
SPI Programming
Manual
Abstract

This manual describes the operating system procedures that programmers call to
process the Subsystem Programmatic Interface (SPI) messages. It presents
conventions that regulate message content and interpretation, provides programming
guidelines and examples, and describes the common ZSPI data definitions.

Product Version

SPI H02

Supported Release Version Updates (RVUs)

This publication supports J01 and all subsequent J-series RVUs and H02 and all
subsequent H-series RVUs until otherwise indicated by its replacement publication.

Part Number Published

427506-007 February 2012

Document History
Part Number Product Version Published

427506-003 SPI D40 and G05 September 2003

427506-004 SPI D40 and G05 December 2003

427506-005 SPI G05 August 2004

427506-006 SPI G05 and H01 February 2006

427506-007 SPI H02 February 2012

Legal Notices
 Copyright 2012 Hewlett-Packard Development Company L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S.
Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java® is a U.S. trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks and IT DialTone and The
Open Group are trademarks of The Open Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the
Open Software Foundation, Inc.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED
HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in
connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. This documentation and the software to
which it relates are derived in part from materials supplied by the following:

© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.
© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc.
© 1987, 1988, 1989, 1990, 1991 Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991,
1992 International Business Machines Corporation. © 1988, 1989 Massachusetts Institute of
Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989,
1990, 1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986,
1989, 1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.

This software and documentation are based in part on the Fourth Berkeley Software Distribution
under license from The Regents of the University of California. OSF acknowledges the following
individuals and institutions for their role in its development: Kenneth C.R.C. Arnold,
Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980,
1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents of the University of California.

Printed in the US

SPI Programming Manual
Index Figures Tables Examples Glossary
What’s New in This Manual xiii

Manual Information xiii

New and Changed Information xiii

About This Manual xv

Audience xv

Related Manuals xvi

Notation Conventions xvi

1. Introduction to SPI
The Components of SPI 1-1

A Programmatic Interface 1-1

SPI 1-1

SPI and EMS 1-2

Subsystem Objects 1-2

Management Applications 1-2

Subsystem Manager 1-3

SPI Message Protocol 1-5

SPI Message Format 1-6

Tokens 1-7

SPI Procedures 1-7

SPI Data Definitions 1-8

SPI and EMS 1-8

SPI Debugging 1-8

A Basic Interface and Extensions 1-9

The Environment for D-Series RVUs 1-10

Implications for Management Applications 1-10

Converting Management Applications 1-12

2. SPI Concepts and Protocol
SPI Message Protocol 2-1

Requester Initializes a Buffer 2-1

Requester Composes a Command Message 2-1
 Hewlett-Packard Company—427506-007
i

Contents 2. SPI Concepts and Protocol
Requester Sends a Command Message 2-2

Server Validates the Received Message 2-2

Server Applies the Command to Objects 2-2

Server Composes a Response Message 2-2

Server Returns the Response Message 2-3

Requester Examines the Response 2-3

Tokens 2-3

Token Data Type 2-4

Token Length 2-4

Token Type 2-5

Token Number 2-5

SSID 2-5

Token Code 2-5

Token Names 2-6

Types of Tokens 2-7

Simple Tokens 2-7

Extensible Structured Tokens 2-7

Zero-Length Tokens 2-9

Header Tokens 2-9

Data Definitions 2-10

Naming Conventions 2-11

Examples of Definition Names 2-12

Definition Files Supplied by HP 2-13

SPI Message Buffer 2-13

Message Header 2-14

Message Body 2-15

Buffer Length 2-15

Used Length 2-16

Buffer Pointers 2-16

Buffer Checksum 2-18

Lists 2-19

Data Lists 2-19

Error Lists 2-19

Segment Lists 2-20

Generic Lists 2-20

Pointer Manipulation and Lists 2-20

Pointers, Lists, and ZSPI-TKN-NEXTTOKEN 2-23

Pointers, Lists, and ZSPI-TKN-NEXTCODE 2-25

Commands 2-27
SPI Programming Manual—427506-007
ii

Contents 3. The SPI Procedures
GETVERSION Command 2-27

Responses 2-28

Types of Responses 2-28

Simple Responses 2-29

Multirecord Responses 2-30

Continued Responses 2-34

Segmented Responses 2-38

Empty Responses 2-41

Object Identification in Responses 2-43

Return Code 2-43

Suppressing Response Records 2-43

Subsystem IDs (SSIDs) 2-44

SSID Scope 2-46

Errors and Warnings 2-47

Error Lists 2-48

Pass-Through Errors 2-49

Continuing Despite Errors 2-50

Recovering From an Error on an Object in a Set 2-51

Sample Error Responses 2-51

3. The SPI Procedures
Overview of the SPI Procedures 3-1

Special Operations 3-2

Manipulating Header Tokens 3-2

Procedure Status 3-2

Using the SPI Procedures 3-3

SSINIT Procedure 3-4

General Syntax 3-4

SSNULL Procedure 3-7

General Syntax 3-7

Considerations 3-7

SSPUT and SSPUTTKN Procedures 3-8

General Syntax 3-8

Special Operations With SSPUT and SSPUTTKN 3-9

Considerations 3-12

SSGET and SSGETTKN Procedures 3-13

General Syntax 3-13

Special Operations With SSGET and SSGETTKN 3-15

Considerations 3-23
SPI Programming Manual—427506-007
iii

Contents 4. ZSPI Data Definitions
SSMOVE and SSMOVETKN Procedures 3-25

General Syntax 3-25

Considerations 3-26

Example: Moving Buffer Tokens Using SSMOVETKN 3-27

SSIDTOTEXT Procedure 3-35

General Syntax 3-35

Considerations 3-36

Examples 3-37

TEXTTOSSID Procedure 3-37

General Syntax 3-37

Considerations 3-38

Examples 3-39

4. ZSPI Data Definitions
Fundamental Data Structures 4-1

Token Data Types 4-12

Token Types 4-18

Token Numbers 4-28

Token Codes 4-31

Token Length 4-45

Command Numbers 4-45

Object-Type Numbers 4-45

Error Numbers 4-46

Subsystem Numbers 4-47

Miscellaneous Values 4-47

5. General SPI Programming Guidelines
General Guidelines for All SPI Programs 5-1

Retrieving Tokens by Name 5-1

Scanning a Buffer Sequentially 5-2

Positioning the Buffer Pointers 5-4

Working With Lists 5-5

Checking for Null Values 5-6

Deleting Tokens From a Buffer 5-6

Resetting the Buffer 5-7

Working With SSIDs 5-7

Writing High-Level Procedures 5-8

Guidelines for SPI Requesters 5-8

Starting the Management Process 5-9

Opening the Management Process 5-10
SPI Programming Manual—427506-007
iv

Contents 5. General SPI Programming Guidelines
Preparing the Command Buffer 5-11

Sending the Command 5-12

Receiving the Response 5-12

Taking Action Based on the Response 5-14

Canceling Commands 5-14

Closing the Management Process 5-14

Stopping the Management Process 5-15

Maintaining Compatibility 5-15

Summary of Requester Role 5-15

Guidelines for SPI Servers 5-16

Recommending a Buffer Size 5-16

Defining Simple Tokens 5-17

Defining Extensible Structured Tokens 5-19

Coding Subsystem Definitions 5-23

Using the SPI Standard DDL Definitions 5-24

Suggestions on Data Representation 5-24

Dividing Your Definition File Into Sections 5-26

Version Compatibility 5-27

Defining Objects 5-28

Subsystem ID 5-29

Checking the Command Message for Validity 5-31

Checking Whether Your Subsystem Can Process the Command 5-31

Checking Tokens in the Command 5-32

Checking for Command Cancellation 5-37

Using SSPUT to Place Lists in the Buffer 5-38

Defining Commands 5-39

GETVERSION Command 5-39

Single and Multiple Response Records per Response 5-40

Defining the Context Token 5-40

Context Sensitivity 5-43

Determining How Many Response Records Fit in a Buffer 5-43

Consistency Between Response Records in Different Replies 5-45

Checking the Context Token 5-46

Reporting Errors 5-46

Control of Types of Response Records 5-47

Continuing Despite Errors 5-47

Reporting Errors From the SPI Procedures 5-47

Pass-Through Error Lists 5-51

Summary of Server Role 5-54
SPI Programming Manual—427506-007
v

Contents 6. SPI Programming in C
6. SPI Programming in C
Definition Names in C 6-1

C Definition Files 6-1

Declarations Needed in C Programs 6-2

SPI Buffer 6-2

Subsystem ID 6-2

Passing Tokens by Value 6-3

C Types 6-3

Interprocess Communication 6-3

Writing a Server in C 6-3

SPI Procedure Syntax in C 6-4

SSINIT 6-4

SSNULL 6-4

SSPUT and SSPUTTKN 6-5

SSGET and SSGETTKN 6-5

SSMOVE and SSMOVETKN 6-6

Examples 6-6

7. SPI Programming in COBOL
Definition Names in COBOL 7-1

COBOL Definition Files 7-1

Declarations Needed in COBOL Programs 7-2

SPI Buffer 7-2

Interpreting Boolean Values 7-2

Interprocess Communication 7-3

Selecting the External File 7-3

Starting the Server 7-3

Communicating With the Server 7-4

Writing a Server in COBOL 7-4

SPI Procedure Syntax in COBOL 7-4

SSINIT 7-5

SSNULL 7-5

SSPUT 7-5

SSPUTTKN 7-5

SSGET 7-6

SSGETTKN 7-6

SSMOVE 7-6

SSMOVETKN 7-6

Examples 7-6
SPI Programming Manual—427506-007
vi

Contents 8. SPI Programming in TACL
8. SPI Programming in TACL
Definition Names in TACL 8-1

Limitations of TACL for SPI Programming 8-1

TACL Definition Files 8-2

Declarations and Data Representations in TACL 8-2

SPI Buffer 8-3

Subsystem ID 8-3

Token Codes 8-4

Token Maps 8-4

Token Values 8-5

Identifying Null Values 8-7

Setting Reset Values 8-8

Syntax of the TACL Built-Ins 8-8

#SSINIT 8-8

#SSNULL 8-10

#SSPUT 8-11

#SSPUTV 8-16

#SSGET 8-19

#SSGETV 8-24

#SSMOVE 8-27

Interprocess Communication 8-30

Example: Printing or Displaying the Status Structure of the Subsystem Control Point
(SCP) 8-30

9. SPI Programming in TAL
Definition Names in TAL 9-1

TAL Definition Files 9-1

Declarations Needed in TAL Programs 9-1

SPI Buffer 9-1

Subsystem ID 9-2

Defining Token Maps 9-2

Interprocess Communication 9-3

SPI Procedure Syntax in TAL 9-3

Passing Token Parameters by Value or by Reference 9-3

SSINIT 9-4

SSNULL 9-4

SSPUT and SSPUTTKN 9-4

SSGET and SSGETTKN 9-4

SSMOVE and SSMOVETKN 9-5
SPI Programming Manual—427506-007
vii

Contents A. Errors
Examples 9-5

A. Errors
0: ZSPI-ERR-OK A-3

–1: ZSPI-ERR-INVBUF A-3

–2: ZSPI-ERR-ILLPARM A-4

–3: ZSPI-ERR-MISPARM A-4

–4: ZSPI-ERR-BADADDR A-5

–5: ZSPI-ERR-NOSPACE A-5

–6: ZSPI-ERR-XSUMERR A-6

–7: ZSPI-ERR-INTERR A-6

–8: ZSPI-ERR-MISTKN A-6

–9: ZSPI-ERR-ILLTKN A-7

–10: ZSPI-ERR-BADSSID A-7

–11: ZSPI-ERR-NOTIMP A-7

–12: ZSPI-ERR-NOSTACK A-8

–13 Through –37: General SPI Errors A-8

B. Summary of DDL for SPI
The Role of DDL in SPI B-1

General Language Rules for DDL B-2

DEFINITION (DEF) Statement B-2

TYPE Clause B-3

PICTURE (PIC) Clause B-4

OCCURS Clause B-4

REDEFINES Clause B-4

FILLER Clause B-5

SPI-NULL Clause B-5

TACL Clause B-5

SSID Clause B-5

HEADING Clause B-6

DISPLAY Clause B-6

Constants B-6

Type ENUM DEFs B-6

Token Types, Token Codes, and Token Maps B-6

DDL Data Translation B-7

C. SPI Internal Structures
SPI Buffer Format C-1

Standard Part of Header C-2
SPI Programming Manual—427506-007
viii

Contents D. NonStop Kernel Subsystem Numbers and
Abbreviations
Specialized Part of Header C-3

Context Part of Header C-4

Token Structure C-5

Token Code C-5

Single-Occurrence Tokens C-6

Multiple-Occurrence Tokens C-6

Token-Map Structure C-7

Token-Map Example C-8

List Structure C-10

D. NonStop Kernel Subsystem Numbers and Abbreviations

E. SPI Programming Examples
Compiling the Example Programs E-3

Compiling the TAL Programs E-3

Compiling the C Programs E-3

Running the Example Programs E-3

Running the TAL Programs E-3

Running the C Programs E-4

A Note on Program Output E-4

Source File Examples E-4

Example E-1: Basic Buffer Manipulations in TAL E-4

Example E-2: Basic Buffer Manipulations in C E-7

Example E-3: Working With Lists in TAL E-9

Example E-4: Working With Lists in C E-12

Example E-5: Displaying SPI Buffer Contents With TAL E-15

Example E-6: Displaying SPI Buffer Contents With C E-18

Example E-7: Special SSGET Operation in TAL E-21

Example E-8: Special SSGET Operation in C E-24

Example E-9: A Simple SPI Requester in TAL E-27

Example E-10: A Simple SPI Requester in C E-36

Example E-11: A Simple SPI Server in TAL E-44

Example E-12: A Simple SPI Server in C E-55

Example E-13: Common Declarations for TAL Examples E-67

Example E-14: Common Declarations for C Examples E-68

Example E-15: Common Routines for TAL Examples E-69

Example E-16: Common Routines for C Examples E-73

Example E-17: Declarations for TAL Requesters and Servers E-79

Example E-18: Declarations for C Requesters and Servers E-81

Example E-19: Routines for TAL Requesters and Servers E-82
SPI Programming Manual—427506-007
ix

Contents Glossary
Example E-20: Routines for C Requesters and Servers E-85

Example E-21: TAL Examples Compiler E-90

Example E-22: C Examples Compiler E-90

Glossary

Index

Examples
Example 3-1. Moving Buffer Tokens Using SSMOVETKN 3-28

Example 8-1. Printing or Displaying the Status Structure of the SCP 8-31

Example E-1. TAL File: Basic Buffer Manipulations E-5

Example E-2. C File: Basic Buffer Manipulations E-7

Example E-3. TAL File: Working With Lists E-10

Example E-4. C File: Working With Lists E-13

Example E-5. TAL File: Pointers, Lists, and ZSPI-TKN-NEXTTOKEN E-15

Example E-6. C File: Pointers, Lists, and ZSPI-TKN-NEXTTOKEN E-19

Example E-7. TAL File: Pointers, Lists, and ZSPI-TKN-NEXTCODE E-22

Example E-8. C File: Pointers, Lists, and ZSPI-TKN-NEXTCODE E-25

Example E-9. TAL File: A Simple SPI Requester E-28

Example E-10. C File: A Simple SPI Requester E-37

Example E-11. TAL File: A Simple SPI Server E-45

Example E-12. C File: A Simple SPI Server E-55

Example E-13. TAL File: SETDECS Supporting Code E-67

Example E-14. C File: SECCH Supporting Code E-68

Example E-15. TAL File: SETCUTIL Supporting Code E-69

Example E-16. C File: SECCUTLC Supporting Code E-74

Example E-17. TAL File: SETRDECS Supporting Code E-80

Example E-18. C File: SECRH Supporting Code E-81

Example E-19. TAL File: SETRUTIL Supporting Code E-82

Example E-20. C File: SECRUTLC Supporting Code E-86

Example E-21. TACL Command File to Compile TAL Program Examples E-90

Example E-22. TACL Command File to Compile C Program Examples E-90

Figures
Figure 1-1. SPI Communication With a Single-Process Subsystem 1-3

Figure 1-2. SPI Communication With a Multiprocess Subsystem 1-4

Figure 1-3. Subsystem Manager Communicating With Multiple Management
Applications 1-5

Figure 1-4. SPI Communication Through an Intermediate Process 1-6
SPI Programming Manual—427506-007
x

Contents Tables
Figure 2-1. The Basic Components of a Token 2-4

Figure 2-2. Token Length 2-6

Figure 2-3. The SPI Buffer 2-14

Figure 2-4. Pointer Manipulation Examples 2-18

Figure 2-5. Pointer Manipulation and Lists 2-22

Figure 2-6. Pointers, Lists, and ZSPI-TKN-NEXTTOKEN 2-24

Figure 2-7. Pointers, Lists, and ZSPI-TKN-NEXTCODE 2-26

Figure 2-8. ZSPI-TKN-MAXRESP = 0 (Default) 2-31

Figure 2-9. ZSPI-TKN-MAXRESP > 0 2-32

Figure 2-10. ZSPI-TKN-MAXRESP = –1 2-33

Figure 2-11. Response Continuation 2-36

Figure 2-12. Segmented Responses 2-39

Figure 2-13. Empty Responses 2-42

Figure 2-14. The Subsystem ID Structure 2-46

Figure 2-15. Error Information in a Response Record 2-48

Figure 2-16. Error List Contents 2-49

Figure 5-1. Response Continuation for a Typical Information Command 5-42

Figure B-1. DEF Statement Examples B-3

Figure C-1. SPI Buffer Format C-1

Figure C-2. Internal Format of Token Code C-5

Figure C-3. Single-Occurrence Tokens as Stored in the Buffer C-6

Figure C-4. Multiple-Occurrence Tokens as Stored in the Buffer C-6

Figure C-5. Token Map and Its Token Value C-7

Figure C-6. Structures Within a Token Map C-8

Figure C-7. Structure of a List in the Buffer C-11

Tables
Table 1-1. Comparison: SPI Basic and Extended Features 1-9

Table 2-1. SPI Header Tokens 2-10

Table 2-2. Subsystem Response to Requests for Segmented Responses 2-40

Table 3-1. SSPUT(TKN) Special Operations 3-9

Table 3-2. SSGET(TKN) Special Operations 3-15

Table 4-1. SPI-Defined Token Data Types (ZSPI-TDT-…) 4-12

Table 4-2. SPI Token Numbers 4-28

Table 8-1. TACL Data Types for SPI 8-5

Table 8-2. #SSPUT(V) Special Operations 8-13

Table 8-3. Header Token Values Retrieved by #SSGET and #SSGETV 8-23

Table A-1. ZSPI Errors, by Number A-1

Table A-2. ZSPI Errors, by Name A-2
SPI Programming Manual—427506-007
xi

Contents
Table D-1. NonStop Kernel Subsystem Numbers D-1

Table D-2. NonStop Kernel Subsystem Abbreviations D-12
SPI Programming Manual—427506-007
xii

What’s New in This Manual

Manual Information
SPI Programming Manual

Abstract

This manual describes the operating system procedures that programmers call to
process the Subsystem Programmatic Interface (SPI) messages. It presents
conventions that regulate message content and interpretation, provides programming
guidelines and examples, and describes the common ZSPI data definitions.

Product Version

SPI H02

Supported Release Version Updates (RVUs)

This publication supports J01 and all subsequent J-series RVUs and H02 and all
subsequent H-series RVUs until otherwise indicated by its replacement publication.

Document History

New and Changed Information

Changes in the 427506-007 Manual:

 Added Product Version SPI H02 to the title page.

 Added the Note on page 3-6

 Added the Note on page 3-9.

Part Number Published

427506-007 February 2012

Part Number Product Version Published

427506-003 SPI D40 and G05 September 2003

427506-004 SPI D40 and G05 December 2003

427506-005 SPI G05 August 2004

427506-006 SPI G05 and H01 February 2006

427506-007 SPI H02 February 2012
SPI Programming Manual—427506-007
xiii

What’s New in This Manual Changes in the 427506-006 Manual:
Changes in the 427506-006 Manual:

Added details of these subsystems in Table D-1, NonStop Kernel Subsystem Numbers,
on page D-1 and Table D-2, NonStop Kernel Subsystem Abbreviations, on page D-12:

 259, Constellation IP (CIP)

 262, Fibre Channel Storage Monitor (FSM)

 263, HP NonStop Operating System - Complex Manager Auxiliary Process (CMP)

 264, XA Broker Subsystem (ZXA)

 265, Java Logging Subsystem (L4J)

 266, Matrix SMLC CBB 4.2 Subsystem (CPS)

 267, Deadlock Detector Subsystem (DLD)

Changes in the G06.24 Manual:

Added details of subsystems, 260 and 261 in Table D-1, NonStop Kernel Subsystem
Numbers, on page D-1.
SPI Programming Manual—427506-007
xiv

About This Manual
This manual describes the Subsystem Programmatic Interface (SPI):

Audience
This manual is written for those who maintain or develop programs that communicate
using the SPI and for anyone interested in the contents of SPI messages. SPI is used

Section Description

Section 1, Introduction to SPI Provides an overview of SPI.

Section 2, SPI Concepts and
Protocol

Presents topics central to understanding SPI.

Section 3, The SPI Procedures Describes the syntax of the SPI procedures and the
operations they perform.

Section 4, ZSPI Data
Definitions

Provides descriptions of the ZSPI data definitions and the
Data Definition Language (DDL) code used to define
them.

Section 5, General SPI
Programming Guidelines

Offers general programming guidelines for SPI requesters
and servers.

Section 6, SPI Programming in
C

Provides language-specific information for SPI
programming in C.

Section 7, SPI Programming in
COBOL

Provides language-specific information for SPI
programming in COBOL.

Section 8, SPI Programming in
TACL

Provides language-specific information for SPI
programming in the HP Tandem Advanced Command
Language (TACL), including descriptions of the built-ins
that correspond to the SPI procedures.

Section 9, SPI Programming in
TAL

Provides language-specific information for SPI
programming in the HP Transaction Application Language
(TAL)

Appendix A, Errors Describes error numbers returned by the SPI procedures
and other common errors encountered in SPI processing.

Appendix B, Summary of DDL
for SPI

Summarizes features of the Data Definition Language for
HP NonStop™ servers that are particularly relevant to SPI
data definitions.

Appendix C, SPI Internal
Structures

Describes the internal structure of common SPI data
structures to facilitate debugging.

Appendix D, NonStop Kernel
Subsystem Numbers and
Abbreviations

Presents tables that list HP NonStop Kernel subsystems
by their subsystem number and by their subsystem
abbreviation.

Appendix E, SPI Programming
Examples

Presents TAL and C source code for several working SPI
programs.
SPI Programming Manual—427506-007
xv

About This Manual Related Manuals
by many NonStop Kernel subsystems and by customer-developed applications that
manage these subsystems.

Related Manuals
For D-series and G-series RVUs, SPI is part of the Distributed Systems Management
(DSM) architecture. For more information, see the Distributed Systems Management
(DSM) Manual.

If the subsystems you are managing expect requests to be routed through an SCP
process, read the Subsystem Control Point (SCP) Management Programming Manual.

Many NonStop Kernel subsystems that use SPI also implement the SPI extensions
described in the SPI Common Extensions Manual.

For any specific subsystems you are working with, you can also see the management
programming manual.

Information about the language used to define tokens and related data elements is in
the Data Definition Language (DDL) Reference Manual.

Notation Conventions

General Syntax Notation

This list summarizes the notation conventions for syntax presentation in this manual:

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words; enter
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list may be arranged either vertically, with aligned brackets on
SPI Programming Manual—427506-007
xvi

About This Manual General Syntax Notation
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

LIGHTS [ON]
 [OFF]
 [SMOOTH [num]]

K [X | D] address-1

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list may be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…

[-] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be entered as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must enter as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example,
there are no spaces permitted between the period and any other items:

$process-name.#su-name
SPI Programming Manual—427506-007
xvii

About This Manual Notation for Messages
Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] CONTROLLER

 [, attribute-spec]...

!i and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o. In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; !i,o

!i:i. In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

Notation for Messages

This list summarizes the notation conventions for the presentation of displayed
messages in this manual:

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.

lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-register

process-name
SPI Programming Manual—427506-007
xviii

About This Manual Notation for Management Programming Interfaces
[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be
displayed, of which one or none might actually be displayed. The items in the list might
be arranged either vertically, with aligned brackets on each side of the list, or
horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

LDEV ldev [CU %ccu | CU %...] UP [(cpu,chan,%ctlr,%unit)]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list might be arranged
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

LBU { X | Y } POWER FAIL

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { OK | Failed }

% Percent Sign. A percent sign precedes a number that is not in decimal notation. The
% notation precedes an octal number. The %B notation precedes a binary number.
The %H notation precedes a hexadecimal number. For example:

%005400

%B101111

%H2F

P=%p-register E=%e-register

Notation for Management Programming Interfaces

UPPERCASE LETTERS. Uppercase letters indicate names from definition files; enter these
names exactly as shown. For example:

ZCOM-TKN-SUBJ-SERV

lowercase letters. Words in lowercase letters are words that are part of the notation,
including Data Definition Language (DDL) keywords. For example:

token-type
SPI Programming Manual—427506-007
xix

About This Manual Change Bar Notation
!r. The !r notation following a token or field name indicates that the token or field is
required. For example:

ZCOM-TKN-OBJNAME token-type ZSPI-TYP-STRING. !r

!o. The !o notation following a token or field name indicates that the token or field is
optional. For example:

ZSPI-TKN-MANAGER token-type ZSPI-TYP-FNAME32. !o

Change Bar Notation

Change bars are used to indicate substantive differences between this manual and its
preceding version. Change bars are vertical rules placed in the right margin of changed
portions of text, figures, tables, examples, and so on. Change bars highlight new or
revised information. For example:

The message types specified in the REPORT clause are different in the COBOL
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for
old message types. In the CRE, the message type SYSTEM includes all messages
except LOGICAL-CLOSE and LOGICAL-OPEN.

HP Encourages Your Comments

HP encourages your comments concerning this document. We are committed to
providing documentation that meets your needs. Send any errors found, suggestions
for improvement, or compliments to docsfeedback@hp.com.

Include the document title, part number, and any comment, error found, or suggestion
for improvement you have concerning this document.
SPI Programming Manual—427506-007
xx

1 Introduction to SPI

This section provides an overview of the Subsystem Programmatic Interface:

The Components of SPI
The Subsystem Programmatic Interface (SPI), a central component of the Distributed
System Management (DSM) architecture, is the path that management applications
and subsystems use to exchange command-response messages and event
messages.

A Programmatic Interface

HP provides interactive text interfaces to most of its subsystems for the HP NonStop
Operating System. TMFCOM, PATHCOM, and the Subsystem Control Facility (SCF)
are examples. These text-based interfaces provide needed information in a form
readable by human operators on terminals, printers, and other display devices. When a
program communicates with a human operator, it is appropriate for the communication
to be based on native-language text. However, text-based messages are not well
suited for processing by a program. Programs can be written to parse text strings (and
many programs process messages intended to be read by an operator), but it is more
efficient for them to process messages containing data in readily processed
representations.

SPI

SPI is a programmatic interface designed to facilitate management of subsystems
without operator intervention:

 Programmers do not need to be concerned with the internals of message format
but can concentrate instead on requesting and retrieving relevant data.

 Subsystems can add features without changing the basic interface—existing
applications interact successfully with new versions of subsystems.

 A programmer who uses the interface in one programming language to
communicate with one subsystem then knows most of what is necessary to use
the interface in other languages and with other subsystems.

 Application programs can use any interprocess communication features (such as
nowait or waited I/O) that are available in the language in which they are written.

SPI consists of:

Topic Page

The Components of SPI 1-1

The Environment for D-Series RVUs 1-10
SPI Programming Manual—427506-007
1-1

Introduction to SPI SPI and EMS
 A standard message format

 A standard message protocol

 A standard unit of information: the token

 Procedures for composing and decoding messages

 Data definitions for commonly used data structures

 Rules and guidelines governing message content and protocol

SPI and EMS

The Event Management Service (EMS) is based on SPI, and EMS messages are one
of two types of SPI messages (the other being control and inquiry messages). This
manual concentrates on the control-and-inquiry role of SPI. For information about
event messages, see the EMS Manual.

Subsystem Objects

An object is a well-defined logical or physical entity such as a device, communications
line, logical subdevice, process, processor, file, or transaction. Most objects are
controlled by subsystems, and a subsystem itself can be treated as an object. SPI is
designed to allow programmatic management of subsystem objects.

Management Applications

Management applications configure, control, monitor, and report the status of
subsystem objects. The primary tasks of a management application differ from those of
other applications. Rather than using a subsystem’s basic services, a management
application monitors and controls the subsystem itself. Because such management
tasks can be complex, repetitive, or time-consuming, they lend themselves to
programmatic solutions. Hence, the value of management applications, which can be
designed to manage individual subsystem objects or entire subsystems.

Figure 1-1 on page 1-3 shows a management application communicating with a
subsystem that consists of a single process.
SPI Programming Manual—427506-007
1-2

Introduction to SPI Subsystem Manager
Management applications use SPI to:

 Start or stop an object (such as a Pathway terminal)

 Change an object attribute value (such as the speed of a communications line)

 Add a new object to the system (such as defining a logical subdevice on a
communications line)

 Inquire whether an object is stopped or running

Subsystem Manager

Every subsystem that has an SPI control-inquiry interface includes a process that is
responsible for supporting the interface. This process is called the subsystem manager
process or subsystem manager. Management applications send SPI commands to this
process and receive responses from it.

In Figure 1-1, a single subsystem process provides subsystem services and acts as
subsystem manager. Figure 1-2 on page 1-4 shows a management application
communicating with the subsystem manager of a multiprocess subsystem.
Communication between the management application and the subsystem manager
follows the SPI protocol. Communication between the subsystem manager and the
other subsystem processes can follow any protocol (including SPI) selected by the
subsystem.

Figure 1-1. SPI Communication With a Single-Process Subsystem

VST001.vsd

Management
Application Subsystem

SPI Command SPI Response

Legend

A subsystem might consist of a single process, in which case this process both provides the subsystem
services and serves as the SPI subsystem manager.
SPI Programming Manual—427506-007
1-3

Introduction to SPI Subsystem Manager
Multiple management applications can communicate with a single subsystem.
Figure 1-3 on page 1-5 shows several management applications communicating with
the manager process of a multiprocess subsystem.

Figure 1-2. SPI Communication With a Multiprocess Subsystem

VST002.vsd

Subsystem
Manager
Process

Management
Application

Subsystem
Process

Subsystem
Process

Subsystem
Process

A subsystem might consist of several processes. One of these, the manager process, supports the SPI
interface to management applications.

Legend

SPI Command SPI Response
SPI Programming Manual—427506-007
1-4

Introduction to SPI SPI Message Protocol
A subsystem does not need to communicate directly with management applications.
Instead, a subsystem can have its commands and responses routed through an
intermediate process, as shown in Figure 1-4 on page 1-6. The SPI common
extensions provide such a process: the Subsystem Control Point. (See the SPI
Common Extensions Manual.)

In any configuration, SPI provides the management interface between the
management application, the subsystem manager process, and any intermediate
process.

SPI Message Protocol

The basic SPI protocol specifies:

 How SPI requesters and servers process messages

 What information must appear in a message

 Whether or not that information must be sent in a specific token

Figure 1-3. Subsystem Manager Communicating With Multiple Management
Applications

Legend

SPI Command SPI Response

Subsystem
Manager

Management
Application

Management
Application

Management
Application

Subsystem
Process

Subsystem
Process

Subsystem
Process

A subsystem manager can support concurrent SPI communications with multiple management applications.
SPI Programming Manual—427506-007
1-5

Introduction to SPI SPI Message Format
 How requesters and servers should respond to error conditions

Communication between a management application and a subsystem follows the
standard HP requester-server model, with the management application in the role of
requester and the subsystem manager process in the role of server.

SPI is a general interface governed by many general rules and guidelines. This manual
describes the basic SPI protocol, the SPI procedures used to build and decode
messages, and the common data definitions used in SPI messages. An SPI interface
to a particular subsystem is usually based on a very specific implementation of these
generalities. For detailed information about the SPI interface to a particular subsystem,
see the management programming manual for that subsystem.

After composing an SPI message, an application (requester) uses standard
interprocess communication to send the message to the subsystem manager (server).

SPI Message Format

SPI messages have a common structure. Each message consists of a message
header followed by as many tokens as are necessary to convey information relevant to
the message. (The number of tokens is limited by the size of the message buffer.)

Figure 1-4. SPI Communication Through an Intermediate Process

VST004.vsd

A subsystem can have its commands and responses routed through an intermediate process.

Subsystem
Process

Subsystem
Process

Subsystem
Process

Legend

SPI Command SPI Response

Intermediate
Routing
Process

Management
Application

Management
Application

Subsystem
Manager

Subsystem
Manager

Subsystem
Manager
SPI Programming Manual—427506-007
1-6

Introduction to SPI Tokens
SPI messages are built in buffers initialized by the SSINIT procedure. The messages
contain tokens (and are sometimes called tokenized messages). The interface itself is
described as token-based. Programs use SPI procedures to format message buffers,
assign values to tokens, and put tokens into and retrieve tokens from message buffers.
An application working with an SPI message refers to a token by its symbolic name,
and does not need to be concerned with the address of the token in the message
buffer.

Tokens

Tokens are self-identifying data items; a token’s name indicates the function of the
token or identifies the information that the token contains. A typical token in an SPI
message carries with it an identifying number, the data type of its value, the length of
its value, and the value itself. Some of the SPI guidelines govern how to name tokens.

Most tokens have an associated value. Programs use the SSPUT procedure to assign
a values to tokens and put the tokens into a message buffer.

The four basic token types (described in Section 2, SPI Concepts and Protocol) are:

SPI Procedures

The five basic SPI procedures used to compose and decode SPI messages are:

Three related procedures, SSPUTTKN, SSGETTKN, and SSMOVETKN, let tokens be
specified in the procedure call by value rather than by reference.

Similarly named built-ins allow access to the SPI procedures from TACL.

The SPI procedures to format and decode messages are available:

Simple Value can be a simple data item or a data structure. In either case, the type
and structure of the value are fixed for the life of the token.

Extensible
structured

Can be extended by adding fields in new releases of the server.

Zero-length Has no associated value.

Header Appears in every SPI message; has values but no corresponding token code
in the buffer.

SSINIT Creates a new SPI message and assigns values to selected header tokens.

SSNULL Initializes the fields of an extensible structure to null values.

SSPUT Either places a token in a message buffer or performs a special operation on a
buffer, depending on the token specified in the procedure call.

SSGET Either extracts a token from a message or retrieves information about a
message, depending on the token specified in the procedure call.

SSMOVE Copies a token or group of tokens from one message buffer to another.
SPI Programming Manual—427506-007
1-7

Introduction to SPI SPI Data Definitions
 From C using the tal interface declaration

 From COBOL using the ENTER TAL construct

 From TACL using special built-in functions

 From TAL

SPI Data Definitions

Tokens, values, command numbers, message headers, and error numbers are some
of the SPI-defined data items that are used to build SPI messages. These items are
defined using the DDL and are provided to programmers in definition files with names
beginning with ZSPI. A definition file specifically suited to each programming language
is supported by SPI:

You can use these predefined items by adding the definitions from the appropriate
definition file to their source code. In the case of TACL, load the SPI TACL definitions
or attach the ZSPISEGF segment file.

NonStop Kernel subsystems supply additional definitions in files with names beginning
with Zsss, where sss is a subsystem abbreviation. (See Appendix D, NonStop Kernel
Subsystem Numbers and Abbreviations.) All items defined in these files also have
names beginning with Zsss, where sss is the subsystem abbreviation. User-defined
definitions begin with a letter other than Z to avoid possible conflicts with HP
definitions.

SPI data definitions are developed using the DDL. See Appendix B, Summary of DDL
for SPI. For a complete description of DDL, see the Data Definition Language (DDL)
Reference Manual.

SPI and EMS

The event messages created using the Event Management Service (EMS) are a form
of SPI message, and the EMS procedures with which event messages are
manipulated are based on the SPI procedures. The EMS Manual describes event
messages and EMS.

SPI Debugging

Inspect, a HP debugging tool, supports two methods of displaying the contents of SPI
messages. See the Inspect Manual and the DSM Template Services Manual.

Programming Language Definition File

C ZSPIC

COBOL ZSPICOB

TACL ZSPITACL

TAL SZPITAL
SPI Programming Manual—427506-007
1-8

Introduction to SPI A Basic Interface and Extensions
A Basic Interface and Extensions

This manual describes the basic SPI interface. Many NonStop Kernel subsystems are
based on an extended version of SPI. These extensions, based on ZCOM data
definitions, and a common implementation of the extensions, based on ZCMK
definitions, are described in the SPI Common Extensions Manual.

Table 1-1. Comparison: SPI Basic and Extended Features (page 1 of 2)

Basic SPI Extended SPI

Procedures Provides procedures for creating
and decoding SPI messages.

Uses the basic SPI procedures.

Data
definitions

Defines basic message
structures and the data types on
which all tokens are based
(ZSPI).

Defines many additional tokens,
structures, error numbers, event
numbers, and other data items (ZCOM).

Commands Defines a single command:
GETVERSION.

Defines over 30 additional commands,
and specifies the contents of the
command and response messages.

Errors Defines the basic mechanism
for reporting errors, defines
errors returned by the SPI
procedures, and defines some
common errors returned in SPI
responses.

Using the basic SPI error reporting
mechanism, defines common errors
reported by subsystems under specific
circumstances and specifies the
contents of the associated error lists.

Events Provides the basic mechanism
for event messages (event
messages are one type of SPI
message).

Using the basic SPI event reporting
mechanism, defines common events to
be generated by subsystems under
specific circumstances.

Object names Discusses object names in
general terms.

Makes specific recommendations for
naming objects, and provides specific
tokens for conveying object names in
messages.

Security Provides a basic buffer
checksum feature for detecting
corrupted messages.

In addition to the checksum feature,
regulates command security based on
requester authorization and the
distinction between sensitive and
nonsensitive commands.

General
protocol

Defines basic message protocol,
but leaves many implementation
decisions for the subsystem.

Standardizes many behaviors that basic
SPI leaves up to the subsystem.
SPI Programming Manual—427506-007
1-9

Introduction to SPI The Environment for D-Series RVUs
The extended SPI interface is based on and assumes an understanding of the features
of the basic SPI interface described in this manual.

The Environment for D-Series RVUs
For D-series RVUs, the features of the NonStop operating system prompted several
changes relevant to management applications. The operating system incorporates
numerous changes intended to improve CPU utilization and allow larger I/O
configurations. In part, these improvements were brought about by raising the limits on
a number of system parameters to allow:

 More concurrent processes per CPU

 More I/O devices per node

 More I/O subdevices per device

 More opens (concurrent access paths) per device and subdevice

 More pending operations (outstanding messages)

These changes require the introduction of new and expanded data structures,
including:

 New process identifiers

 A new file name format

 New SPI and EMS tokens corresponding to these new data structures

These structures are supported by a set of system procedures and associated error
numbers and error lists.

Implications for Management Applications

In general, an application on a node running a C-series RVU runs without modification
at a low PIN on a node running a D-series RVU. In particular, if all the processes
involved are running at low PINs, management applications currently on a node
running a C-series RVU should run identically on a node running a D-series RVU, or

Message
routing

Does not regulate message
routing.

Provides a message routing process
(SCP) that also provides security and
other features.

Compatibility Provides basic mechanisms for
determining versions of
requesters, servers, and the
definitions they use.

The SCP process performs some
reconciliation of incompatibilities
between different versions of the
extended interface.

Manual SPI Programming Manual SPI Common Extensions Manual

Table 1-1. Comparison: SPI Basic and Extended Features (page 2 of 2)

Basic SPI Extended SPI
SPI Programming Manual—427506-007
1-10

Introduction to SPI Implications for Management Applications
on a node running a C-series RVU in a network with a node running a D-series RVU.
The SCP and subsystem processes that communicate with an unconverted
management application should be run at low PINs. This approach provides the best
way, other than converting the application, to avoid the problems described here.

Obsolete Tokens in Responses

Even if a converted subsystem returns new tokens to convey data from a D-series
RVU, it continues to include the same information in previously used tokens from
C-series RVUs if the data fits in the old tokens. If the returned values do not exceed
the range supported by the old tokens, an unconverted requester sees no change.
(The requester can ignore the additional new tokens included in the response.)

However, if a converted subsystem cannot fit a value in a token from a C-series RVU, it
omits the token from the response and stores the value in a new token for the D-series
RVU. The subsystem does not return an error. The requester does not discover the
problem until it encounters the error ZSPI-ERR-MISTKN when it tries to get the old
token from the buffer.

For example, a subsystem that previously returned PIN values in an 8-bit token must
now include a larger token to accommodate PINs greater than 255. When the
subsystem deals with low-PIN processes, it can continue to use the 8-bit token in
addition to the new one. But if it has to return a high PIN, the 8-bit token is inadequate
and is not included in the response.

Obsolete Fields in Structured Tokens

Similar considerations apply to the fields of structured tokens. If data from a D-series
RVU fits in a field for a C-series RVU, the subsystem returns the field for the C-series
RVU in the structured token.

If the data does not fit in the field for the C-series RVU, and the field has a defined null
value, the null value is returned. If the token is an extensible structured token, the
value might be returned in a new field appended to the structure. Otherwise, the value
is returned in a new simple token.

If the data from a D-series RVU does not fit in the old field, and no null value is defined,
the entire structured token is omitted from the response. A new structured token with
expanded fields is returned in its place.

For information about how a specific subsystem adapts to the system running the D-
series RVU, see the management programming manual for the subsystem in question.

Caution. Subsystems do not return an error to indicate that a token from a C-series RVU has been
omitted from a response.
SPI Programming Manual—427506-007
1-11

Introduction to SPI Converting Management Applications
Interprocess Communications Restrictions

These restrictions apply to communication among processes on a node running a
D-series RVU or among processes in a mixed network of C-series and D-series RVUs
and are relevant to all instances of SPI requester-server communications:

 No process on a node running a C-series RVU can be opened by a high-PIN
process on a node running a D-series RVU. For example, a management
application running at a high PIN cannot open an SCP process on a node running
a C-series RVU, nor can an SCP running at a high PIN open a subsystem
manager process on a node running a C-series RVU.

 A high-PIN process on a node running a D-series RVU can open an unconverted
low-PIN process on a node running a D-series RVU if the low-PIN process has
been recompiled to set the HIGHREQUESTERS object-file attribute.

For more information about these restrictions and how to overcome them, see the
Guardian Application Conversion Guide.

Converting Management Applications

Existing management applications do not need to be converted in order to run on a
system running a D-series RVU or in a mixed network of C-series and D-series RVUs if
all related processes run at low PINs. (Related processes include the management
application, the managed subsystem processes, and any intermediate process such as
SCP.)

However, if you decide to convert a management application in order to take
advantage of the new features of the operating system for D-series RVUs:

1. Consult the Guardian Application Conversion Guide for an overview of conversion
and its benefits. This guide provides help with the details of the conversion
process.

2. Modify your management application to use any new tokens for D-series RVUs
described in the management programming manual for the managed subsystem.

3. Convert the sections of your application that process event messages. (See the
EMS Manual.)
SPI Programming Manual—427506-007
1-12

2 SPI Concepts and Protocol

This section defines the basic concepts on which the Subsystem Programmatic
Interface (SPI) is based:

SPI Message Protocol
Communication between a management application and a subsystem follows the
standard HP requester-server model, with the management application in the role of
requester and the subsystem manager process in the role of server. The requester is
an application program that can run as a stand-alone process or a process pair. The
subsystem manager process is the server process that accepts SPI requests and
prepares SPI responses.

This subsection overviews the protocol followed by SPI requesters and servers when
exchanging messages. Details are presented in the remainder of this manual.

Requester Initializes a Buffer

The requester calls the SPI procedure SSINIT to initialize a message buffer in which it
composes a command message. The message contains the subsystem ID (SSID) of
the target subsystem and is at least as large as the buffer size recommended by the
subsystem. (Both the SSID and a recommended buffer size are provided by the
subsystem as part of its SPI data definitions.)

Requester Composes a Command Message

The requester uses the SSPUT procedure to add tokens and values to the message.
Before adding an extensible structured token to the message, the requester calls the
SSNULL procedure to initialize the structure, then places values in the fields of the
structure, and finally adds the structured token to the message using SSPUT.

Topic Page

SPI Message Protocol 2-1

Tokens 2-3

Data Definitions 2-10

SPI Message Buffer 2-13

Lists 2-19

Commands 2-27

Responses 2-28

Subsystem IDs (SSIDs) 2-44

Errors and Warnings 2-47
SPI Programming Manual—427506-007
2-1

SPI Concepts and Protocol Requester Sends a Command Message
An entire command must always be sent in one command message. SPI does not
support commands continued across multiple messages, nor does it support multiple
commands per message. However, a command can be applied to multiple objects.

If the requester needs to perform the same command on several objects, the
subsystem might accept commands with multiple object-name tokens, each with a
different object name as its value, or it might accept special forms of object names
(such as object-name templates that contain wild cards) that specify a collection of
objects. Not all subsystems support these features, and each subsystem has its own
rules for acceptable object name forms.

Requester Sends a Command Message

The requester then uses a language-dependent mechanism, usually involving the file
system, to send the command and receive the response. In TAL, for example, a
requester program calls the WRITEREAD procedure.

Server Validates the Received Message

When it receives the command message, the server resets the buffer and then verifies
that the message is an SPI command message, that it is long enough to be a valid
message but not so long that it overflows the read buffer, and that the used portion of
the buffer is not longer than the buffer length recorded in the message header. The
server then verifies that it is the intended recipient of the message by checking for its
SSID in the message header, and checks that no field in an extensible structured token
has a version greater than its own. Finally, the server examines the buffer’s contents
for missing, required, invalid, and unrecognized tokens and token values.

Server Applies the Command to Objects

If the message is a valid command, the server locates the target object, applies the
command to that object, and composes a response record describing the outcome of
that processing. If the command is directed to more than one object, the server verifies
that there is room in the buffer for another response record before it applies the
command to the next object.

Server Composes a Response Message

The response record contains at least a return code token with a value that
summarizes the outcome of processing for the object. The response record might also
contain additional tokens and, if there was a problem, one or more error lists.

If the command is directed to more than one object, the subsystem returns its
response information in multiple response records, each containing all the information
that results from performing the command on one object. If not all of the response
records fit in the buffer, the server stops processing objects when it runs out of buffer
space and adds a context token to tell the requester that not all objects were
SPI Programming Manual—427506-007
2-2

SPI Concepts and Protocol Server Returns the Response Message
processed. The server and requester then follow the response continuation protocol in
Continued Responses on page 2-34.

By default, the subsystem returns a single response record per response message.
However, if requested, many NonStop Kernel subsystems return multiple response
records per response message. The requester sets the value of a token in the
command buffer to indicate the maximum number of response records per response
the requester is willing to accept, or to ask for as many response records as will fit in
the buffer. The subsystem then determines how many response records per response
it will send, up to the maximum number specified by the requester.

As in the case of a single response record per response, the subsystem returns a
context token in the response if not all response records for the command fit into a
single response message. The requester asks for the next group of response records
by resending a copy of the original command that includes this context token.

Server Returns the Response Message

The server returns the response message to the requester. If the server is context-free,
it retains no information about the processing it performed, and from the server’s
perspective, this response completes the requester-server interaction. If not all objects
were processed (because of lack of buffer space, for example), the server stores
enough information in the context token to resume processing with the next object
based on the information returned in the context token and a copy of the original
command.

Requester Examines the Response

Upon receiving the response, the requester resets the buffer using the special SSPUT
operation ZSPI-TKN-RESET-BUFFER to avoid problems arising from differing
requester and server buffer sizes.

The requester checks the value of the return code in each response record. If an error
occurs, the response code is nonzero and the response record contains an error list
with an error token containing the same nonzero error number.

If the response contains a context token, the requester can continue processing by
copying the context token to a copy of the original command and returning it to the
server, which then resumes processing.

Tokens
All information in SPI messages is in the form of tokens and their values. Aside from
error checking and message validation, most of the SPI-related processing performed
by requesters and servers involves placing tokens in messages and retrieving token
values from messages. The primary function of the SPI procedures is to manipulate
tokens: the SSPUT procedure adds tokens to a message, SSGET retrieves token
values from a message, SSMOVE copies tokens from one message buffer to another,
and SSNULL initializes token values.
SPI Programming Manual—427506-007
2-3

SPI Concepts and Protocol Token Data Type
Tokens are self-describing data items; a typical token in an SPI message carries with it
an identifying number, the data type of its value, the length of its value, and the value.
Token number, data type, and length are known collectively as the token code, and a
token is often viewed as consisting of two parts: a token code and a token value. The
token data type and token length are known collectively as the token type. Token
codes contain a subsystem ID.

Token Data Type

The token data type is the fundamental data type of the token’s value. All token types
are based on the token data types defined by SPI. Subsystems can define their own
token types, but those types must be based on the ZSPI-defined token data types.
Token data types have symbolic names of the form ZSPI-TDT-desc.

Token Length

For fixed-length token values up to 254 bytes long, the token length field contains the
length of the value in bytes. In these cases, the token length is always a multiple of the
length of the fundamental token data type. For token data type x and token length y,
the value consists of as many items of token data type x as will fit within length y. For
instance, a token of token data type ZSPI-TDT-INT (2 bytes) and a length of 8 bytes

Figure 2-1. The Basic Components of a Token

VST005.vsd
Token

The components of an unqualified token:

Token
Data Type

Token
Length

Token
Number

Token
Value

Token

 Token Type

Token Code

The components of an SSID-qualified token:

Token
Data Type

Token
Length

Token
Number

Token
Value

 Token Type

Token Code

Susystem
ID
SPI Programming Manual—427506-007
2-4

SPI Concepts and Protocol Token Type
has a value consisting of four integers. If the value is longer than 254 bytes, or if it is of
variable length, the token length is set to 255, and the actual length of the value is
stored in the first 2 bytes of the value itself. Both options are illustrated in Figure 2-2 on
page 2-6.

Token Type

The token data type and token length together define the token type. Token types have
symbolic names of the form subsys-TYP-desc. When writing an SPI server, you can
use the ZSPI-defined token types or define your own types based on the fundamental
ZSPI token data types.

Token Number

Following the token type in the token code is the token number. Each token code
contains a token number that uniquely identifies that token within the set of tokens
defined by a subsystem. Token numbers are signed integers in these ranges:

Token numbers have symbolic names of the form subsys-TNM-desc. Different
subsystems can define tokens with the same token number without causing a conflict,
because tokens are always qualified, explicitly or implicitly, by a subsystem ID.

SSID

Tokens that are explicitly qualified by a subsystem ID (SSID) include that SSID as part
of the token code.

Token Code

The token number, token type, and optional subsystem ID are often treated as a single
entity called the token code. Token codes have symbolic names of the formsubsys-
TKN-desc.

Figure 2-2 on page 2-6 shows two options. The first one represents a fixed-length
token value less than 255 bytes, where the length is stored in the length field of the
token code. The second option represents a variable-length token value or a value
longer than 254 bytes. A length of 255 in the token code indicates that the length of the
value is stored in the first two bytes of the value itself.

9999 through 32767 Reserved for tokens defined by NonStop operating system
software

1 through 9998 Available for HP and user tokens

–512 through 0 Reserved for ZSPI tokens

–32768 through –513 Reserved for tokens defined by software for the NonStop system
SPI Programming Manual—427506-007
2-5

SPI Concepts and Protocol Token Names
Token Names

Every token code has a symbolic token name, a meaningful name of the form subsys-
TKN-name, where subsys identifies the subsystem responsible for the definition and
name describes the content or function of the token. Programs refer to tokens by these
names, not by their token numbers. Some tokens are defined by SPI (subsys = ZSPI).
ZSPI tokens are described in Section 4, ZSPI Data Definitions. Other tokens are
defined by the Event Management Service (subsys = ZEMS) or by the common SPI
extensions used by many NonStop Kernel subsystems (subsys = ZCOM or ZCMK).
Still others are defined by individual subsystems.

Figure 2-2. Token Length

VST006.vsd

 Data Item Length (n-2)

 0 2 n bytes

Data
Type

255 Token
Number

Variable-Length Token

Fixed-Length Token

 0 1 2 n bytes

 Data Item

Data
Type

Length
(n)

Token
Number

VST006.vsd

 Data Item Length (n-2)

 0 2 n bytes

Data
Type

255 Token
Number

Variable-Length Token

Fixed-Length Token

 0 1 2 n bytes

 Data Item

Data
Type

Length
(n)

Token
Number
SPI Programming Manual—427506-007
2-6

SPI Concepts and Protocol Types of Tokens
Types of Tokens

Tokens are divided into four categories:

Simple Tokens

Tokens whose values are elementary data items or fixed structures are called simple
tokens. After they are defined, the size, data type, and structure of a simple token
cannot be changed.

These are examples of simple tokens defined by SPI or NonStop Kernel subsystems:

Extensible Structured Tokens

Extensible structured tokens are tokens whose values are structures that can be
extended by adding fields to the ends of the structures. Like a simple structured token,
an extensible structured token lets a program place multiple data items in an SPI buffer
(or to retrieve them) using a single procedure call. Unlike simple structured tokens,
extensible structured tokens allow the addition of new data fields. The version of each
field in the structure is recorded in an associated token map so that a specific version
of a program sees only those fields of the structure that are defined for that version.
Also, each field has a defined null value, which lets a process determine whether the
message originator stored a value in the field.

Version and null value information is kept in a separate structure called a token map.
The SSNULL procedure initializes extensible structures based on the information in the
corresponding map, and the SPI procedures process extensible structured tokens
through reference to the map. Token maps have names of the form subsys-MAP-
desc.

To add an extensible structured token to a message, a program specifies the map in
the SSPUT procedure call. The procedure then places the associated structure, not the

Simple tokens Have a simple data item or fixed structure as a value

Extensible structured tokens Have an extensible structure as a value

Zero-length tokens Have no value and consist of a token code only

Header tokens Have values that reside in the SPI message header

ZSPI-TKN-RETCODE The standard SPI return token, whose value is a number
indicating command success or an error

ZCOM-TKN-SUB The subordinate objects command modifier token used by
extended SPI subsystems

ZFUP-TKN-SOURCE-FILE The file name of the source-file parameter for a FUP
command

ZSPI-TKN-ERROR A fixed structure containing a subsystem ID—itself a fixed
structure—and an error number
SPI Programming Manual—427506-007
2-7

SPI Concepts and Protocol Extensible Structured Tokens
map itself, into the buffer. The message recipient retrieves the structure from the
message by specifying its own version of the map in an SSGET call.

These are examples of extensible structured tokens:

Token Maps

Every extensible structured token has an associated token map that contains the null
value and version for each field in the structure.

A token map is an extended form of tag used by the SPI procedures to ensure
compatibility between different versions of extensible structured tokens. It includes a
token number and a token type indicating it is a variable-length extensible structure.

The SSNULL procedure uses token maps to set a structure to its null values, SSPUT
uses token maps to set the maximum field version in the SPI message header for use
in version compatibility checking, and SSGET uses token maps to truncate or pad the
corresponding structure in the buffer to match the value expected by the caller.

The maximum field version in a token map is the most recent version associated with
any of the fields defined in the map. When an application adds an extensible structured
token to a buffer, the SPI procedure SSPUT updates the maximum field version (ZSPI-
TKN-MAX-FIELD-VERSION) in the message header to reflect the most recent version
of any non-null field in any extensible structured token in the buffer. (SSPUT does not
update the maximum field version when it deletes an extensible token from a message,
so following such an operation the maximum field version can actually be greater than
the most recent field version actually in the buffer.)

Only the structure described by a token map is put into a message, never the map
itself. The SSPUT procedure stores the extensible structured token in the buffer as a
typical token with a token type of ZSPI-TYP-STRUCT (token data type ZSPI-TDT-
STRUCT and token length 255) and a token number that matches the number of the
corresponding map.

Null Values

Every field in an extensible structured token is assigned a null value as part of its DDL
structure definition. As a result, any field not assigned a value by a program contains a
known value, and the message recipient can determine whether the sender assigned a
value to a field. The null values for a structure are recorded in the corresponding token

ZPWY-MAP-DEF-PATHWAY An extensible structure containing parameters for
Pathway system configuration

ZFUP-MAP-LOAD-KEYSEQ-OPTS An extensible structure containing options for key-
sequenced destination files for the FUP LOAD
command

ZX25-MAP-INFO-SU An extensible structure containing subdevice
information returned by X25AM
SPI Programming Manual—427506-007
2-8

SPI Concepts and Protocol Zero-Length Tokens
map and placed in the fields of the structure by the SSNULL and SSGET procedures.
A null value is required for every field of an extensible structured token.

The null value specified in the DDL is a single-byte value, defined either as a character
or as an integer in the range 0 to 255. The SPI procedures form the null value for the
corresponding field by concatenating this single-byte value with itself as many times as
necessary to fill the field. So, the null value in the field is seldom equal to the null value
specified in the DDL. (They are equal only when the field is also 1 byte long.) For
example, a DDL null value of 1 for a 16-bit field results in a structure field null value of
257 (1 << 8 + 1).

Because the null values are generated by repetition of a single-byte value, only some
possible values of the field can be null values. For example, a 16-bit integer field
cannot have 1 as its null value because the value 1 cannot be formed by repeating any
single byte.

The fundamental data structures defined by SPI, and therefore also the data types that
are based on them, all have defined null values. You can override these values when
defining structures based on these data types.

Zero-Length Tokens

A zero-length token has no value and consist of a token code only. Some zero-length
tokens are used as markers or delimiters within a message (ZSPI-TKN-LIST, ZSPI-
TKN-SEGLIST, and ZSPI-TKN-ENDLIST, for example). Other zero-length tokens
function as special operation codes in SPI procedure calls (ZSPI-TKN-DATA-FLUSH
and ZSPI-TKN-CLEARERR, for example).

Header Tokens

SPI messages include a header containing a standard set of information. Some header
token values are set by SSINIT when it initializes the buffer. Some header values can
be set or retrieved using the SSGET and SSPUT procedures.

Header tokens differ from tokens in the body of the message in several ways:

 Header tokens are always present in the buffer after it has been initialized.

 Header tokens cannot be deleted or flushed from the buffer.

 Each header token occurs only once in the buffer.

 Header tokens cannot be copied using SSMOVE.

 Header tokens cannot be enclosed in a list.

 Neither the token codes nor the values of header tokens can be retrieved by
scanning the buffer using the SSGET ZSPI-TKN-NEXTCODE and ZSPI-TKN-
NEXTTOKEN operations.

 A program cannot set the current-token pointer to a header token.
SPI Programming Manual—427506-007
2-9

SPI Concepts and Protocol Data Definitions
 The values of header tokens can be retrieved at any time using SSGET, without
changing and regardless of the current position of the buffer pointers.

 Certain special SSGET operations, such as ZSPI-TKN-ADDR and ZSPI-TKN-
OFFSET, cannot be performed on header tokens.

The header tokens in Table 2-1 are described in Token Codes on page 4-31. For their
use in procedure calls, see Section 3, The SPI Procedures.

Data Definitions
Tokens and related data elements (token numbers, token types, values, structures,
fundamental data types, token maps, token codes, and subsystem IDs, for example)
are originally defined using the DDL. The DDL compiler translates these definitions into
each of the programming languages that support SPI (C, COBOL, TACL, and TAL). HP
supplies these files to its customers as part of the operating system.

Table 2-1. SPI Header Tokens

Header Token Contents

ZSPI-TKN-BUFLEN Buffer length

ZSPI-TKN-CHECKSUM Checksum flag

ZSPI-TKN-COMMAND Command number

ZSPI-TKN-HDRTYPE Header type

ZSPI-TKN-LASTERR Error number of the last nonzero SPI procedure
error

ZSPI-TKN-LASTERRCODE Token code from the last SPI call with a nonzero
error

ZSPI-TKN-LASTPOSITION Position of last token added by SSPUT

ZSPI-TKN-MAX-FIELD-VERSION Most recent version of any non-null extensible
structure field

ZSPI-TKN-MAXRESP Maximum response records per message

ZSPI-TKN-OBJECT-TYPE Object-type number

ZSPI-TKN-POSITION Current token position for SSGET

ZSPI-TKN-SERVER-VERSION Server version

ZSPI-TKN-SSID Subsystem ID specified in SSINIT call

ZSPI-TKN-USEDLEN Number of bytes used in the buffer
SPI Programming Manual—427506-007
2-10

SPI Concepts and Protocol Naming Conventions
Naming Conventions

SPI data definitions have names of this form.

subsys

is a four-character abbreviation that identifies the subsystem that defined the item.
Some subsystems declare many of their own definitions in addition to the common
definitions that are used by most subsystems (such as those defined by SPI and
EMS). All subsys abbreviations beginning with an uppercase or lowercase Z are
reserved for HP definitions. Some examples of subsys abbreviations are:

type

is a three-character mnemonic that indicates the type of data object that the name
represents: a value, object type, or command, for example. The most commonly
used mnemonics and the types they represent are:

subsys-type-description (in DDL and COBOL)
subsys^type^description (in TAL and TACL)
subsys_type_description (in C)

ZSPI Common Subsystem Programmatic Interface definitions

ZCOM Common SPI extended definitions

ZEMS Common Event Management Service definitions

ZSCP Subsystem Control Point definitions

ZEXP Expand definitions

ZX25 X25AM definitions

CMD Command numbers

DDL Data Definition Language (DDL) data-structure definitions

ENM Level 89 items in an enumerated declaration

ERR Error numbers

EVT Event numbers

MAP Extensible structured tokens

OBJ Object-type numbers

SSN Subsystem numbers

TDT Token data types

TKN Token codes
SPI Programming Manual—427506-007
2-11

SPI Concepts and Protocol Examples of Definition Names
description

is an expression describing the function or meaning of the item. For example,
OBJNAME has something to do with the name of an object, and PATH-SWITCH-
CAUSE has something to do with the reason for a path change.

This part of the definition name can contain additional separators (-,^, or _).

Examples of Definition Names

ZSPI-CMD-GETVERSION

is the command number for the GETVERSION command that can be implemented
by any subsystem:

ZSCP^ERR^NO^BKUP

is a TAL implementation of the error number for the no-backup-process error
implemented by the SCP subsystem:

ZCDG-VAL-SSID

is a value representing the subsystem ID of the common communications
diagnostics definitions:

ZCOM-TKN-OBJNAME

is a common token used to convey the name an object:

TNM Token numbers

TYP Token types

VAL Token values

subsys ZSPI (a common SPI definition)

type CMD (a command number)

description GETVERSION (the GETVERSION command)

subsys ZSCP (a Subsystem Control Point definition)

type ERR (an error number)

description NO^BKUP (error related to absence of a backup process)

subsys ZCDG (a common communications diagnostics definition)

type VAL (a value)

description SSID (subsystem ID)
SPI Programming Manual—427506-007
2-12

SPI Concepts and Protocol Definition Files Supplied by HP
Definition Files Supplied by HP

The data definitions provided by HP for the NonStop server are distributed in standard
definition files, normally located in $release-vol.ZSPIDEF.* (although they can be
placed elsewhere). The file names begin with the 4-character subsystem abbreviation
subsys; for example, ZSPIDDL, ZEMSDDL, and ZCOMDDL. Language-specific files
for TAL, COBOL, TACL, and C are generated from each DDL file. They have names
like ZSPITAL, ZSPICOB, ZSPITACL, and ZSPIC. An Expand management application
written in TAL might require these files:

SPI Message Buffer
SPI messages are composed in a specially allocated block of memory called an SPI
buffer. An SPI buffer consists of a header, which contains message information
common to all command and response messages, and a variable-length body
containing message tokens. The logical structure of an SPI buffer is shown in
Figure 2-3 on page 2-14.

subsys ZCOM (an extended SPI definition)

type TKN (a token code)

description OBJNAME (value conveyed by token: an object name)

ZSPIDEF.ZSPITAL Definitions common to all subsystems

ZSPIDEF.ZCOMTAL Definitions for common SPI extensions

ZSPIDEF.ZEMSTAL Event (EMS) definitions common to all subsystems

ZSPIDEF.ZEXPTAL Expand definitions
SPI Programming Manual—427506-007
2-13

SPI Concepts and Protocol Message Header
The SPI procedure SSINIT initializes an SPI buffer and places values in header
tokens. SSPUT puts tokens into a buffer, and SSGET retrieves token values from a
buffer. Section 3, The SPI Procedures, describes the SPI procedures.

All modifications of an SPI buffer must be performed using the SPI procedures. SPI
buffers contain many specialized data structures and can be corrupted if manipulated
in any other way.

Message Header

The two types of SPI messages are: messages containing commands or responses,
and messages reporting events. A header token in each SPI message specifies
whether the message is a command/response message or an event message. This
manual describes command/response messages. For information about event
messages and the event message header, see the EMS Manual.

The header portion of a command/response buffer contains:

 A header type indicating a command/response message

 The length of the message buffer

Figure 2-3. The SPI Buffer

VST007.vsd

Message Header

H

Legend

An SPI buffer or message

H The SPI message header

Tn A token with ID number n

Message Body

Used Length

Buffer Length

Tokens

 H T1 T2 T2 T8

VST007.vsd

Message Header

H

Legend

An SPI buffer or message

H The SPI message header

Tn A token with ID number n

Message Body

 Used Length

Buffer Length

Tokens

 H T1 T2 T2 T8
SPI Programming Manual—427506-007
2-14

SPI Concepts and Protocol Message Body
 The maximum version of any field in any extensible structure in the buffer

 The subsystem ID of the server

 The server version

 The maximum number of response records the server is allowed to return

 The command number

 The object-type to which the command is applied

 A flag indicating the status of checksum protection

 The number of the last nonzero error returned by an SPI procedure

 The token code involved in the last SPI call that returned a nonzero status

 The current token position for SSGET

 The position of the last token added by SSPUT

 The number of used bytes in the buffer

Each of these values is stored as the value of a header token. For a description of
these special tokens, see Header Tokens on page 2-9.

Message Body

The body of the message contains tokens added by SSPUT. Although the same
header tokens are present in every command/response message, the tokens in the
message body vary depending on the command and on the specific implementation of
that command by a particular subsystem. The exact contents of a command message
and its associated response message for a particular subsystem are described in the
subsystem’s management programming manual.

A particular token can appear more than once in the message, though multiple
occurrences are not necessarily contiguous.

Tokens in the message body can be grouped into lists. A list is a group of tokens that is
bracketed by special list-delimiting tokens—a list starts with ZSPI-TKN-LIST,
-DATALIST, -ERRLIST, or -SEGLIST, and ends with ZSPI-TKN-ENDLIST. Lists are
used to group tokens that logically belong together, such as all the tokens containing
response information about one object or all the tokens describing an error. For the
four types of SPI lists, the generic list, the data list, the error list, and the segment list,
see Lists on page 2-19.

Buffer Length

The initial size of an SPI buffer is determined by the buffer-length parameter of the
SSINIT procedure, which initializes the specified number of bytes. The size can be
modified using SSPUT with the header token ZSPI-TKN-BUFLEN or with the special
operation code ZSPI-TKN-RESET-BUFFER. All NonStop Kernel subsystems
SPI Programming Manual—427506-007
2-15

SPI Concepts and Protocol Used Length
recommend a buffer size that can accommodate the largest command or response
supported by the subsystem. These recommended buffer sizes have names of the
form
subsys-VAL-BUFLEN.

Used Length

Few command and response messages occupy the entire allocated buffer. You can
determine how many bytes actually contain message information by using the SSGET
procedure to retrieve the value of the header token ZSPI-TKN-USEDLEN. This lets
you, for example, send only the used portion of the buffer to a server.

Buffer Pointers

Four pointers track four important token positions in each buffer:

 The current token

 The next token

 The last-put token

 The current list

The Current-Token Pointer

The current-token pointer contains the position of the token most recently selected
using SSGET. This pointer is stored in the header token ZSPI-TKN-POSITION. SSINIT
sets the current token pointer to the beginning of the buffer, immediately following the
header and preceding any nonheader token. Thereafter, the current-token pointer is
updated by any successful call to SSGET or SSMOVE, and can be explicitly set by a
call to SSPUT using one of the special token codes ZSPI-TKN-POSITION,
ZSPI-TKN-INITIAL-POSITION, or ZSPI-TKN-RESET-BUFFER. Its value can be
retrieved by calling SSGET with ZSPI-TKN-POSITION. The current-token pointer
never points to a header token. The current-token pointer is not updated when SSGET
retrieves a header token value or when a nonzero error is returned by an SPI
procedure.

The Next-Token Pointer

The next-token pointer contains the position where SSGET starts scanning the buffer if
it is called with an index value of 0. SSINIT sets the next-token pointer to the beginning
of the buffer, immediately following the header. Thereafter, whenever a token value is
retrieved, the next-token pointer is set to the token following the value retrieved. If
SSGET is used to retrieve a token code rather than a token value—when SSGET is
called using the ZSPI-TKN-NEXTCODE or ZSPI-TKN-NEXTTOKEN special
operations—the next-token pointer is set to the retrieved token code so that an SSGET
call specifying that token code retrieves that token’s value. The next-token pointer
never points to a header token, and is not changed when SSGET retrieves a header
SPI Programming Manual—427506-007
2-16

SPI Concepts and Protocol Buffer Pointers
token value. The next-token pointer is an internal buffer management position and
cannot be explicitly retrieved by an application.

The Last-Put-Token Pointer

The last-put-token pointer contains the position of the last token added to the buffer by
the SSPUT procedure, and is stored in the header token ZSPI-TKN-LASTPOSITION.
Its value can be retrieved by calling SSGET with ZSPI-TKN-LASTPOSITION. An
application can store this value and later return to the same location in the buffer by
using SSPUT to restore this value to the ZSPI-TKN-POSITION header token.

The Current-List Pointer

The current-list pointer always points to the currently selected list. If no list is selected,
this pointer is set to null.

Pointer Manipulation

Figure 2-4 on page 2-18 demonstrates how basic procedure calls affect the buffer
pointers. It shows a sequence of procedure calls and the resulting pointer movements:

1. The SSINIT call resets both the current-token and next-token pointers to the
beginning of the buffer, and the last-put-token pointer is null.

2. Four consecutive calls to SSPUT add four tokens to the buffer (Token T3 appears
twice.) After each call, the last-put-token pointer is updated.

3. When the buffer is reset, both the current-token and next-token pointers are reset
to the beginning of the buffer, and the last-put-token pointer is null.

4. The first SSGET call retrieves the value of token T1. The next-token pointer is set
to token T2. This is where the next SSGET starts searching the buffer the next time
it is called, unless a positive index is specified.

5. The next SSGET call uses the special operation ZSPI-TKN-NEXTTOKEN to
retrieve the token code of the next token in the buffer. Because only the token
code—not the token value—is retrieved, the next-token pointer remains at token
T2 with the current-token pointer. This allows the next call, which specifies the
token code just retrieved, to get the value for that token.

6. The third SSGET call retrieves the value for token T2, and the next-token pointer is
advanced.

7. The last SSGET call uses the index parameter to retrieve the value of the second
occurrence of token T3. The next-token pointer is now past all tokens in the buffer,
so another call to SSGET without any index parameter fails to find a token.

The procedure call series in Figure 2-4 is performed by the TAL program in
Example E-1 on page E-5 and the C program in Example E-2 on page E-7.
SPI Programming Manual—427506-007
2-17

SPI Concepts and Protocol Buffer Checksum
Buffer Checksum

The SPI buffer contains a checksum that the SPI procedures can use to detect
corruption of the buffer contents.

Figure 2-4. Pointer Manipulation Examples

C
P

N

VST008.vsd

H

 T1 T2H

 T1 T2 T3 T3H

 T1 T2 T3 T3H

 T1 T2 T3 T3H

 T1H

 C
 N

 C
 N

 P

 P C
 N

 T1 T2 T3H

 P C
 N

 T1 T2 T3 T3H

 C
 N

 P

 P

 C N P

 C
 N

 P

 T1 T2 T3 T3H

 C N P

 C
 N

 T1 T2 T3 T3H

Legend

Current-Token Pointer
C P

Last-Put-Token Pointer
N

Next-Token Pointer

This sequence of procedure
calls demonstrates how the SPI
procedures manipulate the
current-token, next-token and
last-put-token pointers.

7

10

2 SSPUT (...,T1...)

3 SSPUT (...,T2...)

4 SSPUT (...,T3...)

5 SSPUT (...,T3...)

1 SSINIT (buffer,...)

6 SSPUT (...,ZSPI-TKN-RESET-BUFFER,...)

SSGET (...,T1,...)

8 SSGET (...,ZSPI-TKN-NEXTTOKEN,...)

SSGET (...,T3,2,...)

9 SSGET (...,T2,...)
SPI Programming Manual—427506-007
2-18

SPI Concepts and Protocol Lists
When so directed, each SPI procedure updates the checksum after any modification of
the buffer. Each time an SPI procedure is called, it first recomputes the checksum and
compares it against the checksum stored in the buffer. If they do not match, the
procedure reports a checksum error, indicating that the buffer has been corrupted
since the last SPI procedure call.

By default, SPI does not calculate buffer checksums. To enable checksum protection,
use SSINIT or SSPUT to set the header token ZSPI-TKN-CHECKSUM to a nonzero
value.

Lists
Lists are used in SPI response messages to organize tokens into logical groups. Lists
appear only in response messages, not in command messages. Lists can be nested—
lists can contain other lists. The four types of lists are:

Normally, to access tokens in a list, a program must select the list token that marks the
beginning of the list. To exit from a list, the program must select the corresponding
ENDLIST token. (The exception is the SSGET NEXTTOKEN special operation.) For
more information about lists, see Working With Lists on page 5-5.

Data Lists

Data lists are used in response messages to delimit response records. When a
command is applied to more than one object, the tokens describing the results are
returned in data lists, one list for each object. By default, response tokens for a
command that is applied to a single object are not returned in a data list. However,
even in this case a requester can have the response record returned in a data list by
using SSINIT or SSPUT to assign a value of 1 to the header token ZSPI-TKN-
MAXRESP. A data list consists of all tokens between ZSPI-TKN-DATALIST and the
corresponding ZSPI-TKN-ENDLIST.

Error Lists

Error lists contain tokens describing an error that occurred during command
processing. SPI requires that certain information be included in error lists. For a full
description of error list structure and contents, see Errors and Warnings on page 2-47.
An error list consists of all tokens between ZSPI-TKN-ERRLIST and the corresponding
ZSPI-TKN-ENDLIST.

Data Lists (ZSPI-TKN-DATALIST…ZSPI-TKN-ENDLIST)

Error lists (ZSPI-TKN-ERRLIST…ZSPI-TKN-ENDLIST)

Segment lists (ZSPI-TKN-SEGLIST…ZSPI-TKN-ENDLIST)

Generic Lists (ZSPI-TKN-LIST…ZSPI-TKN-ENDLIST)
SPI Programming Manual—427506-007
2-19

SPI Concepts and Protocol Segment Lists
Segment Lists

SPI servers use segment lists to build segmented responses. Tokens in a segmented
response are divided into repeating and nonrepeating groups, and each repeating
group is enclosed in a segment list. For more information, see Segmented Responses
on page 2-38. A segment list consists of all tokens between ZSPI-TKN-SEGLIST and
the corresponding ZSPI-TKN-ENDLIST.

Generic Lists

Generic lists are provided for use in customer-developed subsystems. NonStop Kernel
subsystems provided by HP do not use generic lists in commands or responses. An
SPI server can use generic lists whenever necessary to organize response tokens. A
generic list consists of all tokens between ZSPI-TKN-LIST and the corresponding
ZSPI-TKN-ENDLIST.

Pointer Manipulation and Lists

Figure 2-5 on page 2-22 demonstrates how basic procedure calls affect the buffer
pointers when working in and around lists. It shows a sequence of procedure calls and
the resulting pointer changes. Although the figure shows a data list, the demonstrated
behavior applies to all list types:

1. The data portion of the buffer contains eight tokens (T1…T6, ZSPI-TKN-DATALIST,
and ZSPI-TKN-ENDLIST) with tokens T3, T4, and T5 in the data list. The SSPUT
special operation ZSPI-TKN-RESET-BUFFER resets both the current-token and
next-token pointers to the beginning of the buffer. The current-list pointer remains
null until a list is selected.

2. The first SSGET call retrieves token T1.

3. The second SSGET call retrieves token T2.

4. The third SSGET call asks for token T3. Because SSGET cannot access tokens
within a list until the corresponding list token is selected, the token is not found.
ZSPI-ERR-MISTKN is returned and the pointers are unchanged.

5. The fourth SSGET call enters the data list by selecting the list token. The current
list pointer is now defined, and the current-token and next-token pointers point to
ZSPI-TKN-DATALIST. SSGET can now retrieve tokens from inside the list.

6. Now that the list has been selected, SSGET can retrieve token T3 from in the list.
The current-token and next-token pointers are updated in the list.

7. The next SSGET call retrieves token T5 from in the list.

8. The seventh SSGET call asks for token T6, which is in the buffer but not in the
current list. SSGET returns ZSPI-ERR-MISTKN, and the pointers are unchanged.

9. The next SSGET call exits from the list by selecting the end list token ZSPI-TKN-
ENDLIST.
SPI Programming Manual—427506-007
2-20

SPI Concepts and Protocol Pointer Manipulation and Lists
10. Having exited the list and returned to the top level of the buffer, SSGET retrieves
token T6.

The procedure call series in Figure 2-5 are performed by the TAL program in
Example E-3 on page E-10 and the C program in Example E-4 on page E-13.
SPI Programming Manual—427506-007
2-21

SPI Concepts and Protocol Pointer Manipulation and Lists
Figure 2-5. Pointer Manipulation and Lists

 T1 T2 [T3 T4 T5] T6H

 T1 T2 [T3 T4 T5] T6H

 T1 T2 [T3 T4 T5] T6H

 T1 T2 [T3 T4 T5] T6H

 C
 N

 T1 T2 [T3 T4 T5] T6H

 T1 T2 [T3 T4 T5] T6H

 C
 N L

 T1 T2 [T3 T4 T5] T6H

Legend

This sequence of procedure
calls demonstrates how the
SPI procedures manipulate the
current-token, next-token and
current-list pointers.

7

10

2 SSGET (...,T1,...)

3 SSGET (...,T2,...)

4 SSGET (...,T3,...)

6 SSGET (...,T3,...)

SSGET (...,T5,...)

8 SSGET (...,T6,...)

SSGET (...,T6,...)

1 SSPUT (...,ZSPI-TKN-RESET-BUFFER,...)

 T1 T2 [T3 T4 T5] T6H

 C N

 C N

 C N

5 SSGET (...,ZSPI-TKN-DATALIST,...)

 T1 T2 [T3 T4 T5] T6H

 L C N

 L C N

 L C N

9 SSGET (...,ZSPI-TKN-ENDLIST,...) T1 T2 [T3 T4 T5] T6H

 C N

 C N

N
Next-Token PointerCurrent-Token Pointer

C L
Current-List Pointer

[ZSPI-TKN-DATALIST] ZSPI-TKN-ENDLIST VST009.vsd
SPI Programming Manual—427506-007
2-22

SPI Concepts and Protocol Pointers, Lists, and ZSPI-TKN-NEXTTOKEN
Pointers, Lists, and ZSPI-TKN-NEXTTOKEN

Figure 2-6 on page 2-24 shows the behavior of SSGET special operation ZSPI-TKN-
NEXTTOKEN when working in and around lists. It demonstrates a sequence of
procedure calls and the resulting pointer changes. Although the figure shows a data
list, the demonstrated behavior applies to all list types:

1. The data portion of the buffer contains seven tokens (T1, T2, two occurrences of
T3, T4, ZSPI-TKN-DATALIST, and ZSPI-TKN-ENDLIST) with tokens T2 and T3
inside the data list. The SSPUT special operation ZSPI-TKN-RESET-BUFFER
resets both the current-token and next-token pointers to the beginning of the buffer.
The current-list pointer remains null until a list is selected.

2. The first SSGET call asks for the next token in the buffer, and retrieves token T1.

3. The next SSGET asks for the next token in the buffer, and retrieves the list token
ZSPI-TKN-DATALIST. The current-token and next-token pointers are set to this
token and, because the list token was selected, the current-list pointer is defined.

4. The next SSGET call retrieves the next token, now from within the list.

5. Because SSGET is working within the list, an attempt to retrieve a token outside
the list fails with error ZSPI-ERR-MISTKN, and the pointers are unchanged.

