and <filename> because they have
different initial values.

1463 Illegal duplicate definition of the data item <symbol
name> because it is in the <section name> section in
<filename> and the <section name> section in <filename>.
eld Manual—527255-009
6-72

Output Listings and Error Handling Error Messages
according to the name of the “data section” in which the data was placed by the
compiler. eld considers the data sections named “.data”, “.data1”, “.sdata”, “.sdata1”,
“.bss”, and “.sbss” to all be “standard, writeable” data sections, and different copies of
a data item can be in different sections of these names without getting a complaint.
The same goes for the “standard, readonly” data sections, which are named “.rdata”,
“.srdata”, “.rodata”, “.srodata”, and “.rconst”. Any other data sections are considered
special by eld, and if a data item is in such a section then all copies of that data item
must be in a section of that same name. Similarly, different copies of a data item can’t
disagree about whether they are “writeable” or “readonly”. These rules were violated,
as shown in the message.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Did you really intend to define data items with the same name in each of
these two files, and have both definitions visible across separate compilations? If not,
change the name of one of them, or change the declaration of one of them so that it is
only visible within its own compilation. If you really do intend to have two definitions of
this data item, visible across separate compilations, then they must be the same kind
of data, as explained above. If they are different kinds of data because the two files
were created from different versions of the source code, or by using different compiler
options, repeat the compilations doing things more consistently.

Cause. A filename was specified for eld to open, but either that file doesn’t exist or
you don’t have permission to read it. This particular message can come out about the
existing program or DLL to be updated by the -alf or -strip option, or about the
file specified for the -gateway_template option, which is a special option that few
people would ever use.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Check that you spelled the name of the file correctly and that you have
permission to read it.

Cause. A filename was specified for eld to read, and the file was supposed to be a
valid TNS/E object file of some sort, but it wasn’t. In particular, this message is saying
that the file was not the ELF format, which is the format used by TNS/E object files.
This particular message can come out about the existing object file to be updated by
the -alf, -change, or -strip option, or about the file specified for the -
gateway_template file, which is a special option that few people would ever use.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Check that you spelled the name of the file correctly and that it is a valid
TNS/E object file of the type appropriate for the command that you gave.

1493 Cannot open <filename>.

1495 Specified file <filename> is not an ELF object file.
eld Manual—527255-009
6-73

Output Listings and Error Handling Error Messages
Cause. A filename was specified for eld to read, and the file was supposed to be a
valid TNS/E object file of some sort, but it wasn’t. In particular, this message is saying
that the file was not the 64-bit ELF format, and more specifically not the format used for
Intel’s 64-bit IPF implementation, which is the format used by TNS/E object files. This
particular message can come out about the existing object file to be updated by the -
alf, -change, or -strip option, or about the file specified for the -
gateway_template file, which is a special option that few people would ever use.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Check that you spelled the name of the file correctly and that it is a valid
TNS/E object file of the type appropriate for the command that you gave.

Cause. You speciifed either the -alf or -strip option, followed by the name of an
existing file. For these options, that file must be a program or DLL. However, the file
that was specified was instead an object file, such as a file produced by a compilation,
not a program or a DLL.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to use the -alf or -strip option, then the file that
you specify must be a program or DLL. A similar stripping operation on object files,
such as those produced by a compilation, rather than a program or a DLL, can be
accomplished by using the -s and -r options together.

Cause. You gave the -alf option, to repeat the fixup process on an existing program
or DLL. Along with the -alf option, you can also specify the -t option, to provide a
new address for the code segment of the program or DLL. If you just do that, then the
data segment moves by the same amount as the text segment. Or, if you give the -t
option, then you can also give the -d option, to independently tell where the data
segment should move. However, you cannot give the -alf option with the -d option if
you don’t also give the -t option, and that is what you did.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to repeat the fixups without changing the address of the
existing program or DLL, don’t specify the -d option. If you want to move the text and
data segments by the same amount (including the most usual case, where the data
segment is immediately after the text segment), then specify the -t option, not the -d

1496 Specified file <filename> is not a TNS/E object file.

1497 Specified file <filename> is neither a program nor a
DLL.

1498 For the -alf option you can't specify the -d option
without the -t option.
eld Manual—527255-009
6-74

Output Listings and Error Handling Error Messages
option. If you want to independently specify where each segment should move, then
specify both the -t and -d options.

Cause. You specified the -alf option with the -t option, to repeat the fixup process
on an existing DLL while specifying a new address for its code segment. The address
you specified was rounded up to a multiple of 64K bytes (or, 128K bytes if you are
doing this to an implicit DLL).

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. The starting address of the code segment of a DLL is required to have the
indicated alignment. No action is required if you understand that and are satisfied with
the rounding, although it would be cleaner if you specified a number with the right
alignment in the first place. If this doesn’t make sense to you, because you don’t
understand the purpose of the -t option, read the documentation or contact HP for
more detailed advice. Perhaps you intended to make some code section come out at
a particular location, but there is no direct way to do that.

Cause. You specified the -alf option with the -d option, to repeat the fixup process
on an existing DLL while specifying a new address for its data segment. The address
you specified was rounded up to a multiple of 64K bytes (or, 128K bytes if you are
doing this to an implicit DLL).

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. The starting address of the data segment of a program or DLL is required
to have the indicated alignment. No action is required if you understand that and are
satisfied with the rounding, although it would be cleaner if you specified a number with
the right alignment in the first place. More likely, there was no reason for you to use
this combination of options in the first place. If this doesn’t make sense to you,
because you don’t understand the purpose of the -d option, read the documentation or
contact HP for more detailed advice. Perhaps you intended to make some data
section come out at a particular location, but there is no direct way to do that.

Cause. You gave the -alf option to repeat the fixup process on an existing program
or DLL. Normally, this only updates places in the data segment, that need to be filled
in with the addresses of symbols found in this same program or DLL, or in other DLLs.
Those places are listed in “relocation tables” within the program or DLL. However, one
of the relocation table entries indicated an address to be fixed up that was not within
the data segment of the program or DLL. Possibly the program or DLL is bad, which

1499 The value of the -t option was rounded up to <number>.

1500 The value of the -d option was rounded up to <number>.

1502 <name of a relocation table section> entry <number> is
not in the data segment.
eld Manual—527255-009
6-75

Output Listings and Error Handling Error Messages
would indicate a bug with eld when it created that program or DLL, and should be
reported to HP. It is also possible that the relocation table entry indicates an address in
the code segment, but you did not specify the -update_code option, to tell the -alf
option that it was okay to update such places. There are two relocation tables, named
“.rela.dyn” and “.rela.gblzd”, and the message tells you which table had the bad entry
in it, and which entry it was. You may be able to get more information, such as the
name of the symbol being referred to, by dumping out this relocation table section with
ENOFT.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. The -update_code option is a special option that is only intended to be
used when running -alf on the millicode DLL that is part of system library. If that is
the case you are doing, specify this option. Other than that case, there is probably
nothing you can do about this error message except to report it to HP as a possible
bug with eld when it created this program or DLL.

Cause. This message can come out either when you give the -alf option, or the -
strip option, or the -r option when there is exactly one input object file. eld tries to
create a workfile in the same location (OSS directory, Guardian subvolume, or PC
folder) as the place where you specified that the new version of the file should be
created. eld could not create that workfile and open it for writing.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Check that you have permission to create files in the indicated location,
and that it isn’t a Guardian subvolume that is full.

Cause. This message can come out either when you give the -alf option, or the -
strip option, or the -r option when there is exactly one input object file. eld creates
a temporary output file, before creating the real output file. When you specify the -
temp_o option, eld still first creates the temporary file in another place, and when that
file is created eld then tries to rename it to the filename specified in the -temp_o
option. That renaming failed. The temporary file that was created, and the file that you
specified in the -temp_o option, are both in the same location (Guardian subvolume,
OSS directory, or PC folder) as the place that you specified for the new version of the
file to be created.

Effect. Warning (eld still creates the output object file, but not using the file you
specified with the -temp_o option as an intermediate file).

Recovery. If you are not able to rename a file to another name in the same location
(Guardian subvolume, OSS directory, or PC folder), that is an operating system
question that is beyond the scope of this document.

1506 Cannot create workfile <filename>.

1508 Cannot create -temp_o file <filename>.
eld Manual—527255-009
6-76

Output Listings and Error Handling Error Messages
Cause. This message can come out either when you give the -alf option, or the -
strip option, or the -r option when there is exactly one input object file. eld first
creates the new version of the object file in a temporary location, deletes any file that
previously existed with the name that the new version of the file is to have, and then
renames the temporary file to the final name. That process failed. The file has instead
been left in the temporary location as given in the message.

Effect. Warning (eld produces an output file, but not with the filename you intended).

Recovery. If there already was a file with the same name as the file you wanted to
create, which may in fact be the old version of the file that you are updating with the
-alf, -strip, or -r option, and you did not have permission to delete it, specify a
different filename for the new version of the object file. If there was no file of that name
already, and you are not able to rename a file to another name in the same location
(Guardian subvolume, OSS directory, or PC folder), that is an operating system
question that is beyond the scope of this document.

For details on Cause and Recovery, see eld Functionality for 64-Bit on page 4-12.

Effect. This is a warning message and eld continues with the link. However, the
results are not as desired because, eld performed the search for –l option. The
search according to the ilp32 rule has produced a warning message that, it has
found the lp64 DLL before obtaining the lp64 linkfile and thereafter started following
the lp64 rule. If you are performing a lp64 build and want to ensure that eld is
consistent throughout the link then, enter the –set data_model lp64 option in the
command line.

Cause. You gave the -alf option, to repeat the fixup process on an existing program.
Along with the -alf option, you also specified the -t or -d option. These options can
be used with the -alf option when it is operating on a DLL, to tell it to also change the

1509 Cannot (re-)create <filename>; naming the output file
<filename> instead.

1510 eld encountered the file <filename> which has the lp64
data model, and eld applies the rules for the lp64 data model
henceforth. These rules have an effect on how the search is
performed for –l option and how the warning messages are
produced for the data models of DLL’s. This link has already
performed one or both of these options by following the rules
for the default ilp32 data model and the results are not what
is desired. Henceforth to avoid this scenario, enter the –set
data_model lp64 option on the command line.

1511 The -t and -d options are not allowed when running the -
alf option on a program.
eld Manual—527255-009
6-77

Output Listings and Error Handling Error Messages
address of the DLL. However, you are not allowed to change the address of a program
with the -alf option, so it is wrong to use these options.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to repeat the fixups on a program, do not specify the -t
or -d option. If you want to change the address of a program, you can not. You must
rebuild the program to specify a different address for it, and usually there is no reason
to do that. Perhaps you meant to run the -alf option on a DLL, but the filename that
you specified was a program, not a DLL.

Cause. You gave more than one of the options named -unres_symbols error (or its
synonym, -error_unresolved), -unres_symbols warn (or its synonym, -
warning_unresolved), and -unres_symbols ignore. You can give the same option more
than once if you wish, including synonyms for the same option, but otherwise you must
not specify more than one of these options.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify one of these options, decide which one you want to
specify, and only specify that one.

Cause. You gave the -d option more than once, specifying different numerical values
each time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. There is rarely any reason to specify the -d option. But, if you want to
specify this option, decide which value you want and only specify that one.

Cause. The -t option tells the starting virtual address for the code segment of the
DLL or program you are building. But, you gave the -t option more than once,
specifying different numerical values each time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. There is rarely any reason to specify the -t option for a program, but it is
reasonable to do so when you are building a DLL. If you want to give this option,
decide which value you want and only specify that one.

1512 Multiple, inconsistent specifications for the handling
of unresolved references.

1513 The -d option was specified twice with different values.

1514 The -t option was specified twice with different values.
eld Manual—527255-009
6-78

Output Listings and Error Handling Error Messages
Cause. The -gateway_template option tells the name of a template file that is used for
overriding the standard gateway format when you are building a DLL that contains
callable procedures. You gave this option more than once, specifying different
filenames each time.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. Few people will ever need to use this option. But, if you have a template
file that you wish to give to eld with this option, just specify the option once, giving the
name of that template file.

Cause. You gave the -gateway_template option, specifying a filename as a parameter.
That file should be a TNS/E object file that can be used as linker input (usually, in this
case, produced by the TNS/E assembler), but the file that you specified for this option
is not that type of file.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Few people will ever need to use this option. If you really are such a
person, then you need to create the template file, typically by assembling some code
that is a modfication of the assembler code used for this purpose before.

Cause. You gave the -gateway_template option, specifying a filename as a parameter.
That file is required to meet various conditions, in order to describe to eld the type of
gateways that it should create for callable procedures, to override the default gateway
formats. The message tells which condition the file did not meet.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Few people will ever need to use this option. If you really are such a
person, then you need to create the template file, following the detailed rules for it,
which is beyond the scope of this manual.

1515 Multiple specifications of the -gateway_template option
with different filenames.

1516 <gateway template filename> is not a TNS/E linkfile.

1517 Bad format for <gateway template filename>, <reason>.

1518 The .procinfo section of <filename> gives a bad number
of parameters (<number>) for <symbol name>.It should be
between 0 and 32 for a user callable procedure.
eld Manual—527255-009
6-79

Output Listings and Error Handling Error Messages
Cause. You wrote a callable procedure, and the object file produced by the compiler is
supposed to tell how many parameters it has, which should be a number between 0
and 32. However, the object file said something else.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you wrote a callable procedure with more than 32 parameters, you need
to write it a different way, because a callable procedure cannot have more than 32
parameters. The exact definition of what constitutes “one parameter” may depend on
the language and is beyond the scope of this manual. In any case, the fact that the
compiler created such a bad file is also a bug that should be reported to HP.

Cause. You used the <option name> option, to provide instructions to eld about
how to create the DLL or program that you are building, and you also used the -r
option, to specify eld to build another object file that can be used as a linker input,
rather than a program or a DLL.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to create a program or a DLL, do not specify the -r
option. If your intention is to combine several existing object files into a new object file
that can be processed again by eld then do not specify the <option name> option.

Cause. The procedure named in the message has the CALLABLE (or
KERNEL_CALLABLE) attribute. And, you have specified that this procedure be the
main procedure where execution begins for the program that you are building, either by
using the -e option or by the fact that the procedure is marked with the MAIN attribute
in its object file. However, that combination is not allowed.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is that this procedure be the place where execution begins
for your program, then it cannot be marked CALLABLE or KERNEL_CALLABLE. If
you want your program to begin execution in privileged mode, you can accomplish that
purpose by instead giving the procedure the PRIV attribute. If you specified that this
procedure be the main entry point by giving the -e option, are you sure you wanted to
do that? In pTAL, you could do that if you forgot to put the MAIN attribute on the main
procedure, but it would probably be better for you to change the source that way, at the
same time that you change it to saying PRIV rather than CALLABLE. It is usually a
mistake to give the -e option when building a program in any other language. For
example, in C, the procedure that you call “main” is not really where execution begins,
so you should not say “-e main”. Since it isn’t where execution really begins, it is okay

1519 The <option name> option is not allowed with the -r
option.

1520 A main entry point (<symbol name>) is not allowed to be
callable.
eld Manual—527255-009
6-80

Output Listings and Error Handling Error Messages
for your “main” procedure in C to have the CALLABLE attribute, and that is a perfectly
normal way to make your program run in privileged mode (although certain initialization
activities will have taken place before it became privileged).

Cause. You used the -e option to specify the main entry point for the program you are
building, and the parameter to the -e option is supposed to be the name of a
procedure. However, the name that you specified is instead the name of a data item
(at least, it does not exist in a section that has the right name for a code section).

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your program contains C, C++, or Cobol code, you shouldn’t be using the
-e option at all. If your program only contains pTAL code then yoyu can use the -e
option to tell the name of the pTAL procedure that should be the main entry point. Did
you spell the name wrong? You must specify the name of a procedure, not a data
item.

Cause. You specified the -t and/or -d options, along with the -alf option, to tell
eld to move a DLL to different addresses, and you specified addresses that woudn’t fit
into 32 bits. Or, you are using the -alf option to repeat the fixups on a program or
DLL, and you are pointing at some other DLL that uses addresses that don’t fit into 32
bits. In either case, the program or DLL that you are fixing up contains 32-bit pointers,
that it is using to point at symbols, either in the same DLL or in another DLL, whose
addresses can’t be represented in 32 bits. So, that’s impossible to do.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If you really want to move this DLL to a range of addresses that don’t fit
into 32 bits, or make references to some other DLL that has a range of addresses that
don’t fit into 32 bits, then you need to change your source code so that it doesn’t try to
use 32-bit pointers in those cases.

Cause. You gave the -alf option. Along with an -alf option, only certain other
options are allowed. However, you gave the option mentioned in the message, which
is not one of the options allowed with the -alf option.

Effect. Fatal error (eld immediately stops without creating an output file).

1521 The main entry point(<symbol name>)is not in a code
section.

1522 For entry <number> in <relocation table name>, the
updated value <number> no longer fits into 32 bits.

1523 The <option name> option is not allowed with the -alf
option.
eld Manual—527255-009
6-81

Output Listings and Error Handling Error Messages
Recovery. Remove the offending option.

Cause. You specified the -alf option, telling the name of the program or DLL that
you want to update. Various other options are allowed with the -alf option, and
some of these other options also have filenames as parameters. But, in addition to all
these filenames, you also had two other filenames on the command line by
themselves, not as parameters of options. It is possible to have one such filename, to
tell the name of the zimpimp file that represents the DLLs that constitute system library.
However, it is never legal to have more than one such filename.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Perhaps you need to review the section of the manual that describes the -
alf option. The only filenames that should be on the command line are as described
above.

Cause. You used the -no_preset or -must_preset option, which affect the eld
program’s behavior when it is creating a program or DLL, and you also used the -r
option, to tell eld to build another object file that could be used as eld input, rather
than a program or DLL. That’s inconsistent.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to create a program or DLL, don’t use the -r option. If
your intention is to create another object file that can be used as eld input, rather than
a program or DLL, then don’t use the -no_preset or -must_present option.

Cause. The -no_preset option tells eld not to mark the file “preset”, because you
know that you don’t have the right linker inputs to fix up references correctly. The -
must_preset option tells eld that you believe you do have the right linker inputs to fix
up references correctly, and it should be an error if eld can not do that. These are
contradictory.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Based on what these two options do, decide which one you want to give, or
neither.

1524 You can put one filename on the command line with the
-alf option, to be the zimpimp file, but more than one
filename is an error.

1526 Can't specify the -no_preset or -must_preset option with
the -r option.

1527 Can't specify the -must_preset option with the -
no_preset option.
eld Manual—527255-009
6-82

Output Listings and Error Handling Error Messages
Cause. You gave the -must_preset option, to say that eld should consider it an error
if it couldn’t correctly perform fixups, and that is what happened. There are many
reasons why fixups might not have been possible, and the message tells the reason
that occurred.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. It is possible to run a program even though it could not be fixed up correctly
at link time. For example, one reason that fixups can’t be performed at link time is if
eld is told to look at various DLLs that have overlapping addresses. This may be true
of your link environment, simply because it doesn’t have copies of the DLLs for which
people have tried to get the addresses sensible. And even if you are doing a link on
the same machine where you can run, pointing at the real DLLs that you will use, it is
still possible that the DLLs have overlapping addresses, so that fixups can’t be
performed at link time. The addresses of the DLLs can be changed at runtime, making
it possible to run correctly. So, you might just want to omit the -must_preset option and
not worry about this. Or, if you want to make sure that the fixups can be correctly
performed at link time, which is a requirement for some special programs, and which is
probably why you specified -must_preset in the first place, then you will need to
investigate the reason why fixups couldn’t be done, as given in the message.

Cause. You have given the -alf option, to update an existing program or DLL.
When that program or DLL was originally built, it specified certain other DLLs to be
used. Those DLLs contained “DLL names”, which were saved in the program or DLL
being built at the time. During the -alf option, eld uses those DLL names to search
for those other DLLs again. eld found such a file, and opened it, but instead of being a
DLL it was a different kind of file, as explained in the message. The message might
have called it a “linkfile”, which means, for example, that it might be a file produced by
a compilation, or the message might have said it was an “archive”, as produced by the
“ar” tool. But, in any case, it wasn’t a DLL.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. The simplest approach is that, when you build a DLL, give it a simple
name, and let its DLL name be that same simple name. And then, leave that DLL
where it is, while building another program or DLL that uses it, and then using the -
alf option on that other program or DLL. Then you shouldn’t get into this kind of error
situation. Somehow, by having a DLL name that doesn’t match the filename, or by
having other files with the same names as the names of DLLs, things have gotten
confused. Start over, and don’t do that.

1528 Cannot preset because <reason>.

1529 <filename> is a <type of file>, but the -alf option
requires DLL's for the liblist entries in <existing program
or DLL name>.
eld Manual—527255-009
6-83

Output Listings and Error Handling Error Messages
Cause. eld normally looks for a “zimpimp” file, based on which it gets information
about the symbols in system library, and this message is just telling you where eld
found this file.

Effect. Information (This is not indicative of a problem).

Recovery. No action required.

Cause. Procedures may be given the CALLABLE attribute, which means that code
goes into privileged mode when such procedures are called. Obviously, this attribute is
only used by a limited number of people. There is also an attribute called
KERNEL_CALLABLE, which is even more restricted, only occuring in the millicode
DLL that is part of system library. A single DLL is not allowed to contain a mixture of
procedures with both of these attributes, but both of these attributes were used
somewhere among the input files that you gave to eld.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you are one of the persons who should be using these attributes in the
first place, and having this problem, then it is a problem with building the NSK
operating system that is beyond the scope of this manual.

Cause. You specified the -change incomplete option, to mark an existing import
library as an incomplete import library. However, the file name that you specified for
the -change option is in fact a zimpimp file, the special import library that represents
the procedures in system library, and you are not allowed to mark that file incomplete.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention was to mark some other import library as incomplete,
specify its name correctly. You cannot mark the zimpimp file incomplete.

Cause. The C++ compiler marks some symbols as “globalized” symbols, because the
fixups to such symbols need to follow special rules at runtime. You have globalized
symbols in the files that you are linking together, as indicated in the message. You

1530 Using the zimpimp file <filename>.

1532 User_callable and kernel_callable procedures are both
present.

1533 The 'incomplete' attribute is not allowed for implicit
DLL's.

1534 Globalized symbols (first one: <symbol name>) are not
allowed in an implicit DLL.
eld Manual—527255-009
6-84

Output Listings and Error Handling Error Messages
have also given the -dll and -make_implicit_dll options, to tell eld to make one of
the implicit DLLs that constitute system library. System library is not allowed to contain
globalized symbols.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Assuming you do want to make an implicit DLL, you probably need to look
over your C++ source code to figure out why it has globalized symbols in it, and
change the code to avoid that. It is beyond the scope of this manual to explain the
rules that the C++ compiler uses in deciding which globalized symbols to create.

Cause. The C++ compiler marks some symbols as “globalized” symbols, because the
fixups to such symbols need to follow special rules at runtime. Each of the two files
mentioned in the message contain symbols of the same name, as shown in the
message. One of the copies was globalized and one wasn’t, which is an error. It
doesn’t matter if the declarations of the symbols are definitions or just external
references, they still need to agree on whether the symbol is globalized.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Did you really intend to define symbols with the same name in each of
these two files, and have both symbols visible across separate compilations? If not,
change the name of one of them, or change the declaration of one of them so that it is
defined and only visible within its own compilation. If you are using the same symbol in
more than one place, all the places must agree on whether that symbol is globalized.
If the symbols disagree about this because the two files were created from different
versions of the source code, or by using different compiler options, repeat the
compilations doing things more consistently.

Cause. You specified the -alf option, telling the name of the DLL that you want to
update, and this was one of the implicit DLLs that constitute system library. Various
other options are allowed with the -alf option, and some of these other options also
have filenames as parameters. But, in addition to all these filenames, you also had
another filename on the command line by itself, not as the parameter of an option. In
general, with the -alf option, it is possible to have one such filename, to tell the
name of the zimpimp file that represents the DLLs that constitute system library.
However, it is not possible to specify a zimpimp file when in fact you are now working
on one of the implicit DLLs themselves.