6. An SSGET call uses the index parameter to retrieve the second occurrence of
token T3 from within the list.

7. The next token in the buffer is ZSPI-TKN-ENDLIST, and by selecting it SSGET
exits the list.

8. Outside the list now, SSGET can retrieve token T4.

9. Token T4 is the last token in the buffer, so a call to SSGET asking for the next
token returns error ZSPI-ERR-MISTKN.

The procedure call series in Figure 2-6 is performed by the TAL program in
Example E-5 on page E-15 and the C program in Example E-6 on page E-19.
SPI Programming Manual—427506-007
2-23

SPI Concepts and Protocol Pointers, Lists, and ZSPI-TKN-NEXTTOKEN
Figure 2-6. Pointers, Lists, and ZSPI-TKN-NEXTTOKEN

4

5

7

9

VST010.vsd

Legend

N
Next-Token PointerCurrent-Token Pointer

C L
Current-List Pointer

[ZSPI-TKN-DATALIST] ZSPI-TKN-ENDLIST

 T1 [T2 T3 T3] T4H

 T1 [T2 T3 T3] T4H

 T1 [T2 T3 T3] T4H

 C
 N

 T1 [T2 T3 T3] T4H

 T1 [T2 T3 T3] T4H

 T1 [T2 T3 T3] T4H

 T1 [T2 T3 T3] T4H

 C
 N L

L

 T1 [T2 T3 T3] T4H

 L C N

 T1 [T2 T3 T3] T4H

 C
 N

C
N

L C
N

C
N

C
N

C
N

1 SSPUT (...,ZSPI-TKN-RESET-BUFFER,...)

2 SSGET (...,ZSPI-TKN-NEXTTOKEN,...)

SSGET (...,ZSPI-TKN-NEXTTOKEN,...)3

SSGET (...,ZSPI-TKN-NEXTTOKEN,...)

SSGET (...,T4,...)

SSGET (...,T3,,2,...)

SSGET (...,ZSPI-TKN-NEXTTOKEN,...)

SSGET (...,ZSPI-TKN-NEXTTOKEN,...)

SSGET (...,ZSPI-TKN-NEXTTOKEN,...)

This sequence of
procedure calls
demonstrates the effect of
the special operation
ZSPI-TKN-NEXTTOKEN
on the buffer pointers
when working with lists. 6

8

SPI Programming Manual—427506-007
2-24

SPI Concepts and Protocol Pointers, Lists, and ZSPI-TKN-NEXTCODE
Pointers, Lists, and ZSPI-TKN-NEXTCODE

Figure 2-7 on page 2-26 shows the behavior of SSGET special operation ZSPI-TKN-
NEXTCODE in the same buffer scanned with ZSPI-TKN-NEXTTOKEN in Figure 2-6 on
page 2-24. It demonstrates a sequence of procedure calls and the resulting pointer
movements. Although the figure shows a data list, the demonstrated behavior applies
to all list types:

1. The data portion of the buffer contains seven tokens (T1, T2, two occurrences of
T3, T4, ZSPI-TKN-DATALIST, and ZSPI-TKN-ENDLIST) with tokens T2 and T3
inside the data list. The SSPUT special operation ZSPI-TKN-RESET-BUFFER
resets both the current-token and next-token pointers to the beginning of the buffer.
The current-list pointer remains null until a list is selected.

2. The first SSGET call asks for the next token code in the buffer, and retrieves token
code T1.

3. The next SSGET call asks for the next different token code in the buffer, and
retrieves the list token ZSPI-TKN-DATALIST. However, unlike ZSPI-TKN-
NEXTTOKEN, the NEXTCODE special operation does not select the list.

4. Because the list was not selected, the next SSGET call ignores the contents of the
list and retrieves token T4, the next different token at the top level.

5. SSGET is called to select the list token and enter the list. An index parameter of 1
is specified to ensure that SSGET scans from the beginning of the buffer.

6. Now within the list, SSGET NEXTCODE retrieves the next different token code T2.

7. The same call repeated retrieves token T3.

8. The next call retrieves ZSPI-TKN-ENDLIST.

9. Because SSGET is still in the list, it cannot retrieve token T4, which is outside the
list. SSGET returns error ZSPI-ERR-MISTKN, and the pointers are unchanged.

The procedure call series in Figure 2-7 is performed by the TAL program in
Example E-7 on page E-22 and the C program in Example E-8 on page E-25.
SPI Programming Manual—427506-007
2-25

SPI Concepts and Protocol Pointers, Lists, and ZSPI-TKN-NEXTCODE
Figure 2-7. Pointers, Lists, and ZSPI-TKN-NEXTCODE

VST011.vsd

This sequence of
procedure calls
demonstrates the
effect of the
special operation
ZSPI-TKN-
NEXTCODE
 on the buffer
pointers when
working with lists.

 T1 [T2 T3 T3] T4H

 C
 N

1 SSPUT (...,ZSPI-TKN-RESET-BUFFER,...)

 T1 [T2 T3 T3] T4H

 C
 N

2 SSGET (...,ZSPI-TKN-NEXTCODE,...)

 C
 N

 T1 [T2 T3 T3] T4HSSGET (...,ZSPI-TKN-NEXTCODE,...)3

C
N

4 SSGET (...,ZSPI-TKN-NEXTCODE,...) T1 [T2 T3 T3] T4H

 C
 N L

SSGET (...,ZSPI-TKN-DATALIST,,1,...)5 T1 [T2 T3 T3] T4H

C
N

L

 T1 [T2 T3 T3] T4H7 SSGET (...,ZSPI-TKN-NEXTCODE,...)

C
N

L

 T1 [T2 T3 T3] T4H SSGET (...,ZSPI-TKN-NEXTCODE,...)8

L

 T1 [T2 T3 T3] T4H

C
N

9 SSGET (...,T4,...)

Legend

N
Next-Token PointerCurrent-Token Pointer

C L
Current-List Pointer

[ZSPI-TKN-DATALIST] ZSPI-TKN-ENDLIST

 T1 [T2 T3 T3] T4H

 L C
 N

SSGET (...,ZSPI-TKN-NEXTCODE,...)6
SPI Programming Manual—427506-007
2-26

SPI Concepts and Protocol Commands
Commands
A command directs an SPI server to perform an action on one or more objects. The
action can affect the objects in some way or might just retrieve information about the
objects.

The command in an SPI request is identified by a command number, which the
requester specifies in the SSINIT procedure call that initializes the message. SSINIT
stores the command number in the header token ZSPI-TKN-COMMAND. Command
numbers have names of the form subsys-CMD-command.

Basic SPI defines a single command number, ZSPI-CMD-GETVERSION. Additional
common commands are defined by the SPI extensions described in the SPI Common
Extensions Manual. Other commands are defined by individual subsystems and
described in the subsystem management programming manuals.

GETVERSION Command

The GETVERSION command returns basic server version information. SPI recognizes
two forms of the command: a basic GETVERSION command and an extended
command.

The Basic GETVERSION Command

A basic GETVERSION command contains the null object type (specifies ZSPI-VAL-
NULL-OBJECT-TYPE for the object type in the SSINIT call). In its response, a server
returns its version in the ZSPI-TKN-SERVER-VERSION header token and a server
identification string in the response token ZSPI-TKN-SERVER-BANNER. (See the
description of ZSPI-TKN-SERVER-BANNER for the format of the server ID string.)

The response can also contain any of:

 Additional SERVER-BANNER tokens declaring the versions of various subsystem
components. (The first instance of the token always declares the version of the
server specified by the subsystem ID in the command.)

 One or more ZSPI-TKN-IPM-ID tokens to identify interim product modifications that
have modified the interface to the subsystem.

A single call to SSINIT, specifying ZSPI-CMD-GETVERSION for the command and
ZSPI-VAL-NULL-OBJECT-TYPE for the object type parameter, is sufficient to prepare
a basic GETVERSION command—no additional tokens are required.

All SPI servers support this basic GETVERSION command.
SPI Programming Manual—427506-007
2-27

SPI Concepts and Protocol Responses
Extended GETVERSION Commands

A subsystem can provide additional features in its implementation of the
GETVERSION command:

 The subsystem can allow the requester to specify a particular object type other
than NULL in order to retrieve the version of some subsystem component.

 The subsystem can allow additional tokens in the command which prompt the
subsystem for additional information describing specific features supported by the
subsystem.

Responses
Every command sent to an SPI server results in a response. These terms and
concepts are central to understanding SPI responses:

 Response—the sum of all information that an SPI server returns to the requester
as a result of processing a command. This information can be returned in a single
response message, or might require several response messages.

 Response message—a single SPI message sent from an SPI server to the
requester to describe the outcome of command processing. A response message
can contain a single response record, multiple response records, or, in the case of
a segmented response, only part of a response record.

 Response record—all information describing the application of a command to a
single object, or, if an error in the command prevented it from being applied to any
object, the response record contains general error information.

Types of Responses

Several types of responses result from various combinations of response records and
response messages:

Response
Type Consists of... Page

Simple One response record returned in a single response message. 2-29

Multirecord Multiple response records returned in a single response message. 2-30

Continued One or more response records returned in multiple response
messages.

2-34

Segmented A single response record returned a piece at a time in multiple
response messages (special form of continued response).

2-38

Empty Only the return code token. Also sometimes returned as the last
message in a continued response. (Special form of simple
response.)

2-41
SPI Programming Manual—427506-007
2-28

SPI Concepts and Protocol Simple Responses
A requester controls the type of response—within the capabilities of the server—by
specifying some combination of these parameters:

 The number of objects to which the command is applied, which can be affected by
the use of wild cards in the object name or the use of subsystem-defined command
modifiers. A command applied to a single object can result only in a simple or a
segmented response.

 The maximum number of response records allowed in a response message, stored
in the header token ZSPI-TKN-MAXRESP. If the requester allows only one record
per message, a given number of response records requires a continued response
consisting of multiple messages, whereas the same number of records might have
been returned in a single message if multiple records per message were allowed
and the buffer was large enough.

 The size of the message buffer, which can determine if a single response message
suffices, or if a continued response is required.

 The type of response records to be returned, as specified in the token ZSPI-TKN-
RESPONSE-TYPE. The number of records returned can be greatly reduced by
requesting only records that report errors or warnings, if appropriate.

 The specification of ZSPI-VAL-ALLOW-SEGMENTS as a value for ZSPI-TKN-
ALLOW, thereby allowing a segmented response.

Simple Responses

A simple response consists of a single response record returned in a single response
message.

A server generates a simple response when:

 The server successfully applies a command to a single object, the response record
fits in the message buffer, and the requester has asked for normal responses. In
this case, the server returns a single response record containing the return code
and a server-defined set of tokens. If the requester asks for error or warning
response records only, the server returns an empty response. If the response
record does not fit in the buffer, the server might be able to generate a segmented
response. If the response record is too long but the server does not support
segmented responses, the server returns an error.

 The server detects an error in a command directed to one or more objects which
prevents the command from being applied to any object. In this case, the server
returns a single response record containing a nonzero return code and at least one
error list.

 The server cannot apply an otherwise valid command to the object specified in the
command. In this case, the server returns a single response record containing a
nonzero return code and at least one error list.
SPI Programming Manual—427506-007
2-29

SPI Concepts and Protocol Multirecord Responses
Multirecord Responses

When a command is applied to more than one object, the server returns multiple
response records (unless the requester suppresses response records; see
Suppressing Response Records on page 2-43). In this case, message traffic can be
reduced by having the server return more than one response record in each response
message. The requester controls the number of response records in each response by
assigning a value to the header token ZSPI-TKN-MAXRESP.

The value of ZSPI-TKN-MAXRESP indicates the maximum number of response
records the requester will accept in a single response message. The requester can
specify these values:

Not all subsystems support multirecord response messages. However, all NonStop
Kernel subsystems recognize the MAXRESP parameter to SSINIT and the MAXRESP
token.

Each command message carries its own MAXRESP value; the server does not retain
this value for use with subsequent commands.

Each response record contains its own return code.

Warning information that pertains to the command itself, rather than to the action of the
command on a particular object, is not repeated in every response record if there are
multiple response records per response. Any command-related warnings appear only
in the first response record in the sequence.

0 Lets the server return one response record per response message,
with the record not enclosed in a data list. (Default)

Figure 2-8

n > 0 Lets the server return as many as n response records in the response
message, with each record enclosed in a data list. This is a limit and
not an absolute value—the server might return fewer than n records in
the message.

Figure 2-9

–1 Lets the server return as many response records as will fit in the
buffer, with each record enclosed in a data list.

Figure 2-10
SPI Programming Manual—427506-007
2-30

SPI Concepts and Protocol Multirecord Responses
Figure 2-8 shows how a requester returns response records when the MAXRESP
header token is allowed to default to 0. Only one response record is returned in each
response message, and this record in not enclosed in a data list. If the command is
applied to more than one object, each response record is returned in a separate
response message, each but the last of which includes the context token, following the
standard protocol for command continuation.

Figure 2-8. ZSPI-TKN-MAXRESP = 0 (Default)

VST012.vsd

The server returns one response record in each response message. Response records are not
enclosed in data lists.

H Ra T1a T2a

Example: MAXRESP = 0 and one object qualifies for processing:

The server returns one message containing one response record (not in a datalist).

Example: MAXRESP = 0 and five objects (a through e) qualify for processing:

H Ra T1a T2a C

H Rd T1d T2d C

H Rb T1b T2b C

H Rc T1c T2c C

H Re T1e T2e

The server returns five messages, each containing one response record (not in a list).

Legend

Rx ZSPI-TKN-RETCODE for object x C ZSPI-TKN-CONTEXT

H Message header Tn x Token n describing object x
SPI Programming Manual—427506-007
2-31

SPI Concepts and Protocol Multirecord Responses
Figure 2-9 shows how a requester returns response records when the MAXRESP
header token is set to a positive integer, n. The server returns as many as n response
records in each response message, with each record enclosed in a data list. If more
than one message is needed to return all the response records, the server follows the
standard protocol for command continuation until all records are returned.

Figure 2-9. ZSPI-TKN-MAXRESP > 0

VST013.vsd

The server returns as many as n response records in each response message. Each response record is
contained in a separate data list.

H [Ra T1a T2a]

Example: MAXRESP = -1 and one object qualifies for processing:

The server returns one message containing one response record in a datalist.

Example: MAXRESP = -1 and five objects (a through e) qualify for processing:

H [Ra T1a T2a] [Rb T1b T2b] C

H [Rc T1c T2c] [Rd T1d T2d] C

H [Re T1e T2e]

The server returns two response records in the first response message, two in the
second and the fifth response record in the third message.

Legend

Rx ZSPI-TKN-RETCODE for object x

H Message header
Tnx Token n describing object x

C ZSPI-TKN-CONTEXT
 [ZSPI-TKN-DATALIST
] ZSPI-TKN-ENDLIST
SPI Programming Manual—427506-007
2-32

SPI Concepts and Protocol Multirecord Responses
Figure 2-10 shows how a requester returns response records when the MAXRESP
header token is set to –1. The server returns as many response records in each
response message as fit in the buffer. Each record is enclosed in a data list. If more
than one message is needed to return all the response records, the server follows the
standard protocol for command continuation until all records are returned.

Figure 2-10. ZSPI-TKN-MAXRESP = –1

VST014.vsd

The server returns as many response records in each response message as fit in the buffer. Each
response record is contained in a separate data list.

H [Ra T1a T2a]

Example: MAXRESP = -1 and one object qualifies for processing:

The server returns one message containing one response record in a datalist.

Example: MAXRESP = -1 and five objects (a through e) qualify for processing:

H [Rd T1d T2d] [Re T1e T2e]

The server returns three response records in the first response message (the fourth does

not fit) and two in the second.

Legend

Rx ZSPI-TKN-RETCODE for object x

H Message header
Tnx Token n describing object x

C ZSPI-TKN-CONTEXT
 [ZSPI-TKN-DATALIST
] ZSPI-TKN-ENDLIST

H [Ra T1a T2a] [Rb T1b T2b] [Rc T1c T2c] C
SPI Programming Manual—427506-007
2-33

SPI Concepts and Protocol Continued Responses
Continued Responses

Many subsystems let a single command be applied to multiple objects, in which case
the server returns a separate response record for each object. If the server cannot
return records for all selected objects, either because the buffer is too small or the
requester is using ZSPI-TKN-MAXRESP to limit the number of records that can be
returned, the server stops processing objects and returns the completed records along
with the context token ZSPI-TKN-CONTEXT. That one response message completes
the requester-server interaction from the perspective of the interprocess
communication mechanism (such as the file system), and the requester must send
another command to have the server continue processing the remaining objects.

The requester includes the context token in the followup command to tell the server
where to continue processing. The requester copies the context token from the
previous response message to a duplicate of the original command and sends the
command with context back to the server. The server uses the information that it stored
in the context token to resume processing with the next object.

The use of the context token lets subsystems be context-free—that is, independent of
any processing that occurred before the current command. A context-free server lets
the requester interrupt or abandon the continuation of a series of replies. Most
NonStop Kernel subsystems are context-free. A context-sensitive server retains
information about previous processing. Context-sensitive servers limit or complicate
the requester’s ability to interrupt or abandon continuation. When practical, servers
should be designed to be context-free.

In the continuation command, the command and parameters must be identical to those
sent in the original command; otherwise, the results are unpredictable. Because the
values of some tokens in the response message might not be appropriate for the
continuation command, your application should not reuse the response message.
Instead, the requester should save a copy of the original command message, copy the
context token from the response into the duplicate command, and resend.

This independence between requester and server lets your application alter its course
of action without retrieving all messages. For most subsystems, the application can
issue other commands before issuing the continuation command, or it can abandon the
continuation. A program might want to do this, for instance, to recover from an error or
to display related information obtained from different commands.

In designing your application, consider that changes can occur in the subsystem
environment between response messages. In some cases, it is important to process
response messages for a command quickly and with few interruptions, so continuation
might not be a good choice. In addition, some subsystems with context-sensitive
servers prohibit or restrict continuation. For more information, see the individual
subsystem manuals.

For subsystems that support continuation, the absence of a context token in a
response message indicates the last message in the response. The last response
message can contain a normal response record or an empty response record that
indicates that there are no more objects to process. (An empty response record might
SPI Programming Manual—427506-007
2-34

SPI Concepts and Protocol Continued Responses
indicate, for instance, that there are no more objects to process because the remaining
objects were deleted since the server returned the last response.)

The absence of a context token is the only valid indicator of the last response
message. Your application should always check for the context token (it can do so with
a simple call to SSGET). It should never rely on a particular return-token value or on a
particular number of response messages or response records to determine that there
are no more replies.

Be aware that the context token can vary in size. It is not safe to store it in a work
area—always copy it directly from response to command using the SSMOVE
procedure.

Figure 2-11 on page 2-36 illustrates the exchange of messages when the subsystem’s
response is continued over several response messages.

Multiple Response Records per Message in a Continued
Response

Even with multiple response records per response message, it still might not be
possible to fit the response records for all the objects into a single response message.
In such cases, the subsystem forms a continuation response by including the context
token, just as it would in the case of a single response record per response.

Figure 2-11 on page 2-36 shows that in the case of multiple response records per
response, as in the case of a single response record, the presence of a context token
indicates that the response can be continued. In a response message containing
multiple response records (or a single response record enclosed in a data list), the
context token is the only token that is not enclosed within a data list. The context token
is not in a list because it represents an attribute of the entire response message rather
than an attribute of a particular response record. As in the single-response-record
case, the only valid way to detect that there are no more response messages is by the
absence of a context token.

If the requester asks for n response records per response, but its buffer is not large
enough to hold that many, the server does not consider the situation an error, but
returns fewer than n response records per response—only the number that fit. The
requester can determine the number of response records actually returned by counting
the top-level data lists in the response message.

Note. Although this and other figures illustrating the buffer show the context token last, your
application must not depend on its being in any particular position in the buffer. In SSMOVE calls that
refer to the context token, specify an index of 1 to ensure position transparency.
SPI Programming Manual—427506-007
2-35

SPI Concepts and Protocol Continued Responses
Figure 2-11. Response Continuation

VST015.vsd

The requester sends a command directed to multiple
objects and specifying a MAXRESP value of -1.

H [Ra T3a T4a]

H [Ra T3a T4a] [Rb T3b T4b]

H [Ra T3a T4a] [Rb T3b T4b] C

The server processes two objects (a and b)
and adds response records to the buffer.

Before processing a third object, the server
finds that there is no room in the buffer for
a response record. So it adds a context
token and returns the response.

H T1 T2

H T1 T2 C
The requester tells the server to continue by copying
the context token from the response into a copy of
the original command and sending it to the server.

H [Rc T3c T4c] [Rd T3d T4d] C
The server continues until it again runs
out of room...

H T1 T2 C
... and agian the requester prompts the server to
continue by returning the latest context token in a
copy of the original command.

H [Re T3e T4e]
The absence of the context token indicates
that all objects have been processed.

Legend

H Message Header Tnx Token n describing object x [ZSPI-TKN-DATALIST
Rx RETCODE for object x C ZSPI-TKN-CONTEXT] ZSPI-TKN-ENDLIST

1

2

3

4

5

6

7

8

SPI Programming Manual—427506-007
2-36

SPI Concepts and Protocol Continued Responses
Response Continuation Protocol

These steps summarize the protocol for continuing a response. Each step corresponds
to an item in Figure 2-11 on page 2-36:

1. The requester composes a command that is to be applied to multiple objects. In
this example, the requester specifies a value of –1 for ZSPI-TKN-MAXRESP,
telling the server to return as many response records as it can fit in each response
message. Anticipating numerous response records and the possibility that more
than one response message will be needed to return all of the response records,
the requester saves a copy of the command buffer before sending the command.
(The reason for this is explained in step 5.) The requester then sends the
command to the server.

2. When the server finds an object (object a) that qualifies for processing based on
the criteria in the command, it determines whether there is room in the buffer for
both the largest possible response record and the largest possible context token. If
there is room, the server applies the command to the object and adds the
response record to the buffer. MAXRESP = –1, so the record is enclosed in a data
list.

3. The server searches for another qualifying object, and finds object b. Again, the
server verifies that both the largest possible response record and largest possible
context token fit in the remaining buffer, and then applies the command and
composes the response record.

4. The server continues to look for qualifying objects, and finds object c. This time,
however, there is not enough space remaining in the buffer for a response record
and a context token, so the server does not apply the command. Instead, it collects
the information it will need to resume processing with this object, stores this
information in ZSPI-TKN-CONTEXT, and returns this token with the completed
response records.

5. Detecting the context token in the response message, the requester knows that not
all qualifying objects were processed. To have the server continue processing, the
requester copies the context token from the response to a duplicate of the original
command (which it saved in step 1) and sends this command to the server. The
requester does not examine or modify the contents of the context token.

6. When the server receives the command, it uses the information in the context
token along with the information in the original command to resume processing. In
this example, the server processes two more objects, c and d, before it again runs
out of buffer space. The server prepares a new context token and returns it in the
response message.

7. The requester, seeing that more objects remain to be processed, returns the new
context token in a copy of the original command.

8. The server resumes processing, applying the command to one last object (e) and
returning the response record for that object. The absence of the context token
SPI Programming Manual—427506-007
2-37

SPI Concepts and Protocol Segmented Responses
from this response message tells the requester that all qualifying objects have
been processed and the response for this command is complete.

Segmented Responses

A command might generate a response record that contains so many occurrences of a
particular token or group of tokens that the record does not fit in even the largest
allowable message buffer. This can occur, for example, when a requester sends a
LISTOPENS command to a process that is supporting many openers, or when it sends
a LISTOBJECTS command to a subsystem with many defined objects. A server can
avoid truncating this type of lengthy response by breaking the response record into
segments and returning the segments in multiple messages—a method called
“response segmentation.”

In a segmented response, each response record is divided into one or more segments.
(Figure 2-12 on page 2-39 shows the structure of a segmented response.) Each
segment is an SPI data list that starts with ZSPI-TKN-DATALIST and ends with ZSPI-
TKN-ENDLIST. Each also contains ZSPI-TKN-RETCODE.

Tokens in the response are divided into a base group, which appears once, and a
repeating group, which can appear more than once. A token is included in the base
group if it appears in the response record a predefined number of times. A token is
included in the repeating group if there is no way to know, before the response is
generated, how many times the token will appear.

All base-group tokens appear in the first segment, and are not repeated in later
segments of the record.

Each instance of the repeating group is enclosed in a segment list, which starts with
ZSPI-TKN-SEGLIST and ends with ZSPI-TKN-ENDLIST. Segment lists follow the
base-group tokens. A segmented response always contains at least one segment list
(which is empty if the server has no information to return).

If a segment does not complete a response record, it contains ZSPI-TKN-MORE-DATA
with a value of TRUE, indicating that more segment lists are available. The message
containing this segment also contains ZSPI-TKN-CONTEXT so the requester can
follow the standard protocol for continuing the response. (See Continued Responses
on page 2-34.)

ZSPI-TKN-MORE-DATA does not appear in the last segment (or if it does appear, it
has the value FALSE), indicating that this segment completes the response record.

A response message can contain more than one segment. However, within the context
of a command and its continuations, all segments describing one object must be
returned before any segment describing another object. To ensure this,
ZSPI-TKN-MORE-DATA is only allowed in the last segment in a response message.

Error lists describing the object to which the command is directed can be included in a
segment. Error lists related to information in a particular segment list can be included in
that segment list.
SPI Programming Manual—427506-007
2-38

SPI Concepts and Protocol Segmented Responses
Figure 2-12. Segmented Responses

H

Legend

An SPI message

Tn A token with ID number n
Tnx A token that refers to object x
H The SPI message header

R ZSPI-TKN-RETCODE
Rx Return code for object x

[ZSPI-TKN-DATALIST
{ ZSPI-TKN-SEGLIST
] } ZSPI-TKN-ENDLIST

M ZSPI-TKN-MORE-DATA
C ZSPI-TKN-CONTEXT

VST016.vsd

Example: A segmented response for two objects a and b. The response record for a requires three
 segments; the third segment is returned in the same message as the first segment of the
 response record for object b:

Structure of a Simple Segmented Response:

Base Tokens

H [R T1 T2 T3 { T4 T5 } { T4 T5 } { T4 T5 } M

 Message 1] C

Repeating Tokens

First Response Record Segment

H [R { T4 T5 } { T4 T5 } { T4 T5

Segment
List

 Message 2 }]
Second Segment

H [Ra T1a { T2a T3a T4a } { T2a T3a T4a } { T2a T3a T4a } M] C

H [Ra { T2a T3a T4a } { T2a T3a T4a } { T2a T3a T4a } M] C

H [Ra { T2a T3a T4a }] [Rb T1b { T2b T3b T4b } M] C

Example: An empty segmented response, which must contain an empty segment list:

 [R { }]

H [Rb { T2b T3b T4b } { T2b T3b T4b } { T2b T3b T4b }]
SPI Programming Manual—427506-007
2-39

SPI Concepts and Protocol Segmented Responses
Determining Subsystem Support for Segmented Responses

A subsystem that returns ZSPI-TKN-SEGMENTATION with a value of TRUE in its
GETVERSION response can generate segmented responses.

A subsystem that supports segmentation for any command must support segmentation
for all commands.

Requesting a Segmented Response

To request a segmented response, a command must include ZSPI-TKN-ALLOW with
the value ZSPI-VAL-ALLOW-SEGMENTS. Otherwise, segmentation is disallowed. A
requester must allow or disallow segmented responses for each command it issues.
The default is to disallow segmented responses.

Table 2-2 summarizes possible subsystem responses to a request to allow or disallow
segmentation. Response varies, depending on the content of the request and the
subsystem’s level of support for segmented responses.

Table 2-2. Subsystem Response to Requests for Segmented Responses

Does the
command contain
ZSPI-TKN-ALLOW with
value ZSPI-VAL-
ALLOW-SEGMENTS?

If subsystem
supports
segmentation…

If subsystem
does not support
segmentation…

If subsystem
requires requester
to accept
segmented
responses…

Yes The subsystem
returns a
segmented
response.

The subsystem
returns an “invalid
token” error after
finding ZSPI-TKN-
ALLOW with value
ZSPI-VAL-ALLOW-
SEGMENTS.

The subsystem
returns a segmented
response.

No The subsystem
returns a
response record
that is truncated if
it does not fit in
the buffer.

The subsystem
returns a response
record that is
truncated if it does
not fit in the buffer.

The subsystem
returns
ZSPI-ERR-MISTKN
after failing to find
ZSPI-TKN-ALLOW
with value ZSPI-VAL-
ALLOW-SEGMENTS.
SPI Programming Manual—427506-007
2-40

SPI Concepts and Protocol Empty Responses
Empty Responses

An empty response consists of a single response message that contains no response
records. An empty response must contain a return code (ZSPI-TKN-RETCODE) with a
subsystem-defined error number that declares that the response message contains no
response records. In special cases, an “empty response” might also contain error
information describing the command. (See point 3.)

An empty response message does not always indicate an empty response. An empty
response message is sometimes needed to complete a continued response, in which
case only the last message of the response is empty, but not the response itself (see
point 2 below).

A server returns an empty response message when (see Figure 2-13 on page 2-42):

1. The requester sets ZSPI-TKN-RESPONSE-TYPE to ZSPI-VAL-ERR-AND-WARN,
and the server detects no errors or warnings during command processing. In this
case, the requester has asked the server to return a response record only if an
error or warning is detected while applying the command to an object. Because no
errors or warnings are detected, the server returns an empty response. (For
information about the RESPONSE-TYPE token, see Suppressing Response
Records on page 2-43.)

2. Objects awaiting command continuation are deleted before the server sends the
continuation request. This is possible any time the server returns a partial
response and has additional objects to process. The context token in the partial
response identifies the next object to be processed. If the objects awaiting
processing are deleted before the requester sends the continuation command to
the server, the server finds no objects to process and returns an empty response
message to complete the continued response.

3. The requester sets ZSPI-TKN-RESPONSE-TYPE to ZSPI-VAL-ERR-AND-WARN
and the server detects no errors or warnings when applying the command to
individual objects, but does want to return warning information describing the
command in general. In this case, the server returns the warning information in the
“empty” response message. (It is still called an “empty” response message
because ZSPI-TKN-RETCODE contains the value indicating an empty response.)
SPI Programming Manual—427506-007
2-41

SPI Concepts and Protocol Empty Responses
Figure 2-13. Empty Responses

Objects to process: c (object c deleted before command is continued)

2 Objects not processed for one response message are deleted before the requester
returns the continuation command:

Objects to process: a, b, c object c awaits command continuation

 [Ra T1a T2a] [Rb T1b T2b] CH

 RH

The second response message is empty.

Legend

[ZSPI-TKN-DATALIST
(ZSPI-TKN-ERRLIST

]) ZSPI-TKN-ENDLIST

H Message header
R ZSPI-TKN-RETCODE

Rx Return code for object x

Tnx Token n describing object x
C ZSPI-TKN-CONTEXT

E ZSPI-TKN-ERROR

Three situations in which a server returns an empty response:

H R (E T1 T)

1

3

The requester sets ZSPI-TKN-RESPONSE-TYPE to ZSPI-VAL-ERR-AND-WARN,
and no errors or warnings are encountered during command processing:

The server returns an empty response.

H R

The requester sets ZSPI-TKN-RESPONSE-TYPE to ZSPI-VAL-ERR-AND-WARN,
and warnings are detected that describe the command in general, but not the
application of the command to any particular object:

The error information is returned along with a return code indicating an empty
response.

VST017.vsd
SPI Programming Manual—427506-007
2-42

SPI Concepts and Protocol Object Identification in Responses
Object Identification in Responses

A response record must contain a subsystem-defined token identifying the object that
the response record describes. This object-name token appears even if the response
contains an error list that includes the object name. The exceptions to this rule are:

 If the response record corresponds to a command that does not have an object
name, the response record does not include an object name.

 If the response record corresponds to a command that operates on an unnamed
object and the command includes an object-name token set to some null value
(such as all blanks), the response record contains an object name in the same
form.

 If the response record reports an error that prevents the command from being
attempted at all, the response record does not necessarily include an object name.

 If the response record is the empty response record sometimes needed with
continuation, the object-name token does not appear.

Return Code

Every response record contains a return code token (ZSPI-TKN-RETCODE). The
value of this token indicates whether the command completed successfully on the
object described by the response record. ZSPI-TKN-RETCODE can contain these
values:

Except in the case of an empty response, every response record that contains a
nonzero return code also contains an error list in which ZSPI-TKN-ERROR contains
the same nonzero value. This error list might also contain additional information
describing the error condition.

Suppressing Response Records

For commands that operate on more than one object, some subsystems support a
standard SPI token—the response-type token (ZSPI-TKN-RESPONSE-TYPE)—that
lets the requester specify which kinds of response records the server should return.
This kind of control is useful if an application is performing a command on a large
number of objects and is interested only in response information about objects for
which something unusual occurred (an error or a warning).

zero indicates that the command was successfully applied to the object. Such a
response record can contain error lists describing warnings or other conditions of
interest to the requester.

nonzero indicates either an empty response or that the server could not perform the
command as expected. The particular nonzero value is a subsystem-defined
error number identifying the error, or one of the errors, that the server
encountered.
SPI Programming Manual—427506-007
2-43

SPI Concepts and Protocol Subsystem IDs (SSIDs)
The two possible values for ZSPI-TKN-RESPONSE-TYPE are:

 ZSPI-VAL-ERR-WARN-AND-NORM directs the server to return a response record
for every object in the set of objects specified in the command. This action is the
default if the response-type token is not included in the command.

 ZSPI-VAL-ERR-AND-WARN directs the server to return response records only for
objects for which something unusual occurred—that is, response records
containing at least one error list (regardless of the value of the return token). If
ZSPI-VAL-ERR-AND-WARN is specified and the command encounters no errors
or warnings on any object, the subsystem returns an empty response record. If
ZSPI-VAL-ERR-AND-WARN is specified and there are warnings about the
command itself, the server holds these command-related warnings until it
generates a response record due to an error or warning on one of the objects. If no
warnings or errors are generated on any of the objects, the server places the
command warnings in an empty response record.

Subsystems that support the response-type feature do so for all commands that can
change the state or configuration of an object and can accept the specification of more
than one object in a single command. Subsystems that do not support this feature
always return a response record for each object.

Some subsystems support the response-type feature even for informational
commands. In most situations, you will not want your application to suppress normal
responses for such commands.

Subsystem IDs (SSIDs)
A subsystem ID (SSID) is a structure that uniquely identifies a subsystem. SPI, the
Event Management Service (EMS), and the Distributed Name Service (DNS) all use
the same SSID format.

In SPI commands and responses, SSIDs identify both the subsystem that is to process
a command and the subsystems that put each token in the message. All tokens in an
SPI message are associated with a subsystem ID so that it is always possible to
determine who put the token in the message. An SSID is a 12-byte structure with the
format shown in Figure 2-14 on page 2-46.

The subsystem owner field (Z-OWNER) contains an eight-character string that
identifies the company or organization providing the subsystem. For all NonStop Kernel
subsystems, this field contains the string value “TANDEMbb” (with two trailing blanks).

The subsystem number field (Z-NUMBER) is a 16-bit signed integer value that
identifies the subsystem within the set of subsystems provided by the subsystem
owner. The SPI standard definition files include subsystem-number declarations for all
NonStop Kernel subsystems that have programmatic command interfaces based on
SPI, report EMS events, or define errors to be passed through by other subsystems in
SPI error lists. (For a list of these subsystems and their symbolic abbreviations, see
Appendix D, NonStop Kernel Subsystem Numbers and Abbreviations.)
SPI Programming Manual—427506-007
2-44

SPI Concepts and Protocol Subsystem IDs (SSIDs)
The subsystem version field (Z-VERSION) is a 16-bit unsigned integer value
representing the software release version of the subsystem. For NonStop Kernel
subsystems, this value is in the form returned by the TOSVERSION procedure: that is,
the left byte contains the letter part of the version as an ASCII uppercase alphabetic
character, and the right byte contains the numeric part of the version as an unsigned
integer value. For example, for the version “G06” the left byte is the ASCII character G
and the right byte is 06, so the result is the unsigned integer 18182.

Each NonStop Kernel subsystem defines a subsystem ID structure giving the values of
all three fields for that subsystem. This structure has the name subsys-VAL-SSID,
where subsys is the subsystem abbreviation.
SPI Programming Manual—427506-007
2-45

SPI Concepts and Protocol SSID Scope
SSID Scope

Subsystem IDs are stored in the header token ZSPI-TKN-SSID, in some token codes,
and in the error list token ZSPI-TKN-ERROR. The SSID that governs a particular token
is determined as follows:

 If the token code contains an SSID, that SSID owns the token.

 If the token code does not contain an SSID, the token belongs to the SSID of the
list in which the token is enclosed. In the case of nested lists, the SSID of the token
is that of the list that immediately encloses the token.

Figure 2-14. The Subsystem ID Structure

Subsystem Subsystem Subsystem
Owner Number Version

0 1 2 3 4 5 6 7 8 9 10 11Byte

Structure Field (Z-Owner) (Z-NUMBER) (Z-VERSION)

The name of the subsystem owner
(case-sensitive, left-justified, blank-
filled, with no embedded spaces)

The subsystem number

The subsystem version (the ASCII version
 letter in the left byte, and the binary version
 number in the right byte of the integer field)

Example: The SSD for the D20 version of the Subsystem Control Point:

T A N D E M b b 25 D 20

0 1 2 3 4 5 6 7 8 9 10 11Byte

Subsystem Subsystem Subsystem
 Owner Number Version

b denotes an ASCII blank character) ZSPI-SSN-ZSCP

"D20"=17428 when the character "D" is stored
in the left byte and the number "20" is stored
as a binary number in the right byte of the
integer field.

VST018.vsd
SPI Programming Manual—427506-007
2-46

SPI Concepts and Protocol Errors and Warnings
 If the token is not enclosed in a list and its token code does not contain an SSID, it
belongs to the SSID specified in the header token ZSPI-TKN-SSID.

Errors and Warnings
An SPI server reports an error when it cannot complete a command. It issues a
warning when it completes a command but the results are suspect or it wants to
provide the requester with additional advisory information. Like all response
information, error information returned in a message is contained in tokens. However,
although normal responses tend to be very regular and well-defined, error responses
can be highly variable and unpredictable. As a result of an error or warning during
command processing, a response message can contain:

 Both response data and error or warning information.

 A single response record containing multiple error lists, particularly in the case of
warnings.

 A pass-through error, one that originated in another subsystem that was called by
the subsystem to which the command was sent. Errors can be passed through
several subsystems, with each subsystem adding its own information. For
instance, here is an extreme example of an error that FUP might report in
response to a LOAD command: “FUP could not do the LOAD because of a SORT
error caused by a NEWPROCESS procedure failure due to a file-system error on
the swap file returned by the disk process because there was no disk space
available.”

SPI responses report error information in these ways:

 A standard token called the return token (ZSPI-TKN-RETCODE), which is included
in every response record. The value of ZSPI-TKN-RETCODE is a single integer
error code.

 One or more error lists, which can be nested (as in the case of pass-through
errors).

This scheme, summarized in Figure 2-15, separates error information from normal
response information and facilitates the retrieval of error information.

Each subsystem defines its own set of error numbers, which are described in the
subsystem’s management programming manual.
SPI Programming Manual—427506-007
2-47

SPI Concepts and Protocol Error Lists
Error Lists

Except in the case of the empty response record used in continuation, if the return
token is nonzero, the response record must include at least one error list. This error list
must contain an error token (ZSPI-TKN-ERROR) with an error number that matches
the value of the return code. The response record can contain other error lists as well.

Error lists can be present in a response record even if the value of the return token is
zero. Such lists describe warnings; these are unusual conditions about which the
requester might want to know, but which do not prevent the server from completing the
command.

Normal response tokens are returned outside of error lists; but if they are necessary to
describe the error, these tokens are repeated inside the relevant error lists. Each error
list is a complete, self-contained description of an error.

Figure 2-15. Error Information in a Response Record

If ZSPI-TKN-RETCODE = error number indicating empty response message

<ZSPI-TKN-RETCODE>

(Required)

If ZSPI-TKN-RETCODE = 0 (no errors, but possibly warnings):

<ZSPI-TKN-RETCODE> <error-list> <error-list>...

(Required) (Optional. If present, these error-lists
describe warnings)

If ZSPI-TKN-RETCODE = any other value (there is an error):

<ZSPI-TKN-RETCODE> <error-list> <error-list>...

(Required) (Optional)

<error-list>

(Required*)

*This error list must contain a ZSPI-TKN-ERROR taken whose error-number field matches the
value of the return taoken (ZSPI-TKN-RETCODE)

VST019.vsd
SPI Programming Manual—427506-007
2-48

SPI Concepts and Protocol Pass-Through Errors
Each error list contains an error token (ZSPI-TKN-ERROR) that identifies the error
described by other tokens in the list. ZSPI-TKN-ERROR is a fixed structure consisting
of the subsystem ID of the subsystem that reported the error and the error number of
an error defined by that subsystem. (The version portion of the subsystem ID in an
error token can be either zero or the version of the subsystem reporting the error.)
Every error list must contain one error token, and it can also contain additional tokens
and embedded error lists giving more information about the error.

Pass-Through Errors

A subsystem can pass on an error list from another subsystem; in general, the error list
describing the pass-through error is qualified by a subsystem ID other than that of the
subsystem composing the response message. If an error list is qualified by the
subsystem ID of another subsystem, all tokens within those lists are implicitly qualified
by that subsystem ID.

Some software facilities for the NonStop server, including some operating system
procedures and the file system, do not have a programmatic command interface based
on SPI, but do define standard error lists. If a NonStop Kernel subsystem that does
have an SPI-based command interface calls one of these facilities and receives an
error, the subsystem usually tries to recover from the error. If that is impossible, the
subsystem reports the error in an SPI error token (ZSPI-TKN-ERROR), embeds it in an
error list of the prescribed form, and encloses this error list in its response. This
practice ensures that errors from NonStop Kernel subsystems and software
components are reported in a consistent way.

The SPI procedures detect certain errors, which are reported in the status parameter of
the procedure call. When a NonStop Kernel subsystem calls one of the SPI procedures
and receives a nonzero status from which it (the subsystem) cannot recover, the
subsystem returns to the application an error list containing information about the error.
For descriptions of the SPI errors, see Appendix A, Errors. For descriptions of the error
lists returned by NonStop Kernel subsystems when they encounter an SPI procedure
error from which they cannot recover, see the Guardian Procedure Errors and
Messages Manual. To identify which errors can occur on calls to each procedure, see
the SPI procedure descriptions in Section 3, The SPI Procedures, and the

Figure 2-16. Error List Contents

(error list token) (error-list token)(error-list) (error-list)(token) (token)(error) (token)

ZSPI-TKN-ERRLIST

ZSPI-TKN-ERROR

ZSPI-TKN-ENDLIST

(In any order)

VST020.vsd
SPI Programming Manual—427506-007
2-49

SPI Concepts and Protocol Continuing Despite Errors
corresponding TACL built-in function descriptions in Section 8, SPI Programming in
TACL.

Continuing Despite Errors

Some subsystems support another standard SPI token to let the requester specify
under what conditions the server should continue processing a set of objects. This is
the allow-type token (ZSPI-TKN-ALLOW-TYPE). This token is useful when the
application is performing a command on a large number of objects (for instance,
terminals) and wants to operate immediately on as many of those objects as it can,
even if errors or warnings occur for some objects. In such cases, the application can
address the cases with errors or warnings later.

ZSPI-TKN-ALLOW-TYPE has three possible values:

 ZSPI-VAL-NORM-ONLY directs the server to continue processing on the next
object in the set only if the command was completely successful, with no warnings,
on the previous object—that is, if the response record on that object contained no
error list. This action is the default if the allow-type token is not included in the
command.

 ZSPI-VAL-WARN-AND-NORM directs the server to continue processing on the
next object if the command completed its operation on the previous object,
regardless of warnings—that is, if the value of the return token was zero (error lists
representing warnings can be present).

 ZSPI-VAL-ERR-WARN-AND-NORM directs the server to continue processing on
the next object regardless of any problems encountered on the previous object.

If a condition occurs that, based on the allow-type value, directs the subsystem not to
process the next object, the server completes the response record for the object on
which the unusual condition occurred (if it has not already been completed), adds a
context token to the response if appropriate, and sends the response to the requester.
The requester can take appropriate corrective action for the error or warning, and then
reissue the command to have the subsystem continue processing with the next object
in the set.

The allow-type feature controls only whether the server proceeds to the next object in a
set when the action of a command on one object yields an error or warning. This
feature does not influence the action on an object after the server has begun work on
that object. For example, selecting ZSPI-VAL-NORM-ONLY does not mean that the
server should stop the operation on an object immediately when a warning condition is
detected. The operation on that object still continues to completion. After completing
with that object, the server notices that a warning occurred on the object, and it issues
a response at that point.

NonStop Kernel subsystems that support the allow-type feature do so for all
commands that can cause some action or modification of an object and can accept the
specification of more than one object in a single command. NonStop Kernel
SPI Programming Manual—427506-007
2-50

SPI Concepts and Protocol Recovering From an Error on an Object in a Set
subsystems that do not support this feature do not proceed to the next object in the set
if any error or warning occurred on the previous object.

Recovering From an Error on an Object in a Set

The use of the context token for continuation allows for resuming processing after an
error, starting with the object following the one on which the error occurred. That
makes it easy for your application to continue the command immediately.

If preferred, your application can instead correct the problem that caused the error and
have the command continue with the object that got the error. If the server is context
free, the requester can issue any number of commands between the receipt of a
response with a context token and the sending of the continuation that includes that
context. Your application can correct the problem immediately by issuing commands
naming the particular object that failed. When everything is resolved for that object
(including sending a command duplicating the original command that failed, but
directed just to that one object), your application can use the context token to continue
the original command with the next object.

Sample Error Responses

In these examples, indenting shows the nesting levels of error lists and the names of
fields within fixed structures.

Error List Example 1

A simple error response from subsystem SYSB:

<ZSPI-TKN-RETCODE> ! n (command not
supported)
<ZSPI-TKN-ERRLIST>
 <ZSPI-TKN-ERROR>
 Z-SSID ! Subsystem ID for SYSB
 Z-ERROR ! n (command not
supported)
<SYSB.ZSPI-TKN-ENDLIST> ! end of error list

In this example, subsystem SYSB returns a nonzero return code indicating that it does
not support the command specified by the requester in the original request. The
Z-ERROR field of the error token in the corresponding error list has the same error
number, indicating that it contains information about the error.
SPI Programming Manual—427506-007
2-51

SPI Concepts and Protocol Sample Error Responses
Error List Example 2

Single error list (subsystem SYSB):

<ZSPI-TKN-RETCODE> ! m (value out of range)
<ZSPI-TKN-ERRLIST>
 <ZSPI-TKN-ERROR>
 Z-SSID ! Subsystem ID for SYSB
 Z-ERROR ! m (value out of range)
 <ZSPI-TKN-PARM-ERR>
 Z-TOKENCODE ! token code in error (or
 ! first 32 bits of token
 ! map)
 Z-INDEX ! index of that token code
 Z-OFFSET ! offset of field in error
 ! if token is a structure
<SYSB.ZSPI-TKN-ENDLIST> ! end of error list

In this example, the ZSPI-TKN-PARM-ERR token, whose structure is defined in
Section 4, ZSPI Data Definitions, is used to identify which command-parameter token
contained the out-of-range value. The index value indicates the position of that token in
the buffer, and the offset denotes the position of the out-of-range field within that token
if the token value is a structure.

Error List Example 3

Nested error lists (subsystems FUP and FILESYS):

<ZSPI-TKN-RETCODE> ! x (FUP command failed
 ! with file-system
error)
<ZSPI-TKN-ERRLIST>
 <ZSPI-TKN-ERROR>
 Z-SSID ! Subsystem ID for FUP
 Z-ERROR ! x (FUP command failed
 ! with file-system
error)
 <ZFUP-MAP-CMD-ERROR>
 Z-COMMAND ! LOAD command
 Z-OBJECT ! FILE object type
 Z-NAME ! Name of file on which
 ! error occurred
 <ZSPI-TKN-ERRLIST> ! List from file system
 <ZSPI-TKN-ERROR>
 Z-SSID ! SSID of file system
 Z-ERROR ! y (file-system error)
 <ZSPI-TKN-PROC-ERR> ! WRITE procedure
 <ZSPI-TKN-ENDLIST> ! End FILESYS error list
<ZSPI-TKN-ENDLIST> ! End FUP error list

In this example, a FUP LOAD command failed because a file-system error occurred on
a WRITE procedure call. Because the file system does not have an SPI interface, FUP
constructs an error list, on behalf of the file system, to describe the file-system error. To
SPI Programming Manual—427506-007
2-52

SPI Concepts and Protocol Sample Error Responses
indicate that this error list describes an error reported by the file system, FUP gives the
error list the subsystem ID of the file system.

Error List Example 4

Nested error lists (subsystems FUP, SORT, and GUARDLIB):

<ZSPI-TKN-RETCODE> ! y (FUP command failed with
 ! SORT error)
<ZSPI-TKN-ERRLIST>
 <ZSPI-TKN-ERROR>
 Z-SSID ! Subsystem ID for FUP
 Z-ERROR ! y (FUP command failed with
 ! SORT error)
 <ZFUP-MAP-CMD-ERROR>
 Z-COMMAND ! LOAD command
 Z-OBJECT ! FILE object type
 Z-NAME ! name of file FUP was unable
 ! to load
 <ZSPI-TKN-ERRLIST> ! List from SORT
 <ZSPI-TKN-ERROR>
 Z-SSID ! Subsystem ID for SORT
 Z-ERROR ! 64 (cannot allocate segment)

 <ZSPI-TKN-ERRLIST> ! List from operating system
 <ZSPI-TKN-ERROR>
 Z-SSID ! SSID for procedure library
 Z-ERROR ! 43 (no space on disk)
 <ZSPI-TKN-PROC-ERR> ! ALLOCATESEGMENT
 <ZSPI-TKN-ENDLIST> ! end GUARDLIB error list
 <ZSPI-TKN-ENDLIST> ! end SORT error list
<ZSPI-TKN-ENDLIST> ! end FUP error list

In this example, a FUP LOAD command failed because SORT could not allocate an
extended segment. Again, because SORT and the system library procedures
(including ALLOCATESEGMENT) do not have programmatic command interfaces
based on SPI, FUP constructs error lists on their behalf, nesting the error lists to show
the pass-through relationships.
SPI Programming Manual—427506-007
2-53

SPI Concepts and Protocol Sample Error Responses
SPI Programming Manual—427506-007
2-54

3 The SPI Procedures

This section describes these SPI procedures:

This section describes the procedures and their parameters in a general context. The
exact syntax of an SPI procedure call depends on the programming language you use.
For the syntax necessary in a particular programming language, see the language-
specific sections of this manual.

Overview of the SPI Procedures
Both SPI requesters and servers use the SSINIT, SSNULL, SSPUT, SSGET, and
SSMOVE procedures to initialize messages and extensible structured tokens, place
tokens in messages, retrieve token values from messages, and move tokens from one
message buffer to another. The functions of these five basic procedures are:

These variants perform the same functions as their namesakes, differing only in the
way they refer to token codes in the procedure parameters:

Topic Page

Overview of the SPI Procedures 3-1

SSINIT Procedure 3-4

SSNULL Procedure 3-7

SSPUT and SSPUTTKN Procedures 3-8

SSGET and SSGETTKN Procedures 3-13

SSMOVE and SSMOVETKN Procedures 3-25

SSIDTOTEXT Procedure 3-35

TEXTTOSSID Procedure 3-37

SSINIT Initializes an SPI message buffer

SSNULL Initializes an extensible structured token with null values

SSPUT Puts a token into a buffer or performs a resetting or repositioning operation on
the buffer

SSGET Extracts a token value or other information from the buffer

SSMOVE Copies a token or list from one buffer to another

SSPUTTKN Adds a token to the buffer or performs a resetting or repositioning
operation on the buffer

SSGETTKN Extracts a token value or other information from the buffer

SSMOVETKN Copies a token or list from one buffer to another
SPI Programming Manual—427506-007
3-1

The SPI Procedures Special Operations
The SSIDTOTEXT and TEXTTOSSID procedures perform these functions:

Special Operations

The SSPUT(TKN) and SSGET(TKN) procedures can perform special operations in
addition to their primary functions. Applications request special operations by
specifying special token codes in the procedure calls. Special token codes and the
operations they request are listed with each procedure description.

Manipulating Header Tokens

The SSPUT(TKN) and SSGET(TKN) procedures can also modify and retrieve the
values of some SPI message header tokens, as indicated in the procedure
descriptions.

Procedure Status

The procedure calls return a status code that summarizes the outcome of procedure
processing:

These codes are described in Appendix A, Errors.

SSIDTOTEXT Converts an internal form subsystem ID to its external representation

TEXTTOSSID Finds an external representation of a subsystem ID and converts it to the
internal representation

 0 No error

–1 Invalid buffer format

–2 Invalid parameter value

–3 Missing parameter

–4 Invalid parameter address

–5 Buffer full

–6 Invalid checksum

–7 Internal error

–8 Token not found

–9 Invalid token code or map

–10 Invalid subsystem ID

–11 Operation not supported

–12 Insufficient stack space
SPI Programming Manual—427506-007
3-2

The SPI Procedures Using the SPI Procedures
Using the SPI Procedures

The SPI procedures are in the standard operating-system library and can be called
through:

 The tal interface directive in C (See Section 6, SPI Programming in C.)

 ENTER TAL from COBOL (See Section 7, SPI Programming in COBOL.)

 Corresponding built-in functions from TACL (See Section 8, SPI Programming in
TACL.)

 Directly from TAL (See Section 9, SPI Programming in TAL.)

To issue a command to an SPI server, a requester first calls the SSINIT procedure,
supplying the buffer, buffer length, subsystem ID, command, and object type if needed.
SSINIT initializes the buffer, placing the supplied information in the appropriate fields of
the message header.

Before adding an extensible structured token to a message, an application must call
the SSNULL procedure to initialize the fields of the structure to null values. A program
must always call SSNULL for each extensible structure to ensure version compatibility,
even if the program explicitly sets all currently defined fields. Then the program sets
the desired fields of each structure.

The application then calls SSPUT to assign values to tokens and add the tokens to the
message.

When the message is complete, the application sends it to the server.

When the server receives the message, it calls the SSPUT procedure to reset control
information in the buffer, uses SSGET to extract relevant token values, and performs
the processing requested by the message. The server uses SSINIT to initialize a
response buffer, uses SSPUT to place a return-code token and other response tokens
in the buffer, and then returns the response message to the requester.

When it receives the response message, the requester calls SSPUT to reset the buffer,
and then uses SSGET to extract token values. The requester can retrieve token values
in any order.

In addition to their main functions, SSPUT and SSGET accept special token codes that
allow an application to retrieve or modify the values of header tokens, scan the data
portion of the buffer token by token, and perform control and positioning operations on
the buffer.

Finally, programs can use the SSMOVE procedure to copy any number of tokens from
one SPI buffer to another. This is useful when copying context information from a
continuation response to a followup command message or when forwarding error lists
from other subsystems.
SPI Programming Manual—427506-007
3-3

The SPI Procedures SSINIT Procedure
SSINIT Procedure
An application must use the SSINIT procedure to initialize a command buffer. The
SSINIT procedure initializes an SPI buffer with an appropriate header and places
values in header fields. The previous contents of the buffer are overwritten.

Do not use SSINIT to initialize an event-message buffer. Instead, use EMSINIT, as
described in the EMS Manual.

General Syntax

buffer output

INT .EXT:ref:*

is the buffer that the procedure initializes as an SPI message buffer.

buffer-length input

INT:value

is the buffer length in bytes. Use the length recommended by the subsystem to
which you are sending the message, if one is defined. For NonStop Kernel
subsystems, the recommended buffer length has a name of the form subsys-VAL-
BUFLEN.

ssid input

INT .EXT:ref:6

is the subsystem ID of the subsystem to which the message is sent. Its structure is
described in Section 2, SPI Concepts and Protocol. Requesters use this value to
identify the target subsystem, and the version field of the SSID must specify the
version of the subsystem definitions that the requester is using. Servers check the
SSID to verify that they are the intended recipient of the message.

Use the SSID defined by the subsystem to which you are sending the message.
NonStop Kernel subsystems provide an SSID with a name of the form subsys-
VAL-SSID.

SSINIT (buffer ! o
 , buffer-length ! i
 , ssid ! i
 , header-type ! i
 , [command] ! i
 , [object-type] ! i
 , [max-resp] ! i
 , [server-version] ! i
 , [checksum] ! i
 , [max-field-version]) ! i
SPI Programming Manual—427506-007
3-4

The SPI Procedures General Syntax
header-type input

INT:value

specifies the type of SPI buffer to initialize. This parameter determines how SSINIT
interprets the parameters that follow it. You should always give the value ZSPI-
VAL-CMDHDR (0), indicating the standard command header (for a command or
response). Other values are used internally by software for the NonStop server.

command input

INT:value

is the command number. If not supplied, it defaults to zero.

object-type input

INT:value

is the object type. If not supplied, it defaults to ZSPI-VAL-NULL-OBJECT-TYPE.

max-resp input

INT:value

is the maximum number of response records to be returned by the subsystem in
each reply message. A value of zero (the default) specifies one response record
per reply, not enclosed in a list. Any positive value specifies up to that number of
response records, each enclosed in a list. A value of -1 specifies as many
response records as will fit, each enclosed in a list.

server-version input

INT:value

is normally provided only by subsystems or by other programs that are acting as a
server. In those cases, it is a 16-bit unsigned integer value representing the version
of the subsystem or server program. SSINIT places this value in the header token
ZSPI-TKN-SERVER-VERSION for use in version compatibility checking. If not
supplied, this version number defaults to zero.

checksum input

INT:value

is the checksum flag. If this parameter is zero or not supplied, checksum protection
of the buffer is disabled; if it is nonzero, checksum protection is enabled.

max-field-version input

INT:value
SPI Programming Manual—427506-007
3-5

The SPI Procedures General Syntax
is an unsigned integer value that initializes the maximum field version field of the
buffer header. If it is not supplied, a default value of zero is used.

Note. The procedure can be called from both 32-bit and 64-bit programs.
SPI Programming Manual—427506-007
3-6

The SPI Procedures SSNULL Procedure
SSNULL Procedure
The SSNULL procedure initializes an extensible structure with null values. Always use
this procedure before setting values within an extensible structured token. For more
information about null values, see Section 5, General SPI Programming Guidelines.

General Syntax

token-map

INT .EXT:ref:*

is a token map to be used in initializing the fields of the structure.

struct

STRING .EXT:ref:*

is the structure to be initialized with null values.

constants

FIXED .ref:1

is a pointer to the set of constant values returned by the XSTACKTEST procedure.
If the constants are specified in the call, SSNULL does not need to call
XSTACKTEST, which it must do if the constants are not provided. This parameter
is used only by software that HP provides for the NonStop server.

Considerations

Always use SSNULL to initialize an extensible structured token, even if you put values
into all of the structure’s fields. Doing so ensures that your application continues to run
correctly if new fields are later added to the structure.

SSNULL (token-map ! i
 , struct ! o
 [, constants]) ! i
SPI Programming Manual—427506-007
3-7

The SPI Procedures SSPUT and SSPUTTKN Procedures
SSPUT and SSPUTTKN Procedures
The SSPUT and SSPUTTKN procedures insert tokens in an SPI buffer previously
initialized by SSINIT. The two procedures are identical except for the type of the
token-id parameter (SSPUT passes token-id by reference and SSPUTTKN
passes it by value) and the consequent fact that SSPUTTKN cannot be used with a
token map.

General Syntax

buffer input, output

INT .EXT:ref:*

is the SPI buffer in which tokens are placed.

token-id input

INT .EXT:ref:* (SSPUT)
INT(32):value (SSPUTTKN)

is a token code or (for SSPUT only) a token map. This parameter either identifies
the token being supplied or indicates a special operation. In the latter case, the
interpretation of the token-value parameter can vary; see Special Operations
With SSPUT and SSPUTTKN on page 3-9.

token-value input

STRING .EXT:ref:*

if present, is the value of the token. Its data representation is determined by the
token-type field of the token-id.

count input

INT:value

is the token count. The token-value parameter is an array of count elements,
each of which is described by the token-id. If not supplied, the count defaults to
1.

ssid input

INT .EXT:ref:6

SSPUT (buffer ! i/o
SSPUTTKN , token-id ! i
 , [token-value] ! i
 , [count] ! i
 , [ssid]) ! i
SPI Programming Manual—427506-007
3-8

The SPI Procedures Special Operations With SSPUT and SSPUTTKN
is a subsystem ID that qualifies the token code. If ssid is not supplied or is equal
to zero (6*[0]), the default applies. If SSPUT is currently adding tokens to a list,
ssid defaults to the subsystem ID of that list; otherwise, ssid defaults to the
subsystem ID in the SPI message header (ZSPI-TKN-SSID).

Special Operations With SSPUT and SSPUTTKN

Table 3-1 lists the special tokens your programs can supply to SSPUT and SSPUTTKN
to set or change the values of header tokens and perform other special operations.
The token type listed in the table indicates the type of the token-value parameter,
which is always an input parameter.

Each operation is described following the table. For some operations, the procedure
parameters differ in type and meaning from those indicated in the main SSPUT(TKN)
syntax description. When this is true, the modified syntax and semantics are given or
the differences are described.

ZSPI-TKN-BUFLEN: Modify Buffer Length

Use this token code to modify the SPI buffer length. If the specified length is less than
the actual number of bytes used in the buffer, as given in the header token ZSPI-TKN-

Note. These procedures can be called from both 32-bit and 64-bit programs.

Table 3-1. SSPUT(TKN) Special Operations

Token Specified in SSPUT(TKN) Call Type Effect

ZSPI-TKN-BUFLEN UINT Modify buffer length

ZSPI-TKN-CHECKSUM BOOLEAN Enable or disable buffer
checksum

ZSPI-TKN-CLEARERR SSCTL Clear last-error information to
zero

ZSPI-TKN-DATA-FLUSH SSCTL Flush tokens starting at
current position

ZSPI-TKN-DELETE TOKENCODE Delete a token from the buffer

ZSPI-TKN-INITIAL-POSITION BOOLEAN Reset position to start of
buffer or list

ZSPI-TKN-MAX-FIELD-VERSION UINT Increase maximum field
version

ZSPI-TKN-MAXRESP INT Set maximum-responses
header token

ZSPI-TKN-POSITION POSITION Restore a previously saved
position

ZSPI-TKN-RESET-BUFFER UINT Reset buffer

ZSPI-TKN-SERVER-VERSION UINT Set server-version header
token
SPI Programming Manual—427506-007
3-9

The SPI Procedures Special Operations With SSPUT and SSPUTTKN
USEDLEN, the procedure returns ZSPI-ERR-NOSPACE. However, the procedure still
resets the maximum buffer length in the SPI message header, and subsequent SPI
calls for that buffer fails with ZSPI-ERR-INVBUF.

ZSPI-TKN-CHECKSUM: Set Checksum Flag

With this token code, a nonzero token-value enables checksum protection of the
buffer; a zero token-value disables it.

ZSPI-TKN-CLEARERR: Clear Last SPI Error

Use this token code to clear the last-error information to zero. If supplied, the token-
value parameter is ignored.

You might use this operation before issuing a series of SSPUT and SSGET calls that
are followed by a check of the last error. You need this operation only if you use
SSGET to check the header token ZSPI-TKN-LASTERR.

ZSPI-TKN-DATA-FLUSH: Clear Buffer From Current Position

Use this token code to flush all information in the message buffer located at and
following the current-token pointer. If supplied, token-value is ignored. The ZSPI-
TKN-DATA-FLUSH operation does not update the header token ZSPI-TKN-MAX-
FIELD-VERSION. As a result, following this operation, that token can indicate a
version higher than the version of any field remaining in the buffer.

ZSPI-TKN-DELETE: Delete a Token or List

Use this token code to delete a particular token or a list from the buffer. The call syntax
is:

token-code

is the token code of the token to be deleted. If token-code is ZSPI-TKN-LIST, -
DATALIST, -ERRLIST, or -SEGLIST, the entire list is deleted.

index

INT:value

if greater than zero, specifies an absolute index for token-id, starting from the
beginning of the buffer or current list. An index of one deletes the first occurrence
of that token code, an index of two deletes the second occurrence, and so on.

SSPUT (buffer
SSPUTTKN , ZSPI-TKN-DELETE
 , token-code, ! i
 , index, ! i
 , [ssid]) ! i
SPI Programming Manual—427506-007
3-10

The SPI Procedures Special Operations With SSPUT and SSPUTTKN
if zero or not supplied, deletes the next occurrence of the token code at or
following the current-token pointer in the buffer.

if less than zero, returns an error.

ssid

can be included to qualify token-code.

The ZSPI-TKN-DELETE operation does not update the header token ZSPI-TKN-MAX-
FIELD-VERSION. As a result, following this operation, that token can indicate a
version higher than the version of any field remaining in the buffer.

ZSPI-TKN-INITIAL-POSITION: Reset Current -Token and
Next-Token Pointers

This special operation resets the current position and next position to either the initial
position in the buffer (the position just prior to the first token that is not a header token)
or the initial position in the currently selected list (the position just prior to the list
token). If token-value is ZSPI-VAL-INITIAL-BUFFER (0), the position is reset to the
beginning of the buffer. If token-value is ZSPI-VAL-INITIAL-LIST (-1), the position is
reset to the beginning of the current list.

ZSPI-TKN-MAX-FIELD-VERSION: Increase Maximum Version
of Structure Fields

Use this token code to increase the maximum field version of the buffer. If the value
specified is greater than the current value, the specified value is used. Otherwise, the
current value is retained.

ZSPI-TKN-MAXRESP: Set Maximum Responses

Use this token code to set the header token that specifies the maximum number of
response records to return in a single reply message. A token-value of zero (the
default) specifies one response record per reply, not enclosed in a list. Any positive
token-value specifies up to that number of response records, each enclosed in a
list. A token-value of -1 specifies as many response records as fit, each enclosed in
a list.

ZSPI-TKN-POSITION: Set Current-Token Pointer

Use this token code to restore a position previously saved using SSGET or
SSGETTKN. The token-value is a four-word position descriptor. For this operation
to be valid, the contents of the buffer prior to the previously saved position must not
have been modified by ZSPI-TKN-DELETE, ZSPI-TKN-DATAFLUSH, or SSMOVE
operations. Otherwise, this operation can corrupt the buffer and cause later operations
to give indeterminate results. If token-value is all zeros or not supplied, this
SPI Programming Manual—427506-007
3-11

The SPI Procedures Considerations
operation sets the current-token pointer to the beginning of the buffer following the
header.

ZSPI-TKN-RESET-BUFFER: Reset the Buffer

Use this token code before extracting tokens from an SPI buffer received (in either a
command or a response) from another process. The calling sequence is:

This operation:

 Resets the maximum buffer length to maxlen bytes

 Clears the last-error information to zero (equivalent to the action of ZSPI-TKN-
CLEARERR)

 Resets the current-token pointer to the beginning of the buffer (equivalent to the
action of ZSPI-TKN-INITIAL-POSITION with ZSPI-VAL-INITIAL-BUFFER)

If maxlen is less than the actual number of bytes used in the buffer, as given in the
header token ZSPI-TKN-USEDLEN, the procedure returns ZSPI-ERR-NOSPACE.
However, the procedure still resets the maximum buffer length in the SPI message
header, and subsequent SPI calls for that buffer fail with ZSPI-ERR-INVBUF.

ZSPI-TKN-SERVER-VERSION: Set Server Version Header
Token

Use this token code to set the header token containing the release version of the
server. For token-value, supply an unsigned integer representing the appropriate
release version. For example, if the server is a NonStop Kernel subsystem of version
G06, token-value should be the unsigned integer with the ASCII character G in the
left byte and “06” in the right byte, or 18182.

Considerations

 The token-value parameter is optional if the token length specified by token-
id is zero (for instance, if token-id is ZSPI-TKN-DATALIST, ZSPI-TKN-
ERRLIST, ZSPI-TKN-ENDLIST, or ZSPI-TKN-LIST). Otherwise, the token-value
parameter is required.

 Specifying a count parameter greater than one is equivalent to calling SSPUT or
SSPUTTKN count number of times in succession without specifying that
parameter (but updating token-value before each call).

 If count is greater than one and the token is of variable length, the values in the
token-value array must be word-aligned.

SSPUT (buffer
SSPUTTKN , ZSPI-TKN-RESET-BUFFER
 , maxlen) ! i
SPI Programming Manual—427506-007
3-12

The SPI Procedures SSGET and SSGETTKN Procedures
 The order in which tokens are added to the buffer is not significant except in the
case of: (1) SSPUT and SSPUTTKN calls with token codes for tokens that start
and end lists, and (2) a few subsystem-specific exceptions mentioned in the
subsystem manuals (for example, the ZEMS-TKN-SUBJECT-MARK token in an
event message).

 Adding a token to the buffer with SSPUT or SSPUTTKN does not affect the
current-token pointer for subsequent calls to SSGET or SSGETTKN.

 When SSPUT is called with a token map, it uses the null-value and version
information in the token map, if necessary, to update the header token ZSPI-TKN-
MAX-FIELD-VERSION. The token map is not stored in the buffer; instead, SSPUT
creates a token code of type ZSPI-TYP-STRUCT with the token number of the
map.

 If an error is returned by the procedure, buffer pointer information is not updated.

SSGET and SSGETTKN Procedures
The SSGET and SSGETTKN procedures extract tokens and related information from
an SPI buffer. The two procedures produce the same results, and they are identical
except for the type of the token-id parameter (SSGET passes token-id by
reference and SSGETTKN passes it by value) and the consequent fact that
SSGETTKN cannot be used with a token map.

A program can retrieve tokens from an SPI buffer in two ways using SSGET. The first
way is to extract a particular token by name. This way is usually most desirable for
management applications. The second way is to use one of the two special operations
ZSPI-TKN-NEXTCODE and ZSPI-TKN-NEXTTOKEN to scan the buffer item by item.
Servers often use this method to determine the contents of a message and to check for
tokens that should not be present in the requester’s message.

Programs should not rely on the relative order of tokens within the buffer, except in the
case of multiple tokens with the same token code and subsystem ID. Such multiple
occurrences are always kept in the order in which they were placed in the buffer, and
can be treated as an array.

General Syntax

buffer input, output

INT .EXT:ref:*

SSGET (buffer ! i/o
SSGETTKN , token-id ! i
 , [token-value] ! i/o
 , [index] ! i
 , [count] ! i/o
 , [ssid]) ! i/o
SPI Programming Manual—427506-007
3-13

The SPI Procedures General Syntax
is the SPI buffer from which information is to be extracted.

token-id input

INT .EXT:ref:* (SSGET)
INT(32):value (SSGETTKN)

is a token code or (for SSGET only) a token map. This parameter normally
identifies the token to be retrieved. If the token-id is one of the SPI standard
token codes indicating a special operation, the interpretation of the token-value,
count, and index parameters can vary from the descriptions here.

If token-id is a token that marks the beginning of a list (ZSPI-TKN-DATALIST,
ZSPI-TKN-ERRLIST, ZSPI-TKN-SEGLIST, or ZSPI-TKN-LIST), the procedure
selects the list so that subsequent calls can retrieve tokens in the list.

token-value input, output

STRING .EXT:ref:*

is normally the variable in which the requested token value is to be returned. For
control and positioning operations, token-value can be an output parameter. Its
data representation depends on the token-type field of the token-id.

index input

INT:value

if greater than zero, specifies an absolute index for token-id, starting from the
beginning of the buffer or current list. An index of one gets the first occurrence of
that token code, an index of two gets the second occurrence, and so on.

if zero or not supplied, returns the next occurrence of the token code following the
current-token pointer in the buffer. For example, if the token occurs five times,
calling SSGET or SSGETTKN once with an index of one and four times with
index 0 would return all five occurrences.

if less than zero, returns an error.

SSGET resets the current-token pointer to the token value returned if no error is
reported by the procedure.

To search from the beginning of the buffer or current list, a program must either
supply a nonzero index or first reset the initial position (using SSPUT or
SSPUTTKN with ZSPI-TKN-INITIAL-POSITION or ZSPI-TKN-RESET-BUFFER).

count input, output

INT .EXT:ref:1

is normally used as an input and output count parameter:

 On the call, it specifies the maximum number of token values to return. The
token-value parameter is an array of count elements, each of which is
SPI Programming Manual—427506-007
3-14

The SPI Procedures Special Operations With SSGET and SSGETTKN
described by the token-id. If not supplied, it defaults to one. If less than zero,
it causes an error.

 On return, it specifies the actual number of token values returned.

If a count greater than one is specified, SSGET or SSGETTKN continues
searching until it either satisfies the requested count or reaches the end of the
buffer or list.

For certain tokens for special operations, SSGET and SSGETTKN use the count
parameter to return attribute information such as length, byte offset, or number of
occurrences.

ssid input, output

INT .EXT:ref:6

is a subsystem ID that qualifies the token code. If not supplied or equal to zero
(6*[0]), ssid defaults to one of:

 If the current-token pointer is in a list, the subsystem ID of the current list

 If the current-token pointer is not in a list, the subsystem ID in the SPI message
header (ZSPI-TKN-SSID)

The version field of this parameter is not used when searching the buffer.

Special Operations With SSGET and SSGETTKN

Table 3-2 lists the special token codes you can supply to SSGET and SSGETTKN to
retrieve header token values and perform other special operations.

Each operation is described following the table. For some operations, the procedure
parameters differ in type and meaning from those indicated in the main syntax
description. Modified syntax and semantics are given, or the differences are described.

Table 3-2. SSGET(TKN) Special Operations (page 1 of 2)

Token Specified in SSGET(TKN) Call Type Effect

ZSPI-TKN-ADDR TOKENCODE Retrieve the address of a
token

ZSPI-TKN-BUFLEN UINT Retrieve buffer length

ZSPI-TKN-CHECKSUM BOOLEAN Retrieve checksum flag

ZSPI-TKN-COMMAND ENUM Retrieve command number

ZSPI-TKN-COUNT TOKENCODE Count the occurrences of a
token

ZSPI-TKN-DEFAULT-SSID SSID Retrieve SSID at current
position

ZSPI-TKN-HDRTYPE UINT Retrieve message header
type
SPI Programming Manual—427506-007
3-15

The SPI Procedures Special Operations With SSGET and SSGETTKN
ZSPI-TKN-ADDR: Retrieve Address of a Token Value

Use this token code to get the extended address of a specific token value:

This operation returns, in token-address, INT .EXT:ref:2, the 32-bit extended
address of the value specified by token-id and index. For variable-length token
values, this is the address of the length word at the start of the token value (see
Figure 2-2 on page 2-6). If token-id is either omitted or equal to ZSPI-VAL-NULL-
TOKENCODE and index is either omitted or zero, SSGET or SSGETTKN returns the
address of the current token.

ZSPI-TKN-LASTERR ENUM Retrieve last procedure call
error

ZSPI-TKN-LASTERRCODE TOKENCODE Retrieve code of token in last
error

ZSPI-TKN-LASTPOSITION POSITION Retrieve position of last put
token

ZSPI-TKN-LEN TOKENCODE Retrieve the length of a token
value

ZSPI-TKN-MAX-FIELD-VERSION UINT Retrieve maximum field
version

ZSPI-TKN-MAXRESP INT Retrieve maximum responses
value

ZSPI-TKN-NEXTCODE TOKENCODE Retrieve the next different
token code

ZSPI-TKN-NEXTTOKEN TOKENCODE Retrieve the next token code

ZSPI-TKN-OBJECT-TYPE ENUM Retrieve object type

ZSPI-TKN-OFFSET TOKENCODE Get the byte offset of a token
value

ZSPI-TKN-POSITION POSITION Retrieve current-token pointer

ZSPI-TKN-SERVER-VERSION UINT Retrieve server version

ZSPI-TKN-SSID SSID Retrieve SSID of message

ZSPI-TKN-USEDLEN UINT Retrieve used buffer length

 SSGET (buffer
 SSGETTKN , ZSPI-TKN-ADDR
 , [token-id] ! i
 , [index] ! i
 , token-address ! o
 , [ssid]) ! i

Table 3-2. SSGET(TKN) Special Operations (page 2 of 2)

Token Specified in SSGET(TKN) Call Type Effect
SPI Programming Manual—427506-007
3-16

The SPI Procedures Special Operations With SSGET and SSGETTKN
ZSPI-TKN-BUFLEN: Retrieve Current Buffer Length

Call SSGET or SSGETTKN with this token code to retrieve the current buffer length
from the corresponding header token. If you specify an index parameter, it must have
a value of zero or one.

ZSPI-TKN-CHECKSUM: Retrieve Value of Checksum Flag

Call SSGET or SSGETTKN with this token code to retrieve the checksum flag from the
corresponding header token. If you specify an index parameter, it must have a value
of zero or one.

ZSPI-TKN-COMMAND: Retrieve Command Number

Call SSGET or SSGETTKN with this token code to retrieve the command number from
the corresponding header token. If you specify an index parameter, it must have a
value of zero or one. If the command does not contain a command number, or if the
subsystem could not obtain it, the error response from NonStop Kernel subsystems
includes the null command number (ZSPI-VAL-NULL-COMMAND). In a response
reporting a malformed command, the command number might not be reliable.

ZSPI-TKN-COUNT: Count the Occurrences of a Token

Use this token code to get the total number of occurrences of a specific token (starting
from a specified index):

This operation returns, in count, INT .EXT:ref:1, the total number of occurrences of
token-id. If index is zero or not supplied, counting starts from the current-token
pointer. To count all occurrences in the current list, specify an index of 1.

If token-id is either omitted or equal to ZSPI-VAL-NULL-TOKENCODE and index is
either omitted or zero, then SSGET or SSGETTKN counts occurrences of the current
token beginning with the current occurrence.

ZSPI-TKN-DEFAULT-SSID: Retrieve the Current Default SSID

Use this token code to get the default subsystem ID value of the token at the current-
token pointer:

SSGET (buffer
SSGETTKN , ZSPI-TKN-COUNT
 , [token-id] ! i
 , [index] ! i
 , count ! o
 , [ssid]) ! i

SSGET (buffer
SSGETTKN , ZSPI-TKN-DEFAULT-SSID
 , ssid) ! o
SPI Programming Manual—427506-007
3-17

The SPI Procedures Special Operations With SSGET and SSGETTKN
Here SSGET or SSGETTKN returns, in ssid, INT .EXT:ref:6, the default subsystem ID
value at the current-token pointer. SSPUT, SSPUTTKN, SSGET, and SSGETTKN use
this value whenever the ssid parameter is omitted or null.

If the default subsystem ID comes from a list token, then the version field of ssid is
set to ZSPI-VAL-NULL-VERSION. Therefore, when comparing subsystem ID values
for equality, your program should omit the version field from the test.

ZSPI-TKN-HDRTYPE: Retrieve Header Type

Call SSGET or SSGETTKN with this token code to retrieve the header type from the
corresponding header token. If you specify an index parameter, it must have a value
of 0 or 1.

ZSPI-TKN-LASTERR: Retrieve Last SPI Error Number

Call SSGET or SSGETTKN with this token code to retrieve, from the corresponding
header token, the error number returned by the last SPI procedure error. If you specify
an index parameter, it must have a value of 0 or 1.

ZSPI-TKN-LASTERRCODE: Retrieve Token Code Involved in
Last SPI Error

Call SSGET or SSGETTKN with this token code to retrieve, from the corresponding
header token, the code of the token involved in the last SPI procedure error. If you
specify an index parameter, it must have a value of 0 or 1.

ZSPI-TKN-LASTPOSITION: Retrieve Position of Last Token
Put in Buffer

Call SSGET or SSGETTKN with this token code to retrieve, from the corresponding
header token, the position where the last token was added by SSPUT(TKN). The value
returned is a 4-word position descriptor, INT.EXT:ref:4, that you can later use to reset
the position with the SSPUT or SSPUTTKN special operation ZSPI-TKN-POSITION. If
you specify an index parameter, it must have a value of 0 or 1.

Saving the position of the last token is useful when you want to add a group of related
tokens for which the buffer might not have sufficient space. After adding the first of the
related tokens, call SSGET with ZSPI-TKN-LASTPOSITION to get the position of that
token. Then, if the buffer does not have space for the remaining related tokens, you
can use the saved position to remove the tokens following it. First, call SSPUT with
ZSPI-TKN-POSITION and the value returned by ZSPI-TKN-LASTPOSITION to set the
current-token pointer to the first of the related tokens. Second, call SSPUT with ZSPI-
TKN-DATA-FLUSH to remove the current token and all the tokens that follow.
SPI Programming Manual—427506-007
3-18

The SPI Procedures Special Operations With SSGET and SSGETTKN
ZSPI-TKN-LEN: Get the Length of a Token Value

Use this token code to get the byte length of a specific token value:

This operation returns in byte-length, INT .EXT:ref:1, the size of the buffer needed
to contain the specified occurrence of the token value. For variable-length token
values, this includes the 2 bytes required for the length word, as shown in Figure 2-2
on page 2-6: the byte-length returned is token-value[0] + 2.

If token-id is either omitted or equal to ZSPI-VAL-NULL-TOKENCODE and index is
either omitted or zero, then SSGET or SSGETTKN returns the length of the current
token.

If token-id is a token map, this operation returns the length of the structure
corresponding to that token map; the actual value in the buffer can be longer or shorter
than this length. To get the actual length of the token value in the buffer, call SSGET
with ZSPI-TKN-LEN and a token code made up of ZSPI-TYP-STRUCT and the token
number from the token map. This operation returns the length of the structure value,
including 2 bytes for the length field. Then subtract 2 from this value to get the length of
the value that starts at the address obtained by ZSPI-TKN-ADDR with the token map.

ZSPI-TKN-MAX-FIELD-VERSION: Retrieve Maximum Version
of Structure Fields

Call SSGET or SSGETTKN with this token code to retrieve the maximum field version
from the corresponding header token. If you specify an index parameter, it must have
a value of 0 or 1.

ZSPI-TKN-MAXRESP: Retrieve Maximum Responses Setting

Call SSGET or SSGETTKN with this token code to retrieve the setting of the maximum
responses parameter from the corresponding header token. If you specify an index
parameter, it must have a value of 0 or 1.

SSGET (buffer
SSGETTKN , ZSPI-TKN-LEN
 , [token-id] ! i
 , [index] ! i
 , byte-length ! o
 , [ssid]) ! i
SPI Programming Manual—427506-007
3-19

The SPI Procedures Special Operations With SSGET and SSGETTKN
ZSPI-TKN-NEXTCODE: Get the Next Different Token Code in
the Buffer

Use this token code to get the next token code in the buffer that is different from the
current token code:

next-token-code

contains the next different token code in the buffer.

occurs

contains the number of contiguous occurrences of next-token-code.

For this operation, ssid is an output parameter only; you do not supply any
information in this token, but merely provide a variable in which SSGET will return the
subsystem ID that qualifies the token code. If you do not supply a variable for ssid,
and the subsystem ID associated with the next token code is not the same as the
default subsystem ID, a “missing parameter” error is returned. Therefore, always
supply a variable for ssid when calling SSGET with ZSPI-TKN-NEXTCODE unless,
for some special reason, you are certain that all tokens the program could encounter
are qualified by the default subsystem ID. The ssid returned always has a version
field of zero (null).

The index parameter has no effect on this operation. If supplied, it must be equal to
zero.

SSGET (buffer
SSGETTKN , ZSPI-TKN-NEXTCODE
 , [next-token-code] ! o
 ,
 , [occurs] ! o
 , [ssid]) ! o

Note. The special operations ZSPI-TKN-NEXTCODE and ZSPI-TKN-NEXTTOKEN return only
token codes. In particular, tokens that were added to the buffer by using SSPUT with a token map are
carried in the buffer with a token code of type ZSPI-TYP-STRUCT. The NEXTCODE and
NEXTTOKEN operations return this token code, not the token map used with SSPUT.

The best way to determine which token has been returned by NEXTCODE or NEXTTOKEN is to
extract the token number from the token code and test it. This technique prevents any problem that might
occur because of a change in the type of an extensible structured token.
SPI Programming Manual—427506-007
3-20

The SPI Procedures Special Operations With SSGET and SSGETTKN
ZSPI-TKN-NEXTTOKEN: Get the Next Token Code in the
Buffer

Use this token code to get the token code of the next token in the buffer:

This operation differs from ZSPI-TKN-NEXTCODE in that it always returns the token
code of the next token, whether or not it is the same as that of the current token, and
whether or not the token is within a list. The operation returns multiple occurrences of
the same token code in the same order as they were added to the buffer with SSPUT
or SSPUTTKN.

For this operation, ssid is an output parameter only; you do not supply any
information in this token, but merely provide a variable in which SSGET returns the
subsystem ID that qualifies the token code. If you do not supply a variable for ssid,
and the subsystem ID associated with the next token code is not the same as the
default subsystem ID, a “missing parameter” error is returned. Therefore, always
supply a variable for SSID when calling SSGET with ZSPI-TKN-NEXTTOKEN unless,
for some special reason, you are certain that all tokens the program could encounter
are qualified by the default subsystem ID. The ssid returned always has a version
field of zero (null).

The index and count parameters have no effect on this operation. If supplied, index
must be equal to zero, and count is always returned as 1.

See the NOTE at the end of ZSPI-TKN-NEXTCODE: Get the Next Different Token
Code in the Buffer on page 3-20.

ZSPI-TKN-OBJECT-TYPE: Retrieve Object Type

Call SSGET or SSGETTKN with this token code to retrieve the object type from the
corresponding header token. If you specify an index parameter, it must have a value
of 0 or 1. In a response reporting a malformed command, the object-type number might
not be reliable.

SSGET (buffer
SSGETTKN , ZSPI-TKN-NEXTTOKEN
 , [next-token-code] ! o
 ,
 ,
 , [ssid]) ! o
SPI Programming Manual—427506-007
3-21

The SPI Procedures Special Operations With SSGET and SSGETTKN
ZSPI-TKN-OFFSET: Retrieve the Byte Offset of a Token Value

Use this token code to get the byte offset of a specific token value:

This operation returns, in byte-offset, INT .EXT:ref:1, the byte offset from the start
of the buffer to the value associated with the specified token code and index. (For
variable-length values, the token value begins with the length word; the offset given is
the offset to that length word.)

If token-id is either omitted or equal to ZSPI-VAL-NULL-TOKENCODE and index is
either omitted or zero, then SSGET or SSGETTKN returns the offset of the current
occurrence of the current token.

ZSPI-TKN-POSITION: Retrieve Current-Token Position

Call SSGET or SSGETTKN with this token code to retrieve the pointer to the current
token. The value returned is a four-word position descriptor, INT .EXT:ref:4, that you
can later use to reset the position with the SSPUT or SSPUTTKN special operation
ZSPI-TKN-POSITION. If you specify an index parameter, it must have a value of 0 or
1.

ZSPI-TKN-SERVER-VERSION: Retrieve Server Version

Call SSGET or SSGETTKN with this token code to retrieve the server version from the
corresponding header token. If you specify an index parameter, it must have a value
of 0 or 1.

ZSPI-TKN-SSID: Retrieve SSID Used When Buffer Was
Initialized

Call SSGET or SSGETTKN with this token code to retrieve the default SSID from the
corresponding header token. If you specify an index parameter, it must have a value
of 0 or 1.

ZSPI-TKN-USEDLEN: Retrieve Used Length of Buffer

Call SSGET or SSGETTKN with this token code to retrieve the length of the used
portion of the buffer from the corresponding header token. If you specify an index
parameter, it must have a value of 0 or 1.

SSGET (bufferSSGETTKN
 , ZSPI-TKN-OFFSET
 , [token-id] ! i
 , [index] ! i
 , byte-offset ! o
 , [ssid]) ! i
SPI Programming Manual—427506-007
3-22

The SPI Procedures Considerations
Considerations

 Tokens extracted by SSGET and SSGETTKN are not deleted or removed from the
buffer.

 For checkpointing purposes, note that calls to SSGET and SSGETTKN can modify
the SPI message header. For instance, the header tokens ZSPI-TKN-LASTERR
and ZSPI-TKN-LASTERRCODE change if an SPI error occurs on the call.
Positioning information in the header also changes frequently, and future versions
of SPI might introduce other kinds of change. Programs should never assume that
any SSGET or SSGETTKN operation leaves the buffer unchanged.

 When the current-token pointer is within a particular list, all SSGET and
SSGETTKN calls pertain only to tokens within that list, but the header tokens listed
in Table 3-2 on page 3-15 are always accessible. Your program can exit the list by
calling SSGET to get the ZSPI-TKN-ENDLIST token.

 The index and count parameters have no effect when token-id is ZSPI-TKN-
ENDLIST. If supplied, index must be equal to zero or 1, and count is always
returned as 1.

 If an error is returned, buffer pointer information is not updated.

 When you use a token map for the token-id parameter, the map can specify a
structure version that is longer or shorter than the structure contained in the buffer.
If the requested version is longer than the version in the buffer, SSGET calls
SSNULL to set to null values any new fields that are not obtained from the buffer. If
the requested version is shorter than the one in the buffer, SSGET returns only the
requested length.

 Some of the special operations listed in Table 3-2 on page 3-15 return certain
attributes of tokens in the buffer. These are ZSPI-TKN-COUNT, which gets the total
number of occurrences of a specific token; ZSPI-TKN-LEN, which gets the length
of a token value; ZSPI-TKN-ADDR, which gets the extended address of a token
value; and ZSPI-TKN-OFFSET, which gets the byte offset, from the beginning of
the buffer, of a token value. These special operations are useful to programs
retrieving token values from the buffer. (ZSPI-TKN-ADDR is not meaningful—and
therefore is not available—in TACL.)

When obtaining an attribute of a token with an index of zero, SSGET follows the
same search rules as it does when getting a token value (the search begins with
the token indicated by the next-token pointer) with these exceptions:

 A special calling mode exists to request an attribute of the current token: if the
token code and index are both null or not supplied, the current token is used.

 The current and next pointers are not changed if the requested token is the
current token.

 If the requested token is not the current token, both the current and next
pointers are set to the requested token.
SPI Programming Manual—427506-007
3-23

The SPI Procedures Considerations
This example illustrates the second exception:

CALL SSGETTKN (buffer, ZSPI-TKN-LEN, , , len)

Before the call, the positioning is:

current next
 | |
 v v
<TKN-A> <TKN-B> <TKN-C> <TKN-A>

After the call, the positioning is unchanged:

current next
 | |
 v v
<TKN-A> <TKN-B> <TKN-C> <TKN-A>

This example illustrates the third exception:

CALL SSGETTKN (buffer, ZSPI-TKN-LEN, TKN-A, , len)

Before the call, the positioning is:

current next
 | |
 v v
<TKN-A> <TKN-B> <TKN-C> <TKN-A>

However, after the call, the positioning is:

 current + next
 |
 v
<TKN-A> <TKN-B> <TKN-C> <TKN-A>

A position (ZSPI-TKN-POSITION), a token address (ZSPI-TKN-ADDR), or a token
offset (ZSPI-TKN-OFFSET) returned by SSGET remains valid until a token is
deleted using the SSPUT operations ZSPI-TKN-DELETE or ZSPI-TKN-DATA-
FLUSH or until a call to SSMOVE replaces a token in the buffer. If the contents of
the buffer are copied to another buffer with SSMOVE, the position, address, or
offset is still valid when used with the original buffer, but is not valid for use with the
target buffer of the SSMOVE.
SPI Programming Manual—427506-007
3-24

The SPI Procedures SSMOVE and SSMOVETKN Procedures
SSMOVE and SSMOVETKN Procedures
The SSMOVE and SSMOVETKN procedures copy tokens from one SPI buffer to
another. One call can copy a single token, a sequence of tokens with the same token
code, or a list.

SSMOVE performs a sequence of SSGET and SSPUT operations. Likewise,
SSMOVETKN performs a sequence of SSGETTKN and SSPUTTKN (or SSGET and
SSPUT) operations. The two procedures produce the same results, and they are
identical except for the type of the token-id parameter (SSMOVE passes token-id
by reference and SSMOVETKN passes it by value) and the consequent fact that
SSMOVETKN cannot be used with a token map.

General Syntax

token-id input

INT .EXT:ref:* (SSMOVE)
INT(32):value (SSMOVETKN)

is a token code or (for SSMOVE only) a token map that identifies the token to be
copied. If token-id is a list token, the entire list is copied.

source-buffer input, output

INT .EXT:ref:*

is the SPI buffer containing the token or tokens to be copied.

source-index input

INT:value

if greater than zero, identifies the first occurrence of token-id to be copied from
the source buffer. (One or more occurrences can be copied, depending on the
value of count.) A source-index value of 1 specifies that the copy is to start
with the first occurrence of the token code, a value of 2 specifies the second
occurrence, and so on.

if zero or not supplied, directs SSMOVE or SSMOVETKN to start with the next
occurrence of the token code after the current-token pointer in the source buffer.

SSMOVE (token-id ! i
SSMOVETKN , source-buffer ! i/o
 , [source-index] ! i
 , dest-buffer ! i/o
 , [dest-index] ! i
 , [count] ! i/o
 , [ssid]) ! i
SPI Programming Manual—427506-007
3-25

The SPI Procedures Considerations
dest-buffer input, output

INT .EXT:ref:*

is the SPI buffer to which the specified token or tokens are to be copied.

dest-index input

INT:value

if greater than zero, identifies the first occurrence of token-id to be replaced in
the destination buffer. A value of 1 specifies that replacement should start with the
first occurrence of the token code, a value of 2 specifies the second occurrence,
and so on. If the specified occurrences are not found in the destination buffer, the
tokens being copied are added to the end of the buffer.

if zero or not supplied, SSMOVE or SSMOVETKN adds the tokens from the source
buffer to the end of the destination buffer.

count input, output

INT .EXT:ref:1

is used as an input and output count parameter:

 On the call, it specifies the maximum number of tokens to copy, unless
token-id is a list token; in the latter case, it gives the maximum number of
lists to move. If not supplied, count defaults to 1.

 On return, it specifies the actual number of token values or lists copied.

ssid input

INT .EXT:ref:6

is a subsystem ID, as described in Section 4, ZSPI Data Definitions, that qualifies
the token ID. If not supplied or equal to zero (6*[0]), ssid defaults to the
subsystem ID of the current list, or if the current-token pointer is not in a list, then
to the subsystem ID specified in the SPI message header (ZSPI-TKN-SSID). The
version field of ssid is not used in searching the source buffer.

Considerations

 Any odd-length buffer fields are padded at the end so that the next token added by
SSMOVE or SSMOVETKN always starts on a word (even) boundary. The same
circumstances also apply to SSPUT or SSPUTTKN operations.

 Tokens copied by SSMOVE or SSMOVETKN are not deleted or removed from the
source buffer.

 For checkpointing purposes, note that calls to SSMOVE and SSMOVETKN can
modify the SPI message header of the source buffer. Positioning information in the
header changes frequently, and future versions of SPI might introduce other kinds
SPI Programming Manual—427506-007
3-26

The SPI Procedures Example: Moving Buffer Tokens Using SSMOVETKN
of change. Programs should never assume that any SSMOVE or SSMOVETKN
operation leaves the source buffer unchanged.

 After a successful SSMOVE or SSMOVETKN operation, the current-token position
in the source buffer is changed to the position of the last token copied.

 When SSMOVE copies a token identified by a token map, the value obtained from
the source buffer is truncated or padded according to the map specifications, and
the ZSPI-TKN-MAX-FIELD-VERSION header token in the destination buffer is
appropriately adjusted.

 If an error occurs on SSMOVE or SSMOVETKN, the ZSPI-TKN-LASTERR and
ZSPI-TKN-LASTERRCODE header tokens can be set in either the source buffer or
the destination buffer, depending on whether the error occurred on the logical
SSGET[TKN] or SSPUT[TKN] part of the copy.

 SSMOVE or SSMOVETKN can copy an incomplete list (a list with no
corresponding end-list token) if and only if dest-index is not supplied or is zero.
If a nonzero destination index is specified, meaning that a replacement operation is
being requested, an incomplete list causes SSMOVE or SSMOVETKN to return
ZSPI-ERR-MISTKN.

Example: Moving Buffer Tokens Using SSMOVETKN

The C source code program in Example 3-1 demonstrates the proper use of
SSMOVETKN to move the remaining tokens from one SPI buffer to another buffer.
SPI Programming Manual—427506-007
3-27

The SPI Procedures Example: Moving Buffer Tokens Using SSMOVETKN
Example 3-1. Moving Buffer Tokens Using SSMOVETKN (page 1 of 7)

/*
 * Try moving some buffer tokens around using SSMOVETKN.
 */
#pragma symbols
#pragma inspect
#pragma nomap
#pragma nolmap

#define max_bufsize 256 /* in bytes */

#include "secc.h"
#pragma list
#include "seccutlc"
short ZERO = 0;

#pragma page "MAIN"
main(/* int argc, char *argv[] */)
{
 zspi_ddl_ssid_def mySsid;

 bufsize = max_bufsize;

 /*
 * Initialize the SPI buffer "b1"
 */
 if (err = SSINIT (b1, bufsize, (short *) &ssid, ZSPI_VAL_CMDHDR))
 display_spi_error (err, ZSPI_VAL_SSINIT, 0L, true);
/*
 * Put four tokens in the SPI buffer "b1"
 */
 if (err = SSPUTTKN (b1, ZSPI_TKN_DATALIST))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, ZSPI_TKN_DATALIST, true);
 val = 'A';
 if (err = SSPUTTKN (b1, tkn_1, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_1, true);
 val = 'B';
 if (err = SSPUTTKN (b1, tkn_2, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_2, true);
 val = 'C';
 if (err = SSPUTTKN (b1, tkn_3, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_3, true);
 val = 'D';
 if (err = SSPUTTKN (b1, tkn_3, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_3, true);
 if (err = SSPUTTKN (b1, ZSPI_TKN_ENDLIST))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, ZSPI_TKN_ENDLIST, true);
SPI Programming Manual—427506-007
3-28

The SPI Procedures Example: Moving Buffer Tokens Using SSMOVETKN
 /*
 * Initialize the SPI buffer "b2"
 */
 if (err = SSINIT (b2, bufsize, (short *) &ssid, ZSPI_VAL_CMDHDR))
 display_spi_error (err, ZSPI_VAL_SSINIT, 0L, true);

 /*
 * Reset the SPI buffer "b1"
 */
 if (err = SSPUTTKN (b1, ZSPI_TKN_RESET_BUFFER, (char *) &bufsize))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_RESET_BUFFER, true);

 /*
 * Get the tokens in the SPI buffer "b1"
 */

 get_count = 1;
/*
 * Note that the following code doesn’t work as expected. This is
 * because SSMOVETKN will move an entire list if positioned on a
 * list and GET(NEXTTOKEN) will enter the list. So
 * B1 = ["A","B","C","D"]
 * B2 = ["A","B","C","D"],"A","B","C","D" and you will get an
 * error -8 (Missing Tkn) when you try to move the last ENDLIST from
 * B1 to B2. This is returned because there is no matching DATALIST,etc.
 */
 while (!err)
 {
 if (err = SSGETTKN (b1, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &mySsid))
 continue;
 else
 err = SSMOVETKN (tkn_code, b1, ZERO,
 b2, ZERO,, &mySsid);
 }
 if (tkn_code != ZSPI_TKN_ENDLIST)
 {
 printf ("At end of loop: TKN_CODE should = ENDLIST, \n");
 printf ("B2: \n");
 dump_buf (b2);
 }
 if (err != ZSPI_ERR_MISTKN)
 {
 printf ("ERROR should = -8, was %d \n", err);
 printf ("B2: \n");
 dump_buf (b2);
 }
 /*
 * Reset the SPI buffer "b2"
 */
 if (err = SSPUTTKN (b2, ZSPI_TKN_RESET_BUFFER, (char *) &bufsize))
 {
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_RESET_BUFFER, true);
 }

Example 3-1. Moving Buffer Tokens Using SSMOVETKN (page 2 of 7)
SPI Programming Manual—427506-007
3-29

The SPI Procedures Example: Moving Buffer Tokens Using SSMOVETKN

 /*
 * Get the tokens in the SPI buffer "b2"
 */

 get_count = 1;
 if (err = SSGETTKN (b2, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &mySsid))
 {
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, true);
 }
 if (tkn_code != ZSPI_TKN_DATALIST)
 {
 printf ("B2 check 1:TKN_CODE should = DATALIST, \n");
 printf ("B2: \n");
 dump_buf (b2);
 }
 if (err = SSGETTKN (b2, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &mySsid))
 {
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, true);
 }
 if (tkn_code != tkn_1)
 {
 printf ("B2 check 1:TKN_CODE should = TKN_1, \n");
 printf ("B2: \n");
 dump_buf (b2);
 }
 if (err = SSGETTKN (b2, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &mySsid))
 {
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, true);
 }
 if (tkn_code != tkn_2)
 {
 printf ("B2 check 1:TKN_CODE should = TKN_2, \n");
 printf ("B2: \n");
 dump_buf (b2);
 }
 if (err = SSGETTKN (b2, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &mySsid))
 {
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, true);
 }
 if (tkn_code != tkn_3)
 {
 printf ("B2 check 1:TKN_CODE should = TKN_3, \n");
 printf ("B2: \n");
 dump_buf (b2);
 }

Example 3-1. Moving Buffer Tokens Using SSMOVETKN (page 3 of 7)
SPI Programming Manual—427506-007
3-30

The SPI Procedures Example: Moving Buffer Tokens Using SSMOVETKN
 if (err = SSGETTKN (b2, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &mySsid))
 {
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, true);
 }
 if (tkn_code != tkn_3)
 {
 printf ("B2 check 1:TKN_CODE should = TKN_3 (2nd), \n");
 printf ("B2: \n");
 dump_buf (b2);
 }
 if (err = SSGETTKN (b2, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &mySsid))
 {
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, true);
 }
 if (tkn_code != ZSPI_TKN_ENDLIST)
 {
 printf ("B2 check 1:TKN_CODE should = ENDLIST, \n");
 printf ("B2: \n");
 dump_buf (b2);
 }
 if (err = SSGETTKN (b2, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &mySsid))
 {
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, true);
 }
 if (tkn_code != tkn_1)
 {
 printf ("B2 check 1:TKN_CODE should = TKN_1 (2nd), \n");
 printf ("B2: \n");
 dump_buf (b2);
 }
 if (err = SSGETTKN (b2, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &mySsid))
 {
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, true);
 }
 if (tkn_code != tkn_2)
 {
 printf ("B2 check 1:TKN_CODE should = TKN_2 (2nd), \n");
 printf ("B2: \n");
 dump_buf (b2);
 }
 if (err = SSGETTKN (b2, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &mySsid))
 {
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, true);
 }

Example 3-1. Moving Buffer Tokens Using SSMOVETKN (page 4 of 7)
SPI Programming Manual—427506-007
3-31

The SPI Procedures Example: Moving Buffer Tokens Using SSMOVETKN
 if (tkn_code != tkn_3)
 {
 printf ("B2 check 1:TKN_CODE should = TKN_3 (3rd), \n");
 printf ("B2: \n");
 dump_buf (b2);
 }
 if (err = SSGETTKN (b2, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &mySsid))
 {
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, true);
 }
 if (tkn_code != tkn_3)
 {
 printf ("B2 check 1:TKN_CODE should = TKN_3 (4th), \n");
 printf ("B2: \n");
 dump_buf (b2);
 }
 err = SSGETTKN (b2, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &mySsid);
 if (err != ZSPI_ERR_MISTKN)
 {
 printf ("B2 check 1:Error should = -8, is %d \n", err);
 printf ("B2: \n");
 dump_buf (b2);
 }
 /*
 * Now do it the correct way
 */
 /*
 * Initialize the SPI buffer "b2"
 */
 if (err = SSINIT (b2, bufsize, (short *) &ssid, ZSPI_VAL_CMDHDR))
 {
 display_spi_error (err, ZSPI_VAL_SSINIT, 0L, true);
 }
 /*
 * Reset the SPI buffer "b1"
 */
 if (err = SSPUTTKN (b1, ZSPI_TKN_RESET_BUFFER, (char *) &bufsize))
 {
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_RESET_BUFFER, true);
 }

Example 3-1. Moving Buffer Tokens Using SSMOVETKN (page 5 of 7)
SPI Programming Manual—427506-007
3-32

The SPI Procedures Example: Moving Buffer Tokens Using SSMOVETKN
 /*
 * Get the tokens in the SPI buffer "b1"
 */

 get_count = 1;
 /*
 * Note that the following code moves all the nonheader tokens from
 * B1 to B2.
 * B1 = ["A","B","C","D"]
 * B2 = ["A","B","C","D"]
 */
 while (!err)
 {
 if (err = SSGETTKN (b1, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &mySsid))
 continue;
 else
 err = SSMOVETKN (tkn_code, b1, ZERO,
 b2, ZERO,, &mySsid);
 if (tkn_code == ZSPI_TKN_DATALIST
 || tkn_code == ZSPI_TKN_ERRLIST
 || tkn_code == ZSPI_TKN_SEGLIST)
 {
 /* The SSMOVETKN call moved the entire list. Go to the ENDLIST
 and then continue on with the GET (NEXTTOKEN) loop */
 err = SSGETTKN (b1, ZSPI_TKN_ENDLIST, (char *) &tkn_code,
 0, &get_count, (short *) &mySsid);
 }
 }
 if (tkn_code != ZSPI_TKN_DATALIST)
 {
 printf ("At end of loop2: TKN_CODE should = DATALIST, \n");
 printf ("B2: \n");
 dump_buf (b2);

 if (err != ZSPI_ERR_MISTKN)
 {
 printf ("At end of loop2: ERROR should = -8, was %d \n", err);
 printf ("B2: \n");
 dump_buf (b2);
 }
 /*
 * Reset the SPI buffer "b2"
 */
 if (err = SSPUTTKN (b2, ZSPI_TKN_RESET_BUFFER, (char *) &bufsize))
 {
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_RESET_BUFFER, true);
 }
 /*
 * Get the tokens in the SPI buffer "b2"
 */

 get_count = 1;

Example 3-1. Moving Buffer Tokens Using SSMOVETKN (page 6 of 7)
SPI Programming Manual—427506-007
3-33

The SPI Procedures Example: Moving Buffer Tokens Using SSMOVETKN
 if (err = SSGETTKN (b2, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &mySsid))
 {
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, true);
 } }
 if (tkn_code != ZSPI_TKN_DATALIST)
 {
 printf ("B2 check 2:TKN_CODE should = DATALIST, \n");
 printf ("B2: \n");
 dump_buf (b2);
 }
 if (err = SSGETTKN (b2, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &mySsid))
 {
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, true);
 }
 if (tkn_code != tkn_1)
 {
 printf ("B2 check 2:TKN_CODE should = TKN_1, \n");
 printf ("B2: \n");
 dump_buf (b2);
 }
 if (err = SSGETTKN (b2, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &mySsid))
 {
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, true);

 }
 if (tkn_code != tkn_3)
 {
 printf ("B2 check 2:TKN_CODE should = TKN_3 (2nd), \n");
 printf ("B2: \n");
 dump_buf (b2);
 }
 if (err = SSGETTKN (b2, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &mySsid))
 {
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, true);
 }
 if (tkn_code != ZSPI_TKN_ENDLIST)
 {
 printf ("B2 check 2:TKN_CODE should = ENDLIST, \n");
 printf ("B2: \n");
 dump_buf (b2);
 }
 err = SSGETTKN (b2, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &mySsid);
 if (err != ZSPI_ERR_MISTKN)
 {
 printf ("B2 check 2:Error should = -8, is %d \n", err);
 printf ("B2: \n");
 dump_buf (b2);
 }
 printf ("Program finished.\n");
}

Example 3-1. Moving Buffer Tokens Using SSMOVETKN (page 7 of 7)
SPI Programming Manual—427506-007
3-34

The SPI Procedures SSIDTOTEXT Procedure
SSIDTOTEXT Procedure
The SSIDTOTEXT procedure converts an internal form subsystem ID (SSID) to its
external representation.

General Syntax

len returned value

INT

returns the number of characters placed into chars. Zero is returned if one of the
errors (0, 29), (4,0), or (8,0) occurs. Some other errors may prevent the subsystem
name from being obtained. In those cases, a text representation of the subsystem
ID is still produced, but it contains the subsystem number rather than the
subsystem name.

ssid input

INT .EXT:ref:6

contains the subsystem ID to be converted into displayable form.

chars output

STRING .EXT:ref:*

is the string into which the displayable representation of ssid is placed. The
number of characters placed into chars is returned as len. For a description of
the external form of the subsystem ID, see Considerations on page 3-36.

The caller is responsible for supplying enough space in chars to hold the result.
No more than 23 characters can be placed into chars.

len := SSIDTOTEXT (ssid !i
 , chars !o
 [, status]); !o
SPI Programming Manual—427506-007
3-35

The SPI Procedures Considerations
status output

INT(32) .EXT:ref:1

is a status code that indicates any problems encountered. These number pairs
describe the two halves of the INT(32) value:

Considerations

The external form of the subsystem ID is owner.ss.version or 0.0.0, where

owner

is 1 to 8 letters, digits, or hyphens.

ss

is either the subsystem number or the subsystem name. A subsystem number is a
string of digits that can be preceded by a minus sign. The value of the number is
between -32767 and 32767. A subsystem name is 1 to 8 letters, digits, or hyphens.

Error
numbers Meaning

(0,0) No error

(0,x) Something was wrong with the calling sequence. The x half of INT(32) can
have these values and meanings:
x= 29 a required parameter is missing.
x=632 not enough stack space is available.

(1,x) An error occurred allocating the private segment. The value of x is the error
code for the ALLOCATESEGEMENT.

(2,x) A problem occurred opening the nonresident template file. The x half of
INT(32) can have these values and meanings:
x=>0 file-system error code
x=-1 file code not 844
x=-2 file not disk file
x=-3 file not key sequenced
x=-4 file has wrong record size
x=-5 file has wrong primary key definition

(3,x) An error occurred reading the nonresident template file. The x half of INT(32)
is the file-system error.

(4,0) Invalid value in the internal form of the subsystem ID.

(7,x) An error occurred accessing the private segment. The x half of the INT(32)
value is the error code returned from MOVEX.

(8,0) Internal error
SPI Programming Manual—427506-007
3-36

The SPI Procedures Examples
version

is either a string of digits that represents a TOSVERSION-format (Ann) or a value
from 0 to 65535.

The 0.0.0 form is used to represent the null subsystem ID. Its internal representation is
binary zero. The number of zeros in each field can vary. For example, 000.0.000 is
equivalent to 0.0.0

Examples

These are examples of the external form of the subsystem ID:

TANDEM.SAFEGUARD.D40

TANDEM.94.0

0.0.0

TEXTTOSSID Procedure
TEXTTOSSID scans a character string, expecting to find the external representation of
a subsystem ID starting in the first byte (no leading spaces are accepted). It returns the
internal representation of the subsystem ID that it finds.

General Syntax

len returned value

INT

returns the number of characters placed from chars. Zero is returned if an error
occurs.

chars input

STRING .EXT:ref:*

is the string containing the external representation of a subsystem ID. The number
of characters scanned is returned as len. For a description of the external form of
the subsystem ID, see Considerations on page 3-38.

ssid output

INT .EXT:ref:6

receives the internal form of the subsystem ID contained in chars.

len := TEXTTOSSID (chars !i
 , ssid !o
 [, status]); !o
SPI Programming Manual—427506-007
3-37

The SPI Procedures Considerations
status output

INT(32) .EXT:ref:1

is a status code that indicates any problems encountered. These number pairs
describe the two halves of the INT(32) value:

Considerations

The external form of the subsystem ID is owner.ss.version or 0.0.0, where

owner

is 1 to 8 letters, digits, or hyphens, the first of which must be a letter; letters are not
upshifted so the end user must enter owner in the proper case.

ss

is either the subsystem number or the subsystem name. A subsystem number is a
string of digits that can be preceded by a minus sign. The value of the number is
between -32767 and 32767. A subsystem name is 1 to 8 letters, digits, or hyphens.

Error
numbers Meaning

(0,0) No error

(0,x) Something was wrong with the calling sequence. The x half of INT(32) can
have these values and meanings:
x= 29 A required parameter is missing.
x=632 Not enough stack space is available.

(1,x) An error occurred allocating the private segment. The value of x is the error
code for the ALLOCATESEGEMENT.

(2,x) A problem occurred opening the nonresident template file. The x half of
INT(32) can have these values and meanings:
x=>0 file-system error code
x=-1 filecode not 844
x=-2 file not disk file
x=-3 file not key sequenced
x=-4 file has wrong record size
x=-5 file has wrong primary key definition

(3,x) An error occurred reading the nonresident template file. The x half of INT(32)
is the file-system error.

(4,0) Invalid value in the internal form of the subsystem ID.

(7,x) An error occurred accessing the private segment. The x half of the INT(32)
value is the error code returned from MOVEX.

(8,0) Internal error
SPI Programming Manual—427506-007
3-38

The SPI Procedures Examples
version

is either a string of digits that represents a TOSVERSION-format (Ann) or a value
from 0 to 65535.

The 0.0.0 form is used to represent the null subsystem ID. Its internal representation is
binary zero. The number of zeros in each field can vary. For example, 000.0.000 is
equivalent to 0.0.0

Examples

These are examples of the external form of the subsystem ID:

TANDEM.SAFEGUARD.D40

TANDEM.94.0

0.0.0
SPI Programming Manual—427506-007
3-39

The SPI Procedures Examples
SPI Programming Manual—427506-007
3-40

4 ZSPI Data Definitions

The data types, tokens, values, and other declarations on which SPI is based are
referred to as the SPI standard definitions or the ZSPI definitions.

This section describes these ZSPI definition types:

HP distributes these definitions in the ZSPI definition files normally located in
$software-release-volume.ZSPIDEF.* (although they can be placed elsewhere).
For more information about these files, see Data Definitions on page 2-10.

Fundamental Data Structures
This subsection describes the fundamental data structures with which SPI tokens and
other elements are built. A token type (TYP) associates a defined token data type
(TDT) with a corresponding data structure (DDL). The token type can then be used in
the TOKEN TYPE IS clause of a token code definition. Names of the fundamental
structure definitions are of the form ZSPI-DDL-....

In the DDL definitions, the SPI-NULL clauses give the null values used by the SSNULL
procedure when it initializes fields of extensible structured tokens. The TACL clauses
name special TACL data types in which the associated token values or fields are
represented in TACL. For more information about the DDL definition statements, see
Appendix B, Summary of DDL for SPI.

ZSPI-DDL-BOOLEAN

ZSPI-DDL-BOOLEAN defines a Boolean value.

Topic Page

Fundamental Data Structures 4-1

Token Data Types 4-12

Token Numbers 4-28

Token Codes 4-31

Token Length 4-45

Command Numbers 4-45

Object-Type Numbers 4-45

Error Numbers 4-46

Subsystem Numbers 4-47

Miscellaneous Values 4-47

def ZSPI-DDL-BOOLEAN type logical spi-null " ".
SPI Programming Manual—427506-007
4-1

ZSPI Data Definitions Fundamental Data Structures
ZSPI-DDL-BYTE

ZSPI-DDL-BYTE defines a single byte.

ZSPI-DDL-BYTE-PAIR

ZSPI-DDL-BYTE-PAIR defines a pair of bytes.

ZSPI-DDL-CHAR

ZSPI-DDL-CHAR defines a single ASCII character.

ZSPI-DDL-CHAR-PAIR

ZSPI-DDL-CHAR-PAIR defines a string of two ASCII characters, also addressable as a
single integer or two individual characters.

ZSPI-DDL-CHAR3

ZSPI-DDL-CHAR3 defines a string of three ASCII characters, also addressable as a
single integer or three individual characters.

def ZSPI-DDL-BYTE type binary 8 unsigned spi-null 0.

def ZSPI-DDL-BYTE-PAIR.
 02 Z-BYTE type ZSPI-DDL-BYTE occurs 2 times.
end

def ZSPI-DDL-CHAR pic x spi-null " ".

def ZSPI-DDL-CHAR-PAIR.
 02 Z-C pic x(2) spi-null " ".
 02 Z-S redefines Z-C.
 03 Z-I type binary 16.
 02 Z-B redefines Z-C pic x occurs 2 times.
end

def ZSPI-DDL-CHAR3.
 02 Z-C pic x(3) spi-null " ".
 02 Z-S redefines Z-C.
 03 Z-I type binary 16.
 03 filler pic x.
 02 Z-B redefines Z-C pic x occurs 3 times.
end
SPI Programming Manual—427506-007
4-2

ZSPI Data Definitions Fundamental Data Structures
ZSPI-DDL-CHAR4

ZSPI-DDL-CHAR4 defines a string of four ASCII characters, also addressable as two
integers or four individual characters.

ZSPI-DDL-CHAR5

ZSPI-DDL-CHAR5 defines a string of five ASCII characters, also addressable as two
integers or five individual characters.

ZSPI-DDL-CHAR6

ZSPI-DDL-CHAR6 defines a string of six ASCII characters, also addressable as three
integers or six individual characters.

ZSPI-DDL-CHAR7

ZSPI-DDL-CHAR7 defines a string of seven ASCII characters, also addressable as
three integers or seven individual characters.

def ZSPI-DDL-CHAR4.
 02 Z-C pic x(4) spi-null " ".
 02 Z-S redefines Z-C.
 03 Z-I type binary 16 occurs 2 times.
 02 Z-B redefines Z-C pic x occurs 4 times.
end

def ZSPI-DDL-CHAR5.
 02 Z-C pic x(5) spi-null " ".
 02 Z-S redefines Z-C.
 03 Z-I type binary 16 occurs 2 times.
 03 filler pic x.
 02 Z-B redefines Z-C pic x occurs 5 times.
end

def ZSPI-DDL-CHAR6.
 02 Z-C pic x(6) spi-null " ".
 02 Z-S redefines Z-C.
 03 Z-I type binary 16 occurs 3 times.
 02 Z-B redefines Z-C pic x occurs 6 times.
end

def ZSPI-DDL-CHAR7.
 02 Z-C pic x(7) spi-null " ".
 02 Z-S redefines Z-C.
 03 Z-I type binary 16 occurs 3 times.
 03 filler pic x.
 02 Z-B redefines Z-C pic x occurs 7 times.
end
SPI Programming Manual—427506-007
4-3

ZSPI Data Definitions Fundamental Data Structures
ZSPI-DDL-CHAR8

ZSPI-DDL-CHAR8 defines a string of eight ASCII characters, also addressable as four
integers or eight individual characters.

ZSPI-DDL-CHAR16

ZSPI-DDL-CHAR16 defines a string of 16 ASCII characters, also addressable as 8
integers or 16 individual characters.

ZSPI-DDL-CHAR24

ZSPI-DDL-CHAR24 defines a string of 24 ASCII characters, also addressable as 12
integers or 24 individual characters.

ZSPI-DDL-CHAR40

ZSPI-DDL-CHAR40 defines a string of 40 ASCII characters, also addressable as 20
integers or 40 individual characters.

def ZSPI-DDL-CHAR8.
 02 Z-C pic x(8) spi-null " ".
 02 Z-S redefines Z-C.
 03 Z-I type binary 16 occurs 4 times.
 02 Z-B redefines Z-C pic x occurs 8 times.
end

def ZSPI-DDL-CHAR16.
 02 Z-C pic x(16) spi-null " ".
 02 Z-S redefines Z-C.
 03 Z-I type binary 16 occurs 8 times.
 02 Z-B redefines Z-C pic x occurs 16 times.
end

def ZSPI-DDL-CHAR24.
 02 Z-C pic x(24) spi-null " ".
 02 Z-S redefines Z-C.
 03 Z-I type binary 16 occurs 12 times.
 02 Z-B redefines Z-C pic x occurs 24 times.
end

def ZSPI-DDL-CHAR40.
 02 Z-C pic x(40) spi-null " ".
 02 Z-S redefines Z-C.
 03 Z-I type binary 16 occurs 20 times.
 02 Z-B redefines Z-C pic x occurs 40 times.
end
SPI Programming Manual—427506-007
4-4

ZSPI Data Definitions Fundamental Data Structures
ZSPI-DDL-CHAR50

ZSPI-DDL-CHAR50 defines a string of 50 ASCII characters, also addressable as 25
integers or 50 individual characters.

ZSPI-DDL-CHAR64

ZSPI-DDL-CHAR64 defines a string of 64 ASCII characters, also addressable as 32
integers or 64 individual characters.

ZSPI-DDL-CHAR128

ZSPI-DDL-CHAR128 defines a string of 128 ASCII characters, also addressable as 64
integers or 128 individual characters.

def ZSPI-DDL-CHAR50.
 02 Z-C pic x(50) spi-null " ".
 02 Z-S redefines Z-C.
 03 Z-I type binary 16 occurs 25 times.
 02 Z-B redefines Z-C pic x occurs 50 times.
end

def ZSPI-DDL-CHAR64.
 02 Z-C pic x(64) spi-null " ".
 02 Z-S redefines Z-C.
 03 Z-I type binary 16 occurs 32 times.
 02 Z-B redefines Z-C pic x occurs 64 times.
end

def ZSPI-DDL-CHAR128.
 02 Z-C pic x(128) spi-null " ".
 02 Z-S redefines Z-C.
 03 Z-I type binary 16 occurs 64 times.
 02 Z-B redefines Z-C pic x occurs 128 times.
end
SPI Programming Manual—427506-007
4-5

ZSPI Data Definitions Fundamental Data Structures
ZSPI-DDL-CRTPID

ZSPI-DDL-CRTPID defines an 8-byte internal-format process ID for C-series RVUs.

ZSPI-DDL-DEVICE

ZSPI-DDL-DEVICE defines an 8-byte device name.

ZSPI-DDL-DEVNAME

ZSPI-DDL-DEVNAME defines an internal-format device name.

ZSPI-DDL-DISCNAME

ZSPI-DDL-DISCNAME defines an internal-format disk name.

ZSPI-DDL-ENUM

SPI-DDL-ENUM defines a 16-bit enumerated value.

def ZSPI-DDL-CRTPID tacl crtpid.
 02 Z-PROCNAME type ZSPI-DDL-CHAR6.
 02 Z-CRT redefines Z-PROCNAME type ZSPI-DDL-INT
 occurs 3 times.
 02 Z-PID.
 03 Z-CPU type ZSPI-DDL-BYTE spi-null " ".
 03 Z-PIN type ZSPI-DDL-BYTE spi-null " ".
 02 Z-CPUPIN redefines Z-PID
 type ZSPI-DDL-UINT.
end

def ZSPI-DDL-DEVICE type ZSPI-DDL-CHAR8 tacl device.

def ZSPI-DDL-DEVNAME tacl fname.
 02 Z-DEVNAME type ZSPI-DDL-DEVICE.
 02 Z-SUBDEVNAME type ZSPI-DDL-CHAR8.
 02 Z-FILLER type character 8 spi-null " ".
end

def ZSPI-DDL-DISCNAME tacl fname.
 02 Z-VOLUME type ZSPI-DDL-CHAR8.
 02 Z-SUBVOLUME type ZSPI-DDL-CHAR8.
 02 Z-FILENAME type ZSPI-DDL-CHAR8.
end

def ZSPI-DDL-ENUM pic s9(4) comp spi-null 255
 tacl enum.
SPI Programming Manual—427506-007
4-6

ZSPI Data Definitions Fundamental Data Structures
ZSPI-DDL-ERROR

ZSPI-DDL-ERROR defines an SSID-qualified SPI error value.

ZSPI-DDL-EXIOADDR

ZSPI-DDL-EXIOADDR defines an extended I/O address.

ZSPI-DDL-FLT

ZSPI-DDL-FLT defines a 32-bit floating-point number.

ZSPI-DDL-FLT2

ZSPI-DDL-FLT2 defines a 64-bit floating-point number.

ZSPI-DDL-FNAME

ZSPI-DDL-FNAME defines a 24-byte internal-format file name.

def ZSPI-DDL-ERROR.
 02 Z-SSID type ZSPI-DDL-SSID.
 02 Z-ERROR type ZSPI-DDL-ENUM spi null 0.
end

def ZSPI-DDL-EXIOADDR.
 02 Z-PATYPE type ZSPI-DDL-ENUM spi-null 255.
 02 Z-CHNL type ZSPI-DDL-UINT spi-null 255.
 02 Z-CTLR type ZSPI-DDL-UINT spi-null 255.
 02 Z-UNIT type ZSPI-DDL-UINT spi-null 255.
 02 Z-CPU type ZSPI-DDL-UINT spi-null 255.
 02 Z-FILLER type ZSPI-DDL-INT2 spi-null 255.
end

def ZSPI-DDL-FLT type float 32 spi-null 0.

def ZSPI-DDL-FLT2 type float 64 spi-null 0.

def ZSPI-DDL-FNAME tacl fname.
 02 Z-DISC type ZSPI-DDL-DISCNAME.
 02 Z-PROCESS type ZSPI-DDL-PROCNAME redefines Z-DISC.
 02 Z-DEVICE type ZSPI-DDL-DEVNAME redefines Z-DISC.
end
SPI Programming Manual—427506-007
4-7

ZSPI Data Definitions Fundamental Data Structures
ZSPI-DDL-FNAME32

ZSPI-DDL-FNAME32 defines a 32-byte internal file name.

ZSPI-DDL-HEADER

ZSPI-DDL-HEADER defines an SPI message header.

ZSPI-DDL-INT

ZSPI-DDL-INT defines a 16-bit signed integer.

ZSPI-DDL-INT-PAIR

ZSPI-DDL-INT-PAIR defines a pair of 16-bit integers.

ZSPI-DDL-INT2

ZSPI-DDL-INT2 defines a 32-bit signed integer.

def ZSPI-DDL-FNAME32 tacl fname32.
 02 Z-SYSNAME type ZSPI-DDL-CHAR8.
 02 Z-LOCALNAME type ZSPI-DDL-FNAME.
end

def ZSPI-DDL-HEADER.
 02 Z-MSGCODE type ZSPI-DDL-INT.
 02 Z-BUFLEN type ZSPI-DDL-UINT.
 02 Z-OCCURS type ZSPI-DDL-UINT.
 02 Z-FILLER type ZSPI-DDL-BYTE
 occurs 0 to 94 times
 depending on Z-OCCURS.
end

def ZSPI-DDL-INT type binary 16 spi-null 0.

def ZSPI-DDL-INT-PAIR.
 02 Z-INT type ZSPI-DDL-INT occurs 2 times.
end

def ZSPI-DDL-INT2 type binary 32 spi-null 0.
SPI Programming Manual—427506-007
4-8

ZSPI Data Definitions Fundamental Data Structures
ZSPI-DDL-INT2-PAIR

ZSPI-DDL-INT2-PAIR defines a pair of 32-bit integers.

ZSPI-DDL-INT4

ZSPI-DDL-INT4 defines a 64-bit fixed-point number.

ZSPI-DDL-PARM-ERR

ZSPI-DDL-PARM-ERR defines a structure returned in error lists when an SPI server
reports a parameter error in a command or procedure call made by the server.

Z-TOKENCODE

is the token code, or the first 32 bits of the token map, of the token involved in the
error. Usually this corresponds to the first 32 bits of the token-id parameter
passed to one of the SPI procedures.

Z-INDEX

Z-INDEX identifies which occurrence of the token was involved in the error when
multiple occurrences of the token are in the buffer. Usually this corresponds to the
index or source-index parameter passed to one of the SPI procedures. If an
index or source-index parameter was not given, Z-INDEX is zero.

Z-OFFSET

Z-OFFSET gives the offset, in bytes from the beginning of the token value, of the
parameter in error. For a simple token, Z-OFFSET is zero. The value of this field
corresponds to the offset given by DDL in a DEFLIST listing.

def ZSPI-DDL-INT2-PAIR.
 02 Z-INT2 type ZSPI-DDL-INT2 occurs 2 times.
end

def ZSPI-DDL-INT4 type binary 64 spi-null 0.

def ZSPI-DDL-PARM-ERR.
 02 Z-TOKENCODE type ZSPI-DDL-TOKENCODE.
 02 Z-INDEX type ZSPI-DDL-UINT.
 02 Z-OFFSET type ZSPI-DDL-UINT.
end
SPI Programming Manual—427506-007
4-9

ZSPI Data Definitions Fundamental Data Structures
ZSPI-DDL-PHANDLE

ZSPI-DDL-PHANDLE defines a process handle for D-series RVUs.

ZSPI-DDL-PROCNAME

ZSPI-DDL-PROCNAME defines an internal-format process file name.

ZSPI-DDL-SSID

ZSPI-DDL-SSID defines a subsystem ID.

ZSPI-DDL-SUBVOL

ZSPI-DDL-SUBVOL defines a 16-byte subvolume name for the NonStop server.

ZSPI-DDL-TIMESTAMP

ZSPI-DDL-TIMESTAMP defines a 64-bit Julian timestamp.

def ZSPI-DDL-PHANDLE.
 02 Z-BYTE type ZSPI-DDL-BYTE occurs 20 times spi-null
255.
end

def ZSPI-DDL-PROCNAME tacl fname.
 02 Z-CRTPID type ZSPI-DDL-CRTPID.
 02 Z-QUAL1 type ZSPI-DDL-CHAR8.
 02 Z-QUAL2 type ZSPI-DDL-CHAR8.
end

def ZSPI-DDL-SSID tacl ssid.
 02 Z-OWNER type ZSPI-DDL-CHAR8 spi-null 0.
 02 Z-NUMBER type ZSPI-DDL-INT.
 02 Z-VERSION type ZSPI-DDL-UINT.
end

def ZSPI-DDL-SUBVOL tacl subvol.
 02 Z-VOLUME type ZSPI-DDL-CHAR8.
 02 Z-DEVNAME redefines Z-VOLUME
 type ZSPI-DDL-CHAR8.
 02 Z-SUBVOLUME type ZSPI-DDL-CHAR8.
 02 Z-SUBDEVNAME redefines Z-SUBVOLUME
 type ZSPI-DDL-CHAR8.
end

def ZSPI-DDL-TIMESTAMP type ZSPI-DDL-INT4 spi-null 255
 tacl tstamp.
SPI Programming Manual—427506-007
4-10

ZSPI Data Definitions Fundamental Data Structures
ZSPI-DDL-TOKENCODE

ZSPI-DDL-TOKENCODE defines a token code for an SSGET or SSPUT special
operation for which the token value (in the token-value parameter) is itself a token
code.

ZSPI-DDL-TRANSID

ZSPI-DDL-TRANSID defines a 64-bit internal-format transaction ID for the HP NonStop
Transaction Management Facility (TMF).

ZSPI-DDL-UINT

ZSPI-DDL-UINT defines a 16-bit unsigned integer.

ZSPI-DDL-USERID

ZSPI-DDL-USERID defines a 2-byte user ID for the NonStop server.

ZSPI-DDL-USERNAME

ZSPI-DDL-USERNAME defines a 16-byte internal-format user name.

def ZSPI-DDL-TOKENCODE.
 02 Z-TKN.
 03 Z-DATATYPE type ZSPI-DDL-BYTE.
 03 Z-BYTELEN type ZSPI-DDL-BYTE.
 03 Z-NUMBER type ZSPI-DDL-INT.
 02 Z-TKNTYPE redefines Z-TKN
 type ZSPI-DDL-INT occurs 2 times.
 02 Z-TKNCODE redefines Z-TKN
 type ZSPI-DDL-INT2.
end

def ZSPI-DDL-TRANSID tacl transid.
 02 Z-TRANSID type binary 64.
end

def ZSPI-DDL-UINT type binary 16 unsigned spi-null 0.

def ZSPI-DDL-USERID type ZSPI-DDL-BYTE-PAIR.

def ZSPI-DDL-USERNAME tacl username.
 02 Z-GROUPNAME type ZSPI-DDL-CHAR8.
 02 Z-USERNAME type ZSPI-DDL-CHAR8.
end
SPI Programming Manual—427506-007
4-11

ZSPI Data Definitions Token Data Types
ZSPI-DDL-VERSION

ZSPI-DDL-VERSION is used with a labeled dump version formatting procedure. It is
equivalent to ZSPI-DDL-UINT.

Token Data Types
A token data type is part of every token code and identifies the fundamental data type
of the token’s value. For the data definition of a particular type, see the corresponding
token type (ZSPI-TYP-…) in Token Types on page 4-18.

def ZSPI-DDL-VERSION type binary 16 unsigned spi-null
0.

Table 4-1. SPI-Defined Token Data Types (ZSPI-TDT-…) (page 1 of 2)

Token Data Type Type of Data Item

ZSPI-TDT-BOOLEAN Boolean value

ZSPI-TDT-BYTE 8-bit unsigned integer

ZSPI-TDT-CHAR 8-bit ASCII character

ZSPI-TDT-CRTPID 8-byte internal-format process ID for C-series RVUs

ZSPI-TDT-DEVICE 8-byte internal-format device name

ZSPI-TDT-ENUM 16-bit signed item with an enumerated set of values

ZSPI-TDT-ERROR Fully qualified error token

ZSPI-TDT-FLT 32-bit floating-point number

ZSPI-TDT-FLT2 64-bit floating-point number

ZSPI-TDT-FNAME 24-byte internal-format file name

ZSPI-TDT-FNAME32 8-byte node name and 24-byte local file name

ZSPI-TDT-INT 16-bit signed integer

ZSPI-TDT-INT2 32-bit signed integer

ZSPI-TDT-INT4 64-bit fixed-point number

ZSPI-TDT-LIST Start-of-list token

ZSPI-TDT-MAP Token map

ZSPI-TDT-MARK Marker token for marking a buffer position

ZSPI-TDT-PHANDLE 10-word D-series process handle

ZSPI-TDT-SSCTL SPI control token

ZSPI-TDT-SSID 6-word SPI subsystem identifier

ZSPI-TDT-STRUCT Subsystem-defined data structure

ZSPI-TDT-SUBVOL First 16 bytes of an internal-format file name

ZSPI-TDT-TIMESTAMP 64-bit, microsecond-resolution timestamp or elapsed time
SPI Programming Manual—427506-007
4-12

ZSPI Data Definitions Token Data Types
ZSPI-TDT-BOOLEAN

The BOOLEAN data type identifies a 16-bit signed Boolean item containing one of the
values ZSPI-VAL-TRUE or ZSPI-VAL-FALSE.

ZSPI-TDT-BYTE

The BYTE data type identifies an 8-bit unsigned integer in the range 0 to 255. This
data type is not supported by COBOL.

ZSPI-TDT-CHAR

The CHAR data type identifies an 8-bit ASCII character.

ZSPI-TDT-CRTPID

The CRTPID data type identifies an 8-byte internal-format process ID for C-series
RVUs.

ZSPI-TDT-DEVICE

The DEVICE data type identifies an 8-byte internal-format device name. Its fields can
be addressed as either string or integer values (except in TACL).

ZSPI-TDT-TOKENCODE 32-bit token code

ZSPI-TDT-TRANSID 64-bit TMF internal-format transaction ID

ZSPI-TDT-UINT 16-bit unsigned integer

ZSPI-TDT-UNDEF Unknown or undefined data type

ZSPI-TDT-USERNAME 16-byte internal-format user name

constant ZSPI-TDT-BOOLEAN value is 10.

constant ZSPI-TDT-BYTE value is 12.

constant ZSPI-TDT-CHAR value is 1.

constant ZSPI-TDT-CRTPID value is 22.

constant ZSPI-TDT-DEVICE value is 21.

Table 4-1. SPI-Defined Token Data Types (ZSPI-TDT-…) (page 2 of 2)

Token Data Type Type of Data Item
SPI Programming Manual—427506-007
4-13

ZSPI Data Definitions Token Data Types
ZSPI-TDT-ENUM

The ENUM data type identifies a 16-bit signed item for which the range of acceptable
values is enumerated. The maximum range of numeric values for this type is -32768 to
+32767. Its format is the same as ZSPI-TDT-INT.

ZSPI-TDT-ERROR

The ERROR data type identifies an error token in fully qualified form (including the
subsystem ID).

ZSPI-TDT-FLT

The FLT data type identifies a 32-bit floating-point (real) number. Its value range is
± 8.63617 * (10**-78) to ± 1.15792 * (10**77). This data type is not supported by
COBOL or TACL.

ZSPI-TDT-FLT2

The FLT2 data type identifies a 64-bit floating-point (real) number. Its value range is
± 8.6361685550944446 * (10**-78) to ± 1.15792089237316189 * (10**77). This data
type is not supported by COBOL or TACL.

ZSPI-TDT-FNAME

The FNAME data type identifies a 24-byte internal-format file name for a disk file,
process, or device, as might be generated by the FNAMEEXPAND procedure.

ZSPI-TDT-FNAME32

The FNAME32 data type identifies a 32-byte internal file name of the form used by the
Distributed Name Service, Pathway, data-communications subsystems, and some

constant ZSPI-TDT-ENUM value is 11.

constant ZSPI-TDT-ERROR value is 28.

constant ZSPI-TDT-FLT value is 5.

constant ZSPI-TDT-FLT2 value is 6.

constant ZSPI-TDT-FNAME value is 20.

constant ZSPI-TDT-FNAME32 value is 25.
SPI Programming Manual—427506-007
4-14

ZSPI Data Definitions Token Data Types
other subsystems in event messages and error lists. This form consists of an 8-byte
internal-format node name followed by a 24-byte internal-format local file name.

ZSPI-TDT-INT

The INT data type identifies a 16-bit signed integer. Its value range is -32768 to
+32767.

ZSPI-TDT-INT2

The INT2 data type identifies a 32-bit signed integer. Its value range is -2,147,483,648
to +2,147,483,647.

ZSPI-TDT-INT4

The INT4 data type identifies a 64-bit fixed-point number. Its value range is
–9,223,372,036,854,775,808 to +9,223,372,036,854,775,807.

ZSPI-TDT-LIST

The LIST data type identifies a list (seen as a unit) or a token indicating the start of a
list. A token of this data type always has a token length of zero.

ZSPI-TDT-MAP

The MAP data type identifies a token map.

ZSPI-TDT-MARK

The MARK data type identifies a special kind of token used to tag the token that
follows it in the buffer. Such tokens are used occasionally by NonStop Kernel
subsystems for special purposes; for instance, a token with this token data type

constant ZSPI-TDT-INT value is 2.

constant ZSPI-TDT-INT2 value is 3.

constant ZSPI-TDT-INT4 value is 4.

constant ZSPI-TDT-LIST value is 37.

constant ZSPI-TDT-MAP value is 8.

constant ZSPI-TDT-MARK value is 31.
SPI Programming Manual—427506-007
4-15

ZSPI Data Definitions Token Data Types
appears in every event message to mark this token as the subject token. A token with
this token data type has no token value; that is, it has a zero token length.

ZSPI-TDT-PHANDLE

The PHANDLE data type identifies a process handle for D-series RVUs.

ZSPI-TDT-SSCTL

The SSCTL data type identifies a special token code that directs SPI procedures to
perform a control operation on the buffer, such as clearing error information, flushing
data from the buffer, or ending a list. This token data type is reserved for use by SPI
only; servers you write should not use it.

ZSPI-TDT-SSID

The SSID data type identifies a 6-word SPI subsystem identifier.

ZSPI-TDT-STRUCT

The STRUCT data type identifies a structured data item whose internal structure is
subsystem defined. This token data type identifies an extensible structured token
inside an SPI buffer. It is also used for certain fixed-length structures, such as ZSPI-
TKN-PARM-ERR. It can also be used for structures whose last component varies in
size, resulting in a variable-length structure.

ZSPI-TDT-SUBVOL

The SUBVOL data type identifies the first two parts (16 bytes) of an internal-format file
name. Subsystems normally use this token data type for a disk volume name and
subvolume name, but they sometimes also use it for a device name and subdevice
name or for a process name and its first qualifier name. (For subdevice names,
subsystems often use ZSPI-TDT-FNAME instead.)

constant ZSPI-TDT-PHANDLE value is 32.

constant ZSPI-TDT-SSCTL value is 39.

constant ZSPI-TDT-SSID value is 24.

constant ZSPI-TDT-STRUCT value is 7.

constant ZSPI-TDT-SUBVOL value is 26.
SPI Programming Manual—427506-007
4-16

ZSPI Data Definitions Token Data Types
ZSPI-TDT-TIMESTAMP

The TIMESTAMP data type identifies a 64-bit, microsecond-resolution Julian
timestamp (in Greenwich Mean Time) or an elapsed-time value in microseconds.

ZSPI-TDT-TOKENCODE

The TOKENCODE data type is used for special SSGET, SSPUT, and EMSGET
operations for which the token-value parameter is itself a token code. These
operations include getting the address, length, offset, or number of occurrences of a
token in the buffer; deleting a specified token from the buffer; getting the next token or
the next nonmatching token; and getting the subject token from an event message. For
some of these operations, the token code in token-value is an input parameter; in
others, it is an output parameter. The desired result for some operations is returned in
another parameter.

ZSPI-TDT-TRANSID

The TRANSID data type identifies a 64-bit TMF internal-format transaction ID.

ZSPI-TDT-UINT

The UINT data type identifies a 16-bit unsigned integer whose value can range from 0
through 65535.

ZSPI-TDT-UNDEF

The UNDEF data type identifies an unknown or undefined data type. This data type is
reserved for use by software for the NonStop system only.

constant ZSPI-TDT-TIMESTAMP value is 23.

constant ZSPI-TDT-TOKENCODE value is 29.

constant ZSPI-TDT-TRANSID value is 30.

constant ZSPI-TDT-UINT value is 9.

constant ZSPI-TDT-UNDEF value is 0.
SPI Programming Manual—427506-007
4-17

ZSPI Data Definitions Token Types
ZSPI-TDT-USERNAME

The USERNAME data type identifies a 16-byte internal-format user name, such as the
USERIDTOUSERNAME procedure might generate.

Token Types
Every token has a token type. A token type (TYP) associates a defined token data type
(TDT) with a corresponding data definition. The token type can then be used in the
TOKEN TYPE IS clause of a token code definition. Using the standard token data
types, SPI defines a number of token types, which are described here. Most of these
token types are based on structure definitions.

ZSPI-TYP-BOOLEAN

ZSPI-TYP-BOOLEAN specifies that a token’s value is Boolean. A token of this type
has a BOOLEAN token data type and is based on the BOOLEAN data structure.

ZSPI-TYP-BYTE

ZSPI-TYP-BYTE specifies that a token’s value is a single byte. A token of this type has
a BYTE token data type and is based on the BYTE structure.

ZSPI-TYP-BYTE-PAIR

ZSPI-TYP-BYTE-PAIR specifies that a token has a 2-byte value. A token of this type
has a BYTE token data type and is based on the BYTE-PAIR structure.

ZSPI-TYP-BYTESTRING

ZSPI-TYP-BYTESTRING specifies that a token’s value is a string of bytes. A token of
this type has a BYTE token data type and can vary in length.

constant ZSPI-TDT-USERNAME value is 27.

token type ZSPI-TYP-BOOLEAN value is ZSPI-TDT-BOOLEAN
 def is ZSPI-DDL-BOOLEAN.

token type ZSPI-TYP-BYTE value is ZSPI-TDT-BYTE
 def is ZSPI-DDL-BYTE.

token type ZSPI-TYP-BYTE-PAIR value is ZSPI-TDT-BYTE
 def is ZSPI-DDL-BYTE-PAIR.

token type ZSPI-TYP-BYTESTRING value is ZSPI-TDT-BYTE
 occurs varying.
SPI Programming Manual—427506-007
4-18

ZSPI Data Definitions Token Types
ZSPI-TYP-CHAR

ZSPI-TYP-CHAR specifies that a token’s value consists of a single ASCII character. A
token of this type has a CHAR token data type and is based on the CHAR structure.

ZSPI-TYP-CHAR-PAIR

ZSPI-TYP-CHAR-PAIR specifies that a token’s value consists of two ASCII characters.
A token of this type has a CHAR token data type and is based on the CHAR-PAIR
structure.

ZSPI-TYP-CHAR3

ZSPI-TYP-CHAR3 specifies that a token’s value consists of three ASCII characters. A
token of this type has a CHAR token data type and is based on the CHAR3 structure.

ZSPI-TYP-CHAR4

ZSPI-TYP-CHAR4 specifies that a token’s value consists of four ASCII characters. A
token of this type has a CHAR token data type and is based on the CHAR4 structure.

ZSPI-TYP-CHAR5

ZSPI-TYP-CHAR5 specifies that a token’s value consists of five ASCII characters. A
token of this type has a CHAR token data type and is based on the CHAR5 structure.

token type ZSPI-TYP-CHAR value is ZSPI-TDT-CHAR
 def is ZSPI-DDL-CHAR.

token type ZSPI-TYP-CHAR-PAIR value is ZSPI-TDT-CHAR
 def is ZSPI-DDL-CHAR-
PAIR.

token type ZSPI-TYP-CHAR3 value is ZSPI-TDT-CHAR
 def is ZSPI-DDL-CHAR3.

token type ZSPI-TYP-CHAR4 value is ZSPI-TDT-CHAR
 def is ZSPI-DDL-CHAR4.

token type ZSPI-TYP-CHAR5 value is ZSPI-TDT-CHAR
 def is ZSPI-DDL-CHAR5.
SPI Programming Manual—427506-007
4-19

ZSPI Data Definitions Token Types
ZSPI-TYP-CHAR6

ZSPI-TYP-CHAR6 specifies that a token’s value consists of six ASCII characters. A
token of this type has a CHAR token data type and is based on the CHAR6 structure.

ZSPI-TYP-CHAR7

ZSPI-TYP-CHAR7 specifies that a token’s value consists of seven ASCII characters. A
token of this type has a CHAR token data type and is based on the CHAR7 structure.

ZSPI-TYP-CHAR8

ZSPI-TYP-CHAR8 specifies that a token’s value consists of eight ASCII characters. A
token of this type has a CHAR token data type and is based on the CHAR8 structure.

ZSPI-TYP-CHAR16

ZSPI-TYP-CHAR16 specifies that a token’s value consists of 16 ASCII characters. A
token of this type has a CHAR token data type and is based on the CHAR16 structure.

ZSPI-TYP-CHAR24

ZSPI-TYP-CHAR24 specifies that a token’s value consists of 24 ASCII characters. A
token of this type has a CHAR token data type and is based on the CHAR24 structure.

token type ZSPI-TYP-CHAR6 value is ZSPI-TDT-CHAR
 def is ZSPI-DDL-CHAR6.

token type ZSPI-TYP-CHAR7 value is ZSPI-TDT-CHAR
 def is ZSPI-DDL-CHAR7.

token type ZSPI-TYP-CHAR8 value is ZSPI-TDT-CHAR
 def is ZSPI-DDL-CHAR8.

token type ZSPI-TYP-CHAR16 value is ZSPI-TDT-CHAR
 def is ZSPI-DDL-CHAR16.

token type ZSPI-TYP-CHAR24 value is ZSPI-TDT-CHAR
 def is ZSPI-DDL-CHAR24.
SPI Programming Manual—427506-007
4-20

ZSPI Data Definitions Token Types
ZSPI-TYP-CHAR40

ZSPI-TYP-CHAR40 specifies that a token’s value consists of 40 ASCII characters. A
token of this type has a CHAR token data type and is based on the CHAR40 structure.

ZSPI-TYP-CHAR50

ZSPI-TYP-CHAR50 specifies that a token’s value consists of 50 ASCII characters. A
token of this type has a CHAR token data type and is based on the CHAR50 structure.

ZSPI-TYP-CHAR64

ZSPI-TYP-CHAR64 specifies that a token’s value consists of 64 ASCII characters. A
token of this type has a CHAR token data type and is based on the CHAR64 structure.

ZSPI-TYP-CHAR128

ZSPI-TYP-CHAR128 specifies that a token’s value consists of 128 ASCII characters. A
token of this type has a CHAR token data type and is based on the CHAR128
structure.

ZSPI-TYP-CRTPID

ZSPI-TYP-CRTPID is the token type of an 8-byte internal-format process ID.

token type ZSPI-TYP-CHAR40 value is ZSPI-TDT-CHAR
 def is ZSPI-DDL-CHAR40.

token type ZSPI-TYP-CHAR50 value is ZSPI-TDT-CHAR
 def is ZSPI-DDL-CHAR50.

token type ZSPI-TYP-CHAR64 value is ZSPI-TDT-CHAR
 def is ZSPI-DDL-CHAR64.

token type ZSPI-TYP-CHAR128 value is ZSPI-TDT-CHAR
 def is ZSPI-DDL-CHAR128.

token type ZSPI-TYP-CRTPID value is ZSPI-TDT-CRTPID
 def is ZSPI-DDL-CRTPID.
SPI Programming Manual—427506-007
4-21

ZSPI Data Definitions Token Types
ZSPI-TYP-DEVICE

ZSPI-TYP-DEVICE specifies that a token’s value is an 8-byte internal-format device
name. A token of this type has a DEVICE token data type and is based on the DEVICE
structure.

ZSPI-TYP-ENUM

SPI-TYP-ENUM specifies that a token’s value is a 16-bit enumerated value. A token of
this type has an ENUM token data type and is based on the ENUM structure.

ZSPI-TYP-ERROR

ZSPI-TYP-ERROR specifies that a token’s value is an SSID-qualified error number. A
token of this type has an ERROR token data type and is based on the ERROR
structure.

ZSPI-TYP-FLT

ZSPI-TYP-FLT specifies that a token’s value is a 32-bit floating-point number. A token
of this type has an FLT token data type and is based on the FLT structure.

ZSPI-TYP-FLT2

ZSPI-TYP-FLT2 specifies that a token’s value is a 64-bit floating-point number. A token
of this type has an FLT2 token data type and is based on the FLT2 structure.

token type ZSPI-TYP-DEVICE value is ZSPI-TDT-DEVICE
 def is ZSPI-DDL-DEVICE.

token type ZSPI-TYP-ENUM value is ZSPI-TDT-ENUM
 def is ZSPI-DDL-ENUM.

token type ZSPI-TYP-ERROR value is ZSPI-TDT-ERROR
 def is ZSPI-DDL-ERROR.

token type ZSPI-TYP-FLT value is ZSPI-TDT-FLT
 def is ZSPI-DDL-FLT.

token type ZSPI-TYP-FLT2 value is ZSPI-TDT-FLT2
 def is ZSPI-DDL-FLT2.
SPI Programming Manual—427506-007
4-22

ZSPI Data Definitions Token Types
ZSPI-TYP-FNAME

ZSPI-TYP-FNAME specifies that a token’s value is a 24-byte internal-format file name.
A token of this type has an FNAME token data type and is based on the FNAME
structure.

ZSPI-TYP-FNAME32

ZSPI-TYP-FNAME32 specifies that a token’s value is a 32-byte internal file name. A
token of this type has an FNAME32 token data type and is based on the FNAME32
structure.

ZSPI-TYP-INT

ZSPI-TYP-INT specifies that a token’s value is a 16-bit signed integer. A token of this
type has an INT token data type and is based on the INT structure.

ZSPI-TYP-INT-PAIR

ZSPI-TYP-INT-PAIR specifies that a token’s value is a pair of 16-bit integers. A token
of this type has an INT token data type and is based on the INT-PAIR structure.

ZSPI-TYP-INT2

ZSPI-TYP-INT2 specifies that a token’s value is a 32-bit signed integer. A token of this
type has an INT2 token data type and is based on the INT2 structure.

token type ZSPI-TYP-FNAME value is ZSPI-TDT-FNAME
 def is ZSPI-DDL-FNAME.

token type ZSPI-TYP-FNAME32 value is ZSPI-TDT-FNAME32
 def is ZSPI-DDL-FNAME32.

token type ZSPI-TYP-INT value is ZSPI-TDT-INT
 def is ZSPI-DDL-INT.

token type ZSPI-TYP-INT-PAIR value is ZSPI-TDT-INT
 def is ZSPI-DDL-INT-PAIR.

token type ZSPI-TYP-INT2 value is ZSPI-TDT-INT2
 def is ZSPI-DDL-INT2.
SPI Programming Manual—427506-007
4-23

ZSPI Data Definitions Token Types
ZSPI-TYP-INT2-PAIR

ZSPI-TYP-INT2-PAIR specifies that a token’s value is a pair of 32-bit integers. A token
of this type has an INT2 token data type and is based on the INT2-PAIR structure.

ZSPI-TYP-INT4

ZSPI-TYP-INT4 specifies that a token’s value is a 64-bit fixed-point number. A token of
this type has an INT4 token data type and is based on the INT4 structure.

ZSPI-TYP-LASTERR

ZSPI-TYP-LASTERR is used to convey SPI error numbers.

ZSPI-TYP-LIST

ZSPI-TYP-LIST specifies that the token marks the start of a list. A token of this type
has a LIST token data type and no value.

ZSPI-TYP-MAP

ZSPI-TYP-MAP specifies that a token’s value is a token map. A token of this type has
a MAP and a variable length.

ZSPI-TYP-MARK

ZSPI-TYP-MARK specifies that the token is used as a mark or tag for the token that
follows it in the buffer. For instance, a token code with this token type appears in every

token type ZSPI-TYP-INT2-PAIR value is ZSPI-TDT-INT2
 def is ZSPI-DDL-INT2-PAIR.

token type ZSPI-TYP-INT4 value is ZSPI-TDT-INT4
 def is ZSPI-DDL-INT4.

token type ZSPI-TYP-LASTERR value is ZSPI-TDT-ENUM
 def is ZSPI-DDL-ERR-ENUM.

token type ZSPI-TYP-LIST value is ZSPI-TDT-LIST
 occurs 0 times.

token type ZSPI-TYP-MAP value is ZSPI-TDT-MAP
 occurs varying.

token type ZSPI-TYP-MARK value is ZSPI-TDT-MARK
 occurs 0 times.
SPI Programming Manual—427506-007
4-24

ZSPI Data Definitions Token Types
event message to mark this token as the subject token. A token of this type has a
MARK token data type and no value.

ZSPI-TYP-PARM-ERR

ZSPI-TYP-PARM-ERR specifies that a token’s value is a structure returned by a
subsystem in an error list when a parameter error occurs in a command to the
subsystem or in an SPI procedure call made by the subsystem. Its value includes
information to identify the parameter in error. A token of this type has a STRUCT token
data type and is based on the PARM-ERR structure.

ZSPI-TYP-PHANDLE

ZSPI-TYP-PHANDLE specifies that a token’s value is a process handle for D-series
RVUs. A token of this type is based on the PHANDLE structure.

ZSPI-TYP-POSITION

ZSPI-TYP-POSITION specifies that a token’s value is a 64-bit position descriptor
representing a position in a buffer. A token of this type has an SSCTL token data type
and is based on the INT4 structure.

ZSPI-TYP-RESPONSE-TYPE

ZSPI-TYP-RESPONSE-TYPE specifies that a token’s value is based on the
RESPONSE-TYPE-ENUM enumeration structure. Subsystems must not use this token
type.

token type ZSPI-TYP-PARM-ERR value is ZSPI-TDT-STRUCT
 def is ZSPI-DDL-PARM-ERR.

token type ZSPI-TYP-PHANDLE value is ZSPI-TDT-PHANDLE
 def is ZSPI-DDL-PHANDLE.

token type ZSPI-TYP-POSITION value is ZSPI-TDT-SSCTL
 def is ZSPI-DDL-INT4.

token type ZSPI-TYP-RESPONSE-TYPE value is ZSPI-TDT-ENUM
 def is ZSPI-DDL-RESPONSE-TYPE-ENM.
SPI Programming Manual—427506-007
4-25

ZSPI Data Definitions Token Types
ZSPI-TYP-SSCTL

ZSPI-TYP-SSCTL specifies that a token is a special token code used to direct one of
the SPI procedures to perform a control operation on the buffer, such as clearing error
information, flushing data from the buffer, or ending a list. A token of this type has an
SSCTL token data type and no value. Subsystems should not use this token type.

ZSPI-TYP-SSID

ZSPI-TYP-SSID specifies that a token’s value is a subsystem ID. A token of this type
has an SSID token data type and is based on the SSID structure.

ZSPI-TYP-STRING

ZSPI-TYP-STRING specifies that a token’s value is a variable-length ASCII character
string. A token of this type has a CHAR token data type and a variable length.

ZSPI-TYP-STRUCT

ZSPI-TYP-STRUCT specifies that a token’s value is a subsystem-defined structure. A
token of this type has a STRUCT token data type and a variable length.

ZSPI-TYP-SUBVOL

ZSPI-TYP-SUBVOL specifies that a token’s value is a 16-byte subvolume name for the
NonStop server. A token of this type has a SUBVOL token data type and is based on
the SUBVOL structure.

token type ZSPI-TYP-SSCTL value is ZSPI-TDT-SSCTL
 occurs 0 times.

token type ZSPI-TYP-SSID value is ZSPI-TDT-SSID
 def is ZSPI-DDL-SSID.

token type ZSPI-TYP-STRING value is ZSPI-TDT-CHAR
 occurs varying.

token type ZSPI-TYP-STRUCT value is ZSPI-TDT-STRUCT
 occurs varying.

token type ZSPI-TYP-SUBVOL value is ZSPI-TDT-SUBVOL
 def is ZSPI-DDL-SUBVOL.
SPI Programming Manual—427506-007
4-26

ZSPI Data Definitions Token Types
ZSPI-TYP-TIMESTAMP

ZSPI-TYP-TIMESTAMP specifies that a token’s value is a 64-bit Julian timestamp. A
token of this type has a TIMESTAMP token data type and is based on the TIMESTAMP
structure.

ZSPI-TYP-TOKENCODE

ZSPI-TYP-TOKENCODE specifies that a token’s value is itself a token code. A token
of this type has a TOKENCODE token data type and is based on the TOKENCODE
structure.

ZSPI-TYP-TRANSID

ZSPI-TYP-TRANSID specifies that a token’s value is a 64-bit internal-format
transaction ID for TMF. A token of this type has a TRANSID token data type and is
based on the TRANSID structure.

ZSPI-TYP-UINT

ZSPI-TYP-UINT specifies that a token’s value is a 16-bit unsigned integer. A token of
this type has a UINT token data type and is based on the UINT structure.

ZSPI-TYP-USERID

ZSPI-TYP-USERID specifies that a token’s value is a 2-byte user ID for the NonStop
server. A token of this type has a BYTE token data type and is based on the BYTE-
PAIR structure.

token type ZSPI-TYP-TIMESTAMP value is ZSPI-TDT-TIMESTAMP
 def is ZSPI-DDL-TIMESTAMP.

token type ZSPI-TYP-TOKENCODE value is ZSPI-TDT-TOKENCODE
 def is ZSPI-DDL-TOKENCODE.

token type ZSPI-TYP-TRANSID value is ZSPI-TDT-TRANSID
 def is ZSPI-DDL-TRANSID.

token type ZSPI-TYP-UINT value is ZSPI-TDT-UINT
 def is ZSPI-DDL-UINT.

token type ZSPI-TYP-USERID value is ZSPI-TDT-BYTE
 def is ZSPI-DDL-BYTE-PAIR.
SPI Programming Manual—427506-007
4-27

ZSPI Data Definitions Token Numbers
ZSPI-TYP-USERNAME

ZSPI-TYP-USERNAME specifies that a token’s value is a 16-byte internal-format user
name. A token of this type has a USERNAME token data type and is based on the
USERNAME structure.

ZSPI-TYP-VERSION

ZSPI-TYP-VERSION specifies that a token’s value is a software release version. A
token of this type has a UINT token data type and is based on the VERSION structure.

Token Numbers
Every token has a token number. Token numbers have symbolic names of the form
ZSPI-TNM-name, where name matches the name portion of the corresponding token
code definition, ZSPI-TKN-name.

Table 4-2 lists the symbolic names and the numeric values of the token numbers
defined by SPI. (Numeric values are provided for debugging purposes only—always
use the symbolic name in programs.)

token type ZSPI-TYP-USERNAME value is ZSPI-TDT-USERNAME
 def is ZSPI-DDL-USERNAME.

token type ZSPI-TYP-VERSION value is ZSPI-TDT-UINT
 def is ZSPI-DDL-VERSION.