1535 Copies of symbol <symbol name>, in <filename> and
<filename>, don't agree on whether it is globalized.

1536 Filename <filename> was specified on the command line
with the -alf option, but that means that this file would be
the zimpimp file, and the existing file <filename> is an
implicit DLL, and an implicit DLL cannot use a zimpimp file,
so this is an error.
eld Manual—527255-009
6-85

Output Listings and Error Handling Error Messages
Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. This indicates some problem with the procedure for building the NSK
operating system, which is beyond the scope of this manual.

Cause. The zimpimp file is a file that tells eld about the symbols in system library.
eld has various methods of locating this file. For example, if you are running eld on
TNS/E then the operating system tells eld where the file is. In other cases, eld looks
for it in an appropriate place, expecting it to have the name “zimpimp”. eld did find a
file by these methods, but the file turned out not to have the proper structure for a
zimpimp file. This particular message comes out when the file did have the structure of
a DLL, but did not have the proper “DLL name” within it, to indicate that it was the
zimpimp file.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. There is something wrong with your installation. The message told the
name of the file that eld thought should be the zimpimp file, but wasn’t. Perhaps that
will help you figure out what is wrong. A proper zimpimp file should be built as part of
the process of creating the operating system, which is beyond the scope of this
manual.

Cause. The zimpimp file is a file that tells eld about the symbols in system library.
eld has various methods of locating this file. For example, if you are running eld on
TNS/E then the operating system tells eld where the file is. In other cases, eld looks
for it in an appropriate place, expecting it to have the name “zimpimp”. eld did find a
file by these methods, but the file turned out not to have the proper structure for a
zimpimp file. This particular message comes out when the file was not a DLL, which is
what the zimpimp file looks like, but rather was a linkfile, such as an object file created
by a compilation.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. There is something wrong with your installation. The message told the
name of the file that eld thought should be the zimpimp file, but wasn’t. Perhaps that
will help you figure out what is wrong. A proper zimpimp file should be built as part of
the process of creating the operating system, which is beyond the scope of this
manual.

1537 The file named <filename>, which should be a zimpimp
file, is not a zimpimp file.

1538 <filename> is a linkfile but a zimpimp file was
expected.

1539 Option -public_registry specified multiple times with
different filenames <filename> and <filename>.
eld Manual—527255-009
6-86

Output Listings and Error Handling Error Messages
Cause. The -public_registry option specifies the name of a public DLL registry file,
which eld uses to look up information about the operating system and other standard
DLLs. You gave this option twice on the command line, and you specified different
names each time, which is an error. Note that case is significant for this check.

Effect. Fatal error (eld immediately stops without creating an output file).

Cause. Are you sure you want to specify the -public_registry option at all? There
usually is no need to give this option, because eld should be able to find the official
version automatically. If you specify this option, you can do it more that once, but only
if you specify the same filename each time.

Cause. eld uses the public DLL registry file to look up information about the operating
system and other standard DLLs. There are various ways that eld may find this file.
For example, if you are running eld on TNS/E then the operating system tells eld
where the file is. In other cases, eld looks for it in an appropriate place, expecting it to
have the name “zreg”. Or, you can override these methods by explicitly telling eld
where it is with the -public_registry option. However eld was told where the public
DLL registry file was, either a file of that name didn’t exist, or you don’t have
permission to read it.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you specified the -public_registry option, are you sure you need to do
that? There usually is no need to give this option, because eld should be able to find
the official version of the public DLL registry automatically. If you specify this option,
check that you spelled the name correctly, and that you do have permission to read it.
If eld could not find it on its own, and you didn’t specify the -public_registry option,
then there is something wrong with your installation. The message told the name of
the file that eld thought was the public DLL registry file. Perhaps that will help you
figure out what’s wrong.

Cause. eld uses the public DLL registry file to look up information about the operating
system and other standard DLLs. There are various ways that eld may find this file.
For example, if you are running eld on TNS/E then the operating system tells eld
where the file is. In other cases, eld looks for it in an appropriate place, expecting it to
have the name “zreg”. Or, you can override these methods by explicitly telling eld
where it is with the -public_registry option. eld did find a file by these methods, but
the file turned out not to have the proper structure for a public DLL registry file. eld
parses the contents of the file into “statements”, which in turn can have “attributes”, and
this particular message comes out when eld found unexpected characters between

1540 Cannot open public DLL registry file <filename>.

1541 Unexpected characters <string> found on line <number> of
<filename>.
eld Manual—527255-009
6-87

Output Listings and Error Handling Error Messages
two statements or between two attributes. The message tells the line number at which
this occurred in the file.

Effect. Warning. It is possible that the format of the official public DLL registry file
changed, and that is why eld cannot read it, but still eld tries to continue with the link.
Because eld could not read the public DLL registry file, however, that means that eld
will not be able to automatically find any of the standard DLLs.

Recovery. If you specified the -public_registry option, are you sure you need to do
that? There usually is no need to give this option, because eld should be able to find
the official version of the public DLL registry automatically. If you specify this option, it
is your responsibility to provide eld with a correct public DLL registry file, and it is
beyond the scope of this manual to describe how this file should be created. If eld
could not find it on its own, and you didn’t specify the -public_registry option, then there
is something wrong with your installation. The message told the name of the file that
eld thought was the public DLL registry file. Perhaps that will help you figure out
what’s wrong

Cause. eld uses the public DLL registry file to look up information about the operating
system and other standard DLLs. There are various ways that eld may find this file.
For example, if you are running eld on TNS/E then the operating system tells eld
where the file is. In other cases, eld looks for it in an appropriate place, expecting it to
have the name “zreg”. Or, you can override these methods by explicitly telling eld
where it is with the -public_registry option. eld did find a file by these methods, but the
file turned out not to have the proper structure for a public DLL registry file. eld parses
the contents of the file into “statements”, and there are many statements that eld
simply ignores, and this particular message comes out when eld was trying to skip
over a statement by searching for the final semicolon but ran off the end of the file
instead. The message tells the line number at which this statement began in the file.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you specified the -public_registry option, are you sure you need to do
that? There usually is no need to give this option, because eld should be able to find
the official version of the public DLL registry automatically. If you specify this option, it
is your responsibility to provide eld with a correct public DLL registry file, and it is
beyond the scope of this manual to describe how this file should be created. If eld
could not find it on its own, and you didn’t specify the -public_registry option, then there
is something wrong with your installation. The message told the name of the file that
eld thought was the public DLL registry file. Perhaps that will help you figure out
what’s wrong.

1542 Statement starting at line <number> of the public DLL
registry file <filename> went off the end of file.
eld Manual—527255-009
6-88

Output Listings and Error Handling Error Messages
Cause. eld uses the public DLL registry file to look up information about the operating
system and other standard DLLs. There are various ways that eld may find this file.
For example, if you are running eld on TNS/E then the operating system tells eld
where the file is. In other cases, eld looks for it in an appropriate place, expecting it to
have the name “zreg”. Or, you can override these methods by explicitly telling eld
where it is with the -public_registry option. eld did find a file by these methods, but
the file turned out not to have the proper structure for a public DLL registry file. eld
parses the contents of the file into “statements”, which in turn can have “attributes”, and
this particular message comes out when eld was looking for the next attribute within a
statement, but ran off the end of the file instead. The message tells the line number at
which this statement began in the file.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you specified the -public_registry option, are you sure you need to do
that? There usually is no need to give this option, because eld should be able to find
the official version of the public DLL registry automatically. If you specify this option, it
is your responsibility to provide eld with a correct public DLL registry file, and it is
beyond the scope of this manual to describe how this file should be created. If eld
could not find it on its own, and you didn’t specify the -public_registry option, then there
is something wrong with your installation. The message told the name of the file that
eld thought was the public DLL registry file. Perhaps that will help you figure out
what’s wrong.

Cause. eld uses the public DLL registry file to look up information about the operating
system and other standard DLLs. There are various ways that eld may find this file.
For example, if you are running eld on TNS/E then the operating system tells eld
where the file is. In other cases, eld looks for it in an appropriate place, expecting it to
have the name “zreg”. Or, you can override these methods by explicitly telling eld
where it is with the -public_registry option. eld did find a file by these methods, but
the file turned out not to have the proper structure for a public DLL registry file. eld
parses the contents of the file into “statements”, which in turn can have “attributes”, and
this particular message comes out when eld was trying to read through to the end of
an attribute but ran off the end of the file instead. The message tells the line number at
which this attribute began in the file.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you specified the -public_registry option, are you sure you need to do
that? There usually is no need to give this option, because eld should be able to find

1543 While looking for the next attribute in a statement,
starting at line <number> of the public DLL registry file
<filename>, went off the end of file.

1544 Attribute starting at line <number> of the public DLL
registry file <filename> went off the end of file.
eld Manual—527255-009
6-89

Output Listings and Error Handling Error Messages
the official version of the public DLL registry automatically. If you specify this option, it
is your responsibility to provide eld with a correct public DLL registry file, and it is
beyond the scope of this manual to describe how this file should be created. If eld
could not find it on its own, and you didn’t specify the -public_registry option, then there
is something wrong with your installation. The message told the name of the file that
eld thought was the public DLL registry file. Perhaps that will help you figure out
what’s wrong.

Cause. eld uses the public DLL registry file to look up information about the operating
system and other standard DLLs. There are various ways that eld may find this file.
For example, if you are running eld on TNS/E then the operating system tells eld
where the file is. In other cases, eld looks for it in an appropriate place, expecting it to
have the name “zreg”. Or, you can override these methods by explicitly telling eld
where it is with the -public_registry option. eld did find a file by these methods, but the
file turned out not to have the proper structure for a public DLL registry file. eld
parses the contents of the file into “statements”, which in turn can have “attributes”, and
this particular message comes out when eld detected a problem parsing the “file”
attribute after seeing the filename. The message tells the line number at which this
attribute began in the file.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you specified the -public_registry option, are you sure you need to do
that? There usually is no need to give this option, because eld should be able to find
the official version of the public DLL registry automatically. If you specify this option, it
is your responsibility to provide eld with a correct public DLL registry file, and it is
beyond the scope of this manual to describe how this file should be created. If eld
could not find it on its own, and you didn’t specify the -public_registry option, then there
is something wrong with your installation. The message told the name of the file that
eld thought was the public DLL registry file. Perhaps that will help you figure out
what’s wrong.

Cause. eld uses the public DLL registry file to look up information about the operating
system and other standard DLLs. There are various ways that eld may find this file.
For example, if you are running eld on TNS/E then the operating system tells eld
where the file is. In other cases, eld looks for it in an appropriate place, expecting it to
have the name “zreg”. Or, you can override these methods by explicitly telling eld
where it is with the -public_registry option. eld did find a file by these methods, but the
file turned out not to have the proper structure for a public DLL registry file. eld parses
the contents of the file into “statements”, which in turn can have “attributes”, and this
particular message comes out when eld detected a problem parsing the “file” attribute

1545 Bad syntax for the file attribute on line <number> of
<filename>.

1546 Filename expected for 'file' attribute on line <number>
of <filename>.
eld Manual—527255-009
6-90

Output Listings and Error Handling Error Messages
before seeing the filename. The message tells the line number at which this attribute
began in the file.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you specified the -public_registry option, are you sure you need to do
that? There usually is no need to give this option, because eld should be able to find
the official version of the public DLL registry automatically. If you specify this option, it
is your responsibility to provide eld with a correct public DLL registry file, and it is
beyond the scope of this manual to describe how this file should be created. If eld
could not find it on its own, and you didn’t specify the -public_registry option, then there
is something wrong with your installation. The message told the name of the file that
eld thought was the public DLL registry file. Perhaps that will help you figure out
what’s wrong.

Cause. The -public_registry option specifies the name of a public DLL registry file,
which eld uses to look up information about the operating system and other standard
DLLs when eld is creating a program or a DLL. You also used the -r option, to tell
eld to build another object file that can be used as linker input, rather than a program
or DLL.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to create a program or DLL, then don’t specify the -r
option. If our intention is to use the -r option to create a new object file that can be
used as eld input, then don’t specify the -public_registry option.

Cause. eld uses the public DLL registry file to look up information about the operating
system and other standard DLLs. There are various ways that eld may find this file.
For example, if you are running eld on TNS/E then the operating system tells eld
where the file is. In other cases, eld looks for it in an appropriate place, expecting it to
have the name “zreg”. Or, you can override these methods by explicitly telling eld
where it is with the -public_registry option. eld did find a file by these methods, but
the file turned out not to have the proper structure for a public DLL registry file. eld
parses the contents of the file into “statements”, which in turn can have “attributes”, but
the same attribute can’t occur twice in the same statement, and this particular
message comes out when eld detected two “file” attributes in the same “dll”
statement. The message tells the line number at which this occurred in the file.

Effect. Fatal error (eld immediately stops without creating an output file).

1547 Cannot specify the -public_registry option with the -r
option.

1548 More than one file attribute in the same 'dll'
statement, at line <number> in <filename>.
eld Manual—527255-009
6-91

Output Listings and Error Handling Error Messages
Recovery. If you specified the -public_registry option, are you sure you need to do
that? There usually is no need to give this option, because eld should be able to find
the official version of the public DLL registry automatically. If you specify this option, it
is your responsibility to provide eld with a correct public DLL registry file, and it is
beyond the scope of this manual to describe how this file should be created. If eld
could not find it on its own, and you didn’t specify the -public_registry option, then there
is something wrong with your installation. The message told the name of the file that
eld thought was the public DLL registry file. Perhaps that will help you figure out
what’s wrong.

Cause. eld uses the public DLL registry file to look up information about the operating
system and other standard DLLs. There are various ways that eld may find this file.
For example, if you are running eld on TNS/E then the operating system tells eld
where the file is. In other cases, eld looks for it in an appropriate place, expecting it to
have the name “zreg”. Or, you can override these methods by explicitly telling eld
where it is with the -public_registry option. eld did find a file by these methods, but
the file turned out not to have the proper structure for a public DLL registry file. eld
parses the contents of the file into “statements”, which in turn can have “attributes”, and
a “dll” statement should always contain a “file” attribute, but this particular message
comes out when eld saw a “dll” statement that did not contain a “file” attribute. The
message tells the line number at which this statement began in the file.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you specified the -public_registry option, are you sure you need to do
that? There usually is no need to give this option, because eld should be able to find
the official version of the public DLL registry automatically. If you specify this option, it
is your responsibility to provide eld with a correct public DLL registry file, and it is
beyond the scope of this manual to describe how this file should be created. If eld
could not find it on its own, and you didn’t specify the -public_registry option, then there
is something wrong with your installation. The message told the name of the file that
eld thought was the public DLL registry file. Perhaps that will help you figure out
what’s wrong.

Cause. eld uses the public DLL registry file to look up information about the operating
system and other standard DLLs. There are various ways that eld may find this file.
For example, if you are running eld on TNS/E then the operating system tells eld
where the file is. In other cases, eld looks for it in an appropriate place, expecting it to
have the name “zreg”. Or, you can override these methods by explicitly telling eld
where it is with the -public_registry option. eld did find a file by these methods, but
the file turned out not to have the proper structure for a public DLL registry file. eld

1549 No file attribute in the 'dll' statement that started at
line <number> in <filename>.

1550 More than one 'dll' statement with name <string> in
<filename>.
eld Manual—527255-009
6-92

Output Listings and Error Handling Error Messages
parses the contents of the file into “statements”, which in turn can have “attributes”, and
a “dll” statement always contains a “file” attribute, which tells the DLLs name. This
particular message comes out when eld saw two different “dll” statements with the
same name.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you specified the -public_registry option, are you sure you need to do
that? There usually is no need to give this option, because eld should be able to find
the official version of the public DLL registry automatically. If you specify this option, it
is your responsibility to provide eld with a correct public DLL registry file, and it is
beyond the scope of this manual to describe how this file should be created. If eld
could not find it on its own, and you didn’t specify the -public_registry option, then there
is something wrong with your installation. The message told the name of the file that
eld thought was the public DLL registry file. Perhaps that will help you figure out
what’s wrong.

Cause. The zimpimp file is a file that tells eld about the symbols in system library.
eld has various methods of locating this file. For example, if you are running eld on
TNS/E then the operating system tells eld where the file is. In other cases, eld looks
for it in an appropriate place, expecting it to have the name “zimpimp”. Or, you can
simply put the name of the zimpimp file directly on the eld command line. However,
none of these methods specified a zimpimp file to eld.

Effect. Warning. eld will continue to produce an output file, but it will not be able to
fix up references to system library.

Recovery. It is not necessary to have references fixed up at link time. However,
normally, eld should find a zimpimp file. So, this may indicate that there is something
wrong with your installation. A proper zimpimp file should be built as part of the
process of creating the operating system, and then installed in the proper location for
eld to find it. The process of creating the operating system is beyond the scope of
this manual.

Cause. eld uses the public DLL registry file to look up information about the operating
system and other standard DLLs. There are various ways that eld may find this file.
For example, if you are running eld on TNS/E then the operating system tells eld
where the file is. In other cases, eld looks for it in an appropriate place, expecting it to
have the name “zreg”. Or, you can override these methods by explicitly telling eld
where it is with the -public_registry option. However, none of these methods specified
a public DLL registry file to eld.

Effect. Warning. eld will continue to produce an output file, but it will not be able to
fix up references to standard DLLs.

1551 This link is not using any zimpimp file.

1552 This link is not using any public DLL registry file.
eld Manual—527255-009
6-93

Output Listings and Error Handling Error Messages
Recovery. It is not necessary to have references fixed up at link time. However,
normally, eld should find the public DLL registry file. So, this may indicate that there is
something wrong with your installation. The process of creating and installing the
public DLL registry file is beyond the scope of this manual.

Cause. The zimpimp file is a file that tells eld about the symbols in system library.
eld has various methods of locating this file. For example, if you are running eld on
TNS/E then the operating system tells eld where the file is. In other cases, eld looks
for it in an appropriate place, expecting it to have the name “zimpimp”. eld did find a
file by these methods, but the file turned out not to have the proper structure for a
zimpimp file. This particular message comes out when the file was not a DLL, which is
what the zimpimp file looks like, but rather was a archive, as would be created by the
“ar” tool.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. There is something wrong with your installation. The message told the
name of the file that eld thought should be the zimpimp file, but wasn’t. Perhaps that
will help you figure out what is wrong. A proper zimpimp file should be built as part of
the process of creating the operating system, which is beyond the scope of this
manual.

Cause. eld is searching for a DLL, and you are using eld on Guardian. eld found
the name mentioned in the message in the public DLL registry file, meaning that this
DLL is one of the standard DLLs and is supposed to exist in a certain location.
Specifically, it is required that there be a file named “zxxxdll” in the same location
(Guardian subvolume, OSS directory, or PC folder) as the public DLL registry file. But,
either such a file does not exist, or you don’t have permission to read it.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. There are various ways that eld may find the public DLL registry file. For
example, if you are running eld on TNS/E then the operating system tells eld where
the file is. In other cases, eld looks for it in an appropriate place, expecting it to have
the name “zreg”. The first place eld looks is its own location (Guardian subvolume,
OSS directory, or PC folder), and if there is no “zreg” file there then it will also look in a
sibling directory or folder whose name ends “lib”. Or, you can override these methods
by explicitly telling eld where it is with the -public_registry option. The file mentioned
in the message was supposed to exist in the same place as that public DLL registry
file, but wasn’t. If you gave the -public_registry option, then you are responsible for
setting up all the files correctly. Otherwise, there is something wrong with your

1553 <filename> is an archive, but eld was expecting a
zimpimp file.

1554 Can't open public DLL file named <filename>. Such a file
should be in the same place as the zreg file.
eld Manual—527255-009
6-94

Output Listings and Error Handling Error Messages
installation. The procedure for creating and installing a public DLL registry file is
beyond the scope of this manual.

Cause. You gave a -l option, to tell eld to search for a DLL based on the parameter to
the -l option. Based on that, eld decided that this was one of the standard DLLs,
found it in the standard place, and opened it. The file, however, was not a DLL, but
instead was an archive, as would be created by the “ar” tool.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. There is something wrong with your installation. Files that are not DLLs
have been placed in the location for the standard (“public”) DLLs. The process of
installing the standard DLLs in the standard location is beyond the scope of this
manual.

Cause. You gave a -l option, to tell eld to search for a DLL based on the parameter to
the -l option. Based on that, eld decided that this was one of the standard DLLs,
found it in the standard place, and opened it. The file, however, was not a DLL, but
instead was a linkfile, i.e., an object file created by a compilation or by running eld
with the -r option.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. There is something wrong with your installation. Files that are not DLLs
have been placed in the location for the standard (“public”) DLLs. The process of
installing the standard DLLs in the standard location is beyond the scope of this
manual.

For details on Cause and Recovery, see eld Functionality for 64-Bit on page 4-12.

Fatal error. eld stops immediately without creating an output file.

Cause. You are building a program, and you are using a user library. A user library is
a DLL, and like any other DLL has a “DLL name” inside it. eld has also opened
another DLL, whose filename is shown in the message, and found that it contained the

1555 <filename> is an archive, but it should have been a
public DLL.

1556 <filename> is a linkfile, but it should have been a
public DLL.

1557 The -set data_model neutral option is not allowed when a
program is being created.

1558 The DLL <filename> contains the same DLL name as the
user library <filename> but is still being used in the link.
eld Manual—527255-009
6-95

Output Listings and Error Handling Error Messages
same DLL name as the user library, but it is not the same file, nor does it look like a
copy of the same file.

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. This is not necessarily an error, although it may indicate that you didn’t do
what you intended to do. The DLL mentioned in the message will be used by eld
during this link. For example, you may have specified this DLL to eld with a -l option,
and the program will remember that fact, so the operating system will look for this DLL
again at runtime. That’s probably okay. It’s just a possible source of confusion that the
user library has the same DLL name as this DLL. You probably should avoid this
situation. The DLL name inside the DLL should match the name that the DLL will have
at runtime. You should either build it with that filename to start with, which by default
makes its DLL name the same as that file name, or you should use the -soname option
when you build the DLL, to tell the filename to which you intend to rename the DLL
later. And you should build the user library in a different place, so that it has a different
DLL name inside it.

Cause. You are building a program, and you are using a user library. A user library is
a DLL, and like any other DLL has a “DLL name” inside it. eld has also opened
another DLL, whose filename is shown in the message, and found that it contained the
same DLL name as the user library. Also, it probably is the same file, or a copy of the
same file, because it exports all the same symbols with the same addresses as the
user library.

Effect. Warning (eld produces an output file, but it might not be what you intended).

Cause. This is not necessarily an error, although it may indicate that you didn’t do
what you intended to do. The DLL mentioned in the message will be ignored by eld
during this link, because it is redundant with the user library as far as doing fixups is
concerned. For example, you may have specified this DLL to eld with a -l option, but
the program will not remember that fact, so the operating system will not know to look
for this DLL at runtime, even if a different user library is used then. It’s hard to say
what all the consequences of this might be. You probably should avoid this situation.
The DLL name inside the DLL should match the name that the DLL will have at
runtime. You should either build it with that filename to start with, which by default
makes its DLL name the same as that file name, or you should use the -soname option
when you build the DLL, to tell the filename to which you intend to rename the DLL
later. And you should build the user library in a different place, so that it has a different
DLL name inside it.

1559 The DLL <filename> was found with the same export digest
as the user library.

1560 The -local_libname option is only allowed when you are
building a program.
eld Manual—527255-009
6-96

Output Listings and Error Handling Error Messages
Cause. You used the -local_libname option, which tells eld where to find a copy
of the user library for the program that you are building, but the file that you have told
eld to create is not a program.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to create a program, specify that correctly. For example,
don’t specify the -dll, -shared, or -ul options, which mean that you are telling eld
to build a DLL, rather than a program. And don’t specify the -r option, which tells eld
that you are building another object file that can be used as input to eld, rather than a
program. Or, if you don’t intend to create a program, then don’t specify the -
local_libname option.

Cause. You are running eld on the PC and creating a program that has a user library.
The -set libname option tells the Guardian filename that the user library will have at
runtime, to be stored in the file. The -local_libname option tells eld where to find
a copy of the user library during the link. eld needs both pieces of information. You
have given the -local_libname option, but not the -set libname option. If you
run eld on NSK, and the name given for -local_libname is in the Guardian
namespace, then it’s okay to omit the -set libname option, and eld will assume
that the user library will be in the same location at runtime. However, on the PC, it is
an error to give -local_libname without -set libname.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you are using a user library, then you must decide the Guardian filename
that the user library will have at runtime, and specify that with the -set libname
option.