Table 4-2. SPI Token Numbers (page 1 of 2)

ZSPI Token Number Value ZSPI Token Number Value

ZSPI-TNM-ADDR –443 ZSPI-TNM-LIST –255

ZSPI-TNM-ALLOW –239 ZSPI-TNM-MANAGER –243

ZSPI-TNM-ALLOW-TYPE –249 ZSPI-TNM-MAX-FIELD-VERSION –503

ZSPI-TNM-BUFLEN –500 ZSPI-TNM-MAXRESP –502

ZSPI-TNM-CHECKSUM –512 ZSPI-TNM-MORE-DATA –238

ZSPI-TNM-CLEARERR –508 ZSPI-TNM-NEXTCODE –448

ZSPI-TNM-COMMAND –510 ZSPI-TNM-NEXTTOKEN –447

ZSPI-TNM-COMMENT –247 ZSPI-TNM-OBJECT-TYPE –509

ZSPI-TNM-CONTEXT –256 ZSPI-TNM-OFFSET –444

ZSPI-TNM-COUNT –446 ZSPI-TNM-PARM-ERR –250

ZSPI-TNM-DATA-FLUSH –441 ZSPI-TNM-POSITION –442

ZSPI-TNM-DATALIST –253 ZSPI-TNM-PROC-ERR –244

ZSPI-TNM-DEFAULT-SSID –437 ZSPI-TNM-PROG-FNAME –241
SPI Programming Manual—427506-007
4-28

ZSPI Data Definitions Token Numbers
ZSPI-TNM-DELETE –440 ZSPI-TNM-RESET-BUFFER –436

ZSPI-TNM-ENDLIST –254 ZSPI-TNM-RESPONSE-TYPE –248

ZSPI-TNM-ERRLIST –252 ZSPI-TNM-RETCODE 0

ZSPI-TNM-ERROR –251 ZSPI-TNM-SEGLIST –240

ZSPI-TNM-HDRTYPE –511 ZSPI-TNM-SEGMENTATION –237

ZSPI-TNM-INITIAL-POSITION –438 ZSPI-TNM-SERVER-BANNER –246

ZSPI-TNM-IPM-ID –242 ZSPI-TNM-SERVER-VERSION –501

ZSPI-TNM-LASTERR –507 ZSPI-TNM-SSID –505

ZSPI-TNM-LASTERRCODE –506 ZSPI-TNM-SSID-ERR –245

ZSPI-TNM-LASTPOSITION –439 ZSPI-TNM-USEDLEN –504

ZSPI-TNM-LEN –445

Table 4-2. SPI Token Numbers (page 2 of 2)

ZSPI Token Number Value ZSPI Token Number Value
SPI Programming Manual—427506-007
4-29

ZSPI Data Definitions Token Numbers
Token Number Definition Syntax

This syntax box lists the token numbers by numeric value. (Numeric values are
provided for debugging purposes only—always use the symbolic name in programs.)

constant ZSPI-TNM-CHECKSUM VALUE IS -512.
constant ZSPI-TNM-HDRTYPE VALUE IS -511.
constant ZSPI-TNM-COMMAND VALUE IS -510.
constant ZSPI-TNM-OBJECT-TYPE VALUE IS -509.
constant ZSPI-TNM-CLEARERR VALUE IS -508.
constant ZSPI-TNM-LASTERR VALUE IS -507.
constant ZSPI-TNM-LASTERRCODE VALUE IS -506.
constant ZSPI-TNM-SSID VALUE IS -505.
constant ZSPI-TNM-USEDLEN VALUE IS -504.
constant ZSPI-TNM-MAX-FIELD-VERSION VALUE IS -503.
constant ZSPI-TNM-MAXRESP VALUE IS -502.
constant ZSPI-TNM-SERVER-VERSION VALUE IS -501.
constant ZSPI-TNM-BUFLEN VALUE IS -500.
constant ZSPI-TNM-NEXTCODE VALUE IS -448.
constant ZSPI-TNM-NEXTTOKEN VALUE IS -447.
constant ZSPI-TNM-COUNT VALUE IS -446.
constant ZSPI-TNM-LEN VALUE IS -445.
constant ZSPI-TNM-OFFSET VALUE IS -444.
constant ZSPI-TNM-ADDR VALUE IS -443.
constant ZSPI-TNM-POSITION VALUE IS -442.
constant ZSPI-TNM-DATA-FLUSH VALUE IS -441.
constant ZSPI-TNM-DELETE VALUE IS -440.
constant ZSPI-TNM-LASTPOSITION VALUE IS -439.
constant ZSPI-TNM-INITIAL-POSITION VALUE IS -438.
constant ZSPI-TNM-DEFAULT-SSID VALUE IS -437.
constant ZSPI-TNM-RESET-BUFFER VALUE IS -436.
constant ZSPI-TNM-CONTEXT VALUE IS -256.
constant ZSPI-TNM-LIST VALUE IS -255.
constant ZSPI-TNM-ENDLIST VALUE IS -254.
constant ZSPI-TNM-DATALIST VALUE IS -253.
constant ZSPI-TNM-ERRLIST VALUE IS -252.
constant ZSPI-TNM-ERROR VALUE IS -251.
constant ZSPI-TNM-PARM-ERR VALUE IS -250.
constant ZSPI-TNM-ALLOW-TYPE VALUE IS -249.
constant ZSPI-TNM-RESPONSE-TYPE VALUE IS -248.
constant ZSPI-TNM-COMMENT VALUE IS -247.

constant ZSPI-TNM-SERVER-BANNER VALUE IS -246.
constant ZSPI-TNM-SSID-ERR VALUE IS -245.
constant ZSPI-TNM-PROC-ERR VALUE IS -244.
constant ZSPI-TNM-MANAGER VALUE IS -243.
constant ZSPI-TNM-IPM-ID VALUE IS -242.
constant ZSPI-TNM-PROG-FNAME VALUE IS -241.
constant ZSPI-TNM-SEGLIST VALUE IS -240.
constant ZSPI-TNM-ALLOW VALUE IS -239.
constant ZSPI-TNM-MORE-DATA VALUE IS -238.
constant ZSPI-TNM-SEGMENTATION VALUE IS -237.
constant ZSPI-TNM-RETCODE VALUE IS 0.
SPI Programming Manual—427506-007
4-30

ZSPI Data Definitions Token Codes
Token Codes
This subsection describes the token codes defined by SPI. A token code associates a
token number with a token type, an SSID, and a heading for formatted display of SPI
messages.

ZSPI-TKN-ADDR

ZSPI-TKN-ADDR is a special operation token that directs SSGET to return the address
of a specified token value.

ZSPI-TKN-ALLOW

A requester uses this token to ask for a segmented response by assigning the value
ZSPI-VAL-ALLOW-SEGMENTS and including the token in the command.

ZSPI-TKN-ALLOW-TYPE

Requesters include ZSPI-TKN-ALLOW-TYPE in a command to tell a server how to
proceed when it encounters an error or warning on an object.

token-code ZSPI-TKN-ADDR
 value ZSPI-TNM-ADDR
 token-type ZSPI-TYP-TOKENCODE
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Token_address".

token-code ZSPI-TKN-ALLOW
 value ZSPI-TNM-ALLOW
 token-type ZSPI-TYP-ENUM
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Function_allowed".

token-code ZSPI-TKN-ALLOW-TYPE
 value ZSPI-TNM-ALLOW-TYPE
 token-type ZSPI-TYP-ALLOW-TYPE
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Allow_type".
SPI Programming Manual—427506-007
4-31

ZSPI Data Definitions Token Codes
Valid values for this token are:

ZSPI-TKN-BUFLEN

ZSPI-TKN-BUFLEN contains the SPI buffer length. This value is set by SSINIT, can be
retrieved using SSGET, and can be modified using SSPUT.

ZSPI-TKN-CHECKSUM

ZSPI-TKN-CHECKSUM contains the buffer checksum flag. If set to zero, the SPI
procedures do not maintain a buffer checksum. If set to any nonzero value, SPI
maintains a checksum to validate buffer integrity. This value is set by SSINIT, can be
retrieved using SSGET, and can be modified using SSPUT.

ZSPI-TKN-CLEARERR

ZSPI-TKN-CLEARERR, passed to SSPUT, clears (resets to zero) the last-error
information in the SPI message header. Its token type is ZSPI-TYP-SSCTL.

ZSPI-VAL-NORM-
ONLY

The server continues command processing with the next object in
the set only if the command was completely successful on the
previous object (no error list). This is the default if ZSPI-TKN-
ALLOW-TYPE is not included in the command.

ZSPI-VAL-WARN-
AND-NORM

The server processes the next object in the set even if a warning is
encountered on the previous object. (A warning means that ZSPI-
TKN-RETCODE contains ZSPI-ERR-OK, but the response contains
an error list.)

ZSPI-VAL-ERR-
WARN-AND-NORM

The server processes the next object in the set regardless of any
problems encountered on the previous object.

token-code ZSPI-TKN-BUFLEN
 value ZSPI-TNM-BUFLEN
 token-type ZSPI-TYP-UINT
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Buffer_byte_length".

token-code ZSPI-TKN-CHECKSUM
 value ZSPI-TNM-CHECKSUM
 token-type ZSPI-TYP-BOOLEAN
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Checksum".

token-code ZSPI-TKN-CLEARERR
 value ZSPI-TNM-CLEARERR
 token-type ZSPI-TYP-SSCTL.
SPI Programming Manual—427506-007
4-32

ZSPI Data Definitions Token Codes
ZSPI-TKN-COMMAND

ZSPI-TKN-COMMAND contains the command number. This value is set by SSINIT
and can be retrieved using SSGET. This value cannot be modified using SSPUT.

ZSPI-TKN-COMMENT

ZSPI-TKN-COMMENT is a token that a requester can use to include arbitrary
information of its own in a command. NonStop Kernel subsystems ignore this token
and do not return it in responses. Its token type is ZSPI-TYP-STRING. Its value is a
variable-length character string. The buffer sizes recommended by NonStop Kernel
subsystems allow for one 80-byte comment token in every command.

ZSPI-TKN-CONTEXT

ZSPI-TKN-CONTEXT is a special token that indicates (by its presence or absence)
whether or not there are more objects to process. If this token is present in a response,
the response can be continued in another response message; if it is absent, this is the
last response message. The token value provides information needed by the server to
determine where to resume processing. The requester should ignore the token value,
but must send the token back to the server in a copy of the original command
message. For more information, see Section 2, SPI Concepts and Protocol.

The token type of this token is ZSPI-TYP-BYTESTRING.

token-code ZSPI-TKN-COMMAND
 value ZSPI-TNM-COMMAND
 token-type ZSPI-TYP-ENUM
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Command".

token-code ZSPI-TKN-COMMENT
 value ZSPI-TNM-COMMENT
 token-type ZSPI-TYP-STRING
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Comment".

token-code ZSPI-TKN-CONTEXT
 value ZSPI-TNM-CONTEXT
 token-type ZSPI-TYP-BYTESTRING
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Context".
SPI Programming Manual—427506-007
4-33

ZSPI Data Definitions Token Codes
ZSPI-TKN-COUNT

ZSPI-TKN-COUNT directs SSGET to obtain the total number of occurrences of a
specific token in the buffer. Its token type is ZSPI-TYP-TOKENCODE.

ZSPI-TKN-DATA-FLUSH

ZSPI-TKN-DATA-FLUSH directs SSPUT to flush all information in the buffer starting at,
and including, the token at the current position. Its token type is ZSPI-TYP-SSCTL.

ZSPI-TKN-DATALIST

ZSPI-TKN-DATALIST begins a list that encloses a single response record when
multiple response records are contained in a single buffer, when the buffer indicates a
nonzero value for the header token ZSPI-TKN-MAXRESP, or when a segmented
response is generated. Its token type is ZSPI-TYP-LIST. Calling SSGET with ZSPI-
TKN-DATALIST selects the next list that begins with that token so that tokens within it
can be read; calling SSPUT with this token places it in the buffer and starts a new list.

ZSPI-TKN-DEFAULT-SSID

ZSPI-TKN-DEFAULT-SSID directs SSGET to get the default subsystem ID of the token
at the current position. Its token type is ZSPI-TYP-SSID.

token-code ZSPI-TKN-COUNT
 value ZSPI-TNM-COUNT
 token-type ZSPI-TYP-TOKENCODE
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Token_count".

token-code ZSPI-TKN-DATA-FLUSH
 value ZSPI-TNM-DATA-FLUSH
 token-type ZSPI-TYP-SSCTL.

token-code ZSPI-TKN-DATALIST
 value ZSPI-TNM-DATALIST
 token-type ZSPI-TYP-LIST
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Data_list".

token-code ZSPI-TKN-DEFAULT-SSID
 value ZSPI-TNM-DEFAULT-SSID
 token-type ZSPI-TYP-SSID.
SPI Programming Manual—427506-007
4-34

ZSPI Data Definitions Token Codes
ZSPI-TKN-DELETE

ZSPI-TKN-DELETE directs SSPUT to delete a specified token from the buffer. Its
token type is ZSPI-TYP-TOKENCODE.

ZSPI-TKN-ENDLIST

ZSPI-TKN-ENDLIST ends the current list (of any type). Its token type is ZSPI-TYP-
SSCTL.

Calling SSGET with ZSPI-TKN-ENDLIST pops out of the list. Calling SSPUT with
ZSPI-TKN-ENDLIST places that token in the buffer, thus ending the list, and pops out
of the list.

ZSPI-TKN-ERRLIST

ZSPI-TKN-ERRLIST begins a list that encloses information about an error. Its token
type is ZSPI-TYP-LIST. Calling SSGET with ZSPI-TKN-ERRLIST selects the next list
that begins with that token, so that tokens within it can be read; calling SSPUT with this
token places it in the buffer, thus starting a new error list.

ZSPI-TKN-ERROR

ZSPI-TKN-ERROR is a token, returned within an error list in a response, that identifies
an error detected by a subsystem. Its token type is ZSPI-TYP-ERROR. Its value
consists of the subsystem ID of the subsystem that found the error, followed by the

token-code ZSPI-TKN-DELETE
 value ZSPI-TNM-DELETE
 token-type ZSPI-TYP-TOKENCODE.

token-code ZSPI-TKN-ENDLIST
 value ZSPI-TNM-ENDLIST
 token-type ZSPI-TYP-SSCTL
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "End_of_list".

token-code ZSPI-TKN-ERRLIST
 value ZSPI-TNM-ERRLIST
 token-type ZSPI-TYP-LIST
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Error_list".

token-code ZSPI-TKN-ERROR
 value ZSPI-TNM-ERROR
 token-type ZSPI-TYP-ERROR
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Error".
SPI Programming Manual—427506-007
4-35

ZSPI Data Definitions Token Codes
error number (defined by that subsystem). For more information, see Error Numbers
on page 4-46. For information about error lists, see Section 2, SPI Concepts and
Protocol.

ZSPI-TKN-HDRTYPE

ZSPI-TKN-HDRTYPE identifies the type of header that the message contains. (The
message buffer used by the EMS—like the command or response buffer used in
control and inquiry—is an SPI buffer, but some of the tokens in the header of an event
message differ from those in the header of a command or response message.) This
value is set by SSINIT, and can be retrieved using SSGET. This value cannot be
modified using SSPUT.

ZSPI-TKN-INITIAL-POSITION

ZSPI-TKN-INITIAL-POSITION, passed to SSPUT, resets the current position as
indicated by the supplied token value. Its token type is ZSPI-TYP-BOOLEAN. A token
value of ZSPI-VAL-INITIAL-BUFFER (0) resets the position to the beginning of the
buffer. A token value of ZSPI-VAL-INITIAL-LIST (-1) resets the position to the
beginning of the current list.

ZSPI-TKN-IPM-ID

ZSPI-TKN-IPM-ID indicates that the subsystem version returned in the GETVERSION
command has had a software product revision (SPR) since the version was released.
ZSPI-TKN-IPM-ID can occur multiple times if more than one change to the SPI
interface was made in the SPR. The subsystem might also return an IPM-ID token for
a change in the SPR that did not affect the SPI interface.

token-code ZSPI-TKN-HDRTYPE
 value ZSPI-TNM-HDRTYPE
 token-type ZSPI-TYP-UINT
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Header_type".

token-code ZSPI-TKN-INITIAL-POSITION
 value ZSPI-TNM-INITIAL-POSITION
 token-type ZSPI-TYP-BOOLEAN.

token-code ZSPI-TKN-IPM-ID
 value ZSPI-TNM-IPM-ID
 token-type ZSPI-TYP-ENUM
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "IPM_ID".
SPI Programming Manual—427506-007
4-36

ZSPI Data Definitions Token Codes
ZSPI-TKN-LASTERR

ZSPI-TKN-LASTERR records the last nonzero status code returned by an SPI
procedure while processing this buffer. This value is set by the procedure that detected
the error and can be retrieved using SSGET. This value can be cleared using the
special SSPUT operation ZSPI-TKN-CLEARERR.

ZSPI-TKN-LASTERRCODE

ZSPI-TKN-LASTERRCODE records the token code of the token involved in the last
nonzero status code returned by an SPI procedure while processing this buffer. This
value is set by the procedure that detected the error and can be retrieved using
SSGET. This value can be cleared using the special SSPUT operation ZSPI-TKN-
CLEARERR.

ZSPI-TKN-LASTPOSITION

ZSPI-TKN-LASTPOSITION contains the position of the last token that was added to
the buffer by SSPUT. You can retrieve this position using SSGET.

ZSPI-TKN-LEN

ZSPI-TKN-LEN directs SSGET to get the length, in bytes, of a specific token value. Its
token type is ZSPI-TYP-TOKENCODE.

token-code ZSPI-TKN-LASTERR
 value ZSPI-TNM-LASTERR
 token-type ZSPI-TYP-LASTERR
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Last_error".

token-code ZSPI-TKN-LASTERRCODE
 value ZSPI-TNM-LASTERRCODE
 token-type ZSPI-TYP-TOKENCODE
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Last_error_tkncode".

token-code ZSPI-TKN-LASTPOSITION
 value ZSPI-TNM-LASTPOSITION
 token-type ZSPI-TYP-POSITION
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Last_token_position".

token-code ZSPI-TKN-LEN
 value ZSPI-TNM-LEN
 token-type ZSPI-TYP-TOKENCODE
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Token_length".
SPI Programming Manual—427506-007
4-37

ZSPI Data Definitions Token Codes
ZSPI-TKN-LIST

ZSPI-TKN-LIST begins a generic list. This token is provided for the convenience of
subsystems you write. NonStop Kernel subsystems provided by HP do not use it. Its
token type is ZSPI-TYP-LIST. Calling SSGET with ZSPI-TKN-LIST selects the next list
that begins with that token so that tokens within it can be read; calling SSPUT with this
token places it in the buffer, thus starting a new list.

ZSPI-TKN-MANAGER

ZSPI-TKN-MANAGER is the process name of a particular subsystem process. This
token is used in commands to the Subsystem Control Point (SCP) to identify the target
subsystem, in error lists returned by Pathway, and in some event messages to qualify
the subject of the event. In the future, it might have other uses. Its token type is ZSPI-
TYP-FNAME32.

ZSPI-TKN-MAX-FIELD-VERSION

ZSPI-TKN-MAX-FIELD-VERSION contains the highest version of any non-null field in
any extensible structured token added to the buffer. The maximum field version is kept
for version compatibility checking by subsystems. This value is checked by SSPUT,
and reset if necessary each time it puts an extensible structure into the buffer. The
value can be retrieved using SSGET.

token-code ZSPI-TKN-LIST
 value ZSPI-TNM-LIST
 token-type ZSPI-TYP-LIST
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "List".

token-code ZSPI-TKN-MANAGER
 value ZSPI-TNM-MANAGER
 token-type ZSPI-TYP-FNAME32
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Manager".

token-code ZSPI-TKN-MAX-FIELD-VERSION
 value ZSPI-TNM-MAX-FIELD-VERSION
 token-type ZSPI-TYP-VERSION
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Max-field-version".
SPI Programming Manual—427506-007
4-38

ZSPI Data Definitions Token Codes
ZSPI-TKN-MAXRESP

ZSPI-TKN-MAXRESP contains a value indicating the number of response records the
requester accepts in a response message. This value can be set using SSINIT or
SSPUT, and can be retrieved using SSGET. For more information, see Multirecord
Responses on page 2-30.

ZSPI-TKN-MORE-DATA

A server uses this token to tell a requester whether or not the current segment
completes the response record. If this token has the value TRUE, the record is
incomplete and more segment lists are available. If this token has the value FALSE, or
if the token is not in the segment, the segment completes the response record.

ZSPI-TKN-NEXTCODE

ZSPI-TKN-NEXTCODE directs SSGET to get the next token code in the buffer that is
different from the current token code. Its token type is ZSPI-TYP-TOKENCODE.

ZSPI-TKN-NEXTTOKEN

ZSPI-TKN-NEXTTOKEN directs SSGET to get the very next token code in the buffer,
whether or not it is different from the current token code. Its token type is ZSPI-TYP-
TOKENCODE.

token-code ZSPI-TKN-MAXRESP
 value ZSPI-TNM-MAXRESP
 token-type ZSPI-TYP-INT
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Max_responses".

token-code ZSPI-TKN-MORE-DATA
 value ZSPI-TNM-MORE-DATA
 token-type ZSPI-TYP-BOOLEAN
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "More_data_available".

token-code ZSPI-TKN-NEXTCODE
 value ZSPI-TNM-NEXTCODE
 token-type ZSPI-TYP-TOKENCODE
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Nextcode".

token-code ZSPI-TKN-NEXTTOKEN
 value ZSPI-TNM-NEXTTOKEN
 token-type ZSPI-TYP-TOKENCODE
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Nexttoken".
SPI Programming Manual—427506-007
4-39

ZSPI Data Definitions Token Codes
ZSPI-TKN-OBJECT-TYPE

ZSPI-TKN-OBJECT-TYPE contains the object type to which the command is to be
applied. This value is set by SSINIT and can be retrieved using SSGET. This value
cannot be modified using SSPUT.

ZSPI-TKN-OFFSET

ZSPI-TKN-OFFSET directs SSGET to get the byte offset of a specific token value from
the start of the buffer. The token type of this token is ZSPI-TYP-TOKENCODE.

ZSPI-TKN-PARM-ERR

ZSPI-TKN-PARM-ERR is returned by a subsystem in an error list when a parameter
error occurs in a command to the subsystem or in an SPI procedure call made by the
subsystem. Its value is a structure giving information to identify the parameter in error,
as shown in the description of ZSPI-TYP-PARM-ERR. Its token type is ZSPI-TYP-
PARM-ERR.

ZSPI-TKN-POSITION

ZSPI-TKN-POSITION contains the current-token pointer. You can retrieve this value
using SSGET and restore that position using SSPUT. When passed to SSPUT with a
position value obtained from a previous SSGET with ZSPI-TKN-POSITION or ZSPI-

token-code ZSPI-TKN-OBJECT-TYPE
 value ZSPI-TNM-OBJECT-TYPE
 token-type ZSPI-TYP-ENUM
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Object_type".

token-code ZSPI-TKN-OFFSET
 value ZSPI-TNM-OFFSET
 token-type ZSPI-TYP-TOKENCODE
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Token_offset".

token-code ZSPI-TKN-PARM-ERR
 value ZSPI-TNM-PARM-ERR
 token-type ZSPI-TYP-PARM-ERR
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Parameter_error".

token-code ZSPI-TKN-POSITION
 value ZSPI-TNM-POSITION
 token-type ZSPI-TYP-POSITION
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Position".
SPI Programming Manual—427506-007
4-40

ZSPI Data Definitions Token Codes
TKN-LASTPOSITION, it sets the current position according to the passed position
value. Position values are based on the byte offsets of tokens in the buffer; position
values are rendered invalid if an SSPUT with ZSPI-TKN-DELETE or ZSPI-TKN-DATA-
FLUSH is used to modify the buffer after the position value is obtained.

ZSPI-TKN-PROC-ERR

ZSPI-TKN-PROC-ERR is returned by a subsystem in an error list when an unexpected
error occurs on a call to one of the SPI procedures. Its value indicates which SPI
procedure failed. Its token type is ZSPI-TYP-ENUM. Allowed values for error lists
defined by SPI (for SPI errors encountered by a subsystem and returned to the
application) are ZSPI-VAL-SSGET, ZSPI-VAL-SSGETTKN, ZSPI-VAL-SSINIT, ZSPI-
VAL-SSMOVE, ZSPI-VAL-SSMOVETKN, ZSPI-VAL-SSNULL, ZSPI-VAL-SSPUT, and
ZSPI-VAL-SSPUTTKN.

ZSPI-TKN-PROG-FNAME

ZSPI-TKN-PROG-FNAME conveys a program file name.

ZSPI-TKN-RESET-BUFFER

ZSPI-TKN-RESET-BUFFER, passed to SSPUT, performs resetting operations on an
SPI buffer received from another process to prepare it for scanning by the receiving
process. This operation clears the last-error information, resets the maximum buffer
length, and resets the current position to the beginning of the buffer. The token type of
this token is ZSPI-TYP-UINT.

token-code ZSPI-TKN-PROC-ERR
 value ZSPI-TNM-PROC-ERR
 token-type ZSPI-TYP-ENUM
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Procedure_in_error".

token-code ZSPI-TKN-PROG-FNAME
 value ZSPI-TNM-PROG-FNAME
 token-type ZSPI-TYP-STRING
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Program_filename".

token-code ZSPI-TKN-RESET-BUFFER
 value ZSPI-TNM-RESET-BUFFER
 token-type ZSPI-TYP-UINT.
SPI Programming Manual—427506-007
4-41

ZSPI Data Definitions Token Codes
ZSPI-TKN-RESPONSE-TYPE

ZSPI-TKN-RESPONSE-TYPE indicates what kinds of response records the subsystem
should return. Its token type is ZSPI-TYP-ENUM.

Its allowed values and their meanings are:

For more information, see Suppressing Response Records on page 2-43.

ZSPI-TKN-RETCODE

ZSPI-TKN-RETCODE is the return-code token, returned in a response to indicate
whether a command was successful and why it failed if it did. This token is provided in
every response record returned by a NonStop Kernel subsystem. Its token type is
ZSPI-TYP-ENUM. Its value is one of the set of error numbers defined for the
subsystem to which the command was sent.

ZSPI-TKN-SEGLIST

A server uses this token to mark the beginning of a segment list in an SPI response
message. The end of the list is marked with ZSPI-TKN-ENDLIST.

token-code ZSPI-TKN-RESPONSE-TYPE
 value ZSPI-TNM-RESPONSE-TYPE
 token-type ZSPI-TYP-RESPONSE-TYPE
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Response_type".

ZSPI-VAL-ERR-AND-WARN Return only responses about objects for which an
error or warning occurred (responses that include
at least one error list, regardless of the value of
the return token).

ZSPI-VAL-ERR-WARN-AND-NORM Return a response about every object.

token-code ZSPI-TKN-RETCODE
 value ZSPI-TNM-RETCODE
 token-type ZSPI-TYP-ENUM
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Retcode".

token-code ZSPI-TKN-SEGLIST
 value ZSPI-TNM-SEGLIST
 token-type ZSPI-TYP-LIST
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Segment_list".
SPI Programming Manual—427506-007
4-42

ZSPI Data Definitions Token Codes
ZSPI-TKN-SEGMENTATION

A server uses this token to announce that it can generate segmented responses—by
returning the token with a value of TRUE in its GETVERSION response. A value of
FALSE (or the absence of the token from the GETVERSION response) indicates that
the server does not support segmented responses.

ZSPI-TKN-SERVER-BANNER

ZSPI-TKN-SERVER-BANNER is an ASCII character string, returned in the
GETVERSION response, that identifies the subsystem product name, product number,
release date, and sometimes additional information, in displayable form. The value of
ZSPI-TKN-SERVER-BANNER is intended only for display, not for programs to
examine. Its format might change in new releases, so programs should not extract
information from this token value.

ZSPI-TKN-SERVER-VERSION

ZSPI-TKN-SERVER-VERSION contains the version of the server, as set by the
subsystem when it prepares its response to a command. This value is set by the server
using SSPUT and can be retrieved using SSGET. For NonStop Kernel subsystems, the
representation of this version number is the same as that of the Z-VERSION field of
the subsystem ID.

token-code ZSPI-TKN-SEGMENTATION
 value ZSPI-TNM-SEGMENTATION
 token-type ZSPI-TYP-BOOLEAN
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Segmented_response_support".

token-code ZSPI-TKN-SERVER-BANNER
 value ZSPI-TNM-SERVER-BANNER
 token-type ZSPI-TYP-CHAR50
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Server_banner".

token-code ZSPI-TKN-SERVER-VERSION
 value ZSPI-TNM-SERVER-VERSION
 token-type ZSPI-TYP-VERSION
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Server_version".
SPI Programming Manual—427506-007
4-43

ZSPI Data Definitions Token Codes
ZSPI-TKN-SSID

ZSPI-TKN-SSID contains the subsystem ID of the server that is to process the
command. This value is set by SSINIT and can be retrieved using SSGET. This value
cannot be modified using SSPUT.

ZSPI-TKN-SSID-ERR

ZSPI-TKN-SSID-ERR is returned by a subsystem in an error list when an unexpected
error occurs on a call to one of the SPI procedures, or to indicate the qualifying
subsystem ID of an unrecognized token if that subsystem ID is different from the
default. Its token type is ZSPI-TYP-SSID. Its value is the subsystem ID of the
subsystem or system component returning the error.

ZSPI-TKN-USEDLEN

ZSPI-TKN-USEDLEN contains the length of the used portion of the buffer. This value is
updated by SSPUT and SSMOVE each time they add information to the buffer, and
can be retrieved using SSGET.

token-code ZSPI-TKN-SSID
 value ZSPI-TNM-SSID
 token-type ZSPI-TYP-SSID
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "SSID".

token-code ZSPI-TKN-SSID-ERR
 value ZSPI-TNM-SSID-ERR
 token-type ZSPI-TYP-SSID
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "SSID_error".

token-code ZSPI-TKN-USEDLEN
 value ZSPI-TNM-USEDLEN
 token-type ZSPI-TYP-UINT
 ssid ZSPI-VAL-NULL-EXT-SSID
 heading "Used_byte_length".
SPI Programming Manual—427506-007
4-44

ZSPI Data Definitions Token Length
Token Length
The second part of the token code is the token length. For fixed-length token values up
to 254 bytes long, this field gives the length of the token value in bytes. When the
value of this field is 255, the token value is either variable length or a fixed length
greater than 254 bytes. When the fixed length is greater than 254, the actual length is
supplied in a succeeding word. The special operator ZSPI-TKN-LEN returns the token
length. For a variable-length token, the actual length is in the first 16 bits of the token
value. To protect against overwriting data, check the length of a variable-length token
before calling SSGET to retrieve it.

ZSPI-TLN-VARIABLE

ZSPI-TLN-VARIABLE is the token-length value 255 that indicates a variable-length
token or a token longer than 254 bytes.

Command Numbers
Basic SPI defines a single command number, ZSPI-CMD-GETVERSION, for the
GETVERSION command. Any additional commands must be defined by a subsystem
or drawn from some other common source, such as the SPI common extensions
ZCOM definitions described in the SPI Common Extensions Manual.

ZSPI-CMD-GETVERSION

ZSPI-CMD-GETVERSION is the command number for the GETVERSION command.
Its value is zero. Subsystems use this value to define the command number for their
GETVERSION commands.

Object-Type Numbers
Basic SPI does not define any object-type numbers. However, SPI does require that
subsystems use the number 0 to represent the null object type, which is used in
commands when it is either unnecessary or inappropriate to specify a particular object
type. (SPI defines ZSPI-VAL-NULL-OBJECT-TYPE for this purpose. See
Miscellaneous Values on page 4-47.) All other object types must be defined by a
subsystem or drawn from some other common source, like the SPI common
extensions ZCOM definitions described in the SPI Common Extensions Manual.

constant ZSPI-TLN-VARIABLE value is 255.

constant ZSPI-CMD-GETVERSION value is 0.
SPI Programming Manual—427506-007
4-45

ZSPI Data Definitions Error Numbers
Error Numbers
Error numbers are 16-bit signed integers used to identify errors that SPI servers can
return in response messages. Error number definition syntax is listed below. The errors
are described in Appendix A, Errors.

Error Number Definition Syntax

This syntax box lists the error numbers by numeric value. (Numeric values are
provided for debugging purposes only—always use the symbolic name in programs.)

constant ZSPI-ERR-OK VALUE IS 0.
constant ZSPI-ERR-INVBUF VALUE IS -1.
constant ZSPI-ERR-ILLPARM VALUE IS -2.
constant ZSPI-ERR-MISPARM VALUE IS -3.
constant ZSPI-ERR-BADADDR VALUE IS -4.
constant ZSPI-ERR-NOSPACE VALUE IS -5.
constant ZSPI-ERR-XSUMERR VALUE IS -6.
constant ZSPI-ERR-INTERR VALUE IS -7.
constant ZSPI-ERR-MISTKN VALUE IS -8.
constant ZSPI-ERR-ILLTKN VALUE IS -9.
constant ZSPI-ERR-BADSSID VALUE IS -10.
constant ZSPI-ERR-NOTIMP VALUE IS -11.
constant ZSPI-ERR-NOSTACK VALUE IS -12.
constant ZSPI-ERR-ZFIL-ERR VALUE IS -13.
constant ZSPI-ERR-ZGRD-ERR VALUE IS -14.
constant ZSPI-ERR-INV-FILE VALUE IS -15.
constant ZSPI-ERR-CONTINUE VALUE IS -16.
constant ZSPI-ERR-NEW-LINE VALUE IS -17.
constant ZSPI-ERR-NO-MORE VALUE IS -18.
constant ZSPI-ERR-MISS-NAME VALUE IS -19.
constant ZSPI-ERR-DUP-NAME VALUE IS -20.
constant ZSPI-ERR-MISS-ENUM VALUE IS -21.
constant ZSPI-ERR-MISS-STRUCT VALUE IS -22.
constant ZSPI-ERR-MISS-OFFSET VALUE IS -23.
constant ZSPI-ERR-TOO-LONG VALUE IS -24.
constant ZSPI-ERR-MISS-FIELD VALUE IS -25.
constant ZSPI-ERR-NO-SCANID VALUE IS -26.
constant ZSPI-ERR-NO-FORMATID VALUE IS -27.
constant ZSPI-ERR-OCCURS-DEPTH VALUE IS -28.
constant ZSPI-ERR-MISS-LABEL VALUE IS -29.
constant ZSPI-ERR-BUF-TOO-LARGE VALUE IS -30.
constant ZSPI-ERR-OBJFORM VALUE IS -31.
constant ZSPI-ERR-OBJCLASS VALUE IS -32.
constant ZSPI-ERR-BADNAME VALUE IS -33.
constant ZSPI-ERR-TEMPLATE VALUE IS -34.
constant ZSPI-ERR-ILL-CHAR VALUE IS -35.
constant ZSPI-ERR-TKNDEFID VALUE IS -36.
constant ZSPI-ERR-INCOMP-RESP VALUE IS -37.
SPI Programming Manual—427506-007
4-46

ZSPI Data Definitions Subsystem Numbers
Subsystem Numbers
The SPI definitions include a subsystem number for every NonStop Kernel subsystem
that has a programmatic command interface based on SPI, reports events through
EMS, or defines error information in SPI error lists. Your program should use the
symbolic names for these subsystem numbers. The names are all of the form ZSPI-
SSN-subsys, where subsys is the appropriate four-character subsystem
abbreviation. See Appendix D, NonStop Kernel Subsystem Numbers and
Abbreviations.

Miscellaneous Values
The SPI standard definition files include these standard value names for tokens and
SPI procedure-call parameters. Use these names in your programs whenever
appropriate.

ZSPI-VAL-ALLOW-SEGMENTS

A requester assigns this value to ZSPI-TKN-ALLOW and includes that token in a
command message to ask a server for a segmented response.

ZSPI-VAL-CMDHDR

ZSPI-VAL-CMDHDR is the value of the header-type field of the SPI message header
for a command or response. Use this value for the SSINIT parameter header-type
when initializing a command or response buffer.

ZSPI-VAL-EVTHDR

ZSPI-VAL-EVTHDR is the value of the header-type field of the SPI message header for
an event message.

ZSPI-VAL-FALSE

ZSPI-VAL-FALSE is the Boolean value FALSE, represented internally by the integer 0.
This named value is not supported by COBOL. To interpret Boolean values in COBOL,
see Section 7, SPI Programming in COBOL.

constant ZSPI-VAL-ALLOW-SEGMENTS value is -1.

constant ZSPI-VAL-CMDHDR value is 0.

constant ZSPI-VAL-EVTHDR value is 1.

constant ZSPI-VAL-FALSE value is 0.
SPI Programming Manual—427506-007
4-47

ZSPI Data Definitions Miscellaneous Values
ZSPI-VAL-HDRSIZE

ZSPI-VAL-HDRSIZE is the recommended number of bytes to reserve for the standard
command header. It is provided primarily for use by subsystems in determining their
recommended buffer sizes.

ZSPI-VAL-MSGCODE

ZSPI-VAL-MSGCODE is the signed integer value found in the first word of every SPI
message. (SPI messages include SPI commands, responses to SPI commands, and
event messages.) This value identifies the message as an SPI message.

ZSPI-VAL-NULL-COMMAND

ZSPI-VAL-NULL-COMMAND is the null command number. Some NonStop Kernel
subsystems return this value in an error list when an SPI procedure encounters an
error that causes the procedure to fail.

ZSPI-VAL-NULL-EXT-SSID

ZSPI-VAL-NULL-EXT-SSID is the null subsystem ID.

ZSPI-VAL-NULL-OBJECT-TYPE

ZSPI-VAL-NULL-OBJECT-TYPE is the null object type. Use this value for the SSINIT
object-type parameter when initializing a buffer for a command for which no object
type is required. Some NonStop Kernel subsystems return this value in an error list
when an SPI procedure encounters an error that causes the procedure to fail.

ZSPI-VAL-NULL-TOKENCODE

ZSPI-VAL-NULL-TOKENCODE is the null token-code value. Use this value for the
token-code parameter when requesting the SSGET special operations ZSPI-TKN-

constant ZSPI-VAL-HDRSIZE value is 256.

constant ZSPI-VAL-MSGCODE value is -28.

constant ZSPI-VAL-NULL-COMMAND value is -1.

constant ZSPI-VAL-NULL-EXT-SSID value is "0.0.0".

constant ZSPI-VAL-NULL-OBJECT-TYPE value is 0.

constant ZSPI-VAL-NULL-TOKENCODE value is 0 type binary 32.
SPI Programming Manual—427506-007
4-48

ZSPI Data Definitions Miscellaneous Values
ADDR, ZSPI-TKN-LEN, ZSPI-TKN-OFFSET, and ZSPI-TKN-COUNT. Using the null
token code has the same effect as omitting token-code: the operation returns the
address, length, or offset of the currently selected token, or counts occurrences of the
current token beginning with the current occurrence.

ZSPI-VAL-NULL-VERSION

ZSPI-VAL-NULL-VERSION is the null version value. The subsystem ID returned by
SSGET with the special token code ZSPI-TKN-DEFAULT-SSID has this value in the
version field. When a subsystem reports a pass-through error from another subsystem
that does not itself support a programmatic command interface based on SPI, this
value appears for the version in the subsystem ID part of the error token.

ZSPI-VAL-SSID

ZSPI-VAL-SSID is the subsystem ID value for SPI. Assign these values to the structure
fields: ZSPI-VAL-TANDEM to Z-OWNER, ZSPI-SSN-ZSPI to Z-NUMBER, and ZSPI-
VAL-VERSION to Z-VERSION.

ZSPI-VAL-TANDEM

ZSPI-VAL-TANDEM is the string value “TANDEMbb” (with two trailing blanks). Your
program must assign this value to the owner field of the subsystem ID before sending
a command to any NonStop Kernel subsystem.

ZSPI-VAL-TRUE

ZSPI-VAL-TRUE is the Boolean value TRUE, represented internally by the integer -1.
This named value is not supported by COBOL. To interpret Boolean values in COBOL,
see Section 7, SPI Programming in COBOL.

constant ZSPI-VAL-NULL-VERSION value is 0.

def ZSPI-VAL-SSID tacl SSID.
 02 Z-FILLER type character 8 value is ZSPI-VAL-TANDEM.
 02 Z-OWNER type ZSPI-DDL-CHAR8 redefines Z-FILLER.
 02 Z-NUMBER type ZSPI-DDL-INT value is ZSPI-SSN-ZSPI.
 02 Z-VERSION type ZSPI-DDL-UINT value is ZSPI-VAL-
VERSION.
end

constant ZSPI-VAL-TANDEM value is "TANDEM ".

constant ZSPI-VAL-TRUE value is -1.
SPI Programming Manual—427506-007
4-49

ZSPI Data Definitions Miscellaneous Values
ZSPI-VAL-VERSION

ZSPI-VAL-VERSION is the one-word version value of this version of the SPI standard
definitions. The left byte contains the letter part of the version as an ASCII uppercase
alphabetic character, and the right byte contains the numeric part of the version as an
unsigned integer value. For example, for the version “G06,” the left byte is the ASCII
character G, and the right byte is “06”. The result is the unsigned integer 18182.

constant ZSPI-VAL-VERSION value is version "D20".
SPI Programming Manual—427506-007
4-50

5
General SPI Programming
Guidelines

This section offers three categories of programming guidelines:

General Guidelines for All SPI Programs
The guidelines in this section apply to all SPI programs—requesters and servers.

Retrieving Tokens by Name

The most common way to retrieve tokens from the buffer is by passing their names to
SSGET. An application can ask for tokens in any convenient order.

A call to SSGET optionally specifies a value for an index parameter. This index lets
SSGET select a particular occurrence of a particular token in the buffer; as mentioned
in Section 2, SPI Concepts and Protocol, there can be several occurrences (that is,
several instances of tokens with the same token code). Two cases are possible:

 If the index value is n > 0 than zero, SSGET starts searching at the beginning of
the buffer and returns the nth value of that token.

 If the index value is zero (the default) or not supplied, SSGET retrieves the next
occurrence of the specified token.

An index that is zero or not supplied tells SSGET to start searching with the token
indicated by the next-token pointer. If the specified token is found, the current-token
position is set to the token that was returned, and the next-token pointer is updated to
the token following it. For example:

CALL SSGET (buffer, TKN-A, value)

Before the call, the positioning is:

current next
 | |
 v v
<TKN-A> <TKN-B> <TKN-C> <TKN-A> <TKN-D>

Topic Page

General Guidelines for All SPI Programs 5-1

Guidelines for SPI Requesters 5-8

Guidelines for SPI Servers 5-16
SPI Programming Manual—427506-007
5-1

General SPI Programming Guidelines Scanning a Buffer Sequentially
After the call, the positioning is:

 current next
 | |
 v v
<TKN-A> <TKN-B> <TKN-C> <TKN-A> <TKN-D>

The SSGET procedure also includes a count parameter. This feature lets a program
extract up to the specified number of occurrences of a token in one call, whether they
are contiguous or not, and receive their values as an array.

Scanning a Buffer Sequentially

A program can scan the buffer sequentially and retrieve each token in order using one
of the special SSGET operations ZSPI-TKN-NEXTCODE and ZSPI-TKN-
NEXTTOKEN. This method of token retrieval is useful mainly to servers because they
must examine every token in the buffer and reject messages that contain unrecognized
or invalid tokens.

A call to SSGET with ZSPI-TKN-NEXTTOKEN gets the next token code in the buffer,
regardless of whether that token has the same token code as the current token, and
regardless of whether that token is within a list.

For example:

CALL SSGETTKN (buffer, ZSPI-TKN-NEXTTOKEN, value)

Before the call, the positioning is:

current next
 | |
 v v
<TKN-A> <TKN-B> <TKN-C> <TKN-A> <TKN-D>

After the call, the positioning is:

 current + next
 |
 v
<TKN-A> <TKN-B> <TKN-C> <TKN-A> <TKN-D>

A call to SSGET with ZSPI-TKN-NEXTCODE gets the next token different from the
token code at the current position. Unlike ZSPI-TKN-NEXTTOKEN, this operation does
not see tokens within lists until the beginning list token is selected, and it skips over
any tokens that have the same token code as the current token.

Repeated calls using the ZSPI-TKN-NEXTCODE operation return non-contiguous
occurrences of the same token code in the same order as they were supplied by
SSPUT. The result gives the number of contiguous occurrences, not the total number
of occurrences in the buffer. For example, suppose the buffer contains:

<TKN A> <TKN A> <TKN A> <TKN B> <TKN A> <TKN A> <TKN C>
SPI Programming Manual—427506-007
5-2

General SPI Programming Guidelines Scanning a Buffer Sequentially
Successive calls with ZSPI-TKN-NEXTCODE:

 token code occurrences

1st call A 3
2nd call B 1
3rd call A 2
4th call C 1
5th call ZSPI-ERR-MISTKN

The NEXTCODE operation sets both the current position and the next position to the
token code it returns. This means that a subsequent call to SSGET with the returned
token code can be used to get the value associated with that token code.

The ZSPI-TKN-NEXTCODE operation does not retrieve token codes that are inside a
list unless the list has been explicitly selected by a call to SSGET. After you are
positioned inside a list, however, you can use ZSPI-TKN-NEXTCODE to exit the list by
requesting the next token code after the ZSPI-TKN-ENDLIST token.

For both ZSPI-TKN-NEXTCODE and ZSPI-TKN-NEXTTOKEN, unlike a regular
SSGET call to get a particular token, the subsystem ID is an output parameter only;
you merely provide a variable in which SSGET will return the subsystem ID that
qualifies the token code. If you do not supply the subsystem ID parameter, and the
subsystem ID associated with the next token code is not the same as the default
subsystem ID, a “missing parameter” error is returned. Therefore, you should always
supply the subsystem ID parameter when calling SSGET with ZSPI-TKN-NEXTCODE
and ZSPI-TKN-NEXTTOKEN unless, for some special reason, you are certain that all
tokens the program could encounter are qualified by the default subsystem ID. The
subsystem ID returned always has a version field of zero (null).

The identifying-code part of each token is always stored in the SPI buffer as a token
code, even for extensible structured tokens. The token code for an extensible
structured token consists of a token type that identifies the token value as a variable-
length structure (ZSPI-TYP-STRUCT) and the token number from the corresponding
token map. When a program scans the buffer using SSGET with ZSPI-TKN-
NEXTCODE or ZSPI-TKN-NEXTTOKEN, it retrieves this token code, not the token
map. After the call with ZSPI-TKN-NEXTCODE or ZSPI-TKN-NEXTTOKEN, your
application can extract the value of the structure in either of two ways:

 If you are writing a requester using a structure declaration supplied by the
subsystem (which can differ from the version of that structure that you are using),
use the token number from the retrieved token code in a CASE statement or
similar construct. The CASE statement should select a section of code that calls
SSGET specifying the token map that corresponds to the token number.

 If you are coding an interpreter, debugger, text formatter, or other program that
does not use subsystem-supplied structure declarations and thus does not have
token maps available, obtain the exact token value from the buffer by passing the
retrieved token code to SSGET. The token value returned contains the length word
from the token map, followed by all the structure fields that were actually submitted
with SSPUT.
SPI Programming Manual—427506-007
5-3

General SPI Programming Guidelines Positioning the Buffer Pointers
Positioning the Buffer Pointers

Whenever SSGET retrieves a token from the data portion of the buffer, it starts at a
given position and scans the buffer until it finds the appropriate token. The SSGET
procedure maintains pointers in the SPI message header to keep track of positioning in
the buffer. As your program scans the buffer with SSGET, these pointers are
automatically updated. Special token codes can be passed to SSGET and SSPUT to
get or change the values of the pointers. SSGET uses four pointers: the current-token
pointer, the next-token pointer, the last-put-token pointer, and the current list pointer.

The current-token pointer contains the location of the last token selected with SSGET.
SSINIT sets the current -token pointer to the beginning of the buffer (immediately
following the header). Thereafter, the current-token pointer is affected implicitly by calls
to SSGET and SSMOVE and explicitly by calls to SSPUT with the special token codes
ZSPI-TKN-POSITION, ZSPI-TKN-INITIAL-POSITION, and ZSPI-TKN-RESET-
BUFFER. Other calls to SSPUT do not affect the current-token pointer.

The next-token pointer normally contains the position of the token immediately
following the current position. It points to the token that will be extracted next when
SSGET scans the buffer using the special operations ZSPI-TKN-NEXTCODE or ZSPI-
TKN-NEXTTOKEN.

The current-list pointer always points to the currently selected list, if any; if no list is
currently selected, this pointer is set to null. SPI uses the current and next pointers to
determine the starting point of a scan when SSGET is called with an index value of
zero. Positioning with lists is described later in this section.

Selecting a header token or an attribute of the current token does not change the
current-token pointer or the next-token pointer.

The special SSGET operation ZSPI-TKN-POSITION is available to retrieve the value
of the current position. A corresponding SSPUT special operation, also called ZSPI-
TKN-POSITION, restores a position previously saved using SSGET.

A position (ZSPI-TKN-POSITION) returned by SSGET remains valid until the buffer
involved is modified with the SSPUT operation ZSPI-TKN-DELETE or ZSPI-TKN-
DATA-FLUSH (described later in this section) or until a call to SSMOVE replaces a
token in the buffer. If the contents of the buffer are moved to another buffer with
SSMOVE, the position, address, or offset is still valid when used with the original
buffer, but is not valid for use with the target buffer of the SSMOVE.

When an SPI buffer is reset with SSPUT, there is no current list, and both the current
and next pointers indicate a point just prior to the first token that is not a header token:

current + next
 |
 v
 * <token> <token> <list> <list> <token>

A similar position exists at the beginning of every list.
SPI Programming Manual—427506-007
5-4

General SPI Programming Guidelines Working With Lists
Working With Lists

SPI defines four types of lists, as described in Lists on page 2-19. Every list starts with
a list token corresponding to the type of list (ZSPI-TKN-LIST, ZSPI-TKN-DATALIST,
ZSPI-TKN-SEGLIST, or ZSPI-TKN-ERRLIST) and ends with ZSPI-TKN-ENDLIST. You
can think of the list token and the end-list token as analogous to left and right
parentheses. With the exception of the ZSPI-TKN-NEXTTOKEN special operation,
SSGET only accesses tokens in a list if SSGET is first called to retrieve the list token
that marks the beginning of the list. SSGET retrieves tokens from lists as follows:

 To extract tokens from a list by name, a program must first select the list by calling
SSGET to get the list token (ZSPI-TKN-DATALIST, ZSPI-TKN-ERRLIST, ZSPI-
TKN-SEGLIST, or ZSPI-TKN-LIST) that begins the list. This call sets the current-
token pointer and the next-token pointer to the start of the selected list and lets
subsequent calls to SSGET get tokens within the list.

 After a list has been selected, SSGET cannot find tokens that are outside the list
(except with the special operation ZSPI-TKN-NEXTTOKEN, described later in this
section). Your program can exit the list by calling SSGET to get the end-list token,
ZSPI-TKN-ENDLIST. This call exits the list and sets the current position to the list
token that begins the list.

 Within a list, the default subsystem ID is the subsystem ID that qualifies the list
token.

 The SSMOVE procedure can copy an entire list in a single call. To copy a list, your
program simply specifies the token code that marks the beginning of the list (the
list token) in the SSMOVE call.

Only lists supported by NonStop Kernel subsystems (data lists, segment lists, and error
lists) are used in responses. However, subsystems you write can return lists in
responses and might define a special-purpose list (using ZSPI-TKN-LIST) used in
requests.

This example shows how a program retrieves tokens from an SPI buffer that contains
nested lists. The sample buffer is a response buffer containing two data lists and an
error list; the error list is within the second data list. All tokens in the example are
simple tokens.

Assume a buffer containing:

<ZSPI-TKN-DATALIST>
 <TKN-A>
 <TKN-B>
 <ZSPI-TKN-RETCODE>
<ZSPI-TKN-ENDLIST>
<ZSPI-TKN-DATALIST>
 <ZSPI-TKN-ERRLIST>
 <ZSPI-TKN-ERROR>
 <TKN-INFO>
 <ZSPI-TKN-ENDLIST>
 <TKN-A>
SPI Programming Manual—427506-007
5-5

General SPI Programming Guidelines Checking for Null Values
 <TKN-B>
 <ZSPI-TKN-RETCODE>
<ZSPI-TKN-ENDLIST>
<ZSPI-TKN-CONTEXT>

When SSGET is first called to scan this buffer (with any token code other than ZSPI-
TKN-NEXTTOKEN), it sees only three tokens:

<ZSPI-TKN-DATALIST> <ZSPI-TKN-DATALIST> <ZSPI-TKN-CONTEXT>

The tokens inside the lists are not available until the list is selected. Calling SSGET
with a list token selects that list. After the first ZSPI-TKN-DATALIST is selected, the
buffer appears to contain:

<TKN-A> <TKN-B> <ZSPI-TKN-RETCODE>

Because the current context is a list, SSGET stops searching when it reaches the end-
list token. Selecting the end-list token with SSGET has the effect of returning to the
previous context (in this case, the topmost level) with the current-token pointer set to
the list ended by the end-list token.

If the program selects the next ZSPI-TKN-DATALIST, the buffer then appears to
contain:

<ZSPI-TKN-ERRLIST> <TKN-A> <TKN-B> <ZSPI-TKN-RETCODE>

The error list describes a warning that occurred on this response, so it is nested within
the data list for this response. If a program calls SSGET to select the error list, the
buffer then appears to contain:

<ZSPI-TKN-ERROR> <TKN-INFO>

At this point, the program can retrieve either ZSPI-TKN-ERROR or TKN-INFO, can
return to the data-list context by selecting ZSPI-TKN-ENDLIST, or can return to the
topmost context by calling ZSPI-TKN-INITIAL-POSITION with the token value ZSPI-
VAL-INITIAL-BUFFER.

Lists can be nested to any depth, but they are limited by the size of the buffer. A
segmented list is the only case in which a list is continued across more than one
message, but even in this case no list really spans messages, but is instead broken
into smaller lists.

Checking for Null Values

Your program might need to test a field of an extensible structured token (for instance,
in a response from a subsystem) to determine whether it has a null value. To perform
this test, declare a copy of the structure, initialize the copy with SSNULL, and then
compare the field in question with the corresponding field in the copy.

Deleting Tokens From a Buffer

A program can delete a specific token or a list from the buffer by using SSPUT with the
special operation ZSPI-TKN-DELETE. It can delete all tokens in the buffer located at
SPI Programming Manual—427506-007
5-6

General SPI Programming Guidelines Resetting the Buffer
and after the current position, including any tokens within lists, by using SSPUT with
the operation ZSPI-TKN-DATA-FLUSH.

These two operations are useful mostly to server programs in preparing response
messages. For instance, a subsystem preparing a response buffer with multiple
response records can ensure that there is space for the context token by putting a
dummy context token in the buffer, then deleting the dummy token when the buffer is
filled and substituting the actual context token if the response requires continuation.
Such a subsystem typically places response records in the buffer one token at a time
until it runs out of buffer space. When this occurs, the subsystem can call SSPUT with
ZSPI-TKN-DATA-FLUSH to flush all data from the buffer beginning at the current-token
position.

Resetting the Buffer

Before calling SSGET to retrieve any tokens from the data portion of an SPI buffer
received from another process, it is recommended that your program call SSPUT to
reset the buffer using the special operation ZSPI-TKN-RESET-BUFFER. This
operation performs three actions:

 It resets the maximum buffer length to the value specified in the call.

 It clears the last-error information to null values (equivalent to the action of ZSPI-
TKN-CLEARERR).

 It resets the current-token pointer to the beginning of the buffer (equivalent to the
action of ZSPI-TKN-INITIAL-POSITION with ZSPI-VAL-INITIAL-BUFFER).

If the maximum buffer length specified in the call is less than the actual number of
bytes used in the buffer as given in the header token ZSPI-TKN-USEDLEN, the
procedure returns ZSPI-ERR-NOSPACE. SPI still resets the maximum buffer length in
the SPI message header, causing subsequent SPI calls for that buffer to fail with error
ZSPI-ERR-INVBUF. This action enables a program to check for situations where data
is lost because its buffer is not large enough to hold the entire message.

Working With SSIDs

These two system procedures are available for use with the SPI procedures:

 TEXTTOSSID converts a character string that represents a subsystem ID to the
internal format used by SPI.

 SSIDTOTEXT converts the internal SPI format of a subsystem ID to a character
string representing the subsystem ID.

Examples of character strings that represent subsystem IDs are
“TANDEM.PATHWAY.C20” and “TANDEM.52.0.” The TEXTTOSSID and SSIDTOTEXT
procedures are described in the Guardian Procedure Calls Reference Manual.
SPI Programming Manual—427506-007
5-7

General SPI Programming Guidelines Writing High-Level Procedures
Writing High-Level Procedures

The SPI procedures provide basic functionality for building and decoding SPI buffers. If
your application performs some commands frequently, you might want to simplify your
programming task by writing high-level procedures that themselves call on the SPI
procedures.

High-level procedures you write can provide some of the parameters needed by the
SPI procedures, do error checking and recovery, format SPI buffers for commonly
needed commands in one procedure call, or even both format and send commonly
needed commands in a single call.

In deciding whether to write your own high-level procedures, and in determining what
functions they perform if you decide to write them, consider the tradeoff between ease
of programming and flexibility. High-level procedures are most likely to be useful if your
application performs the same, or very similar, complex SPI buffer operations
repeatedly.

As part of EMS, HP provides two sets of high-level procedures for use in formatting
and decoding event-message buffers. For more information about these procedures,
see the EMS Manual.

Guidelines for SPI Requesters
This overview shows what your application must do to send commands to a NonStop
Kernel subsystem and process the responses:

1. Start the appropriate management process for the subsystem, if this process is not
already running.

2. Open the subsystem manager process and do whatever else is needed to
establish communication with it, such as sending the startup message if you are
programming in TAL.

3. Initialize and build the command buffer using the SPI procedures.

4. Send the command to the subsystem.

5. Receive the response from the subsystem.

6. Extract response information from the response buffer using the SPI procedures.

7. Take any appropriate action. If necessary, go back to step 3 to build another
command buffer and repeat the cycle.

8. Close the management process.

9. Stop the management process, if necessary.
SPI Programming Manual—427506-007
5-8

General SPI Programming Guidelines Starting the Management Process
Starting the Management Process

Some subsystem server processes can be started through SYSGEN or by an operator
before the application is run; some can be explicitly started by the application using the
NEWPROCESS or PROCESS_CREATE_ procedure; and some can be started either
way. How the server can be started and in what form it is run depend on the subsystem
and, in some cases, on decisions made at your installation. Some subsystems have
processes that should be run as permanent servers under specific process names, to
be shared by more than one process. Running the management process as a
permanent server saves each requester the overhead (significant in TAL) of starting
the process each time it needs to use it. Using a permanent server can also be
advantageous if you are using the Safeguard software to implement security
restrictions on access to the subsystem.

For some subsystems, the requester can either start a copy of the server for itself or
use a shared copy. Some servers that permit this choice let you tell the server whether
it should stop when its last requester closes it. For NonStop Kernel subsystem servers
that provide such control, you supply this information to the server by giving the
appropriate value to the AUTOSTOP parameter when you start the server process.

You include this parameter in the param-string part of the RUN command to start
the server, or in the corresponding parameter-string part of the startup message your
application sends to the server process immediately after it has started the new
process by calling the NEWPROCESS or PROCESS_CREATE_ procedure. (For
information about the startup message, see the Guardian Programmer’s Guide.) The
AUTOSTOP parameter is an ASCII string of this form:

 [HRS]
AUTOSTOP time [MINS]
 [SECS]

where HRS, MINS, or SECS is the unit of time used, and time is an integer whose
range is -1 to 9999 for MINS or SECS or -1 to 999 for HRS. If no time unit is specified,
SECS is implied.

Specifying AUTOSTOP with a time greater than 0 directs the server to wait the
interval specified by time after its last requester has closed it before stopping itself.
The server accepts new opens during this interval, and if a requester opens it before
the interval expires, the timing starts fresh the next time its last requester closes it.

Specifying AUTOSTOP with a time of -1 directs the server to wait indefinitely (not stop
itself). You should generally specify this value for a permanent server.

Specifying AUTOSTOP with a time of 0, or not specifying AUTOSTOP at all for a
subsystem server that implements it, directs the server to stop immediately when its
last requester closes it.

For more information about starting the management process for a particular
subsystem, see the appropriate management programming manual.
SPI Programming Manual—427506-007
5-9

General SPI Programming Guidelines Opening the Management Process
Opening the Management Process

Your application has complete responsibility for establishing contact with the
subsystem, sending and receiving the messages, and terminating contact. How your
application performs these tasks depends on the subsystem and the programming
language you are using. Usually, communication with the subsystem involves the file
system—either directly by calling the file-system procedures from TAL, or indirectly by
using COBOL verbs, TACL built-ins, or C interface declarations. C programs also can
use the alternate-model I/O routines. The discussions in this section assume the use of
the file system.

Process-Name Qualifier for SPI

Your application must establish communication by opening the server with a process
name of the form:

$server-process-name.#ZSPI

The qualifier #ZSPI tells the server that the requester will be sending and receiving
messages in SPI format.

Certain rules for establishing communication depend on the particular management
process. These rules include which process to open, how many opens are allowed per
process and per opener, and considerations for remote use and security. For these
rules, see the appropriate subsystem management programming manual. The
programming language can also impose special considerations; for these
considerations, see the language-specific section of this manual and to the specific
programming-language manual.

Checking for File-System Errors

Your application should check for the usual file-system errors that might occur on
attempts to open a server process. These paragraphs provide causes and corrective
actions that apply specifically to programs using SPI.

For general information about other file-system errors, see the Guardian Procedure
Errors and Messages Manual.

Error 11 or 14: File or Device Does Not Exist

The management process rejected an open attempt because it did not recognize the
process-name qualifier used. Either the qualifier name given was not #ZSPI, or the
management process or subsystem does not support a programmatic command
interface based on SPI.

If you used a qualifier other than #ZSPI, use #ZSPI. If you used #ZSPI and still got this
error, specify the correct management process. If the subsystem does not support SPI,
use whatever other interface is available for this subsystem.
SPI Programming Manual—427506-007
5-10

General SPI Programming Guidelines Preparing the Command Buffer
Error 16: File Number Has Not Been Opened

The management process rejected an open attempt because it had not yet completed
its own initialization when it received the open request. Try the open again later.

Error 17: Error on Backup Open

The process rejected a backup open attempt because there was no matching primary
open; because the parameters for the backup open did not match those of the primary
open; or because the primary process was not running.

Open the process by name rather than by cpu,pin. If opening by name is not feasible,
open the primary process first, use matching parameters for the primary and backup
opens, and check that the primary process is running.

Error 28: Sync Depth or Nowait Depth Limit Exceeded

The process rejected an open attempt because it could not accommodate the sync
depth or nowait depth requested by the opener. Check for program logic errors. If there
are no logic errors, reduce the sync depth or nowait depth.

Error 48: Security Violation

The process rejected an open attempt because the requester did not have the proper
security to communicate with the process. One reason for this error could be that the
application attempted to open an HP data-communications subsystem process for SPI
communication. In this case, open an SCP process instead, as described in the SPI
Common Extensions Manual.

Preparing the Command Buffer

Your application must allocate a buffer for communicating with the subsystem. The
application uses the SPI procedures to initialize this buffer, put information into it, and
extract information from it when it is returned as a response, as described in Section 3,
The SPI Procedures.

Each NonStop Kernel subsystem specifies a recommended buffer size that is large
enough to satisfy command and response requirements for all the subsystem’s
commands. Some subsystems specify different recommended buffer sizes for different
commands. You should declare your buffer to be at least as large as the buffer size
recommended by the subsystem for the command you are sending.

Your application can allocate the buffer dynamically. At any time between calls to the
SPI procedures, your application can make copies of the buffer or move it to a different
data location in either the data area or an extended segment. An application should
keep a copy of each command buffer it sends in case retries are needed; it also must
keep a copy to resend if the subsystem can return its response information in more
than one response message.
SPI Programming Manual—427506-007
5-11

General SPI Programming Guidelines Sending the Command
After you have allocated the buffer, use the SPI procedures to initialize it and add
tokens containing the information for your command, as described in Section 3, The
SPI Procedures.

Sending the Command

After it has established communication with the management process, your application
can use any standard mechanism for sending and receiving messages. A TAL program
generally uses the file-system procedure WRITEREAD, and can use AWAITIO (if
desired) to perform timed or nowait I/O. A COBOL program normally uses the standard
verb READ WITH PROMPT. A TACL program generally uses the #APPENDV and
#EXTRACTV built-in functions. A C program uses the tal interface declaration or
alternate-model I/O. The language-specific sections of this manual give more
information about using these languages to send and receive messages encoded as
SPI buffers.

The language features just mentioned are recommended for most applications. In
some specialized applications, however, it might instead be desirable to use a disk-
based buffering scheme or other means. This manual does not go into detail about
such alternative ways to send and receive messages, which apply only to
communication with subsystems not written by HP.

When sending an SPI message to another process, you need to send only the used
portion of the buffer. Your application can obtain the length of the used portion using
the ZSPI-TKN-USEDLEN special SSGET operation. For details, see Section 3, The
SPI Procedures.

Receiving the Response

When your application receives a response message, it must first check for file errors
and reset the buffer. These actions ensure that your command was accepted and that
a valid response was returned. Otherwise, your application might attempt to extract
invalid information.

The first step is to check for file-system errors. The second step is to reset the buffer;
among other things, this operation ensures that your buffer was long enough to contain
the response. The third step is to check for errors in the response buffer.

Checking for File-System Errors

Your application should first check for the usual file-system errors that might occur on
any WRITEREAD call from a requester to a server, plus a few file-system errors that
have special meanings for SPI. These paragraphs provide causes and corrective
actions that apply specifically to programs using SPI.

For information about other file-system errors, see the Guardian Procedure Errors and
Messages Manual.
SPI Programming Manual—427506-007
5-12

General SPI Programming Guidelines Receiving the Response
Error 2: Request Not an SPI Buffer

The process rejected a message because the requester had it open for SPI
commands, but the command was not a valid SPI buffer. For instance, the first word of
the message did not contain -28, or the subsystem received an event message when it
expected a command. Check that the command is a properly formatted SPI buffer.

Error 60: Process Does Not Have Server Open

The management process rejected an SPI command because the requester process
did not have the management process open. The target process might have been
restarted since the requester opened it. Close the management process and reopen it.

Resetting the Buffer

After checking for file-system errors, your application should reset the response buffer.
To do this, use the special SSPUT operation ZSPI-TKN-RESET-BUFFER described in
Section 3, The SPI Procedures. This operation resets the positioning pointers used to
extract tokens from the buffer, clears the last SPI error reported in operating on the
buffer, and changes the buffer-length field in the buffer to the length declared by your
application. The buffer length declared by your application can be, and usually is,
different from the buffer length declared by the server.

If your application’s buffer length specified to the reset-buffer operation is less than the
length of the response (the used length of the buffer), your own data following the
buffer is protected, but the excess information at the end of the response is lost. This
situation is sometimes called a “short read.” In this case, SPI returns a “buffer full” error
(SPI error -5), and subsequent calls to SPI procedures for that buffer returns an “invalid
buffer” error (SPI error -1). If error -5 results from the reset-buffer operation, declare a
buffer at least as large as the size recommended by the subsystem.

Resetting the buffer also protects against problems that can occur if your application’s
buffer is shorter than the server’s buffer. If you do not reset the buffer, your own data
following the buffer might be overwritten as you extract tokens from the buffer, even if
the reply’s used length is short enough and no response data is lost. (SSGET calls are
not guaranteed not to change the buffer or increase its size.)

Checking the Response Buffer for Errors and Warnings

NonStop Kernel subsystems report most command errors and command warnings in
the form of tokens in the response buffer, rather than as file-system errors. An error is
a condition that causes the command to fail. A warning is a less serious condition that
can be significant to the application, but does not cause the command to fail. Errors
and warnings can be present in the response even if the file-system error value is zero.
After checking for file-system errors and resetting the buffer, your application should
check the return token and (optionally) check any error lists. For further information,
see Errors and Warnings on page 2-47.
SPI Programming Manual—427506-007
5-13

General SPI Programming Guidelines Taking Action Based on the Response
Your application might be interested only in whether the command succeeded or failed,
and perhaps in a limited amount of associated information. In this case, simply check
the value of the return token and ignore any error lists. Some applications, however,
might want full information about multiple errors and warnings and pass-through errors.
The structure of error lists lets these applications retrieve more complete error
information in an organized way, focusing on one error at a time.

For each response record, your application should always:

1. Test the value of the return code token ZSPI-TKN-RETCODE.

2. Scan the response message for error lists.

If the return code is zero, the operation completed successfully, although warnings
might have occurred. If the return code is nonzero, the operation failed, and the value
of the return code identifies the error (or one of the errors, if there were more than one)
that prevented completion of the command. When this happens, additional information
about the error is contained in an error list that contains the same error number (in
ZSPI-TKN-ERROR).

Taking Action Based on the Response

After performing the checks just described, your application can read the other tokens
in the response and take whatever actions are appropriate. Such actions often include
sending other commands.

SPI requesters are expected to be tolerant of extraneous tokens in responses. Future
versions of NonStop Kernel subsystems might return newly defined tokens containing
additional information, and subsystems you write can do the same.

Canceling Commands

Requesters can use the file-system CANCEL or CANCELREQ procedure to cancel
requests that they have issued to a server. The file system does CANCEL operations
automatically in some cases. For instance, any operations outstanding on a file when it
is closed are canceled. In addition, if an AWAITIO operation is issued for a specific file
with a nonzero time limit and the time limit expires without a completion, the oldest
operation outstanding on that file is canceled.

If a message sent to a subsystem is canceled before the subsystem receives it, the
subsystem does not receive the message. If the subsystem has already received the
message, the subsystem might perform the operation (whether it does so depends on
the subsystem), but the file system discards any response.

Closing the Management Process

When your application is finished communicating with the subsystem, it should close
the management process in whatever way is appropriate to the method used to open
the process.
SPI Programming Manual—427506-007
5-14

General SPI Programming Guidelines Stopping the Management Process
Stopping the Management Process

Some subsystems have a special command to stop the management process
explicitly. Others stop this process automatically. Still others determine how they will
stop by reading the AUTOSTOP parameter sent as part of the startup message (see
Starting the Management Process on page 5-9). For details, see the individual
subsystem management programming manual.

Maintaining Compatibility

For compatibility with future versions of HP software, your requester should:

 Declare SPI buffers at least as large as the subsystems’ recommended sizes.

 Tolerate unrecognized tokens in responses. (The simplest way to do that is to get
tokens only by name and avoid using NEXTCODE and NEXTTOKEN.)

 Avoid beginning any of your own declared names with Z.

 Call the SSNULL procedure to initialize the values of all extensible structured
tokens.

 After calling SSNULL for each extensible structured token, set only token fields
that you use.

 If your requester must communicate with several different versions of a subsystem,
including versions that are older than your requester, avoid sending any command,
token, or extensible-structured-token field that a subsystem does not support. If
necessary, use the GETVERSION command to check the server version and tailor
your command to it.

Responses to the GETVERSION command issued by a subsystem that has an
SPR must contain one instance of ZSPI-TKN-IPM-ID for each change to the SPI
interface for the subsystem. If more than one change affects the same token, the
ZSPI-TKN-IPM-ID for only the most recent change is returned. A subsystem might
also return a ZSPI-TKN-IPM-ID for a change that does not affect the SPI interface.

NonStop Kernel subsystems report errors if they receive commands, tokens, or
extensible-structured-token fields that they do not recognize. These errors are
described in the management programming manuals for the individual subsystems.

Summary of Requester Role

An SPI requester must:

 Use subsystem-supplied definition files.

 Declare a buffer at least as large as that recommended by the subsystem.

 Use SSNULL to initialize all extensible structured tokens.
SPI Programming Manual—427506-007
5-15

General SPI Programming Guidelines Guidelines for SPI Servers
 Initialize every request with the SSID provided by the subsystem. Do not reuse a
response message without initializing it—some header values set by the server are
not appropriate for the request.

 Avoid defining data items with names beginning with Z.

 Tolerate unrecognized tokens in a response.

 Ignore responses that contain the “empty response” return code.

 Use only the absence of a context token as an indicator that a response message
completes a response.

 Be aware that the context token can vary in size—copy it directly from the
response to the new request.

 Supply the same read count in a WRITEREAD call as was used for the SSINIT
buffer length.

 Always call SSPUT with the special operation code ZSPI-TKN-RESET-BUFFER
after receiving a response message.

Guidelines for SPI Servers
Review these guidelines if you are going to write an SPI interface to a subsystem.

Recommending a Buffer Size

SPI servers should declare a recommended buffer size. The value selected should be
large enough to guarantee that a requester that allocates a buffer of that size can
accommodate all server-supported commands and associated responses. The value
should be large enough to satisfy command and response requirements for at least as
long as you intend to support the current version of the server. Make this value
available to requesters by including a CONSTANT declaration in the server DDL. All
NonStop Kernel subsystems define the recommended buffer size with a name of the
form subsys-VAL-BUFLEN.

Calculating a Recommended Buffer Size

You can approximate the minimum required buffer size:

approx size = hdr + (4 * tokens)
 + (12 * ssid-qual-tokens)
 + sum-value-size
 + (2 * lists)
 + cushion

Note. TACL has an absolute maximum I/O buffer size of 4096 bytes.
SPI Programming Manual—427506-007
5-16

General SPI Programming Guidelines Defining Simple Tokens
where

If the resulting recommended buffer size is large because of long commands or
responses that are not likely to be issued or received by some requesters, you can
recommend additional buffer sizes. Each requester can then choose the value that is
appropriate for its needs.

For each recommended buffer size you define, provide a corresponding declaration for
a buffer of that size:

subsys

is the abbreviation for your server.

buffer-size

is the number of bytes needed to make the buffer the recommended length. You
can use the constant name you define for the corresponding recommended length
(for instance, subsys-VAL-BUFLEN).

Defining Simple Tokens

Tokens that are fixed structures should be used primarily for items that are almost as
primitive as simple data types—such as the internal file name or SPI subsystem ID,

hdr is the size of the SPI message header, defined by SPI as ZSPI-
VAL-HDRSIZE.

tokens is the total number of tokens in the longest command or response
message defined by the server. This value includes list tokens
(ZSPI-TKN-LIST, -DATALIST, -SEGLIST, -ENDLIST). A token
code is 4 bytes long.

ssid-qual-tokens is the total number of tokens that are qualified by an SSID. The
SSID adds 12 bytes to the length of a token code.

sum-value-size is the sum of the sizes of all of the token values in the message,
including the values of comment (ZSPI-TKN-COMMENT) and
context (ZSPI-TKN-CONTEXT) tokens.

lists is the number of lists in the message. Each pair of list and end-list
tokens requires 2 additional bytes beyond the 8 bytes required for
the 2 token codes.

cushion is a generous safety margin to cover future enhancements.

def subsys-DDL-MSG-BUFFER.
 02 Z-MSGCODE type ZSPI-DDL-INT.
 02 Z-BUFLEN type ZSPI-DDL-UINT.
 02 Z-OCCURS type ZSPI-DDL-UINT.
 02 Z-FILLER type ZSPI-DDL-BYTE
 occurs 0 to buffer-size times
 depending on Z-OCCURS.
 end
SPI Programming Manual—427506-007
5-17

General SPI Programming Guidelines Defining Simple Tokens
each of which SPI defines as a fixed structure. It is recommended that most structured
tokens defined for a subsystem be extensible structured tokens.

SPI uses a token length of zero in some tokens—such as the tokens that begin and
end lists—to indicate that these tokens have no token values. However, it is
recommended that tokens you define always have a value. If there are only two
choices, the value can be of a Boolean or enumerated type.

Each token you define should have a unique token number. To avoid conflicts with
token numbers defined by software for the NonStop server, always use token numbers
in the range 1 through 9998.

Your subsystem can define its own private token types, using names of the form
subsys-TYP-name and values built from the SPI standard token data types and
appropriate token lengths. For example, an ATM-management subsystem might define
an ATM name as a simple character-string token of a given size, and an ATM location
as a fixed structure containing three character strings identifying the area, city, and
branch. The TOKEN-TYPE statements for these types might resemble:

TOKEN-TYPE ATMX-TYP-ATMNAME VALUE IS ZSPI-TDT-CHAR
 DEF IS ATMX-DDL-ATMNAME.
TOKEN-TYPE ATMX-TYP-ATMLOC VALUE IS ZSPI-TDT-STRUCT
 DEF IS ATMX-DDL-ATMLOC.

Preceding these TOKEN-TYPE definitions, the subsystem would need to include DDL
DEF statements for ATMX-DDL-ATMNAME and ATMX-DDL-ATMLOC. These could be
similar to:

DEF ATMX-DDL-ATMNAME.
 02 Z-C PIC X(8) SPI-NULL " ".
 02 Z-S REDEFINES Z-C.
 03 Z-I TYPE BINARY 16 OCCURS 4 TIMES.
 02 Z-B REDEFINES Z-C PIC X OCCURS 8 TIMES.
END

DEF ATMX-DDL-ATMLOC.
 02 X-AREA TYPE ZSPI-DDL-CHAR16.
 02 X-CITY TYPE ZSPI-DDL-CHAR16.
 02 X-BRANCH TYPE ZSPI-DDL-CHAR16.
END
SPI Programming Manual—427506-007
5-18

General SPI Programming Guidelines Defining Extensible Structured Tokens
Defining Extensible Structured Tokens

Some restrictions on what can be done with extensible structured tokens are:

 Any item that is inherently of variable length cannot be included as a field of an
extensible structured token. Although an extensible structured token can grow from
release to release, in any given release it must have a fixed size. You can define
such an item as a fixed-length field large enough for the maximum size plus a
separate field for the length, or you can define it as a simple token by itself.

 An extensible structured token can be extended only by adding fields to the end of
the structure. Therefore, the grouping of the fields within an extensible structured
token must not be important to the operation of the interface. If the interface
defines any partitioning of the fields within an extensible structured token, no new
fields can be added unless they fall into the category of the group of fields that was
at the end of the original structure.

 REDEFINES is permitted within the structure definition (DEF) for an extensible
structured token, but redefined fields have the same null value as the fields they
overlay. (See Null Values on page 5-20.)

Subsystems should use extensible structured tokens to gather related parameters of a
command or response to reduce the number of procedure calls needed to construct a
message or interpret it. Generally, an extensible structured token should be used with
just a single command. Even if all the fields of such a structure are used by several
commands, that might not continue to be true as extensions are added in later versions
of the interface. Consider this when deciding whether to share a structure among
commands.

If an extensible structured token is used with a number of commands, when an
extension is made to the corresponding structure, look at each of the commands that
accept that token and decide how each command should treat the new fields. If a
command does not have a use for a new field, about the only options that maintain
compatibility with earlier requesters are ignoring the new field or insisting that it be null.
Insisting that a new field be null ensures that the command can be extended later to
use the value in the field without changing the behavior of a program that was
implemented since the time the new field was added.

Generally, if a command takes or returns attributes of an object, define all those
attributes as a single extensible structure, although there might be circumstances for
which it is reasonable to organize them differently. For instance, an extensible structure
must be a fixed size in any given release, so it might be better to put an attribute of
variable length in a token of its own rather than reserving a fixed field of maximum size
plus a length field for it. Similar advice applies to a repeating attribute or a group of
attributes that are not made into a subsidiary object type.

Beware of dividing attributes of a single object into a number of structures based on
some characteristic that might change in the future. For instance, it is not a good idea
to make one structure for alterable attributes and another for the remaining attributes
with the idea of using the first as the parameter to ALTER and using both as the
SPI Programming Manual—427506-007
5-19

General SPI Programming Guidelines Defining Extensible Structured Tokens
parameters to ADD. If a change is made that makes a formerly unalterable attribute
alterable, problems arise. You can not move the field from the second structure to the
first, because removing a field is an incompatible change. If you leave the field where it
is, your partitioning of fields is no longer consistent.

Do not place other command parameters or results in the structures that contain object
attributes. If a group of parameters are related to each other, they can be placed
together in an extensible structured token. Unrelated parameters should be kept
separate. No firm rule explains what constitutes enough of a relationship to justify
placing parameters in the same structure. The fact that the parameters go with a given
command/object-type pair is reasonable grounds for grouping them, especially if there
is no desire to attempt grouping according to other criteria. If possible, take into
account future extensions of the interface and choose an approach to grouping that is
less likely to cause difficulties.

You can define single parameters either as simple tokens or as extensible structured
tokens that have only one field. The latter choice is recommended if there is some
chance that command extensions will add parameters that logically should be grouped
with the initial solitary parameter. Otherwise, we recommend using simple tokens.

Null Values

A requester might not always have a definite value to supply for each field of a
command parameter (or set of parameters) that is an extensible structured token. To
indicate the absence of a value for a field, the server must define a null value for the
field. SPI requires a null value to be defined for every field of an extensible structured
token.

An SPI null value in DDL is a single-byte value, defined either as a character or as an
integer from 0 to 255. The SPI procedures form the null value of each field by
concatenating the given byte value with itself as many times as necessary to fill the
data field. Because of the repetition to fill the field, the null value of the field is, in
general, not the value specified to DDL. For example, an SPI null value of 1 for a 16-bit
field gives a null value of 257 (1 << 8 + 1). Because the null values are generated by
repetition of a given byte value, only some possible values of the field can be null
values. For example, a 16-bit integer field cannot have 1 as its null value, because the
value 1 is not formed by repeating the same bit pattern in both bytes of the field.

If a field is one whose presence or absence must be detectable, the null value for the
field must be a value that is not in the legitimate range of values for the field. Fields
conveying attribute values for an ALTER command are a common example of this.

To choose appropriate null values for the fields of your structures:

1. Examine what valid, meaningful values each field can have or might have in the
future.

2. Choose as your null value some value that consists of the same byte value
repeated in every byte of the field and (if the presence or absence of the field must
be detectable) is not a valid value for the field. (If this field is never expected to
SPI Programming Manual—427506-007
5-20

General SPI Programming Guidelines Defining Extensible Structured Tokens
have a negative value, 255 is a good choice; a numeric field of any length, with this
value in every byte, is always -1.)

In choosing a null value for a field, consider future possible valid values for the field
and avoid making one of those values the null value; otherwise, changes to your
subsystem might make it incompatible with existing applications.

Fields for which it is not necessary to distinguish between being absent and having a
default value can use the default value as the null value. Be cautious about doing this
because if it later becomes necessary to distinguish the cases, changing the null value
of a field introduces incompatibilities.

The data-type definitions provided by SPI for use in declaring the types of fields in
token definitions contain assumed null-value definitions. If desired, your subsystem can
explicitly override these assumptions.

The token map for an extensible structured token defines the null value for each field.
The SPI SSNULL procedure places null values in the fields of a structure, using the
token map for reference. When a program assigns a value to a field, that value
replaces the null value.