Cause. You are creating a program that has a user library, and you have given eld
the filename for a copy of the user library, by specifying the -local_libname, -
libname, or -set libname option. A user library is a DLL. However, eld opened
the user library and found that it wasn’t a DLL but instead was an archive, such as is
created by the “ar” tool.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to create a program that uses a user library, you must create
the user library as a DLL by running eld and specifying an option such as -dll, -
shared, or -ul. Then you can give the name of that user library to eld when you
create the program.

1561 On the PC, if you specify the -local_libname option, you
must also specify the -set libname option, to tell the
Guardian name of the user library for runtime.

1562 File <filename>, specified as the user library, is an
archive.
eld Manual—527255-009
6-97

Output Listings and Error Handling Error Messages
Cause. You are creating a program that has a user library, and you have given eld
the filename for a copy of the user library, by specifying the -local_libname, -
libname, or -set libname option. A user library is a DLL. However, eld opened
the user library and found that it wasn’t a DLL but instead was a linkfile, i.e., an object
file produced by the compiler or by running eld with the -r option.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to create a program that uses a user library, you must create
the user library as a DLL by running eld and specifying an option such as -dll, -
shared, or -ul. Then you can give the name of that user library to eld when you
create the program.

Cause. The -exported_symbol option (or its synonym, the -export option) tells eld
that the named symbol should be exported from the program or DLL being created.
The -hidden_symbol option (or its synonym, the -export_not option) tells eld the
opposite. You first specifed that this symbol should be exported, and then later on the
command line you said it shouldn’t be exported.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Decide whether you want this symbol to be exported and specify the
proper option.

Cause. The -exported_symbol option (or its synonym, the -export option) tells eld
that the named symbol should be exported from the program or DLL being created.
The -hidden_symbol option (or its synonym, the -export_not option) tells eld the
opposite. You first specifed that this symbol should not be exported, and then later on
the command line you said it should be exported.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Decide whether you want this symbol to be exported and specify the
proper option.

1563 File <filename>, specified as the user library, is a
linkfile.

1564 Both the -exported_symbol and -hidden_symbol options
were specified for the same symbol <symbol name>.

1565 Both the -exported_symbol and -hidden_symbol options
were specified for the same symbol <symbol name>.

1566 The -export_all and -ul options are not allowed with the
-r option.
eld Manual—527255-009
6-98

Output Listings and Error Handling Error Messages
Cause. You used the -export_all option, to tell eld that all normal global symbols
should be exported from the program or DLL being created. Or, you may have used
the -ul option, which implies the -export_all option. But, you also used the -r option,
to tell eld to build another object file that can be used as linker input, rather than a
program or DLL.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a program or DLL then don’t specify the -r
option. If your intention is to use the -r option to create a new object file that can be
used as eld input then don’t specify the -export_all or -ul option.

Cause. You used the -hidden_symbol option (or its synonym, the -export_not option),
to tell eld not to export a certain symbol from the program or DLL being created. You
also used the -r option, to tell eld to build another object file that can be used as
linker input, rather than a program or DLL.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a program or DLL then don’t specify the -r
option. If your intention is to use the -r option to create a new object file that can be
used as eld input then don’t specify the -hidden_symbol option.

Cause. You used the -exported_symbol option (or its synonym, the -export option), to
tell eld to export a certain symbol from the program or DLL being created. You also
used the -r option, to tell eld to build another object file that can be used as linker
input, rather than a program or DLL.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. If your intention is to create a program or DLL then don’t specify the -r
option. If your intention is to use the -r option to create a new object file that can be
used as eld input then don’t specify the -export option.

Cause. You gave the -exported_symbol option (or its synonym, the -export option) to
say that a certain symbol should be exported. However, only symbols that are defined

1567 The -hidden_symbol option is not allowed with the -r
option.

1568 The -exported_symbol option is not allowed with the -r
option.

1569 The -exported_symbol <symbol name> is not present.
eld Manual—527255-009
6-99

Output Listings and Error Handling Error Messages
in the input object files, and are visible outside their own compilations, can be
exported, and such a symbol of this name did not exist.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. Check that you spelled the name of the symbol correctly. In pTAL or
Cobol, for example, it must be given in upper case. In C or C++, symbol names are
case sensitive. Is the symbol defined (not just an external reference), and visible
outside its compilation? The rules for which symbols are defined by a compilation, and
visible outside that compilation, depend on the source language, and are beyond the
scope of this manual.

Cause. You gave the -exported_symbol option (or its synonym, the -export option) to
say that a certain symbol should be exported. In fact, eld has seen such a symbol,
perhaps in a DLL, or perhaps as an external reference from the program or DLL being
built. However, only symbols that are defined in the input object files can be exported,
and such a symbol of this name did not exist.

Effect. Error (The linker cannot do what was requested of it and will eventually stop,
but may continue for the purpose of detecting additional errors before stopping).

Recovery. The symbol must be defined (not just an external reference). The rules for
which symbols are defined by a compilation depend on the source language, and are
beyond the scope of this manual.

Cause. You gave the -hidden_symbol option (or its synonym, the -export_not option)
to say that a certain symbol should not be exported. However, only symbols that are
defined in the input object files, and are visible outside their own compilations, can be
exported, and such a symbol of this name did not exist.

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. Saying that a symbol should not be exported, and no such symbol existed
in the first place, is not necessarily an error, but you probably want to make your link
clean. If no such symbol is present, don’t give this option. If you think that there
should be such a symbol, check that you spelled the name of the symbol correctly. In
pTAL or Cobol, for example, it must be given in upper case. In C or C++, symbol
names are case sensitive. Is the symbol defined (not just an external reference), and
visible outside its compilation? The rules for which symbols are defined by a
compilation, and visible outside that compilation, depend on the source language, and
are beyond the scope of this manual.

1570 The -exported_symbol <symbol name> is not defined in any
of the input linkfiles.

1571 The -hidden_symbol <symbol name> is not present.
eld Manual—527255-009
6-100

Output Listings and Error Handling Error Messages
Cause. You gave the -hidden_symbol option (or its synonym, the -export_not option)
to say that a certain symbol should not be exported. In fact, eld has seen such a
symbol, perhaps in a DLL, or perhaps as an external reference from the program or
DLL being built. However, only symbols that are defined in the input object files can be
exported, and such a symbol of this name did not exist.

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. Saying that a symbol should not be exported, and no such symbol existed
in the first place, is not necessarily an error, but you probably want to make your link
clean. If no such symbol is present, don’t give this option. If you think that there
should be such a symbol, note that the symbol must be defined (not just an external
reference). The rules for which symbols are defined by a compilation depend on the
source language, and are beyond the scope of this manual.

Cause. You are creating a program, or using the -alf option to repeat the fixups on
a program, that has a user library. You have either told eld the filename for a copy of
the user library, by specifying the -local_libname, -libname, or -set libname
option, or in the case of using -alf on an existing program the name for the user
library could have come from the existing program itself. In any case, either the file
mentioned in the error message does not exist or you do not have permission to read
it.

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. Even though eld could not open the user library, it will still continue doing
the link to create or update the program. In this case, eld will not be able to do fixups
on the program. In the -alf case, this invocation of eld may accomplish very little,
since eld could not repeat the fixup process, which was probably the reason to give
the -alf option in the first place, but again it won’t fail. These things are not
considered errors because it is possible to run a program even though it could not be
fixed up at link time. Still, you probably want to make your link clean. To do that, find a
copy of the user library that will be available at runtime, put it in the location where eld
expects to find it, as shown in the error message, and make sure it is readable.

Cause. You gave the -alf option together with the -local_libname option, which
means that you are repeating the fixup process on an existing program and telling eld

1572 The -hidden_symbol <symbol name> is not defined in any
of the input linkfiles.

1573 The user library file <filename> could not be opened.

1574 The -local_libname option is not allowed when updating a
DLL.
eld Manual—527255-009
6-101

Output Listings and Error Handling Error Messages
the filename for a copy of the user library that the program uses. However, the file that
you specified in the -alf option is a DLL, not a program.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to use the -alf option to update an existing DLL, then
don’t specify the -local_libname option. If your intention was to update an existing
program, then you specified the wrong name in the -alf option, because that was a
DLL, not a program.

Cause. You gave the -alf option to tell eld to repeat the fixup process on an
existing program. You also gave the -local_libname option to tell eld the filename
for a copy of the user library that the program uses, but the existing program says that
it doesn’t use a user library.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you don’t intend for the program to use a user library, don’t give the -
local_libname option. If you do intend for the program to use a user library, you
should first run eld with the -change libname option, to update the program to tell
the Guardian location where the user library will exist at runtime. Then eld will let you
use the -alf option to update the fixups on the program. If you really want to repeat
the fixups, but not have the program mention a user library name afterward, you can
then run eld with the -change libname option again, after doing the -alf option,
to remove the user library name from the program.

Cause. The -temp_o option tells the name of a temporary file that you want eld to
use to save the object file that it is creating, if it can’t create it with the name you
preferred, as specified for example by the -o option. The -must_use_oname option
says that it should be an error if eld can’t create the object file with the name you
preferred. So, these are inconsistent.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If eld cannot create the object file with the name you prefer, do you want
that to be an error? Or, do you want to tell eld the name of a different place to put it?
Depending on what you want to do, specify at most one of the -temp_o and -
must_use_oname options.

1575 The -local_libname option was specified but the existing
program does not have a user library.

1576 Cannot specify the -temp_o option with the
-must_use_oname option.

1577 Cannot specify the -temp_i option with the
-must_use_iname option.
eld Manual—527255-009
6-102

Output Listings and Error Handling Error Messages
Cause. The -temp_i option tells the name of a temporary file that you want eld to use
to save the import library that it is creating, if it can’t create it with the name you
preferred, as specified by the -import_lib or -make_import_lib option. The -
must_use_iname option says that it should be an error if eld can’t create the import
library with the name you preferred. So, these are inconsistent.

Effect. Fatal error (eld immediately stops without creating any output file).

Recovery. If eld cannot create the import library with the name you prefer, do you
want that to be an error? Or, do you want to tell eld the name of a different place to
put it? Depending on what you want to do, specify at most one of the -temp_i and -
must_use_iname options.

Cause. The -temp_r option tells the name of a temporary file that you want eld to use
to save the private DLL registry that it is creating or updating, if it can’t (re-)create it
with the name you preferred, as specified by the -update_registry option. The -
must_use_rname option says that it should be an error if eld can’t (re-)create the
private DLL registry with the name you preferred. So, these are inconsistent.

Effect. Fatal error (eld immediately stops without creating any output file).

Recovery. If eld cannot (re-)create the private DLL registry with the name you prefer,
do you want that to be an error? Or, do you want to tell eld the name of a different
place to put it? Depending on what you want to do, specify at most one of the -temp_r
and -must_use_rname options.

Cause. This message can come out either when you give the -alf option, or the -
strip option, or the -r option when there is exactly one input object file. eld was
unable to create the output file in the specified location and you gave the -
must_use_oname option, to say that eld should consider that an error.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If there already was a file with the same name as the file you wanted to
create, which may in fact be the old version of the file that you are updating with the -
alf, -strip, or -r option, and you didn’t have permission to delete it, specify a
different filename for the new version of the object file. Or, if there is some reason why
you cannot rename one filename to another filename in the target location (Guardian
subvolume, OSS directory, or PC folder), that could also lead to this message, but that
is an operating system question that is beyond the scope of this document.

1578 Cannot specify the -temp_r option with the
-must_use_rname option.

1579 Cannot (re-)create <filename>.

1580 Cannot create -make_import_lib file <filename>.
eld Manual—527255-009
6-103

Output Listings and Error Handling Error Messages
Cause. You gave an option to ask eld to create an import library, and eld was unable
to create the import library in the specified location, and you also gave the -
must_use_iname option to say that eld should consider that failure an error.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If there already was a file with the same name as the file you wanted to
create, and you didn’t have permission to delete it, specify a different filename for the
new version of the object file. Or, if there is some reason why you cannot rename one
filename to another filename in the target location (Guardian subvolume, OSS
directory, or PC folder), that could also lead to this message, but that is an operating
system question that is beyond the scope of this document.

Cause. The C++ compiler marks some symbols as “globalized” symbols, because the
fixups to such symbols need to follow special rules at runtime. You have globalized
symbols in the files that you are linking together, as indicated in the message. You
have also given the -instance_data option with a parameter value of data2hidden
or data2protected. That means that you are creating a program or DLL that has
special requirements on how data is protected, and in such cases globalized symbols
are not allowed.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Assuming you do need to make the special kind of program or DLL that
requires that -instance_data option, you probably need to look over your C++
source code to figure out why it has globalized symbols in it, and change the code to
avoid that. It is beyond the scope of this manual to explain the rules that the C++
compiler uses in deciding which globalized symbols to create.

Cause. You have specified two different -rename options that have a symbol name
in common. In other words, perhaps you are trying to rename the same symbol to two
other names, or you are trying to rename two different symbols to the same name, or
you are trying to rename “A” to “B” and “B” to “C”. None of these possibilities is
allowed.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. These possibilities are not allowed because they are too complicated. Are
you sure you didn’t misspell the names of some symbols? If you really want to do
these kinds of things, in a situation where it would make sense, you can probably
accomplish that goal using multiple link steps, doing one of the renamings each time,

1581 Globalized symbols (first one: <symbol name>) are not
allowed when the -instance_data option is specified with the
data2hidden or data2protected parameter value.

1584 The same symbol, <symbol name>, occurs in two -rename
options.
eld Manual—527255-009
6-104

Output Listings and Error Handling Error Messages
giving a subset of the input files to eld each time, and then there would be less
confusion about what is actually going to happen.

Cause. You gave a -rename option, specifying that a symbol should be renamed. A
definition of that symbol (the first symbol name mentioned in the message) did occur in
the file mentioned in the message, so eld wanted to rename it (to the second symbol
name mentioned in the message), but there already was a definition of a symbol of that
name in this same input file.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. You can’t have two different symbols of the same name in a linker input file,
and similarly you can’t use this kind of -rename option to make things look that way.
Once you have compiled two different symbols into the same object file, you can’t
make the linker think that they are the same symbol. If that was what you wanted to
do, change your source code to use the same name throughout.

Cause. You have given the -alf option, and the file that you specified with this
option is a program. You have also specified the -update_registry or -check_registry
option, which would only be possible if you were updating a DLL, not a program.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to use the -alf option to repeat the fixup process on a
program then don’t specify the -check_registry or -update_registry option. If your
intention was to use the -alf option on a DLL, then you specified the wrong file to
eld, because the file that you specified was a program, not a DLL.

Cause. You specified the -alf option, to update a DLL. You also specified the -
check_registry or -update_registry option, to use a private DLL registry to choose new
addresses for the DLL. By default, when eld builds a DLL, it puts the data segment
right after the code segment. But, when this DLL was built, the -d option was used, to
make the code and data segments come out at some other addresses, so that the data
segment was not immediately after the code segment. On the other hand, private DLL
registries can only be used to manage DLLs that have their data segments
immediately after their code segments.

1585 In <filename>, <symbol name> is defined, and is renamed
to <symbol name>, but that symbol is also already defined in
this file.

1586 Cannot use a DLL registry when running the -alf option
on a program.

1587 Cannot use a DLL registry with the -alf option when the
code and data of the existing DLL are not next to each other.
eld Manual—527255-009
6-105

Output Listings and Error Handling Error Messages
Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Did you really want to specify the -d option when you (previously) built this
DLL? There usually is no reason to do that. If you really need to separately specify
the code and data segment addresses for this DLL, and now you want to change them,
you can do that by specifying the -t and -d options with the -alf option, rather than
trying to do this with a private DLL registry. You cannot make a private DLL registry
store information about a DLL whose code and data segments are not next to each
other.

Cause. You have given either the -alf option, to update an existing DLL, or you
have given the -make_import_lib option, to create the zimpimp file that represents the
implicit DLLs that constitute system library. In either case, you have also given the -
check_registry option, to say that the file being created must fit in the memory space
assigned to it by a private DLL registry. But, the total size of the segments of the DLL
or import library, including the required rounding up to certain alignments, was larger
than the size specified in the private DLL registry.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you were using the -alf option then the size of the DLL would be the
same as it was before. But, that didn’t agree with the size of the DLL as listed in the
private DLL registry. So, that means you are using a private DLL registry that is not the
same as what might have been used when the DLL was previously created. Perhaps
the private DLL registry file had been edited by hand, putting in smaller sizes than it
had before.

Or, as part of building the NSK operating system, perhaps you were using a private
DLL registry to keep track of the address of the zimpimp file, so that you always rebuild
it at the same address as before, and so that it will be an error if it grows larger than
the space allocated for it. So, that has happened.

In either case, assuming you wanted to be doing this, and want to keep doing it, you
now need to make new decisions about where the DLL or zimpimp file should go. You
could do that by editing the private DLL registry file by hand, or by deleting its entry
from the private DLL registry and letting eld choose a new location for it with the -
update_registry option.

Cause. The -alf option is used to repeat the fixups on an existing program or DLL.
Usually, the -alf option only updates fixups within the data segment, because there
shouldn’t be any in the code segment. However, the millicode DLL within system
library is a special case that has fixups to be done in the code segment. The -alf

1588 In the DLL registry, the entry for <filename> reserves
it a size of <number>, but it needs <number>.

1590 The -update_code option can only be specified with the
-alf option.
eld Manual—527255-009
6-106

Output Listings and Error Handling Error Messages
option does this if you specify the -update_code option. But you specified the -
update_code option without the -alf option.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to run the -alf option on the millicode DLL then you
should have specified the -update_code option. In any other case, you should not
specify the -update_code option.

Cause. You gave the -alf option, and the file that you gave with it was a program.
Usually, the -alf option only updates fixups within the data segment of a program or
DLL, because there shouldn’t be any in the code segment. However, the millicode DLL
within system library is a special case that has fixups to be done in the code segment.
The -alf option does this if you specify the -update_code option. But, since it is only
intended to be used in this special case, it is considered an error if you specify the -
update_code option and the file given to the -alf option was a program rather than a
DLL.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to run the -alf option on the millicode DLL then you
should have correctly specified the name of the millicode DLL. In any other case, you
should not specify the -update_code option

Cause. Each of the two files mentioned in the message defined symbols items of the
same name, as shown in the message. However, they were different types of
symbols, as shown in the message, and that is not allowed. For instance, the
message may say that one of the symbols was “code”, meaning a procedure, whereas
the other symbol was “data”.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Did you really intend to define symbols with the same name in each of
these two files, and have both definitions visible across separate compilations? If not,
change the name of one of them, or change the declaration of one of them so that it is
only visible within its own compilation. You cannot have a procedure and a data item
of the same name.

1591 The -update_code option is only allowed when rebasing a
DLL.

1595 Illegal duplicate definition of <symbol name>: the
definition in <filename> is <this type of symbol> and the
definition in <filename> is <this type of symbol>.

1596 Illegal duplicate definition of the procedure <symbol
name> in <filename> and <filename>.
eld Manual—527255-009
6-107

Output Listings and Error Handling Error Messages
Cause. Each of the two files mentioned in the message defined procedures of the
same name, as shown in the message. There are procedures that are specially
created by the C++ compiler, where the compiler marks them to say that duplicates are
okay, but at least one of the copies of this procedure was not so marked. Also, you did
not specify the -allow_duplicate_procs option. So, the duplicates are not allowed.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Did you really intend to define procedures with the same name in each of
these two files, and have both definitions visible across separate compilations? If not,
change the name of one of them, or change the declaration of one of them so that it is
only visible within its own compilation. If you really did intend to do this, you can use
the -allow_multiple_procs option to tell eld it is okay. In that case, eld will pick one
copy to use, so you must be sure that is the one you really want to use. If one copy of
the procedure has the resident attribute, eld will pick that one. Otherwise, eld will
pick the first one it sees, so you can affect that by the order in which you specify the
input object files on the command line. If the procedures were created by the C++
compiler, but not marked to say that duplicates are okay, it could be that you need to
write your C++ code differently or use different compiler options. The details of the
C++ rules are beyond the scope of this manual.

Cause. Each of the two files mentioned in the message defined data items of the
same name, as shown in the message, and each of these files was written in C or
C++, and in each case the compiler called it an “initialized” data item. As a rule, it is
illegal in C or C++ to have duplicate initialized data items. However, there also are
data items that are specially created by the C++ compiler, where the compiler marks
them to say that duplicates are okay, but at least one of the copies of this data item
was not so marked. So, the duplicates are not allowed.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Did you really intend to define data items with the same name in each of
these two files, and have both definitions visible across separate compilations? If not,
change the name of one of them, or change the declaration of one of them so that it is
only visible within its own compilation. If you are using the same data item in more
than one place, only one of those places needs to be a definition, and the other places
can just be external references to that definition. Review the rules for what makes a
declaration a definition, depending on the source language that you are using,
because the rules are different for each language. If you really do intend to have two
definitions of this data item, visible across separate compilations, and the languages
involved are C or C++, then at most one copy of the data item is allowed to be
initialized. In C++, data items are always initialized, but in C that is not necessarily
true. In any case, that also is something that involves the rules of the language.
Modify your source code to get past these rules. Or, it also is possible that the data

1597 Illegal duplicate definition of the initialized data
item <symbol name> in C and/or C++, occurring in <filename>
and <filename>.
eld Manual—527255-009
6-108

Output Listings and Error Handling Error Messages
items were created by the C++ compiler, and not marked to say that duplicates are
okay, but you need to write your C++ code differently or use different compiler options
so that the compiler does say that the duplicates are okay. The details of these C++
rules are also beyond the scope of this manual.

Cause. Each of the two files mentioned in the message defined procedures of the
same name, as shown in the message, but the procedures differ in certain of their
“attributes”, and for that reason the duplicates are not allowed. The attributes on which
all the copies are required to agree, or else this message would appear, are “main”,
“shell”, extensible”, and “compiled_nonstop”. The reasons that procedures acquire
these attributes depend on the source language and are beyond the scope of this
manual.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Did you really intend to define procedures with the same name in each of
these two files, and have both definitions visible across separate compilations? If not,
change the name of one of them, or change the declaration of one of them so that it is
only visible within its own compilation. If you are using the same procedure in more
than one place, only one of those places needs to include a copy of the code, and the
other places can just be external references to that definition. If you really do intend to
have two definitions of this procedure, visible across separate compilations, then the
attributes listed above must be the same. If the attributes are different because the
two files were created from different versions of the source code, or by using different
compiler options, repeat the compilations doing things more consistently.

Cause. It is possible to use the -r option to build a new object file that can again be
used as eld input, and when you do that you can also use the -set process_subtype
option to assign a numerical subtype to that object file. When eld is then given that
object file in a subsequent link, it copies over the subtype to its output object file again.
However, in the present link, two of the input files had subtypes assigned to them by
previous links, and the numerical values assigned in those previous links were
different, and the present link did not use the -set process_subtype option to resolve
the ambiguity.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you didn’t intend for your previous links to specify inconsistent process
subtypes, you should clean that up. If you do want various object files to have different
process subtypes, and sometimes to be linked together, then when you link them

1598 Illegal duplicate definition of the procedure <symbol
name> in <filename> and <filename> because of a procedure
attribute mismatch.

1600 Different values were specified for the process subtype
in <filename> and <filename>, and no -set process_subtype
option was given.
eld Manual—527255-009
6-109

Output Listings and Error Handling Error Messages
together you must specify the -set process_subtype option again to resolve the
ambiguity.

Cause. It is possible to use the -r option to build a new object file that can again be
used as eld input, and when you do that you can also use the -set process_subtype
option to assign a numerical subtype to that object file. When eld is then given that
object file in a subsequent link, it copies over the subtype to its output object file again.
However, in the present link, two of the input files had subtypes assigned to them by
previous links, and the numerical values assigned in those previous links were
different, and the present link used the -set process_subtype option to resolve the
ambiguity.

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. If your previous links specified inconsistent process subtypes, and you
didn’t intend to do that, you should clean that up. If you do want various object files to
have different process subtypes, and sometimes to be linked together, where you
specify a -set process_subtype option to resolve the ambiguity, then you will have to
live with this warning message about it.

Cause. It is possible to use the -r option to build a new object file that can again be
used as eld input, and when you do that you can also use the -set process_subtype
option to assign a numerical subtype to that object file. When eld is then given that
object file in a subsequent link, it copies over the subtype to its output object file again.
However, in the present link, some of the input files had subtypes assigned to them by
previous links, and all those values were the same, but a different value was specified
by a -set process_subtype option in the present link.

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. If there was no need for the input object files to say they had a different
process subtype than what you wanted to specify for the present link, you should clean
that up. If you do want various object files to have process subtypes, and sometimes
to be linked together, where you specify a -set process_subtype option with a value
that doesn’t agree with what the input object files said, then you will have to live with
this warning message about it.

1601 Different values were specified for the process subtype
in <filename> and <filename>; the value given in the -set
process_subtype option was used.

1602 The value given in the -set process_subtype option was
used, but a different value was found in <filename>.

1603 Bad input file <filename>; this file is invalid because
the code section named <section name> is larger than 16
megabytes.
eld Manual—527255-009
6-110

Output Listings and Error Handling Error Messages
Cause. As part of the rules for the TNS/E software architecture, there is a restriction
on the types of object files that can be given to the linker. An exact statement of the
restriction is hard to give, but here is the general idea. The code within an object file
can be divided into multiple “sections”. You will probably run into the limitation if any
one of these code sections is close to 16 megabytes in size. Our compilers know to
divide the code into multiple code sections so that no single code section gets too
large. But, as the message indicates, one of the files did have a code section that was
larger than 16 megabytes. eld doesn’t wait to see if this would actually run into the
restriction, but just relies on the heuristic that a code section this large is bad.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. This might indicate a compiler problem, because we shouldn’t create this
type of object file in a compilation. If the compiler always creates one code section,
with the same name every time, then splitting your source into multiple compilations
may not help much, because if all the compilations have code sections of the same
name then you won’t be able to put them through eld with the -r option, to create a
new object file that could be used as eld input again, because eld will refuse to
combine these object files into a new object file that would end up with a code section
of that same name that was too big. You could split your code up into separate
compilations and then give them all to eld without the -r option, to directly build a
program or DLL out of them, because there is no restriction on the final program or
DLL having a code section of any size. But you probably want to report this to HP, so
that the reason this came up can be analyzed.

Cause. As part of the rules for the TNS/E software architecture, there is a restriction
on the types of object files that can be given to the linker. An exact statement of the
restriction is hard to give, but here is the general idea. The code within an object file
can be divided into multiple “sections”. You will probably run into the limitation if any
one of these code sections is close to 16 megabytes in size. You used the -r option of
eld to tell it to create a new object file that can be used as linker input again, so the
limitation applies to this output file. eld will combine code sections that have the same
name in its input files into a single code section of the same name in the output file.
Our compilers know to divide the code into multiple code sections so that no single
code section gets too large, even when later combined by eld for the -r option. But,
as the message indicates, one of the code sections would come out larger than 16
megabytes in the eld output file. So, to avoid possible future problems in using this
file, eld refuses to create it.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. This might indicate a compiler problem, because we shouldn’t create code
sections in a way that leads to this problem. You could avoid using the -r option, and

1604 The -r option cannot be used for this link because the
output code section named <section name> would come out
larger than 16 megabytes. An alternative is to put your
object files into an archive, say 'x.a', and then build your
program or DLL by saying '-all x.a' on the eld command line.
eld Manual—527255-009
6-111

Output Listings and Error Handling Error Messages
instead directly build a program or DLL out of your input files, because there is no
restriction on the final program or DLL having a code section of any size. But you
probably want to report this to HP, so that the reason this came up can be analyzed.

Cause. You did not specify an option such as -dll, -shared, or -ul, which would tell
eld that you want to make a DLL, but you specified the -import_lib or -
import_lib_stripped option, which tells eld that it should make an import library along
with making the DLL that the import library would represent.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is not to make an import library, then don’t specify the -
import_lib or -import_lib_stripped option. If you are trying to create a DLL as well as an
import library to represent it, then you need to specify the proper options to create a
DLL, including -dll, -shared, or -ul. If you want to create an import library for a
DLL that already exists then the option that you should be using is -make_import_lib.

Cause. The -make_implicit_lib option is used to create one of the implicit DLLs that
constitute system library. The -import_lib or -import_lib_stripped option is used to
make an import library to represet a DLL at the same time that you create that DLL.
However, you cannot create an import library to represent one of the implicit DLLs.
Instead, the set of implicit DLLs is represented by the zimpimp file.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to make an ordinary DLL, not one of the implicit DLLs,
then do not specify the -make_implicit_lib option. If your intention is to create one of
the implicit DLLs, as part of the process of building the operating system, then do not
specify the -import_lib or -import_lib_stripped option. If your intention is to create a
zimpimp file, the process is to first create all the implicit DLLs and then create the
zimpimp file using the -make_import_lib option.

Cause. eld uses the zimpimp file to know the addresses for symbols in the operating
system. You are running eld on a TNS/E machine, and the operating system has told
eld where the standard zimpimp file is, but eld was unable to open it.

Effect. Fatal error (eld immediately stops without creating an output file).

1605 The -import_lib or -import_lib_stripped option is only
allowed when creating a new DLL.

1606 The -make_implicit_lib option is not allowed with the
-import_lib or -import_lib_stripped option.

1607 Cannot open <filename>, the file expected to be the
zimpimp file.
eld Manual—527255-009
6-112

Output Listings and Error Handling Error Messages
Recovery. This indicates a problem with your installation. The process for creating
the zimpimp file, installing it in the right place, and providing the system call that eld
uses to find the zimpimp file, is beyond the scope of this document.

Cause. The -strip option is used to remove the DWARF symbols from an existing
program or DLL. When you use this option, only certain other options are allowed.
However, you specified the option mentioned in the message, which is not one of the
options allowed with the -strip option.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to use the -strip option to remove the DWARF
symbols from an existing program or DLL, don’t specify the other option mentioned in
the message. If your intention is not to do this, then don’t specify the -strip option.

Cause. You gave the -strip option, to tell eld to remove the DWARF symbols from
an existing program or DLL, and eld did that.

Effect. Information (This is not indicative of a problem).

Recovery. No action required.

Cause. You gave the -strip option, to tell eld to remove the DWARF symbols from
an existing program or DLL, but that file contained no DWARF symbols information.
Either it was built from object files, none of which themselves had any DWARF
symbols information, or the file had already been stripped before.

Effect. Information (This is not indicative of a problem). eld has not done anything.

Recovery. No action required.

Cause. You gave the -r and -set _process_subtype options, to tell eld to
create a new object file that can be used as eld input again, and that specifies what
the process subtype should be when a program is later built from that object file. Also,
you provided just one input object file to eld, and that file was also previously created
by eld, using the -r and -set_process_subtype options, but with a different value

1608 The <option name> option is not allowed with the -strip
option.

1609 DWARF symbols have been removed from <filename>.

1610 There were no DWARF symbols in <filename>, so the file
was not modified.

1611 The value given in the -set process_subtype option was
used, but a different value was found in the input file.
eld Manual—527255-009
6-113

Output Listings and Error Handling Error Messages
specified for the process subtype. The new file that eld creates will have the process
subtype that you specified this time, not the value that was in the previous file.

Effect. Warning (eld produces an output file, but it might not be what you intended).

Recovery. Assuming you gave the file the wrong process subtype before, or had
some other reason to change it now, no action is required.

Cause. You gave a -r option, and exactly one input object file, to tell eld to create
another object file that could be used as eld input again, and you also gave the -set
floattype option, to tell eld which floating point type to indicate in the output
object file, and it was different from what the input file contained.

Effect. Information (This is not indicative of a problem).

Recovery. Assuming you gave the file the wrong floating point type before, or had
some other reason to change it now, no action is required.

Cause. You used the -set user_buffers option, which affects how a program
performs I/O, and you also used the -r option, to tell eld to build another object file
that can be used as linker input, rather than a program.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to create a program, then don’t specify the -r option. If
your intention is to use the -r option to create a new object file that can be used as
eld input, then don’t specify the -set user_buffers option.

Cause. While reading the private DLL registry that was specified for this link in the
 -check_registry or -update_registry option, eld ran off the end of the file
when it was expecting to see the name of a DLL after the -range keyword.
Presumably, the format of the file is bad because it was incorrectly edited by hand.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Fix the format of the file, as explained elsewhere in this manual.

1612 The floating point type of the input file, which was
<string>, has been changed to <string>.

1613 The -set user_buffers option is not allowed with the -r
option.

1614 DLL registry, line <number>: end of file in the middle
of a -range command.
eld Manual—527255-009
6-114

Output Listings and Error Handling Error Messages
Cause. The private DLL registry that was specified for this link in the
-check_registry or -update_registry option contained more than one
-range command for the DLL that is being created by this link. Presumably, the
format of the file is bad because it was incorrectly edited by hand.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Fix the format of the file, as explained elsewhere in this manual.

Cause. While reading the private DLL registry that was specified for this link in the
-check_registry or -update_registry option, eld encounted an invalid
command on the line shown in the error message. Presumably, the format of the file is
bad because it was incorrectly edited by hand.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Fix the format of the file, as explained elsewhere in this manual. The two
possible commands are “-dllarea” and “-range”.

Cause. The addresses listed for DLLs in a private DLL registry must be multiples of
64KB if the linker is not building an implicit DLL, or 128KB if the linker is building an
implicit DLL (i.e., a component of system library). However, that rule was violated by
the -range command on the indicated line number of the file. That could be because
the file was incorrectly edited by hand. Or, if the address is a multiple of 64K, but
needed to be a multiple of 128K, that could be because this private DLL registry was
previously used to build a DLL that wasn’t an implicit DLL, but now is being used to
build an implicit DLL.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Fix the format of the file so that the address is on the proper boundary. A
private DLL registry that is used to build ordinary DLLs should not also be used to build
implicit DLLs.

1615 DLL registry, line <number>: the new DLL is listed
multiple times in the registry.

1616 DLL registry, line <number>: unrecognized command in the
registry file.

1617 DLL registry, line <number>: DLL address is not a
mulitiple of the page size.

1618 DLL registry, line <number>: DLL size is not a multiple
of the page size.
eld Manual—527255-009
6-115

Output Listings and Error Handling Error Messages
Cause. The sizes listed for DLLs in a private DLL registry must be multiples of 64KB if
the linker is not building an implicit DLL, or 128KB if the linker is building an implicit
DLL (i.e., a component of system library). However, that rule was violated by the -
range command on the indicated line number of the file. That could be because the
file was incorrectly edited by hand. Or, if the address is a multiple of 64K, but needed
to be a multiple of 128K, that could be because this private DLL registry was previously
used to build a DLL that wasn’t an implicit DLL, but now is being used to build an
implicit DLL.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Fix the format of the file so that the size is a multiple of 64K or 128K, as
appropriate. A private DLL registry that is used to build ordinary DLLs should not also
be used to build implicit DLLs.

Cause. The addresses listed for DLLs in a private DLL registry must be at least as
large as the lower bound of the address range given by the -dllarea command, or
0x70000000 if an explicit -dllarea command is not present. However, that rule was
violated by the -range command on the indicated line number of the file.
Presumably, that was because the file was incorrectly edited by hand.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Fix the format of the file so that the addresses of all DLLs are at least as
large as the applicable lower bound.

Cause. The ending addresses listed for DLLs in a private DLL registry, as calculated
by adding their starting addresses to their reserved sizes, must not exceed the upper
bound of the address range given by the -dllarea command, or 0x80000000 if an
explicit -dllarea command is not present. However, that rule was violated by the
-range command on the indicated line number of the file. Presumably, that was
because the file was incorrectly edited by hand.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Fix the format of the file so that the ending addresses of all DLLs do not
exceed the applicable upper bound.

1619 DLL registry, line <number>: DLL address is below the
lower limit.

1620 DLL registry, line <number>: DLL extends above the upper
limit.

1621 No entry for DLL <filename> in the given DLL registry.
eld Manual—527255-009
6-116

Output Listings and Error Handling Error Messages
Cause. You gave the -check_registry command, to specify that the starting
address for the DLL being created by this link is to be taken from the indicated private
DLL registry file. However, that DLL was not listed in the private DLL registry file.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to use a private DLL registry file to specify the address for the
DLL you are building, the registry must contain a range command giving the same
filename as the DLL you are building, such as you might specify with the -o option.
You can use the -update_registry command to create such a registry file, or you
can edit one by hand. If you just want to record the decision that eld made for the
DLLs address in a registry file not specify the address unconditionally with the registry
file, then you should use the -update_registry option rather than the
-check_registry option.

Cause. You have given the -grow_limit option, which specifies a maximum size for
the code and data of the DLL you are creating, and the DLL was larger than that.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. You wanted it to be an error if your DLL grew beyond a certain size, and
now it has. Do whatever you planned to do at such a time, such as changing your
decisions as to what addresses to assign to DLLs. Or, if you would now like to allow a
larger size, specify a larger size for the -grow_limit option. Note that the size that
you specify is rounded up to a multiple of 64K if you are creating an ordinary DLL, or
128K if you are making one of the implicit DLLs that constitute system library. The DLL
has a code segment and a data segment, each of which has a size that is similarly
rounded up, and the sum of those two sizes is what is being compared to the value you
specify.

Cause. You gave the -update_registry option to tell eld to choose an address for
the DLL that you are creating by using a private DLL registry. eld has determined the
amount of space it needs to reserve for the DLL, based on its size and the other
options that you have given. The private DLL registry specifies a range of addresses
that can be assigned to DLLs, and tells which subranges are already occupied by other
DLLs. There was no available block of addresses large enough for this new DLL.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. You wanted it to be an error if eld couldn’t find a block of space large
enough, and it happened. Do whatever you planned to do at such a time, such as
reorganizing your DLLs and deciding which ones can share memory addresses and

1622 DLL size exceeds the value specified by the -grow_limit
option.

1623 No available address range in the DLL registry for this
DLL.
eld Manual—527255-009
6-117

Output Listings and Error Handling Error Messages
which can’t, or maybe just allowing them to take up more space. Perhaps there are
entries in the private DLL registry that you don’t need. You can just delete those lines
of the registry by hand, or you could start over with a new registry and relink all the
DLLs you really need, so you only have entries for them in the new registry. Note that
the registry keeps track of the filenames that you create. So, for example, if you keep
using the same registry, and keep building the “same” DLL, except for giving it a
different filename with the -o option each time, then each of those builds will put
another line into the registry, using up more of its space. That isn’t something you
want to do.

Cause. You have given either the -alf option, to update an existing DLL, or you
have given the -make_import_lib option, to create the zimpimp file that represents
the implicit DLLs that constitute system library. In either case, you have also given the
-check_registry option, to say that the file being created or updated must fit in the
memory space assigned to it by a private DLL registry. But, the total size of the
segments of the DLL or import library, including the required rounding up to certain
alignments, was larger than the size specified in the private DLL registry.

Effect. Fatal error (eld immediately stops without creating or updating the output file).

Recovery. The use of the -check_registry option means that you have been
using a private DLL registry to keep track of memory addresses of DLLs, so that you
always rebuild them at the same addresses as before, and so that it will be an error if
one of them grows larger than the space allocated for it. Now that has happened.
Assuming you wanted to be doing this, and want to keep doing it, you now need to
make new decisions about where the DLLs should go. You could do that by editing the
private DLL registry file by hand, or by deleting some entries from the private DLL
registry and letting eld choose new locations for those DLLs with the
-update_registry option.

Cause. You gave the -update_registry option, and eld was trying to update the
private DLL registry that you specified. eld does this by first creating a temporary file
in the same location (Guardian subvolume, OSS directory, or PC folder) as the existing
registry. eld was either unable to create this temporary file, or else had a problem
writing to it after it was created.

Effect. Warning. eld will still create the DLL that you wanted to create, but the private
DLL registry itself has not been modified.

Recovery. Check that you have permission to create files in the same location as the
existing private DLL registry, and that it is not on a Guardian subvolume that is full.

1624 DLL size exceeds the size taken from the DLL registry.

1625 Error updating the DLL registry. The registry is
unchanged.
eld Manual—527255-009
6-118

Output Listings and Error Handling Error Messages
Cause. You are trying to update a private DLL registry. eld first makes a new copy of
it in a temporary location, deletes the previous copy of the registry, and then renames
the temporary file to the final location. That process failed. The file has instead been
left with a different name, as shown in the message.

Effect. Warning (eld produces the registry, but not with the filename you intended).

Recovery. If you don’t have permission to delete the previous copy of the registry,
specify a different filename for the new copy. If eld succeeded in deleting the old
copy, but then could not rename the new copy, that is an operating system question
that is beyond the scope of this document.

Cause. You used the -update_registry option to tell eld the private DLL registry
to use for deciding the address of the DLL that you are creating. The private DLL
registry had an entry for that DLL already. However, the size that eld wants to reserve
in the registry for the new version of the DLL, which depends on its actual size and the
other options that you have given, is larger than the amount of space that the registry
previously reserved for this DLL. There was a block of space in the registry that was
large enough for the DLL, and eld has put it there. This might or might not be the
same starting address as before, but it definitely is a larger size than before.

Effect. Warning (eld produces the DLL, and updates the registry, but the size and
maybe also the address of the DLL has changed).

Recovery. If the new address or size is satisfactory, you don’t need to do anything.

Cause. You are trying to update a private DLL registry. eld first makes a new copy of
it in a temporary location, deletes the previous copy of the registry, and then renames
the temporary file to the final location. That process failed. You also gave the -
must_use_rname option to say that eld should consider that failure an error.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you don’t have permission to delete the existing registry, specify a
different filename for the new version of it. Or, if there is some reason why you cannot
rename one filename to another filename in the target location (Guardian subvolume,
OSS directory, or PC folder), that could also lead to this message, but that is an
operating system question that is beyond the scope of this document..

1626 Cannot create the DLL registry <filename>; using this
name instead: <filename>.

1627 The DLL registry -range entry for this DLL is changing
from '<address> <size>' to '<address> <size>'.

1628 Cannot create DLL registry file <filename>.
eld Manual—527255-009
6-119

Output Listings and Error Handling Error Messages
Cause. You gave the -set user_buffers option more than once on the command
line, with different attribute values. (The possible values are “on” and “off”.) You can
give the option more than once, but only if you specify the same value each time.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you want to specify this option, decide which value you want to specify,
and only specify that value.

Cause. You are building a program or a DLL, so there is a code segment and a data
segment. eld has chosen addresses where each of the segments begins, perhaps
based on options that you gave, and eld has determined how large each of the
sections is. One of the sections has a starting address below 0x80000000 and a size
large enough so that it extends beyond 0x80000000. That is an error, because
segments with such addresses are not supported by the operating system.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If the problem occurred because you specified a value for the -t or -d
option that was close to 0x80000000, don’t do that. By default, eld will start a DLL at
0x78000000, which gives 256 megabytes for its code and data before reaching the
0x80000000 boundary. If you file is really larger than that, it probably is too large for
the operating system to handle in any case. Splitting it into multiple DLLs may also not
help, if they all need to be in memory at the same time. You probably must find some
way to make your code or data smaller.

Cause. One of the attributes that can be given to a procedure is the
kernel_callable attribute, but this is a special attribute that is only supposed to be
used by procedures in the millicode DLL that is part of system library. In particular, the
use of this attribute can only work if the same DLL also contains a symbol named
$n_MillicodeCheckRV, which the millicode DLL is supposed to contain. However, you
have asked eld to build a DLL that contains kernel_callable procedures but
does not contain $n_MIllicodeCheckRV.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. This is a problem with building the operating system, which is beyond the
scope of this manual.

1629 Different values specified with multiple -set
user_buffers options.

1630 Addresses go beyond 0x80000000; the segment that starts
at <number> has size <number>, so it goes up to <number>.

1631 This loadfile has kernel-callable procedures but
$n_MillicodeCheckRV is not present.
eld Manual—527255-009
6-120

Output Listings and Error Handling Error Messages
Cause. eld was searching for a DLL, and you were using either the PC or OSS
version of eld, rather than the Guardian version. The public DLL registry file, called
the “zreg file” in the error message, contained the name “zxxxdll” that eld was looking
for, which means that this is one of the standard DLLs that is supposed to exist in a
certain location. Specifically, it is required that there be a file named either “zxxxdll” or
“libxxx.so” in the same location (OSS directory,or PC folder) as the public DLL registry
file. But, either such a file does not exist, or you don’t have permission to read it.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. There are various ways that eld may find the public DLL registry file. For
example, if you are running eld on TNS/E then the operating system tells eld where
the file is. In other cases, eld looks for it in an appropriate place, expecting it to have
the name “zreg”. The first place eld looks is its own location (Guardian subvolume,
OSS directory, or PC folder), and if there is no “zreg” file there then it will also look in a
sibling directory or folder whose name ends “lib”. Or, you can override these methods
by explicitly telling eld where it is with the -public_registry option. One of the
files mentioned in the message was supposed to exist in the same place as that public
DLL registry file, but wasn’t. If you gave the -public_registry option, then you
are responsible for setting up all the files correctly. Otherwise, there is something
wrong with your installation. The procedure for creating and installing a public DLL
registry file is beyond the scope of this manual

Cause. eld searched for the name specified in the message, and found it in the
public DLL registry file, meaning that this is one of the standard DLLs. And, eld found
a file of an appropriate name (of the form zxxxdll or libxxx.so) in the standard place, but
when eld opened it eld found that the file was an archive rather than a DLL.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. This indicates that something is wrong with your installation. The method
creating the public DLL registry file, and making sure that the standard DLLs with the
right names are located in the same place (Guardian subvolume, OSS directory, or PC
folder) as that registry file, are beyond the scope of this manual.

1632 Can’t open public DLL file named <filename> or
<filename>. Such a file should be in the same place as the
zreg file, <filename>.

1633 <filename> is an archive, but the filename has the form
reserved for public DLL's.

1634 Cannot give the -call_shared option with the -r option.
eld Manual—527255-009
6-121

Output Listings and Error Handling Error Messages
Cause. You used the -call_shared option, which tells eld to create a program, and
you also used the -r option, to tell eld to build another object file that can be used as
linker input, rather than a program.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to create a program, then don’t specify the -r option.
If your intention is to use the -r option to create a new object file that can be used as
eld input, then don’t specify the -call_shared option. Actually, there is never any
reason to specify the -call_shared option, because it is the default.

Cause. You used the -call_shared option, which tells eld to create a progrm, and
you also used the -dll, -shared, or -ul option, to tell eld to build a DLL, rather
than a program.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If your intention is to create a program, then don’t specify the -dll, -
shared, or -ul option. If your intention is to create a DLL, then do specify one of
these options. There is never any reason to specify the -call_shared option,
because it is the default.

Cause. When you specify the -temp_r option, eld still first creates a temporary file
in another place, and when that file is created eld then tries to rename it to the
filename specified in the -temp_r option. That renaming failed.

Effect. Warning (eld still (re-)creates the private DLL registry, but not using the file
you specified with the -temp_r option as an intermediate file).

Recovery. If you are not able to rename a file to another name in the same location
(Guardian subvolume, OSS directory, or PC folder), that is an operating system
question that is beyond the scope of this document

Cause. You gave the option shown in the message, and that option requires a certain
type of parameter, such as the name of a file or the name of a symbol, as also shown
in the message. However, there was no parameter at all. Either the option occurred at
the end of the command line, or the next token on the command line began with a
hyphen, meaning that it was the next option, not a parameter for the current option.

1635 Cannot give the -call_shared option with the -dll
option.

1638 Cannot create -temp_r file <filename>; -temp_r option
ignored.

1639 No <type of parameter required> was specified for the
<option name> option.
eld Manual—527255-009
6-122

Output Listings and Error Handling Error Messages
Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Assuming you really do want to specify this option, give the correct
parameter(s) to it.

Cause. You gave the -set or -change option, with the “libname” attribute, and this
requires that the next parameter on the command line be the Guardian filename that
the user library will have at runtime. However, there was no parameter at all. Either
the option occurred at the end of the command line, or the next token on the command
line began with a hyphen, meaning that it was the next option, not a parameter for the
current option.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. Assuming you really do want to specify this option, give the correct
parameter(s) to it.

Cause. You specified the -set libname or -change libname option, where the
parameter that you specified for the name of the user library began with an equal sign.
In the Guardian case this would be allowed, where eld would treat the parameter as a
“Guardian DEFINE” and expand it to the name to use for the user library name. But,
you are running eld on the PC or on OSS, and on these platforms this type of
parameter is not allowed.