Is-Present Fields

Sometimes every possible value of a field is a legitimate one, leaving no value
available to serve as the null value. If this is true, and your subsystem needs to
distinguish whether the field was assigned a value, there are two possible solutions:

 One solution is to choose a larger size for the field than otherwise necessary. This
makes many new values possible, one of which can serve as the null value. For
example, if a field is a 16-bit integer and all 16-bit values are valid for that field, the
field could be defined as a 32-bit integer.

 The other solution is to include in the structure an extra field, called an is-present
field, whose only purpose is to indicate whether the field in question should be
considered present. This extra field must be of a Boolean type. For consistency
and clarity, HP recommends that the name of the extra field include the words IS-
PRESENT. For example:

.

.
02 ZSIZE-IS-PRESENT type ZSPI-DDL-BOOLEAN.
02 ZSIZE type ZSPI-DDL-INT.
.
.

With this approach, the program building an SPI buffer must store the value TRUE
in the is-present field whenever it stores a value into the field associated with it.

The significance of an is-present field is not known to DDL, so DDL still insists that
there be a null value defined for the field associated with the is-present field. Any
value will do. When the version information for the structure is described in the
token-map declaration, the token-map field that is associated with the is-present
SPI Programming Manual—427506-007
5-21

General SPI Programming Guidelines Defining Extensible Structured Tokens
field must be described as NOVERSION to let SPI’s automatic determination of
maximum field version work properly.

The first approach has the advantage that no extra field is involved. The second has
the advantage that the data type of the field is what it naturally should be.

Reset Values

Your subsystem might also want to define a set of special values that, when specified
in structured-token fields representing the attributes for an ALTER command, direct the
subsystem to reset those attributes to their default values as defined for the object. The
Pathway subsystem uses this feature.

If you implement this feature, choose reset values that are different from the null values
but are, likewise, not meaningful values for the corresponding fields. However, if your
reset values are not legitimate values for the corresponding STRUCT fields in TACL,
applications coded in TACL must use the #SETBYTES built-in to move values into
those fields, as described in Section 8, SPI Programming in TACL.

As discussed in Section 2, SPI Concepts and Protocol, token maps let the SPI
procedures maintain compatibility between different versions of an extensible
structured token. To define an extensible structured token and its token map, you
specify the structure in a DEF statement, and then write a TOKEN-MAP statement that
references the DEF.

When writing the DDL DEF statements that specify the structures for your extensible
structured tokens, you specify the null value for each field in an SPI-NULL clause. For
fields with no corresponding SPI-NULL clause, DDL assigns the value 255 (a field with
all bits set).

The SSNULL procedure uses token maps to set a structure to its null values. SSPUT
uses token maps to set the maximum field version (ZSPI-TKN-MAX-FIELD-VERSION)
in the SPI message header for use in version compatibility checking. Finally, SSGET
uses token maps to truncate or pad the value in the buffer to match the value expected
by the caller.

The maximum field version in a token map is the most recent release version
associated with any of the fields defined in the map. When an application adds an
extensible structured token to a buffer, the SPI procedure SSPUT updates the
maximum field version in the message header, as necessary, so it reflects the most
recent version of any non-null field of any extensible structured token in the entire
buffer. (When the special SSPUT operation ZSPI-TKN-DATA-FLUSH or ZSPI-TKN-
DELETE has been performed on the buffer, the maximum field version can actually be
greater—that is, more recent—than the most recent field version still represented in the
buffer.)

The format of a token map is given in Appendix C, SPI Internal Structures. You should
only need this information for debugging.
SPI Programming Manual—427506-007
5-22

General SPI Programming Guidelines Coding Subsystem Definitions
Token Map

For extensible structured tokens, programs pass to the SPI procedures an extended
identifying code called a token map. A token map is a variable-length integer array.
The first two words of a token map have the same structure as a token code. All token
maps have a token data type of ZSPI-TDT-MAP, a token length of 255, and a token
number specified by the subsystem.

Most subsystems define a set of token maps. Names of token maps are of the form
subsys-MAP-name, where subsys is the four-character subsystem abbreviation and
name identifies the token.

Coding Subsystem Definitions

To produce your subsystem definitions:

1. Write them in DDL.

2. Run the DDL compiler to translate them into definitions in the programming
language you are using.

3. Include the appropriate language versions of the definitions in your subsystem
programs. Application programs that communicate with your subsystem must also
include the corresponding definition files. Because all the language versions of
each definition file are derived from the same DDL source, the programming
languages these applications use can be different from yours.

For consistency, the names in your DDL definitions should follow the same naming
conventions used by NonStop Kernel subsystems (see Naming Conventions on
page 2-11). Do not begin your own names (for definitions and for component fields of
structures) with uppercase or lowercase Z. Any names beginning with Z might be used
now or later by software for the NonStop server.

This discussion gives special considerations for using DDL to code definition files for a
subsystem. For syntax and general programming information for DDL, see the Data
Definition Language (DDL) Reference Manual.

Your subsystem should provide definitions for:

 One or more recommended buffer-size values

 Buffers of the recommended sizes

 The subsystem ID

 Command numbers for all commands

 Object-type numbers for all object types

 Token numbers for all tokens

 Error numbers for all errors

 Event numbers for all event messages
SPI Programming Manual—427506-007
5-23

General SPI Programming Guidelines Using the SPI Standard DDL Definitions
 Possible values for any enumerated-type tokens or fields

 Structure definitions for all extensible structured tokens

 Token codes for all simple tokens

 Token maps for all extensible structured tokens

You can also include any other definitions that might be of use to requester programs
sending commands to your subsystem.

Using the SPI Standard DDL Definitions

When beginning to code your definition files, print a copy of the ZSPIDEF.ZSPIDDL file
from the disk volume chosen by your site. The DDL definitions in this file provide a
starting point for your subsystem-specific definitions. Use these definitions or build on
them whenever possible. Assume that these definitions are known; do not repeat them
in your own definition files.

This file is also a useful guide in coding the DDL for your own definitions. For further
guidance, print the DDL definition files for one or more NonStop Kernel subsystems
(which have names of the form ZSPIDEF.subsysDDL). The SPI definition file includes
some types of declarations, such as token data types, that subsystems do not need to
provide. In addition, the subsystem definition files contain some other declarations—
such as command numbers, object-type numbers, and token maps— not included in
the SPI definition file.

The ZSPIDEF.ZSPIDDL file begins with structure declarations for some simple tokens.
For sample definitions for extensible structured tokens, see the DDL definition file for
one of the NonStop Kernel subsystems.

Token codes are declared using TOKEN-CODE statements. Token maps are declared
with TOKEN-MAP statements. The subsystem ID, the buffer, and structure definitions
are declared using DEF statements. All other items are simple constants, suited to
CONSTANT declarations. For the syntax of these DDL statements, see the Data
Definition Language (DDL) Reference Manual.

Suggestions on Data Representation

Each of the four programming languages that support SPI (TAL, C, COBOL, and
TACL) lacks support for certain data types. These guidelines minimize the problems
that might arise when applications written in these languages send commands to your
subsystem. These guidelines apply both to the data types of fields in structures and to
the data types of individual tokens:

 Signed 16-bit and 32-bit integers are valid in all four languages. However, signed
64-bit integers are valid only in TAL, COBOL, and TACL. C for NonStop systems
does not support signed 64-bit integers.

 Unless there is a good reason to do otherwise, pass unsigned 16-bit integers in 32-
bit signed integer fields, and pass 8-bit integers in signed 16-bit integer fields. This
SPI Programming Manual—427506-007
5-24

General SPI Programming Guidelines Suggestions on Data Representation
ensures that applications written in COBOL can accommodate the full range of
values of these integers.

 Do not use 32-bit floating point or 64-bit floating point values unless absolutely
necessary. These data types are not supported by COBOL or TACL.

 Do not use collections of bit flags, short integers, or short enumerated fields
packed into a word unless there is a good reason to do so. If at all possible, pass
this information in as many individual fields as necessary.

 Regarding the previous three guidelines, if the data in question is already used in
existing external interfaces to software for NonStop servers (such as system
procedures), and it seems likely that the application would find it advantageous to
be able to use the data in conjunction with those interfaces, that is a good reason
to keep the data in its original format. One example of such data is the PID.

 Do not use scale factors unless absolutely necessary.

 Represent all numeric values as binary values, not as strings of ASCII digits.

 Represent Boolean values as 16-bit signed integers. Use -1 for TRUE and 0 for
FALSE. Except for the null value and possibly a reset value, all other values should
be invalid.

 Represent enumerated values as 16-bit signed integers.

 Declare fields that are to contain ASCII strings like (for the example of an 8-
character field):

def subsys-DDL-CHARFIELD.
 02 Z-C pic x(8) null " ".
 02 Z-S redefines Z-C.
 03 Z-I type binary 16 occurs 4 times.
 02 Z-B redefines Z-C pic x occurs 8 times.
end

Some system procedures need word addresses for ASCII data. This declaration
ensures that such addresses are available. In addition, Enable ignores
REDEFINES clauses, taking only the first description of a field; Enform and TACL
also take the first description by default, but do permit use of REDEFINES if you
explicitly name the field. This form of declaration can thus be used correctly by
TAL, COBOL, TACL, Enform, and Enable.

 If you must declare an ASCII field that does not comply with the previous guideline,
this can cause trouble in TAL when the field is located above the 32K boundary.

 The SPI DDL definitions contain structures for a number of character-field sizes as
well as for all of the standard SPI data types. These definitions are suitable for use
in defining your own tokens or structures, and you are encouraged to use them.
For further descriptions, see Section 4, ZSPI Data Definitions.

If you have to define a character field with a number of subfields, the SPI
definitions might not be suitable. The SPI definitions force word alignment, so if
SPI Programming Manual—427506-007
5-25

General SPI Programming Guidelines Dividing Your Definition File Into Sections
any of your fields are of odd length, filler bytes might appear where you don’t want
them.

 In the TAL declarations, make arrays have a lower bound of zero.

 Represent time intervals in microsecond precision and stored in fields of the SPI
type ZSPI-DDL-TIMESTAMP.

Dividing Your Definition File Into Sections

Organize your definitions such that someone who wants to build a DDL dictionary
containing your subsystem’s definitions can simply ?SOURCE in your entire
subsysDDL file, and can compile your definitions into a dictionary already containing
the definitions for another subsystem.

One way to accomplish this is to set up a subvolume containing these two files:

-------------------- file subsysDDL -------------------
!
! subsystem name (release date)
!
! Depends on ZSPIDDL
!
?SECTION BUILDING-BLOCKS
building-block-only DEFS, that is, DEFs whose output a requester
program using the interface would have no need
of using
?SECTION REQUESTER-VISIBLE-1
DEFs the user of the interface needs to have
?SECTION REQUESTER-VISIBLE-2
constants, token codes, token maps, subsystem ID
?SECTION REQUESTER-VISIBLE-3
DEF declaring the buffer structure
------------------ end file subsysDDL -----------------

------------------- file subsysROOT -------------------
?DICT !
?SOURCE $SYSTEM.ZSPIDEF.ZSPIDDL
?SOURCE subsysDDL (BUILDING-BLOCKS)
?TAL subsysTAL!
?COBOL subsysCOB!
?C subsysC!
?TACL subsysTACL!
?SOURCE subsysDDL (REQUESTER-VISIBLE-1)
?SETSECTION CONSTANTS
?SOURCE subsysDDL (REQUESTER-VISIBLE-2)
?SETSECTION
?SOURCE subsysDDL (REQUESTER-VISIBLE-3)
----------------- end file subsysROOT -----------------

To generate the definition files, enter a command line such as:

DDL /IN subsysROOT, OUT $S/
SPI Programming Manual—427506-007
5-26

General SPI Programming Guidelines Version Compatibility
The names subsysROOT, BUILDING-BLOCKS, REQUESTER-VISIBLE-1,
REQUESTER-VISIBLE-2, and REQUESTER-VISIBLE-3 are just illustrative—you can
choose other names, because those names are not of interest to someone who wants
to use the subsysDDL file just to compile the definitions into a DDL dictionary. That
person just ?SOURCEs in the whole file without naming the sections individually.

Version Compatibility

It is useful to design your subsystem (server) so that when you make future
enhancements to it, older requesters that communicate with it continue to run:

1. Do not change the meaning of token codes, command numbers, object-type
numbers, error numbers, token values, and structure field values.

2. Token values and structure fields should not change size or data type.

3. The offset of fields from the beginning of a structure should not change.

4. Command numbers, object-type numbers, token codes, valid token values, and
valid structure field values should not be deleted.

5. New features can be defined by defining new command numbers, new object-type
numbers, new tokens, new values for existing command tokens, new values for
existing structure fields in command tokens, new fields at the end of extensible
structured tokens, or new fields replacing FILLER in extensible structured tokens.

6. New values of existing response tokens or of existing structure fields in response
tokens can be defined if the new values are returned only as the result of explicit
choice on the part of the requester to make use of optional new capabilities.

7. The size of a command message should not grow larger than the smallest size
accepted by any currently supported version of the server.

Estimate how much growth in command size your server will have to
accommodate during its supported life and make the server accept messages at
least that size.

8. Do not change the names of tokens, literals, structures, and other items declared
in the definition files.

9. To avoid naming conflicts with HP declarations in future RVUs, avoid using names
beginning with Z.

10. Unrecognized command numbers, object types, tokens, fields of structured tokens,
values of tokens, or values of fields of structured tokens should cause rejection of
the command.

11. Recognized, but unexpected, tokens (including duplicate tokens if there are more
than expected) should also cause rejection of the command.

12. If the field ZSPI-TKN-MAX-FIELD-VERSION contains a version greater than the
version of the server, your server should reject the command.
SPI Programming Manual—427506-007
5-27

General SPI Programming Guidelines Defining Objects
13. The size of a response message should not grow larger than the smallest size ever
given as the recommended buffer size.

When an interface is first designed, the recommended buffer size should factor in an
estimate of how much the response is likely to grow in the future. Allow a generous
amount, but keep the buffer size within reason. The recommended buffer size can be
changed in later RVUs, but such a change does not increase the size of the buffer in
programs that were compiled before the change; it is desirable that those programs
continue to run.

A server can always return its current version of the response as long as that response
(in single response mode) fits in the smallest buffer size that ever was recommended
for the interface. If a response grows too large to fit into an earlier recommended buffer
size, then, at least for requesters using an earlier buffer size, the server should check
the version in the subsystem ID supplied in the command and return a version of the
response that fits in and is compatible with the buffer. The response does not need to
be exactly what the earlier version of the server returned—the response need only fit in
the requester’s buffer and contain at least all the items that were defined in the earlier
version. The server need do this only for single-response mode or if the first response
does not fit in the buffer in multiple-response mode.

Suppose the requester’s version is 11, the server’s version is 12, and the
recommended buffer size at version 11 is too small to hold some of the version 12
responses. If the version 12 server has to send one of those longer responses to a
version 11 requester and the requester’s buffer happens to be long enough (it declared
a buffer longer than the recommended size), the server can return the version 12
response. If the buffer happens not to be long enough, the version 12 server should
return a response that is cut back to fit in the size available. The response does not
need to be exactly what version 11 of the server returned—the response version 12 of
the server returns to a requester of version 11 need only fit in the requester’s buffer
and contain at least all the items that were defined in version 11 of the server.

If desired, your server can do more in the way of adjusting responses to the version of
the requester.

Defining Objects

To determine the kinds of n objects to be defined for the programmatic interface, start
with the set of object types it would make sense to present to a user of a human
command interface for the subsystem. For each of these object types, list the attributes
needed to define an object of that type.

If an object type has attributes that can be repeated indefinitely, that can cause trouble.
For one thing, SPI commands must have some definite upper limit on their size. Two
simple ways to avoid problems in this case are:

 Impose an upper limit on the number of repetitions of the attributes. This approach
has its place, but often is not suitable.
SPI Programming Manual—427506-007
5-28

General SPI Programming Guidelines Subsystem ID
 Remove the attributes that can be repeated from the original object type and put
them in a new object type that is a subsidiary of the original object type, making
each repetition a separate instance of the subsidiary type. The name of an
instance of the subsidiary object type is generally one of the attributes of the
subsidiary object type concatenated with the name of the instance of the original
object type.

For example, the human command interface to the Pathway subsystem has an object
type known as a server class. The attributes of a server class include attributes of
assign messages that are sent to each process of a server class as the process is
started. There can be an indefinite number of assign messages for a given server
class. The Pathway programmatic interface has an object type called a server class,
which has all the nonrepeating attributes of the human-interface server class. It also
has a server-assign object type. The attributes of the server-assign object type
describe one assign message. The name of an object of the server-assign type is
formed by taking the name of the server-class object whose assign message is being
described and concatenating it with the logical name of the assign message.

If in the human interface a server-class object name SVR1 has two assign messages
named MAT-FILE and ITM-FILE, in the programmatic interface there would be a
server-class object named SVR1 and two server-assign objects named (SVR1, MAT-
FILE) and (SVR1, ITM-FILE).

When subsidiary object types exist, the server must recognize the relationship between
them and the main object type. It must prevent adding a subsidiary object for which
there is no matching main object, and deletion of a main object must automatically
delete all subsidiary objects related to it before deleting the main object itself.

Similar instances of repeating groups of information can arise when designing STATUS
or STATS commands. The same two approaches for resolving the problem apply to
those cases, too. This can result in subsidiary object types that are only used with the
STATUS or STATS command.

Subsystem ID

All HP software for DSM uses the standard subsystem ID format defined in Subsystem
IDs (SSIDs) on page 2-44. The owner ID field in this format lets you define a
subsystem ID that is unlikely to conflict with those of NonStop Kernel subsystems
provided by HP or subsystems provided by other vendors. For this field, choose an
eight-character string to identify your company or organization.

This name must start with an alphabetic character and must contain only alphabetic,
numeric, and hyphen characters, padded on the right with blanks; no embedded blanks
are allowed except at the end. The case of alphabetic characters is significant; for
example, “COMPANY” and “Company” are recognized as different names. To avoid
confusion, HP recommends that you define your owner ID with all alphabetic
characters in uppercase, as in the HP owner ID (“TANDEMbb”).
SPI Programming Manual—427506-007
5-29

General SPI Programming Guidelines Subsystem ID
Choose a value for the subsystem-number field. If your company is writing more than
one subsystem, this number should be unique for each subsystem.

Your version numbers need not have the letter-number format used by software for
NonStop servers. You can use any version numbering scheme representable with 16-
bit unsigned numbers.

Requester-Server Communication

These considerations apply to communication between your subsystem server and the
application requesters that send commands to it:

Server Startup

Servers that are started dynamically using NEWPROCESS or PROCESS_CREATE_
follow the standard startup message protocol. The server should follow the standard
practice of verifying that the startup message is from the process that created it. (You
can use the INITIALIZER procedure to do this verification automatically.)

For servers that can be started directly by the requester, keep in mind that a requester
written in TAL or C might not be passing along assign and param messages (because
this does not happen automatically in TAL or C). Carefully consider any plans to have
the server use assign or param information.

Identifying SPI Messages From Applications

Requesters that send SPI command messages to your subsystem do so by opening
your server with a process-name qualifier of #ZSPI, which then appears as the first
qualifier name in the interprocess OPEN message. Your server should expect all SPI
messages it receives to come through opens with this qualifier.

Receiving Commands and Sending Responses

In writing a subsystem, you are programming from a point of view different from that of
a management application. The application sends commands to the subsystem as SPI
buffers and processes the response buffers resulting from those commands. The
subsystem receives and processes command buffers and sends the appropriate
replies.

A server reads each SPI command message from its $RECEIVE file. To read the
message and reply to it, a TAL program ordinarily uses the file-system procedures
READUPDATE and REPLY directly; a C program uses the same procedures through

Note. When subsystems from a number of different suppliers are installed on a given system, there is a
potential for confusion and improper operation if two subsystems share the same owner and subsystem
number. Organizations developing subsystems should carefully select a Z-OWNER value that is unlikely
to be duplicated by other organizations developing subsystems. The company name is often a good
choice, but it might not always be suitable. Because HP does not maintain a registry of these names, HP
cannot guarantee that conflicts will not occur.
SPI Programming Manual—427506-007
5-30

General SPI Programming Guidelines Checking the Command Message for Validity
the tal interface declaration. A COBOL program normally uses READ and WRITE. A
TACL routine generally uses a loop with #INPUTV and #REPLYV.

After the server has received an SPI message, it can use the SPI procedures to get
command, object-type, and parameter information from the message buffer and put
context, status, and other response information into a response buffer.

Checking the Command Message for Validity

When your subsystem receives a command message, it should first check that the
message is a valid SPI command buffer:

1. Check that the byte count read from $RECEIVE is at least 6 bytes.

2. Check that the value of the first word of the buffer is -28.

3. Check that the buffer-length field, Z-BUFLEN, is greater than or equal to the used
length, ZSPI-TKN-USEDLEN.

4. Check that the header type, ZSPI-TKN-HDRTYPE, is equal to ZSPI-VAL-
CMDHDR, indicating that the buffer is a command buffer.

If any of the preceding tests fails, your subsystem should not attempt to send an SPI
response buffer but should return file-system error 2 to the requester.

The read count used by the requester should not affect your server’s response,
because detecting a short read (fewer bytes read than the number requested) is the
responsibility of the requester.

Checking Whether Your Subsystem Can Process the Command

If the command message passes all the validity checks, next ensure that your
subsystem can process the command:

1. Check that the subsystem ID in the command, ZSPI-TKN-SSID, matches the
subsystem ID for your subsystem, to ensure that the command is intended for your
subsystem.

2. Check that the maximum field version, ZSPI-TKN-MAX-FIELD-VERSION, is less
than or equal to your subsystem’s version.

3. Reset the buffer by calling SSPUT with ZSPI-TKN-RESET-BUFFER, as requesters
do when they receive a response buffer; set the buffer length to the length declared
by your subsystem. If you receive an SPI error -5 (buffer full) when resetting the
buffer, the command is too long for your subsystem to process.

If one of these tests fails, your subsystem should return an SPI error response
containing at least a return token (ZSPI-TKN-RETCODE), and, if possible, other
information about the error. The value of the return token should be an error number
defined by your subsystem to identify the particular error.

Likewise, your subsystem should report any subsequent errors as SPI error responses,
each identifying the error with a subsystem-defined error number in the return token.
SPI Programming Manual—427506-007
5-31

General SPI Programming Guidelines Checking Tokens in the Command
Checking Tokens in the Command

Your subsystem should report missing required tokens, and should detect and report
any extraneous tokens (including too many occurrences of valid tokens).

This pseudocode example illustrates one way to approach these tasks. It shows the
code to check a buffer for a specific command. It is assumed that there is a section of
code like this for each command:

int count[min^tnm:max^tnm]
struct token(ZSPI^DDL^TOKENCODE^DEF)
struct ssid(ZSPI^DDL^SSID^DEF)
int byte^len

for each token number do
 count [token number] := 0
 end do

! Scan the buffer, checking that we recognize each token,
! counting the occurrences, and retrieving the values.

SSPUT(buf,ZSPI^TKN^INITIAL^POSITION,0) ! position to
 ! start of buffer
do until end of buffer
 SSGET(buf,ZSPI^TKN^NEXTTOKEN,token,,,ssid)
 if SSGET error then
 begin
 ssgeterr(ZSPI^TKN^NEXTTOKEN,0,SSGET status)
 go to send^reply
 end
 if ssid <> subsys^VAL^SSID then
 begin
 reject(token,1,subsys^ERR^IMPROPER^TOKEN,ssid)
 go to send^reply
 end

 case token.z^tkn.z^number of

 subsys^TNM^TOKEN1 -> ! simple token

 if token.z^tkncode <> subsys^TKN^TOKEN1 then
 begin
 reject(token,1,subsys^ERR^IMPROPER^TOKEN)
 go to send^reply
 end
 count[subsys^TNM^TOKEN1] :=
 count[subsys^TNM^TOKEN1] + 1
 if count[subsys^TNM^TOKEN1] > limit^for^token1 then
 begin
 reject(token,count[subsys^TNM^TOKEN1],
 subsys^ERR^TOO^MANY^OCCURENCES)
 go to send^reply
 end

 ! For simple, variable-length tokens, a check of
SPI Programming Manual—427506-007
5-32

General SPI Programming Guidelines Checking Tokens in the Command
 ! the length is needed. Omit this for fixed-
 ! length tokens. (Omitting the token code that
 ! is the third argument to SSGET means to use
 ! the token at the current position.)

 SSGET(buf,ZSPI^TKN^LEN,,,byte^len)
 if byte^len > size of token1^value then
 begin
 reject(token,count[subsys^TNM^TOKEN1],
 subsys^ERR^VALUE^TOO^LONG)
 go to send^reply
 end

 SSGET(buf,subsys^TKN^TOKEN1,
 token1^value[count[subsys^TNM^TOKEN1]-1])
 if SSGET error then
 begin
 ssgeterr(subsys^TKN^TOKEN1,0,SSGET status)
 go to send^reply
 end

 subsys^TNM^TOKEN2 -> ! extensible structured token

 if token.z^tkntype <> ZSPI^TYP^STRUCT then
 begin
 reject(token,1,subsys^ERR^IMPROPER^TOKEN)
 go to send^reply
 end
 count[subsys^TNM^TOKEN2] :=
 count[subsys^TNM^TOKEN2] + 1
 if count[subsys^TNM^TOKEN2] > limit^for^token2
 then
 begin
 reject(token,count[subsys^TNM^TOKEN2],
 subsys^ERR^TOO^MANY^OCCURENCES)
 go to send^reply
 end
 SSGET(buf,subsys^MAP^TOKEN2^V,
 token2^value[count[subsys^TNM^TOKEN2]-1])
 if SSGET error then
 begin
 ssgeterr(subsys^MAP^TOKEN2^V,0,SSGET status)
 go to send^reply
 end

 (Repeat for each token allowed in this command.)

 otherwise ->
 reject(token,1,subsys^ERR^IMPROPER^TOKEN)
 go to send^reply
 end case
 end do
SPI Programming Manual—427506-007
5-33

General SPI Programming Guidelines Checking Tokens in the Command
! Check that all the required tokens were supplied.

if count[subsys^TNM^REQUIRED1] = 0 then
 reject(subsys^TKN^REQUIRED1,0,
 subsys^ERR^REQUIRED^MISSING)
 go to send^reply
 end

if count[subsys^TNM^REQUIRED2] = 0 then
 reject(subsys^MAP^REQUIRED2^V,0,
 subsys^ERR^REQUIRED^MISSING)
 go to send^reply
 end

(Repeat for each required token.)

! do inter-field value and presence checks, if any

if required1^value = x and count[subsys^TNM^TOKEN2] = 0 then
 begin
 reject(subsys^MAP^TOKEN2^V,0,
 subsys^ERR^OPTIONAL^MISSING)
 go to send^reply
 end

if count[subsys^TNM^TOKEN1] <> 0 and
 count[subsys^TNM^TOKEN3] <> 0 then
 begin
 reject(subsys^TKN^TOKEN3,1,
 subsys^ERR^CONFLICTING^TOKENS)
 go to send^reply
 end

if token1^value[3] > max^token1^value then
 begin
 reject(subsys^TKN^TOKEN1,3,subsys^ERR^BAD^VALUE)
 go to send^reply
 end

(Include as many tests of whatever form as are needed.)

(Execute the command using the values obtained above.)

REJECT: Inserts RETCODE and error list into response buffer
 to report missing or incorrect token in command

proc reject(tokencode,index,errcode,ssid) variable
 int(32) .tokencode
 int index
 int errcode
 struct .ssid(ZSPI^DDL^SSID^DEF)
 begin
 struct error(ZSPI^DDL^ERROR^DEF)
SPI Programming Manual—427506-007
5-34

General SPI Programming Guidelines Checking Tokens in the Command
 struct parm^err(ZSPI^DDL^PARM^ERR^DEF)

 SSPUT(reply,ZSPI^TKN^RETCODE,errcode)
 SSPUT(reply,ZSPI^TKN^ERRLIST)
 error.z^ssid := subsys^VAL^SSID
 error.z^error := errcode
 SSPUT(reply,ZSPI^TKN^ERROR,error)
 parm^err.z^tokencode.z^tkncode := tokencode
 parm^err.z^index := index
 parm^err.z^offset := 0
 SSPUT(reply,ZSPI^TKN^PARM^ERR,parm^err)
 if $param(ssid) then
 begin
 SSPUT(reply,ZSPI^TKN^SSID^ERR,ssid)
 end;
 SSPUT(reply,ZSPI^TKN^ENDLIST)
 end reject

SSGETERR: Inserts RETCODE and error list into response buffer
 to report SSGET error

proc ssgeterr(tokencode,index,errcode)
 int(32) .tokencode
 int index
 int errcode
 begin
 struct error(ZSPI^DDL^ERROR^DEF)
 struct parm^err(ZSPI^DDL^PARM^ERR^DEF)

 SSPUT(reply,ZSPI^TKN^RETCODE,subsys^ERR^SSPROC^ERROR)
 SSPUT(reply,ZSPI^TKN^ERRLIST)
 error.z^ssid := subsys^VAL^SSID
 error.z^error := subsys^ERR^SSPROC^ERROR
 SSPUT(reply,ZSPI^TKN^ERROR,error)
 SSPUT(reply,ZSPI^TKN^ERRLIST,,,ZSPI^VAL^SSID)
 error.z^ssid := ZSPI^VAL^SSID
 error.z^error := errcode
 SSPUT(reply,ZSPI^TKN^ERROR,error)
 SSPUT(reply,ZSPI^TKN^PROC^ERR,ZSPI^VAL^SSGET)
 parm^err.z^tokencode := tokencode
 parm^err.z^index := index
 parm^err.z^offset := 0
 SSPUT(reply,ZSPI^TKN^PARM^ERR,parm^err)
 SSPUT(reply,ZSPI^TKN^ENDLIST)
 SSPUT(reply,ZSPI^TKN^ENDLIST)
 end ssgeterr

This example does not take into account that one cannot pass a literal as a reference
parameter in TAL; your subsystem must include code to pass the parameters properly.

For token maps, the example assumes that the subsys^MAP^xxxx definitions are
used to declare and initialize variables whose names are formed by adding ^V to the
end: subsys^MAP^xxxx^V. There are, of course, other ways to make the token maps
available in the program.
SPI Programming Manual—427506-007
5-35

General SPI Programming Guidelines Checking Tokens in the Command
Because this example focuses on scanning for tokens in the command, it does not
include error handling for errors from the SSPUT calls that build the response. Do not
overlook those errors when writing your subsystem.

The example assumes that the tokens are permitted to appear multiple times. For
those tokens that are allowed to appear only once, there is no need to subscript the
subsys^value variable with the occurrence count.

The example uses an array indexed by token number to keep track of what tokens
have appeared. If you wish, you can use individual variables rather than an array.
Using individual variables might save substantially on the amount of storage used, if
the array would contain many unused entries for tokens that are not permitted in
commands.

Here are a few more points about the example:

 The program checks the subsystem ID returned by SSGET with NEXTTOKEN to
be sure that all the tokens are qualified by the subsystem ID for this subsystem—a
good practice. Your subsystem should not assume that is true, but should check.

 Before calling SSGET to retrieve the value of the token, the program checks the
token code to make sure its token type matches the server’s definition (the token
type includes both the token data type and the length). For extensible structured
tokens, it checks just the token type field of the token code. The test is against
ZSPI^TYP^STRUCT, because that is the token type used in the buffer for
extensible structured tokens. For simple tokens, it checks the entire token code
against the server’s literal for the token code; doing so is somewhat easier than
determining what the value of the token-type field by itself should be.

Because the token number is supposed to identify the token uniquely, it might
appear that those extra checks would not be required. However, the server needs
to determine whether the requester’s code accidentally modifies the value of a
token code or used another subsystem’s token code.

 To preserve version compatibility, your subsystem should always use a token map
when retrieving the value of a structured token (rather than using the simple token
code of type ZSPI-TYP-STRUCT that is stored in the buffer).

 When an error occurs with an extensible structured token, sometimes the token-
code field in ZSPI-TKN-PARM-ERR is of type ZSPI-TYP-STRUCT, and other times
it is of type ZSPI-TYP-MAP.

 If there are no validity checks involving more than one token, you do not need the
inter-field checks part of the program—you can do validation of a token value in
that token’s branch of the CASE statement. Checks that involve more than one
token must be done after all the tokens have been retrieved, because your
program cannot count on tokens appearing in a particular order.

The method described here is not the only valid approach, but it does illustrate the
functions that should be performed.
SPI Programming Manual—427506-007
5-36

General SPI Programming Guidelines Checking for Command Cancellation
Checking for Command Cancellation

As described in Canceling Commands on page 5-14, an application can use the file-
system CANCEL or CANCELREQ procedure to cancel command requests issued to
your subsystem.

Servers do not have to take any special action. A server can continue processing a
command that has been canceled and issue a response for it. The file system
automatically discards the response if the corresponding command has been
canceled. The only negative consequence is that the server might be slower than it
could be in responding to new commands if it is busy working on ones that have been
canceled.

Servers can learn whether commands they have accepted have been canceled by
using the MESSAGESTATUS procedure or SETMODE 80. If your server wishes to
check on a single command, it can call MESSAGESTATUS and pass it the tag of the
command; MESSAGESTATUS returns a value indicating whether that command has
been canceled. If your server is handling many different commands at once (often true
of a multithreaded server), it can call SETMODE 80 and ask the file system to send it
all interprocess CANCEL messages on commands issued to the server. For more
detailed information about these features, see the Guardian Procedure Calls
Reference Manual.

It is strongly recommended that servers implementing commands that can incur
significant processing delays, such as waiting for asynchronous events, doing I/O, and
so on, include checks at appropriate points during the execution of the command (and
during periods of waiting for I/O completions, if practical) to see whether the command
has been canceled. If the server discovers that its command has been canceled, it
should stop processing the command and clean up after it with as little further
processing as possible, consistent with maintaining the integrity of the server and the
objects it controls.

Only check for cancellation when it is reasonable and possible. Do not check for
cancellation when:

 The command is typically of short duration and can be delayed only by factors that
would also prevent processing of the cancellation (such as lack of CPU or memory
resources).

 The command, after it is started, must proceed to completion and cannot be safely
interrupted (such as PUP SPARE of an online disk).

 The only possible delay is due to an operation that must be done in a waited
manner (such as invoking the SORT library or performing I/O from COBOL). If a
command involves several such operations, a check for cancellation between them
would be appropriate unless condition 2 applies.

Servers that do not otherwise need to support command cancellation need not be
aware of command cancellation at all.
SPI Programming Manual—427506-007
5-37

General SPI Programming Guidelines Using SSPUT to Place Lists in the Buffer
If a subsystem needs to provide a way for a requester to cancel a command and learn
something about how much the command did before it was canceled, that subsystem
must implement an additional form of cancellation.

Using SSPUT to Place Lists in the Buffer

To place a list in the buffer:

1. A program calls SSPUT to put the beginning token—ZSPI-TKN-DATALIST, ZSPI-
TKN-ERRLIST, ZSPI-TKN-SEGLIST, or ZSPI-TKN-LIST—in the buffer.

2. SSPUT adds that list token to the buffer and selects the list, so that subsequent
SSPUT calls place the specified tokens inside the list.

3. To end the list, the program calls SSPUT with ZSPI-TKN-ENDLIST.

4. SSPUT adds the ZSPI-TKN-ENDLIST token to the buffer, pops out of the list so
that the list is no longer selected, and sets the current-token pointer to the list
token that begins the list.

Your program can initialize the current position to the beginning of the currently
selected list by using ZSPI-TKN-INITIAL-POSITION with a token value of ZSPI-VAL-
INITIAL-LIST (-1). If no list is currently selected, SSPUT sets the position to the
beginning of the buffer.

This pseudocode example shows how a sequence of SSPUT operations can be used
to build a response buffer containing lists. It contains two data lists and one error list,
the latter enclosed within the second data list.

The same response tokens (TKN-A and TKN-B) appear in both response records, but
that they have different values (A[1] and B[1], A[2] and B[2]), representing results for
different objects.

SSINIT (BUF, LEN, SSID, ZSPI^VAL^CMD^HDR, CMD); !INITIALIZE
 ! BUFFER

SSPUT (BUF, ZSPI-TKN-DATALIST) !FIRST RESPONSE RECORD
SSPUT (BUF, TKN-A, A[1])
SSPUT (BUF, TKN-B, B[1])
SSPUT (BUF, ZSPI-TKN-RETCODE, STATUS)
SSPUT (BUF, ZSPI-TKN-ENDLIST) !END OF FIRST
 ! RESPONSE RECORD

SSPUT (BUF, ZSPI-TKN-DATALIST) !SECOND RESPONSE
 ! RECORD
SSPUT (BUF, ZSPI-TKN-ERRLIST) !WARNING
SSPUT (BUF, ZSPI-TKN-ERROR, ERROR) !ERROR TOKEN
SSPUT (BUF, TKN-INFO, INFO) !ERROR INFORMATION
SSPUT (BUF, ZSPI-TKN-ENDLIST) !END OF WARNING
SSPUT (BUF, TKN-A, A[2])
SSPUT (BUF, TKN-B, B[2])
SSPUT (BUF, ZSPI-TKN-RETCODE, STATUS)
SSPUT (BUF, ZSPI-TKN-ENDLIST) !END OF SECOND
 ! RESPONSE RECORD
SPI Programming Manual—427506-007
5-38

General SPI Programming Guidelines Defining Commands
SSPUT (BUF, ZSPI-TKN-CONTEXT, CONTEXT) ! CONTEXT INFORMATION

Defining Commands

After you have determined what objects your subsystem will manage, you must decide
what management services the subsystem needs to have, and then design
programmatic commands to implement those services. Most SPI interfaces need to
provide the same basic operations on their objects: creating them; altering them;
deleting them; starting, stopping, and otherwise controlling their execution; and
reporting their configuration and state. If applications will use your subsystem in
conjunction with NonStop Kernel subsystems provided by HP, HP recommends that
your programmatic commands be as consistent as possible with the corresponding
programmatic commands defined by those subsystems. Preserving consistency makes
application programming easier.

A single command can operate on a single object or, if appropriate, on multiple objects.

You must define your commands and parameters so that a single command always fits
into a buffer of the recommended size you define. (SPI does not support multiple
commands in one SPI buffer or commands continued across multiple buffers.)
Likewise, you must define your commands and recommended buffer size so that a
single response record and its associated context information always fits into a buffer
of the recommended size. SPI does not support continuation of a single response over
multiple buffers.

Ensuring that a single response record fits into a single buffer can require redefining
the command. For example, consider the conversational FUP INFO command. It can
return several different types of information: partition information, alternate-key
information, alternate-file information, extent information, statistics information, and so
on. For programmatic use, this function needs to be redefined as separate commands,
each of which returns a single type of information: INFO EXTENTS, INFO ALTKEYS,
INFO ALTFILES, INFO STATISTICS, and so on. For each of these separate
commands, a single response record (information about a single file) easily fits into a
single buffer of reasonable size.

In the example above, it would not be sufficient to simply define EXTENTS, ALTKEYS,
ALTFILES, and so on as command parameters. If an application were to specify all the
parameters, the resulting response record might overflow a single buffer, violating the
rule that a single response record must always fit into a buffer of the recommended
size.

GETVERSION Command

All NonStop Kernel subsystems include a GETVERSION command, which returns the
version number of the server in both internal form (in the header token ZSPI-TKN-
SERVER-VERSION) and displayable form (in the nonheader token ZSPI-TKN-
SERVER-BANNER). Your subsystem should include a similar command. Optionally,
your GETVERSION command can return additional information.
SPI Programming Manual—427506-007
5-39

General SPI Programming Guidelines Single and Multiple Response Records per Response
Every command sent to a NonStop Kernel subsystem returns the internal form of the
server version in ZSPI-TKN-SERVER-VERSION. However, GETVERSION is useful
because it is a safe command—one that simply returns information and makes no
changes to the state of the system or network.

Single and Multiple Response Records per Response

All NonStop Kernel subsystems support multiple response records per response buffer,
at least to the extent of recognizing the ZSPI-TKN-MAXRESP token and using it to
decide whether to enclose each response record in a data list. For consistency,
subsystems you write should do the same. However, unless an application specifically
requests multiple response records, the subsystem should return a single response
record per buffer and should not enclose it in a list.

When returning a single response record per response buffer, the server does not
need to check the size of the requester’s buffer; it can assume that the requester has a
buffer of the recommended size. However, when returning multiple response records,
the server must check the size of the requester’s response buffer, in order to determine
how many response records it can return per response message. Your server can
check the requester’s buffer size either by calling the file-system procedure
RECEIVEINFO. Checking the buffer-length field (Z-BUFLEN) in the command is not a
reliable method for determining the requester’s buffer length because the value stored
in that field is the buffer size that the requester specified in its SSINIT call for the
command, which may be smaller than the actual available buffer space.

If the requester has a larger buffer than the server has space in which to build a
response, the server should just use the space it has.

If the requester has asked for up to n response records, but its buffer is not large
enough to hold that many, the server should simply return fewer than n response
records—however many will fit in the space available. This action, rather than an error
response, is recommended so that a later revision of your subsystem with an
increased response-record size does not cause errors in existing applications.

If the requester has supplied a buffer smaller than needed for even one response
record, the server should ignore the size of the requester’s buffer and use the
recommended buffer size.

Defining the Context Token

If your subsystem supports response continuation, you must provide a context token in
each response message that is not the end of the response for the command. For
context-free subsystems, this context token must contain all the information the server
needs to continue processing where it left off. A response message should never
contain more than one context token.

As described in Section 2, SPI Concepts and Protocol, the requester should return this
context token in the next command message along with the original command.

Each server that receives a command with a context token should check for:
SPI Programming Manual—427506-007
5-40

General SPI Programming Guidelines Defining the Context Token
 The command and parameters are consistent with the context supplied.

 The requester has not bypassed security or integrity constraints by supplying a
forged or modified context token.

As an example of the latter case, consider an application that sends a command to
start a number of terminals, some of which it is not permitted to start. The context
token in this case needs to include a name or identifying number for the next terminal
on which the command is to be performed. When the server attempts to start a
terminal that the application is not permitted to start—say, TERM3—it might return an
error list indicating a security error and a context token indicating that the next terminal
to start is TERM4. The application might then attempt to circumvent this restriction by
changing the terminal name in the context token from TERM4 to TERM3. To prevent
such a breach of security, the server should apply security checks on each new
command.

Another example of the latter case is an ALTER LIKE command (to alter the
characteristics of an object to be the same as those of another object named in the
command) implemented so that the set of values being altered is carried in the context
token. In this situation, the server should protect the integrity of the context by checking
these values for validity each time the context token is returned in a new command.

Figure 5-1 illustrates the exchange of messages for a command requesting information
about all terminals in an application (INFO TERM *):
SPI Programming Manual—427506-007
5-41

General SPI Programming Guidelines Defining the Context Token
Because the terminal name is a required part of the context, it is included in the context
token even though it is already present in the TERMNAME token. This way, the
requester does not need special-case knowledge about which tokens must be provided
to continue the command. The requester always extracts the context token and
supplies it with the original command parameters.

If the server detects something wrong with the context or a mismatch between the
context and the new command, it should return a response record containing an error
number that identifies the problem, at least to the extent that the problem concerns the

Figure 5-1. Response Continuation for a Typical Information Command

VST021.vsd

<INFO> <TERM> <+>

 <INFO> <TERM> <$a> <token> <token> <$a>

Terminal
Name

Requester Subsystem

Context

 <INFO> <TERM> <$b> <token> <token> <$b>

Terminal
Name

Requester Subsystem

Context

 <INFO> <TERM> <+> <$a>

Context

 <INFO> <TERM> <$last> <token> <token>

Terminal
Name

Requester Subsystem

 <INFO> <TERM> <+> <$x>

Context

SPI Programming Manual—427506-007
5-42

General SPI Programming Guidelines Context Sensitivity
context. If desired, the server can also provide more detailed information about the
error.

A server is not required to accept a context token from a different version of the server.
Requesters cannot expect to save a context token from some session with a server
and use it with another session sometime later. The server is not required to detect or
reject such long-term saving of context tokens.

When the server receives a command with context, it might find that there are no more
objects to process. (Perhaps the last one was deleted between the time the last
response was composed and the time the continuation arrived.) To cover this case, the
server must be able to build a response record that cannot be mistaken for a response
record about a particular object. The server should return a response record whose
return token contains the error number for an empty response record.

Context Sensitivity

Subsystems you write usually should be context-free servers. However, under some
circumstances you might need to write your subsystem as a context-sensitive server.

A context-sensitive server should use the context token for response continuation just
as a context-free server does, so that programs can use the same continuation
mechanism with all subsystems. In this case, the context token can contain a dummy
value—only its presence or absence is important.

If a requester just stops sending commands, even though the last response had a
context token, a context-sensitive server might have resources tied up that are no
longer needed. Such a server might provide a null command that the application could
send to let the server know that it no longer is interested in continuing the command in
progress. Alternatively, the server could use the receipt of any command not containing
a context token as the signal that the application is no longer interested in continuing
the command in progress. The latter design would prevent the application from issuing
commands to recover from errors or to implement higher-level constructs, so you
should consider carefully whether such restrictions are necessary.

A context-sensitive server might have to make some other departures from the
guidelines given here. However, you should find ways to keep the differences as few
as possible, to maximize the consistency between subsystems.

Determining How Many Response Records Fit in a Buffer

The guidelines for continuation say that for a command that causes any change to an
object, the server should carry out the command only on objects for which responses
can be returned in the response message immediately following the action on the
objects.

Inquiry commands do not change an object, so they are not affected by this rule. If
your server runs out of buffer space while building an inquiry response, it can flush the
partial response from the buffer, construct a context token as if it never started on the
object whose response overflowed the buffer, and send that response to the requester.
SPI Programming Manual—427506-007
5-43

General SPI Programming Guidelines Determining How Many Response Records Fit in a Buffer
Assume that the server builds the response record in the buffer during the course of
executing the command on each object, and assume that the server knows a definite
limit on the size of every possible response record. Before starting execution of the
command on the next object, the server must determine whether the space left in the
buffer is sufficient for the largest possible response record plus the largest possible
context token. If there is not enough space, the server should construct a context
token, put it in the buffer, and send the response.

The situation is more complex if the server cannot put a definite limit on the size of a
response record. One way the server could proceed is:

 Before starting the operation on the next object, perform a test as in the previous
case, using the expected length of the response record. If it there appears to be
enough space, begin working on the next object.

 While performing the command, before adding each error list or regular response
token to the response, record the current position in the buffer.

 After adding the token or error list, determine whether the length remaining in the
buffer is enough to hold a minimal error list, a return token, an end-list token, and a
context token.

 If there is enough space, continue processing.

 If there is not enough space, reposition to the last saved position; flush the
data; insert the minimal error list; insert the return token, the end-list token, and
the context token; and send the response.

The minimal error list should contain a subsystem-defined error number indicating that
the response was truncated because it was larger than estimated, and the object name
whose response overflowed. This approach sacrifices some information if it runs out of
space, but always lets the requester know approximately what happened.

Here is a pseudocode example to show how this approach might be implemented. The
lines marked with “*” are the ones needed to handle the case of an unexpectedly long
response. The other lines would be needed in any case.

cmd-xxxxx: ! beginning of code for a particular command
 response-need := estimated max size of response
 + size of this command's context;
 overflow-need := size of overflow error list *
 + size of ZSPI-TKN-RETCODE *
 + size of ZSPI-TKN-ENDLIST *
 + size of this command's context; *
 num-responses := 0;
 multiple-responses := MAXRESP <> 0;
 if MAXRESP = 0 then MAXRESP := 1;
 and other setup needed;
next-obj-loop:
 current-retcode := 0;
 find next object;
 if no next object then go to done;
 if ZSPI-TKN-BUFLEN - ZSPI-TKN-USEDLEN < response-need
SPI Programming Manual—427506-007
5-44

General SPI Programming Guidelines Consistency Between Response Records in Different
Replies
 then go to continue;
 if MAXRESP > -1 then
 if num-responses >= MAXRESP then go to continue;
 if multiple-responses then
 SSPUT(ZSPI-TKN-DATALIST); ! start response
SSPUT(subsys-TKN-xxxxx,object name);
processing-loop:
 do some work;
 SSGET(ZSPI-TKN-LASTPOSITION,remember-place); *
 insert next token or error list into response;
 if buffer is full then go to backout; *
 if ZSPI-TKN-BUFLEN - ZSPI-TKN-USEDLEN < overflow-need *
 then go to backout; *
 if more to do then go to processing-loop;
 go to response-done;
backout: *
 SSPUT(ZSPI-TKN-POSITION,remember-place); *
 SSGET(ZSPI-TKN-NEXTTOKEN,dummy); *
 SSPUT(ZSPI-TKN-DATAFLUSH); *
 SSPUT(ZSPI-TKN-ERRLIST); *
 SSPUT(ZSPI-TKN-ERROR, overflow error number); *
 SSPUT(subsys-TKN-xxxxx, object-name); *
 SSPUT(ZSPI-TKN-ENDLIST); *
response-done:
 SSPUT(ZSPI-TKN-RETCODE,current-retcode);
 if multiple-responses then
 SSPUT(ZSPI-TKN-ENDLIST);
 num-responses := num-responses + 1;
 go to next-obj-loop;
continue:
 SSPUT(ZSPI-TKN-CONTEXT,context);
 done:
 send reply;

If the server needs to decide the number of response records that fit in a buffer before
starting to fill the buffer, the code must be a bit different, but the same idea applies.
The server would divide the buffer size by the maximum expected size for a response
record to get the number of response records that should fit. Then the test in the
processing loop would check to see whether the response record has run past its
allowed ending point in the buffer, by comparing ZSPI-TKN-USEDLEN to the response
number times the size allowed for each response.

Consistency Between Response Records in Different Replies

When information about various parts of an object is returned in different responses,
there is a potential for presenting an inconsistent picture of the object to the requester
because the object might change between commands. If you encounter a case where
this situation might be a problem (not all cases present a problem), you can:

 Implement some form of locking. A problem with locking is knowing when to
release the lock if the requester fails to do so.
SPI Programming Manual—427506-007
5-45

General SPI Programming Guidelines Checking the Context Token
 Make the server context-sensitive and hold a snapshot of the object’s current state
in the server’s memory.

 Take a snapshot of the object, store it in a file (called a “snapshot file”), and use the
context token to keep track of where the snapshot is stored. This solution can be
implemented in a context-free server, but the server needs to open and close the
file on each command, because there is no guarantee each command would be
sent to the same server process if there are several server processes.

A variation on this solution is to have the requester create a snapshot file into
which the server writes the information in an externally defined format. Then the
requester can read the information from the file.

In many cases, the consequences of inconsistency are not serious enough to warrant
making the extra effort involved in any of the approaches just described. But for those
cases in which consistency is important, one of these approaches probably will work.

Checking the Context Token

Your server should check the context token for consistency with the command. The
nature and extent of the tests should depend on how your server is organized and
what problems it could encounter if the context is invalid in some way. For instance, it
might be helpful to put the command number and object-type number in the context
and determine whether they match those of the new command. If the context contains
table indexes, be sure to check them against the table sizes before using them.

Take into account that a requester might send a context returned by a different release
of the server. It is not imperative that your server detect this case and return an error,
provided it does not compromise the server to accept the context from a different
version of the server. However, it is recommended that your server detect and reject
this case.

To protect against a forged context token being used to bypass security, the server
must treat the contents of the context token with as much caution as it treats command
parameters. The server must not use the context token to carry any kind of user
identification or access rights that it determined while processing the previous part of
the command, unless it can verify that the requester has not tampered with that
information. A simple approach is to have the server do any security tests from scratch
on each command. If the tests are time-consuming, you might prefer to find a way to
use the context to reduce the work on subsequent commands.

Reporting Errors

SPI servers should report errors as described in Section 2, SPI Concepts and Protocol.
Remember to define the tokens you return in responses and in error lists. If desired,
your subsystem can also define special lists using the generic-list token type, ZSPI-
TYP-LIST, with a subsystem-supplied token number.

In addition, if your subsystem encounters errors in calls to software for the NonStop
system facilities that do not have a programmatic command interface based on SPI but
SPI Programming Manual—427506-007
5-46

General SPI Programming Guidelines Control of Types of Response Records
do define standard error lists (for instance, some system procedures such as
NEWPROCESS), and if your subsystem encounters critical errors in calls to the SPI
procedures, HP recommends that you return error lists to applications in the standard
form, and use the appropriate HP definition files for the tokens in these error lists rather
than defining your own.

SPI servers should report these error conditions:

 Empty response

 Command too long

 Bad context

 Response longer than expected

 Wrong subsystem ID in command

 Command requires newer version of server

 Extraneous token in a command

 Error from another subsystem or from SPI (if desired, your subsystem can define
different error numbers for different sources of the error)

 Required token is missing (you can define either a single error number for all cases
or many individual error numbers for the different tokens)

 Command parameter has an invalid value (you can define either a single error
number for all cases or many individual error numbers for the different parameters)

Control of Types of Response Records

To let requesters ask for either all response records or only those with errors or
warnings, include support for the ZSPI-TKN-RESPONSE-TYPE token, as some
NonStop Kernel subsystems do.

Continuing Despite Errors

To let requesters specify under what conditions your server should continue processing
on a set of objects, you can support the ZSPI-TKN-ALLOW-TYPE token as some
NonStop Kernel subsystems do. For guidelines governing the use of this token, see
ZSPI-TKN-ALLOW-TYPE on page 4-31.

Reporting Errors From the SPI Procedures

These recommendations for all NonStop Kernel subsystems describe how a server
should report errors from the SPI procedures.
SPI Programming Manual—427506-007
5-47

General SPI Programming Guidelines Reporting Errors From the SPI Procedures
Failure of SSGET on a Header Token

If SSGET fails when attempting to get any header token from a command, your
subsystem should return an error response to report the problem. The return token of
this response should be the one your subsystem defines to indicate that an SPI error
occurred. The associated error list should contain the same error number and a nested
error list constructed according to the guidelines given in the Guardian Procedure
Errors and Messages Manual. The command number and object type can be null or
can be the values from the command.

Some suggestions:

 Initialize a new buffer for a response (do not use ZSPI-TKN-DATAFLUSH on the
command, because the command buffer might be the source of the problem). If the
command number or object type has been retrieved from the command, your
server can use them in the SSINIT call. Alternatively, for simplicity, your server can
use the null values (ZSPI-VAL-NULL-COMMAND and ZSPI-VAL-NULL-OBJECT-
TYPE) whether or not they have been retrieved from the command.

 Do not attempt to determine the value of ZSPI-TKN-MAXRESP; in this situation,
your server probably cannot count on this value to be accurate. Return a single
response record per response.

 Check that the buffer used for this error response is large enough. Then, if any
errors occur from the procedures called in creating the response, handle them as
described in Failure of SSINIT When Initializing a Response Buffer or Failure of
SSPUT When Building a Response on page 5-49.

Failure of SSGET on a Nonheader Token

If SSGET fails when getting a nonheader token from a command, the action depends
on the error:

 If the error is “token not found” and the token is optional for the command, take the
default action for that token.

 If the error is “token not found” and the token is required for the command, the
response should contain the return-token value your subsystem defines for a
missing required token, and an error list that identifies the token in question.

 If the error is any other error, the error response should follow the same guidelines
as for Failure of SSGET on a Header Token on page 5-48.

Some suggestions:

 Initialize and build a response buffer as described in Failure of SSGET on a
Header Token on page 5-48.

 In this situation, it is not imperative that you ignore ZSPI-TKN-MAXRESP.
However, for simplicity, HP recommends that you return a single response record
per response.
SPI Programming Manual—427506-007
5-48

General SPI Programming Guidelines Reporting Errors From the SPI Procedures
 As for the failure of SSGET on a header token, check that the buffer for this error
response is large enough, and handle any errors from the procedures involved in
creating the response.

Failure of SSINIT When Initializing a Response Buffer

If SSINIT fails for any reason except “buffer full,” a serious error has occurred. If your
buffers are all of adequate size, you should consider a “buffer full” error to be a serious
error, too.

If your server process is one that should stop on internal errors to limit data corruption,
have the process stop if it gets an error from SSINIT.

If your process is one that does not need to stop to limit data corruption, your server
can either stop or attempt to report the SSINIT failure.

If you report a failure of SSINIT, your server should return an error response to report
the problem (see the guidelines for Failure of SSGET on a Header Token on
page 5-48.

Some suggestions:

 HP recommends that your subsystem stop immediately instead of attempting to
continue.

 If you do attempt to continue and report the failure, initialize and build a buffer for a
response (see Failure of SSGET on a Header Token on page 5-48).

 It is not imperative that you ignore ZSPI-TKN-MAXRESP. However, for simplicity, it
is recommended that you return a single response record per response.

 If errors occur while attempting to build the response, your server can ignore them
and return whatever gets built as the response. This might result in a garbage
response, but in this situation it is unlikely that any other method would provide
more information.

Failure of SSPUT When Building a Response

If your server builds a response containing multiple response records and relies on
getting the “buffer full” error to determine when it is at the end of the buffer, it should
perform whatever corrective action is necessary when the buffer is full.

In all other cases, an SSPUT error is a serious failure. If your process is one that
should stop on internal errors to limit data corruption, have the process stop if it gets an
error from SSPUT.

If your process is one that does not need to stop to limit data corruption, your server
can either stop or attempt to report the SSPUT failure.

If you do report a failure of SSPUT, your server should return an error response to
report the problem, (see the guidelines for Failure of SSGET on a Header Token on
page 5-48).
SPI Programming Manual—427506-007
5-49

General SPI Programming Guidelines Reporting Errors From the SPI Procedures
Some suggestions:

 Your subsystem should stop immediately instead of attempting to continue.

 If you do attempt to continue and report the failure, initialize and build a buffer for a
response (see Failure of SSGET on a Header Token on page 5-48).

 It is not imperative that you ignore ZSPI-TKN-MAXRESP. However, for simplicity, it
is recommended that you return a single response record per response.

 If errors occur while attempting to build the response, your server can ignore them
and return whatever gets built as the response. This might result in a garbage
response, but in this situation it is unlikely that any other method would provide
more information.

It is assumed that when formatting a response in single-response-per-buffer form, your
subsystem initializes a buffer at least as large as the subsystem’s recommended size.
A “buffer full” error in that situation should be considered a serious error. If your
subsystem attempts to use the buffer length specified in the command message and
encounters a “buffer full” error, the corrective action is up to you to define.

The technique of building the response in the command buffer by using SSPUT with
ZSPI-TKN-DATAFLUSH to empty it is probably not a good idea. A problem in the
command buffer might cause a later SSPUT to fail, and certain garbage requests could
cause the server to stop. It is probably best to initialize a new buffer.

Failure of SSNULL

An error from SSNULL should be considered as serious as the errors from SSINIT or
SSPUT; it probably indicates the data stack has been corrupted, so it should cause the
server to stop.

If you do attempt to generate a response, proceed as in the case of SSINIT or SSPUT.

Error on SSMOVE

When using SSMOVE on a server-initialized buffer, you need to clear the last-error
information in at least the server-initialized buffer just before the operation (use SSPUT
with ZSPI-TKN-CLEARERR).

If an error occurs on SSMOVE, you can use SSGET with ZSPI-TKN-LASTERR on the
server-initialized buffer to determine whether the error was on the server-initialized
buffer. If it was, the error indicates data stack corruption of the server, and the server
should stop.

If you do attempt to generate a response, proceed as in the case of SSINIT or SSPUT.
SPI Programming Manual—427506-007
5-50

General SPI Programming Guidelines Pass-Through Error Lists
Failure of SSGET With ZSPI-TKN-USEDLEN

If after completing a response message, the server calls SSGET with ZSPI-TKN-
USEDLEN to determine the count to use when sending the response, and SSGET
fails, the server’s data stack is corrupt and the server should stop.

If you do attempt to generate a response, proceed as in the case of SSINIT or SSPUT.

Pass-Through Error Lists

These guidelines govern the contents and construction of pass-through error lists from
NonStop Kernel subsystems provided by HP. Your own subsystems should also follow
these guidelines. For examples of pass-through error lists, see Sample Error
Responses on page 2-51.

Assume that a requester A issued a command to a server B and that B is creating an
error list in its response to A. Assume that B uses another server or library procedure
called C. These guidelines govern the design of error lists:

1. An error list begins with the token ZSPI-TKN-ERRLIST and ends with the token
ZSPI-TKN-ENDLIST.

2. Except for nested error lists, all the tokens in an error list are considered to be
qualified by B (including the ERRLIST token at the beginning and the ENDLIST
token at the end).

3. An error list must contain a ZSPI^TKN^ERROR token with the value being one of
the errors defined by B, not an error number returned from C.

4. An error list must contain a token defined by B whose value is the name of the
object to which the command to B was directed. If the command references no
objects, the error list need not contain an object name.

If the command is directed to an object that has no name and the command
includes an object name of some null value such as blanks, the error list must
contain that null object name. If the command is directed to an object that has no
name and the command does not include any form of object name, the error list
need not contain an object name.

5. An error list must contain any additional items necessary to describe what action B
was asked to perform. If the error number is not sufficient to determine the
command number and object type number in A’s command to B, they must be
included in the error list.

There should not be a large amount of additional information—be guided by what
is appropriate to be included in an error message. Except as directed in guideline
8, do not include information to describe the command or response from C—that is
the job of C’s error list.

6. If the error detected by B indicates some inappropriate condition (regardless of
whether some of the information used by the logic came from C), the error list must
SPI Programming Manual—427506-007
5-51

General SPI Programming Guidelines Pass-Through Error Lists
contain those items needed to tell what inappropriate condition was detected and
any additional values needed to understand the error.

For example, if a command asks to start a subdevice when the line is not started
and the name of the line is inherent in the name of the subdevice, no additional
information need be included. But if the command asks to start an object and fails
because an attribute of the configuration of the object conflicts with some
information obtained from the device, the item of information obtained from the
device itself would be valuable in understanding the problem and should be
included in the error list.

7. If a description of an error from C is relevant in reporting the error, and if C is
accessed through an SPI interface, the error list B creates must contain a copy of
all the error lists in the error response returned by C.

8. If a description of an error from C is relevant in reporting the error, and if C is not
accessed through an SPI interface, B should follow the directions C provides for
constructing an error list to report errors from C.

Although some details might vary, C defines a token for each item of information
that is important for understanding what C was asked to do and what went wrong.
B forms an error list on behalf of C and nests this error list within the error list B
creates. The ZSPI-TKN-ERROR token in this error list is generally the error status
returned from C. The values of the other tokens are generally the values of the
arguments passed to C if C is a procedure or are similar parts of the command for
other styles of interface. If C defines a token for a parameter B did not use, usually
B omits that token when forming the error list. In some cases, the actual argument
passed to C might not be meaningful to another process (such as a file number),
and in such cases, the directions supplied by C explain what B must do to obtain
an appropriate representation.

When forming an error list on behalf of C, B should make the version portion of C’s
subsystem ID in the ZSPI-TKN-ERROR token be zero. This is to indicate that
because the error was not constructed by C itself, the actual version of C cannot
be determined from the error list.

In all cases, the error number in B’s level of the error list is one defined by B. The
error number might mean simply “I got an error from another subsystem.” It might
be specific to a subsystem: “I got an error from subsystem X.” Or it might have a
meaning in B’s terms and the error list from C is just additional information relevant
to that error. The error number in B’s level never describes C’s error directly.

9. If the error is a problem in the formation of the command to B, such as a missing
required token, an extra or unrecognized token, a too-high server version in a
command, an unrecognized command number, an unrecognized object type
number, or an invalid value in a field of the command, then guidelines 4 through 8
do not apply.

The error list must contain B’s error code for the problem detected and
identification of the token and field causing the problem (except for server version
too high). Include the ZSPI-TKN-PARM-ERR token to describe the token and field.
SPI Programming Manual—427506-007
5-52

General SPI Programming Guidelines Pass-Through Error Lists
Fill in only the Z-TOKENCODE field to describe a missing required token. If more
than one field is involved in the error (as in the case of a field that conflicts with the
value of another field), repeat the ZSPI-TKN-PARM-ERR token for each field
involved. In addition, if the subsystem ID qualifying the token is not the default
subsystem ID, include the ZSPI-TKN-SSID-ERR token to identify that SSID.

These guidelines apply to error lists at every level. That is, when C creates an error list
to pass back to B, the point of view shifts—because C is creating an error list, it takes
the role of B in the above guidelines and the guidelines all apply to C. The principle
applies similarly for any depth of subordinate servers.

Errors from SPI procedures (assuming the program does not recover from them) are
reported according to guideline 8. For guidelines for constructing error lists to report
such errors, see the Guardian Procedure Errors and Messages Manual.

When relaying pass-through error information from multiple subsystems, you can use
the SSMOVE procedure to move an entire error list from one SPI buffer to another.

Guideline 8 refers to token definitions and directions for their use that are provided by
procedures and other services that do not have SPI interfaces. If you wish to provide
such tokens and directions, you must decide what items of information are useful to
report in a description of an error from your service and define how each is to be
included in the error list. The names of the tokens and other definitions must follow the
same guidelines as the definitions for a complete SPI interface, but only those few
declarations needed to build the error lists need be supplied. The declarations are
packaged the same way as for a complete SPI interface.

When defining guidelines for handling error lists to report errors from servers with non-
SPI interfaces, consider:

 Certainly the error number is of interest; your subsystem should place it in the
ZSPI-TKN-ERROR token unless there is good reason to put some other value
there.

 For procedures, your server should examine each argument to the procedure. You
should define tokens for those arguments that would be useful in an error message
or for other analysis of the error. If an argument is a structure, it might be
appropriate to define tokens for just some of the fields of the structure, or it might
be appropriate to include the whole structure in a token. Decide that on a case-by-
case basis.

 In some cases, there might be important information that is not among the
parameters. Define tokens for such information and explain how to obtain the
information to put in those tokens if it is not obvious.

 In some cases, the primary information might not be in a form usable by another
process. A file number in a file-system WRITE call is a good example. In these
cases, give directions telling how to transform what is available into what is useful
and define a token for the result of the transformation, not for the starting values.

 Be sure to tell what to do for a token corresponding to an optional argument to the
procedure in the case that argument is not used in the call that encountered the
SPI Programming Manual—427506-007
5-53

General SPI Programming Guidelines Summary of Server Role
error. Omitting the token from the error list seems like a reasonable approach in
that case, but if that is not suitable, include explicit directions for what to do.

 If a set of procedures are closely related (such as the HP file-system procedures),
such procedures can share a subsystem ID. In these cases, you should use the
token ZSPI-TKN-PROC-ERR token to indicate which of the procedures is involved.
Define a token value to denote each procedure in the group.

 Instead of defining separate tokens for each item of interest, you can choose to
group some or all of the items into one or more extensible structured tokens.

Summary of Server Role

An SPI server must:

 Verify, upon receipt of an SPI message, that the message is a valid SPI message
and that the message fits in the message buffer. (See Checking the Command
Message for Validity on page 5-31.)

 Reject any request in which ZSPI-TKN-MAX-FIELD-VERSION contains a version
greater than the server’s version.

 Reject any request that contains an unrecognized or invalid subsystem ID,
command number, object type, token code, or token value.

 Set ZSPI-TKN-SERVER-VERSION to its own (the server’s) version.

 Continue to recognize and process old-version requests and tokens for as long as
possible.

 Accept but otherwise ignore any number of comment tokens (ZSPI-TKN-
COMMENT).

 Check continuation requests to verify that the requester is not bypassing security
or forging a context token.

 Support opens from a backup requester.

 If a request is not safely repeatable, save sync IDs, replies, and any other
necessary information.

 Always use a token map to retrieve the contents of an extensible structured token.
SPI Programming Manual—427506-007
5-54

6 SPI Programming in C

This section provides language-specific information for the programmer who is using C
to write an SPI requester or server:

Definition Names in C
Symbolic names in this section are in the C form, using underscore (_) symbols rather
than hyphens. For example, the DDL token code ZSPI-TKN-RETCODE is expressed
as ZSPI_TKN_RETCODE in C.

C Definition Files
Each C module of your application that uses the SPI must begin with #include
preprocessor directives to include the C versions of the SPI standard definitions and
the definitions for all subsystems with which your program communicates. The C
version of the SPI standard definitions is in the file named ZSPIDEF.ZSPIC on the disk
volume chosen by your site. For NonStop Kernel subsystems, the C versions of the
subsystem definitions have file names of the form ZSPIDEF.subsysC, where subsys
is the 4-character subsystem abbreviation given in Appendix D, NonStop Kernel
Subsystem Numbers and Abbreviations.

You must write #include directives to read these definition files:

ZSPIDEF.ZSPIC SPI standard definitions

ZSPIDEF.ZEMSC EMS standard definitions

ZSPIDEF.ZCOMC Extended SPI standard definitions
ZSPIDEF.ZCMKC
ZSPIDEF.ZCDGC

ZSPIDEF.subsysC Standard definitions for each subsystem
 . your program communicates with
 .
 .
ZSPIDEF.subsysC

Topic Page

Definition Names in C 6-1

C Definition Files 6-1

Declarations Needed in C Programs 6-2

Interprocess Communication 6-3

Writing a Server in C 6-3

SPI Procedure Syntax in C 6-4
SPI Programming Manual—427506-007
6-1

SPI Programming in C Declarations Needed in C Programs
In these definition files, the structures are in lowercase (for example, zspi-ddl-ssid-def)
and the defines are in uppercase (for example, ZSPI-TKN-SSID).

The #include directive for ZSPIDEF.ZSPIC must appear first. Any #include directives
for files that contain your own declarations must come after the #include directives for
the standard files.

The DDL compiler combines the items of a DDL REDEFINES clause into a union. For
more information, see the Data Definition Language (DDL) Reference Manual.

Declarations Needed in C Programs
In addition to the declarations provided in the definition files, you must add these
declarations to your C programs.

SPI Buffer

The ZSPIDEF.subsysC definition file for each NonStop Kernel subsystem includes a
buffer declaration named subsys_ddl_msg_buffer_def. Use this declaration to
allocate a buffer variable of the recommended size (subsys_val_buflen):

zpwy_ddl_msg_buffer_def spibuf;

This declaration is for the Pathway subsystem. It lets you refer to the z_msgcode (-
28), z_buflen, and z_occurs fields of this structure.

Some subsystems provide additional buffer declarations allocating different
recommended buffer-size values for different commands. For details, see the individual
subsystem management programming manual.

If you wish to define a buffer larger than the recommended size to handle a large
number of response records in a reply, you can write your own buffer declaration,
following the pattern of subsys_ddl_msg_buffer_def.

Subsystem ID

You must initialize the subsystem ID before the first time you call SSINIT. For NonStop
Kernel subsystems, the name of the subsystem ID structure in the C definition file is
subsys_val_ssid_def. To initialize it, use these values:

ZSPI_VAL_TANDEM for the z_owner field
ZSPI_SSN_subsys for the z_number field
ZSPI_VAL_VERSION for the z_version field

C provides two ways to initialize this structure.

The first way (for the OSI/AS subsystem, for example):

zosi_val_ssid_def zosi_val_ssid ={ ZSPI_VAL_TANDEM,
 ZSPI_SSN_ZOSI,
 ZOSI_VAL_VERSION };
SPI Programming Manual—427506-007
6-2

SPI Programming in C Passing Tokens by Value
Performing the initialization this way causes compiler Warning 74: initializer data
truncated. You can ignore the warning; the initialization is performed correctly.

The second way to initialize the structure:

#include stringh

strcpy (zosi_val_ssid.z_owner, ZSPI_VAL_TANDEM);
strcpy (zosi_val_ssid.z_number, ZSPI_SSN_ZOSI);
strcpy (zosi_val_ssid.z_version, ZOSI_VAL_VERSION);

The compiler does not issue a warning if you use this initialization method.

You must enter the names of the values you place in the structure in uppercase
characters.

Passing Tokens by Value

C applications can pass tokens as parameters to the SPI procedures by value only;
passing parameters by reference is not allowed. To allow access to a token map, which
represents an extensible structured token, declare and pass a pointer to the structure.

Use SSGET, SSMOVE, and SSPUT to pass pointers to token maps. Use SSGETTKN,
SSMOVETKN, and SSPUTTKN to pass token codes.

C Types

The C compiler does not support 64-bit integer values. For information about how to
handle these values in C programs, see the C/C++ Programmer’s Guide.

Interprocess Communication
Requesters written in C can use the tal interface declaration to call the WRITEREAD
file-system procedure. C programs can also use the alternate-model I/O routines that
are described in the C/C++ Programmer’s Guide.

Writing a Server in C
If you are writing a server, you must include #include preprocessor directives for all
the definition files you use, as you would when writing a requester. You must also
declare the SPI buffer and initialize the subsystem ID.

Your subsystem must open $RECEIVE for I/O to receive SPI messages. Use the file-
system procedures READUPDATE and REPLY to read and answer the messages.
SPI Programming Manual—427506-007
6-3

SPI Programming in C SPI Procedure Syntax in C
SPI Procedure Syntax in C
To call SPI procedures from a C program, you use the tal interface declaration, just as
you would when calling other operating system procedures. For descriptions of the SPI
procedures and their parameter, see Section 3, The SPI Procedures.

SSINIT

SSNULL

#include <cextdecs(SSINIT)>

short SSINIT (short *buffer
 , short buffer-length
 , short *ssid
 , short header-type
 , short command
 ,[short object-type]
 ,[short max-resp]
 ,[short server-version]
 ,[short checksum]
 ,[short max-field-version]);

#include <cextdecs(SSNULL)>

short SSNULL (short *token-map
 , char *struct
 ,[long long *constants]);
SPI Programming Manual—427506-007
6-4

SPI Programming in C SSPUT and SSPUTTKN
SSPUT and SSPUTTKN

SSGET and SSGETTKN

#include <cextdecs(SSPUT)>

short SSPUT (short *buffer
 , short *token-id
 ,[char *token-value]
 ,[short count]
 ,[short *ssid]);

#include <cextdecs(SSPUTTKN)>

short SSPUTTKN (short *buffer
 , long token-id
 ,[char *token-value]
 ,[short count]
 ,[short *ssid]);

#include <cextdecs(SSGET)>

short SSGET (short *buffer
 , short *token-id
 ,[char *token-value]
 ,[short index]
 ,[short *count]
 ,[short *ssid]);

#include <cextdecs(SSGETTKN)>

short SSGETTKN (short *buffer
 , long token-id
 ,[char *token-value]
 ,[short index]
 ,[short *count]
 ,[short *ssid]);
SPI Programming Manual—427506-007
6-5

SPI Programming in C SSMOVE and SSMOVETKN
SSMOVE and SSMOVETKN

Examples

For example source code programs written in C, see Appendix E, SPI Programming
Examples.

#include <cextdecs(SSMOVE)>

short SSMOVE (short *token-id
 , short *source-buffer
 ,[short source-index]
 , short *dest-buffer
 ,[short dest-index]
 ,[short *count]
 ,[short *ssid]);

#include <cextdecs(SSMOVETKN)>

short SSMOVETKN (long token-id
 , short *source-buffer
 ,[short source-index]
 , short *dest-buffer
 ,[short dest-index]
 ,[short *count]
 ,[short *ssid]);
SPI Programming Manual—427506-007
6-6

7 SPI Programming in COBOL

This section provides language-specific information for the programmer who is using
COBOL to write an SPI requester or server. (COBOL74 does not support SPI.)

Definition Names in COBOL
Symbolic names in this section are in the COBOL form using hyphens. For example,
the DDL token code ZSPI-TKN-RETCODE is expressed the same way in COBOL.

COBOL Definition Files
COBOL applications include COPY statements to copy in each section of the COBOL
definition files (copy libraries) that they use, including the ZSPI definition file and the
definition files for all subsystems with which the programs communicate.

The COBOL version of the SPI standard definitions is in a file named
ZSPIDEF.ZSPICOB on the disk volume chosen by your site. For NonStop Kernel
subsystems, the COBOL versions of the subsystem definitions have file names of the
form ZSPIDEF.subsysCOB, where subsys is the 4-character subsystem
abbreviation. For the individual section names, see the listings of these files. You can
include these COPY statements in any order.

For example, if your application sends the CONTROL PM command to Pathway, it
should include COPY statements similar to:

EXTENDED-STORAGE SECTION.
 copy CONSTANTS of $SYSTEM.ZSPIDEF.ZSPICOB.
 copy ZPWY-DDL-PAR-CONTROL-PM of $SYSTEM.ZSPIDEF.ZPWYCOB.
 copy CONSTANTS of $SYSTEM.ZSPIDEF.ZPWYCOB.

Topic Page

Definition Names in COBOL 7-1

COBOL Definition Files 7-1

Declarations Needed in COBOL Programs 7-2

Interpreting Boolean Values 7-2

Interprocess Communication 7-3

Writing a Server in COBOL 7-4

SPI Procedure Syntax in COBOL 7-4

Examples 7-6
SPI Programming Manual—427506-007
7-1

SPI Programming in COBOL Declarations Needed in COBOL Programs
Declarations Needed in COBOL Programs
In addition to the declarations provided in the definition files, you must add these
declarations to your COBOL programs.

SPI Buffer

In the Data Division of your program, you must set up the file for requester-server
communication. Use a file description (FD) entry similar to:

FD SERVER-FILE LABEL RECORDS ARE OMITTED.

Immediately following this statement, include a COPY statement for the SPI buffer
declaration. The ZSPIDEF.subsysCOB definition file for each NonStop Kernel
subsystem includes a buffer declaration named subsys-DDL-MSG-BUFFER, which
has the structure described in SPI Message Buffer on page 2-13. To allocate a buffer
of the recommended size, your COPY statement should be similar to (this example is
for sending commands to Pathway):

copy ZPWY-DDL-MSG-BUFFER of $SYSTEM.ZSPIDEF.ZSPICOB.

Then you can easily refer to the Z-MSGCODE (-28), Z-BUFLEN, and Z-OCCURS
fields of this structure as needed.

If you wish to define a buffer larger than the recommended size in order to handle a
large number of response records per response message, you can write your own
buffer declaration, following the pattern of subsys-DDL-MSG-BUFFER.

Interpreting Boolean Values
Tokens and token fields of token type ZSPI-TYP-BOOLEAN (or other token types
based on ZSPI-DDL-BOOLEAN) become type PIC XX in COBOL. Therefore, COBOL
does not support the named values ZSPI-VAL-TRUE and ZSPI-VAL-FALSE.

To interpret the values of Boolean tokens and fields, it is recommended that your
programs define PIC XX variables or fields in working storage, use VALUE clauses to
initialize them to HIGH-VALUES (true) or LOW-VALUES (false), and then reference the
PIC XX fields when the true or false values are needed in operations with fields of type
ZSPI-TYP-BOOLEAN.

For example, consider the ZTMF field of ZPWY-DDL-DEF-PROG. A COBOL program
could set or test this field as follows:

 .
 .
WORKING-STORAGE.
01 COBOL-VAL-TRUE PIC XX VALUE HIGH-VALUES.
01 COBOL-VAL-FALSE PIC XX VALUE LOW-VALUES.
 .
 .
PROCEDURE DIVISION
SPI Programming Manual—427506-007
7-2

SPI Programming in COBOL Interprocess Communication
 .
 .
 MOVE COBOL-VAL-TRUE TO ZTMF OF ZPWY-DDL-DEF-PROG.

 or

 IF ZTMF OF ZPWY-DDL-DEF-PROG = COBOL-VAL-FALSE . . .

 or

 IF ZTMF OF ZPWY-DDL-DEF-PROG NOT = COBOL-VAL-FALSE . . .
 .
 .

It is recommended that you use the comparison “NOT = false-value” rather than “=
true-value,” in case a subsystem uses a value other than -1 for TRUE.

It is a good idea to put the declarations of COBOL-VALUE-TRUE and COBOL-VALUE-
FALSE into a COPY library and copy it into each program that needs the definitions, in
case future versions of HP software change the data type used in COBOL for Boolean
fields.

Interprocess Communication
These considerations apply to communication with subsystem servers using SPI
messages.

Selecting the External File

In the Environment Division of your program, you must use a SELECT clause to
identify the external file to which the server file is connected. If your server has a fixed
process name, use a SELECT clause similar to:

SELECT SERVER-FILE ASSIGN TO "$TRPM".

If your server does not have a fixed name, include a SELECT clause such as:

SELECT SERVER-FILE ASSIGN TO "#DYNAMIC".

Then (for a non-fixed-name server) use the COBOLASSIGN utility routine to assign the
process name at run time.

Starting the Server

To start any servers that your application starts dynamically, use the
CREATEPROCESS utility routine.

If a server that you start dynamically honors assign and param messages, and you
want to allow the user of your application to provide these messages to the server, you
should compile your application with the ?SAVEALL directive. Doing this ensures that
assign and param messages are saved and passed on.
SPI Programming Manual—427506-007
7-3

SPI Programming in COBOL Communicating With the Server
Communicating With the Server

Except in the case of the EMS collector process ($0), use the OPEN verb to open the
server, and use the READ WITH PROMPT verb to send commands to it.