Effect. Fatal error (eld immediately stops without creating an output file).

Recovery. If you really wanted to use a name that begins with an equal sign for a user
library name, you can’t. On the PC or OSS, the Guardian DEFINE mechanism is not
present, so you need to directly specify the intended user library name.

Cause. You specified a string directly on the command line, not as the parameter of
some option, and the string began with an equal sign. In the Guardian case this would
be allowed, where eld would treat the parameter as a “Guardian DEFINE”, and
expand it to a filename. But, you are running eld on the PC or on OSS, and on these
platforms this type of command line string is not allowed.

Effect. Fatal error (eld immediately stops without creating an output file).

1640 No filename was specified for the libname attribute of
the <option name> option.

1641 A string starting with an equal sign is only allowed as
the libname attribute of the <option name> option in the
Guardian version of eld.

1642 A string starting with an equal sign is only allowed as
a command line filename in the Guardian version of eld.
eld Manual—527255-009
6-123

Output Listings and Error Handling Error Messages
Recovery. If you really wanted to use a name that begins with an equal sign in this
context, you can’t. On the PC or OSS, the Guardian DEFINE mechanism is not
present, so you need to directly specify the intended filename.

Cause. Multiple global symbols are present in the link files. The common data file is
larger in size than the defined data file.

Effect. The application might not work because of possible data loss.

Recovery. Ensure that the application does not include duplicate global symbols of
different sizes.

Cause. The contents of the specified input filename might not be correct. As a result,
eld does not process the file.

Effect. Fatal error. eld stops immediately without creating an output file.

Recovery. Contact your HP representative.

Cause. The contents of the specified input filename might not be correct. As a result,
eld does not process the file.

Effect. Fatal error. eld stops immediately without creating an output file.

Recovery. Contact your HP representative.

For details on Cause and Recovery, see eld Functionality for 64-Bit on page 4-12.

Effect. Fatal error. eld stops immediately without creating an output file..

For details on Cause and Recovery, see eld Functionality for 64-Bit on page 4-12.

Effect. Fatal error. eld stops immediately without creating an output file.

1657 Common data is larger in size, possible loss of data.

1659 < filename>: the resident procedure <procedure name> is
in <section name>, which is not a resident code section.

1660 <filename>: the procedure <procedure name> is in
<section name>, which is a resident code section, but is not
a RESIDENT procedure.

1665 The -set data_model neutral option is not allowed when a
program is being created.

1666 Bad value given for the -change data_model option; the
only allowed value is ‘neutral’.

1667 The -change data_model option is not allowed because the
existing file <filename> is a program.
eld Manual—527255-009
6-124

Output Listings and Error Handling Glossary of Errors
For details on Cause and Recovery, see eld Functionality for 64-Bit on page 4-12.

Effect. Fatal error. eld stops immediately without creating an output file.

For details on Cause and Recovery, see eld Functionality for 64-Bit on page 4-12.

Effect. Warning. (eld (re-)creates the private DLL registry without using the file you
specified with the -temp_r option as an intermediate file).

For details on Cause and Recovery, see eld Functionality for 64-Bit on page 4-12.

Effect. Fatal error. eld stops immediately without creating an output file.

For details on Cause and Recovery, see eld Functionality for 64-Bit on page 4-12.

Effect. Fatal error. eld stops immediately without creating an output file.

For details on Cause and Recovery, see eld Functionality for 64-Bit on page 4-12.

Effect. Fatal error. eld stops immediately without creating an output file.

Glossary of Errors
This glossary of errors provides more information about the words that appear in eld
error messages. Some glossary entries may also help you understand other glossary
entries.

1668 Using <filename>, even though it does not have the
desired data model.

1669 Bad value given for the -set data_model option; the
allowed values are ‘ilp32’, ‘lp64’, and ‘neutral’.

1670 The -set data_model option was given multiple times with
different values specified.

1672 Input files contain a mixture of 32-bit and 64-bit data
models. The first 32-bit is <filename>. The first 64-bit is
<filename>. To allow this, use the –set data_model neutral
option.
eld Manual—527255-009
6-125

Output Listings and Error Handling Glossary of Errors
There is also a main Glossary at the end of this reference manual that contains
explanations of the major concepts in linking and loading files on a TNS/E system.

Archive. An archive is a file that contains within it one or more files, called the
members of the archive. In general, the members of an archive can be any kinds of
files, but the members should probably only be TNS/E linkfiles if the archive is intended
to be used with eld. eld can read an archive and use some of its linkfiles as inputs
for a link.

Bad input file. When eld says this, it means that eld believes there is something
wrong with the named input file, and the next step is to see where that file came from
and why it is bad. For example, that file may have been an object file created by a
compiler, or by a previous eld command with the -r option.

Callable procedure. A callable procedure is a procedure that has the "callable"
attribute, which means that code enters privileged mode when that procedure is called.
The linker creates "gateways" to make that happen. There is a special type of callable
procedure, called a "kernel callable" procedure, that is only used in one of the special
system DLL's, and that DLL must also contain the procedure named
$n_MillicodeCheckRV. All other callable procedures are called "user callable"
procedures, and they are required to have from 0 to 32 parameters.

Create. When eld says that it cannot create a file, or cannot open a workfile that will
eventually become some file, that may mean that the name you specified for such a file
was invalid, or that eld didn't have permission to create a file in that location.

Data segment. A data segment is that portion of a program or DLL that contains
writeable data that is allocated once before the process begins execution (i.e., as
opposed to data that is a runtime stack or heap).

Definition. The definition of a symbol means that the symbol is present in the given
object file, such as a procedure whose code is present, or a data item for which space
has been allocated. It does not mean a symbol that may be declared/referenced here,
but actually exists elsewhere. Each language has its own rules for which syntactical
elements define, or don't define, symbols.

Delete. When eld is told to create an output file, and a file of that name already
exists, eld tries to delete it. If eld says that it cannot delete a file, that can indicate
that eld does not have permission to delete that previously existing file.

DLL. A DLL (dynamically linked library) is an object file that is loaded into memory as
part of a process. Each process that you run contains exactly one program and any
number of DLL's. eld builds DLL's out of linkfiles. eld also uses DLL's to resolve
references when it it building a new program or DLL, or when the -alf option is
used. Options such as the -l option are used to tell eld which DLL's to use to
resolve references.

DLL name. A DLL name is an identifying string found within a DLL, and is not
necessarily the same as the DLL's filename. DLL names are stored in the liblist
portion of a loadfile.
eld Manual—527255-009
6-126

Output Listings and Error Handling Glossary of Errors
DLL registry. This is a file that can be used to tell eld which addresses to use when
creating a DLL, and/or to record the choices eld made about such addresse.

DWARF. This is the name for the industry-standard format of the symbol table
information that is used for debugging (not for most linking activities).

ELF. This is the name for the industry-standard object file format upon which our
object files are based.

Export. Symbols that exist in a DLL are not visible outside that DLL, to resolve
references in other programs and DLL's, unless they are exported. Some symbols are
marked for export by the compiler, and others can be specified to be exported by using
eld options such as -export or -export_all.

Filecode. On Guardian, files have "filecodes". TNS/E object files are always given file
code 800.

Find. See "Search".

Floating point. Guardian supports two types of floating point formats, named
"tandem" and "ieee". Normally, you should compile all your files the same way so as
not to mix the two types.

Gateway. This is code that eld creates for callable procedures to perform appropriate
steps to enter privileged mode.

GP-relative addressing. This refers to a method of addressing data that adds a 22-bit
value to the contents of a specific register called the GP register. Therefore, all the
data that is addressed this way, within a given program or DLL, must lie within a range
of 4 MB, as laid out by eld, or else eld reports an error. Data that requires GP-
relative addressing includes data so specified by compilers (often called "short data")
and various tables created by eld. If you are building a loadfile that runs into this error
situation you must try to link it a different way, perhaps splitting it up into multiple DLL's
rather than making it a single program or DLL. If an input file defines a symbol named
"__gp", that affects the value that is in the GP register and therefore can lead to this
error situation, even if the amount of data that requires GP-relative addressing is not
large.

Implicit DLL's. These are the DLL's that collectively form "system library", and are
collectively represented by the special import library called the zimpimp file.

Import controls. When a program or DLL is built, you specify whether it will be
"localized", "globalized", or "semi-globalized" by using the -b localized, -b
globalized, or -b semiglobalized options. The default is localized. Also,
when you build a DLL, and it refers to other DLL's by use of -l options, you specify
whether those other DLL's are "reexported" by using the -reexport option. By
default, DLL's are not reexported. If you are building a program or a DLL, and there is
a reference to a symbol, and the symbol is not present in the same file, then eld will
look for it at least in the other DLL's that you specify on the command line, such as with
-l options. eld will also look in other DLL's ("indirect DLL's") pointed at by DLL's it
has already opened, but only if you are building a file that is globalized or semi-
globalized, or if the DLL's that point at such indirect DLL's also reexport them.
eld Manual—527255-009
6-127

Output Listings and Error Handling Glossary of Errors
Import library. An import library is a file that is like a DLL but only with the header
information. It can be used by eld to resolve references when building another
program or DLL, but cannot be loaded into memory in place of the real DLL at runtime.
An import library can be marked "incomplete", such as by the -set incompete on
option of eld. When an import library is incomplete, eld may still use it to see if there
are unresolved references, but not to preset.

Internal error. An internal error is something that is never supposed to happen and
therefore should be reported to HP.

Liblist. This is the name of the section of a DLL that tells the names of the other DLL's
at which it points.

Linkfile. A linkfile is an object file that is created by a compilation or by an invocation
of eld with the -r option. Linkfiles themselves cannot be run from a command line,
but can be provided as inputs to eld so that eld can create a new object file (linkfile
or loadfile) from them.

Loadfile. A loadfile means a program or a DLL as opposed to a linkfile.

Main entry point. A program needs a main entry point. In pTAL, you specify this by
putting the "main" attribute on a procedure. Or, if you forget to do that, you can use the
-e option of the linker to tell the name of the main program. In C or C++ you should
not use the -e option, but rather a special linkfile containing the main program (not the
procedure in your own file named "main") needs to be linked together with the files you
have compiled. When you have the C or C++ compiler invoke the linker for you, it
should do that automatically. In Cobol you also should not use the -e option.

MAP DEFINE. This is a feature, available only on Guardian, that allows a string that
begins with an equal sign to represent a filename on the eld command line.

Member. A file within an archive.

Memory. If the linker says it is "out of memory", that should mean that there wasn't
enough memory available for the linker to do its job. If possible, try again where more
memory is available. Or, this may be a problem that needs to be reported to HP.

Memory area. For a program, the text memory area consists of the text segment plus
the gateway segment, and the data memory area consists of the data segments. For a
DLL, the text memory area consists of the text segment, and the data memory area
consists of the data segments plus the gateway segment. You can use the -t and -d
options to tell eld which starting addresses to use for the two memory areas. Most
users will not to this, or perhaps will only use the -t option when building a DLL. By
default, for a DLL, the data memory area comes immediately after the text memory
area, and another way of specifying this combined area for a DLL is with a DLL
registry.

Obey file. This is a file that provides additional command line input to eld, as
specified by the -obey option.

Open. If eld says that it cannot open a file it is possible that you specified the wrong
file name, or that you shouldn't have specified any file name in the first place. If you
eld Manual—527255-009
6-128

Output Listings and Error Handling Glossary of Errors
correctly specified a filename that eld needed to open, but eld says it can't open it,
then you need to figure out why that is so. It may be that the file does not exist, or it
may be that the file exists but you do not have permission to open it. If it is a file that
eld only needs to read, then you would generally only need permission to read it, not
write it.

Option names. eld has some options whose names are one letter long, and they
take parameters that are not keywords, and a space is not required between the name
of the option and the parameter. The examples are -d, -e, -l, -L, -o, -t,
and -u. If you intended (correctly or not) to specify some other option whose name
began with one of these letters, and what you entered was not the name of an option,
eld will assume you meant to give one of these one-letter options with a parameter,
and provide an error message accordingly. For example, eld has no such option as -
elf, so if you specify -elf, eld will think you are specifying the -e option with the
parameter lf. Many options have synonyms and the name shown in an eld
message does not necessarily match the way it was written on the command line.

Preset. eld is said to "preset" a program or DLL when eld has filled in addresses for
all references and created additional information within the file so that, at runtime, the
operating system can realize that eld has already done this and possibly avoid the
work of redoing it. eld will only mark a file "preset" when there is a chance that the
addresses could be correct at runtime.

Procinfo. This is the name of the section of a linkfile that provides information about
its procedures.

Program. A program is an object file that contains the main code for a process. eld
builds programs out of linkfiles.

Public DLL registry. This is a file that should automatically be found by eld. It tells
eld how to look for public DLL's in a standard location, in addition to other ways that
eld would look for DLL's. Public DLL's are DLL's that are usually distributed by HP,
rather than created by other users.

Read. If eld says that it cannot read a file, it is possible that you specified the wrong
file name, or that eld did not have permission to open and read the file.

Rebase. The -alf option always updates the references within an existing loadfile,
that is, it fills in pointers within this loadfile that contain the addresses of symbols that
are not in this same loadfile but rather are found in other DLL's. In addition, if you tell
the -alf option to change the address of the existing DLL itself, that is called
"rebasing" that DLL.

Reference. A reference to a symbol means that the address of the symbol is needed
in this place for some purpose. That symbol itself may or may not be present in the
same object file.

Relocation table. This is the name a section of an object file that tells the locations of
references and the symbols to which they refer.

Search. When the -l option is used, and its parameter is a simple (unqualified)
filename, that tells eld to search for an archive or DLL based on that name. Some of
eld Manual—527255-009
6-129

Output Listings and Error Handling Glossary of Errors
the places eld looks for the archive or DLL are the directories or subvolumes specified
by -L options. It is usually an error if the search does not find something, but you can
override that with the -allow_missing_libs option.

Section. An object file contains "sections", which have names, and sometimes the
names imply properties of the section, such as whether the section contains code or
data. There is a complicated architectural restriction on the maximum size of a code
section in a linkfile, but a general statement is that the limit is probably reached at a
size just under 16 megabytes. It is not expected that this limit will be reached, because
we use many small code sections, rather than large ones.

SQL. This is a database language whose statements can be embedded in the code of
other languages.

Symbol name. A "symbol" can be either a procedure or a data item. The "name" of a
symbol means the name as it is represented within the object files that eld sees,
which might not be the same as how the name appears in your source code,
depending on what name manipulations were done by the compiler. For example, in
C++, names may be "mangled". eld may try to show both the mangled and
unmangled forms of C++ names in its error messages, but when a symbol name is
provided as input to eld it must be the mangled C++ form.

Systype. A process runs either as a Guardian process or as an OSS process. You
tell eld which type of process you are creating by giving the -set systype option
while building a program.

Text segment. The text segment is that portion of a program or DLL that contains all
the executable code (other than gateways) along with various header information and
readonly data.

TNS/E ("Tandem Non-Stop/E"). This is the name of the HP operating system for which
eld processes object files.

Unresolved reference. You can have an unresolved reference when eld is building a
program or a DLL, or when eld is doing the -alf option. That means that the file
you were building or processing needed to have the address of some named symbol
filled in, and that symbol did not exist in that same loadfile, nor was eld able to find the
symbol by looking into other DLL's. This may occur for many reasons, ranging from
spelling errors in your source code, or things that you still need to write that you don't
yet have in your source code, to problems with linkfiles or DLL's that other people are
supposed to provide to you, which either they didn't provide or you didn't pass along for
eld to use, or "standard" things not set up correctly in your installation. eld tells you
the name of the symbol that it couldn't find. When the -verbose option is used, eld
lists the DLL's that it found and used to look for symbols. If you think that eld should
have looked at a certain DLL, and it didn't, review your use of -l options as well as
your import controls. If you think that eld looked at a DLL, and didn't find a symbol
there, but the symbol is there, note that the symbol also needs to be exported from the
DLL for eld to find it. If you are using archives, you may also need to review the rules
for which object files eld will use from the archive. The -unres_symbols option
eld Manual—527255-009
6-130

Output Listings and Error Handling Glossary of Errors
controls whether eld considers unresolved references to be errors, warnings, or
neither.

User library. A user library is a DLL. A program is allowed to specify at most one
user library that it will need at runtime, and the user library is specified by storing its
Guardian filename within the program, through the -set libname option of eld,
rather than by telling eld to use a DLL the usual way, such as by a -l option.

Variable data. This refers to data that can be modified after the process has started
running. This is different from data that is constant, or that contains addresses that
may need to be modified when the process begins running but cannot be modified
thereafter.

Workfile. eld first creates workfiles for its output files, and only at the end does it
rename the workfiles to the final output filenames.

Write. If an error occurs when writing a file, it may indicate that there is no space left
on that disk.

Zimpimp file. This is a special type of import library that represents all the symbols
that exist in the system library.
eld Manual—527255-009
6-131

Output Listings and Error Handling Glossary of Errors
eld Manual—527255-009
6-132

A TNS/E Native Object Files
This appendix contains the following information:

The Object File Format - the types of object files and their content.

Code and Data Sections - the "ordinary" code and data sections that come from
application source code, possibly with additions by the compiler or linker.

Relocation Tables - when code is relocated, who resolves the address and prepares
relocation tables?

Finding Information About Procedures and Subprocedures in Linkfiles - an introduction
to the .procinfo and .procnames sections of linkfiles.

The DWARF Symbol Table - this table contains information used by debuggers and the
Cobol compiler.

Archives - contains an extension of material covered in a previous section of this
manual.

Tools That Work With Object Files - a quick look at which HP NonStop operating
system tools use object files.

The Object File Format
Some of this general information may also be found in Sections One and Two of this
manual, but this appendix provides much more detail.

Basic Properties of Object Files
User versions of TNS/E tools may run in the following places:

• All TNS/E versions of the HP NonStop operating system, including both the
Guardian and OSS environments.

• Some TNS/R versions of the HP NonStop operating system, at least in the
Guardian environment.

• Appropriate versions of the Windows operating system on PC’s.

TNS/E object files only run on TNS/E.

On Guardian and OSS, object files are unstructured files that are “odd unstructured”,
the same as in TNS/R.

On Guardian and OSS, TNS/E object files have the file code 800.

TNS/E object files use the 64-bit version of the ELF file format.

TNS/E object files are big endian. This means that all their data is big endian.
eld Manual—527255-009
A-1

TNS/E Native Object Files Types of TNS/E Object Files
Types of TNS/E Object Files
There are the following four types of TNS/E object files.

Collectively, programs and DLLs are called loadfiles. Loadfiles and import libraries are
built by the linker.

This appendix describes all four types of object files. The main distinctions occur
between linkfiles and loadfiles. There is little difference between a program and a DLL
as far as the file format is concerned, and an import library is a subset of what is in a
DLL.

A loadfile may refer by name to symbols that exist in other loadfiles in the same
process. Such references are resolved when the loadfiles are brought into memory by
the runtime loader, which is named rld, or by the runtime procedure named dlopen.
When the loadfile was originally built by the linker it is also possible that the linker tried
to resolve such references. A loadfile whose references have been resolved by the
linker is said to be preset.

A process can also use one user library. A user library is a DLL. Nothing within a user
library distinguishes it from other DLLs, and a DLL that serves as the user library for
one program can also be used like any other DLL by other programs. The only
difference between the user library and other DLLs is in the way the program identifies
the user library that it uses. For a DLL to be used as a user library at runtime its
filename must be in the Guardian namespace.

An import library can take the place of a DLL at link time. One use of import libraries is
to save space. Another use is for security, when it is necessary for the linker to read
the header information but it is not desirable for others to be able to see the code.
Import libraries are further categorized as complete or incomplete. The difference is
that an incomplete import library need not contain the correct addresses for symbols.
A complete import library can be used by the linker when presetting a loadfile. The

Table A-1. Types of TNS/E Object Files
Type of Object File Description
Linkfile This is the term for the object files that are produced by a compiler

or by the assembler, and can be given as input to the linker. It is
also possible for the linker to produce a linkfile as output when run
with the -r option.

Program This is the term for a main program. There is one program in
every process.

DLL This stands for dynamic-link library. It is an object file that is not a
program but can also be part of a process. A process can contain
any number of DLLs. DLLs are also used by the linker when
building other programs or DLLs.

Import Library This is a file that contains just the part of a DLL that is needed at
link time to build other programs or DLLs.
eld Manual—527255-009
A-2

TNS/E Native Object Files How to Distinguish the Different Types of Object
Files
linker can use an incomplete import library to check for unresolved references, but not
to preset.

DLLs and import libraries can also be used at compile time by the COBOL compiler to
find out information about procedure call interfaces.

Some DLLs are called public libraries because they are provided as part of the TNS/E
implementation and are found in a special way by the linker and runtime loader. A
public library has the same format as any other DLL, and can have an import library to
represent it.

Some of the public libraries are called implicit libraries because they are used at link
time and run time without explicit mention on the part of the user. There are several
implicit libraries, and there is a bit in a DLL that tells if it is an implicit library. A single
implicit library never has an import library to represent it to the linker. Rather, at link
time, when building a loadfile that is not an implicit library, a single import library
represents the entire set of implicit libraries. That is called the import library that
represents the implicit libraries, and it is always a complete import library.

How to Distinguish the Different Types of Object Files
The first four bytes of an ELF file (in the ELF header) identify the file as an ELF file.

The fifth byte, named e_ident [EI_CLASS], tells if it is the 32-bit or 64-bit version of
ELF. This distinguishes between TNS/R and TNS/E object files.

The e_machine field of the ELF header identifies the target platform. This also
distinguishes between TNS/R and TNS/E object files.

The e_type field of the ELF header distinguishes among the four types of TNS/E
object files described in this section, except that the same value, ET_DYN, is used
both for DLLs and import libraries.

When e_type = ET_DYN, the EF_TANDEM_IMPORT_LIB bit of the e_flags field tells if
it is a DLL or an import library. When it is an import library, the
EF_TANDEM_IMP_LIB_COMPLETE bit tells if it is complete or incomplete.

The EF_TANDEM_IMPLICIT_LIB bit of the e_flags field tells if this DLL is one of the
implicit libraries, and is also set in the import library that represents the implicit
libraries. The import library that represents the implicit libraries is also identified by the
DLL name “__IMPLICIT_LIB__” found in the DT_SONAME record of the .dynamic
section.

Summary of the Contents of an Object File
This appendix does not specify the ordering of sections within linkfiles. Compilers and
the assembler are free to arrange sections as they wish, and so can the linker when it
creates a linkfile with the -r option. The following is a list of the things that may exist
in linkfiles:

ELF Header
eld Manual—527255-009
A-3

TNS/E Native Object Files Summary of the Contents of an Object File
Stack Unwinding Information (.IA_64.unwind and .IA_64.unwind_info)

Text Sections (sections whose names begin .text or .restext)

User Data Sections (.data and .data1, .sdata and .sdata1, .bss, .sbss, .rdata and
.rodata, .srdata and .srodata, and .rconst)

A .tandem_info section (possibly abbreviated to four bytes)

The .procinfo and .procnames Sections

DWARF Symbol Table Sections

Relocation Table Sections (.rela.x, where .x could be any of the section names
listed above)

ELF Symbol Table Sections (.symtab and .strtab)

Source RTDU Sections (.rtdu.index, .rtdu.names, and .rtdu.data)

ELF Section Headers and the .shstrtab Section

This appendix does, however, specify the ordering of sections within loadfiles and
import libraries, as shown in Contents of a Loadfile or Import Library on page A-5.

It is also possible for the compilers or assembler to create sections of names not listed
here. The characteristics of such sections, as listed in their ELF section headers,
would tell the linker what to do with them, and they would be propagated by the linker
into its output file.

Linkfiles also contain a section named .comment, but it is discarded by the linker.

In a loadfile, some of the sections are organized into segments. There is always a text
segment, which comes at the beginning of the file. There may be a gateway segment.
There may be either one or two data segments. When there are two data segments,
they are called the data constant segment, followed by the data variable segment.

The first column in the table on the following page lists the items that may be found in a
loadfile, in the order they would exist. Note that the text segment is always the first
segment in the file, and that there may be one or two data segments. Note that the
placement of the .gateway section (equivalent to the gateway segment) depends on
whether the loadfile is a program or a DLL, and that the placement of the .data section
depends on whether there are one or two data segments. The last two columns have
an “X” next to those sections that may be referenced with 22-bit global pointer (GP) -
relative addressing, or that may be found in import libraries, respectively.

The segments are loaded into virtual memory. The layout in virtual memory is the
same as in the file within each segment, but there are choices for where each segment
is placed into virtual memory.

The .sbss and .bss sections don’t actually take up any space in loadfiles. The table
only shows where they would be placed in virtual memory.
eld Manual—527255-009
A-4

TNS/E Native Object Files Summary of the Contents of an Object File
Table A-2. Contents of a Loadfile or Import Library

Loadfile Contents
GP-
Relative

Import
LIbrary

ELF Header X
ELF Program Headers X
.tandem_info X
.lic

.dynamic X

.liblist X

.dynsym.gblzd X

.hash.gblzd X

.hashval.gblzd

.rela.gblzd

.dynstr2 X

.IA_64.unwind

.IA_64.unwind_info

.IA_64.unwind.strings

.rconst

.plt

.restext

.text

.hash X

.dynsym X

.dynstr X

.hashval

.rela.dyn

.gateway - for a program

.data - can have more than one data segment

.rdata

.fptr

.srdata X

.got X

.IA_64.pltoff X

.sdata X

.sbss X

.bss
eld Manual—527255-009
A-5

TNS/E Native Object Files Summary of the Contents of an Object File
Note that the sections from .got through .sbss are purposely kept together as much as
possible, because they are all referenced with GP-relative addressing. However, when
there are two data segments, the .data section is allowed to intrude among these
sections.

Both the data constant segment and data variable segment can have data that
requires modification by rld when loaded into memory. The difference is that the data
constant segment cannot be modified thereafter, while the data variable segment can.

The following is a brief description of each of the items that can occur in a linkfile or
loadfile. Unless otherwise stated, a section is not required to be present if, based on
its description, it would not contain any useful information for a given object file.

ELF Header

This contains header information for the entire file. It is always found at the start of
an ELF file.

ELF Program Headers

These contain information that summarizes the main parts of the object file
required for loading into memory. Program headers are required in loadfiles and
import libraries.

.tandem_info Section

This contains more information of interest to the operating system. It is required in
loadfiles and import libraries. It also exists in linkfiles because some of its fields
are also meaningful there.

.lic Section

This contains information about the DLLs that were used to preset this loadfile. It
is required in a loadfile, as a placeholder even if the loadfile is not preset.

.dynamic Section

This contains information needed by the runtime loader, such as the addresses of
the .liblist through rela.dyn sections. It is required in loadfiles and import libraries.

.gateway (for a DLL)
DWARF Symbol Table Sections X
.source.rdtu (if present, there are three of them.)
.object.rdtu (if present, there are three of them.)
.shstrtab X
ELF Section Headers X

Table A-2. Contents of a Loadfile or Import Library

Loadfile Contents
GP-
Relative

Import
LIbrary
eld Manual—527255-009
A-6

TNS/E Native Object Files Summary of the Contents of an Object File
.liblist Section

In a loadfile, this tells the names of the DLLs that were in the linker command
stream when the linker built this loadfile. In an import library that represents a
single DLL it contains the same information as in that DLL.

.dynsym.gblzd Section

This is a symbol table section, similar to the .dynsym section (see below), but just
for globalized symbols. It may be present in loadfiles and import libraries.

.hash.gblzd Section

This is a hash table section, similar to the .hash section (see below), but for looking
up symbols in the .dynsym.gblzd section.

.hashval.gblzd Section

This is similar to the .hashval section (see below), but providing information about
the symbols in the .dynsym.gblzd section.

.rela.gblzd Section

This is similar to the .rela.dyn section (see below), but for the relocation sites
whose targets are globalized symbols.

.dynstr2 Section

This is a string space that is pointed at from the .dynamic, .liblist, and
.dynsym.gblzd sections.

Stack Unwinding Sections

These contain information for stack unwinding. Note that there are two such
sections in a linkfile (not counting the relocation table section named
.rela.IA_64.unwind), and three such sections in a loadfile.

.rconst Section

This contains application-defined initialized data that does not get modified at
runtime, and does not contain addresses that might need modification when the
loadfile is first brought into memory. This may never be created by a compilation
or assembly, but when the linker sees an input section named .rdata that contains
no relocation sites it renames the section to .rconst.

.plt Section

This section contains import stubs. An import stub is created by the linker in a
loadfile when the linker cannot guarantee that the target of an IP-relative procedure
call is resolved within the same loadfile.
eld Manual—527255-009
A-7

TNS/E Native Object Files Summary of the Contents of an Object File
Text Sections

Text sections contain application-defined executable code (procedures). The
object file design also allows them to contain data, but that is not expected to
happen. In linkfiles, there can be any number of text sections. Their names must
begin either .text or .restext, corresponding to whether they contain non-resident or
resident text, respectively. In loadfiles, all the sections that had names beginning
.text are combined into a single section named .text, and similarly for .restext, and
the .restext section (if it exists) comes before the .text section. A text section is
required in a program, because there must be a main entry point. Text sections in
a loadfile can contain branch stubs, which are generated by the linker when a
procedure call would need to jump farther than its instruction format allows.

.hash Section

This is a hash table for looking up symbols in the .dynsym section. It is required in
loadfiles and import libraries.

.dynsym Section

This is the dynamic symbol table. It contains information about symbols
referenced in this loadfile or exported from this loadfile, other than globalized
symbols. It is required in loadfiles and import libraries.

.dynstr Section

This is a string space that is pointed at from the .dynsym section. It is required in
loadfiles and import libraries.

.hashval Section

This contains precomputed hash values for the symbols listed in the .dynsym
section. It is required in loadfiles.

.rela.dyn Section

This is the dynamic relocation table. It contains descriptions of the relocation sites
within this loadfile whose targets are the symbols listed in the .dynsym section.

.gateway Section

This contains gateways. A gateway is created for each procedure entry point that
has the CALLABLE or KERNEL_CALLABLE attribute.

.data Section

This contains application-defined initialized data, but doesn’t have either of the
restrictions that make it possible to put data into the .rdata or .sdata section.
eld Manual—527255-009
A-8

TNS/E Native Object Files Summary of the Contents of an Object File
.rdata Section

This contains application-defined initialized data that does not get modified at
runtime (although the initial values may be addresses that need modification when
the loadfile is first brought into memory).

.fptr Section

This section contains official function descriptors. An official function descriptor
contains the address and GP value for a procedure that exists in this loadfile.
Procedure pointers point at official function descriptors. An official function
descriptor is only created for a procedure if the address of that procedure is taken
in the same loadfile, or if the procedure is exported from the loadfile.

.srdata Section

This contains application-defined initialized data that does not get modified at
runtime (although the initial values may be addresses that need modification when
the loadfile is first brought into memory), and that furthermore is “small” data for
which 22-bit GP-relative addressing is used because the compiler or assembler
can guarantee that the target of the reference is in the same loadfile.

.got Section

This is the global offset table, which contains addresses of data items that are
referenced indirectly, as well as the addresses of official function descriptors and
EnterPriv labels. The linker creates entries in the .got section as necessary. The
entries in the .got section are found by 22-bit GP-relative addressing.

.IA_64.pltoff Section

This section contains local function descriptors. A local function descriptor
contains the address and GP value for a procedure that is referenced from this
loadfile. Direct procedure calls (i.e., not involving procedure pointers) use these
local function descriptors. The linker creates entries in the .IA_64.pltoff section as
necessary. The entries in the .IA_64.pltoff section are found by 22-bit GP-relative
addressing.

.sdata Section

This contains application-defined initialized “small” data for which 22-bit GP-relative
addressing is used because the compiler or assembler can guarantee that the
target of the reference is in the same loadfile.

.sbss Section

This contains application-defined uninitialized “small” data for which 22-bit GP-
relative addressing is used because the compiler or assembler can guarantee that
the target of the reference is in the same loadfile. This section occupies no space
in an object file, but rather reserves memory space that is automatically initialized
eld Manual—527255-009
A-9

TNS/E Native Object Files Summary of the Contents of an Object File
to zero. The object file design supports such sections, although compilers might
not use them.

.bss Section

This contains application-defined uninitialized data, but this section doesn’t have
the restriction that makes it possible to put data into the .sbss section. It occupies
no space in an object file, but rather reserves memory space that is automatically
initialized to zero. The object file design supports such sections, although
compilers might not use them. The linker allocates .bss sections in loadfiles to
contain what the compiler called common data.

.rela.x Sections

These sections describe relocation sites within linkfiles. Relocation sites can be
within code or data sections, including unwind function sections, the .procinfo
section, and the DWARF sections. A .rela.x section is required in a linkfile for each
section named .x that has relocation sites. For example, rela.data describes the
relocation sites in the .data section.

.symtab Section

This is the ELF symbol table. It is required in linkfiles. It contains information
about symbols whose names are meaningful to the linker.

.strtab Section

This is a string space that is pointed at from the .symtab section. It is required in
linkfiles.

.procinfo Section

This section provides information about procedures and subprocedures.

.procnames Section

This is a string space pointed at by the .procinfo section.

DWARF Symbol Table Sections

These sections contain information for the debugger and for the COBOL compiler.
There are several sections that collectively form the DWARF symbol table.

Source RTDU Sections

These are sections that represent source RTDU’s, which are part of the SQL/MP
implementation. These can exist only in linkfiles and programs. In a linkfile that is
created by compiling a source file with embedded SQL/MP, the set of source
RTDU’s is represented by three sections. In a program, the set of source RTDU’s
is also represented by three sections, although not with the same section names
as in a linkfile.
eld Manual—527255-009
A-10

TNS/E Native Object Files Code and Data Sections
Object RTDU Sections

An object RTDU, which is part of the SQL/MP implementation, can be placed into a
program by a tool named SQLCOMP. The object RTDU is represented by three
sections.

.shstrtab Section

This is a string space that is pointed at from the ELF section headers. It is
required.

ELF Section Headers

These contain header information to describe everything in the object file, except
for the ELF header, the program headers, the section headers themselves, and
possibly unused space within the object file.

A general principle behind the loadfile design is that the sections up through .dynstr2
are expected to be small, and it can therefore be more efficient to have them all near
the front. That is the reason that the .dynstr2 section was invented, i.e., to segregate
out the strings needed by other small sections near the front of the file.

Another general principle is that, after all the things that are “small”, all the things that
might need to be resident come next. More specifically, the .restext section needs to
be resident (by definition), and if it is present then some other sections also need to be
resident, and some don’t. All the other things that would also need to be resident are
placed before the .restext section, so that the .restext section (if present) marks the
end of the portion of the text segment that needs to be resident.

The HP NonStop operating system has also invented the .rela.gblzd section to handle
globalized symbols in the implementation of C++. Other implementations take different
approaches, not just to handle this specific feature of C++ but with regard to the issue
of preemption in general. This invention of the .rela.gblzd section again follows the
same strategy for the HP NonStop operating system of segregating relocation table
entries based on the target symbol, not based on the address of the relocation site.

The reason that Intel and HP separate out the relocation table entries for the
.IA_64.pltoff section is related to the feature of “lazy evaluation”, which the HP
NonStop operating system does not support (and which is not described in this
appendix).

Code and Data Sections
This subsection discusses the "ordinary" code and data sections that come from
application source code, possibly with some things added by the compiler or linker.
Special types of data sections, such as the stack unwinding information, the .procinfo
and .procnames sections, the DWARF sections, and the various linker-created
sections in loadfiles, are not detailed here.
eld Manual—527255-009
A-11

TNS/E Native Object Files User Code
User Code
In linkfiles there can be many text sections. The sections whose names begin .text
contain procedures and subprocedures that are not resident. The sections whose
names begin .restext contain procedures and subprocedures that are resident.

When the linker is building a new linkfile it concatenates each of the text sections from
the various input files into a section of the same name in the output file. On the other
hand, in loadfiles, all the non-resident code is combined into a single .text section, and
all the resident code into a single .restext section. The text sections of a loadfile may
also contain linker-generated branch stubs, which are not present in linkfiles.

Some procedures are global, which means their names are meaningful across
separate compilations. All references to global procedures must be marked with
relocation table entries. When there are duplicate copies of global procedures, the
linker picks one to use, and the relocation table entries are used by the linker to make
sure all references go to the copy that was picked.

If a procedure is in a section whose name begins either ".text." or ".restext.", and the
rest of the name is the same as that of the procedure, this is an indication by the
compiler that, if this is an unused copy of the procedure, then in fact the entire section
containing it may be ignored by the linker. In that case, the linker ignores that input
section, thus making the resulting code space smaller.

The .procnames and .procinfo sections provide additional information about
procedures and subprocedures in linkfiles. See Finding Information About Procedures
and Subprocedures in Linkfiles on page A-26 for further information.

The size of executable code is always a multiple of 16 bytes, because instructions are
grouped into 128-bit bundles. Actually, the HP NonStop operating system compilers
usually say that text sections must be aligned on 32-byte boundaries, and similarly
each procedure within a code section starts at an offset within that section that is a
multiple of 32 bytes. Larger alignments can also be specified in assembler source
files. When space is wasted between procedures, the assembler fills that space with
no-ops.

The total size of a text section in any linkfile must not exceed 16 MB, so that the linker
can add branch stubs to the section if necessary. Also, it is suggested that compilers
not put all the code of a compilation into one code section, but rather divide it into
multiple code sections, such as by putting each procedure into its own section. That is
a way to avoid running into the 16 MB limit, either directly as the result of a
compilation, or later after the linker has combined many separate compilations into a
single linkfile with the -r option, because the linker will concatenate input sections that
have the same name.

Certain procedures may be included just to identify an object file. Such a procedure is
called a VPROC ("version procedure"). The names of such procedures would always
be found in the .procinfo section of a linkfile or in the stack unwinding information of a
loadfile. Depending on whether a VPROC was visible outside its compilation, or
eld Manual—527255-009
A-12

TNS/E Native Object Files User Data
exported from its loadfile, it might also be found in the ELF symbol table of a linkfile, or
the dynamic symbol table of a loadfile or import library.

User Data
The .data (and .sdata) sections are for initialized data, while .bss (and .sbss) are for
uninitialized data. However, if a data item is initialized to all zeros, the compiler may
treat it as uninitialized data. That is possible, because all uninitialized data is
automatically initialized to zeroes by the HP NonStop operating system.

When the linker combines a set of linkfiles into a new file it usually concatenates each
of the user's data sections from the various input files into a section of the same name
in the output file. For example, some of the input files may have a section named
.data, and then the output file would also have a section named .data, and it would be
the concatenation of the .data sections that existed in the input files. The names of
typical user data sections, and what each one means, were listed near the beginning of
this document. Like text sections, sizes of data sections must be multiples of 16 bytes.

The exception to the general rule given in the previous paragraph is that, if an input
section has the name .rdata, but doesn't contain any relocation sites, then the linker
changes its name to .rconst for the output file. Note that a similar optimization is not
done for .srdata because that is GP-addressable.

The sections named .sdata, .srdata, and .sbss are called small data sections with the
meaning that the compiler might choose to put "small" data items into them (i.e., data
items whose sizes are no larger than 8 bytes). However, these sections actually have
no such requirement. The real meaning of these sections is that the items placed here
can be referenced directly by 22-bit GP-relative addressing, rather than getting their
addresses out of the .got section. That is only correct to do if the compiler or
assembler programmer can guarantee that the symbol cannot be preempted.

Linkfiles also have common data, which has not been allocated to any section. When
the linker builds a loadfile it allocates common data in the .bss section.

The following is how the C compiler works:

Data that is global or large, and initialized to a non-zero value, is placed into .data.

Data that is global or large, and initialized to a zero value, is placed into .bss.

Data that is local and small, and initialized to a non-zero value, is placed into
.sdata.

Data that is local and small, and initialized to a zero value, is placed into .sbss.

Data that is uninitialized is called common data.

Character strings are called local data items and placed into .rdata.
eld Manual—527255-009
A-13

TNS/E Native Object Files The MCB (Master Control Block)
The MCB (Master Control Block)
The linker adds the MCB to the .data section of a program (or creates a section of this
name if there was none before). The MCB is a data item that can be referenced by the
name _MCB within the program. The linker only creates the MCB in programs (not
DLL's), and only if the program makes a reference to the symbol named _MCB.

This is a description of the fields that are nonzero in the MCB of an object file.

The Check_quad field is an 8-byte string, where the first two and last two bytes each
contain the value 0xAA and the middle four bytes contain the ASCII string "MCB ".

The Version_item field currently contains 0, but presumably could contain a different
value in the future.

The Standard_C_streams bit is set to 1, rather than 0, to indicate that the program
should use code 180 files for C text files, rather than code 101 files. The linker sets
this bit to 1 when it creates the program if the -ansistreams option is specified or if the
target platform is OSS.

The C_std_files_open bit is set to 1, rather than 0, to indicate that this program should
automatically open the standard C/C++ I/O files. This linker sets this bit to 1 if the
program contains a main procedure that is written in C or C++ and the -nostdfiles
option is not specified.

The FP_format field is set to indicate the floating point type assumed by this program,
repeating the information also found in the file header. 0 indicates that the Tandem
floating point is required. 1 indicates that the IEEE floating point is required. 2 indicates
neutral.

Predefined Symbols
There are certain symbols (other than the MCB and symbols whose names are the
same as names of sections of object files) that the linker also creates, but only in
loadfiles, and only if they are referenced from the loadfile. The following table tells the
names of these symbols, their meanings, and the values that are placed into the
st_scndx fields of their dynamic symbol table entries.
eld Manual—527255-009
A-14

TNS/E Native Object Files Predefined Symbols
Note that the sections listed above do not imply that the address of the symbol is in
that section. The value in st_scndx doesn't really matter, because the st_value field
gives the symbol's value, not its offset within a section. But something needs to be
filled in for the st_shndx field, and it needs to be a real section, not "absolute", so that
rld and the -alf option of the linker know that it should be updated for rebasing.
Accordingly, the section indices shown above have been chosen. The linker will
always create sections named .text and .data, even if they would be empty, so that
their indices can be used in this way. Note that_unwind_size is absolute. Also, if the
loadfile has no code, and therefore has no .IA_64.unwind section, then the symbol
named _unwind is made absolute, and in this case both _unwind and _unwind_size
have the value 0.

Table A-3. Additional Predefined Symbols Optionally Created By The Linker In
Loadfiles

Name Meaning Value of st_shndx
_BASE_ADDRESS The address of the text

segment.
The index of the .text
section.

_DYNAMIC The address of the .dynamic
section.

The index of the
.dynamic section.

_unwind The start of the .IA_64.unwind
section.

The index of the
.IA_64.unwind
section, or SHN_ABS
(see the explanation
below).

_unwind_size The number of entries in the
.IA_64.unwind section.

SHN_ABS

etext or _etext The end of the text segment. The index of the .text
section.

fdata or _fdata The start of the data (constant)
segment.

The index of the .data
section.

_GLOBAL_OFFSET_TA
BLE

The address of the .got section. The index of the .got
section.

__gp The GP value. The index of the .got
section.

edata or _edata The end of the initialized data,
which is also the start of the
uninitialized data.

The index of the .data
section.

end or _end The end of all the data. The index of the .data
section.
eld Manual—527255-009
A-15

TNS/E Native Object Files Relocation Tables
Relocation Tables
It is possible that the contents of one place in the code or data of an object file need to
be filled in with the address of another place in the code or data, or in some other way
based on such an address. If the compiler or assembler knows what needs to go
there, without later modification by the linker or runtime loader, then that's the end of
the story. But, if the linker or runtime loader will need to be involved, the compiler or
assembler must indicate that location accordingly, by creating relocation tables in
linkfiles to provide such information. Similarly, the linker must put relocation tables into
loadfiles if there is still work for the runtime loader to do.

The place that needs to be filled in is called the relocation site. It would either be an
operand within an executable instruction, which come in various sizes, or a data item,
which would be a 32-bit or 64-bit integer. The place whose address needs to be
calculated is called the target of the relocation. The relocation site is also said to be a
reference to the target symbol.

The target of a relocation site is described by giving an offset relative to a symbol that
is listed either in the .symtab section (in the case of a linkfile) or the .dynsym or
.dynsym.gblzd section (in the case of a loadfile). If the symbol is of type STB_LOCAL
then it must be defined with an address in this object file, and that is the address that is
used for the symbol. If the symbol is of type STB_GLOBAL then the definition of the
symbol that is used to resolve the reference might exist in this object file or in another
object file.

The process of figuring out the target address is called resolving the reference. After a
reference has been resolved, the proper way to fill in the contents of the relocation site
depends on the site's relocation type.

The relocation types that can occur in linkfiles and loadfiles are different, and the
names of the relocation table sections are different. In linkfiles, for each code or data
section named .x that contains relocation sites there is a relocation table section
named .rela.x that describes the relocation sites in that section. This also includes
relocation tables needed to describe relocation sites in the .procinfo section, the
unwind function sections, and the DWARF symbol table sections. In loadfiles there are
relocation table sections named .rela.dyn and .rela.gblzd that describe all the
relocation sites in the data segment of the loadfile. Loadfiles never have relocation
sites in the text segment. The entries in .rela.dyn are for relocation sites whose target
symbols are in .dynsym, while the entries in .rela.gblzd are for relocation sites whose
target symbols are the globalized symbols listed in .dynsym.gblzd.

The format of the relocation information is the same in all cases. The ELF section type
is SHT_RELA, and the format of a relocation table entry is the following:

typedef struct ELF64_Rela {
 ELF64_Addr r_offset;
 ELF64_Xword r_info;
 ELF64_Xword r_addend;
}Elf64_Rela

The size of this structure is 24 bytes.
eld Manual—527255-009
A-16

TNS/E Native Object Files Relocation Tables
In linkfiles, relocation table entries always completely describe what needs to be filled
in at the corresponding relocation sites. So, it doesn't matter what is actually in the
operands at the relocation sites. In fact, what is there should be zero, with the
following two exceptions:

The value "-1" is filled in for relocation sites that point from DWARF information at
executable code, when they correspond to unused copies of procedures.

Relocation sites that point from one DWARF section into another, i.e., giving a section
offset rather than an address, are also fixed up in linkfiles created by the linker.

For loadfiles the relocation types whose names begin R_IA_64_REL make use of the
contents of the relocation site, rather than pointing at a target symbol These relocation
table entries say that the contents of the relocation site need to be updated at runtime,
or by the -alf option of the linker, based on how much the segment pointed at by the
relocation site is rebased.

In loadfiles, the relocation sites whose targets were STB_LOCAL would only need to
be updated if the loadfile was rebased.

In loadfiles, the elements of the .rela and .rela.gblzd sections are sorted by target
symbol index. In particular, that means that all the entries with the same target symbol
are consecutive. This includes the case of relocation types whose names begin
R_IA_64_REL, which don't have a target symbol, so that the target symbol index is 0.

r_offset

This tells the location of the relocation site. In a linkfile r_offset is the offset into the
section, as the name implies. In a loadfile r_offset tells the (preferred) virtual address
of the relocation site, so that the name r_offset is a misnomer.

In either case, depending on the relocation type, the relocation site is understood to be
either an operand of an instruction or a data item.

For a relocation site that is a data item, r_offset tells the address of the first byte in that
set of bytes. In other words, since data is big endian, it is the address of the high order
byte of the value. The relocation type tells whether the relocation site contains 4 bytes
or 8 bytes of data.

For a relocation site that is an operand of an instruction, the r_offset field identifies
both the bundle and the instruction slot within it. If you zero out the last four bits of
r_offset then the resulting value, which is a multiple of 16, is the address of the bundle.
The value in the last four bits of r_offset must be 0, 1, or 2, to identify the instruction
slot within the bundle.

r_info

The 64-bit r_info field combines together two different pieces of information, to tell the
target symbol and the relocation type. The low order 32 bits of the r_info field tell the
relocation type and the high order 32 bits tell the symbol. The following #define's
eld Manual—527255-009
A-17

TNS/E Native Object Files Relocation Tables
extract the target and relocation type from the r_info field, or reconstruct the r_info
field from its two pieces:
#define ELF64_R_SYM (i) ((i) >> 32)

#define ELF64_R_TYPE (i) ((i) & 0xffffffff)

#define ELF64_R_INFO (s,t) (((Elf64_Xword)(s) << 32) + (Elf64_Xword)(t))

The target symbol is an index into the .symtab section in the case of a linkfile, or into
the .dynsym or .dynsym.gblzd section in the case of a loadfile.

r_addend

This specifies a constant that is added to the address of the target symbol to obtain the
address that is used to fill in the relocation site.