To open the EMS collector process to send commands to it or to report events, you
must use the utility routine COBOL^SPECIAL^OPEN. To open the collector to send
commands to it, specify “$0.#ZSPI” in the SELECT clause. To open the EMS collector
to send event messages to it, specify “$0” in the SELECT clause. For more information
about COBOL^SPECIAL^OPEN, see the COBOL85 Reference Manual.

After you have opened $0.#ZSPI using COBOL^SPECIAL^OPEN, you send
commands to it using READ WITH PROMPT, just as for any other server process.
However, after opening $0 using COBOL^SPECIAL^OPEN, you send event messages
to it using the WRITE verb.

Writing a Server in COBOL
If you are writing a subsystem server, you should include COPY statements for the
sections of the SPI definition files (and any other HP definitions) you use, as you would
in writing a requester. You must also set up the file (FD) and copy the subsys-DDL-
MSG-BUFFER definition.

A subsystem should open $RECEIVE for I-O to receive SPI messages and then use
the READ verb to read the messages and WRITE to send the replies.

SPI Procedure Syntax in COBOL
To call the SPI procedures from a COBOL program, use the COBOL ENTER TAL
feature just as you would to call other operating system procedures. For complete
descriptions of the SPI procedures and their parameters, see Section 3, The SPI
Procedures.

Note. Always call the procedures SSGET, SSMOVE, and SSPUT for both token codes and token maps
in COBOL. SSPUTTKN, SSGETTKN, and SSMOVETKN are not needed or recommended in COBOL
programs.
SPI Programming Manual—427506-007
7-4

SPI Programming in COBOL SSINIT
SSINIT

SSNULL

SSPUT

SSPUTTKN

Use SSPUT rather than SSPUTTKN in COBOL programs.

ENTER TAL "SSINIT"
 USING buffer
 buffer-length
 ssid
 header-type
 command
 [object-type]
 [max-resp]
 [server-version]
 [checksum]
 [max-field-version]
 GIVING status.

ENTER TAL "SSNULL"
 USING token-map
 struct
 GIVING status.

ENTER TAL "SSPUT"
 USING buffer
 token-id
 [token-value]
 [count]
 [ssid]
 GIVING status.
SPI Programming Manual—427506-007
7-5

SPI Programming in COBOL SSGET
SSGET

SSGETTKN

Use SSGET rather than SSGETTKN in COBOL programs.

SSMOVE

SSMOVETKN

Use SSMOVE rather than SSMOVETKN in COBOL programs.

Examples
For sample programs using SPI in COBOL, see the Distributed Name Service (DNS)
Management Programming Manual and the Pathway/iTS Management Programming
Manual.

ENTER TAL "SSGET"
 USING buffer
 token-id
 [token-value]
 [index]
 [count]
 [ssid]
 GIVING status.

ENTER TAL "SSMOVE"
 USING token-id
 source-buffer
 [source-index]
 dest-buffer
 [dest-index]
 [count]
 [ssid]
 GIVING status.
SPI Programming Manual—427506-007
7-6

8 SPI Programming in TACL

This section provides language-specific information for the programmer who is using
the TACL to write an SPI requester or server:

Definition Names in TACL
Symbolic names in this section are in the TACL form, using circumflex (^) symbols
rather than hyphens. For example, the DDL token code ZSPI-TKN-RETCODE is
expressed as ZSPI^TKN^RETCODE in TACL.

Limitations of TACL for SPI Programming
TACL is an interpreted language, so TACL macros and routines are quick to code and
test but usually run more slowly than compiled TAL, COBOL, or C programs. For these
reasons, TACL is most useful in prototype applications and in applications for which
performance is not an issue. In addition, you should be aware of several other
restrictions when deciding whether to implement your application in TACL.

TACL does not let routines run as process pairs. If you require a process to run as a
process pair, you must code it in TAL, COBOL, or C.

TACL does not support the programmatic interfaces other than SPI to subsystems
such as the spooler, Measure, Sort/FastSort, and Enform. If your application is in TACL
and it must communicate with one of these subsystems, it must use the conversational
text interface to the subsystem. For instance, it must communicate with the spooler
through the text interface to SPOOLCOM or Peruse.

TACL has an absolute maximum I/O buffer size of 4096 bytes, and STRUCTs are also
limited to 4096 bytes. In addition, TACL requesters using the #REQUESTER feature
cannot do nowait I/O for buffers larger than 239 bytes.

If you are writing a subsystem, TACL does not support the EMS high-level procedures
for preparing event messages (EMSINIT, EMSADDSUBJECT, EMSADDTOKENS, and
EMSADDBUFFER). Therefore, if your subsystem reports events, you must code the
module that prepares the event messages in TAL, C, or COBOL.

Topic Page

Definition Names in TACL 8-1

Limitations of TACL for SPI Programming 8-1

TACL Definition Files 8-2

Declarations and Data Representations in TACL 8-2

Syntax of the TACL Built-Ins 8-8

Interprocess Communication 8-30

Example: Printing or Displaying the Status Structure of the
Subsystem Control Point (SCP)

8-30
SPI Programming Manual—427506-007
8-1

SPI Programming in TACL TACL Definition Files
TACL Definition Files
TACL macros and routines must load the SPI standard definition file named
ZSPIDEF.ZSPITACL on the disk volume chosen by your site, and must also load the
definition files in TACL for all subsystems with which your program communicates. For
NonStop Kernel subsystems, the names of the definition files in TACL are of the form
ZSPIDEF.subsysTACL, where subsys is the four-character subsystem abbreviation.

To avoid text buffer overflows during loading, load each definition file:

PUSH X
#LOAD / LOADED X / $volume.ZSPIDEF.subsysTACL
POP X

The LOADED option directs TACL to put the loaded variables into the variable named
in the option (here, X) instead of returning them in the expansion to #LOAD; #LOAD
then expands to nothing.

Declarations and Data Representations in
TACL

TACL processes data in both external format (displayable strings of ASCII characters)
and STRUCT format (binary data defined as a STRUCT). TACL provides a set of built-
in functions, described later in this section, that correspond to the SPI procedures. Two
different built-ins are available for SSGET functionality and two for SSPUT
functionality, so that you can pass and return token values in either format.

When you pass parameters to and receive results from these built-ins:

 The SPI buffer must be in STRUCT format.

 The subsystem ID must be in external format when it is passed as the ssid
parameter to a built-in. When it is passed or returned as a token value, its
representation depends on the built-in, as is true for other token values.

 Token codes can be in either external or STRUCT format.

 Token maps (and token codes of token data type ZSPI^TDT^STRUCT) must be in
STRUCT format.

 Token values passed to the #SSPUT built-in must be in external format, and token
values returned from the #SSGET built-in are always in external format (returned in
the expansion of the built-in).

 Token values passed to the #SSPUTV and #SSMOVE built-ins must be in
STRUCT format, and token values returned from the #SSGETV and #SSMOVE
built-ins are always in STRUCT format.

 Most other parameters—including the count, index, command, object type,
maximum responses, server version, and checksum parameters—must be in
external format.
SPI Programming Manual—427506-007
8-2

SPI Programming in TACL SPI Buffer
 For parameters that require external-format numbers, a numeric variable (a TEXT
variable whose contents represent a number) is acceptable.

SPI Buffer

An SPI buffer in TACL is a writable variable level of type STRUCT. The definition of the
STRUCT is irrelevant to TACL, except that TACL passes its length to the SSINIT
procedure.

The ZSPIDEF.subsysTACL definition file for each NonStop Kernel subsystem includes
a buffer declaration whose name is subsys^DDL^MSG^BUFFER. Use this declaration
to allocate a buffer variable of the recommended size (subsys^VAL^BUFLEN). Some
subsystems can provide additional buffer declarations allocating different
recommended buffer-size values for different commands. For details, see the individual
subsystem management programming manual.

To define a buffer larger than the recommended size in order to handle a large number
of response records per response message, you can write your own buffer declaration.
For example, you could declare an SPI buffer:

#DEF buf STRUCT BEGIN BYTE b(0:3999); END;

Subsystem ID

The external representation of a subsystem ID is an 8-character subsystem owner, a
period separator, a subsystem number, a period separator, and a version number. The
subsystem owner can contain hyphens but the first character must be alphabetic. All
three fields—the subsystem owner, the subsystem number, and the version number—
are required.

The subsystem owner must be entered exactly as specified by the subsystem (except
that you can omit trailing blanks); TACL does not case-shift it. For NonStop Kernel
subsystems, the subsystem owner is “TANDEMbb”.

For NonStop Kernel subsystems, you can supply the appropriate mnemonic from
Appendix D, NonStop Kernel Subsystem Numbers and Abbreviations, in place of the
subsystem number. These mnemonics are case-sensitive; all alphabetic characters are
in uppercase, and you must enter them in uppercase.

For NonStop Kernel subsystems provided by HP, and for your own subsystems if you
use the same version-number format HP uses, you can use the external form for the
version—a letter followed by two decimal digits. If you enter the letter in lowercase,
TACL upshifts it.

Examples of valid subsystem IDs:

TANDEM.EMS.G06
TANDEM.PATHWAY.G06
MYORG.1.2
MYORG.1.A00
SPI Programming Manual—427506-007
8-3

SPI Programming in TACL Token Codes
In the first two examples, you could substitute 18182 for G06; however, G06 is
recommended for clarity. The last two examples are possible subsystem IDs for a
subsystem you might write. The third example assumes that you define your versions
as simple integers. The fourth example assumes that you define them in the same
format HP uses.

The null value of the subsystem ID in TACL is 0.0.0.

Your TACL macro or routine must initialize a STRUCT for each subsystem with which
your application communicates. For NonStop Kernel subsystems, the name of this
STRUCT in the TACL definition file is subsys^VAL^SSID. To initialize it, use
ZSPI^VAL^TANDEM for the Z^OWNER field, ZSPI^SSN^subsys for the Z^NUMBER
field, and subsys^VAL^VERSION for the subsystem Z^VERSION field. For example, if
your application sends commands to TMF, your macro or routine loads the definitions
supplied by TMF (in the file ZSPIDEF.ZTMFTACL) and might then include this #SET
call:

#SET ZTMF^VAL^SSID &
[ZSPI^VAL^TANDEM].[ZSPI^SSN^ZTMF].[ZTMF^VAL^VERSION]

If you are sending a command to a subsystem provided by a company other than HP,
you must make the appropriate, different entries for the Z^OWNER, Z^NUMBER, and
Z^VERSION fields.

Token Codes

The built-in functions for SPI accept token codes either as external-format integers or
numeric values, or as 32-bit STRUCTs.

Token-code STRUCT definitions, as generated by DDL, are included in the TACL
versions of the SPI and subsystem definition files. Your TACL macros and routines can
refer to the individual fields of a token code by copying the token code into
ZSPI^DDL^TOKENCODE:Z^TOKENCODE.

Token codes cannot be composed or decomposed by simple arithmetic, because the
token number is signed and simple arithmetic would extend the sign.

Token Maps

In TACL, a token map is a STRUCT whose data contains a valid SPI token map. The
definition of the STRUCT is irrelevant.

Token-map definitions, as generated by DDL, are included in the TACL definition files
for subsystems that define extensible structured tokens.

When using a token map, TACL verifies that the contents of the token map are
consistent with the size of the STRUCT in which it is stored.
SPI Programming Manual—427506-007
8-4

SPI Programming in TACL Token Values
Token Values

These pages give the TACL types, value ranges, external representations, and special
considerations for token values of the various token data types.

TACL Types and Value Ranges

In the definition files for SPI and the various NonStop Kernel subsystems, most tokens
and token fields translate into appropriate TACL variable and field types, including
high-level TACL types such as CRTPID, FNAME, and TIMESTAMP.

Table 8-1 lists the SPI token data types that TACL recognizes and gives, for each, the
corresponding TACL type used in the ZSPIDEF.subsysTACL definition files and the
acceptable range of values for an item of the basic length of that token data type.

TACL performs type checking on token values and reports any incompatibilities
between the values and the corresponding TACL types. To perform comparisons and
assignments involving type-incompatible null values or reset values, see Identifying
Null Values on page 8-7 and Setting Reset Values on page 8-8.

TACL does not fill in default values for missing fields in values of token data types
ZSPI^TDT^FNAME, ZSPI^TDT^FNAME32, or ZSPI^TDT^SUBVOL.

TACL interprets token data types it does not recognize (including ZSPI^TDT^LIST,
ZSPI^TDT^MARK, ZSPI^TDT^FLT, and ZSPI^TDT^FLT2) as if they were
ZSPI^TDT^INT. This action of TACL causes no problems for the first two token data
types (because they are of token length 0 and have no corresponding token values),
but it amounts to nonsupport for the floating-point token data types.

Table 8-1. TACL Data Types for SPI (page 1 of 2)

Token Data Type TACL Type Value Range

ZSPI^TDT^BOOLEAN BOOL -32768 through 32767

ZSPI^TDT^BYTE BYTE 0 through 255

ZSPI^TDT^CHAR CHAR Binary 0 through 127

ZSPI^TDT^CRTPID CRTPID Any valid internal-format process ID

ZSPI^TDT^DEVICE DEVICE Any valid internal-format device name

ZSPI^TDT^ENUM ENUM –32768 through 32767

ZSPI^TDT^ERROR SSID plus INT Any valid subsystem ID followed by a
number from -32768 through 32767

ZSPI^TDT^FNAME FNAME Any valid 24-byte internal-format file name

ZSPI^TDT^FNAME32 FNAME32 Any valid 8-byte internal-format system name
followed by any valid 24-byte internal-format
local file name

ZSPI^TDT^INT INT -32768 through 32767

ZSPI^TDT^INT2 INT2 -2147483648 through 2147483647
SPI Programming Manual—427506-007
8-5

SPI Programming in TACL Token Values
External Representations

TACL represents values of these token data types as numeric character strings
representing numbers within the acceptable ranges as given in Table 8-1:

ZSPI^TDT^BYTE
ZSPI^TDT^BOOLEAN
ZSPI^TDT^ENUM
ZSPI^TDT^INT
ZSPI^TDT^INT2
ZSPI^TDT^INT4
ZSPI^TDT^UINT
ZSPI^TDT^TIMESTAMP

TACL represents values of token data types ZSPI^TDT^CHAR and
ZSPI^TDT^USERNAME as character strings of the same form accepted by other
languages. For ZSPI^TDT^CHAR values, that form is a number of contiguous
characters equal to the actual byte length of the token. (The actual byte length is the
value of the token-length field if that value is less than 255, or the length of the token
value if the token-length field is 255.)

TACL accepts and displays the usual external representations for values of token data
types ZSPI^TDT^CRTPID, ZSPI^TDT^DEVICE, ZSPI^TDT^FNAME,
ZSPI^TDT^FNAME32, and ZSPI^TDT^SUBVOL. For ZSPI^TDT^CRTPID,
ZSPI^TDT^DEVICE, ZSPI^TDT^FNAME, and ZSPI^TDT^SUBVOL values, systems
whose numbers cannot be found are given system number 255 on input, and shown as
\?? on output. For values of token data type ZSPI^TDT^CRTPID, programs can access
the creation time of an unnamed process or the cpu,pin of any process only by
copying the value into a STRUCT whose fields have been redefined accordingly.

ZSPI^TDT^INT4 INT4 -(2**63) through (2**63)-1

ZSPI^TDT^MAP STRUCT Depends on STRUCT definition

ZSPI^TDT^SSCTL BYTE 0 through 255

ZSPI^TDT^SSID SSID Any valid subsystem ID

ZSPI^TDT^STRUCT STRUCT Depends on STRUCT definition

ZSPI^TDT^SUBVOL SUBVOL Any valid volume and subvolume name

ZSPI^TDT^TIMESTAMP TSTAMP -(2**63) through (2**63)-1

ZSPI^TDT^TOKENCODE INT2 -2147483648 through 2147483647 or, on
input, a 32-bit STRUCT

ZSPI^TDT^TRANSID TRANSID Any 64-bit TMF internal-format transaction ID

ZSPI^TDT^UINT UINT 0 through 65535

ZSPI^TDT^USERNAME USERNAME Any valid user name (not user number)

Table 8-1. TACL Data Types for SPI (page 2 of 2)

Token Data Type TACL Type Value Range
SPI Programming Manual—427506-007
8-6

SPI Programming in TACL Identifying Null Values
Values of token data type ZSPI^TDT^SSID have the external format described in
Subsystem ID on page 8-3. Values of token data type ZSPI^TDT^ERROR consist of a
subsystem ID in that format followed by a period and a numeric character string
representing a number in the range -32768 to +32767.

Values of token data type ZSPI^TDT^TRANSID have this external format:

\system-name(crash-count).cpu.sequence

If the internal-format TRANSID contains a crash count of zero, the TRANSID is
formatted as:

\system-name.cpu.sequence

In any of the cases above, if the system is not named the TRANSID is formatted as:

cpu.sequence

On output, if TACL cannot find the name of a system, TACL replaces system-name
with system-number.

Values of token data types ZSPI^TDT^MAP and ZSPI^TDT^STRUCT must be placed
in a STRUCT or retrieved from a STRUCT, and your macro or routine must handle
them with #SSGETV and #SSPUTV. The definition of the STRUCT provides the rules
for conversion between internal and external formats.

If the token-length field of a token is less than 255 and the token data type is any other
than ZSPI^TDT^CHAR, ZSPI^TDT^MAP, or ZSPI^TDT^STRUCT, the token value is
represented by a space-separated list of m/n items, where m is the true length of the
token and n is the basic length of the token data type. If m is not evenly divisible by n,
the last bytes cannot be set or seen. Each item is in its usual external representation.

If the token-length field of a token is 255, the token value is of variable length. TACL
represents such a token value externally as a numeric character string representing
the one-word byte length of the token, followed by a space, followed by the token value
or values. For example, a variable-length character string containing the characters
“abcd” is represented as

4 abcd

Likewise, a variable-length array containing the integers 1, 2, 3, and 4 is represented
as

8 1 2 3 4

Identifying Null Values

Null values for fields of an extensible structured token often are not acceptable values
in TACL. You can determine whether a field of an extensible structured token (for
instance, in a response from a subsystem) has a null value by comparing the field in
question with the corresponding field of an extra copy of the structure, initialized with
SSNULL. To perform this comparison without causing a TACL type-checking error, use
the #COMPAREV built-in function.
SPI Programming Manual—427506-007
8-7

SPI Programming in TACL Setting Reset Values
Setting Reset Values

Some subsystems, such as Pathway, define special values (similar to null values) that,
when assigned to structured-token fields that represent command parameters, direct
the subsystem to reset those parameters to their default values. However, these values
might not always be legitimate values for the field as defined in TACL.

To circumvent this problem, use the TACL built-in #SETBYTES to set these fields. To
use #SETBYTES, you first define a STRUCT, then put the reset value into the
STRUCT; then you call #SETBYTES, referring to the field you are resetting and the
name of the STRUCT.

For example, suppose that you are using Pathway and want to set the subfield
ZINSPECTFILE of the field ZINSPECTINFO of the structure ZPWY^DDL^DEF^TERM.
This field is of type FNAME32, and the corresponding reset constant,
ZPWY^VAL^RESETALPHABYTE, is not compatible with FNAME32 in TACL. To set the
field to its reset value, you can use this TACL code:

[#DEF reset^alpha^byte STRUCT
 BEGIN BYTE reset^alpha
 VALUE [zpwy^val^resetalphabyte]; END;]

[#SETBYTES zpwy^ddl^def^term:zinspectinfo:zinspectfile
 reset^alpha^byte]

For comparisons involving such values, use the #COMPAREV built-in.

Syntax of the TACL Built-Ins
These built-in functions are the TACL counterparts of the SPI procedures described in
Section 3, The SPI Procedures. (They call the SPI procedures internally.)

#SSINIT

Use #SSINIT to initialize a STRUCT as an SPI buffer, preparing it for use with the other
#SSxxx built-in functions. This operation gives the buffer an appropriate header and,
optionally, adds parameter information.

Built-In Page

#SSINIT 8-8

#SSNULL 8-10

#SSPUT 8-11

#SSPUTV 8-16

#SSGET 8-19

#SSGETV 8-24

#SSMOVE 8-27
SPI Programming Manual—427506-007
8-8

SPI Programming in TACL #SSINIT
You can use #SSINIT only to initialize a buffer for a command or a response; it cannot
be used to initialize an event-message buffer.

TYPE 0

indicates the header type of the SPI message buffer being initialized. Type 0, a
command or response header, is the default. It is also the only header type
currently supported by TACL.

buffer-var

is the name of the variable to be initialized as an SPI buffer. This variable must be
a writable STRUCT. #SSINIT automatically passes the data length of the STRUCT
to SSINIT. The current contents of the STRUCT are lost.

ssid

is the subsystem ID of the subsystem. For requester functions, this ID identifies the
target subsystem, and the version field must identify the version of the subsystem
definitions that your requester program is using. For server functions (subsystems),
this ID must identify your server program, including its version.

command

is the command number.

type-0-option

can be any of:

CHECKSUM checksum

gives the checksum flag. If checksum is zero or if you do not supply this
option, checksum protection of the buffer is disabled; if checksum is nonzero,
checksum protection is enabled.

MAXFIELDVERSION max-field-version

is an unsigned integer value that initializes the maximum field version field of
the buffer header. The default value is zero.

MAXRESPONSES max-resp

gives the maximum number of response records to be returned by the
subsystem in each response message. A max-resp value of zero (the default)
specifies one response record per response, not enclosed in a list. Any positive
value specifies up to that number of response records, each enclosed in a list.
A value of -1 specifies as many response records as will fit, each enclosed in a
list.

#SSINIT [/ TYPE 0 /] buffer-var ssid
 command [/ type-0-option [, type-0-option]... /]
SPI Programming Manual—427506-007
8-9

SPI Programming in TACL #SSNULL
OBJECT object-type

gives the object type. If you do not supply this option, the object type defaults
to ZSPI^VAL^NULL^OBJECT^TYPE (zero).

SERVERVERSION server-version

is normally provided only by subsystems or by other programs that are acting
as a server. In those cases, it is a 16-bit unsigned integer value representing
the version of the subsystem or server program. SSINIT places this value in
the header token ZSPI^TKN^SERVER^VERSION for use in version
compatibility checking. If you do not supply this option, the server version
defaults to zero.

Expansion

#SSINIT expands to a numeric status code indicating the outcome of the operation.
The status code has one of these values:

 0 No error
 -2 Illegal parameter value
 -3 Missing parameter
 -4 Illegal parameter address
 -5 Buffer full
 -7 Internal error
-10 Invalid subsystem ID
-12 Insufficient stack space

For more information about nonzero status codes, see Appendix A, Errors.

Consideration

 For the ssid parameter, if you are initializing a command buffer to send to a
NonStop Kernel subsystem, you can expand a name of the form
subsys^VAL^SSID. For example, this #SSINIT call initializes a buffer to send the
GETVERSION command to EMS:

#SSINIT buf [ZEMS^VAL^SSID] [ZSPI^VAL^GETVERSION]

#SSNULL

The #SSNULL built-in function initializes a structure with null values. Use this
procedure before setting values within a structure for an extensible structured token.

Note. Your macro or routine must always use #SSNULL before placing values in the fields of a
structure, even when all currently defined fields are set explicitly. This practice allows the program to
continue to work with future software releases.

#SSNULL token-map struct
SPI Programming Manual—427506-007
8-10

SPI Programming in TACL #SSPUT
token-map

is a token map to be used in initializing the fields of the structure.

struct

is the structure to be initialized with null values.

Expansion

#SSNULL expands to a numeric status code indicating the outcome of the operation.
The status code has one of these values:

 0 No error
-3 Missing parameter
-4 Illegal parameter address
-7 Internal error
-9 Illegal token code or map

For more information about nonzero status codes, see Appendix A, Errors.

#SSPUT

Use #SSPUT to convert token values from external representation to binary form and
insert them into an SPI buffer previously initialized by #SSINIT. #SSPUT cannot insert
values of extensible structured tokens using a token map or using a token code of type
ZSPI^TDT^STRUCT. For this purpose, use #SSPUTV.

option

is either of:

COUNT count

gives the token count. If count is greater than 1, token-value is assumed to
be a space-separated list of count elements, each of which is described by
the token-code. count must be an integer in the range 1 to 65535, inclusive,
and you must provide that many token values. (You must represent a variable-
length token value in two parts—the byte length followed by the actual value—
separated by a space.) The default count is 1.

If token-code is a special operation that does not allow a token value, you
must omit COUNT count. For the special token code ZSPI^TKN^DELETE,
you must supply COUNT count, and #SSPUT interprets count as the index
value of the token code to be deleted.

#SSPUT [/ option [, option] /] buffer-var
 token-code [token-value [token-value]...]
SPI Programming Manual—427506-007
8-11

SPI Programming in TACL #SSPUT
SSID ssid

is a subsystem ID that qualifies the token code. If ssid is zero (0.0.0) or if you
do not supply this option, the default applies. If #SSPUT is currently adding
tokens to a list, ssid defaults to the subsystem ID of that list; otherwise, ssid
defaults to the subsystem ID in the SPI message header (ZSPI^TKN^SSID).

buffer-var

is the name of the SPI message-buffer variable into which tokens are to be placed.

token-code

either identifies the token being supplied or denotes a special operation. The
special operations are described further in Special Operations for #SSPUT and
#SSPUTV on page 8-13. (To specify a token map, or a token code of type
ZSPI^TYP^STRUCT, use #SSPUTV.)

token-value

if present, is the value of the token. Its data representation is determined by the
token-type field of the token-code.

Expansion

#SSPUT expands to a numeric status code indicating the outcome of the operation.
The status code has one of these values:

 0 No error
 -1 Invalid buffer format
 -2 Illegal parameter value
 -3 Missing parameter
 -4 Illegal parameter address
 -5 Buffer full
 -6 Invalid checksum
 -7 Internal error
 -8 List token not found
 -9 Illegal token code or map
-10 Invalid subsystem ID
-11 Operation not supported
-12 Insufficient stack space

For more information about nonzero status codes, see Appendix A, Errors.

Considerations

 The token-value parameter is optional if the token length specified by token-
code is zero (for instance, if token-code is ZSPI^TKN^DATALIST,
ZSPI^TKN^ERRLIST, ZSPI^TKN^LIST, ZSPI^TKN^ENDLIST, or
ZEMS^TKN^SUBJECT^MARK). Otherwise, the token-value parameter is
required.
SPI Programming Manual—427506-007
8-12

SPI Programming in TACL #SSPUT
 Specifying a count parameter greater than one for #SSPUT is equivalent to
calling #SSPUT count number of times in succession with a count of 1 (but
supplying a new token-value before each call).

 If count is greater than 1 and the token is of variable length, the length of each
token value must be an even number of bytes to ensure word alignment. For
example, the object-name token used by extended-SPI subsystems,
ZCOM^TKN^OBJNAME, is a variable-length character string. This #SSPUT call
places in the buffer two object-name tokens whose values are “abc” and “defgh”:

#SSPUT /COUNT 1/ buf ZCOM^TKN^OBJNAME 3 abc 5 defgh

 The order in which tokens are added to the buffer is not significant except in the
case of (1) #SSPUT calls with token codes for tokens that start and end lists
(ZSPI^TKN^DATALIST, ZSPI^TKN^ERRLIST, ZSPI^TKN^LIST,
ZSPI^TKN^SEGLIST, and ZSPI^TKN^ENDLIST), and (2) a few subsystem-specific
exceptions mentioned in the subsystem manuals (for example, the
ZEMS^TKN^SUBJECT^MARK token in an event message).

 Adding a token to the buffer with #SSPUT does not affect the current position for
subsequent calls to #SSGET or #SSGETV.

Special Operations for #SSPUT and #SSPUTV

Table 8-2 lists the header tokens your programs can supply to #SSPUT and #SSPUTV
to set or change the corresponding values, and the tokens your programs can pass to
#SSPUT and #SSPUTV to perform special operations.

Header tokens for #SSPUT and #SSPUTV include tokens to enable or disable
checksum protection, specify the maximum-response value, restore the current
position to an earlier value, and specify the server version. These tokens are present in
the buffer but differ from other tokens in certain ways, as described in Section 2, SPI
Concepts and Protocol. (One header token, ZSPI^TKN^POSITION, can also be
considered a special operation for SSPUT. It is classified here as a header token
because it is a header token for #SSGET and #SSGETV, and because it is present in
the buffer and has the header-token characteristics given in Section 2, SPI Concepts
and Protocol.)

Special operations for #SSPUT and #SSPUTV include clearing the last-error
information, flushing data from the buffer, deleting tokens, and initializing the current
position. These tokens are not present in the buffer but simply serve as parameters to
#SSPUT and #SSPUTV.

Table 8-2. #SSPUT(V) Special Operations (page 1 of 2)

Token Specified in #SSPUT(V) call Type Effect

ZSPI^TKN^BUFLEN UINT Modify buffer length

ZSPI^TKN^CHECKSUM BOOLEAN Enable or disable buffer checksum

ZSPI^TKN^CLEARERR Clear last-error information to zero
SPI Programming Manual—427506-007
8-13

SPI Programming in TACL #SSPUT
The actions performed when these tokens are passed in the token-code parameter
to #SSPUT or the token-id parameter to #SSPUTV are:

ZSPI^TKN^BUFLEN: Modify Buffer Length

Use this token code to modify the SPI buffer length. If the buffer length value used with
SSPUT is less than the number of bytes indicated by ZSPI-TKN-USEDLEN, the buffer
length is modified and SSPUT returns ZSPI-ERR-NOSPACE.

ZSPI^TKN^CHECKSUM: Set Checksum Flag

With this token code, a nonzero token-value enables checksum protection of the
buffer; a zero token-value disables it.

ZSPI^TKN^CLEARERR: Clear Last SPI Error

Use this token code to clear the last-error information to zero. You must omit token-
value and COUNT count.

You might use this operation before issuing a series of #SSPUT[V] and #SSGET[V]
calls that are followed by a check of the last error. You need this operation only if you
use #SSPUT or #SSPUTV to check the header token ZSPI^TKN^LASTERR.

ZSPI^TKN^DATA^FLUSH: Clear Buffer From Current
Position

Use this token code to flush all information in the message buffer located at or after the
current position. You must omit token-value and COUNT count.

ZSPI^TKN^DATA^FLUSH Flush tokens starting at current
position

ZSPI^TKN^DELETE INT2 Delete a token from the buffer

ZSPI^TKN^INITIAL^POSITION INT Reset position to start of buffer or
list

ZSPI^TKN^MAX^FIELD^VERSION UINT Maximum field version

ZSPI^TKN^MAXRESP INT Set maximum-responses header
token

ZSPI^TKN^POSITION BYTE:8 Restore a previously saved position

ZSPI^TKN^RESET^BUFFER UINT Reset buffer

ZSPI^TKN^SERVER^VERSION UINT Set server-version header token

Table 8-2. #SSPUT(V) Special Operations (page 2 of 2)

Token Specified in #SSPUT(V) call Type Effect
SPI Programming Manual—427506-007
8-14

SPI Programming in TACL #SSPUT
The ZSPI^TKN^DATA^FLUSH operation does not cause the header token
ZSPI^TKN^MAX^FIELD^VERSION to be updated. As a result, following this operation,
that field can indicate a version higher than that contained in the buffer.

ZSPI^TKN^DELETE: Delete a Token or List

Use this token code to delete a token code from the buffer. For token-value, specify
the token code to be deleted.

You must supply COUNT count. For ZSPI^TKN^DELETE, #SSPUT and #SSPUTV
interpret the count value as the index value of the token code to be deleted.

You can supply SSID ssid, if needed, to qualify the token-code.

If token-code is a token that begins a list, the operation deletes the entire list.

The ZSPI^TKN^DELETE operation does not cause the header token
ZSPI^TKN^MAX^FIELD^VERSION to be updated. As a result, following this operation,
that field can indicate a version higher than that contained in the buffer.

ZSPI^TKN^INITIAL^POSITION: Reset Current and Next
Token Pointers

Use this token code to reset the current position as specified by the value of the
token-value parameter. If token-value is ZSPI^VAL^INITIAL^BUFFER (0), the
position is reset to the beginning of the buffer. If token-value is
ZSPI^VAL^INITIAL^LIST (-1), the position is reset to the start of the current list.

ZSPI^TKN^MAX^FIELD^VERSION: Increase Maximum
Version of Structure Fields

Use this token code to increase the maximum field version of the buffer. If the value
specified is greater than the current value, then the specified value is used.

ZSPI^TKN^MAXRESP: Set Maximum Responses

Use this token code to set the header token that specifies the maximum number of
responses to return in a single response message. A token-value of zero (the
default) specifies one response record per response, not enclosed in a list. Any
positive token-value specifies up to that number of response records, each
enclosed in a list. A token-value of -1 specifies as many response records as will fit,
each enclosed in a list.

You must omit COUNT count.

ZSPI^TKN^POSITION: Set Current Buffer Position Pointer

Use this token code to restore a position previously saved using #SSGET or
#SSGETV. The token-value is a position descriptor, represented as eight separate
SPI Programming Manual—427506-007
8-15

SPI Programming in TACL #SSPUTV
byte values for #SSPUT or as an 8-byte STRUCT for #SSPUTV. For this operation to
be valid, the contents of the buffer prior to the previously saved position must not have
been modified by ZSPI^TKN^DELETE, ZSPI^TKN^DATAFLUSH, or #SSMOVE
operations. Otherwise, this operation can corrupt the buffer and cause later operations
to give indeterminate results. If token-value is zero or not supplied, this operation
sets the current position to the beginning of the buffer.

ZSPI^TKN^RESET^BUFFER: Reset the Buffer

Use this token code before extracting tokens from an SPI buffer received (in either a
command or a response) from another process. This operation performs three actions:

 It resets the maximum buffer length to the value given in token-value.

 It clears the last-error information to null values (equivalent to the action of
ZSPI^TKN^CLEARERR).

 It resets the current position to the beginning of the buffer (equivalent to the action
of ZSPI^TKN^INITIAL^POSITION with ZSPI^VAL^INITIAL^BUFFER).

TACL checks to be sure the value given in token-value does not exceed the size of
the structure passed as the buffer. If token-value exceeds the buffer size, the SPI
error -5 (buffer full) is returned. SPI still resets the maximum buffer length in the SPI
message header, causing subsequent SPI calls for that buffer to fail with error -1
(invalid buffer format).

ZSPI^TKN^SERVER^VERSION: Set Server Version Header
Token

Use this token code to set the header token containing the release version of the
server. For token-value, supply an unsigned integer representing the appropriate
release version. For example, if the server is a NonStop Kernel subsystem of version
G06, token-value should be the unsigned integer with the ASCII character G in the
left byte and “06” in the right byte, or 18182.

#SSPUTV

Use #SSPUTV to take binary token values from a variable and insert them into an SPI
buffer. You can use #SSPUTV with any type of token. With tokens of type
ZSPI^TYP^STRUCT and extensible structured tokens, you must use #SSPUTV.

option

is either of:

#SSPUTV [/ option [, option]... /]
 buffer-var token-id source-var
SPI Programming Manual—427506-007
8-16

SPI Programming in TACL #SSPUTV
COUNT count

gives the token count. If count is greater than 1, source-var is assumed to
contain an array of count elements, each of which is described by the
token-id. If you do not supply this option, TACL assumes a count of 1.

If token-id is one of the special SPI token codes whose semantics do not
allow a token value, you must omit COUNT count. For the special token code
ZSPI^TKN^DELETE, you must supply COUNT count, and count is
interpreted as the index value of the token code to be deleted.

SSID ssid

is a subsystem ID, as described in Section 4, that qualifies the token code. If
ssid is not supplied or is equal to zero (0.0.0), the default applies. If SSPUT is
currently adding tokens to a list, ssid defaults to the subsystem ID of that list;
otherwise, ssid defaults to the subsystem ID in the SPI message header
(ZSPI^TKN^SSID).

buffer-var

is the name of the SPI message-buffer variable into which tokens are to be placed.

token-id

is a token code or a token map. This parameter either identifies the token being
supplied or denotes a special operation. The special operations are described
further in Special Operations for #SSPUT and #SSPUTV on page 8-13.

source-var

is the name of the STRUCT from which #SSPUTV is to obtain the binary token
values. The contents of the STRUCT are not altered.

Expansion

#SSPUTV expands to a numeric status code indicating the outcome of the operation.
The status code has one of these values:

 0 No error
 -1 Invalid buffer format
 -2 Illegal parameter value
 -3 Missing parameter
 -4 Illegal parameter address
 -5 Buffer full
 -6 Invalid checksum
 -7 Internal error
 -8 List token not found
 -9 Illegal token code or map
-10 Invalid subsystem ID
-11 Operation not supported
-12 Insufficient stack space
SPI Programming Manual—427506-007
8-17

SPI Programming in TACL #SSPUTV
For more information about nonzero status codes, see Appendix A, Errors.

Considerations

 If the token length specified by token-id is zero (for instance, if token-id is
ZSPI^TKN^DATALIST, ZSPI^TKN^ERRLIST, ZSPI^TKN^LIST,
ZSPI^TKN^ENDLIST, or ZEMS^TKN^SUBJECT^MARK), you must still supply a
variable for source-var, but its contents do not matter.

 Specifying a count parameter greater than 1 for #SSPUTV is equivalent to calling
#SSPUTV count number of times in succession with a count of 1 (but supplying
a new token-value before each call).

 The order in which tokens are added to the buffer is not significant except in the
case of (1) #SSPUTV calls with token codes for tokens that start and end lists
(ZSPI^TKN^DATALIST, ZSPI^TKN^ERRLIST, ZSPI^TKN^LIST, and
ZSPI^TKN^ENDLIST), and (2) a few subsystem-specific exceptions mentioned in
the subsystem management programming manuals (for example, the
ZEMS^TKN^SUBJECT^MARK token in an event message).

 If the data in source-var is longer than the data area expected by #SSPUTV, the
excess bytes are ignored without any indication. If the data in source-var is
shorter than the data area expected by #SSPUTV, the remainder of the token
value is set to unspecified values.

 If the COUNT count option is specified, the value of source-var is expected to
be an array of count values of the type of token-value. Variable-length token
values must be word-aligned. For example, the object-name token for extended
SPI subsystems, ZCOM^TKN^OBJNAME, is a variable-length character string. If a
program needs to call #SSPUTV to place in the buffer two object-name tokens
whose values are “abc” and “defgh”, this #DEF defines the correct STRUCT for
source-var:

[#DEF objnames STRUCT
 BEGIN
 UINT len1 VALUE 3;
 CHAR n1(0:3) VALUE abc;
 UINT len2 VALUE 5;
 CHAR n2(0:5) VALUE defgh;
 END;
]

 Adding a token to the buffer with #SSPUTV does not affect the current position for
subsequent calls to #SSGET or #SSGETV.

 When #SSPUTV is called with a token map for token-id, it uses the null-value
and version information in the token map, if necessary, to update the header token
ZSPI^TKN^MAX^FIELD^VERSION. The token map is not stored in the buffer;
instead, #SSPUTV creates a token code consisting of token type
ZSPI^TYP^STRUCT and the token number from the map.
SPI Programming Manual—427506-007
8-18

SPI Programming in TACL #SSGET
 SPI defines a number of token codes for use with #SSPUT and #SSPUTV to set
the values of header tokens and perform special operations. See Special
Operations for #SSPUT and #SSPUTV on page 8-13.

#SSGET

Use #SSGET to retrieve binary token values from an SPI buffer, convert them to
external representation, and make that external representation accessible in the
function’s expansion.

You cannot use #SSGET to extract values of extensible structured tokens using a
token map or using a token code of type ZSPI^TDT^STRUCT. For this purpose, use
#SSGETV.

option

is any of:

COUNT count

gives the maximum number of token values to return. This specifies that the
token value returned in the expansion is an array of count elements, each of
which is described by token-code. If not supplied, it defaults to 1.

If a count greater than 1 is specified, #SSGET continues searching until it
either satisfies the requested count or reaches the end of the buffer or list.

A count less than 1 causes an error.

INDEX index

if index is greater than zero, specifies an absolute index for token-code,
starting from the beginning of the buffer or list. An index of 1 gets the first
occurrence of that token, an index of 2 gets the second occurrence, and so
on.

if index is zero or not specified, #SSGET returns the next occurrence of the
token following the current token, and resets the current position to the token
returned. For example, if a token occurs five times, calling #SSGET once with
index = 1 and four times with index = 0 returns all occurrences.

An index value less than zero causes an error.

Your program must always either supply a nonzero index or first reset the
initial position (#SSPUT or #SSPUTV with ZSPI^TKN^INITIAL^POSITION or
ZSPI^TKN^RESET^BUFFER) if the search is to start from the beginning of the
buffer (or from the beginning of the current list).

#SSGET [/ option [, option]... /] buffer-var get-op
SPI Programming Manual—427506-007
8-19

SPI Programming in TACL #SSGET
SSID ssid

gives a subsystem ID (of type SSID) that qualifies the token code. If ssid is
omitted or equal to zero (0.0.0), it defaults to the subsystem ID of the current
list, or if the current position is not in a list, then to the subsystem ID specified
in the SPI message header. The version field of this parameter is not used
when searching the buffer.

buffer-var

is the name of the SPI message-buffer variable from which information is to be
extracted.

get-op

is one of:

token-code

directs #SSGET to return the token value or values associated with the
specified token code. (For a token map, or a token code of type
ZSPI^TYP^STRUCT, use #SSGETV.)

If token-code is a token that marks the beginning of a list
(ZSPI^TKN^DATALIST, ZSPI^TKN^ERRLIST, or ZSPI^TKN^LIST), #SSGET
selects the list so that subsequent calls can retrieve tokens within the list. If
token-code is ZSPI^TKN^ENDLIST, #SSGET deselects (pops out of) the list.

For token-code, you can supply one of the header tokens in Table 8-2 on
page 8-13. You can also supply the token ZSPI^TKN^DEFAULT^SSID to
obtain the default subsystem ID at the current position (see Special Operations
for #SSPUT and #SSPUTV on page 8-13).

ZSPI^TKN^COUNT c-token-id

directs #SSGET to return the total number of occurrences of the token
specified by the token code or token map c-token-id, starting at index. If
index is not supplied, counting starts from the current position. To count all
occurrences in the current list, specify an index of 1.

If c-token-id is either omitted or equal to ZSPI^VAL^NULL^TOKENCODE
and index is either omitted or zero, then #SSGET counts occurrences of the
current token beginning with the current occurrence.

ZSPI^TKN^LEN l-token-id

directs #SSGET to return the byte length of the token specified by the token
code or token map l-token-id. The value returned is the size of the buffer
needed to contain the specified occurrence of the token value. For variable-
length token values, this includes the two bytes required for the length word:
the byte length returned is token-value[0] + 2.
SPI Programming Manual—427506-007
8-20

SPI Programming in TACL #SSGET
If l-token-id is either omitted or equal to ZSPI^VAL^NULL^TOKENCODE
and index is either omitted or zero, then #SSGET returns the length of the
current occurrence of the current token.

If l-token-id is a token map, this operation returns the length contained
within the specified token map; the actual value in the buffer can be longer or
shorter than this length. To get the actual length of the token value in the buffer,
call #SSGET with ZSPI^TKN^LEN, a token code made up of
ZSPI^TYP^STRUCT, and the token number from the token map. This returns
the length of the structure value, including 2 bytes for the length field. Then
subtract 2 from this value to get the length of the value itself.

ZSPI^TKN^NEXTCODE

directs #SSGET to return the next token code that is different from the current
token code, followed by the subsystem ID.

The subsystem ID returned in the expansion always has a version field of zero
(null).

The index parameter has no effect on this operation, but if supplied, it must
be equal to zero.

ZSPI^TKN^NEXTTOKEN

directs #SSGET to return the very next token code, followed by the subsystem
ID. This operation differs from ZSPI^TKN^NEXTCODE in that it always returns
the token code of the next token, whether or not it is the same as that of the
current token, and whether or not the token is within a list. The operation
returns multiple occurrences of the same token code in the same order as they
were added to the buffer with #SSPUT or #SSPUTV.

The subsystem ID returned in the expansion always has a version field of zero
(null).

The index and count parameters have no effect on this operation. However,
if index is supplied, it must be equal to zero.

See the NOTE at the end of ZSPI^TKN^NEXTCODE on page 8-21.

ZSPI^TKN^OFFSET o-token-id

directs #SSGET to return the byte offset of the token specified by the token
code or token map o-token-id. The value returned is the offset from the
start of the buffer to the value associated with the specified token code and
index. (For variable-length values, the token value begins with the length word;
the offset given is the offset to that length word.)

Note. The special operations ZSPI^TKN^NEXTCODE and ZSPI^TKN^NEXTTOKEN return only
token codes. In particular, tokens added to the buffer by using #SSPUTV with a token map are carried in
the buffer with a token code of type ZSPI^TYP^STRUCT. The NEXTCODE and NEXTTOKEN
operations return this token code, not the token map used with #SSPUTV.
SPI Programming Manual—427506-007
8-21

SPI Programming in TACL #SSGET
If o-token-id is either omitted or equal to ZSPI^VAL^NULL^TOKENCODE
and index is either omitted or zero, then #SSGET returns the length of the
current occurrence of the current token.

Expansion

#SSGET expands to a numeric status code indicating the outcome of the operation. If
the status code is 0 (no error), it is followed by a space and a space-separated list of
the relevant results in TACL’s external representation.

The status code has one of these values:

 0 No error
 -1 Invalid buffer format
 -2 Illegal parameter value
 -3 Missing parameter
 -4 Illegal parameter address
 -5 Buffer full
 -6 Invalid checksum
 -7 Internal error
 -8 Token not found
 -9 Illegal token code or map
-10 Invalid subsystem ID
-11 Operation not supported
-12 Insufficient stack space

For more information about nonzero status codes, see Appendix A, Errors. If the status
is 0, these results are returned following the status:

 If you specified token-code, the number of token values returned, followed by a
space-separated list of the token values in external form. Variable-length token
values are returned in two parts—the byte length followed by the actual value—
separated by a space.

 If you specified ZSPI^TKN^COUNT c-token-id, the total number of occurrences
of the token specified by the token code or token map c-token-id, starting at
index.

 If you specified ZSPI^TKN^LEN l-token-id, the length of the token specified by
the token code or token map l-token-id.

 If you specified ZSPI^TKN^NEXTCODE, the next token code that is different from
the current token code, followed by the subsystem ID.

 If you specified ZSPI^TKN^NEXTTOKEN, the next token code, regardless of
whether it is different from the current token code, followed by the subsystem ID.

 If you specified ZSPI^TKN^OFFSET o-token-id, the byte offset of the token is
specified by the token code or token map o-token-id.
SPI Programming Manual—427506-007
8-22

SPI Programming in TACL #SSGET
Considerations

 When token-code is ZSPI^TKN^ENDLIST, the index and count parameters
have no effect. However, if supplied, index must be equal to zero or 1, and the
count in the expansion is always returned as 1.

Header Tokens and Special Operation for #SSGET and
#SSGETV

The index parameter you supply with these token codes must be 0 or 1.

If you specify ZSPI^TKN^LASTPOSITION or ZSPI^TKN^POSITION, the value
returned is an 8-byte position descriptor that you can later use to reset the position with
the #SSPUT or #SSPUTV special operation ZSPI^TKN^POSITION. For #SSGET, the
position descriptor is returned as a space-separated list of eight 1-byte values. For
#SSGETV, the value is returned in a STRUCT consisting of 8 bytes.

In addition, you can specify the special operation code ZSPI^TKN^DEFAULT^SSID.
This obtains the default subsystem ID at the current position, preceded by the number
of token values returned—which in this case is always 1. #SSPUT, #SSPUTV,
#SSGET, and #SSGETV use this value whenever the ssid parameter is omitted or
null.

Table 8-3. Header Token Values Retrieved by #SSGET and #SSGETV

Token Code Type Value Retrieved

ZSPI^TKN^BUFLEN UINT Buffer length

ZSPI^TKN^CHECKSUM INT Checksum flag

ZSPI^TKN^COMMAND ENUM Command number

ZSPI^TKN^HDRTYPE UINT Header type

ZSPI^TKN^LASTERR ENUM Last nonzero SPI status code

ZSPI^TKN^LASTERRCODE INT2 Token involved in last procedure
error

ZSPI^TKN^LASTPOSITION BYTE:8 Position of last token added with
SSPUT

ZSPI^TKN^MAX^FIELD^VERSION UINT Maximum field version

ZSPI^TKN^MAXRESP INT Maximum response records to
return

ZSPI^TKN^OBJECT^TYPE ENUM Object-type number

ZSPI^TKN^POSITION BYTE:8 Current position for #SSGET

ZSPI^TKN^SERVER^VERSION UINT Server release version

ZSPI^TKN^SSID SSID Subsystem ID used with #SSINIT

ZSPI^TKN^USEDLEN UINT Number of bytes used in the buffer
SPI Programming Manual—427506-007
8-23

SPI Programming in TACL #SSGETV
If the default subsystem ID comes from a list token, the version field of the returned
subsystem ID value is set to ZSPI^VAL^NULL^VERSION. Therefore, when comparing
subsystem ID values for equality, your program should omit the version field from the
test.

#SSGETV

Use #SSGETV to obtain binary token values from an SPI buffer and put them into a
STRUCT. You can use #SSGETV with any type of token. With tokens of type
ZSPI^TYP^STRUCT and extensible structured tokens, you must use #SSGETV.

option

is any of:

COUNT count
INDEX index
SSID ssid

These options are the same as those described under #SSGET, substituting
token-id for all references to token-code.

buffer-var

is the same as described for #SSGET.

get-op

is one of these:

token-id

is either a token code or a token map. It directs #SSGETV to return the token
value or values associated with token-id.

If token-code is a token that marks the beginning of a list
(ZSPI^TKN^DATALIST, ZSPI^TKN^ERRLIST, ZSPI^TKN^SEGLIST, or
ZSPI^TKN^LIST), #SSGET selects the list so that subsequent calls can
retrieve tokens within the list. If token-code is ZSPI^TKN^ENDLIST, #SSGET
deselects (pops out of) the list.

ZSPI^TKN^COUNT c-token-id
ZSPI^TKN^LEN l-token-id
ZSPI^TKN^NEXTCODE
ZSPI^TKN^NEXTTOKEN
ZSPI^TKN^OFFSET o-token-id

are the same as defined for #SSGET, except that #SSGETV returns the results
in result-var rather than in the expansion.

#SSGETV [/ option [, option]... /]
 buffer-var get-op result-var
SPI Programming Manual—427506-007
8-24

SPI Programming in TACL #SSGETV
result-var

is the name of the writable STRUCT in which #SSGETV is to store the result. The
original contents of the STRUCT are lost.

If the status code in the expansion is 0 (no error), the result stored in the STRUCT
is:

 If you specified token-id, the result is the value of the token.

 If you specified ZSPI^TKN^COUNT c-token-id, the result is an INT giving
the total number of occurrences of the token specified by the token code or
token map c-token-id, starting at index.

 If you specified ZSPI^TKN^LEN l-token-id, the result is an INT giving the
length of the token specified by the token code or token map l-token-id.

 If you specified ZSPI^TKN^NEXTCODE, the result is an INT2, an INT, and an
SSID giving the next token code that is different from the current token code,
the number of contiguous occurrences of that token code, and the subsystem
ID.

 If you specified ZSPI^TKN^NEXTTOKEN, the result is an INT2 and an SSID
giving the next token code (regardless of whether it is different from the current
token code), followed by the subsystem ID.

 If you specified ZSPI^TKN^OFFSET o-token-id, the result is an INT2 giving
the byte offset of the token specified by the token code or token map o-
token-id.

To extract individual fields of the token code or the subsystem ID returned by
#SSGETV with the ZSPI^TKN^NEXTCODE or ZSPI^TKN^NEXTTOKEN option,
see the example at the end of Considerations on page 8-26.

Expansion

#SSGETV expands to a numeric status code indicating the outcome of the operation.
This status code has one of these values:

 0 No error
 -1 Invalid buffer format
 -2 Illegal parameter value
 -3 Missing parameter
 -4 Illegal parameter address
 -5 Buffer full
 -6 Invalid checksum
 -7 Internal error
 -8 Token not found
 -9 Illegal token code or map
-10 Invalid subsystem ID
-11 Operation not supported
-12 Insufficient stack space
SPI Programming Manual—427506-007
8-25

SPI Programming in TACL #SSGETV
If the status is 0 and the get-op is token-id, the status is followed by a space and
the number of token values returned. For more information about nonzero status
codes, see Appendix A, Errors.

Considerations

 This example shows how to declare STRUCTs that allow you to extract individual
fields of the token code or the subsystem ID returned by #SSGETV with the
ZSPI^TKN^NEXTCODE or ZSPI^TKN^NEXTTOKEN option:

?SECTION decompose_ssid STRUCT
 BEGIN
 SSID ss;
 STRUCT z^ssid REDEFINES ss;
 BEGIN
 CHAR z^owner(0:7);
 INT z^number;
 UINT z^version;
 END;
 END;

?SECTION nexttoken_return STRUCT
 BEGIN
 STRUCT tkn ; LIKE zspi^ddl^tokencode;
 STRUCT ssid; LIKE decompose_ssid;
 END;

?SECTION nextcode_return STRUCT
 BEGIN
 STRUCT tkn ; LIKE zspi^ddl^tokencode;
 INT contiguous_occurences;
 STRUCT ssid; LIKE decompose_ssid;
 END;

This routine uses these STRUCT declarations to compare two subsystem IDs
returned by #SSGETV with ZSPI^TKN^NEXTCODE or ZSPI^TKN^NEXTTOKEN,
ignoring the version field:

?SECTION same_ssid ROUTINE == <ssid1> <ssid2>
== Returns TRUE if two SSIDs are the same except for
== the version field
#FRAME
#PUSH sstext
#DEF ss1 STRUCT LIKE decompose_ssid;
#DEF ss2 STRUCT LIKE decompose_ssid;
#IF{SINK} [#ARGUMENT/VALUE sstext/ SUBSYSTEM]
#SET ss1 [sstext]
#IF{SINK} [#ARGUMENT/VALUE sstext/ SUBSYSTEM]
#SET ss2 [sstext]
#RESULT [#COMPUTE [#COMPAREV ss1:z^ssid:z^owner(0:7)
 ss2:z^ssid:z^owner(0:7)]
 AND [#COMPAREV ss1:z^ssid:z^number
 ss2:z^ssid:z^number]]
SPI Programming Manual—427506-007
8-26

SPI Programming in TACL #SSMOVE
#UNFRAME
{same_ssid}

 Tokens extracted by #SSGETV are not deleted or removed from the buffer.

 When the current position is within a particular list, all #SSGETV calls pertain only
to tokens within that list, except that header tokens are always accessible. Your
program can exit the list by calling #SSGET with the ZSPI^TKN^ENDLIST token.

 When token-id is ZSPI^TKN^ENDLIST, the index and count parameters have
no effect. However, if supplied, index must be equal to zero or 1.

 When using #SSGETV with a token map for the token-id parameter, the map
can specify a structure version that is longer or shorter than the structure contained
in the buffer. If the requested version is longer than the version in the buffer,
#SSGETV calls SSNULL to set to null values the new fields that are not obtained
from the buffer. If the requested version is shorter than the one in the buffer,
#SSGETV returns only the requested length.

 If the data returned by #SSGETV is longer than the data area of the STRUCT
specified by result-var, the excess bytes are discarded without any indication.
If the data is shorter than the data area of the STRUCT, the entire STRUCT is set
to its default values, and the data returned overwrites the beginning of the data
bytes of the STRUCT. No type conversions are performed. For instance, if the
token retrieved is of type ZSPI^TYP^INT and the result-var STRUCT consists
of a single field of type INT2, the token value ends up in the high-order 16 bits of
the INT2 field, not the low-order 16 bits.

 If the COUNT count option is specified, all occurrences of the token value are put
into the STRUCT one after the other, just as they are extracted from the buffer,
subject to the size corrections explained in the previous consideration. If the tokens
are variable-length tokens, each token value consists of a length word followed by
the actual value, and the actual value is word-aligned.

 Header tokens and one special operation can be passed in token-id to get the
corresponding values. (See Header Tokens and Special Operation for #SSGET
and #SSGETV on page 8-23.)

#SSMOVE

Use #SSMOVE to copy tokens from one SPI buffer to another. #SSMOVE performs a
sequence of #SSGETV and #SSPUTV operations.

option

can be any of:

#SSMOVE [/ option [, option]... /]
 source-var dest-var token-id
SPI Programming Manual—427506-007
8-27

SPI Programming in TACL #SSMOVE
COUNT count

gives the maximum number of token values to copy, unless token-id is a list
token; in the latter case, it gives the maximum number of lists to copy. If you do
not supply this option, count defaults to 1.

DINDEX dest-index

if dest-index is greater than zero, identifies the first occurrence of token-
id to be replaced in the destination buffer. A value of 1 specifies that
replacement should start with the first occurrence of the token code, a value of
2 specifies the second occurrence, and so on. If the specified occurrences are
not found in the destination buffer, the tokens being copied are added to the
end of the buffer.

if dest-index is zero or if you do not supply this option, directs #SSMOVE to
add the tokens from the source buffer to the end of the destination buffer.

SINDEX source-index

if source-index is greater than zero, identifies the first occurrence of
token-id to be copied from the source buffer. (One or more than one
occurrence can be copied, depending on the value of count.) A source-
index value of 1 specifies that the copy is to start with the first occurrence of
the token code, a value of 2 specifies the second occurrence, and so on.

if source-index is zero or if you do not supply this option, directs #SSMOVE
to start with the next occurrence of the token code after the current position in
the source buffer.

SSID ssid

is a subsystem ID, as described in Section 4, ZSPI Data Definitions, that
qualifies the token ID. If not supplied or equal to zero (0.0.0), ssid defaults to
the subsystem ID of the current list, or if the current position is not in a list, then
to the subsystem ID specified in the SPI message header (ZSPI^TKN^SSID).
The version field of ssid is not used in searching the source buffer.

source-var

is the name of the source message buffer variable—that is, the SPI buffer variable
from which the specified token or tokens are to be copied.

dest-var

is the name of the destination message buffer variable—that is, the SPI buffer
variable to which the specified token or tokens are to be copied.

token-id

is a token code or a token map that identifies the token to be copied. This token
must be present in the source buffer. The token-id can identify a simple token,
SPI Programming Manual—427506-007
8-28

SPI Programming in TACL #SSMOVE
an extensible structured token, or a list token. If a list token is specified, the list
token, its associated end-list token, and all tokens in between are moved.

Expansion

#SSMOVE expands to a numeric status code indicating the outcome of the operation.
If the status code is 0 (no error), it is followed by a space and the number of token
values or lists moved.

The status code has one of these values:

 0 No error
 -1 Invalid buffer format
 -2 Illegal parameter value
 -3 Missing parameter
 -4 Illegal parameter address
 -5 Buffer full
 -6 Invalid checksum
 -7 Internal error
 -8 Token not found
 -9 Illegal token code or map
-10 Invalid subsystem ID
-11 Operation not supported
-12 Insufficient stack space

For more information about nonzero status codes, see Appendix A, Errors.

Considerations

 Tokens copied by #SSMOVE are not deleted or removed from the source buffer.

 After a successful #SSMOVE operation, the current-token pointer in the source
buffer is changed to the position of the last token that was moved.

 When #SSMOVE copies a token identified by a token map, the value obtained
from the source buffer is truncated or padded according to the map specifications,
and the ZSPI^TKN^MAX^FIELD^VERSION header token of the destination buffer
is appropriately adjusted.

 #SSMOVE can be used to copy an incomplete list (a list with no end-list token) if
and only if dest-index is not supplied or zero. If a nonzero destination index is
specified, meaning that a replacement operation is being requested, an incomplete
list causes #SSMOVE to return a “token not found” (-8) status code.

 If an error occurs on #SSMOVE, the ZSPI^TKN^LASTERR and
ZSPI^TKN^LASTERRCODE indications can be set in either the source buffer or
the destination buffer, depending on whether the error occurred on the logical
#SSGETV or #SSPUTV part of the move.
SPI Programming Manual—427506-007
8-29

SPI Programming in TACL Interprocess Communication
Interprocess Communication
An application requester written in TACL should open the management process for
each subsystem using the READ option of #REQUESTER, and should use
#APPENDV and #EXTRACTV to send commands and decode responses.

If you are writing a subsystem, it is recommended that you run TACL specifying its IN
and OUT files as $RECEIVE, and then use an #INPUTV/#REPLYV loop protected by a
suitable exception handler.

For more information about these features, see the TACL Programmer’s Guide.

Example: Printing or Displaying the Status
Structure of the Subsystem Control Point
(SCP)

Example 8-1 is a TACL program that prints or displays the status structure of the
Subsystem Control Point (SCP). The SCP process was chosen because it is
commonly found running on most nodes under the name $ZNET. Because SCP
adheres to the extended SPI protocol, it uses ZCOM data definitions. These definitions
are described in the SPI Common Extensions Manual.

The first step is to load the appropriate definition files. This task takes the greatest
amount of execution time. If you frequently use TACL for SPI, you should preload the
ZSPIDEF.subsysTACL definitions so that your TACL functions do not need to do so.

The second step is to create an SPI buffer and initialize the SSID STRUCT with the
correct value. Then the macro constructs the request, using #SSINIT and #SSPUT.
Note that OBJNAME is a variable-length character string, so that a length preceding
the value is required.

The third step opens the SPI server, sends the request, gets the reply, and then closes
the server. (If you are going to do many requests, you should keep the server open
rather than continually opening and closing it for each request.)

The fourth step prepares the buffer for use again by using
ZSPI^TKN^RESET^BUFFER. Then the macro checks the return token,
ZSPI^TKN^RETCODE, for successful completion of the command. The #SETMANY
call that separates the results returned from #SSGET, and the INDEX 1 option is
specified so that it does not matter where in the buffer the return token has been
placed. The COUNT parameter is skipped (_), because this value is always 1.

Finally the desired data is extracted from the reply and, in this case, displayed. Here
#SSGETV is used because a STRUCT is retrieved.

The error handling in this example is rudimentary. The error text causes TACL to stop
executing the macro and point to the error text.
SPI Programming Manual—427506-007
8-30

SPI Programming in TACL Example: Printing or Displaying the Status Structure of
the Subsystem Control Point (SCP)
Example 8-1. Printing or Displaying the Status Structure of the SCP
(page 1 of 2)

?TACL MACRO == SCPSTAT <scpname>
== Display SCP’s status structure.
#FRAME
#PUSH zspi_subvol == ZSPI definitions subvolume
#PUSH err == Error return value
#PUSH retcode == Return code from server
#PUSH io_err == I/O error return value
#PUSH request == Request I/O variable
#PUSH reply == Reply I/O variable

== Locate and load the SPI definition files.
#SET zspi_subvol [#FILENAMES/MAXIMUM 1/ $*.ZSPIDEF.ZSCPTACL]
#SET zspi_subvol [#FILEINFO/VOLUME/[zspi_subvol]].ZSPIDEF
#LOAD/LOADED err/ [zspi_subvol].ZSPITACL
#LOAD/LOADED err/ [zspi_subvol].ZCOMTACL
#LOAD/LOADED err/ [zspi_subvol].ZSCPTACL

== Define the message buffer.
#DEF spi_buf STRUCT LIKE ZCOM^DDL^MSG^BUFFER;

== Assign SCP’s subsystem ID.
#SET ZSCP^VAL^SSID [ZSPI^VAL^TANDEM].[ZSPI^SSN^ZSCP].&
[ZSCP^VAL^VERSION]

== Initialize the buffer for a STATUS command on
== the SCP subsystem PROCESS object type.
#SET err [#SSINIT spi_buf [ZSCP^VAL^SSID] ZCOM^CMD^STATUS
 /OBJECT ZCOM^OBJ^PROCESS/]
[#IF err |THEN| *** ERROR [err] from #SSINIT]

== Add the object-name token to the message. The value
== of the token is the name of the SCP process.
#SET err [#SSPUT spi_buf ZCOM^TKN^OBJNAME [_longest %1%] %1%]
[#IF err |THEN| *** ERROR [err] from #SSPUT ZCOM^TKN^OBJNAME]

== Open the SCP process for SPI communications.
#SET err [#REQUESTER /WAIT [ZCOM^VAL^BUFLEN]/
 READ %1%.#ZSPI io_err reply request]
[#IF err |THEN| *** ERROR [err] opening %1%.#ZSPI]

== Send the command and await the response.
#APPENDV request spi_buf
#EXTRACTV reply spi_buf
[#IF NOT [#EMPTYV io_err] |THEN|&
 *** ERROR [io_err] sending to %1%.#ZSPI]

== Close the SCP process.
#SET err [#REQUESTER CLOSE request]
[#IF err |THEN| *** ERROR [err] closing %1%.#ZSPI]
SPI Programming Manual—427506-007
8-31

SPI Programming in TACL Example: Printing or Displaying the Status Structure of
the Subsystem Control Point (SCP)
For a larger example illustrating the use of SPI in TACL, see the Distributed Name
Service (DNS) Management Programming Manual.

== Reset the buffer after receiving the response.
#SET err [#SSPUT spi_buf ZSPI^TKN^RESET^BUFFER
 ZCOM^VAL^BUFLEN]
[#IF err |THEN| *** ERROR [err] from #SSPUT RESET^BUFFER]

== Retrieve the return code and test its value.
#SETMANY err _{count 1} retcode &
 , [#SSGET /INDEX 1/ spi_buf ZSPI^TKN^RETCODE]
[#IF err |THEN| *** ERROR [err] from #SSGET RETCODE]
[#IF retcode <> ZSPI^ERR^OK |THEN|
 *** ERROR [err] FROM %1%.#ZSPI on STATUS command]

== Retrieve the SCP status structure from the response.
#SETMANY err, [#SSGETV /INDEX 1/ spi_buf ZSCP^MAP^STATUS^PROC
 ZSCP^DDL^STATUS^PROC]
[#IF err |THEN| *** ERROR [err] from #SSGETV MAP^STATUS^PROC]

== Display the SCP response structure.
#OUTPUTV ZSCP^DDL^STATUS^PROC

#UNFRAME
{scpstat}

Example 8-1. Printing or Displaying the Status Structure of the SCP
(page 2 of 2)
SPI Programming Manual—427506-007
8-32

9 SPI Programming in TAL

This section provides language-specific information for the programmer who is using
the TAL to write an SPI requester or server:

Definition Names in TAL
Symbolic names in this section are in the TAL form, using circumflex (^) symbols rather
than hyphens. For example, the DDL token code ZSPI-TKN-RETCODE is expressed
as ZSPI^TKN^RETCODE in TAL.

TAL Definition Files
Each TAL module of your application that uses the Subsystem Programmatic Interface
(SPI) must begin with ?SOURCE directives to include the TAL versions of the SPI
standard definitions and the definitions for all subsystems with which your program
communicates. The TAL version of the SPI standard definitions is in the file named
ZSPIDEF.ZSPITAL on the disk volume chosen by your site.

For NonStop Kernel subsystems, the TAL versions of the subsystem definitions have
file names of the form ZSPIDEF.subsysTAL, where subsys is the 4-character
subsystem abbreviation given in Appendix D, NonStop Kernel Subsystem Numbers
and Abbreviations. You can include these ?SOURCE directives in any order, but they
must precede any of your own declarations that refer to them.

Declarations Needed in TAL Programs
In addition to the declarations already provided in the definition files, you must add
these declarations to your TAL programs:

SPI Buffer

The ZSPIDEF.subsysTAL definition file for each NonStop Kernel subsystem includes
a buffer declaration named subsys^DDL^MSG^BUFFER^DEF, which has the

Topic Page

Definition Names in TAL 9-1

TAL Definition Files 9-1

Declarations Needed in TAL Programs 9-1

Interprocess Communication 9-3

SPI Procedure Syntax in TAL 9-3

Examples 9-5
SPI Programming Manual—427506-007
9-1

SPI Programming in TAL Subsystem ID
structure described in “SPI Buffer” in Section 4. Use this declaration to allocate a buffer
variable of the recommended size (subsys^VAL^BUFLEN):

STRUCT .buf(subsys^DDL^MSG^BUFFER^DEF);

Then you can easily refer to the Z^MSGCODE (-28), Z^BUFLEN, and Z^OCCURS
fields of this structure as needed.

Some subsystems provide additional buffer declarations allocating different
recommended buffer-size values for different commands. For details, see the individual
subsystem management programming manuals.

If you wish to define a buffer larger than the recommended size in order to handle a
large number of response records per reply, you can write your own buffer declaration,
following the pattern of subsys^DDL^MSG^BUFFER^DEF.

Subsystem ID

In TAL, before the first time you call SSINIT to send a command to a subsystem, you
must initialize the subsystem ID. For NonStop Kernel subsystems, the name of the
subsystem ID structure in the TAL definition file is subsys^VAL^SSID^DEF. To
initialize it, use ZSPI^VAL^TANDEM for the Z^OWNER field, ZSPI^SSN^subsys for
the Z^NUMBER field, and subsys^VAL^VERSION for the Z^VERSION field. For
example, if your application sends commands to TMF, your program would use the
definitions supplied with TMF (in the file ZSPIDEF.ZTMFTAL) and could then declare
and initialize the subsystem ID:

STRUCT .ZTMF^VAL^SSID (ZTMF^VAL^SSID^DEF);

ZTMF^VAL^SSID ':=' [ZSPI^VAL^TANDEM,ZSPI^SSN^ZTMF,
 ZTMF^VAL^VERSION];

If you are sending a command to a subsystem provided by a company other than HP,
you must make the appropriate, different entries for the Z^OWNER, Z^NUMBER, and
Z^VERSION fields.

Defining Token Maps

Defining and initializing token maps in TAL requires that you use the LITERAL and
DEFINE names produced by DDL:

For every token map you define, the DDL name is

subsys-MAP-name

This name is translated to TAL as

DEFINE subsys^MAP^name = initialization-list-for-TAL-array #;
LITERAL subsys^MAP^name^WLN = n ;

where n is the size of the TAL array to be initialized.
SPI Programming Manual—427506-007
9-2

SPI Programming in TAL Interprocess Communication
Your TAL module must include this source directive and declaration:

?SOURCE subsysTAL
 .
 .
INT .user^chosen [0:subsys^MAP^name^WLN-1] := subsys^MAP^name ;

This code declares user^chosen and initializes it with the proper value for the token
map. Then you can refer to user^chosen as the token code in SPI calls such as
SSPUT and SSGET to operate on subsys-MAP-name tokens.

Interprocess Communication
An application requester written in TAL should use the file-system procedure
WRITEREAD, rather than WRITE, to send the command. The program should specify
a read count that is the length of the buffer as initialized with SSINIT.

If the subsystem to which you are sending commands honors assign and param
messages, and you want to allow the user of your application to provide these to the
server, your application must explicitly save these messages and pass them on.

Subsystems written in TAL should open $RECEIVE to receive SPI messages, and then
use READUPDATE to read the messages and REPLY to send the replies.

SPI Procedure Syntax in TAL
These pages give the syntax and semantics of the SPI procedures SSGET and
SSGETTKN, SSINIT, SSMOVE and SSMOVETKN, SSNULL, and SSPUT and
SSPUTTKN. For descriptions of the SPI procedures and their parameters, see
Section 3, The SPI Procedures.

Passing Token Parameters by Value or by Reference

The way your TAL applications pass tokens as parameters to the SPI procedures
depends on the token and on personal preference: You must pass token maps, which
refer to extensible structured tokens, by reference. Pass token codes by value or by
reference. (Passing a token code by reference usually requires storing it in a temporary
variable.)

Use the SSGET, SSMOVE, and SSPUT procedures to pass the token-id parameter
by reference; use the SSGETTKN, SSMOVETKN, and SSPUTTKN procedures to pass
it by value.

If you bind into the system library any routines that use SSGETTKN, SSPUTTKN, or
SSMOVETKN, the Binder issues parameter mismatch warnings in SYSGEN. You can
ignore these warnings. To eliminate them, use SSGET, SSPUT, and SSMOVE.
SPI Programming Manual—427506-007
9-3

SPI Programming in TAL SSINIT
SSINIT

SSNULL

SSPUT and SSPUTTKN

The SSPUT and SSPUTTKN procedures are identical except for the type of the
token-id parameter (SSPUT passes token-id by reference and SSPUTTKN
passes it by value) and the consequent fact that SSPUTTKN cannot be used with a
token map. In TAL programs, you can use SSPUTTKN when supplying a token code
for the token-id parameter; doing so avoids the need to store the token code in a
temporary variable before passing it to SSPUT. You must use SSPUT when supplying
a token map.

SSGET and SSGETTKN

The SSGET and SSGETTKN procedures are identical except for the type of the
token-id parameter (SSGET passes token-id by reference and SSGETTKN
passes it by value) and the consequent fact that SSGETTKN cannot be used with a
token map. In TAL programs, you can use SSGETTKN when supplying a token code
for the token-id parameter; doing so avoids the need to store the token code in a
temporary variable before passing it to SSGET. You must use SSGET when supplying
a token map.

{ status := } SSINIT (buffer ! o
{ CALL } , buffer-length ! i
 , ssid ! i
 , header-type ! i
 , command ! i
 , [object-type] ! i
 , [max-resp] ! i
 , [server-version] ! i
 , [checksum] ! i
 , [max-field-version]) ; ! i

{ status := } SSNULL (token-map ! i
{ CALL } , struct) ; ! o

{ status := } { SSPUT } (buffer ! i/o
{ CALL } { SSPUTTKN } , token-id ! i
 , [token-value] ! i
 , [count] ! i
 , [ssid]) ; ! i
SPI Programming Manual—427506-007
9-4

SPI Programming in TAL SSMOVE and SSMOVETKN

SSMOVE and SSMOVETKN

The SSMOVE and SSMOVETKN procedures are identical except for the type of the
token-id parameter (SSMOVE passes token-id by reference and SSMOVETKN
passes it by value) and the consequent fact that SSMOVETKN cannot be used with a
token map. In TAL programs, you can use SSMOVETKN when supplying a token code
for the token-id parameter; doing so avoids the need to store the token code in a
temporary variable before passing it to SSMOVE. You must use SSMOVE when
supplying a token map.

Examples
For example programs written in TAL, see Appendix E, SPI Programming Examples.

{ status := } { SSGET } (buffer ! i/o
{ CALL } { SSGETTKN } , token-id ! i
 , [token-value] ! i/o
 , [index] ! i
 , [count] ! i/o
 , [ssid]) ; ! i/o

{ status := } { SSMOVE } (token-id ! i
{ CALL } { SSMOVETKN } , source-buffer ! i/o
 , [source-index] ! i
 , dest-buffer ! i/o
 , [dest-index] ! i
 , [count] ! i/o
 , [ssid]) ; ! i
SPI Programming Manual—427506-007
9-5

SPI Programming in TAL Examples
SPI Programming Manual—427506-007
9-6

A Errors

This appendix lists all the error numbers defined by SPI. The two categories of errors
are:

 Error numbers returned in the status parameter on calls to the SPI procedures
(errors 0 through –12)

 General errors returned in SPI messages
(errors –13 through –37)

The ZSPI errors are listed by number in Table A-1 and by name in Table A-2. When
any of these errors (except error 0 or error –1) occurs, the header token ZSPI-TKN-
LASTERR is set to the error number.

Table A-1. ZSPI Errors, by Number (page 1 of 2)

Number Name Meaning

0 ZSPI-ERR-OK No error

–1 ZSPI-ERR-INVBUF Invalid buffer format

–2 ZSPI-ERR-ILLPARM Invalid parameter value

–3 ZSPI-ERR-MISPARM Missing parameter

–4 ZSPI-ERR-BADADDR Invalid parameter address

–5 ZSPI-ERR-NOSPACE Buffer full

–6 ZSPI-ERR-XSUMERR Invalid checksum

–7 ZSPI-ERR-INTERR Internal error

–8 ZSPI-ERR-MISTKN Token not found

–9 ZSPI-ERR-ILLTKN Invalid token code or map

–10 ZSPI-ERR-BADSSID Invalid subsystem ID

–11 ZSPI-ERR-NOTIMP Operation not supported

–12 ZSPI-ERR-NOSTACK Insufficient stack space

–13 ZSPI-ERR-ZFIL-ERR File-system error

–14 ZSPI-ERR-ZGRD-ERR Error from ZGRD procedure

–15 ZSPI-ERR-INV-FILE Template file invalid

–16 ZSPI-ERR-CONTINUE More text is available

–17 ZSPI-ERR-NEW-LINE More text on new line

–18 ZSPI-ERR-NO-MORE No more fields

–19 ZSPI-ERR-MISS-NAME Name not found

–20 ZSPI-ERR-DUP-NAME Name ambiguous

–21 ZSPI-ERR-MISS-ENUM Enumeration not found

–22 ZSPI-ERR-MISS-STRUCT Structure not found

–23 ZSPI-ERR-MISS-OFFSET Offset not found
SPI Programming Manual—427506-007
A-1

Errors
–24 ZSPI-ERR-TOO-LONG Text longer than maximum

–25 ZSPI-ERR-MISS-FIELD Field past end of token value

–26 ZSPI-ERR-NO-SCANID No scan ID available

–27 ZSPI-ERR-NO-FORMATID No format ID available

–28 ZSPI-ERR-OCCURS-DEPTH OCCURS nested too deep

–29 ZSPI-ERR-MISS-LABEL No labeled dump info

–30 ZSPI-ERR-BUF-TOO-LARGE Specified buffer size > maximum

–31 ZSPI-ERR-OBJFORM Invalid object name format

–32 ZSPI-ERR-OBJCLASS Invalid object class

–33 ZSPI-ERR-BADNAME Invalid encoded name

–34 ZSPI-ERR-TEMPLATE Encoded name is a template

–35 ZSPI-ERR-ILL-CHAR Invalid character in name

–36 ZSPI-ERR-NO-TKNDEFID No tkndef ID available

–37 ZSPI-ERR-INCOMP-RESP Incomplete response

Table A-2. ZSPI Errors, by Name (page 1 of 2)

Name Number Meaning

ZSPI-ERR-BADADDR –4 Invalid parameter address

ZSPI-ERR-BADNAME –33 Invalid encoded name

ZSPI-ERR-BADSSID –10 Invalid subsystem ID

ZSPI-ERR-BUF-TOO-LARGE –30 Specified buffer size > maximum

ZSPI-ERR-CONTINUE –16 More text is available

ZSPI-ERR-DUP-NAME –20 Name ambiguous

ZSPI-ERR-ILL-CHAR –35 Invalid character in name

ZSPI-ERR-ILLPARM –2 Invalid parameter value

ZSPI-ERR-ILLTKN –9 Invalid token code or map

ZSPI-ERR-INCOMP-RESP –37 Incomplete response

ZSPI-ERR-INTERR –7 Internal error

ZSPI-ERR-INV-FILE –15 Template file invalid

ZSPI-ERR-INVBUF –1 Invalid buffer format

ZSPI-ERR-MISPARM –3 Missing parameter

ZSPI-ERR-MISS-ENUM –21 Enumeration not found

ZSPI-ERR-MISS-FIELD –25 Field past end of token value

ZSPI-ERR-MISS-LABEL –29 No labeled dump info

Table A-1. ZSPI Errors, by Number (page 2 of 2)

Number Name Meaning
SPI Programming Manual—427506-007
A-2

Errors 0: ZSPI-ERR-OK
0: ZSPI-ERR-OK

Cause. Successful operation.

Effect. The requested operation is completed.

Recovery. No recovery is necessary.

–1: ZSPI-ERR-INVBUF

Cause. The buffer supplied in the procedure is considered to be improperly formatted
for one of these reasons:

 The first word of the buffer does not contain the SPI message code (ZSPI-VAL-
MSGCODE ¦ –28).

 The current version of SPI does not recognize the buffer format.

ZSPI-ERR-MISS-NAME –19 Name not found

ZSPI-ERR-MISS-OFFSET –23 Offset not found

ZSPI-ERR-MISS-STRUCT –22 Structure not found

ZSPI-ERR-MISTKN –8 Token not found

ZSPI-ERR-NEW-LINE –17 More text on new line

ZSPI-ERR-NO-FORMATID –27 No format ID available

ZSPI-ERR-NO-MORE –18 No more fields

ZSPI-ERR-NO-SCANID –26 No scan ID available

ZSPI-ERR-NO-TKNDEFID –36 No tkndef ID available

ZSPI-ERR-NOSPACE –5 Buffer full

ZSPI-ERR-NOSTACK –12 Insufficient stack space

ZSPI-ERR-NOTIMP –11 Operation not supported

ZSPI-ERR-OBJCLASS –32 Invalid object class

ZSPI-ERR-OBJFORM –31 Invalid object name format

ZSPI-ERR-OCCURS-DEPTH –28 OCCURS nested too deep

ZSPI-ERR-OK 0 No error

ZSPI-ERR-TEMPLATE –34 Encoded name is a template

ZSPI-ERR-TOO-LONG –24 Text longer than maximum

ZSPI-ERR-XSUMERR –6 Invalid checksum

ZSPI-ERR-ZFIL-ERR –13 File-system error

ZSPI-ERR-ZGRD-ERR –14 Error from ZGRD procedure

Table A-2. ZSPI Errors, by Name (page 2 of 2)

Name Number Meaning
SPI Programming Manual—427506-007
A-3

Errors –2: ZSPI-ERR-ILLPARM
 The length of the used portion of the buffer (ZSPI-TKN-USEDLEN) is greater than
the maximum buffer length (Z-BUFLEN). SSPUT might have been called with
ZSPI-TKN-RESET-BUFFER and a maxlen value that was smaller than ZSPI-TKN-
USEDLEN.