An alternative to the Elf64_Rela relocation table structure is Elf64_Rel. The difference
is that Elf64_Rel does not contain the r_addend field. Instead, the relocation site itself
contains the addend, to be added to the address of the target symbol. One reason that
may be given for using the Elf64_Rela structure is that it allows the addend to be larger
than the number of bits available at the relocation site. The HP NonStop operating
system prefers Elf64_Rela because it means that the process of filling in the relocation
site has less dependence on the contents of the site, so there are fewer situations in
which we need to be concerned about what happened to the relocation site if the
process of filling in relocation sites got interrupted for an unpredictable reason.

Relocation Types
The following table lists the relocation types. The ones whose names end in "MSB"
are the ones that treat the relocation site as data, where the "MSB" means that the
data is considered big endian, and there may be 32-bit and 64-bit varieties of these.
These relocation sites are not necessarily well aligned.

The linker treats all addresses internally as 64-bit quantities. When an address is
placed in a 32-bit container, the requirement is that the address must fit into 32-bits as
a signed quantity. In other words, the high order 32 bits of the address must all be the
same as the highest order bit in the lower 32 bits of the address, and then the lower 32
bits of the address are used to fill in the relocation site.

Table A-4. Relocation Types
Name Value Description
R_IA_64_NONE 0x00 No-op.
R_IA_64_IMM64 0x23 Virtual address of a symbol

in code.
R_IA_64_DIR32MSB 0x24 Virtual address of a data

item in data.
R_IA_64_DIR64MSB 0x26
eld Manual—527255-009
A-18

TNS/E Native Object Files Relocation Tables
This rest of this section describes what the relocation types in the above table mean
and how they are used.

R_IA_64_NONE

This is a no-op. When the relocation type is R_IA_64_NONE, the entire relocation
table entry is zero.

R_IA_64_GPREL22 0x2a 22-bit GP-relative address of
a data item.

R_IA_64_GPREL64I 0x2b 64-bit GP-relative address of
a data item.

R_IA_64_LTOFF22 0x32 22-bit GP-relative address of
a .got section entry.

R_IA_64_LTOFF64I 0x33 64-bit GP-relative address of
a .got section entry.

R_IA_64_PLTOFF22 0x3a 22-bit GP-relative address of
a local function descriptor.

R_IA_64_FPTR32MSB 0x44 Virtual address of an official
function descriptor.

R_IA_64_FPTR64MSB 0x46
R_IA_64_PCREL60B 0x48 IP-relative address.
R_IA_64_PCREL21B 0x49
R_IA_64_PCREL21M 0x4A
R_IA_64_PCREL21F 0x4B
R_IA_64_PCREL32MSB 0x4C
R_IA_64_PCREL64MSB 0x4E
R_IA_64_LTOFF_FPTR22 0x52 22-bit GP-relative address of

the .got section entry for an
official function descriptor.

R_IA_64_SEGREL64MSB 0x5e Segment-relative address.
R_IA_64_SECREL32MSB 0x64 Section-relative address.
R_IA_64_SECREL64MSB 0x66
R_IA_64_REL32MSB 0x6c Runtime rebasing address.
R_IA_64_REL64MSB 0x6e
R_IA_64_IPLTMSB 0x80 Local function descriptor.
R_IA_64_LTOFF22X 0x86 Optimizable 22-bit GP-

relative .got section access.
R_IA_64_LDXMOV 0x87 Goes along with

R_IA_64_LTOFF22X.

Table A-4. Relocation Types
Name Value Description
eld Manual—527255-009
A-19

TNS/E Native Object Files Relocation Tables
R_IA_64_IMM64 -- Virtual Address of a Symbol in Code

This applies to the situation when the compiler or assembler knew that it was compiling
code that would not be moved at runtime and that the referenced symbol would also be
within the same loadfile and could not be preempted at runtime. In this case, the
compiler or assembler can generate (non-PIC) code where the virtual address of a
symbol is placed directly into the code. The linker would fill in the relocation site with
the virtual address, and the same relocation table entry would also appear in the
loadfile, so that the site could be updated by the -alf option of the linker if necessary.

R_IA_64_DIRx -- Virtual Address of a Data Item in Data (and a few other things)

This usually applies to the situation when a data item is initialized with the address of
another data item. The compiler or assembler would create this kind of relocation table
entry to describe such a relocation site, and the linker would propagate it into loadfiles,
so it could be modified at runtime.

The object file format does not prohibit a data item from being initialized with the real
address of a procedure, as opposed to the address of the official function descriptor for
the procedure, and in that case this same relocation type would be used.

The R_IA_64_DIR64MSB version of this type of relocation table entry (i.e., the 64-bit
variety) is also created by the linker in loadfiles to tell what address should be in a .got
section entry at runtime, when that .got entry is to contain the address of a data item or
the address of an EnterPriv label.

The R_IA_64_DIRx relocation types are also used in linkfiles to identify addresses that
are stored in the DWARF symbol table sections.

R_IA_64_GPREL22 -- 22-Bit GP-Relative Address of a Data Item

This applies to the situation when the code has a reference to a data item, and the
compiler or assembler knows that the data item will have to be found within the same
loadfile, and the compiler or assembler has allocated the data item in the .sdata,
.srdata, or .sbss section, and refers to it by 22-bit GP-relative addressing. It is an error
if the linker cannot guarantee that the target symbol is resolved in the same loadfile, or
that its address cannot be reached by 22-bit GP-relative addressing.

The compiler or assembler would generate code that calculates the address of the
data item by adding the signed 22-bit offset to the GP-register. The linker would fill in
that 22-bit operand by subtracting the value of the GP register for this loadfile from the
address of the data item. The relocation table entry would not exist in the resulting
loadfile.

R_IA_64_GPREL64I -- 64-Bit GP-Relative Address of a Data Item

This applies to the situation when the code has a reference to a data item, and the
compiler or assembler knows that the data item will have to be found within the same
loadfile, and the compiler or assembler refers to it by 64-bit GP-relative addressing. It
is an error if the linker cannot guarantee that the target symbol is resolved in the same
loadfile.
eld Manual—527255-009
A-20

TNS/E Native Object Files Relocation Tables
In more detail, the reference must also be within the data segment, not the text
segment, of the loadfile. This is a requirement because the text and data segment
could get rebased by different amounts at runtime, changing the GP-relative addresses
of items in the text segment, but such references can't be updated at load time.
Although the HP NonStop operating system does not rebase the text and data
segments by different amounts at load time, we still obey this rule about 64-bit GP-
relative addressing, and it is important to the linker's -alf option, which can rebase the
text and data segments by different amounts.

\When using this relocation type, the compiler or assembler would generate code that
loads a 64-bit value into a register and adds it to the GP register. The linker would fill
in that 64-bit operand by subtracting the value of the GP register for this loadfile from
the address of the data item. The relocation table entry would not exist in the resulting
loadfile.

R_IA_64_GPREL64I is also used in gateway code, to calculate the 64-bit GP-relative
address of the procedure for which this is the gateway. Then the address of the
procedure is calculated by adding this value to the GP register.

R_IA_64_LTOFF22 -- 22-Bit GP-Relative Address of a .got Section Entry

This applies to the situation where there is a reference to a data item in code and the
compiler or assembler does not do it directly by GP-relative addressing, as described
in the previous two items. Here, the compiler or assembler generates code that adds a
signed 22-bit offset to the GP register in order to get the address of an entry in the .got
section, which in turn contains the address of the data item. The linker allocates that
.got section entry and fills in the 22-bit operand by subtracting the value of the GP
register for this loadfile from the address of this .got entry. This relocation table entry is
not present in loadfiles. The linker would instead generate a relocation table entry of
type R_IA_64_DIR64MSB to describe the .got entry.

It is also possible to use this relocation type to get the address of a procedure from the
.got. That is not a common thing to do, because you generally need the address of its
official function descriptor, which is done instead with R_IA_64_LTOFF_FPTR22.
However, gateways use R_IA_64_LTOFF22 to get the real address of the EnterPriv
labels from the .got section. Then that .got entry is used to branch to the EnterPriv
label. A function descriptor is not used in this case, because the gateway does not
need to set up the GP value for the EnterPriv label.

R_IA_64_LTOFF64I -- 64-Bit GP-Relative Address of a .got Section Entry

This may also be used in gateways, like R_IA_64_LTOFF22, to calculate the 64-bit
GP-relative address of the .got entry for an EnterPriv label.

R_IA_64_PLTOFF22 -- 22-Bit GP-Relative Address of a Local Function Descriptor

This applies to the situation where there is a direct procedure call and the compiler or
assembler has generated code that adds a signed 22-bit offset to the GP register in
order to get the address of the local function descriptor for the target procedure. The
linker allocates the local function descriptor and fills in the 22-bit operand by
eld Manual—527255-009
A-21

TNS/E Native Object Files Relocation Tables
subtracting the value of the GP register for this loadfile from the address of this local
function descriptor.

This relocation table entry is not present in loadfiles. The linker would instead
generate a relocation table entry of type R_IA_64_IPLTMSB to describe the local
function descriptor.

R_IA_64_FPTRx -- Virtual Address of an Official Function Descriptor

This applies to the situation when a data item is initialized with the address of a
procedure. This is a procedure pointer, so it must contain the address of the official
function descriptor for that procedure. The compiler or assembler would create this
kind of relocation table entry to describe such a relocation site, and the linker would
propagate it into loadfiles, so it could be modified at runtime.

The R_IA_64_FPTR64MSB version of this type of relocation table entry (i.e., the 64-bit
variety) is also created by the linker in loadfiles to tell what address should be in a .got
section entry at runtime, when that .got entry is to contain the address of an official
function descriptor.

R_IA_64_PCRELx -- IP-Relative Address

This applies to the situation when there is a direct procedure call (or another type of
branch) and the compiler or assembler has generated an IP-relative procedure call
instruction, which uses an operand within the instruction as an offset to the target
procedure relative to the location of the bundle containing the instruction itself. The
four variations of this relocation type correspond to four instruction varieties that can be
used for this. In all cases, the target address is the address of a bundle, which is a
multiple of 16, so four 0's are appended to the end of the operand. The 21-bit forms
are signed quantities that can therefore cover a region of 225 bytes, or 16 megabytes
forward or backward, while the 60-bit form can reach any 64-bit address.

It is only correct to use IP-relative addressing in a loadfile if the target address can be
guaranteed to be in the same loadfile. Also, we do not use IP-relative addressing to
make a call on a gateway in a DLL, because the -alf option can separately rebase the
code and the gateway segment. The linker does one of two different things, depending
upon whether it can make these two guarantees.

If the linker can guarantee that IP-relative addressing will work, it fills in the operand so
that, when four 0's are attached to it, it will equal the address of the target minus the
address of the bundle containing the current instruction. In this case, no relocation
table entry remains in the loadfile.

If the linker cannot guarantee this, then the linker will allocate an import stub in the .plt
section. The import stub will make the procedure call, using a local function descriptor
similar to what was described above when the compiler or assembler generated the
R_IA_64_PLTOFF22 type of relocation table entry. The linker updates the operand in
the instruction so that, when four 0's are attached to it, it will equal the address of the
import stub minus the address of the bundle containing the current instruction. As
described above under R_IA_64_PLTOFF22, the loadfile would contain a relocation
table entry of type R_IA_64_IPLTMSB to describe the local function descriptor.
eld Manual—527255-009
A-22

TNS/E Native Object Files Relocation Tables
In both cases, if the IP-relative branch was a 21-bit variety, it might not be possible for
it to reach its destination. In such a case the linker would allocate a branch stub that
was close enough. The branch stub would use a code sequence that enabled it to
reach the target procedure or import stub, and the original instruction would be
updated to reach the branch stub.

R_IA_64_LTOFF_FPTR22 --
22-Bit GP-Relative Address of the .got Section Entry for an Official Function Descriptor.

This applies to the situation when code assigns a value to a procedure pointer. The
compiler or assembler generates code that adds a signed 22-bit offset to the GP
register in order to get the address of an entry in the .got section, which contains the
address of the official function descriptor. The linker would allocate the .got entry and
fill in the 22-bit operand by subtracting the value of the GP register for this loadfile from
the address of that .got entry. This relocation table entry is not present in loadfiles.
The linker would instead generate a relocation table entry of type
R_IA_64_FPTR64MSB to describe the .got entry.

R_IA_64_SEGREL64MSB -- Segment-Relative Address

This indicates a value that is an offset from the start of the same segment of the same
loadfile.

This is the relocation type that is used for the fields in the stack unwinding sections of
linkfiles. Actually, the relocation type is not important for this, because the linker will
change the format of these sections.

This (or its 32-bit variation) is also the relocation type that the linker internally uses for
filling in addresses in the DWARF symbol table sections, although they are marked as
R_IA_64_DIRx in linkfiles.

This relocation type does not occur in loadfiles because, by definition, such relocation
sites would never need updating at load time or by the -alf option of the linker.

R_IA_64_SECREL* -- Section-Relative Address

According to the standard, this indicates a value that is an offset from the start of the
same section of the loadfile. The only expected use of this is when one DWARF
section points at another DWARF section.

 If someone wants to use SECREL in the future, to point between different code and
data sections, it won't work as specified. It will put in the distance from the start of the
section containing the reference site, rather than the start of the section containing the
target symbol.

R_IA_64_RELx -- Runtime Rebasing Address

In a DLL, this indicates an address that needs to be updated by the amount that this
DLL is rebased in memory at load time, or an address that needs to be updated by the
amount that the segment containing the address is moved by the -alf option of the
linker. There is no target symbol, so the target symbol index is always 0.
eld Manual—527255-009
A-23

TNS/E Native Object Files How -alf Updates DWARF
R_IA_64_REL64MSB implicitly applies to all the non-zero entries in the initialization
and termination routines created by the linker, whose addresses are indicated by fields
in the .tandem_info section, and to each half of each official function descriptor found
in the .fptr section.

Note that, when this type of relocation occurs, the runtime loader and the -alf option of
the linker are only capable of updating the relocation site for rebasing, not for
calculating its contents from scratch. So, in all the situations mentioned above, the
linker must always fill in the correct values at the relocation sites, even if the linker is
not presetting the output loadfile.

R_IA_64_IPLTMSB -- Local Function Descriptor

This only occurs in loadfiles. When the linker creates a local function descriptor in a
loadfile it puts this relocation table entry into the loadfile to tell the runtime loader about
it. It indicates that the local function descriptor needs to be filled in with the address of
the indicated procedure and the GP value for the loadfile that contains it.

R_IA_64_LTOFF22X and R_IA_64_LDXMOV --
Optimizable 22-Bit GP-Relative .got Section Access

This pair of relocation types applies to the same situation as when the compiler or
assembler might use R_IA_64_LTOFF22, as explained above. The difference is that
the use of R_IA_64_LTOFF22X on that instruction, and the use of R_IA_64_LDXMOV
on other related instructions, gives the linker permission to do an optimization.

Specifically, the R_IA_64_LTOFF22X relocation table entry would be on an instruction
with the format of addl, to compute the address of a .got entry by adding a 22-bit offset
to the GP register. The R_IA_64_LDXMOV relocation table entry would be on every
related instruction that used the address set up by the addl in one register to load the
contents of that .got entry into another register.

If the linker doesn't do this optimization then it treats the R_IA_64_LTOFF22X as
synonymous with R_IA_64_LTOFF22, and ignores all the corresponding
R_IA_64_LDXMOV entries.

How -alf Updates DWARF
The .debug_relocs section is only found in DLL's. Its purpose is to provide information
so that the -alf option of the linker can update the places within DWARF that contain
code and data addresses. The -alf option does this when it rebases a DLL. The
.debug_relocs section is not needed in programs, because the -alf option does not
rebase programs. The .debug_relocs section is not needed in import libraries,
because the -alf option does not work on import libraries.

In the section header for the .debug_relocs section, the type is SHT_PROGBITS, the
sh_addralign field is 8, and the sh_entsize field is 8.

The .debug_relocs section is an array of 64-bit entries, one for each code or data
address found in other DWARF sections. Within the 64-bit entry, the high-order byte
eld Manual—527255-009
A-24

TNS/E Native Object Files How -alf Updates DWARF
contains one of the following two values, which match the values for relocation types
used elsewhere in object files:
#define R_IA_64_REL32MSB0x6c

#define R_IA_64_REL64MSB0x6e

If REL32MSB is present, that means it is a 32-bit address. If REL64MSB is present,
that means it is a 64-bit address.

The remaining 56 bits of the 64-bit entry tell the file offset of that address, from the
beginning of the object file.

The following macros show how to pull apart or put together the two parts of each 64-
bit entry:
#define ELF64_TANDEM_DW_TYPE (i) ((i) >> 56)

#define ELF64_TANDEM_DW_OFFSET (i)((Elf64_Xword)(i) & 0xffffffffffffff)

#define ELF64_TANDEM_DW_INFO (t, o)(((Elf64_Xword)(t) << 56) + o)

There are no rules concerning the ordering of the elements of the .debug_relocs
section.

Additional Notes About Relocation Types
Note 1:

It is possible for the compiler or assembler to use IP-relative addressing for items that it
puts into the same text section and can't be preempted, such as static procedures,
literals, jump tables, etc. Since the linker doesn't rearrange the contents within an
individual text section of a linkfile, the compiler or assembler knows the final IP-relative
offsets to use. These kinds of calculations do not require any relocation table entries.

Note 2:

When there is a relocation table entry of type R_IA_64_FPTRx or
R_IA_64_LTOFF_FPTR22, which are the ones that require the address of an official
function descriptor, and the target procedure exists in the same loadfile, the linker will
also allocate the official function descriptor for that procedure. The linker similarly
allocates such official function descriptors for all exported procedures, because
relocation table entries of these types might exist in other loadfiles, requiring the
address of such an official function descriptor.

Note 3:

Note that there are different relocation types to say that one wants the real address of
something, versus the address of the official function descriptor for a procedure.
However, there is a runtime procedure named dlsym, which can be asked for the
address of a symbol, given only the name of the symbol. After dlsym finds the
symbol's dynamic symbol table entry, it looks at that entry to see if the symbol is code
or data, and based on that it decides to either return the real address of the symbol (if it
is data) or the address of its official function descriptor (if it is a procedure).
eld Manual—527255-009
A-25

TNS/E Native Object Files Finding Information About Procedures and
Subprocedures in Linkfiles
Finding Information About Procedures and Subprocedures in
Linkfiles

The linker obtains information about procedures and subprocedures from the .procinfo
and .procnames sections of linkfiles. These sections tell the linker what all the
procedures and subprocedures are, giving the following information about each one:

• its name

• its location

• its attributes

• how it is nested in other procedures

In addition, the .procinfo and .procnames sections tell the linker about alternate entry
points that have the CALLABLE or KERNEL_CALLABLE attribute.

When creating a linkfile, the linker creates the .procinfo and .procnames sections of
that linkfile from the sections of the same names in its input files. This is mostly done
by concatenation, in the same order as the linker saw those linkfiles, except that the
pointers from the .procinfo section to the .procnames section need the appropriate
updating, and entries for unneeded copies of procedures are omitted. (This ordering is
potentially important. For example, it can affect which procedure is chosen as the main
entry point, when the -allow_multiple_mains option tells the linker that it is okay to have
more than one procedure with the MAIN attribute.)

The DWARF Symbol Table
The DWARF symbol table contains information used by debuggers and by the COBOL
compiler, whereas the .symtab, .dynsym, and .dynsym.gblzd sections contain
information used by the linker and runtime loader.

The DWARF symbol table information in an import library that represents a single DLL
is the same as the DWARF symbol table information that is present in the
corresponding DLL. There is no DWARF symbol table information in the import library
that represents the implicit libraries.

A file may be "stripped", meaning that it doesn't have debugging information in it. This
means that the DWARF symbol table is not present. Note that it is even possible for a
linkfile to be stripped. In other words, even after being stripped, a linkfile can still be
processed by the linker, because the DWARF symbol table does not contain any
information that is required by the linker. An import library can be stripped even if the
corresponding DLL is not stripped.

DWARF Object File Sections
Here is a summary of the purposes of the DWARF sections that the HP NonStop
operating system uses:

.debug_info
eld Manual—527255-009
A-26

TNS/E Native Object Files Archives
This is the main section of DWARF information. It is a tree of nodes, each node
contains various attributes.

.debug_abbrev

This section provides additional information required to decode the information in the
.debug_info section, including information about implementation-defined material.

.debug_line

This section contains information that tells how to map things to source line numbers.

.debug_line_nsk

This has a format similar to .debug_line, but to represent EDIT line numbers rather
than sequential line numbers.

.debug_relocs

This section describes the places in DWARF sections of DLL's that contain code and
data addresses, so that they can be updated by the -alf option of the linker when that
option is used to rebase the DLL.

Archives
An archive is a single file that contains within it copies of other files, called the
"members" of the archive. Archives are created by the tool named ar. An archive may
be used for various purposes, one of which is to be an input for the linker. The linker
uses archives as a source of linkfiles. Archives are not used at load time.

The format described here, used for TNS/E archives differs in various ways from what
was used in the TNS/R implementation.

An archive contains "symbol table" information that tells which linkfile within the
archive, if any, provides a definition for a given symbol. These would be the symbols
defined in that linkfile and visible outside, i.e., their binding is STB_GLOBAL and their
st_scndx field is not SHN_UNDEF in the ELF symbol table.

The first eight bytes of an archive contain the string "!<arch>", followed by a newline
character (ASCII LF). This identifies the file as an archive. After that the archive is a
concatenation of "pieces", each of which contains the following items, which always
begin at file offsets that are multiples of 2 bytes.

an ar_hdr structure

the contents of this piece

The first one or two pieces of the archive may be special. The first special piece is the
archive symbol table, which is present if the archive contains any linkfiles. The other
special piece is the "long member name string space", which is present if any of the
names of the members of the archive are longer than 16 characters. The contents of
the remaining pieces are the members of the archive.
eld Manual—527255-009
A-27

TNS/E Native Object Files Archives
Here is the declaration for the ar_hdr structure:

typedef struct ar_hdr {
char ar_name [16];
char ar_date [12];
char ar_uid [6];
char ar_gid [6];
char ar_mode [8];
char ar_size [10];
char ar_fmag [2];
} ar_hdr;

The size of this structure is 60 bytes.

The ar_size field tells the size of the contents of this piece of the archive, and the
ar_name field tells its name. When the name is less than 16 characters long, the rest
of the field is filled with blanks. The other fields of the ar_hdr are all readable ASCII
character fields.

In the ar_hdr for the symbol table piece, the ar_name is a single slash ("/").

The contents of the symbol table piece are the following (in this order):

a four-byte integer that tells the number of symbols in the symbol table piece
an array of four-byte integers
a string space (see below)

The integers mentioned above are binary integers (big endian).

The string space is a concatenation of strings, telling the names of the symbols in the
symbol table piece. Each name is terminated by a zero byte. If the total size is odd,
an extra zero byte at the end makes it even. These strings are in the same order as
the previous array of four-byte integers. For each name, the corresponding four-byte
integer tells the file offset within the archive for the ar_hdr of the member that defines
that symbol. Symbols are only listed in the symbol table if they are defined
somewhere. A symbol may be defined in more than one member, but the symbol table
only points at one place.

In the ar_hdr for the long member name string space, the ar_name is two slashes ("//").

The long member name string space is a concatenation of strings, telling the names of
the members whose names are longer than 16 bytes. Each name is terminated by a
slash ("/") and a newline character. If the total size is odd, an extra newline character
at the end makes it even.

In the ar_hdr for an archive member, the ar_name tells the name of the file that was
placed into the archive. If the name is longer than 16 bytes then it is stored instead in
the long member name string space and the ar_name field for the member consists of
a slash ("/") followed by an ASCII string for the integer value that is the byte offset of
the member's name in the long member name string space. Leading zeroes are
removed from this string, and it is blank filled on the right.
eld Manual—527255-009
A-28

TNS/E Native Object Files Tools That Work With Object Files
The following is a summary of what is in an archive. Horizontal lines separate pieces
of the archive. This example shows the case when there is a symbol table and a long
member name string space.