 The buffer contains ZSPI-TKN-ENDLIST but no corresponding list token.

 The position descriptor within the buffer (ZSPI-TKN-POSITION) indicates a current
list that does not begin with a list token. Perhaps an incorrect position descriptor—
for instance, one saved from another buffer—was restored to ZSPI-TKN-
POSITION.

Effect. The requested operation is not completed. Because the buffer format is invalid,
the last error is not saved.

Recovery. Check for an incorrect buffer parameter or a corrupted buffer; or if this
error was returned from a call to SSGET with ZSPI-TKN-RESET-BUFFER, check for a
short read and allocate a larger buffer.

–2: ZSPI-ERR-ILLPARM

Cause. An invalid parameter was supplied in the procedure call. Possibilities include:

 SSINIT was called with an invalid header type.

 A negative index or count parameter was supplied.

 An attempt was made to use SSPUT or SSGET on a token using a count of zero.

 A call was made to one of the special operations that return attributes of a token,
but the operation was applied to the special token itself. The special tokens that
return attributes are ZSPI-TKN-COUNT, ZSPI-TKN-LEN, ZSPI-TKN-OFFSET, and
ZSPI-TKN-ADDR.

 The program supplied an SPI-defined token code that was invalid for this
procedure call. For example, ZSPI-TKN-DELETE was specified in a call to SSGET,
or ZSPI-TKN-COMMAND was specified in a call to SSPUT.

 An invalid position descriptor was supplied with ZSPI-TKN-POSITION.

Effect. ZSPI-TKN-LASTERR is set to ZSPI-ERR-ILLPARM and the requested
operation is not completed.

Recovery. Correct the parameter in error.

–3: ZSPI-ERR-MISPARM

Cause. This error number indicates that a required parameter was not supplied.
Certain parameters are required only under certain circumstances:

 The ssid parameter is required when calling SSGET with ZSPI-TKN-NEXTCODE
or ZSPI-TKN-NEXTTOKEN if the next token code in the buffer is not qualified by
the default subsystem ID. Always supply a variable for ssid when calling SSGET
SPI Programming Manual—427506-007
A-4

Errors –4: ZSPI-ERR-BADADDR
with ZSPI-TKN-NEXTCODE or ZSPI-TKN-NEXTTOKEN unless you are certain
that all tokens the program could encounter are qualified by the default subsystem
ID.

 The value parameter is required when calling SSGET with certain standard token
codes (such as ZSPI-TKN-LEN and ZSPI-TKN-OFFSET) or when calling SSPUT
with a token code that has a value (a nonzero token length).

Effect. ZSPI-TKN-LASTERR is set to ZSPI-ERR-MISPARM (unless the buffer
parameter is missing), and the requested operation is not performed.

Recovery. Supply the missing parameter.

–4: ZSPI-ERR-BADADDR

Cause. A reference parameter has an invalid address. Possibilities include:

 A parameter has a starting address that is invalid or out of bounds.

 A parameter has an absolute extended address, and the caller is nonprivileged.

 A parameter's starting address and length are such that the parameter overlaps the
stack space required by the SPI procedure.

Effect. The header token ZSPI-TKN-LASTERR is set to this error number (unless the
bounds error occurs on the buffer parameter), and the requested operation is not
performed. If the bounds error occurs on the buffer parameter, SPI is unable to find
the buffer, so it cannot set ZSPI-TKN-LASTERR.

Recovery. Correct the parameter declarations to allocate the required amount of
storage.

–5: ZSPI-ERR-NOSPACE

Cause. One of:

 The buffer is full; it cannot contain any more tokens or header information.

 SSPUT was called with ZSPI-TKN-RESET-BUFFER, but maxlen was smaller than
the used length of the buffer. In this case, some information at the end of the
message was lost. Subsequent SPI calls for this buffer return error –1 (invalid
buffer format).

Effect. The last error is set to this error number, and the requested operation is not
completed.

Recovery. For the first, use a larger buffer. For the second, the corrective action
depends on the application.
SPI Programming Manual—427506-007
A-5

Errors –6: ZSPI-ERR-XSUMERR
–6: ZSPI-ERR-XSUMERR

Cause. The current buffer checksum does not match the checksum computed on
return from the last SPI call. This error suggests that the buffer has been modified or
damaged.

Effect. The last error is set to this error number, and the requested operation is not
completed.

Recovery. Using a debugging tool such as Inspect, check for inadvertent corruption of
the buffer contents.

–7: ZSPI-ERR-INTERR

Cause. This internal error should not occur unless the SPI software malfunctions.
Specific causes include:

 SSGET attempted to return a token value when the program had requested a
token attribute (such as length, offset, address, or count).

 SSGET attempted to return an undefined token attribute.

 On returning, SSGET or SSPUT attempted to set a used length greater than the
buffer length.

 SSPUT received an error when calling SSGET to obtain the default subsystem ID
(ZSPI-TKN-DEFAULT-SSID) from the SPI message header.

Effect. The last error is set to this error number, and the requested operation is not
completed.

Recovery. Report the problem to your HP representative, supplying a reproducible
test case.

–8: ZSPI-ERR-MISTKN

Cause. One of:

 The token requested in a call to SSGET was not found.

 An attempt was made to put a ZSPI-TKN-ENDLIST token into the buffer, but no
corresponding list token was found.

Effect. The last error is set to this error number, and the requested operation is not
completed.

Recovery. Corrective action depends on the application. Check for program logic
errors in scanning the buffer. Also check to see if the token is positioned outside the
current list or preceding the current position.
SPI Programming Manual—427506-007
A-6

Errors –9: ZSPI-ERR-ILLTKN
–9: ZSPI-ERR-ILLTKN

Cause. An invalid token code or token map was supplied in the procedure call. The
possibilities include:

 The token data type was not recognized. For example, a program used a token
data type not included in the SPI standard definitions. (The only token data types
permitted by SPI are those defined by SPI.)

 The token length was not a multiple of the basic length associated with the token
data type.

 The token map contained an invalid null-value specification.

 The sum of the lengths of the null-value specifications in the token map was not
equal to the total structure length specified by the map.

 A token map was supplied as a parameter to SSGETTKN, SSPUTTKN, or
SSMOVETKN.

Any of these situations might arise if the program accidentally corrupted the variable
holding the token code or token map.

Effect. The last error is set to this error number, and the requested operation is not
completed.

Recovery. Correct the token code or token map causing the error.

–10: ZSPI-ERR-BADSSID

Cause. A subsystem ID with an invalid name was supplied as a parameter. The
owner-name field of a subsystem ID must contain an owner name that

 Begins with an alphabetic character

 Contains only alphabetic characters, hyphens, or numeric characters

 Is left-justified and padded on the right with blanks

Effect. The last error is set to this error number, and the requested operation is not
completed.

Recovery. Check the ssid parameter being supplied in the call, and correct it as
necessary.

–11: ZSPI-ERR-NOTIMP

Cause. This operation is not supported in the version of the SPI definitions being
used. (For instance, the operation ZSPI-TKN-ADDR was called to get the address of a
header token.)

Effect. The last error is set to this error number, and the requested operation is not
completed.
SPI Programming Manual—427506-007
A-7

Errors –12: ZSPI-ERR-NOSTACK
Recovery. Check that the token code being supplied in the call is defined for the
version of the SPI definitions being used.

–12: ZSPI-ERR-NOSTACK

Cause. An SPI procedure was called with fewer than 768 words of data stack left.

Effect. The last error is set to this error number, and the requested operation is not
completed.

Recovery. Increase the number of stack pages available or reduce the amount of
stack space used. The methods available for doing this depend on the programming
language.

–13 Through –37: General SPI Errors

These error numbers report general SPI errors. The precise interpretation of each error
depends on the subsystem or procedure that generates the error. See the description
provided by the generating subsystem.
SPI Programming Manual—427506-007
A-8

B Summary of DDL for SPI

This appendix reviews features of DDL that pertain to SPI data definitions. If you are
not familiar with DDL, this information will help you read and understand the DDL
source code in this and other related manuals.

If you are already familiar with DDL, parts of this appendix will give you an overview of
the clauses and statements added to DDL to support SPI:

If you are writing your own subsystem, you will need more information than is given in
this appendix. For more detailed information about DDL and its syntax, see the Data
Definition Language (DDL) Reference Manual.

The Role of DDL in SPI
DDL is a program and database development tool with capabilities that include
creating database schemas, creating data dictionaries, generating FUP commands
necessary to create the corresponding database, revising the source schemas and
data dictionaries, and generating programming-language source code for data
declarations that correspond to the source schemas.

For SPI, DDL is used to generate equivalent data declarations (definitions) in different
programming languages—TAL, C, COBOL, and TACL. Because the data declarations
are equivalent, application program modules coded in one language can communicate
with HP modules and other application modules coded in another language.

HP provides definition files containing data declarations used both by HP software
(including SPI and NonStop Kernel subsystems) and by applications that use SPI. For
each set of declarations, HP supplies equivalent definition files in TAL, C, COBOL,
TACL, and DDL. The TAL, C, COBOL, and TACL definition files are generated by the
DDL compiler, which translates the DDL source code into these other languages.

This manual and others describing programmatic interfaces based on SPI describe the
various data structures related to SPI messages containing commands, responses,
error lists, and event descriptions. Because these data structures can be in any one of
four languages, the manuals use DDL source code from the definition files as a
common notation to define the data structures.

Topic Page

The Role of DDL in SPI B-1

General Language Rules for DDL B-2

DEFINITION (DEF) Statement B-2

Constants B-6

Type ENUM DEFs B-6

Token Types, Token Codes, and Token Maps B-6

DDL Data Translation B-7
SPI Programming Manual—427506-007
B-1

Summary of DDL for SPI General Language Rules for DDL
You can make the information in the DDL definition file available to the system
procedures that derive display text from SPI messages. The DDL information helps the
EMSTEXT procedure and the SPI_BUFFER_FORMAT procedures produce more
readable display text. EMSTEXT presents event messages to operators. The
SPI_BUFFER_FORMAT procedures help Inspect to display SPI messages.

To make DDL information available at run time to the formatting procedures, you write
a template source file. This file enables the template compiler to encode DDL-clause
information in template form. For information about how to write and compile a
template source file, see the DSM Template Services Manual.

General Language Rules for DDL
In DDL (as in TAL, COBOL, and TACL, though not in C), alphabetic characters in
names and keywords are not case-sensitive; that is, corresponding uppercase and
lowercase letters are equivalent. The convention used in the SPI manuals was chosen
to emphasize the SPI definition names, because these names, rather than the DDL
keywords, are of primary importance. The DDL keywords here merely serve as part of
the notation.

Periods in DDL serve as separators. They separate one statement from the next; they
also separate subdivisions of a DEF statement. Blanks, carriage returns, and tab
characters can occur within a statement or a statement subdivision. Therefore, a
statement or statement subdivision can continue over several lines.

DEFINITION (DEF) Statement
The DEFINITION statement (shortened here to its legal abbreviation DEF) defines the
structure of a data item or a group of items. It specifies the name, data type, and other
characteristics of each data item or group. The DDL compiler translates a DEF
statement into a declaration of an equivalent data structure in TAL, C, COBOL, and
TACL.

The examples in Figure B-1 on page B-3 show the use of the DEF statement, and are
referred to in descriptions throughout this section.
SPI Programming Manual—427506-007
B-2

Summary of DDL for SPI TYPE Clause
Examples 3 and 4 in Figure B-1 are group DEF statements, which define internal data
structures, including component fields or groups of fields. Each field or group of fields
is described by a subdivision of the DEF statement, starting with a level number such
as 02 or 03 and ending with a period. The level numbers establish a hierarchy of fields
or groups of fields. The keyword END marks the end of the group DEF statement.

DEF statements contain clauses beginning with DDL keywords such as TYPE, PIC,
OCCURS, REDEFINES, FILLER, SPI-NULL, TACL, SSID, HEADING, and DISPLAY:

TYPE Clause

The TYPE clause defines the data type and size, or the internal structure, associated
with a DEF or with a field in a group DEF. This clause consists of the keyword TYPE
followed by either the keyword of a DDL type (such as LOGICAL or BINARY 16) or the
name of another DEF that was given earlier (such as ZSPI-DDL-INT).

If the name of another DEF appears in the TYPE clause, the DEF containing the TYPE
clause defines its data structure, or a portion of its data structure, based on another
DEF statement. (This is called the reference form of the DEF statement.)

Figure B-1. DEF Statement Examples

VST022.vsd

def ZSPI-DDL-ENUM pic s9(4) comp spi-null 255
 tacl enum .

2

def ZSPI-DDL-BOOLEAN type logical spi-null " " .1

def ZFUP-DDL-PART-RENAME-OPTS .
 02 Z-PART-ONLY type ZSPI-DDL-INT .
 02 Z-PART-NAME type ZSPI-DDL-DEVICE .
 02 Z-PRIEXT-SIZE type ZSPI-DDL-INT2 spi-null 255 .
 02 Z-SECEXT-SIZE type ZSPI-DDL-INT2 spi-null 255 .
end .

def ZSPI-DDL-CHAR5
 02 Z-C pic x(5) spi-null " " .
 02 Z-S redefines Z-C .
 03 Z-I type binary 16 occurs 2 times .
 03 filler pic x .
 02 Z-B redefines Z-C pic x occurs 5 times .
end .

4

3

SPI Programming Manual—427506-007
B-3

Summary of DDL for SPI PICTURE (PIC) Clause
In DDL source code, a DEF statement referred to in a TYPE clause must precede the
DEF statement that refers to it. In manuals, likewise, DEF statements are usually
presented so that each DEF precedes all the DEFs that refer to it. Subsystem DEFs
referred to by other subsystem DEFs usually appear in the “Common Definitions”
section of the appropriate subsystem management programming manual.

For instance, in example 3 in Figure B-1, the definition ZFUP-DDL-PART-RENAME-
OPTS refers to the definitions ZSPI-DDL-INT, ZSPI-DDL-DEVICE, and ZSPI-DDL-
INT2. The definition ZFUP-DDL-PART-RENAME-OPTS is described in the File Utility
Program (FUP) Management Programming Manual. The three definitions to which it
refers are standard SPI definitions contained in the SPI standard definition file that you
must source in, copy in, or load (depending on your programming language). These
standard definitions are described in Section 4, ZSPI Data Definitions.

When the DDL compiler translates a reference-form DEF statement into TAL, C,
COBOL, or TACL, the structures are combined, and the resulting programming-
language structure declaration reflects the information in all the DEFs to which the
translated DEF refers, directly or indirectly. (In TACL, an exception to this rule is when
the TACL clause appears. For more information, see TACL Clause on page B-5.)

PICTURE (PIC) Clause

The PICTURE clause (shortened here to its legal abbreviation PIC) defines the data
type and size associated with a DEF or with a field in a group DEF. The notation that
follows the PIC keyword corresponds to the PICTURE (PIC) notation in COBOL. A
DEF or field defined by a PIC clause translates to an ASCII character string with
certain characteristics defined by the notation. The TYPE and PIC clauses are mutually
exclusive for a particular variable or field.

OCCURS Clause

The OCCURS clause specifies a subscripted array of like fields or groups. In example
4 in Figure B-1, the level-03 field Z-I represents an array of two 16-bit signed integers.
Likewise, the level-02 field Z-B represents an array of five ASCII characters.

REDEFINES Clause

The REDEFINES clause assigns a new name and, optionally, a new structure to a
previously defined data storage area. REDEFINES clauses are used in the SPI
definitions to allow variables to be addressed in several different ways depending on
the programming language and the needs of the program. For instance, example 4 in
Figure B-1 is an array of 5 ASCII characters that can be addressed as a TAL or TACL
STRUCT, as five bytes, or as two integers. (If the array is addressed as two integers,
the fifth byte is inaccessible because it is an unnamed filler byte.)
SPI Programming Manual—427506-007
B-4

Summary of DDL for SPI FILLER Clause
FILLER Clause

A clause beginning with the keyword FILLER specifies an unnamed place-holder field.
The definition files include FILLER clauses where needed to ensure alignment of
adjacent fields on word boundaries. Example 4 in Figure B-1 illustrates the use of the
FILLER clause.

SPI-NULL Clause

When an SPI-NULL clause appears in a DEF or a field of a DEF, it specifies the null
value to be assigned to a variable or structure field based on that DEF when a program
calls the SSNULL procedure. Example 1 in Figure B-1 directs SSNULL to assign a
blank to each byte of each field of a structure defined as type ZSPI-DDL-BOOLEAN.
The second example directs SSNULL to assign the byte value 255 (all binary ones) to
each byte of each field of a structure defined as type ZSPI-DDL-ENUM.

An SPI-NULL clause specified in a group DEF is inherited by each of the fields within
the group. When you reference one DEF from another, any SPI-NULL clauses in the
referring DEF override corresponding SPI-NULL clauses in the referenced DEF.

If a field has no SPI-NULL clause, SSNULL assigns 255 to that field.

TACL Clause

When a TACL clause appears in a DEF or a field of a DEF, it names one of the high-
level TACL data types that can be used in simple data-item declarations within TACL
STRUCT statements. The DDL compiler then translates that field or structure into a
STRUCT field of the corresponding type. Examples of high-level TACL data types that
can appear in the TACL clause are ENUM, CRTPID, DEVICE, and SSID; Section 8
gives the complete list.

If a DEF or field includes a TACL clause but also refers to another DEF that itself
includes a TACL clause, the TACL clause in the higher level DEF overrides the clause
in the referenced DEF.

Example 2 in Figure B-1 directs DDL, when producing TACL output, to translate the
definition ZSPI-DDL-ENUM, or any field defined by reference to ZSPI-DDL-ENUM, to a
simple data item field of type ENUM.

SSID Clause

This DDL clause identifies the subsystem associated with a token code or token map.
When the template compiler compiles the template source file for a subsystem, it
copies the token information from the DDL dictionary to templates if the token code or
token map contains an SSID clause that refers to the subsystem. Without SSID, the
template compiler and the SPI_BUFFER_FORMAT procedures lose access to token
names and to other DDL clauses, limiting the display text they produce.
SPI Programming Manual—427506-007
B-5

Summary of DDL for SPI HEADING Clause
HEADING Clause

This clause provides the SPI_BUFFER_FORMAT procedures and Inspect with
information they need to label a token or field value when displaying the contents of an
SPI message.

DISPLAY Clause

This clause provides the edit code that is used when a token or field value is
represented in display text. Include this clause when the DISPLAY clause might make
the value more readable or when the default edit code is not suitable for the token or
field.

Constants
DDL allows the definition of named constants by means of the CONSTANT statement.
DDL translates CONSTANT statements into literals or defines in TAL, #define
directives in C, level-01 variables in COBOL, and text variables in TACL. This feature
lets the definition files provide symbolic names for frequently used values.

The definition files supplied by HP use CONSTANT statements to define subsystem
numbers (in the SPI definitions only), token data types (in the SPI definitions only),
token numbers, command numbers, object-type numbers, error numbers, and various
other commonly used values.

Type ENUM DEFs
Many integer tokens or fields contain code values with text-string equivalents (for
example, 0, 1, and 2 for stopped, slow, and fast). You can define such a token as a
type ENUM DEF and place the text strings in AS clauses. Then text strings that
represent the integer values can be returned to system procedures that refer to
templates.

Token Types, Token Codes, and Token Maps
Token types, token codes, and token maps are defined in DDL by TOKEN-TYPE,
TOKEN-CODE, and TOKEN-MAP statements, respectively.

In descriptions of commands, responses, event messages, error lists, and common
definitions in the manuals, the internal structure and component data types of each
extensible structured token are shown by giving the associated DEF statement, which
includes a TYPE or PIC clause for each field. Similar information for each simple token
is indicated by including information extracted from the associated TOKEN-CODE
statement, but in a form similar to that of part of a DEF statement. For instance, the
simple token ZSPI-TKN-CONTEXT is listed in command descriptions as:

ZSPI-TKN-CONTEXT token-type ZSPI-TYP-BYTESTRING.
SPI Programming Manual—427506-007
B-6

Summary of DDL for SPI DDL Data Translation
This notation is not DDL code, but is a shortened notation designed to give the
information needed. For instance, the example above reflects this TOKEN-CODE
statement in the definition file ZSPIDEF.ZSPIDDL:

TOKEN-CODE zspi-tkn-context VALUE IS zspi-tnm-context
 TOKEN-TYPE IS zspi-typ-bytestring.

DDL Data Translation
The DDL compiler can translate any DEF statement into data-declaration source code
in TAL, C, COBOL, or TACL. The only restriction is that not all data types are
supported in all four languages. Whenever a declared data type is not supported in a
particular language, DDL attempts to translate the data type into a declaration of a
compatible data type. For example, DDL structures described with PIC X or PIC 9
clauses are translated into STRING BYTE types in TAL; a structure described as PIC
S9(4) COMP is translated into a TAL or TACL INT data type or a COBOL NATIVE-2
data type.

When no compatible data type is available, DDL translates the data type into a
character-string declaration. For example, a structure described as TYPE FLOAT,
which is the REAL data type in TAL, is translated into PIC X(4) in COBOL.

For additional examples of DDL DEF source and the resulting output in TAL, C,
COBOL, and TACL, see the information about DDL data translation in the Data
Definition Language (DDL) Reference Manual.
SPI Programming Manual—427506-007
B-7

Summary of DDL for SPI DDL Data Translation
SPI Programming Manual—427506-007
B-8

C SPI Internal Structures

This appendix describes these internal formats of SPI data structures:

The detailed formats are expressed as TAL structures. This information is for
debugging purposes only.

SPI Buffer Format
An SPI buffer consists of an SPI message header and zero or more buffer tokens
(tokens that are not header tokens). The header consists of three parts: the standard
part, the specialized part, and the context part.

Each buffer token consists of a token code and a token value, as described in
Section 2, SPI Concepts and Protocol.

The three parts of the header contain information that includes the values of the
header tokens. Each of the three parts is implemented as a structure, and the values of
the header tokens in that part are fields in the structure. Thus the header tokens are

Topic Page

SPI Buffer Format C-1

Token Structure C-5

Token-Map Structure C-7

List Structure C-10

Note. The information in this appendix might change in future RVUs. Application programs and
subsystems you write should not depend on these formats. Always work with these structures using their
symbolic names with the SPI procedures.

Figure C-1. SPI Buffer Format

VST023.vsd

Header

Tokens

Context Part

Rest of Buffer

Standard Part

Specialized Part
SPI Programming Manual—427506-007
C-1

SPI Internal Structures Standard Part of Header
not implemented as true tokens—they are identified in the buffer by their positions
rather than by their token codes. However, application programs and subsystems you
write retrieve and change the values of header tokens using SSGET and SSPUT as if
they were true tokens.

Standard Part of Header

The first data structure in the buffer contains the standard part of the header. This
structure contains information that is common to all SPI buffers. For example:

STRUCT ZSPI^DDL^STDHDR^DEF(*);
BEGIN
 INT Z^MSGCODE; ! -28
 INT Z^BUFLEN; ! Buffer length in bytes
 INT Z^OCCURS; ! # bytes in rest of buffer
 STRUCT Z^SSID; ! Subsys ID used w/SSINIT
 BEGIN
 INT Z^SSOWNER[0:3]; ! Subsystem owner
 INT Z^SSNUM; ! Subsystem number
 INT Z^SSVERSION; ! Subsystem version
 END;
 INT Z^XSUM; ! Buffer checksum word
 INT Z^MAX^FIELD^VERSION; ! Maximum field version
 INT Z^FLAGS; ! Flag word
 STRUCT Z^FLAG = ZFLAGS;
 BEGIN
 UNSIGNED(1) Z^XSUM; ! .<0> = Checksum flag
 BIT_FILLER 11; ! .<1:11> = Reserved
 UNSIGNED(4) Z^VERSION; ! .<12:15> = SPI version
 END;
END;

The first field, called Z-MSGCODE, is a signed integer whose value is always -28; this
number identifies the message as an SPI buffer. Z-BUFLEN is an unsigned integer
field whose value is the maximum buffer length—that is, the length in bytes of the
entire buffer as declared. Z-OCCURS is an unsigned integer included to facilitate the
declaration of COBOL I/O buffers.

As programs using the SPI procedures see it, the remaining portion of the buffer
contains tokens. However, the declared length of the buffer might not always be filled
with token information. The used length of the buffer is the length in bytes of the
currently used portion. Programs can call the SSGET procedure with the token code
ZSPI-TKN-USEDLEN to get the used length.

Programs should call the SPI procedures to perform all operations on the buffer; they
should not attempt to modify the buffer directly. The SPI procedures return an error if a
program attempts to modify some parts of the buffer directly. Although programs can
modify the Z-BUFLEN field, it is recommended that they not do so, but instead call
SSPUT with the token code ZSPI-TKN-RESET-BUFFER to reset the maximum buffer
length when they receive an SPI buffer from another process.
SPI Programming Manual—427506-007
C-2

SPI Internal Structures Specialized Part of Header
Specialized Part of Header

The standard part of the header is followed by the specialized part, a structure that
differs depending on the header type. To users of the SPI procedures, the header type
is a header token with an unsigned integer value of either 0 for a standard command
header, or 1 for an event-message header. Internally, the header type is identified by a
token code that appears in the first two words of the specialized part. This token code
has token data type ZSPI-TDT-STRUCT, a token length equal to the length of the
remainder of the specialized part (not including the token code itself), and a token
number of either ZSPI-TNM-CMDHDR or ZSPI-TNM-EVTHDR. (The two token-
number definitions are part of the SPI standard definition files but are not described in
Section 4, ZSPI Data Definitions. They are for HP internal use only.)

Specialized Part of Standard Command Header

The structure for the specialized part of a standard command header (for a command
or response) is:

STRUCT ZSPI^DDL^CMDHDR^DEF(*);
BEGIN
 INT(32) Z^TKNCODE; ! Token code for standard
 INT Z^TKNTYPE = Z^TKNCODE; ! command header
 STRUCT Z^TKN = Z^TKNCODE;
 BEGIN
 STRING Z^DATATYPE; ! Token data type =
 ! ZSPI-TDT-STRUCT
 STRING Z^BYTELEN; ! Token length = length of
 ! specialized part
 INT Z^NUMBER; ! Token number =
 ! ZSPI-TNM-CMDHDR
 END;
 INT Z^COMMAND; ! Command number
 INT Z^OBJECT^TYPE; ! Object-type number
 INT Z^MAXRESP; ! Maximum responses
 INT Z^SERVER^VERSION; ! Server version
END;

Specialized Part of Event-Message Header

Like the specialized part of a standard command header, the specialized part of an
event-message header begins with the token code, described earlier, that identifies the
header type. For an event-message header, the token number of this token code is
ZSPI-TNM-EVTHDR. The structure for the specialized fields following this token
code—for event messages, the declared structure does not include the token code—is:

STRUCT ZEMS^DDL^EVENTHDR^DEF(*);
BEGIN
 INT ZEVENT^NUMBER; ! Event number
 FIXED ZGENTIME; ! Event generation time
 FIXED ZLOGTIME; ! Logging time
 STRUCT ZUSERID; ! User ID of generator
 BEGIN
SPI Programming Manual—427506-007
C-3

SPI Internal Structures Context Part of Header
 STRING ZGROUP;
 STRING ZUSER;
 INT ZUSERGROUP = ZGROUP;
 END;
 INT ZSYSTEM;
 STRUCT ZCRTPID;
 BEGIN
 INT ZNAME [0:2];
 STRING ZCPU,
 ZPIN;
 END;
 INT ZFLAGS; ! Console print, emphasis
END;

For more information about event messages, see the EMS Manual.

Context Part of Header

This structure, if present, follows the specialized part and contains context information
used by SSGET and SSPUT, including position descriptors and SPI error information.

The context part of the header is needed only while the SPI buffer is being built (with
SSPUT or SSMOVE calls) or examined (with SSGET or SSMOVE calls). Under some
circumstances, HP software can save space and communication time by deleting this
part of the header when it is not needed and then adding it again when it is needed.
This is one reason that programs must never assume that an SSGET call leaves the
buffer unchanged. It also explains why a call to SSGET can result in an SPI error -5
(buffer full).

STRUCT ZSPI^DDL^CONTEXT^HDR^DEF(*);
BEGIN
 INT (32) Z^TKNCODE; ! Token code for context part
 INT Z^TKNTYPE = Z^TKNCODE; ! fields
 STRUCT Z^TKN = Z^TKNCODE;
 BEGIN
 STRING Z^DATATYPE; ! Token data type
 STRING Z^BYTELEN; ! Token byte length
 INT Z^NUMBER; ! Token number
 END;
 INT Z^LASTERR; ! Last nonzero status returned
 INT(32) Z^LASTERRCODE; ! Token code used on call
 ! resulting in Z^LASTERR
 STRUCT Z^POS; ! Position info for SSGET
 BEGIN
 INT Z^LIST; ! Byte offset to current list
 INT Z^CURTKN; ! Byte offset to current token
 INT Z^INDEX; ! Current index
 END;
 INT Z^LASTLIST; ! Byte offset to current SSPUT list
 INT Z^LASTTOKEN; ! Byte offset to the last token
END;
SPI Programming Manual—427506-007
C-4

SPI Internal Structures Token Structure
Token Structure
A token consists of a token code (qualified by a subsystem ID) and a token value.

Token Code

The token code is stored in either a simple format (when qualified by the default
subsystem ID), or an extended format (when qualified by a subsystem ID other than
the default).

The token-code structure is:

STRUCT ZSPI^DDL^TKNCODE^DEF(*);
BEGIN
 INT(32) Z^TKNCODE;
 INT Z^TKNTYPE = Z^TKNCODE;
 STRUCT Z^TKN = Z^TKNCODE;
 BEGIN
 UNSIGNED(1) Z^EXTENDED; ! True if extended format
 UNSIGNED(7) Z^DATATYPE; ! Token data type
 UNSIGNED(8) Z^BYTELEN; ! Token length
 INT Z^NUMBER; ! Token number
 END;
 STRUCT Z^TKNSSID; ! Optional subsystem ID
 BEGIN
 INT Z^SSOWNER[0:3];
 INT Z^SSNUM;
 INT Z^SSVERSION;
 END;
END;

If the token-length field (ZTKN^BYTELEN) of the token code is less than 255, it
specifies the length in bytes of the associated token value. If the token-length field is

Figure C-2. Internal Format of Token Code

1 Type Length Number Subsystem ID

0 Type Length NumberSimple Format

Extended Format

VST024.vsd
SPI Programming Manual—427506-007
C-5

SPI Internal Structures Single-Occurrence Tokens
255, then the first word of the value gives the (noninclusive) length in bytes of the rest
of the value.

Single-Occurrence Tokens

Single occurrences of token codes and token values are stored contiguously in the SPI
buffer (see Figure C-3). A padding byte is emitted where necessary so that each token
code begins on a word boundary.

Multiple-Occurrence Tokens

To save space, multiple occurrences of the same token code are prefixed by a table
header (see Figure C-4). The first two words of the table header are a token code with
a token type of ZSPI-TYP-SSTBL (consisting of token data type ZSPI-TDT-SSTBL and
token length 255) and a token number of ZSPI-TNM-TBLHDR. (The definitions just
named are in the SPI standard definition files but are not described in Section 4, ZSPI
Data Definitions. They are for HP internal use only.)

The table header for multiple-occurrence tokens has this structure:

STRUCT ZSPI^DDL^TBLHDR^DEF(*);
BEGIN
 INT(32) Z^TBL^TKNCODE; ! Token code for table
 INT Z^TBL^BYTELEN; ! Length of table (in bytes)
 INT Z^TBL^COUNT; ! Number of occurrences
 STRUCT Z^TBL^TKN[0:-1]; ! Token code for tbl values
 BEGIN
 INT(32) Z^TKNCODE;
 STRUCT Z^TKN = Z^TKNCODE;
 BEGIN

Figure C-3. Single-Occurrence Tokens as Stored in the Buffer

Figure C-4. Multiple-Occurrence Tokens as Stored in the Buffer

 ...Token Code Value Token Code Value

VST025.vsd

...Table Header Value (0) Value (1) Value (2)

VST026.vsd
SPI Programming Manual—427506-007
C-6

SPI Internal Structures Token-Map Structure
 UNSIGNED(1) Z^EXTENDED; ! True if extended-
 ! format token code
 UNSIGNED(7) Z^DATATYPE; ! Token data type
 UNSIGNED(8) Z^BYTELEN; ! Token length
 INT Z^NUMBER; ! Token number
 END;
 STRUCT Z^TKN^SSID; ! Optional subsystem ID
 BEGIN
 INT Z^SSOWNER[0:3];
 INT Z^SSNUM;
 INT Z^SSVERSION;
 END;
 END;
END;

This table header is followed by Z^TBL^COUNT values of the type associated with
Z^TBL^TKN. (See Figure C-4 on page C-6.) Fixed-length string values are aligned on
byte boundaries; all other types of values are aligned on word boundaries.

Token-Map Structure
Token maps are used to describe version and null-value information for the values of
extensible structured tokens. The format of a token map and its associated token value
are shown in Figure C-5.

The token map contains:

 A token type of ZSPI-TYP-MAP (consisting of the token data type ZSPI-TDT-MAP
and the token length 255)

 A subsystem-defined token number

 The byte length of the structure and its base version number (the version of the
first field in the structure)

Figure C-5. Token Map and Its Token Value

VST027.vsd

...TDT MAP 255 Token Number Byte Length

Byte Length

Extensible Sturcture

Token
Map

Token
Value

Byte 0 1 2 3 4 5 6
SPI Programming Manual—427506-007
C-7

SPI Internal Structures Token-Map Example
 One or more null-value specifications

 As new fields are added, additional version specifications for the new fields

In more detail, a token map can be seen as a token-map header followed by one or
more null-value specifications and zero or more version specifications. Figure C-6
shows the formats of the token-map header, a null-value specification, and a version
specification.

Null-value specifications and version specifications can occur in any order and can be
intermixed. The end of the map is indicated when the byte lengths of the null-value
specifications add up to the total byte length of the structure value.

The SSNULL procedure constructs the null value of the structure by processing the
null-value specifications in the order that they appear in the map. For each null-value
specification, SPI copies the indicated null value into the next n bytes of the structure,
where n is the byte length from the null-value specification. The version of any byte in
the structure is that of the most recently encountered version when the null-
construction process reaches that byte of the structure.

Token-Map Example

These DDL definitions:

DEFINITION zbat-ddl-jobinfo.
 02 znumber TYPE zspi-ddl-int.
 02 zpriority TYPE zspi-ddl-int.
 02 zlocation TYPE zspi-ddl-char8 SPI-NULL "X".
END

Figure C-6. Structures Within a Token Map

VST028.vsd

Null ByteNull-Value
Specification

Version
Specification

Version Flag

Byte Length

0 1

New Version

Token-Map
Header

Token Type (ZSPI-TKN-MAP)

Token Number

Structure Byte Length

Version of First Field
SPI Programming Manual—427506-007
C-8

SPI Internal Structures Token-Map Example
CONSTANT zbat-tnm-jobinfo VALUE IS 63.

TOKEN-MAP zbat-map-jobinfo VALUE IS zbat-tnm-jobinfo
 DEF IS zbat-ddl-jobinfo.
 VERSION "C00" FOR znumber THROUGH zlocation.
END

generate this TAL output:

?SECTION ZBAT^TNM^JOBINFO
Literal ZBAT^TNM^JOBINFO = 63;

?SECTION ZBAT^DDL^JOBINFO
STRUCT ZBAT^DDL^JOBINFO^DEF (*);
 BEGIN
 INT ZNUMBER;
 INT ZPRIORITY;
 STRUCT ZLOCATION;
 BEGIN
 STRUCT Z^C;
 BEGIN STRING BYTE [0:7]; END;
 STRUCT Z^S = Z^C;
 BEGIN
 INT Z^I[0:3];
 END;
 STRING Z^B[0:7] = Z^C;
 END;
 END;

?SECTION ZBAT^TNM^JOBINFO
Literal ZBAT^TNM^JOBINFO = 63;

?SECTION ZBAT^MAP^JOBINFO
Define ZBAT^MAP^JOBINFO = [2303, 63, 12, 17152, 1024,
 2136]#;
Literal ZBAT^MAP^JOBINFO^WLN = 6;

Structures can be changed in a version-compatible way only by adding fields at the
end of the structure. Changing the DDL to add new fields for user ID and job class
would look like:

?DICT
?TAL ZTAL !

DEFINITION zbat-ddl-jobinfo.
 02 znumber TYPE zspi-ddl-int.
 02 zpriority TYPE zspi-ddl-int.
 02 zlocation TYPE zspi-ddl-char8
 SPI-NULL "X".
 02 zuserid-is-present TYPE zspi-ddl-boolean.
 02 zuserid TYPE zspi-ddl-userid.
 02 zjobclass TYPE zspi-ddl-int.
END

CONSTANT zbat-tnm-jobinfo VALUE IS 63.
SPI Programming Manual—427506-007
C-9

SPI Internal Structures List Structure
TOKEN-MAP zbat-map-jobinfo VALUE IS zbat-tnm-jobinfo
 DEF IS zbat-ddl-jobinfo.
 VERSION "C00" FOR znumber THROUGH zlocation.
 VERSION "C10" FOR zuserid-is-present.
 NOVERSION FOR zuserid.
 VERSION "C10" FOR zjobclass.
END

The resulting TAL code generated by the DDL compiler is:

?SECTION ZBAT^DDL^JOBINFO
STRUCT ZBAT^DDL^JOBINFO^DEF (*);
 BEGIN
 INT ZNUMBER;
 INT ZPRIORITY;
 STRUCT ZLOCATION;
 BEGIN
 STRUCT Z^C;
 BEGIN STRING BYTE [0:7]; END;
 STRUCT Z^S = Z^C;
 BEGIN
 INT Z^I[0:3];
 END;
 STRING Z^B[0:7] = Z^C;
 END;
 INT ZUSERID^IS^PRESENT;
 STRUCT ZUSERID;
 BEGIN
 STRING ZBYTE[0:1];
 END;
 INT ZJOBCLASS;
 END;

?SECTION ZBAT^TNM^JOBINFO
Literal ZBAT^TNM^JOBINFO = 63;

?SECTION ZBAT^MAP^JOBINFO
Define ZBAT^MAP^JOBINFO = [2303, 63, 18, 17152, 1024,
 2136, 1, 17162, 544, 1, 0, 512,
 1, 17162, 512]#;
Literal ZBAT^MAP^JOBINFO^WLN = 15;

In this case, NOVERSION is specified for the user ID field because the presence or
absence of the field is actually indicated by the IS-PRESENT Boolean.

List Structure
Each list token (each token of token type ZSPI-TYP-LIST and token length 0) is stored
in the buffer as a variable-length token (token type ZSPI-TKN-LIST and token length
ZSPI-TLN-VARIABLE, or 255). Its length—which follows the token code, as for all
variable-length tokens—includes all tokens that are part of the list, including the end-
list token.
SPI Programming Manual—427506-007
C-10

SPI Internal Structures List Structure
When stored in the buffer, the token-number portion of the ZSPI-TKN-ENDLIST token
is replaced with the length of the list. This is used for a boundary-tag consistency
check.

Figure C-7. Structure of a List in the Buffer

VST029.vsd

List Token Code Length 1st Token nth Token End-List Token

Length
SPI Programming Manual—427506-007
C-11

SPI Internal Structures List Structure
SPI Programming Manual—427506-007
C-12

D
NonStop Kernel Subsystem
Numbers and Abbreviations

This appendix lists the NonStop Kernel subsystem numbers and abbreviations.

Table D-1 lists the subsystem numbers, abbreviations, and mnemonics assigned to
NonStop Kernel subsystems. The integer numbers themselves are provided for
debugging purposes. Under normal circumstances, you should refer to a subsystem
number by its symbolic name, which has the form ZSPI-SSN-ssss.

Table D-2 on page D-12 lists the subsystem abbreviations that appear in NonStop
Kernel subsystem definition files. Data items from these files can appear in command
messages, response messages, and event messages. All NonStop Kernel subsystem
abbreviations start with Z. If you are writing an SPI server, start your definition names
with a letter other than Z to avoid name conflicts with software that HP provides for the
NonStop server.

For some subsystems and other system components, HP defines a mnemonic (short
name) of up to eight characters:

 Displayed by the ViewPoint console application to identify the source of event
messages

 Accepted and displayed by TACL in the subsystem-number portion of subsystem
IDs (for example, EXPAND in TANDEM.EXPAND.D40)

 Used in the HELP command and error-message displays of the Subsystem Control
Facility (SCF)

Table D-1 and Table D-2 on page D-12 list the mnemonic for any subsystem or other
system component for which a mnemonic is defined. The mnemonics are case-
sensitive; all alphabetic characters must be uppercase. (TACL does not upshift them.)

Table D-1. NonStop Kernel Subsystem Numbers (page 1 of 11)

Subsystem
Number

Subsystem
Abbreviation Mnemonic Description

0 ZSPI-SSN-NULL

1 ZSPI SPI Subsystem Programmatic Interface

2 ZODP ODP Optical disk process

3 ZTAC TACL HP Tandem Advanced Command Language

4 ZTAP TAPE Tape process

5 ZDNS DNS Distributed Name Service

1 Subsystem 265 is supported only on systems running H-series RVUs.

2 Subsystems, 266 and 267 are supported only on systems running G-series RVUs.
SPI Programming Manual—427506-007
D-1

NonStop Kernel Subsystem Numbers and Abbreviations
6 ZFUP FUP File Utility Program

7 ZPUP PUP Peripheral Utility Program

8 ZPWY PATHWAY HP NonStop TS/MP (TS/MP) and HP
NonStop Pathway/iTS

9 ZBAT BAT NetBatch batch processing system

10 ZTMF TMF HP NonStop Transaction Management
Facility

11 ZTUT Tandem SQL utility

12 ZEMS EMS Event Management Service

13 ZFOX FOX Fiber Optic Extension

14 ZMDS MDS Remote Maintenance Interface (RMI) event
messages sent to HP Tandem Maintenance
and Diagnostic System (TMDS)

15 ZCPU CPU Central processor microcode and memory
manager

16 ZIPB IPB Interprocessor bus interrupt handler

17 ZCAB Cabinet

18 ZCAT Catalyst

19 ZLAM TLAM HP Tandem LAN Access Method
(TLAM)/Multilan connectivity tool

20 ZTMD TMDS HP Tandem Maintenance and Diagnostic
System (TMDS)

21 ZCOM ZCOM SPI common extensions definitions (Items
with shared ZCOM definitions take the
subsystem ID of the subsystem with which
they are used.)

22 ZAM3 AM3270 AM3270

23 ZAM6 AM6520 AM6520

24 ZATP ATP ATP6100 terminal and printer processes

25 ZSCP SCP Subsystem Control Point

26 ZCP6 CP6100

27 ZCSM CSM Communications Subsystem Manager

28 ZART ARCHTAPE Archived Tape

29 ZAPC SNAX/APC SNAX/Advanced Program Communication
(SNAX/APC) communications services

Table D-1. NonStop Kernel Subsystem Numbers (page 2 of 11)

Subsystem
Number

Subsystem
Abbreviation Mnemonic Description

1 Subsystem 265 is supported only on systems running H-series RVUs.

2 Subsystems, 266 and 267 are supported only on systems running G-series RVUs.
SPI Programming Manual—427506-007
D-2

NonStop Kernel Subsystem Numbers and Abbreviations
30 ZEXP EXPAND Expand networking tool

31 ZDSK DISK Disk process

32 ZDCS DCOMDSAP DCOM and Disk Space Analysis Program
(DSAP) utilities

33 ZGDS GDS General Device Support

34 ZDSC DSC Dynamic System Configuration

35 ZSTN SAFENET Safe-T-Net

36 ZSX1 SNAX SNAX Advanced Peer Networking
(SNAX/APN) and SNAX Extended Facility
(SNAX/XF)

37 ZCDF SNAXCDF SNAX Cross-Domain Facility (SNAX/CDF)

38 ZTIL TIL HP Tandem-to-IBM Link (TIL)

39 ZTHL THL HP Tandem HyperLink (THL)

40 ZTR3 TR3271 TR3721

41 ZX25 X25AM X.25 Access Method

42 ZSO4 SBS4

43 reserved

44 ZDDN Defense Data Network (DDN)

45 ZMHS OSI/MHS Open Systems Interconnection (OSI)
/Message Handling System (MHS)

46 ZGRD GUARDLIB NonStop operating system

47 ZGP1 EDITREAD Editread

48 ZGP2 SIO Sequential I/O

49 ZGP3 FMTR Formatter

50 ZGP4 IOEDIT reserved

51 ZGP5 reserved

52 ZGP6 reserved

53 ZGP7 reserved

54 ZGP8 reserved

55 ZGP9 reserved

56 ZSRT Sort and FastSort utilities

57 ZSPL Spooler

58 ZENF Enform

Table D-1. NonStop Kernel Subsystem Numbers (page 3 of 11)

Subsystem
Number

Subsystem
Abbreviation Mnemonic Description

1 Subsystem 265 is supported only on systems running H-series RVUs.

2 Subsystems, 266 and 267 are supported only on systems running G-series RVUs.
SPI Programming Manual—427506-007
D-3

NonStop Kernel Subsystem Numbers and Abbreviations
59 ZVCS Sorceress

60 ZVPT VIEWPT ViewPoint console application

61 ZS16 TMDS6106 SBS16

62 ZOSI OSI/AS Open Systems Interconnection/Application
Services

63 ZOS4 OSI/TS Open Systems Interconnection/Transport
Services

64 ZCLX HP NonStop CLX processors

65 ZTLN TLN Talon

66 ZCLK CLOCK System clock low-level software

67 ZSRV Surveyor

68 ZFIL FILESYS File system

69 ZGIO GUARDIO Low-level I/O

70 ZCMS CMS Configuration Management System

71 ZCSS CSS HP Tandem Maintenance and Diagnostic
System (TMDS) for communications
subsystem (CSS)

72 ZMON MONITOR System monitor

73 ZMSG MSGSYS Message system

74 ZBKU BACKUP Backup

75 ZRST RESTORE Restore

76 ZBKC BACKCOPY Backcopy

77 ZNFS NFS Network File System

78 ZCDG CDG Common Data Communications Diagnostics

79 ZRPC RPC Remote Procedure Call (RPC)

80 ZTCI ZTCI Transmission Control Protocol/Internet
Protocol (TCP/IP)

81 ZPMT DSMPM Problem Management and Tracking

82 ZDSN DSNM Distributed Systems Network Management

83 ZCMK COM-KRNL Common messages

84 ZDGN Diskgen

85 ZCL2 SNAX/EnvoyACPXF CL2

86 ZSCM SQL compiler

Table D-1. NonStop Kernel Subsystem Numbers (page 4 of 11)

Subsystem
Number

Subsystem
Abbreviation Mnemonic Description

1 Subsystem 265 is supported only on systems running H-series RVUs.

2 Subsystems, 266 and 267 are supported only on systems running G-series RVUs.
SPI Programming Manual—427506-007
D-4

NonStop Kernel Subsystem Numbers and Abbreviations
87 ZORS ORSERV Online reload server

88 ZEXF EnvoyACP/XF

89 ZPWR CLX autopower utility

90 ZREP TMDS Replace

91 ZTNT TELSERV Telserv subsystem

92 ZFIR TMDS FRU Information Record (FIR)

93 ZAPS OSI/AS

94 ZSFG SFG Safeguard security product

95 ZSYS Operating system

96 ZTAS Safeguard Trusted Audit Service

97 ZOSA OSIAPLMG Open Systems Interconnection/Application
Manager

98 ZFTM FTAM Open Systems Interconnection/ File
Transfer, Access, and Management

99 ZMMS MMS OSI Manufacturing Message Spec

100 ZDUA DUA OSI Directory user agent

101 ZNMA NMA OSI Network Management Agent

102 ZTRC TRACE DSM Trace

103 ZDNI DSM NetView Interconnect

104 ZRPO REPO Repository

105 ZSDN ISDN Integrated Services Digital Network (ISDN)

106 ZACS ACS Atalla Cryptographic Subsystem

107 ZENV ENVOY Envoy

108 ZCCM CCM Call Center Management

109 ZEM3 EM3270 EM3270

110 ZHLS SNAXHLS SNAX High-Level Support (SNAX/HLS)

111 ZMCS MediaMgt Media Management Catalog

112 ZTLK TTALK TandemTalk

113 ZPNA PNA Programmatic Network Administrator (PNA)

114 ZING INGRES Ingres

115 ZT21 IBM node type 2.1

116 ZSYT Surveyor to TCM Interface

Table D-1. NonStop Kernel Subsystem Numbers (page 5 of 11)

Subsystem
Number

Subsystem
Abbreviation Mnemonic Description

1 Subsystem 265 is supported only on systems running H-series RVUs.

2 Subsystems, 266 and 267 are supported only on systems running G-series RVUs.
SPI Programming Manual—427506-007
D-5

NonStop Kernel Subsystem Numbers and Abbreviations
117 ZNNM NNM NonStop NET/MASTER

118 ZSWY SYSWAY SysWay

119 ZTWY TRANSWAY TransWay

120 ZNST TEXTBASE TEXTBASE

121 ZSNM TCP/IP

122 ZSCS SQL Communications Subsystem

123 reserved

124 ZLEG LEGHOST reserved

125 ZTN3 TN32SERV TN32SERV access method

126 ZEMA EMS Analyzer

127 ZOMF OMF Object Monitoring Facility

128 ZEDF Event Distribution Facility

129 ZMCM Measure TCM Interface

130 ZRMT RMI remote port

131 ZSYH SYSH Syshealth

132 ZLDS T1002 Template

133 ZCRE SNAXCRE SNAX Creator-2

134 ZRMI RMIACCES XMIOP

135 ZPHI DSM/SCM DSM/Software Configuration Manager

136 ZOSF OSI/FTAM OSI/File Transfer, Access, and Maintenance
System

137 ZSGN SYSGEN System Generation EMS Interface

138 ZVHS VHS NonStop Virtual Hometerm Subsystem

139 ZOSN OSI/NM Network Management

140 ZSUI User interface

141 ZMSR MEASURE Measure

142 ZBRT BRT Tape Reader/BACKUP Subsystem

143 ZOSS OSS HP NonStop Kernel Open System Services
(OSS)

144 ZNAR Network Control Language (NCL)
Automation Rules Set

145 ZXCR Exchange/remote job entry (RJE)

Table D-1. NonStop Kernel Subsystem Numbers (page 6 of 11)

Subsystem
Number

Subsystem
Abbreviation Mnemonic Description

1 Subsystem 265 is supported only on systems running H-series RVUs.

2 Subsystems, 266 and 267 are supported only on systems running G-series RVUs.
SPI Programming Manual—427506-007
D-6

NonStop Kernel Subsystem Numbers and Abbreviations
146 ZXCS Exchange/Systems Network Architecture
(SNA)

147 ZSXC SXCM SNAX Connection Manager (SNAX/CM)

148 ZMWR FastConnect/MessageWare

149 ZGPA Performance Analyzer

150 ZSSI SSI Storage Server Interface

151 ZDMP DMP HP Tandem Failure Data System (TFDS)

152 ZQAT Online transaction processing (OLTP) QA
TESTWARE

153 ZNDS OSI/NonStop Directory Services (NSDS)

154 ZDTS DSM Template Services

155 ZSMP SMP Simple Network Management Protocol
(SNMP)

156 ZGSX SWEDS

157 ZGSP GoldSend

158 ZTBL SCF IF GEN

159 ZLBL Tapestry Label

160 ZRSC Remote Server Call

161 ZSQL SQL HP NonStop SQL/MP (SQL/MP)

162 ZAUD SQLAUDIT HP NonStop SQL/MP Audit

163 ZNSX NSX Network Statistics Extended

164 ZIPX IPXSPX Interprocessor Extended/Subsystem
Processor Extended

165 ZWMS WMS Workload Measurement System

166 ZQIO QIO Shared I/O for Transmission Control
Protocol/Internet Protocol

167 ZLMN LINKMON LINKMON Subsystem

168 ZSMF SMF HP NonStop Storage Management
Foundation

169 ZTIF TIF Tandem Instrumentation Facility

170 ZGSS GSS Guided System Services

171 ZCIC CICS Parallel Transaction Processing (PTP) for
Customer Information Control System
(CICS)

Table D-1. NonStop Kernel Subsystem Numbers (page 7 of 11)

Subsystem
Number

Subsystem
Abbreviation Mnemonic Description

1 Subsystem 265 is supported only on systems running H-series RVUs.

2 Subsystems, 266 and 267 are supported only on systems running G-series RVUs.
SPI Programming Manual—427506-007
D-7

NonStop Kernel Subsystem Numbers and Abbreviations
172 ZATM ATM ATM

173 ZOPS OPSCON DSM/MultiView

174 ZEIC ElInv Electronic Inventory

175 ZRAL RAL Resource access layer

176 ZWAN WAN Wide Area Network subsystem

177 ZLSN LSNTTTCP Listener Tandem Talk

178 ZNBX NBX NETBIOS over IPX/SPX

179 ZNBT NBT NETBIOS over TCP/IP

180 ZHRM HRM Host Resources Subagent

181 ZCCC CCC Common Call Catcher

182 ZONS ONS Open Notification Service

183 ZNSK NSK HP NonStop Operating System/Kernel
Managed Swap Events

184 ZSRL SRL Shared run-time library

185 ZTMX TMX Simple Network Management Protocol
(SNMP) Trap Multiplexer

186 ZMEV MEV Multi-Event Viewer

187 ZTAG TAG Transport Agent

188 ZDCE DCE Distributed Computing Environment (DCE)

189 ZSTO STORAGE Storage Subsystem

190 ZSCZ SCSI Open SCSI

191 ZTSE TSE HP NonStop TS/MP for HP NonStop Tuxedo
users

192 ZSQA System QA

193 ZLAN LAN Local area network

194 ZTSM TSM HP TSM Transfer

195 ZSAP SAP Service access point

196 ZISA IPXSA IPX-SPV Subsystem (NetWare on NonStop
operating system)

197 ZYMP YMP MIOP (maintenence I/O process)
subsystem

198 ZCEV CEV Common Event Viewer/EMS Event Viewer

199 ZKRN KRN Kernel Subsystem

Table D-1. NonStop Kernel Subsystem Numbers (page 8 of 11)

Subsystem
Number

Subsystem
Abbreviation Mnemonic Description

1 Subsystem 265 is supported only on systems running H-series RVUs.

2 Subsystems, 266 and 267 are supported only on systems running G-series RVUs.
SPI Programming Manual—427506-007
D-8

NonStop Kernel Subsystem Numbers and Abbreviations
200 ZXIO XIO HP NonStop Kernel XIO (extensible
input/output)

201 ZSNT SNT ServerNet Error Handler

202 ZTSA TSA TCP/IP SNMP SubAgent

203 ZIPC IPC HP NonStop Kernel Message Subsystem

204 ZNSC NSC HP NonStop C Multitasking Engine

205 ZSMD SMD Open SCSI Module Driver

206 ZSPR SPR Server Processor

207 ZSIM SIM Secure Internet Messaging Services

208 ZTUX TUX NonStop Tuxedo

209 ZDIO DIO Direct-bulk I/O

210 ZWEB WEB WebServer

211 ZRDF RDF Remote Duplicate Database Facility

212 ZESM ESM Enterprise Storage Manager

213 ZASM ASM Automated Storage Manager

214 ZPRT PRT TCP/IP Utilities

215 ZPAM PAM Port Access Method

216 ZDOM DOM NS-DOM

217 ZESA ETHSA SNMP Ethernet/ Token-Ring Subagent

218 ZSCL SCL SuperClusters

219 ZNIM HP NonStop Internet Messaging

220 ZTCP TCPMAN TCP/IP Manager

221 ZETN ETN32SRV NonStop Operating System Enhanced
TN3270 Server

222 reserved

223 reserved

224 reserved

225 ZDSL DSL Dynamic Update of System Library (DUSL)

226 ZASP ASAP Availability, Statistics, and Performance

227 ZKRF Key Repository Facility

228 reserved

229 reserved

Table D-1. NonStop Kernel Subsystem Numbers (page 9 of 11)

Subsystem
Number

Subsystem
Abbreviation Mnemonic Description

1 Subsystem 265 is supported only on systems running H-series RVUs.

2 Subsystems, 266 and 267 are supported only on systems running G-series RVUs.
SPI Programming Manual—427506-007
D-9

NonStop Kernel Subsystem Numbers and Abbreviations
230 reserved

231 ZMXO ODBC/MX HP NonStop ODBC/MX

232 ZNNS NNSERVER Network Node Server

233 ZDPA Data Path Adapter

234 ZNOS HP NonStop ODBC/MX server

235 ZNDC

236 ZMXS SQL/MX HP NonStop SQL/MX

237 ZSMN SANMAN External system area network manager
process

238 ZFTP FTP File Transfer Protocol

239 ZNUL TNOS TNOS Utility

240 ZFSP TCP/IP LAN Print Spooler

241 ZINS Inspect

242 ZESC HP NonStop Auto TMF software

243 ZLSG Lockstop Gateway

244 ZXMN Expand/TCP Expand/TCP Manager

245 ZTTY OSSTTY OSS teletype

246 ZTC6 TCP/IPv6 HP NonStop TCP/IPv6

247 ZMQI WMQI WebSphere MQI for NonStop Kernel

248 ZMQS MQSeries V5.1

249 ZASY ASY HP NonStop AutoSYNC software

250 ZOSM OSM HP NonStop Open System Management
(OSM) Interface

251 ZE2A E2A J2EE 1.3 Compliant Application Server

252 ZACL ACL Application Cluster Services

253 ZOVN OVAN OpenView Agent for HP NonStop servers

254 ZOVM OVAN MON OVAN Monitor

255 ZBRU BR2 Backup Restore 2

256 ZTPM TPM Tandem/Total Performance Management

257 ZWVP WVPT Web ViewPoint

258 ZOPM OVNPM OpenView Performance Monitor for HP
NonStop servers

259 ZCIP CIP Constellation IP

Table D-1. NonStop Kernel Subsystem Numbers (page 10 of 11)

Subsystem
Number

Subsystem
Abbreviation Mnemonic Description

1 Subsystem 265 is supported only on systems running H-series RVUs.

2 Subsystems, 266 and 267 are supported only on systems running G-series RVUs.
SPI Programming Manual—427506-007
D-10

NonStop Kernel Subsystem Numbers and Abbreviations
260 ZDLL DLL DLL Subsystem

261 ZWPY WPY HP Web ViewPoint Pathway

262 ZFSM FSM Fibre Channel Storage Monitor

263 ZCMP CMP HP NonStop Operating System - Complex
Manager Auxiliary Process

264 ZZXA ZXA XA Broker Subsystem

265 ZL4J L4J Java Logging Subsystem1

266 ZCPS CPS Matrix SMLC CBB 4.2 Subsystem2

267 ZDLD DLD Deadlock Detector Subsystem2

Table D-1. NonStop Kernel Subsystem Numbers (page 11 of 11)

Subsystem
Number

Subsystem
Abbreviation Mnemonic Description

1 Subsystem 265 is supported only on systems running H-series RVUs.

2 Subsystems, 266 and 267 are supported only on systems running G-series RVUs.
SPI Programming Manual—427506-007
D-11

NonStop Kernel Subsystem Numbers and Abbreviations
Table D-2. NonStop Kernel Subsystem Abbreviations (page 1 of 9)

Subsystem
Abbreviation

Subsystem
Number Mnemonic Description

ZACL 252 ACL Application Cluster Services

ZACS 106 ACS Atalla Cryptographic Subsystem

ZAM3 22 AM3270 AM3270

ZAM6 23 AM6520 AM6520

ZAPC 29 SNAXAPC SNAX/APC communications services

ZAPS 93 OSI/AS

ZART 28 ARCHTAPE Archived Tape

ZASM 213 ASM Automated Storage Manager

ZASP 226 ASAP Availability, Statistics, and Performance

ZASY 249 ASY HP NonStop AutoSYNC software

ZATM 172 ATM ATM

ZATP 24 ATP ATP6100 terminal and printer processes

ZAUD 162 SQLAUDIT SQL/MP Audit

ZBAT 9 BAT NetBatch batch processing system

ZBKC 76 BACKCOPY Backcopy

ZBKU 74 BACKUP Backup

ZBRT 142 BRT Tape Reader/BACKUP Subsystem

ZCAB 17 Cabinet

ZCAT 18 Catalyst

ZCCC 181 CCC Common Call Catcher

ZCCM 108 CCM Call Center Management

ZCDF 37 SNAXCDF SNAX Cross-Domain Facility (SNAX/CDF)

ZCDG 78 CDG Common Data Communications Diagnostics

ZCEV 198 CEV Common Event Viewer/EMS Event Viewer

ZCIC 171 CICS PTP for CICS

ZCIP 259 CIP Constellation IP

ZCL2 85 SNAX/EnvoyACPXF CL2

ZCLK 66 CLOCK System clock low-level software

ZCLX 64 NonStop CLX processors

ZCMK 83 COM-KRNL Common messages

ZCMP 263 CMP HP NonStop Operating System - Complex
Manager Auxiliary Process

1 Subsystems, 266 and 267 are supported only on systems running G-series RVUs.

2 Subsystem 265 is supported only on systems running H-series RVUs.
SPI Programming Manual—427506-007
D-12

NonStop Kernel Subsystem Numbers and Abbreviations
ZCMS 70 CMS Configuration Management System

ZCOM 21 ZCOM SPI common extensions definitions

ZCP6 26 CP6100

ZCPS 266 CPS Matrix SMLC CCB 4.2 Subsystem1

ZCPU 15 CPU Central processor microcode and memory
manager

ZCRE 133 SNAXCRE SNAX Creator-2

ZCSM 27 CSM Communications Subsystem Manager

ZCSS 71 CSS HP Tandem Maintenance and Diagnostic
System (TMDS) for communications
subsystem (CSS)

ZDCE 188 DCE Distributed Computing Environment

ZDCS 32 DCOMDSAP DCOM and DSAP utilities

ZDGN 84 Diskgen

ZDIO 209 DIO Direct-bulk I/O

ZDLD 267 DLD Deadlock Detector Subsystem1

ZDLL 260 DLL DLL Subsystem

ZDMP 151 DMP HP Tandem Failure Data System (TFDS)

ZDNI 103 DSM NetView Interconnect

ZDNS 5 DNS DNS

ZDOM 216 DOM NS-DOM

ZDPA 233 Data Path Adapter

ZDSC 34 DSC Dynamic System Configuration

ZDSK 31 DISK Disk process

ZDSL 225 DSL Dynamic Update of System Library (DUSL)

ZDSN 82 DSNM Distributed Systems Network Management

ZDTS 154 DSM Template Services

ZDUA 100 DUA OSI Directory User Agent

ZE2A 251 E2A J2EE 1.3 Compliant Application Server

ZEDF 128 Event Distribution Facility

ZEM3 109 EM3270 EM3270

ZEMA 126 EMS Analyzer

ZEMS 12 EMS EMS

Table D-2. NonStop Kernel Subsystem Abbreviations (page 2 of 9)

Subsystem
Abbreviation

Subsystem
Number Mnemonic Description

1 Subsystems, 266 and 267 are supported only on systems running G-series RVUs.

2 Subsystem 265 is supported only on systems running H-series RVUs.
SPI Programming Manual—427506-007
D-13

NonStop Kernel Subsystem Numbers and Abbreviations
ZENF 58 Enform

ZENV 107 ENVOY Envoy

ZESA 217 ETHSA SNMP Ethernet/Token-Ring Subagent

ZESC 242 HP NonStop Auto TMF software

ZESM 212 ESM Enterprise Storage Manager

ZETN 221 ETN32SRV NonStop Operating System Enhanced
TN3270 Server

ZEXF 88 EnvoyACP/XF

ZEXP 30 EXPAND Expand networking tool

ZFIL 68 FILESYS File system

ZFIR 92 TMDS FRU Information Record (FIR)

ZFOX 13 FOX Fiber Optic Extension

ZFSM 262 FSM Fibre Channel Storage Monitor

ZFSP 240 TCP/IP LAN Print Spooler

ZFTM 98 FTAM OSI File Transfer/Access Management

ZFTP 238 FTP File Transfer Protocol

ZFUP 6 FUP File Utility Program

ZGDS 33 GDS General Device Support

ZGIO 69 GUARDIO Low-level I/O

ZGP1 47 EDITREAD Editread

ZGP2 48 SIO Sequential I/O

ZGP3 49 FMTR Formatter

ZGPA 149 Performance Analyzer

ZGRD 46 GUARDLIB NonStop operating system

ZGSP 157 GoldSend

ZGSS 170 GSS Guided System Services

ZGSX 156 SWEDS

ZHLS 110 SNAXHLS SNAX High-Level Support (SNAX/HLS)

ZHRM 180 HRM Host Resources Subagent

ZING 114 INGRES Ingres

ZINS 241 Inspect

ZIPB 16 IPB Interprocessor bus interrupt handler

Table D-2. NonStop Kernel Subsystem Abbreviations (page 3 of 9)

Subsystem
Abbreviation

Subsystem
Number Mnemonic Description

1 Subsystems, 266 and 267 are supported only on systems running G-series RVUs.

2 Subsystem 265 is supported only on systems running H-series RVUs.
SPI Programming Manual—427506-007
D-14

NonStop Kernel Subsystem Numbers and Abbreviations
ZIPC 203 IPC NonStop Kernel Message Subsystem

ZIPX 164 IPXSPX Interprocessor Extended/Subsystem
Processor Extended

ZISA 196 IPXSSA IPX-SPV Subsystem (NetWare on NonStop
operating system)

ZKRF 227 Key Repository Facility

ZKRN 199 KRN Kernel Subsystem

ZL4J 265 L4J Java Logging Subsystem2

ZLAM 19 TLAM TLAM/Multilan connectivity tool

ZLAN 193 LAN Local area network

ZLBL 159 Tapestry Label

ZLDS 132 T1002 Template

ZLEG 124 LEGHOST reserved

ZLMN 167 LINKMON LINKMON Subsystem

ZLSG 243 Lockstop Gateway

ZMCM 129 Measure TCM Interface

ZMCS 111 MediaMgt Media Management Catalog

ZMDS 14 MDS RMI event messages sent to TMDS

ZMEV 186 MEV Multi-Event Viewer

ZMHS 45 MHS Open Systems Interconnection/Message
Handling Services

ZMMS 99 MMS OSI Manufacturing Message Spec

ZMON 72 MONITOR System monitor

ZMQI 247 WMQI WebSphere MQI for NonStop Kernel

ZMQS 248 MQSeries V5.1

ZMSG 73 MSGSYS Message system

ZMSR 141 MEASURE Measure

ZMWR 148 FastConnect/MessageWare

ZMXO 231 ODBC/MX NonStop Open Database Connectivity/MX

ZMXS 236

ZNAR 144 Network Control Language (NCL)
Automation Rules Set

ZNBT 179 ZNBT NETBIOS over TCP/IP

Table D-2. NonStop Kernel Subsystem Abbreviations (page 4 of 9)

Subsystem
Abbreviation

Subsystem
Number Mnemonic Description

1 Subsystems, 266 and 267 are supported only on systems running G-series RVUs.

2 Subsystem 265 is supported only on systems running H-series RVUs.
SPI Programming Manual—427506-007
D-15

NonStop Kernel Subsystem Numbers and Abbreviations
ZNBX 178 NBX NETBIOS over IPX/SPX

ZNDC 235

ZNDS 153 OSI/NSDS

ZNFS 77 NFS Network File System

ZNIM 219 NonStop Internet Messaging

ZNMA 101 NMA OSI Network Management Agent

ZNNM 117 NNM NonStop NET/MASTER

ZNNS 232 NNSERVER Network Node Server

ZNOS 234 NonStop ODBC/MX server

ZNSC 204 NSC NonStop C Multitasking Engine

ZNSK 183 NSK NonStop operating system/Kernel Managed
Swap Events

ZNST 120 TEXTBASE TEXTBASE

ZNSX 163 NSX Network Statistics Extended

ZNUL 239 TNOS TNOS Utility

ZODP 2 ODP Optical disk process

ZOMF 127 OMF Object Monitoring Facility

ZONS 182 ONS Open Notification Service

ZOPM 258 OVNPM OpenView Performance Monitor for HP
NonStop servers

ZOPS 173 OPSCON DSM/MultiView

ZORS 87 ORSERV Online reload server

ZOS4 63 OSI/TS Open Systems Interconnection/Transport
Services

ZOSA 97 OSIAPLMG Open Systems Interconnection/Application
Manager

ZOSF 136 OSIFTAM OSI/File Transfer, Access, and Maintenance
System

ZOSI 62 OSI/AS Open Systems Interconnection/Application
Services

ZOSM 250 OSM HP NonStop Open System Management
(OSM) Interface

ZOSN 139 OSI/NM Network Management

ZOSS 143 OSS NonStop Open System Services

Table D-2. NonStop Kernel Subsystem Abbreviations (page 5 of 9)

Subsystem
Abbreviation

Subsystem
Number Mnemonic Description

1 Subsystems, 266 and 267 are supported only on systems running G-series RVUs.

2 Subsystem 265 is supported only on systems running H-series RVUs.
SPI Programming Manual—427506-007
D-16

NonStop Kernel Subsystem Numbers and Abbreviations
ZOVM 254 OVANMON OVAN Monitor

ZOVN 253 OVAN OpenView Agent for HP NonStop servers

ZPAM 215 PAM Port Access Method

ZPHI 135 DSM/SCM DSM/Software Configuration Manager

ZPMT 81 DSMPM Problem Management and Tracking

ZPNA 113 PNA Programmatic Network Administrator

ZPRT 214 PRT TCP/IP Utilities

ZPUP 7 PUP Peripheral Utility Program

ZPWR 89 CLX autopower utility

ZPWY 8 PATHWAY HP NonStop TS/MP and HP NonStop
Pathway/iTS

ZQAT 152 Online transaction processing (OLTP) QA
TESTWARE

ZQIO 166 QIO Shared I/O for Transmission Control
Protocol/Internet Protocol (TCP/IP)

ZRAL 175 RAL Resource access layer

ZRDF 211 RDF Remote Duplicate Database Facility

ZREP 90 TMDS Replace

ZRMI 134 RMIACCES XMIOP

ZRMT 130 RMI remote port

ZRPC 79 RPC Remote Procedure Call (RPC)

ZRPO 104 REPO Repository

ZRSC 160 Remote Server Call

ZRST 75 RESTORE Restore

ZSCM 86 SQL compiler

ZS16 61 TMDS6106 SBS16

ZSAP 195 SAP Service access point

ZSCL 218 SCL SuperClusters

ZSCP 25 SCP Subsystem Control Point

ZSCS 122 SQL Communications Subsystem

ZSCZ 190 SCSI Open SCSI

ZSDN 105 ISDN Integrated Services Digital Network

ZSFG 94 SFG Safeguard security product

Table D-2. NonStop Kernel Subsystem Abbreviations (page 6 of 9)

Subsystem
Abbreviation

Subsystem
Number Mnemonic Description

1 Subsystems, 266 and 267 are supported only on systems running G-series RVUs.

2 Subsystem 265 is supported only on systems running H-series RVUs.
SPI Programming Manual—427506-007
D-17

NonStop Kernel Subsystem Numbers and Abbreviations
ZSGN 137 SYSGEN EMS Interface

ZSIM 207 SIM Secure Internet Messaging Services

ZSMD 205 SMD Open SCSI Module Driver

ZSMF 168 SMF System Managed Storage

ZSMN 237 SANMAN System Area Network Manager

ZSMP 155 SMP NonStop SNMP (Simple Network
Management Protocol)

ZSNM 121 TCP/IP

ZSNT 201 SNT ServerNet Error Handler

ZSO4 42 SBS4

ZSPI 1 SPI Subsystem Programmatic Interface

ZSPL 57 Spooler

ZSPR 206 SPR Server Processor

ZSQA 192 System QA

ZSQL 161 SQL NonStop SQL/MP

ZSRL 184 SRL Shared run-time library

ZSRT 56 Sort and FastSort utilities

ZSRV 67 Surveyor

ZSSI 150 Storage Service Interface

ZSTN 35 SAFENET Safe-T-Net

ZSTO 189 STORAGE Storage Subsystem

ZSUI 140 User interface

ZSWY 118 SYSWAY SysWay

ZSX1 36 SNAX SNAX Advanced Peer Networking
(SNAX/APN) and SNAX Extended Facility
(SNAX/XF)

ZSXC 147 SXCM SNAX Connection Manager

ZSYH 131 SYSH Syshealth

ZSYS 95 Operating system

ZSYT 116 Surveyor to TCM Interface

ZT21 115 IBM node type 2.1

ZTAC 3 TACL HP Tandem Advanced Command Language

ZTAG 187 TAG Transport Agent

Table D-2. NonStop Kernel Subsystem Abbreviations (page 7 of 9)

Subsystem
Abbreviation

Subsystem
Number Mnemonic Description

1 Subsystems, 266 and 267 are supported only on systems running G-series RVUs.

2 Subsystem 265 is supported only on systems running H-series RVUs.
SPI Programming Manual—427506-007
D-18

NonStop Kernel Subsystem Numbers and Abbreviations
ZTAP 4 TAPE Tape process

ZTAS 96 SafeGuard Trusted Audit Service

ZTBL 158 SCF IF GEN

ZTCI 80 ZTCI Transmission Control Protocol/Internet
Protocol (TCP/IP)

ZTC6 246 TCP/IPv6 HP NonStop TCP/IPv6

ZTCP 220 TCPMAN TCP/IP Manager

ZTHL 39 THL HP Tandem HyperLink

ZTIF 169 TIF Tandem Instrumentation Facility

ZTIL 38 TIL HP Tandem-to-IBM Link (TIL)

ZTLK 112 TTALK TandemTalk

ZTLN 65 TLN Talon

ZTMD 20 TMDS Tandem Maintenance and Diagnostic
System

ZTMF 10 TMF NonStop Transaction Management Facility

ZTMX 185 TMX Simple Network Management Protocol
(SNMP) Trap Multiplexer

ZTN3 125 TN32SERV TN32SERV access method

ZTNT 91 TELSERV Telserv subsystem

ZTPM 256 TPM Tandem/Total Performance Management

ZTR3 40 TR3271 TR3721

ZTRC 102 TRACE DSM Trace

ZTSA 202 TSA TCP/IP SNMP SubAgent

ZTSE 191 TSE NonStop TS/MP for NonStop Tuxedo users

ZTSM 194 TSM HP TSM Transfer

ZTTY 245 OSSTTY OSS teletype

ZTUT 11 Tandem SQL utility

ZTUX 208 TUX NonStop Tuxedo

ZTWY 119 TRANSWAY TransWay

ZVCS 59 Sorceress

ZVHS 138 VHS NonStop Virtual Hometerm Subsystem

ZVPT 60 VIEWPT ViewPoint console application

ZWAN 176 WAN Wide Area Network subsystem

Table D-2. NonStop Kernel Subsystem Abbreviations (page 8 of 9)

Subsystem
Abbreviation

Subsystem
Number Mnemonic Description

1 Subsystems, 266 and 267 are supported only on systems running G-series RVUs.

2 Subsystem 265 is supported only on systems running H-series RVUs.
SPI Programming Manual—427506-007
D-19

NonStop Kernel Subsystem Numbers and Abbreviations
ZWEB 210 WEB WebServer

ZWMS 165 WMS Workload Measurement System

ZWVP 257 WVPT Web ViewPoint

ZX25 41 X25 X.25 Access Method

ZZXA 264 ZXA XA Broker Subsystem

ZXCR 145 Exchange/RJE

ZXCS 146 Exchange/SNA

ZXIO 200 XIO NonStop Kernel XIO (extensible
input/output)

ZXMN 244 Expand/TCP Expand/TCP Manager

ZXSC 147 SCXM SNAX Connection Manager

ZYMP 197 YMP MIOP (maintenence I/O process)
subsystem

Table D-2. NonStop Kernel Subsystem Abbreviations (page 9 of 9)

Subsystem
Abbreviation

Subsystem
Number Mnemonic Description

1 Subsystems, 266 and 267 are supported only on systems running G-series RVUs.

2 Subsystem 265 is supported only on systems running H-series RVUs.
SPI Programming Manual—427506-007
D-20

E SPI Programming Examples

This appendix lists the TAL source code and C source code for six programs that
demonstrate basic SPI concepts and programming techniques. In addition to these
twelve working example programs, there are eight supporting files (four in TAL and four
in C), one TACL command file for compiling the TAL programs, and one TACL
command file for compiling the C programs.

The source code presented in this appendix is for working programs, supporting files,
and one command file each for compiling the TAL and C programs.

Source files for these example programs are distributed in the subvolume ZSPIEXAM.

Working Programs

Example Description Source File Page

E-1 A TAL program that demonstrates the basic buffer
operations shown in Figure 2-4 on page 2-18. This
example shows how to initialize a buffer, put tokens into
the buffer, reset the buffer, and get tokens from the
buffer.

SET0204 E-4

E-2 The C program equivalent of Example E-1 SEC0204 E-7

E-3 A TAL program that demonstrates the basic buffer
operations shown in Figure 2-5 on page 2-22. This
example shows how to move in and out of lists and
retrieve tokens from within a list.

SET0205 E-9

E-4 The C program equivalent of Example E-3 SEC0205 E-12

E-5 A TAL program that performs the basic buffer operations
shown in Figure 2-6 on page 2-24. This example
demonstrates the behavior of the special SSGET
operation ZSPI-TKN-NEXTTOKEN in and around lists.

SET0206 E-15

E-6 The C program equivalent of Example E-5 SEC0206 E-18

E-7 A TAL program that performs the basic buffer operations
shown in Figure 2-7 on page 2-26. This example
demonstrates the behavior of the special SSGET
operation ZSPI-TKN-NEXTCODE in and around lists.

SET0207 E-21

E-8 The C program equivalent of Example E-7 SEC0207 E-24

E-9 A simple SPI requester that interacts with the server
program in Example E-11. This example demonstrates
fundamental SPI requester activities, including response
continuation.

SETREQR E-27
SPI Programming Manual—427506-007
E-1

SPI Programming Examples
Supporting Files

Compile Command Files

E-10 The C program equivalent of Example E-9 SECREQRC E-36

E-11 A simple SPI server that responds to commands from
the requester in Example E-7. This example
demonstrates fundamental SPI server activities.

SETSERV E-44

E-12 The C program equivalent of the TAL SPI server
program shown in Example E-11

SECSERVC E-55

Example Description Source File Page

E-13 Common declarations used in the TAL example
programs

SETCDECS E-67

E-14 Common declarations used in the C example programs SECCH E-68

E-15 Common routines used by the TAL example programs. SETCUTIL E-69

E-16 Common routines used by the C example programs SECCUTLC E-73

E-17 Common declarations used in the TAL requester and
server examples

SETRDECS E-79

E-18 Common declarations used in the C requester and
server examples

SECRH E-81

E-19 Common routines used by the TAL requester and server
examples

SETRUTIL E-82

E-20 Common routines used by the C requester and server
examples

SECRUTLC E-85

Example Description Source File Page

E-21 A TACL command file that compiles the TAL example
programs

SETBUILD E-90

E-22 A TACL command file that compiles the C example
programs

SECBUILD E-90

Example Description Source File Page
SPI Programming Manual—427506-007
E-2

SPI Programming Examples Compiling the Example Programs
Compiling the Example Programs

Compiling the TAL Programs

1. Set your default subvolume to the subvolume that contains the example source
files. (If you plan to modify the programs for experimentation, copy the source files
from the distribution subvolume to a working subvolume.)

2. If necessary, edit the ASSIGN statements in the compile command file for the TAL
example source files (SETBUILD) to point to the location of the SPI definition files
on your node. These are usually installed in $SYSTEM.ZSPIDEF but can be
installed elsewhere.

3. TACL> obey setbuild

Compiling the C Programs

1. Set your default subvolume to the subvolume that contains the example source
files. (If you plan to modify the programs for experimentation, copy the source files
from the distribution subvolume to a working subvolume.)

2. If necessary, edit the search subvolume (ssv1) list statement in the compile
command file (SECBUILD) for the C example source files to point to the location of
the SPI definition files on your node. These are usually installed in
$SYSTEM.ZSPIDEF but can be installed elsewhere.