!<arch>

ar_hdr for the symbol table
the number of symbols in the symbol table

file offset for the member that defines the first symbol
file offset for the member that defines the second symbol
...

name of the first symbol
name of the second symbol
...

ar_hdr for the long member name string space
the string space of long member names

ar_hdr for the first member
contents of the first member

ar_hdr for the second member
contents of the second member

...

Tools That Work With Object Files
Here is a list of some of the tools (i.e., customer products) that read and/or write object
files (or archives):

• Compilers and the assembler create object files.

• The linker (eld) reads and writes object files, and reads archives.

• enoft reads object files to display their contents.

• VPROC can read object files to print out version procedures (i.e., a very
special case of what NOFT does).

• The HP NonStop operating system operating system, including the runtime
loader (rld), reads object files to bring them into memory.
eld Manual—527255-009
A-29

TNS/E Native Object Files Tools That Work With Object Files
• Debuggers read object files as well as their memory images, and can modify
the memory images.

• The archive creation tool (ar) reads object files, and reads and writes archives.

• SQLCOMP can read and write object files in order to create or update their
object RTDU’s.
eld Manual—527255-009
A-30

Glossary
Archive file. This file contains copies of other files, called the "members" of the archive. An

archive may be used for various purposes, one of which is to be an input for the linker.
The linker uses archives as a source of linkfiles. Archives are not used at load time.

Big endian. This term describes a method of storing data so that the most significant byte
appears in a lower-numbered location in memory. As with TNS/R, TNS/E data
structure is big endian. Code on the TNS/E platform is always little endian.

Bundle. This term describes a three-instruction-wide 128-bit word used by Intel to facilitate
parallel processing of code instructions.

Code file. A file comprising instructions that can be executed or emulated by a computer.
Native code files can be either linkable (linkfiles) or loadable (loadfiles). Object files
and binaries are other names for code files.

Client (of a loadable library). A loadfile that uses functions or data from a library.

Default. The choice made when the user does not direct otherwise.

Direct reference (of a loadfile). A library listed in a loadfile’s libList.

DLL file. This is a PIC library loadfile with symbols that can be referenced by another
loadfile to resolve symbolic references at link time and/or runtime. It is therefore a
loadfile that offers functions or data for use by other loadfiles. For TNS/E, DLLs replace
SRLs commonly associated with the TNS/R architecture. The object file linker eld
generates DLLs for TNS/E (as does ld for the TNS/R DLLs). In UNIX, this type of file
is known as a shared object file or dynamic shared object (DSO).

Dynamic loading. Loading and opening DLLs under programmatic control after the
program is loaded and execution has begun.

EDIT Line Number. The conventional source line numbering convention is where the
source lines are numbered sequentially using integers starting at 1. The Guardian
EDIT text file (file code "101") uses a source line number convention where the lines
are assigned numbers that have three places after the decimal point, and can be
sparse within all such possible numbers.

ELF. This term stands for "executable and link format" and describes an extensible file
structure that can deal with various target platforms. Like TNS/R, TNS/E uses the ELF
file structure with Tandem extensions. However TNS/E is ELF all-inclusive whereas
TNS/R uses both ELF and COFF file structures. All TNS/E compiler/assemblers,
linkers, and loaders generate object files with this file structure.

Explicit library. Any library that is named in the libList of any client loadifle or is a user
library of a client program.
eld Manual—527255-009
Glossary-1

Glossary Export.
Export. To provide a symbol definition for use by other loadfiles. A loadfile offers for export
a symbol definition for use by other loadfiles that need a data item or function
having that symbolic name.

Gateway. For every callable function there is a gateway; all calls to the function jump first to
the gateway, which effects the transition to privileged state if the caller is not
already privileged. There are two types of gateway pages, those that promote to
kernel and those that promote to executive level.

Gblzd. globalized [symbol]

Globalized import. The import-control characteristic of a loadfile that allows it to import
symbols from any loadfile in the loadList of the program with which it is loaded.
When those loadfiles offer multiple definitions of the same symbol, those loadfiles
are searched in loadList sequence and the first definition found takes precedence.
See also searchList.

Globalized symbol. An exported symbol generated by the C++ compiler that may have
multiple definitions, of which the linker and loader must assure only one is used
throughout the process.

Hybrid file. This term describes a 'pseudo-DLL' that contains non-PIC text to allow a PIC
process to call (as inputs) when building or relinking a program or DLL file. Hybrids do
not exist in TNS/E.

Implicit library. A library supplied by HP that is available in the read-only and execute-only
globally mapped address space shared by all processes without being specified to the
linker or loader. The public libraries on TNS/E that replace System Code, System
Library, and millicode. These libraries are called implicit because every loadfile is
implicitly a user of them. Contrast with public DLLs, which are explicit because a
loadfile explicitly asks to use a public DLL, although it does not specify where to find
the public DLL. See also System library. and Public Libraries.

Implicit library import library (imp-imp). An import library that can be used by the Linker
as a proxy for a set of implicit libraries. See Import library and Zimpimp file.

Import. To refer to a symbol definition from another loadfile. A loadfile imports a symbol
definition when it needs a data item or function having that symbolic name.

Import control. The characteristic of a loadfile that determines from which other loadfiles it
can import symbol definitions. The programmer sets a loadfile’s import control at link
time. That import control can be localized, globalized, or semiglobalized. A loadfile’s
import control governs the way the linker and loader construct that loadfile’s searchList
and affects the search only for symbols required by that loadfile.

Import library. This term describes one type of a loadfile whereby only enough parts of the
file are contained therein to allow the linker to resolve references, but not enough to
expose its source code; i.e., exports the symbols of the DLL . It is a file that can be
used by the Linker as a proxy for one or more DLLs, but that cannot actually be loaded
eld Manual—527255-009
Glossary-2

Glossary Indirect reference (of a loadfile).
and run. It is useful in cross-linking. See Implicit library import library (imp-imp) and
Zimpimp file.

Indirect reference (of a loadfile). A library in a loadfile’s searchList that is not named in its
libList.

Instance. A particular case of a class of items, objects, or events. For example, a process is
defined as one instance of the execution of a program; multiple processes might
be executing the same program simultaneously. Also, instance data refers to global
data of a program or library; each process has its own instance of this data.

Library. Generically, a collection of functions and data offered for use by clients. Libraries
can exist as source files, linkable object files, archives (aggregated of linkfiles), and
loadable object files. See also Loadable Library..

LibList. The list of libraries to be loaded along with a loadfile. However, it may not be the
complete list of loadfiles that must be loaded; see loadList definition below.When
linking the loadfile, the linker constructs the libList from the names of libraries
specified in the linker's command stream; it stores the libList within the loadfile.

Libname. An attribute of a program loadfile, which can be set by the linker, specifying the
name of a user library to be loaded with this program.

Linker. A utility whose basic function is to process one or more linkfiles to create a loadfile.

Linker platform. The system on which the linker executes. Also called host or host
platform.

LIC. Library Import Characterization: A data string that characterizes the information used
by a linker or loader to bind the global symbols of a particular loadfile. If the same
loadfile is bound on two occasions, and its LIC has not changed, the two bindings are
the same. Thus it is possible to reuse a set of bindings if it has the same LIC as that
determined for this loadlfile in the presence of the other loadfiles with which it is being
loaded.

Linkfile. This term describes the output of the compiler and input to the linker. This object
file has accompanying tables required to build it into a PIC loadfile and can be all or
part of a loadfile. The code of a linkfile is not executable until linked. In the default
mode, the linker process one or more linkfiles to produce a loadfile. This term is
synonymous with the term "relinkable" in TNS/R .

Loader. A programming utility that transfers a program into memory so it can run. The
mechanism that brings loadfiles into memory for execution, maps them into virtual
address space, and resolves symbol references among them. Synonyms include
run-time loader and run-time linker. The loader for TNS and for TNS/R native programs
and libraries that are not position-independent code (PIC) is part of the operating
system. For PIC loadfiles and all TNS/E native programs, the loader called rld works
with the operating system to load programs and libraries.
eld Manual—527255-009
Glossary-3

Glossary Loadfile
Loadfile. hThis term describes the input to the runtime loader and default output of the
linker. This object file may contain name references to symbols that exist in other
loadfiles in the same process. Such references are typically resolved when the
loadfiles are brought into memory by the runtime loader rld . This term is synonymous
with the term "executable" file. An executable object code file is one that is ready for
loading into memory and executing on the computer. Loadfiles are further classified as
executable programs (containing a main routine at which to begin execution of that
program) or executable libraries (supplying routines or variables to multiple programs
or separately loaded libraries). A TNS code file might be both a loadfile and a linkfile.
Native code files are never both. Contrast with Linkfile.

LoadList. A list of all the libraries that must be loaded for a given loadfile to execute. A
loadfile’s loadList includes all the libraries in the given loadfile’s libList plus all the
libraries in those loadfiles’ libLists, and so on. It does not include the implicit libraries.
The loadList order is the sequence in which these loadfiles are to be loaded when they
are not already loaded by a previous operation. The loadList of the program includes
all the loadfiles present in the process, in the order they were loaded.

Loadable Library. A loadfile that offers functions and data to other loadfiles. In this
document, DLLs are such libraries. A library cannot be invoked externally, for
example, by a RUN command; instead, it is invoked by calls or data references
from client loadfiles. In TNS/E, functions and data can also be obtained from the
system library and millicode.

Loader Library. A public library for loading PIC programs and libraries. It works in close
cooperation with the operating system. It is called "rld" when loading a program
and its libraries at process creation time. It also exports a set of functions for
dynamic loading.

Localized. The import-control characteristic of a loadfile that allows it to import symbols
only from the loadfile itself followed by the libraries in its libList, libraries that those
libraries re-export, and from these, any successions of re-exported libraries.

MCB. The Master Control Block. This contains global information such as the product
version number, valid file types, language dialects and floating point types that may be
used.

Millicode library. Low-level library routines. Although separate from it, the millicode can be
considered an adjunct of the system library.

Presetting. This is the process of resolving references to DLLs at linktime.

PIC. This term stands for 'position independent code' and describes a nomenclature
associated with DLLs whereby PIC text contains references do not have to be resolved
at link time. Executable code that need not be modified to run at different virtual
addresses. External reference addresses appear only in a data area that can be
modified by the loader; they do not appear in PIC code. PIC code is even more
position independent than one might imagine from the term; it can be simultaneously
eld Manual—527255-009
Glossary-4

Glossary Program
mapped to different addresses for different processes in the same CPU. PIC
introduces several new elements into ELF files, some of which are adapted from the
Intel LP64 ELF structure. TNS/E supports only PIC files. TNS/R supports PIC and non-
PIC file types.

Program. This term describes one type of loadfile that is capable of being run on the
system. This is the main program and there can only be one program associated with a
process.

Public Libraries. A set of libraries (offering widely-used functions) that are managed as part
of the system, available to all users of the system, and in large part supplied by HP,
although it is possible for customers and third parties to provide DLLs to be added to
the public DLLs. A loadfile must explicitly reference a public library in order to access it.

Preempt. When the linker’s binding of a symbolic reference to a symbol defined in the
same DLL is rebound by the loader to a definition in another loadfile.

Process. An instance of the execution of a program.

Re-exported library. A library whose symbols are made available by another DLL to any
localized client of that DLL. Re-export is an attribute of the DLL's libList entry for
that library. This attribute is specified by the DLL's programmer and recorded by
the linker as a DLL is built. It affects only localized clients of the DLL. This feature
allows a symbol to be moved from one DLL to another without relinking clients of
the original DLL.

Re-exporting is transitive; i.e., if A re-exports B and B re-exports C, then A re-
exports C. Thus, re-exported libraries can re-export other libraries to form a
succession of re-exported libraries of arbitrary length.

Region. The Itanium® architecture divides the address space into eight regions, indexed
by the high-order three bits of the 64-bit address. TNS/E initially implements just two,
regions 0 and 7: region 0 is mapped per-process; region 7 is shared by all processes.
Sign extension places “negative” 32-bit addresses in region 7. Note that the high bit of
the 32-bit address on TNS/E determines global addressing, and privilege is an attribute
of the page; the MIPS architecture on TNS/R is just the opposite.

Relocation. the process of assigning load addresses to the different parts of a program,
adjusting the code and data in the program to reflect the assigned addresses.

SearchList. For each loadfile, a list that specifies which libraries to examine, and in which
order, to locate symbol definitions needed by that loadfile. The linker and loader
construct the loadfile's searchList in accordance with that loadfile's import control,
which is set at link time. The system library and millicode are appended to every
searchList. A loadfile's searchList is unaffected by the import control of any other
loadfile.

Sections and Segments. The TNS/E object file is organized into contiguous items called
sections. There is an array of ELF section headers that contains the type and name of
eld Manual—527255-009
Glossary-5

Glossary Strip file
each of these section items. A section is not required to be present if it would not
contain any useful information for a given object file. In loadfiles, some of the sections
are further organized in segments that get loaded into virtual memory.

Strip file. These are files do not have debugging information; i.e., DWARF symbol table, in
it. Stripping can be done on any object file. It is still possible for the linker to process a
linkfile that has been stripped because the DWARF symbol table does not contain any
essential information to it. An import library can be stripped even if the corresponding
DLL is not stripped.

Symbol Resolution. When a program is built from multiple subprograms, the references
from one subprogram to another are made using symbols. For example a main
program might use a square root routine called sqrt and the math library defines
sqrt. A linker resolves the symbol by noting the location assigned to sqrt in the
math library and patches the caller’s object code so the call instruction refers to that
location.

Semi-globalized. An import control characteristic of a loadfile that allows the loadfile first to
obtain symbols from its own definitions and then to obtain others as for a
globalized loadfile. Thus, a semi-globalized loadfile cannot have its symbol
references to itself preempted. See also SearchList..

Symbol. The symbolic name of a function or data item. Symbols are defined in loadfiles
and referenced in the same or other loadfiles.

Symbol definition. a function or data item whose name is the symbol.

Symbol value. the address of a definition of that symbol.

Symbolic reference. An occurrence in code or data of a symbol that is or must be bound
to a definition of that symbol. The symbolic reference is bound (resolved and made
usable) by assigning to it the value of a definition of that symbol.

System library. TNS/E library routines required to access TNS/E operating system
functions. (Similar for TNS/R.) The loader automatically searches the system
library for definitions that satisfy a loadfile’s unresolved symbols after searching all
the loadfiles in the loadfile’s searchList.

TNS/E. The hardware platform based on the Itanium™ architecture and the HP NonStop
operating system and software that are specific to that platform. All code is PIC.

TNS/R. The hardware platform based on the MIPS™ architecture and the HP NonStop
operating system and software that are specific to that platform. Code may be PIC
or non-PIC.

TLB. Translation Lookaside Buffer: a cache of page table entries, where each entry
designates the physical memory page corresponding to a range of virtual addresses.
Information within the entry can make the translation unique to the accessing process.
Unless the appropriate TLB entry is present, the page cannot be accessed; typically
eld Manual—527255-009
Glossary-6

Glossary TNS/E object file format
the processor generates a fault to allow software to find and load the missing entry
from a memory-management structure.

TNS/E object file format. This object file format is an amalgam of Intel IA-64 code
architecture and the HP NonStop operating system extensions.

TNS/E object files are categorized into three types of files: linkfiles, loadfiles, and
import libraries. The following are key differences between TNS/R and TNS/E
platforms:

User library. A loadable library; primarily a legacy feature for NonStop systems. For PIC
programs, a user library is a DLL treated as if it were the first library in the
program's libList and therefore is searched first for symbols required by the
program. However, a user library does not appear in the program's libList; instead,
its name is recorded in the program's loadfile as the libname attribute. A program
can be associated with at most one user library; the association can be specified
using the linker at link time or in a later change command, or at run time using the
process creation interfaces. (The /LIB.../ option to the RUN command in TACL
uses these interfaces.)

VHPT. Virtual Hash Page Table: an Itanium® architecture feature that can supply missing
TLB entries without generating faults.

VPROC. The version procedure number used to identify which version of the product you
are using.

Zimpimp file. The internal name of the imp-imp file. Also called the "import library that
represents the implicit DLL's", it is the file that tells which symbols are available in the
set of implicit DLL's, which collectively correspond to what was previously called the
system library. See also Implicit library import library (imp-imp).

Platform TNS/R TNS/E

Processor MIPS RISC Itanium

Architecture SGI Intel IA-64

Programming
model

32-bit (ILP32) 32-bit (ILP32)

and in future:
64-bit LP64

Object type ELF and COFF ELF exclusive

Debugging
symbols

Third-Eye DWARF2

Compiler
Backend

SGI w/ HP
extensions

Intel w/ HP
extensions

Linker, PIC ld eld
eld Manual—527255-009
Glossary-7

Glossary Zreg file
Zreg file. This is the internal name of the public DLL registry file, which lists the names of
all the public DLL's.
eld Manual—527255-009
Glossary-8

Index
A
Adjust LoadFile 4-1
adjusting loadfiles 4-1
Archive file Glossary-1
Archives, use of 2-16

B
Big endian Glossary-1
Binding references 3-1
Bundle Glossary-1

C
Client (of a loadable library) Glossary-1
Code file Glossary-1
common data 3-22

D
data section 3-21
Default Glossary-1
Direct reference (of a loadfile) Glossary-1
DLL file Glossary-1
dll registry 2-8
DT_RPATH 4-18
DT_TANDEM_RPATH_FIRST 4-18
DWARF symbol tables 4-14
Dynamic loading Glossary-1

E
EDIT Line Number Glossary-1
eld Functionality for 64-Bit 4-12
eld introduction 1-1
ELF Glossary-1
ELF symbol tables 3-16
Enterprise Toolkit—NonStop Edition

See ETK
Example of Use 1-9
Explicit library Glossary-1

Export Glossary-2

F
File code 700 1-3
File code 800 1-3
Filenames 2-2
Finally, on Guardian or OSS 2-17
Finding archives and DLLs 2-17
Finding public DLLs 2-18

G
Gateway Glossary-2
gateway segment 2-6
Gblzd Glossary-2
Globalized import Glossary-2
Globalized symbol Glossary-2

H
host platforms 2-1
HP Enterprise Toolkit—NonStop Edition

See ETK
Hybrid file Glossary-2

I
Implicit library Glossary-2
Implicit library import library (imp-
imp) Glossary-2
Import Glossary-2
Import control Glossary-2
import control 3-3
Import Libraries 3-11
Import library Glossary-2
Import Library definition 1-4
In other words 2-18
Indirect reference (of a loadfile) Glossary-3
input object files 2-12
Instance Glossary-3
eld Manual—527255-009
Index-1

Index L
L
LibList Glossary-3
liblist 2-12
Libname Glossary-3
Library Glossary-3
LIC Glossary-3
LIC creation 3-7
LIC - Library Import Characterisation 3-7
Linker Glossary-3
linker command stream 1-5
Linker platform Glossary-3
Linkfile Glossary-3
Linkfile definition 1-4
Loadable Library Glossary-4
Loader Glossary-3
Loader Library Glossary-4
Loadfile Glossary-4
LoadList Glossary-4
Localized Glossary-4

M
main entry point 4-17
MAP DEFINES 2-3
master control block 4-15
MCB. The Master Control
Block. Glossary-4
Microsoft Visual Studio .NET 1-3
millicode Glossary-4
Millicode library Glossary-4
millicode library 3-22
multiple definitions 3-18
Multiply-defined symbols 3-17

N
non-PIC libraries 3-22

O
obey files 1-7
Object Files, basic properties A-1

On OSS 2-17
Options and Tokens definition 1-5
output object files 2-4
Output Object files creation 2-5

P
PIC Glossary-4
Position-independent code (PIC)

in general 1-5
Preempt Glossary-5
Presetting Glossary-4
presetting loadfiles 3-5
Process Glossary-5
Program Glossary-5
Public DLL Registry 3-23
Public Libraries Glossary-5
Public Libraries and DLLs 3-22
public library 3-22

R
Region Glossary-5
Relocation Glossary-5
relocation tables 3-2
relocation types 3-2
Re-exported library Glossary-5
runtime

libraries 3-22

S
SearchList Glossary-5
Sections and Segments Glossary-5
segment 2-6
Semi-globalized Glossary-6
source RTDUs 4-19
Strip file Glossary-6
stripping 4-14
Symbol Glossary-6
Symbol definition Glossary-6
Symbol Resolution Glossary-6
Symbol value Glossary-6
eld Manual—527255-009
Index-2

Index T
Symbolic reference Glossary-6
System library Glossary-6
system library 3-22, Glossary-4

T
TACL 3-10
target platforms 2-2
text section 3-21
The linker checks 2-18
The public-DLL registry file (ZREG) 3-23
the search path for -alf 4-3
The ZREG file 3-22
There is also an exception 2-18
TLB Glossary-6
TNS/E Glossary-6
TNS/E object file format Glossary-7
TNS/R Glossary-6

U
Unresolved references 3-8
unresolved references 3-8
unwind function 4-15
unwind information 4-15
User library Glossary-7
user library 3-10
user library definition 2-4

V
VHPT Glossary-7
Visual Studio .NET 1-3
VPROC Glossary-7

W
When eld is creating a new object file 2-17

Z
Zimpimp file Glossary-7
Zreg file Glossary-8

Special Characters
-alf option looks for DLLs 4-3
-b globalized 3-3
-b localized 3-3
-b semi_globalized 3-3
-e option 4-17
-export_all 3-20
-rename 4-13
-set floattype 4-16
-set libname 3-10
-show_multiple_defs 3-19
-strip 4-14
-unres_symbols 3-8
.dynamic section 4-18
.lic section 3-7
.procinfo A-26
.procnames A-26
eld Manual—527255-009
Index-3

	eld Manual
	Legal Notices
	Contents
	What’s New in This Manual
	Manual Information
	New and Changed Information
	Changes to the H06.24/J06.13 manual
	Changes to the 527255-008 manual
	Changes to the 527255-007 manual
	Changes to the 527255-005 Manual

	About This Manual
	Notation Conventions
	1 Introduction to eld
	eld Overview
	Example Command Line
	eld Functionality
	Linker Version Information

	Native Object Files
	The Linker Command Stream
	Obey Files and the Use of Standard Input

	Example of Use

	2 eld Input and Output
	Host Platforms
	Target Platforms
	Filenames and The File Identifier
	Output Object Files
	The Creation of Output Object Files
	Creating Segments of the Output Loadfile
	Using a DLL Registry
	Input Object Files
	Using Archives

	3 Binding of References
	Overview
	Presetting Loadfiles
	To Preset or Not to Preset, and Creation of the LIC
	Handling Unresolved References
	Using User Libraries
	Creating Import Libraries
	Creating an Import Library at the Same Time That a DLL is Created
	Creating Import Libraries From Existing DLLs

	Ignoring Optional Libraries
	Merging Symbols Found in Input Linkfiles
	Accepting Multiply-Defined Symbols
	Rules For Data Items
	Rules for Procedures

	Using the -cross_dll_cleanup option
	Specifying Which Symbols to Export, and Creating the Export Digest
	Processing of Code and Data Sections
	Concatenating Code and Data Sections Found in the Input Linkfiles

	Public Libraries and DLLs
	The Public Library Registry
	Finding and Reading The Public DLL Registry (ZREG) File

	4 Other eld Processing
	Adjusting Loadfiles: The -alf Option
	Additional rules about -alf
	The -set and -change Options
	eld Functionality for 64-Bit
	Checking the C++ Language Dialect
	Renaming Symbols
	Creating Linker-Defined Symbols
	Updating Or Stripping DWARF Symbol Table Information
	Modifying the Data Sections that Contain Stack Unwinding Information
	Creating the MCB
	Processing of Floating Point Versions and Data Models
	Specification of the Main Entry Point
	Specifying Runtime Search Path Information for DLLs
	Merging Source RTDUs

	5 Summary of Linker Options
	6 Output Listings and Error Handling
	General Information
	Error Messages
	Glossary of Errors

	A TNS/E Native Object Files
	The Object File Format
	Basic Properties of Object Files
	Types of TNS/E Object Files
	How to Distinguish the Different Types of Object Files
	Summary of the Contents of an Object File

	Code and Data Sections
	User Code
	User Data
	The MCB (Master Control Block)
	Predefined Symbols

	Relocation Tables
	How -alf Updates DWARF
	Finding Information About Procedures and Subprocedures in Linkfiles

	The DWARF Symbol Table
	Archives
	Tools That Work With Object Files

	Glossary
	Index