3. TACL> obey secbuild

Running the Example Programs

Running the TAL Programs

The SETBUILD macro creates six runnable object files:

Example Object File

E-1 SET0204O

E-3 SET0205O

E-5 SET0206O

E-7 SET0207O

E-9 SETREQRO

E-11 SETSERVO
 Run automatically by SETREQO, the requester from E-9. Choose from the first five programs.
SPI Programming Manual—427506-007
E-3

SPI Programming Examples Running the C Programs
Running the C Programs

The SECBUILD macro creates six runnable object files:

A Note on Program Output

The example programs use DSM Template Services formatting procedures to display
the contents of SPI buffers. Template Services uses an asterisk (*) to mark the current-
token pointer and a hyphen (-) to mark the last-put-token pointer. When both point to
the same token, only the hyphen is displayed. For more information about these
procedures, see the DSM Template Services Manual.

Source File Examples

Example E-1: Basic Buffer Manipulations in TAL

The TAL source file in Example E-1 on page E-5 demonstrates the basic buffer
manipulation activities illustrated in Figure 2-4 on page 2-18. The program uses DSM
Template Services to display the contents of the buffer after each manipulation. Run
the program to see the effect of SPI procedure calls on the contents of the buffer and
the locations of the buffer pointers.

Source File

SET0204

Object File

SET0204O

Example Object File

E-2 SEC0204O

E-4 SEC0205O

E-6 SEC0206O

E-8 SEC0207O

E-10 SECREQRO

E-12 SECSERVO
 Run automatically by SECREQO, the requester from E-10. Choose from the first five programs.
SPI Programming Manual—427506-007
E-4

SPI Programming Examples Example E-1: Basic Buffer Manipulations in TAL
Example E-1. TAL File: Basic Buffer Manipulations (page 1 of 2)

-- File name: SET0204
-- SPI EXAMPLE TAL 2-4
-- Figure 2-4. Pointer Manipulation
?SYMBOLS, INSPECT
LITERAL
 max^bufsize = 256; ! in bytes

?SOURCE SETCDECS
?NOLIST, SOURCE $system.system.extdecs0 (
? abend, debug, dnumout, fileinfo, initializer, myterm, numout,
? open, stop, writex,
? spi_buffer_formatfinish_, spi_buffer_formatnext_,
? spi_buffer_formatstart_,
? ssinit, ssgettkn, ssmovetkn,
? ssput, ssputtkn)
?LIST
?SOURCE SETCUTIL
?PAGE "PROC spitest MAIN"
PROC spitest MAIN;
BEGIN

 bufsize := max^bufsize;
 CALL initializer;
 CALL myterm(termname);
 CALL open(termname,term);
 IF <> THEN CALL abend;

 !
 ! Initialize the SPI buffer "b1"
 !
 IF (err := ssinit (b1, bufsize, ssid, zspi^val^cmdhdr)) THEN
 CALL display^spi^error (err, zspi^val^ssinit, 0d, true);

 sline ':=' "After SSINIT: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 !
 ! Put four tokens in the SPI buffer "b1"
 !
 val := "A";
 IF (err := ssputtkn (b1, tkn^1, val)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, tkn^1, true);
 val := "B";
 IF (err := ssputtkn (b1, tkn^2, val)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, tkn^2, true);
 val := "C";
 IF (err := ssputtkn (b1, tkn^3, val)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, tkn^3, true);
 val := "D";
 IF (err := ssputtkn (b1, tkn^3, val)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, tkn^3, true);

 sline ':=' "After SSPUT of second TKN^3: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);
SPI Programming Manual—427506-007
E-5

SPI Programming Examples Example E-1: Basic Buffer Manipulations in TAL
 !
 ! Reset the SPI buffer "b1"
 !
 IF (err := ssputtkn (b1, zspi^tkn^reset^buffer, bufsize)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^reset^buffer, true);

 sline ':=' "After RESET BUFFER: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 !
 ! Get the tokens in the SPI buffer "b1"
 !
 IF (err := ssgettkn (b1, tkn^1, val, 1)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn, tkn^1, true);

 sline ':=' "After GETTKN TKN^1: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 IF (err := ssgettkn (b1, zspi^tkn^nexttoken, tkn^code,,, ssid)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^nexttoken, true);

 sline ':=' "After GETTKN NEXTTOKEN: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 IF (err := ssgettkn (b1, tkn^2, val, 1)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn, tkn^2, true);

 sline ':=' "After GETTKN TKN^2: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 IF (err := ssgettkn (b1, tkn^3, val, 2)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn, tkn^3, true);

 sline ':=' "After GETTKN second TKN^3: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 sline ':=' "Program finished." -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL stop;

END;

Example E-1. TAL File: Basic Buffer Manipulations (page 2 of 2)
SPI Programming Manual—427506-007
E-6

SPI Programming Examples Example E-2: Basic Buffer Manipulations in C
Example E-2: Basic Buffer Manipulations in C

The C source file in Example E-2 demonstrates the basic buffer manipulation activities
illustrated in Figure 2-4 on page 2-18. The program uses DSM Template Services to
display the contents of the buffer after each manipulation. Run the program to see the
effect of SPI procedure calls on the contents of the buffer and the locations of the
buffer pointers.

Source File

SEC0204C

Object File

SEC0204O

Example E-2. C File: Basic Buffer Manipulations (page 1 of 2)

/* File name: sec0204c
 * SPI EXAMPLE C 2-4
 * Figure 2-4. Pointer Manipulation
 */
#pragma symbols
#pragma inspect
#pragma nomap
#pragma nolmap

#define max_bufsize 256 /* in bytes */

#include "secc.h"
#pragma list
#include "seccutlc"
#pragma page "MAIN"
main(/* int argc, char *argv[] */)
{

 bufsize = max_bufsize;

 /*
 * Initialize the SPI buffer "b1"
 */
 if (err = SSINIT (b1, bufsize, (short *) &ssid, ZSPI_VAL_CMDHDR))
 display_spi_error (err, ZSPI_VAL_SSINIT, 0L, true);

 printf ("After SSINIT: \n");
 dump_buf (b1);
 /*
 * Put four tokens in the SPI buffer "b1"
 */
 val = 'A';
 if (err = SSPUTTKN (b1, tkn_1, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_1, true);
 val = 'B';
 if (err = SSPUTTKN (b1, tkn_2, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_2, true);
 val = 'C';
SPI Programming Manual—427506-007
E-7

SPI Programming Examples Example E-2: Basic Buffer Manipulations in C
 if (err = SSPUTTKN (b1, tkn_3, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_3, true);
 val = 'D';
 if (err = SSPUTTKN (b1, tkn_3, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_3, true);

 printf ("After SSPUT of second TKN_3: \n");
 dump_buf (b1);

 /*
 * Reset the SPI buffer "b1"
 */
 if (err = SSPUTTKN (b1, ZSPI_TKN_RESET_BUFFER, (char *) &bufsize))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_RESET_BUFFER, true);

 printf ("After RESET BUFFER: \n");
 dump_buf (b1);

 /*
 * Get the tokens in the SPI buffer "b1"
 */
 if (err = SSGETTKN (b1, tkn_1, &val, 1))
 display_spi_error (err, ZSPI_VAL_SSGETTKN, tkn_1, true);

 printf ("After GETTKN TKN_1: \n");
 dump_buf (b1);

 get_count = 1;
 if (err = SSGETTKN (b1, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &ssid))
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, true);

 printf ("After GETTKN NEXTTOKEN: \n");
 dump_buf (b1);

 if (err = SSGETTKN (b1, tkn_2, &val, 1))
 display_spi_error (err, ZSPI_VAL_SSGETTKN, tkn_2, true);
 printf ("After GETTKN TKN_2: \n");
 dump_buf (b1);

 if (err = SSGETTKN (b1, tkn_3, &val, 2))
 display_spi_error (err, ZSPI_VAL_SSGETTKN, tkn_3, true);

 printf ("After GETTKN second TKN_3: \n");
 dump_buf (b1);

 printf ("Program finished.\n");
}

Example E-2. C File: Basic Buffer Manipulations (page 2 of 2)
SPI Programming Manual—427506-007
E-8

SPI Programming Examples Example E-3: Working With Lists in TAL
Example E-3: Working With Lists in TAL

Example E-3 on page E-10 demonstrates the basic buffer manipulation activities
illustrated in Figure 2-5 on page 2-22. The TAL program uses DSM Template Services
to display the contents of the buffer after each manipulation. Run the program to see
SPI procedure calls used to move in and out of an SPI list.

Source File

SET0205

Object File

SET0205O
SPI Programming Manual—427506-007
E-9

SPI Programming Examples Example E-3: Working With Lists in TAL
Example E-3. TAL File: Working With Lists (page 1 of 3)

-- File name: SET0205
-- SPI EXAMPLE TAL 2-5
-- Figure 2-5. Pointer Manipulation and lists
?SYMBOLS, INSPECT
LITERAL
 max^bufsize = 256; ! in bytes

?SOURCE SETCDECS
?NOLIST, SOURCE $system.system.extdecs0 (
? abend, debug, dnumout, fileinfo, initializer, myterm, numout,
? open, stop, writex,
? spi_buffer_formatfinish_, spi_buffer_formatnext_,
? spi_buffer_formatstart_,
? ssinit, ssgettkn, ssmovetkn,
? ssput, ssputtkn)
?LIST
?SOURCE SETCUTIL
?PAGE "PROC spitest MAIN"
PROC spitest MAIN;
BEGIN

 bufsize := max^bufsize;
 CALL initializer;
 CALL myterm(termname);
 CALL open(termname,term);
 IF <> THEN CALL abend;

 !
 ! Create the SPI buffer "b1"
 !
 IF (err := ssinit (b1, bufsize, ssid,zspi^val^cmdhdr)) THEN
 CALL display^spi^error (err, zspi^val^ssinit, 0d, true);

 val := "A";
 IF (err := ssputtkn (b1, tkn^1, val)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, tkn^1, true);
 val := "B";
 IF (err := ssputtkn (b1, tkn^2, val)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, tkn^2, true);
 IF (err := ssputtkn (b1, zspi^tkn^datalist)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, zspi^tkn^datalist, true);
 val := "C";
 IF (err := ssputtkn (b1, tkn^3, val)) THEN

SPI Programming Manual—427506-007
E-10

SPI Programming Examples Example E-3: Working With Lists in TAL
 CALL display^spi^error (err, zspi^val^ssputtkn, tkn^3, true);
 val := "D";
 IF (err := ssputtkn (b1, tkn^4, val)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, tkn^4, true);
 val := "E";
 IF (err := ssputtkn (b1, tkn^5, val)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, tkn^5, true);
 IF (err := ssputtkn (b1, zspi^tkn^endlist)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, zspi^tkn^endlist, true);

 val := "F";
 IF (err := ssputtkn (b1, tkn^6, val)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, tkn^6, true);
sline ':=' "After RESET BUFFER: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 !
 ! Get the tokens in the SPI buffer "b1"
 !
 IF (err := ssgettkn (b1, tkn^1, val, 1)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn, tkn^1, true);

 sline ':=' "After GETTKN TKN^1: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 IF (err := ssgettkn (b1, tkn^2, val, 1)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn, tkn^2, true);

 sline ':=' "After GETTKN TKN^2: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 -- This call should get an error (missing token)
 sline ':=' "After GETTKN TKN^3: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 IF (err := ssgettkn (b1, tkn^3, val, 1)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn, tkn^3, false);

 IF (err := ssgettkn (b1, zspi^tkn^datalist)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn, zspi^tkn^datalist, true);

 sline ':=' "After GETTKN DATALIST: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 IF (err := ssgettkn (b1, tkn^3, val, 1)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn, tkn^3, true);

 sline ':=' "After GETTKN TKN^3: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 IF (err := ssgettkn (b1, tkn^5, val, 1)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn, tkn^5, true);

 sline ':=' "After GETTKN TKN^5: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 -- This call should get an error (missing token)
 sline ':=' "After GETTKN TKN^6: " -> @sp;

Example E-3. TAL File: Working With Lists (page 2 of 3)
SPI Programming Manual—427506-007
E-11

SPI Programming Examples Example E-4: Working With Lists in C
Example E-4: Working With Lists in C

Example E-4 on page E-13 demonstrates the basic buffer manipulation activities
illustrated in Figure 2-5 on page 2-22. The C program uses DSM Template Services to
display the contents of the buffer after each manipulation. Run the program to see SPI
procedure calls used to move in and out of an SPI list.

Source File

SEC0205C

Object File

SEC0205O

 CALL writex (term, sline, @sp '-' @sline);
 IF (err := ssgettkn (b1, tkn^6, val, 1)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn, tkn^6, false);

 IF (err := ssgettkn (b1, zspi^tkn^endlist)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn, zspi^tkn^endlist, true);
 !
 ! Reset the SPI buffer "b1"
 !
 IF (err := ssputtkn (b1, zspi^tkn^reset^buffer, bufsize)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^reset^buffer, true);
 sline ':=' "After GETTKN ENDLIST: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 IF (err := ssgettkn (b1, tkn^6, val, 1)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn, tkn^6, true);

 sline ':=' "After GETTKN TKN^6: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 sline ':=' "Program finished." -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL stop;

END;

Example E-3. TAL File: Working With Lists (page 3 of 3)
SPI Programming Manual—427506-007
E-12

SPI Programming Examples Example E-4: Working With Lists in C
Example E-4. C File: Working With Lists (page 1 of 2)

/* File name: sec0205c
 * SPI EXAMPLE C 2-5
 * Figure 2-5. Pointer Manipulation and lists
 */
#pragma symbols
#pragma inspect
#pragma nomap
#pragma nolmap

#define max_bufsize 256 /* in bytes */

#include "secc.h"
#pragma list
#include "seccutlc"
#pragma PAGE "MAIN"
main(/* int argc, char *argv[] */)
{

 bufsize = max_bufsize;

 /*
 * Create the SPI buffer "b1"
 */
 if (err = SSINIT (b1, bufsize, (short *) &ssid, ZSPI_VAL_CMDHDR))
 display_spi_error (err, ZSPI_VAL_SSINIT, 0L, true);

 val = 'A';
 if (err = SSPUTTKN (b1, tkn_1, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_1, true);
 val = 'B';
 if (err = SSPUTTKN (b1, tkn_2, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_2, true);
 if (err = SSPUTTKN (b1, ZSPI_TKN_DATALIST))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, ZSPI_TKN_DATALIST, true);
 val = 'C';
 if (err = SSPUTTKN (b1, tkn_3, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_3, true);
 val = 'D';
 if (err = SSPUTTKN (b1, tkn_4, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_4, true);
 val = 'E';
 if (err = SSPUTTKN (b1, tkn_5, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_5, true);
 if (err = SSPUTTKN (b1, ZSPI_TKN_ENDLIST))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, ZSPI_TKN_ENDLIST, true);
 val = 'F';
 if (err = SSPUTTKN (b1, tkn_6, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_6, true);
 /*
 * Reset the SPI buffer "b1"
 */
 if (err = SSPUTTKN (b1, ZSPI_TKN_RESET_BUFFER, (char *) &bufsize))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_RESET_BUFFER, true);
SPI Programming Manual—427506-007
E-13

SPI Programming Examples Example E-4: Working With Lists in C
 printf ("After RESET BUFFER: \n");
 dump_buf (b1);

 /*
 * Get the tokens in the SPI buffer "b1"
 */
 if (err = SSGETTKN (b1, tkn_1, &val, 1))
 display_spi_error (err, ZSPI_VAL_SSGETTKN, tkn_1, true);

 printf ("After GETTKN TKN_1: \n");
 dump_buf (b1);

 if (err = SSGETTKN (b1, tkn_2, &val, 1))
 display_spi_error (err, ZSPI_VAL_SSGETTKN, tkn_2, true);

 printf ("After GETTKN TKN_2: \n");
 dump_buf (b1);

 /* This should get an error (missing token) */
 printf ("After GETTKN TKN_3: \n");
 if (err = SSGETTKN (b1, tkn_3, &val, 1))
 display_spi_error (err, ZSPI_VAL_SSGETTKN, tkn_3, false);

 if (err = SSGETTKN (b1, ZSPI_TKN_DATALIST))
 display_spi_error (err, ZSPI_VAL_SSGETTKN, ZSPI_TKN_DATALIST, true);

 printf ("After GETTKN DATALIST: \n");
 dump_buf (b1);

 if (err = SSGETTKN (b1, tkn_3, &val, 1))
 display_spi_error (err, ZSPI_VAL_SSGETTKN, tkn_3, true);

 printf ("After GETTKN TKN_3: \n");
 dump_buf (b1);

 if (err = SSGETTKN (b1, tkn_5, &val, 1))
 display_spi_error (err, ZSPI_VAL_SSGETTKN, tkn_5, true);

 printf ("After GETTKN TKN_5: \n");
 dump_buf (b1);

 /* This should get an error (missing token) */
 printf ("After GETTKN TKN_6: \n");
 if (err = SSGETTKN (b1, tkn_6, &val, 1))
 display_spi_error (err, ZSPI_VAL_SSGETTKN, tkn_6, false);

 if (err = SSGETTKN (b1, ZSPI_TKN_ENDLIST))
 display_spi_error (err, ZSPI_VAL_SSGETTKN, ZSPI_TKN_ENDLIST, true);

 printf ("After GETTKN ENDLIST: \n");
 dump_buf (b1);

 if (err = SSGETTKN (b1, tkn_6, &val, 1))
 display_spi_error (err, ZSPI_VAL_SSGETTKN, tkn_6, true);

 printf ("After GETTKN TKN_6: \n");
 dump_buf (b1);

 printf ("Program finished.\n");
}

Example E-4. C File: Working With Lists (page 2 of 2)
SPI Programming Manual—427506-007
E-14

SPI Programming Examples Example E-5: Displaying SPI Buffer Contents With TAL
Example E-5: Displaying SPI Buffer Contents With TAL

Example E-5 demonstrates the basic buffer manipulation activities illustrated in
Figure 2-6 on page 2-24. This TAL program uses DSM Template Services to display
the contents of the buffer after each manipulation. Run the program to see the
behavior of the SSGET special operation ZSPI-TKN-NEXTTOKEN.

Source File

SET0206

Object File

SET0206O

Example E-5. TAL File: Pointers, Lists, and ZSPI-TKN-NEXTTOKEN (page 1 of 3)

-- File name: SET0206
-- SPI EXAMPLE TAL 2-6
-- Figure 2-6. Pointer Manipulation and lists
?SYMBOLS, INSPECT
LITERAL
 max^bufsize = 256; ! in bytes

?SOURCE SETCDECS
?NOLIST, SOURCE $system.system.extdecs0 (
? abend, debug, dnumout, fileinfo, initializer, myterm, numout,
? open, stop, writex,
? spi_buffer_formatfinish_, spi_buffer_formatnext_,
? spi_buffer_formatstart_,
? ssinit, ssgettkn, ssmovetkn,
? ssput, ssputtkn)
?LIST
?SOURCE SETCUTIL
?PAGE "PROC spitest MAIN"
PROC spitest MAIN;
BEGIN

 bufsize := max^bufsize;
 CALL initializer;
 CALL myterm(termname);
 CALL open(termname,term);
 IF <> THEN CALL abend;
!

SPI Programming Manual—427506-007
E-15

SPI Programming Examples Example E-5: Displaying SPI Buffer Contents With TAL
 ! Create the SPI buffer "b1"
 !
 IF (err := ssinit (b1, bufsize, ssid,zspi^val^cmdhdr)) THEN
 CALL display^spi^error (err, zspi^val^ssinit, 0d, true);

 val := "A";
 IF (err := ssputtkn (b1, tkn^1, val)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, tkn^1, true);
 IF (err := ssputtkn (b1, zspi^tkn^datalist)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, zspi^tkn^datalist, true);
 val := "B";
 IF (err := ssputtkn (b1, tkn^2, val)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, tkn^2, true);
 val := "C";
 IF (err := ssputtkn (b1, tkn^3, val)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, tkn^3, true);
 val := "D";
 IF (err := ssputtkn (b1, tkn^3, val)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, tkn^3, true);
 IF (err := ssputtkn (b1, zspi^tkn^endlist)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, zspi^tkn^endlist, true);
 val := "E";
 IF (err := ssputtkn (b1, tkn^4, val)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, tkn^4, true);

 !
 ! Reset the SPI buffer "b1"
 !
 IF (err := ssputtkn (b1, zspi^tkn^reset^buffer, bufsize)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^reset^buffer, true);

 sline ':=' "After RESET BUFFER: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 !
 ! Get the tokens in the SPI buffer "b1"
 !
 IF (err := ssgettkn (b1, zspi^tkn^nexttoken, tkn^code,,, ssid)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^nexttoken, true);

 sline ':=' "After 1st GETTKN NEXTTOKEN: Token = " -> @sp;
 @sp := @sp '+' dnumout (sp, tkn^code, 10);
 CALL display^token (tkn^code);
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 IF (err := ssgettkn (b1, zspi^tkn^nexttoken, tkn^code,,, ssid)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^nexttoken, true);

 sline ':=' "After 2nd GETTKN NEXTTOKEN: Token = " -> @sp;
 @sp := @sp '+' dnumout (sp, tkn^code, 10);
 CALL display^token (tkn^code);
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 IF (err := ssgettkn (b1, zspi^tkn^nexttoken, tkn^code,,, ssid)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^nexttoken, true);

Example E-5. TAL File: Pointers, Lists, and ZSPI-TKN-NEXTTOKEN (page 2 of 3)
SPI Programming Manual—427506-007
E-16

SPI Programming Examples Example E-5: Displaying SPI Buffer Contents With TAL
 sline ':=' "After 3rd GETTKN NEXTTOKEN: Token = " -> @sp;
 @sp := @sp '+' dnumout (sp, tkn^code, 10);
 CALL display^token (tkn^code);
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 -- This call should get an error (missing token)
 sline ':=' "After GETTKN TKN^4: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 IF (err := ssgettkn (b1, tkn^4, val, 1)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn, tkn^4, false);

 IF (err := ssgettkn (b1, tkn^3, val, 2)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn, tkn^3, true);

 sline ':=' "After GETTKN of 2nd TKN^3: " -> @sp;
 @sp := @sp '+' dnumout (sp, tkn^code, 10);
 CALL display^token (tkn^code);
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 IF (err := ssgettkn (b1, zspi^tkn^nexttoken, tkn^code,,, ssid)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^nexttoken, true);

 sline ':=' "After 4th GETTKN NEXTTOKEN: Token = " -> @sp;
 @sp := @sp '+' dnumout (sp, tkn^code, 10);
 CALL display^token (tkn^code);
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 IF (err := ssgettkn (b1, zspi^tkn^nexttoken, tkn^code,,, ssid)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^nexttoken, true);

 sline ':=' "After 5th GETTKN NEXTTOKEN: Token = " -> @sp;
 @sp := @sp '+' dnumout (sp, tkn^code, 10);
 CALL display^token (tkn^code);
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 -- This call should get an error (missing token)
 sline ':=' "After 6th GETTKN NEXTTOKEN: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 IF (err := ssgettkn (b1, zspi^tkn^nexttoken, tkn^code,,, ssid)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^nexttoken, false);

 sline ':=' "Program finished." -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL stop;

END;

Example E-5. TAL File: Pointers, Lists, and ZSPI-TKN-NEXTTOKEN (page 3 of 3)
SPI Programming Manual—427506-007
E-17

SPI Programming Examples Example E-6: Displaying SPI Buffer Contents With C
Example E-6: Displaying SPI Buffer Contents With C

Example E-6 on page E-19 demonstrates the basic buffer manipulation activities
illustrated in Figure 2-6 on page 2-24. This C program uses DSM Template Services to
display the contents of the buffer after each manipulation. Run the program to see the
behavior of the SSGET special operation ZSPI-TKN-NEXTTOKEN.

Source File

SEC0206C

Object File

SEC0206O
SPI Programming Manual—427506-007
E-18

SPI Programming Examples Example E-6: Displaying SPI Buffer Contents With C
Example E-6. C File: Pointers, Lists, and ZSPI-TKN-NEXTTOKEN (page 1 of 3)

/* File name: sec0206c
 * SPI EXAMPLE C 2-6
 * Figure 2-6. Pointer Manipulation and lists
 */
#pragma symbols
#pragma inspect
#pragma nomap
#pragma nolmap

#define max_bufsize 256 /* in bytes */

#include "secc.h"
#pragma list
#include "seccutlc"
#pragma PAGE "MAIN"
main(/* int argc, char *argv[] */)
{

 bufsize = max_bufsize;

 /*
 * Create the SPI buffer "b1"
 */
 if (err = SSINIT (b1, bufsize, (short *) &ssid, ZSPI_VAL_CMDHDR))
 display_spi_error (err, ZSPI_VAL_SSINIT, 0L, true);

 val = 'A';
 if (err = SSPUTTKN (b1, tkn_1, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_1, true);
 if (err = SSPUTTKN (b1, ZSPI_TKN_DATALIST))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, ZSPI_TKN_DATALIST, true);
 val = 'B';
 if (err = SSPUTTKN (b1, tkn_2, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_2, true);
 val = 'C';

 if (err = SSPUTTKN (b1, tkn_3, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_3, true);
 val = 'D';
 if (err = SSPUTTKN (b1, tkn_3, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_3, true);
 if (err = SSPUTTKN (b1, ZSPI_TKN_ENDLIST))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, ZSPI_TKN_ENDLIST, true);
SPI Programming Manual—427506-007
E-19

SPI Programming Examples Example E-6: Displaying SPI Buffer Contents With C
 val = 'E';
 if (err = SSPUTTKN (b1, tkn_4, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_4, true);

 /*
 * Reset the SPI buffer "b1"
 */
 if (err = SSPUTTKN (b1, ZSPI_TKN_RESET_BUFFER, (char *) &bufsize))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_RESET_BUFFER, true);

 printf ("After RESET BUFFER: \n");
 dump_buf (b1);

 /*
 * Get the tokens in the SPI buffer "b1"
 */
 get_count = 1;
 if (err = SSGETTKN (b1, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &ssid))
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, true);

 printf ("After 1st GETTKN NEXTTOKEN: Token = %ld", tkn_code);
 display_token (tkn_code);
 printf ("\n");
 dump_buf (b1);

 if (err = SSGETTKN (b1, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &ssid))
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, true);

 printf ("After 2nd GETTKN NEXTTOKEN: Token = %ld", tkn_code);
 display_token (tkn_code);
 printf ("\n");
 dump_buf (b1);

 if (err = SSGETTKN (b1, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &ssid))
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, true);

 printf ("After 3rd GETTKN NEXTTOKEN: Token = %ld", tkn_code);
 display_token (tkn_code);
 printf ("\n");
 dump_buf (b1);

 /* This should get an error (missing token) */
 printf ("After GETTKN TKN_4: \n");
 if (err = SSGETTKN (b1, tkn_4, &val, 1))
 display_spi_error (err, ZSPI_VAL_SSGETTKN, tkn_4, false);

 if (err = SSGETTKN (b1, tkn_3, &val, 2))
 display_spi_error (err, ZSPI_VAL_SSGETTKN, tkn_3, true);

 printf ("After GETTKN of 2nd TKN_3: %ld", tkn_code);
 display_token (tkn_code);
 printf ("\n");
 dump_buf (b1);

 if (err = SSGETTKN (b1, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &ssid))
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, true);

Example E-6. C File: Pointers, Lists, and ZSPI-TKN-NEXTTOKEN (page 2 of 3)
SPI Programming Manual—427506-007
E-20

SPI Programming Examples Example E-7: Special SSGET Operation in TAL
Example E-7: Special SSGET Operation in TAL

Example E-7 on page E-22 demonstrates the basic buffer manipulation activities
illustrated in Figure 2-7 on page 2-26. This TAL program uses DSM Template Services
to display the contents of the buffer after each manipulation. Run the program to see
the behavior of the SSGET special operation ZSPI-TKN-NEXTCODE.

Source File

SET0207

Object File

SET0207O

 printf ("After 4th GETTKN NEXTTOKEN: Token = %ld", tkn_code);
 display_token (tkn_code);
 printf ("\n");
 dump_buf (b1);

 if (err = SSGETTKN (b1, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &ssid))
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, true);

 printf ("After 5th GETTKN NEXTTOKEN: Token = %ld", tkn_code);
 display_token (tkn_code);
 printf ("\n");
 dump_buf (b1);

 /* This should get an error (missing token) */
 printf ("After 6th GETTKN NEXTTOKEN: \n");
 if (err = SSGETTKN (b1, ZSPI_TKN_NEXTTOKEN, (char *) &tkn_code,
 0, &get_count, (short *) &ssid))
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTTOKEN, false);

 printf ("Program finished.\n");
}

Example E-6. C File: Pointers, Lists, and ZSPI-TKN-NEXTTOKEN (page 3 of 3)
SPI Programming Manual—427506-007
E-21

SPI Programming Examples Example E-7: Special SSGET Operation in TAL
Example E-7. TAL File: Pointers, Lists, and ZSPI-TKN-NEXTCODE (page 1 of 3)

-- File name: SET0207
-- SPI EXAMPLE TAL 2-7
-- Figure 2-7. Pointer Manipulation and lists
?SYMBOLS, INSPECT
LITERAL
 max^bufsize = 256; ! in bytes

?SOURCE SETCDECS
?NOLIST, SOURCE $system.system.extdecs0 (
? abend, debug, dnumout, fileinfo, initializer, myterm, numout,
? open, stop, writex,
? spi_buffer_formatfinish_, spi_buffer_formatnext_,
? spi_buffer_formatstart_,
? ssinit, ssgettkn, ssmovetkn,
? ssput, ssputtkn)
?LIST
?SOURCE SETCUTIL
?PAGE "PROC spitest MAIN"
PROC spitest MAIN;
BEGIN

 bufsize := max^bufsize;
 CALL initializer;
 CALL myterm(termname);
 CALL open(termname,term);
 IF <> THEN CALL abend;

 !
 ! Create the SPI buffer "b1"
 !
 IF (err := ssinit (b1, bufsize, ssid, zspi^val^cmdhdr)) THEN
 CALL display^spi^error (err, zspi^val^ssinit, 0d, true);

 val := "A";
 IF (err := ssputtkn (b1, tkn^1, val)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, tkn^1, true);
 IF (err := ssputtkn (b1, zspi^tkn^datalist)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^datalist, true);
 val := "B";
 IF (err := ssputtkn (b1, tkn^2, val)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, tkn^2, true);
 val := "C";
 IF (err := ssputtkn (b1, tkn^3, val)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, tkn^3, true);
 val := "D";
 IF (err := ssputtkn (b1, tkn^3, val)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, tkn^3, true);
 IF (err := ssputtkn (b1, zspi^tkn^endlist)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^endlist, true);
 val := "E";
 IF (err := ssputtkn (b1, tkn^4, val)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn, tkn^4, true);
SPI Programming Manual—427506-007
E-22

SPI Programming Examples Example E-7: Special SSGET Operation in TAL
 !
 ! Reset the SPI buffer "b1"
 !
 IF (err := ssputtkn (b1, zspi^tkn^reset^buffer, bufsize)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^reset^buffer, true);

 sline ':=' "After RESET BUFFER: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 !
 ! Get the tokens in the SPI buffer "b1"
 !
 IF (err := ssgettkn (b1, zspi^tkn^nextcode, tkn^code,,, ssid)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^nextcode, true);

 sline ':=' "After 1st GETTKN NEXTCODE: Token = " -> @sp;
 @sp := @sp '+' dnumout (sp, tkn^code, 10);
 CALL display^token (tkn^code);
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 IF (err := ssgettkn (b1, zspi^tkn^nextcode, tkn^code,,, ssid)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^nextcode, true);

 sline ':=' "After 2nd GETTKN NEXTCODE: Token = " -> @sp;
 @sp := @sp '+' dnumout (sp, tkn^code, 10);
 CALL display^token (tkn^code);
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 IF (err := ssgettkn (b1, zspi^tkn^nextcode, tkn^code,,, ssid)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^nextcode, true);

 sline ':=' "After 3rd GETTKN NEXTCODE: Token = " -> @sp;
 @sp := @sp '+' dnumout (sp, tkn^code, 10);
 CALL display^token (tkn^code);
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 IF (err := ssgettkn (b1, zspi^tkn^datalist,, 1)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^datalist, true);

 sline ':=' "After GETTKN of DATALIST: " -> @sp;
 @sp := @sp '+' dnumout (sp, tkn^code, 10);
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 IF (err := ssgettkn (b1, zspi^tkn^nextcode, tkn^code,,, ssid)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^nextcode, true);

Example E-7. TAL File: Pointers, Lists, and ZSPI-TKN-NEXTCODE (page 2 of 3)
SPI Programming Manual—427506-007
E-23

SPI Programming Examples Example E-8: Special SSGET Operation in C
Example E-8: Special SSGET Operation in C

Example E-8 on page E-25 demonstrates the basic buffer manipulation activities
illustrated in Figure 2-7 on page 2-26. This C program uses DSM Template Services to
display the contents of the buffer after each manipulation. Run the program to see the
behavior of the SSGET special operation ZSPI-TKN-NEXTCODE.

Source File

SEC0207C

Object File

SEC0207O

 sline ':=' "After 4th GETTKN NEXTCODE: Token = " -> @sp;
 @sp := @sp '+' dnumout (sp, tkn^code, 10);
 CALL display^token (tkn^code);
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 IF (err := ssgettkn (b1, zspi^tkn^nextcode, tkn^code,,, ssid)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^nextcode, true);

 sline ':=' "After 5th GETTKN NEXTCODE: Token = " -> @sp;
 @sp := @sp '+' dnumout (sp, tkn^code, 10);
 CALL display^token (tkn^code);
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 IF (err := ssgettkn (b1, zspi^tkn^nextcode, tkn^code,,, ssid)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^nextcode, false);

 sline ':=' "After 6th GETTKN NEXTCODE: Token = " -> @sp;
 @sp := @sp '+' dnumout (sp, tkn^code, 10);
 CALL display^token (tkn^code);
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (b1);

 -- This call should get an error (missing token)
 sline ':=' "After GETTKN TKN^4: " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 IF (err := ssgettkn (b1, tkn^4, val, 1)) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn, tkn^4, false);

 sline ':=' "Program finished." -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL stop;

END;

Example E-7. TAL File: Pointers, Lists, and ZSPI-TKN-NEXTCODE (page 3 of 3)
SPI Programming Manual—427506-007
E-24

SPI Programming Examples Example E-8: Special SSGET Operation in C
Example E-8. C File: Pointers, Lists, and ZSPI-TKN-NEXTCODE (page 1 of 3)

/* File name: sec0207c
 * SPI EXAMPLE C 2-7
 * Figure 2-7. Pointer Manipulation and lists
 */
#pragma symbols
#pragma inspect
#pragma nomap
#pragma nolmap

#define max_bufsize 256 /* in bytes */

#include "secc.h"
#pragma list
#include "seccutlc"
#pragma PAGE "MAIN"
main(/* int argc, char *argv[] */)
{

 bufsize = max_bufsize;

 /*
 * Create the SPI buffer "b1"
 */
 if (err = SSINIT (b1, bufsize, (short *) &ssid, ZSPI_VAL_CMDHDR))
 display_spi_error (err, ZSPI_VAL_SSINIT, 0L, true);

 val = 'A';
 if (err = SSPUTTKN (b1, tkn_1, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_1, true);
 if (err = SSPUTTKN (b1, ZSPI_TKN_DATALIST))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_DATALIST, true);
 val = 'B';
 if (err = SSPUTTKN (b1, tkn_2, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_2, true);
 val = 'C';
 if (err = SSPUTTKN (b1, tkn_3, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_3, true);
 val = 'D';
 if (err = SSPUTTKN (b1, tkn_3, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_3, true);
 if (err = SSPUTTKN (b1, ZSPI_TKN_ENDLIST))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_ENDLIST, true);
 val = ''E';
 if (err = SSPUTTKN (b1, tkn_4, &val))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN, tkn_4, true);

 /*
 * Reset the SPI buffer "b1"
 */
 if (err = SSPUTTKN (b1, ZSPI_TKN_RESET_BUFFER, (char *) &bufsize))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_RESET_BUFFER, true);

 printf ("After RESET BUFFER: \n");
 dump_buf (b1);
SPI Programming Manual—427506-007
E-25

SPI Programming Examples Example E-8: Special SSGET Operation in C
 /*
 * Get the tokens in the SPI buffer "b1"
 */
 get_count = 1;
 if (err = SSGETTKN (b1, ZSPI_TKN_NEXTCODE, (char *) &tkn_code,
 0, &get_count, (short *) &ssid))
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTCODE, true);

 printf ("After 1st GETTKN NEXTCODE: Token = %ld", tkn_code);
 display_token (tkn_code);
 printf ("\n");
 dump_buf (b1);

 if (err = SSGETTKN (b1, ZSPI_TKN_NEXTCODE, (char *) &tkn_code,
 0, &get_count, (short *) &ssid))
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTCODE, true);

 printf ("After 2nd GETTKN NEXTCODE: Token = %ld", tkn_code);
 display_token (tkn_code);
 printf ("\n");
 dump_buf (b1);

 if (err = SSGETTKN (b1, ZSPI_TKN_NEXTCODE, (char *) &tkn_code,
 0, &get_count, (short *) &ssid))
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTCODE, true);

 printf ("After 3rd GETTKN NEXTCODE: Token = %ld", tkn_code);
 display_token (tkn_code);
 printf ("\n");
 dump_buf (b1);

 if (err = SSGETTKN (b1, ZSPI_TKN_DATALIST, (char *) &tkn_code, 1))
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_DATALIST, true);

 printf ("After GETTKN of DATALIST: %d\n", tkn_code);
 dump_buf (b1);

 if (err = SSGETTKN (b1, ZSPI_TKN_NEXTCODE, (char *) &tkn_code,
 0, &get_count, (short *) &ssid))
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTCODE, true);

 printf ("After 4th GETTKN NEXTCODE: Token = %ld", tkn_code);
 display_token (tkn_code);
 printf ("\n");
 dump_buf (b1);

 if (err = SSGETTKN (b1, ZSPI_TKN_NEXTCODE, (char *) &tkn_code,
 0, &get_count, (short *) &ssid))
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTCODE, true);

 printf ("After 5th GETTKN NEXTCODE: Token = %ld", tkn_code);
 display_token (tkn_code);
 printf ("\n");
 dump_buf (b1);

Example E-8. C File: Pointers, Lists, and ZSPI-TKN-NEXTCODE (page 2 of 3)
SPI Programming Manual—427506-007
E-26

SPI Programming Examples Example E-9: A Simple SPI Requester in TAL
Example E-9: A Simple SPI Requester in TAL

Example E-9 on page E-28 is a simple SPI requester that sends commands to the
server shown in Example E-11 on page E-45. The requester starts and stops the
server automatically. The requester's commands have the server perform simple string
manipulations on a text string that you enter. This TAL program gives you the option of
displaying the contents of the SPI messages that are exchanged by the requester and
the server. The second option, which shifts a string to upper case, uses response
continuation to return the results one character per message. Run the program and
enter one of the displayed options:

1 - Reverse string,
2 - Shift string to upper case,
3 - Shift string to lower case,
4 - Display SPI messages,
5 - Don't display SPI messages,
6 - Exit
Enter command:

Source File

SETREQR

Object File

SETREQRO

 if (err = SSGETTKN (b1, ZSPI_TKN_NEXTCODE, (char *) &tkn_code,
 0, &get_count, (short *) &ssid))
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_NEXTCODE, false);

 printf ("After 6th GETTKN NEXTCODE: Token = %ld", tkn_code);
 display_token (tkn_code);
 printf ("\n"');
 dump_buf (b1);

 /* This should get an error (missing token) */
 printf (""After GETTKN TKN_4: \n");
 if (err = SSGETTKN (b1, tkn_4, &val, 1))
 display_spi_error (err, ZSPI_VAL_SSGETTKN, tkn_4, false);

 printf ("Program finished.\n");
}

Example E-8. C File: Pointers, Lists, and ZSPI-TKN-NEXTCODE (page 3 of 3)
SPI Programming Manual—427506-007
E-27

SPI Programming Examples Example E-9: A Simple SPI Requester in TAL

Example E-9. TAL File: A Simple SPI Requester (page 1 of 8)

-- File name: SETREQR
-- SPI EXAMPLE TAL Basic Requester model.
--
?SYMBOLS, INSPECT
LITERAL
 max^bufsize = 560, ! in bytes
 version = %H4414; ! Set to the value: "D20"

?SOURCE SETCDECS
?SOURCE SETRDECS

INT
 buflen,
 debug^flag, ! Flag to startup server in INSPECT
 dest^idx, ! Destination index for SSMOVETKN
 display^spi^buffer := false,
 file^error,
 file^num,
 open^flags,
 process^id [0:11] := " ",
 process^name [0:3] := "$SPIX ", ! Server's process
name.
 read^count,
 server^name [0:11] := "$NONE NONE SETSERVO", ! Server's object
 server^up,
 source^idx, ! Source index for SSMOVETKN
 spi^command := 0,
 srvr^file^num,
 srvr^retry^count := 0,
 tkn^count,
 tkn^retcode;

INT(32)
 time^to^wait := 1000D; ! In centi-seconds = 10 seconds

DEFINE sav^buffer = b2#; ! Saved command buffer (same as b2)

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0 (AWAITIOX, CANCEL, CLOSE,
? DEBUG, DNUMOUT, FILEINFO, FNAMECOLLAPSE,
? MYTERM, NEWPROCESS, NUMIN, NUMOUT,
? OPEN, READUPDATEX, REPLYX,
? SPI_BUFFER_FORMATFINISH_, SPI_BUFFER_FORMATNEXT_,
? SPI_BUFFER_FORMATSTART_,
? SSGET, SSGETTKN, SSINIT, SSMOVETKN, SSPUT, SSPUTTKN,
? STOP, WRITEREADX, WRITEX)
?LIST

?PAGE "FORWARD DECLARATIONS"
PROC open^server;
FORWARD;

?SOURCE SETCUTIL
?SOURCE SETRUTIL
?PAGE "get^string"
!==!
! Proc : get^string !
! Function : This procedure will prompt the home term for the function !
! and the string data on which to perform the !
! function. !
!==!
SPI Programming Manual—427506-007
E-28

SPI Programming Examples Example E-9: A Simple SPI Requester in TAL
PROC get^string (p^buffer, p^count^read);
STRING .p^buffer;
INT .p^count^read; ! This will be modified
BEGIN
 INT l^work^to^do;
 INT l^size;
 INT l^status;

 l^work^to^do := false;
 DO
 BEGIN
 sline ':=' " " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 sline ':=' " 1 - Reverse string," -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 sline ':=' " 2 - Shift string to upper case, " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 sline ':=' " 3 - Shift string to lower case, " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 sline ':=' " 4 - Display SPI messages," -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 sline ':=' " 5 - Don't display SPI messages, " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 sline ':=' " 6 - Exit" -> @sp;
 CALL writex (term, sline, @sp '-' @sline);

 sline ':=' "Enter command: " -> @sp;
 CALL writereadx (term, sline, @sp '-' @sline, 1, l^size);
 IF < THEN CALL get^file^error (term);
 IF > THEN ! CTL-Y entered
 BEGIN
 CALL stop (process^id); ! Stop the server.
 CALL stop;
 END;
 sline[l^size] := 0; -- Ignore the rest of the buffer
 CALL numin (sline, spi^command, 10, l^status);
 IF l^status THEN
 spi^command := 999; ! Invalid data entered.
 CASE spi^command OF
 BEGIN
 1, 2, 3 ->
 sline ':=' " " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 p^buffer ':=' "Enter string: " -> @sp;
 CALL writereadx (term, p^buffer, @sp '-' @p^buffer, 40, l^size);

 IF < THEN CALL get^file^error (term);
 IF > THEN ! CTL-Y entered
 BEGIN
 CALL stop (process^id); ! Stop the server.
 CALL stop;
 END;
 p^count^read := l^size;
 p^buffer [l^size] := 0; -- Ignore the rest of the buffer
 l^work^to^do := true;

Example E-9. TAL File: A Simple SPI Requester (page 2 of 8)
SPI Programming Manual—427506-007
E-29

SPI Programming Examples Example E-9: A Simple SPI Requester in TAL
 4 ->
 display^spi^buffer := true;
 5 ->
 display^spi^buffer := false;
 6 ->
 sline ':=' " " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL stop (process^id); ! Stop the server.
 CALL stop;
 OTHERWISE ->
 sline ':=' " " -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 sline ':=' "Invalid option. Try again." -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 END;

 END
 UNTIL l^work^to^do = true;
END; -- of PROC get^string

?PAGE "initialization"
!==!!
Proc : initialization !
! Function : This procedure will open $RECEIVE and the home term. !
! It then starts the server. !
!===
PROC initialization;
BEGIN
 STRING
 .l^start^ptr; ! Scan pointer
 INT l^termname [0:11],
 l^filename [0:11] := ["$RECEIVE", 8*[" "]],
 l^recv^file^num,
 l^count^read,
 l^init^complete;

 ! Open $RECEIVE (sys msgs)
 CALL open (l^filename, l^recv^file^num, %40000, 1);
 IF <> THEN CALL get^file^error (-1);

 ! Read $RECEIVE messages
 l^init^complete := false;
 WHILE l^init^complete = false DO
 BEGIN
 CALL readupdatex (l^recv^file^num, start^buffer, $LEN(start^buffer),
 l^count^read);
 IF <> THEN
 BEGIN
 CALL fileinfo (l^recv^file^num, file^error);
 IF file^error <> 6 THEN CALL debug; ! Not a system message
 END;
 CASE start^buffer.msgcode OF
 BEGIN
 -1 -> ! Process STARTUP message
 startup^msg ':=' start^buffer FOR $LEN (start^buffer) BYTES;

Example E-9. TAL File: A Simple SPI Requester (page 3 of 8)
SPI Programming Manual—427506-007
E-30

SPI Programming Examples Example E-9: A Simple SPI Requester in TAL
 ! Put in the current volume/subvolume.
 server^name ':=' start^buffer.default FOR 8 WORDS;
 ! Parse parameters for 'debug'
 debug^flag := false;

 SCAN start^buffer.param WHILE " " -> @l^start^ptr;
 IF NOT $CARRY THEN ! Found a non-null string
 BEGIN
 IF l^start^ptr = "D" OR l^start^ptr = "d" THEN
 BEGIN
 debug^flag := true;
 END;
 END;
 CALL replyx (,,,, 70); ! Must reply and get PARAMs and ASSIGNs
 IF <> THEN CALL get^file^error (l^recv^file^num);

 -31 -> ! Process CLOSE message
 l^init^complete := true;
 CALL replyx (start^buffer, l^count^read); ! Must reply
 IF <> THEN CALL get^file^error (l^recv^file^num);

 OTHERWISE ->
 CALL replyx (start^buffer, l^count^read); ! Must reply
 IF <> THEN CALL get^file^error (l^recv^file^num);

 END; -- of CASE
 END; -- of WHILE l^init^complete = false DO

 ! Open the terminal
 CALL myterm (l^termname); ! Get the terminal name
 CALL open (l^termname, term); ! Open the terminal
 IF <> THEN CALL get^file^error (-1);

 ! Do the NEWPROCESS call of the server
 server^up := false;
 DO
 BEGIN
 CALL restart^server;
 END
 UNTIL server^up = true;

END; -- of PROC initialize

?PAGE "open^server"
!===!
! Proc :open^server !
! Function :This procedure will open the server. !
!===!

PROC open^server;
BEGIN
 ! Open the server to send the STARTUP msg
 CALL open (process^id, srvr^file^num);
 IF <> THEN
 BEGIN
 CALL fileinfo (-1, file^error);
 sline ':=' "File system error (" -> @sp;
 CALL numout (sp, file^error, 10, 3);

Example E-9. TAL File: A Simple SPI Requester (page 4 of 8)
SPI Programming Manual—427506-007
E-31

SPI Programming Examples Example E-9: A Simple SPI Requester in TAL
 sp[3] ':=' ") on OPEN of the SERVER" -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 IF <> THEN CALL get^file^error (term);
 RETURN;
 END;

 ! Now write the STARTUP msg to the server
 CALL writex (srvr^file^num, startup^msg, $LEN(startup^msg));
 IF <> THEN
 BEGIN
 CALL fileinfo (srvr^file^num, file^error);
 ! Ignore error 70 (continue operation)
 IF file^error <> 70 THEN
 BEGIN
 sline ':=' "File system error (" -> @sp;
 CALL numout (sp, file^error, 10, 3);
 sp[3] ':=' ") on WRITE to the SERVER" -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 IF <> THEN CALL get^file^error (term);
 RETURN;
 END;
 END;
 CALL close (srvr^file^num);
 IF <> THEN
 BEGIN
 CALL fileinfo (srvr^file^num, file^error);
 sline ':=' "File system error (" -> @sp;
 CALL numout (sp, file^error, 10, 3);
 sp[3] ':=' ") on CLOSE of the SERVER" -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 IF <> THEN CALL get^file^error (term);
 RETURN;
 END;
 ! Re-open the server
 open^flags := 0;
 open^flags.<12:15> := 1; ! NOWAIT IO !
 ! Open the server using SPI
 process^id [4] ':=' "#ZSPI ";
 CALL open (process^id, srvr^file^num, open^flags);

 IF <> THEN
 BEGIN
 CALL fileinfo (-1, file^error);
 sline ':=' "File system error (" -> @sp;
 CALL numout (sp, file^error, 10, 3);
 sp[3] ':=' ") on REOPEN of the SERVER" -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 IF <> THEN CALL get^file^error (term);
 RETURN;
 END;
 process^id [4] ':=' " "; ! Fix the process ID
 server^up := true;

END; ! -- of PROC open^server;
?PAGE "PROC requester MAIN"
!===!
! MAINLINE ROUTINE STARTS HERE !
! !
!===!

Example E-9. TAL File: A Simple SPI Requester (page 5 of 8)
SPI Programming Manual—427506-007
E-32

SPI Programming Examples Example E-9: A Simple SPI Requester in TAL
 PROC requester MAIN;
 BEGIN
 LABEL SEND^IT;

 CALL initialization; ! Open files

 my^ssid ':=' [zspi^val^tandem,
 zspi^ssn^null, version];

 spi^command := zspi^cmd^getversion;
 !Send a GETVERSION
 IF err := ssinit (req^buffer, max^bufsize, my^ssid,
 zspi^val^cmdhdr, spi^command) THEN
 CALL display^spi^error (err, zspi^val^ssinit, 0d, true);

 IF display^spi^buffer THEN
 BEGIN
 sline ':=' "SPI buffer sent:" -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (req^buffer);
 END;

 CALL writereadx (srvr^file^num, req^buffer, max^bufsize,
 $OCCURS (req^buffer), read^count);
 IF <> THEN CALL get^file^error (srvr^file^num);
 file^num := -1; ! Don't Cancel

 CALL awaitiox (file^num, !buffer!, read^count, !tag!, time^to^wait);
 IF < THEN
 BEGIN
 CALL get^file^error (file^num);
 END;

 IF display^spi^buffer THEN
 BEGIN
 sline ':=' "SPI buffer received:" -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (req^buffer);
 END;

 ! Reset the buffer
 buflen := max^bufsize;
 IF err := ssputtkn (req^buffer, zspi^tkn^reset^buffer,
 buflen) THEN
 BEGIN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^reset^buffer, false);
 sline ':=' "Bad SPI buffer returned! Cannot reset the buffer." -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL stop (process^id); ! Stop the server.
 CALL stop;
 END;

 ! Get and display the BANNER.
 IF err := ssgettkn (req^buffer, zspi^tkn^server^banner,
 server^banner, 1) THEN
 BEGIN
 sline ':=' "No Server Banner found!" -> @sp;
 END ELSE
 BEGIN
 sline ':=' "Using: " -> @sp;
 sp ':=' server^banner FOR 50 BYTES;
 @sp := @sp '+' 50;

Example E-9. TAL File: A Simple SPI Requester (page 6 of 8)
SPI Programming Manual—427506-007
E-33

SPI Programming Examples Example E-9: A Simple SPI Requester in TAL
 END;

 CALL writex (term, sline, @sp '-' @sline);

 WHILE 1=1 DO ! Do forever
 BEGIN
 CALL get^string (in^string.data, in^string.len);

!Send a SPI message
 IF err := ssinit (req^buffer, max^bufsize, my^ssid,
 zspi^val^cmdhdr, spi^command) THEN
 CALL display^spi^error (err, zspi^val^ssinit, 0d, true);
 IF err := ssputtkn (req^buffer, zspi^tkn^comment, in^string) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^comment, true);

 ! Save the original buffer in case of continuation.
 sav^buffer ':=' req^buffer FOR max^bufsize/2 WORDS;

SEND^IT:
 IF display^spi^buffer THEN
 BEGIN
 sline ':=' "SPI buffer sent:" -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (req^buffer);
 END;

 CALL write^read^server;

 IF display^spi^buffer THEN
 BEGIN
 sline ':=' "SPI buffer received:" -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 CALL dump^buf (req^buffer);
 END;

 ! Reset the buffer
 buflen := max^bufsize;
 IF err := ssputtkn (req^buffer, zspi^tkn^reset^buffer,
 buflen) THEN
 BEGIN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^reset^buffer, false);
 sline ':=' "Bad SPI buffer returned! Cannot reset the buffer." -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 END;

 IF NOT err THEN
 BEGIN
 tkn^retcode := 0;
 IF err := ssgettkn (req^buffer, zspi^tkn^retcode, tkn^retcode, 1) THEN
 BEGIN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^retcode, false);
 sline ':=' "Bad SPI buffer returned! Missing RETCODE." -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 END ELSE

 BEGIN
 err := tkn^retcode; ! To simplify the rest of the error
 checking code.

Example E-9. TAL File: A Simple SPI Requester (page 7 of 8)
SPI Programming Manual—427506-007
E-34

SPI Programming Examples Example E-9: A Simple SPI Requester in TAL
 IF tkn^retcode THEN
 BEGIN
 sline ':=' "Error returned. RETCODE = (" -> @sp;
 IF tkn^retcode < 0 THEN
 BEGIN
 sp ':=' "-" -> @sp;
 @sp := @sp '+' dnumout (sp, $DBL (-tkn^retcode), 10);
 END ELSE
 BEGIN
 @sp := @sp '+' dnumout (sp, $DBL (tkn^retcode), 10);
 END;
 sp ':=' ")" -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 END;
 END;
 END;

IF NOT err THEN
 BEGIN
 ! retrieve and validate the context, if any
 IF (err := ssgettkn (req^buffer, zspi^tkn^context, the^context, 1) =
 zspi^err^ok) THEN
 BEGIN
 ! This message has a context. Add it to the original message and
 ! send it again.
 !
 ! This is what is happening. "sav^buffer" has the original msg sent.
 ! I will move the "context" token from the "req^buffer" to the
 ! "sav^buffer". Then, I will move "sav^buffer" to "req^buffer".
 ! Now "req^buffer" is ready to send, but "sav^buffer" has the
 ! "context" token added to the original msg sent. Thus, I will
 ! delete the "context" token from "sav^buffer".
 !
 source^idx := 1;
 dest^idx := 1;
 tkn^count := 1;
 CALL ssmovetkn (zspi^tkn^context, req^buffer, source^idx,
 sav^buffer, dest^idx, tkn^count);
 req^buffer ':=' sav^buffer FOR max^bufsize/2 WORDS;
 ! Now delete the context token from the saved buffer.
 tkn^code := zspi^tkn^context;
 IF err := ssputtkn (sav^buffer, zspi^tkn^delete,
 tkn^code) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 tkn^code, true);
 GOTO SEND^IT;
 END;

 ! No context. Get the string from the COMMENT token
 IF err := ssgettkn (req^buffer, zspi^tkn^comment, in^string, 1) THEN
 BEGIN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^comment, false);
 sline ':=' "Bad SPI buffer returned! Missing TKN^COMMENT." -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 END ELSE
 BEGIN
 sline ':=' in^string.data FOR in^string.len BYTES -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 END;
 END; -- of IF NOT err
 END; -- of WHILE 1=1 DO
END; -- OF PROC requester

Example E-9. TAL File: A Simple SPI Requester (page 8 of 8)
SPI Programming Manual—427506-007
E-35

SPI Programming Examples Example E-10: A Simple SPI Requester in C
Example E-10: A Simple SPI Requester in C

Example E-10 on page E-37 is a simple SPI requester that sends commands to the
server shown in Example E-11 on page E-45. The requester starts and stops the
server automatically. The requester's commands have the server perform simple string
manipulations on a text string that you enter. This TAL program gives you the option of
displaying the contents of the SPI messages that are exchanged by the requester and
the server. The second option, which shifts a string to upper case, uses response
continuation to return the results one character per message. Run the program and
enter one of the displayed options:

1 - Reverse string,
2 - Shift string to upper case,
3 - Shift string to lower case,
4 - Display SPI messages,
5 - Don't display SPI messages,
6 - Exit
Enter command:

Source File

SECREQRC

Object File

SECREQRO
SPI Programming Manual—427506-007
E-36

SPI Programming Examples Example E-10: A Simple SPI Requester in C
Example E-10. C File: A Simple SPI Requester (page 1 of 8)

/* File name: secreqrc
 * SPI EXAMPLE C Basic Requester model.
 */
#pragma symbols
#pragma inspect
#pragma nomap
#pragma nolmap

#define max_bufsize 560 /* in bytes */
#define version 0x4414u /* Set to the value: "D20" */

#include "secc.h"
#include "secr.h"

short
 buflen,
 debug_flag, /* Flag to startup server in INSPECT */
 dest_idx, /* Destination index for SSMOVETKN */
 display_spi_buffer = false,
 file_error,
 file_num,
 open_flags,
 read_count,
 server_up,
 source_idx, /* Source index for SSMOVETKN */
 spi_command = 0,
 srvr_file_num,
 srvr_retry_count = 0,
 tkn_count,
 tkn_retcode;

_lowmem short
 process_id [13],
 process_name [5], /* Server's process name.*/
 server_name [13]; /* Server's object*/
long
 time_to_wait = 1000L; /* In centi-seconds = 10 seconds */

#define sav_buffer b2 /* Saved command buffer (same as b2) */

#pragma list

#pragma PAGE "FORWARD DECLARATIONS"
void open_server(void);

#include "seccutlc"
#include "secrutlc"

#pragma PAGE "get_string"
SPI Programming Manual—427506-007
E-37

SPI Programming Examples Example E-10: A Simple SPI Requester in C
/*
 *==
 * Proc : get_string =
 * Function : This procedure will prompt the home term for the function =
 * and the string data on which to perform the function. =
 *==
 */
void get_string (char* p_buffer, short* p_count_read)
{
 short l_work_to_do;
 short l_input;
 short l_temp;

 l_work_to_do = false;
 do
 {
 printf (" \n");
 printf (" 1 - Reverse string,\n");
 printf (" 2 - Shift string to upper case, \n");
 printf (" 3 - Shift string to lower case, \n");
 printf (" 4 - Display SPI messages,\n");
 printf (" 5 - Don’t display SPI messages, \n");
 printf (" 6 - Exit\n");

 printf ("Enter command: \n");
 l_input = getchar();
 if (l_input == EOF) /* CTL-Y entered */
 {
 STOP(process_id); /* Stop the server. */
 STOP();
 }
 /* Now eat all the characters upto and including the ENTER. */
 while ((l_temp = getchar()) != '\n') {}
 spi_command = 0;
 switch (l_input)
 {
 case '3':
 ++spi_command;
 case '2':
 ++spi_command;
 case '1':
 ++spi_command;
 printf (" \n");
 printf ("Enter string: \n");
 gets (p_buffer);
 *p_count_read = strlen(p_buffer);
 if (p_count_read == 0) /* no input entered */
 {
 STOP(process_id); /* Stop the server. */
 STOP();
 }
 l_work_to_do = true;
 break;

Example E-10. C File: A Simple SPI Requester (page 2 of 8)
SPI Programming Manual—427506-007
E-38

SPI Programming Examples Example E-10: A Simple SPI Requester in C
 case '4':
 display_spi_buffer = true;
 break;

 case '5':
 display_spi_buffer = false;
 break;

 case '6':
 printf (" \n");
 STOP(process_id); /* Stop the server. */
 STOP();
 break;

 default:
 printf (" \n");
 printf ("Invalid option. Try again.\n");
 break;

 } /* end of switch */

 }
 while (l_work_to_do == false);
} /* of get_string() */

#pragma PAGE "initialization"
/*
 *==
 * Proc : initialization =
 * Function : This procedure will start the server. =
 *==
 */
void initialization(void)
{
 short len;
 /* Get the startup msg */
 if (get_startup_msg(&startup_msg, &len))
 {
 printf ("No STARTUP message received.");
 return;
 }
 /* Put in the current volume/subvolume. */
 memcpy((char *) &server_name[0], &startup_msg.defaults.whole, 16);
 /* Parse parameters for 'debug' */
 debug_flag = false;
 if ((strcmp(startup_msg.param, "D") == 0)
 || (strcmp(startup_msg.param, "d") == 0))
 {
 debug_flag = true;
 time_to_wait = 60000L; /* In centi-seconds = 600 seconds */
 }
 /* Do the NEWPROCESS of the server */
 server_up = false;
 do
 {
 restart_server();
 }
 while (server_up == false);

} /* of PROC initialize */

Example E-10. C File: A Simple SPI Requester (page 3 of 8)
SPI Programming Manual—427506-007
E-39

SPI Programming Examples Example E-10: A Simple SPI Requester in C

#pragma PAGE "open_server"
/*
 *===
 * Proc : open_server =
 * Function : This procedure will open the server. =
 *===
 */
 void open_server(void)
{
 short l_status;
 char l_process_id_zspi [24];

 open_flags = 0;
 /* Open the server to send the STARTUP msg */
 memset (l_process_id_zspi, ' ', 24);
 memcpy (l_process_id_zspi, (char *) &process_id[0], 6);

 /* Open the server */
 l_status = OPEN ((short *) &l_process_id_zspi[0],
 &srvr_file_num, open_flags);
 if (l_status != CCE)
 {
 FILEINFO (-1, &file_error);
 printf ("File system error (%d) on OPEN of the SERVER\n", file_error);
 return;
 }
 /* Now write the STARTUP msg to the server */
 /* **/
 /* But first, I will blank out the INFILE and OUTFILE so a */
 /* server written in C (which uses the CRE) will not use */
 /* the standard files, but accept open requests. */
 /* **/
 memset(&startup_msg.infile, ' ', sizeof(startup_msg.infile));
 memset(&startup_msg.outfile, ' ', sizeof(startup_msg.outfile));

 l_status = WRITEX (srvr_file_num, (char *) &startup_msg,
 sizeof(startup_msg));
 if (l_status != CCE)
 {
 FILEINFO (srvr_file_num, &file_error);
 /* Ignore error 70 (continue operation) */
 if (file_error != 70)
 {
 printf ("File system error (%d) on WRITE to the SERVER\n", file_error);
 return;
 }
 }

Example E-10. C File: A Simple SPI Requester (page 4 of 8)
SPI Programming Manual—427506-007
E-40

SPI Programming Examples Example E-10: A Simple SPI Requester in C
 l_status = CLOSE (srvr_file_num);
 if (l_status != CCE)
 {
 FILEINFO (srvr_file_num, &file_error);
 printf ("File system error (%d) on CLOSE of the SERVER\n", file_error);
 return;
 }
 /* Re-open the server */
 open_flags = 0x0001; /* NOWAIT IO */
 /* Open the server using SPI */
 memcpy (&l_process_id_zspi[8], "#ZSPI ", 8);
 l_status = OPEN ((short *) &l_process_id_zspi[0],
 &srvr_file_num, open_flags);
 if (l_status != CCE)
 {
 FILEINFO (-1, &file_error);
 printf ("File system error (%d) on REOPEN to the SERVER\n", file_error);
 return;
 }
 /* Fix the process ID */
 memcpy (&l_process_id_zspi[8], " ", 8);
 server_up = true;

} /* of PROC open_server */

#pragma PAGE "PROC requester MAIN"
/*
 *==
 * MAINLINE ROUTINE STARTS HERE.
 *
 *==
 */
main(/* int argc, char *argv[] */)
{
 short l_status;

 debug_flag = false;
 /* Server’s process name. */
 memcpy ((char *) &process_name[0], "$SPIX ", 6);
 /* Server’s object */
 memcpy ((char *) &server_name[8], "SECSERVO", 8);

 initialization(); /* Open files */

 spi_command = ZSPI_CMD_GETVERSION;
 /* Send a GETVERSION */
 if (err = SSINIT (req_buffer, max_bufsize, (short *) &my_ssid,
 ZSPI_VAL_CMDHDR, spi_command))
 display_spi_error (err, ZSPI_VAL_SSINIT, 0L, true);

 if (display_spi_buffer)
 {
 printf ("SPI buffer sent:\n");
 dump_buf (req_buffer);
 }

Example E-10. C File: A Simple SPI Requester (page 5 of 8)
SPI Programming Manual—427506-007
E-41

SPI Programming Examples Example E-10: A Simple SPI Requester in C
 l_status = WRITEREADX (srvr_file_num, (char *) &req_buffer[0],
 max_bufsize, sizeof (req_buffer), &read_count);
 if (l_status != CCE) get_file_error (srvr_file_num);
 file_num = -1; /* Don’t Cancel */

 l_status = AWAITIOX (&file_num, /*buffer*/, &read_count,
 /*tag*/, time_to_wait);
 if (l_status == CCL)
 {
 get_file_error (file_num);
 }

 if (display_spi_buffer)
 {
 printf ("SPI buffer received:\n");
 dump_buf (req_buffer);
 }

 /* Reset the buffer */
 buflen = max_bufsize;
 if (err = SSPUTTKN (req_buffer, ZSPI_TKN_RESET_BUFFER,
 (char *) &buflen))
 {
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_RESET_BUFFER, false);
 printf ("Bad SPI buffer returned! Cannot reset the buffer.\n");
 STOP (process_id); /* Stop the server. */
 STOP();
 }

 /* Get and display the BANNER. */
 if (err = SSGETTKN (req_buffer, ZSPI_TKN_SERVER_BANNER,
 (char *) &server_banner, 1))
 {
 printf ("No Server Banner found! \n");
 } else
 {
 printf ("Using: %.50s\n", (char*) &server_banner);
 }

 do /* Do forever */
 {
 get_string (in_string.data, &in_string.len);

 /* Send a SPI message */
 if (err = SSINIT (req_buffer, max_bufsize, (short *) &my_ssid,
 ZSPI_VAL_CMDHDR, spi_command))
 display_spi_error (err, ZSPI_VAL_SSINIT, 0L, true);
 if (err = SSPUTTKN (req_buffer, ZSPI_TKN_COMMENT,
 (char *) &in_string))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_COMMENT, true);

 /* Save the original buffer in case of continuation. */
 memcpy(sav_buffer, req_buffer, max_bufsize);
SEND_IT:
 if (display_spi_buffer)
 {
 printf ("SPI buffer sent:\n");
 dump_buf (req_buffer);
 }

Example E-10. C File: A Simple SPI Requester (page 6 of 8)
SPI Programming Manual—427506-007
E-42

SPI Programming Examples Example E-10: A Simple SPI Requester in C
 write_read_server ();

 if (display_spi_buffer)
 {
 printf ("SPI buffer received:\n");
 dump_buf (req_buffer);
 }

 /* Reset the buffer */
 buflen = max_bufsize;
 if (err = SSPUTTKN (req_buffer, ZSPI_TKN_RESET_BUFFER,
 (char *) &buflen))
 {
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_RESET_BUFFER, false);
 printf ("Bad SPI buffer returned! Cannot reset the buffer.\n");
 }

 if (! err)
 {
 tkn_retcode = 0;
 if (err = SSGETTKN (req_buffer, ZSPI_TKN_RETCODE,
 (char *) &tkn_retcode, 1))
 {
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_RETCODE, false);
 printf ("Bad SPI buffer returned! Missing RETCODE.\n");
 } else
 {
 err = tkn_retcode; /* To simplify the error checking code. */
 if (tkn_retcode)
 {
 printf ("Error returned. RETCODE = (%d)\n", tkn_retcode);
 }
 }
 }

 if (! err)
 {
 /* retrieve and validate the context, if any */
 if ((err = SSGETTKN (req_buffer, ZSPI_TKN_CONTEXT,
 (char *) &the_context, 1) == ZSPI_ERR_OK))
 { /* This message has a context. Add it to the original message
 * and send it again.
 *
 * This is what is happening. "sav_buffer" has the original msg sent.
 * I will move the "context" token from the "req_buffer" to the
 * "sav_buffer". Then, I will move "sav_buffer" to "req_buffer".
 * Now "req_buffer" is ready to send, but "sav_buffer" has the
 * "context" token added to the original msg sent. Thus, I will
 * delete the "context" token from "sav_buffer".
 */
 source_idx = 1;
 dest_idx = 1;
 tkn_count = 1;
 SSMOVETKN (ZSPI_TKN_CONTEXT, req_buffer, source_idx,
 sav_buffer, dest_idx, &tkn_count);

Example E-10. C File: A Simple SPI Requester (page 7 of 8)
SPI Programming Manual—427506-007
E-43

SPI Programming Examples Example E-11: A Simple SPI Server in TAL
Example E-11: A Simple SPI Server in TAL

Example E-11 on page E-45 is a simple SPI server that performs simple string
manipulations on strings provided by the requester shown in Example E-9 on
page E-28. The server is started automatically when you run the requester,
SETREQRO.

Source File

SETSERV

Object File

SETSERVO

 memcpy (req_buffer, sav_buffer, max_bufsize);
 /* Now delete the context token from the saved buffer. */
 tkn_code = ZSPI_TKN_CONTEXT;
 if (err = SSPUTTKN (sav_buffer, ZSPI_TKN_DELETE,
 (char *) &tkn_code))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 tkn_code, true);
 goto SEND_IT;
 }
 /* No context. Get the string from the COMMENT token */
 if (err = SSGETTKN (req_buffer, ZSPI_TKN_COMMENT,
 (char *) &in_string, 1))
 {
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_COMMENT, false);
 printf ("Bad SPI buffer returned! Missing TKN_COMMENT.\n");
 } else
 {
 in_string.data [in_string.len] = 0; /* terminate the string */
 printf ("%s", in_string.data);
 }
 } /* of if (! err) */
 }
 while (true);
} /* OF PROC requester */

Example E-10. C File: A Simple SPI Requester (page 8 of 8)
SPI Programming Manual—427506-007
E-44

SPI Programming Examples Example E-11: A Simple SPI Server in TAL
Example E-11. TAL File: A Simple SPI Server (page 1 of 10)

-- File name: SETSERV
-- SPI EXAMPLE TAL Basic Server model.
--
?SYMBOLS, INSPECT
LITERAL
 max^bufsize = 1010, ! in bytes
 version = %H4414; ! Set to the value: "D20"

?SOURCE SETCDECS
?SOURCE SETRDECS

INT
 context^count, ! Number of CONTEXT tokens
 dest^idx, ! Destination index for SSMOVETKN
 file^error,
 max^resp, ! From the SPI message
 object^type, ! Object type
 rcv^file^num, ! $RECEIVE’s file number
 resp^type, ! From the SPI message
 source^idx, ! Source index for SSMOVETKN
 spi^buffer^size, ! Size of last SPI buffer read.
 spi^command, ! From the SPI message
 startup^recvd, ! Indicates if startup msg received
 tkn^count, ! The number of tokens
 tkn^retcode;

STRUCT .out^string (string^template); ! output string

DEFINE res^buffer = b2#; ! Response buffer (same as b2)

?NOLIST, SOURCE ZCOMTAL
?LIST
?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0 (CLOSE, DEBUG, DNUMOUT, FILEINFO,
? OPEN, READUPDATEX, REPLYX, SHIFTSTRING,
? SPI_BUFFER_FORMATFINISH_, SPI_BUFFER_FORMATNEXT_, SPI_BUFFER_FORMATSTART_,
? SSGET, SSGETTKN, SSINIT, SSMOVETKN, SSPUT, SSPUTTKN,
? STOP, WRITEX)
?LIST

?PAGE "FORWARD DECLARATIONS"
PROC build^hdr^response;
FORWARD;

PROC error^response (p^err^num);
INT p^err^num; ! error number
FORWARD;

PROC initialization;
FORWARD;

PROC process^spi^buffer;
FORWARD;

PROC process^requests;
FORWARD;

INT PROC validate^tokens;
FORWARD;

INT PROC verify^msg (p^count);
INT p^count;
FORWARD;
SPI Programming Manual—427506-007
E-45

SPI Programming Examples Example E-11: A Simple SPI Server in TAL
?SOURCE SETCUTIL
?PAGE "PROC build^hdr^response"
PROC build^hdr^response;
!===!
! Proc : build^hdr^response !
! Function : This procedure will build the header for responses. !
!===!

BEGIN

 object^type := zspi^val^null^object^type;

 !Initialize response buffer
 IF err := ssinit (res^buffer, max^bufsize, my^ssid,
 zspi^val^cmdhdr, spi^command, object^type) THEN
 CALL display^spi^error (err, zspi^val^ssinit, 0d, true);

 ! Put in server version token
 IF err := ssputtkn (req^buffer, zspi^tkn^server^version,
 my^version) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^server^version, true);

END; ! End of build^hdr^response procedure
?PAGE "PROC error^response"
PROC error^response (p^err^num);
!===!
! Proc : error^response !
! Function : This procedure will format responses for unsuccessful !
! processing of spi^command. !
!===!

INT p^err^num; ! error number
! max^resp token from SPI buffer must be previously set.
! tkn^code of the token which caused error must be previously set.
BEGIN

 STRUCT .EXT l^err^def (zspi^ddl^error^def);
 STRUCT .EXT l^parm^err^def (zspi^ddl^parm^err^def);

 CALL build^hdr^response;

 source^idx := 1;
 dest^idx := 1;
 tkn^count := 1;

 ! Start Data list only IF zspi^tkn^maxresp is not = 0
 IF max^resp THEN
 IF err := ssputtkn (res^buffer, zspi^tkn^datalist) THEN
 BEGIN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^datalist, false);
 RETURN;
 END;

 !Put return code token in response buffer
 IF err := ssputtkn (res^buffer, zspi^tkn^retcode, p^err^num) THEN
 BEGIN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^retcode, false);
 RETURN;
 END;

Example E-11. TAL File: A Simple SPI Server (page 2 of 10)
SPI Programming Manual—427506-007
E-46

SPI Programming Examples Example E-11: A Simple SPI Server in TAL
 ! Put error list token
 IF err := ssputtkn (res^buffer, zspi^tkn^errlist) THEN
 BEGIN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^errlist, false);
 RETURN;
 END;

 l^err^def.z^ssid ':=' my^ssid FOR 12 BYTES;
 l^err^def.z^error := p^err^num; !Error number returned from validate^tokens

 IF err := ssputtkn (res^buffer, zspi^tkn^error, l^err^def) THEN
 BEGIN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^error, false);
 RETURN;
 END;

 !Put endlist token for end of response (End list of Error list)
 IF err := ssputtkn (res^buffer, zspi^tkn^endlist) THEN
 BEGIN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^endlist, false);
 RETURN;
 END;

 !Put endlist token for end of response (End list of Data list)
 IF max^resp THEN
 IF err := ssputtkn (res^buffer, zspi^tkn^endlist) THEN
 BEGIN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^endlist, false);
 RETURN;
 END;

END; ! End of error^response procedure

?PAGE "PROC initialization"
!==!
! Proc : initialization !
! Function : This procedure will open $RECEIVE and the home term. It also !
! sets the server^banner and the SSID. !
!==!

PROC initialization;
BEGIN
 INT l^filename [0:11] := ["$RECEIVE",8 * [" "]];
 INT l^err;

 server^banner.z^b ':=' " " & server^banner.z^b [0] FOR 49 BYTES;
 server^banner.z^b ':=' "TAL SERVER Version 1.01 (14APR95)";
 !Assign values to ssid definitions

 my^ssid ':=' [zspi^val^tandem,
 zspi^ssn^null, version];

 bufsize := max^bufsize;
 rcv^file^num := -1;
 !open $RECEIVE
 startup^recvd :=0;
 WHILE rcv^file^num = -1 DO !retry opening $RECEIVE until ok
 BEGIN
 CALL open (l^filename, rcv^file^num, %40000, 5); ! Recv depth = 5
 END;

Example E-11. TAL File: A Simple SPI Server (page 3 of 10)
SPI Programming Manual—427506-007
E-47

SPI Programming Examples Example E-11: A Simple SPI Server in TAL
 IF <> THEN !error handling
 BEGIN
 IF > THEN
 BEGIN
 CALL fileinfo (rcv^file^num, l^err);
 IF l^err > 0 THEN
 BEGIN
 CALL debug;
 continue := false;
 END;
 END ELSE
 BEGIN
 CALL debug;
 continue := false;
 END;
 END;

END; !initialization

?PAGE "PROC process^spi^buffer"
PROC process^spi^buffer;
!==!
! Proc : process^spi^buffer !
! Function : This procedure will format responses for successful !
! processing of spi^command. !
!==!
BEGIN
 INT
 l^err,
 l^idx,
 l^len,
 l^start^idx;

 ! determine if this is a valid SPI message
 IF (l^err := verify^msg (spi^buffer^size)) THEN
 BEGIN
 CALL error^response (l^err);
 RETURN;
 END;

 ! get the spi^command from the request buffer!
 IF (err := ssgettkn (req^buffer, zspi^tkn^command, spi^command)) THEN
 BEGIN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^command, true);
 END;

 IF (l^err := validate^tokens) THEN ! This is a procedure call
 BEGIN
 CALL error^response (l^err);
 RETURN;
 END;

 ! Security checks on the command/user could be done here.

 CALL build^hdr^response;

 source^idx := 1;
 dest^idx := 1;
 tkn^count := 1;

Example E-11. TAL File: A Simple SPI Server (page 4 of 10)
SPI Programming Manual—427506-007
E-48

SPI Programming Examples Example E-11: A Simple SPI Server in TAL
 ! Start Data list only IF zspi^tkn^maxresp is not = 0
 IF max^resp THEN
 BEGIN
 IF err := ssputtkn (res^buffer, zspi^tkn^datalist) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^datalist, true);
 END;
 l^start^idx := 0;
 ! Check for CONTEXT token.
 IF context^count THEN
 BEGIN
 ! Here the CONTEXT token was sent. Copy the passed context.
 out^string.len := the^context.con^string.len;
 out^string.data ':=' the^context.con^string.data FOR
 out^string.len BYTES;
 l^start^idx := the^context.index;
 END;

 ! Now perform the spi^command
 tkn^retcode := zspi^err^ok;
 CASE spi^command OF
 BEGIN
 zspi^cmd^getversion ->
 ! Put SERVER BANNER token in response buffer
 IF (err := ssputtkn (res^buffer, zspi^tkn^server^banner,
 server^banner)) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^server^banner, true);

 1 -> ! STRING to reverse.
 l^len := in^string.len;
 FOR l^idx := l^start^idx TO l^len - 1 DO
 BEGIN
 out^string.data [l^len - l^idx - 1] := in^string.data [l^idx];
 END;
 out^string.len := in^string.len;
 IF err := ssputtkn (res^buffer, zspi^tkn^comment,
 out^string) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^comment, true);

 2 -> ! Shift string to uppercase
 ! This could be done in one operation, but to show the use of
 ! the CONTEXT token, it will be done one character at a time.
 l^len := in^string.len;
 out^string.data [l^start^idx] := in^string.data [l^start^idx];
 CALL shiftstring (out^string.data [l^start^idx],
 1 ! only one byte at a time!,
 0 !upshift!); ! Change to upper-case
 l^start^idx := l^start^idx + 1;
 out^string.len := l^start^idx;

Example E-11. TAL File: A Simple SPI Server (page 5 of 10)
SPI Programming Manual—427506-007
E-49

SPI Programming Examples Example E-11: A Simple SPI Server in TAL
 IF out^string.len < in^string.len THEN
 BEGIN
 ! update the context and add it to the returned buffer.
 the^context.command := spi^command;
 the^context.index := l^start^idx;
 the^context.con^string.len := out^string.len;

 the^context.con^string.data ':=' out^string.data FOR
 out^string.len BYTES;
 the^context.len := $offset (context^template.con^string) +
 out^string.len + 2;
 IF err := ssputtkn (res^buffer, zspi^tkn^context,
 the^context) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^context, true);
 END;
 ! Here I have the option to add the work that has been done to
 ! returned buffer. This depends on the function being performed.
 ! I will add it here just for illustration purposes.
 !
 IF err := ssputtkn (res^buffer, zspi^tkn^comment,
 out^string) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^comment, true);

 3 -> ! Shift string to lowercase
 out^string.len := in^string.len;
 out^string.data ':=' in^string.data FOR in^string.len BYTES;

 CALL shiftstring (out^string.data,
 out^string.len,
 1 !downshift!); ! Change to lower-case
 IF err := ssputtkn (res^buffer, zspi^tkn^comment,
 out^string) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^comment, true);

 OTHERWISE -> ! (invalid command)
 tkn^retcode := zspi^err^notimp;

 END; ! End of CASE (spi^command) !

 !Put return code token in response buffer
 IF err := ssputtkn (res^buffer, zspi^tkn^retcode, tkn^retcode) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^retcode, true);

 ! Put endlist token for end of response
 IF max^resp AND (resp^type <> zspi^val^err^and^warn) THEN
 IF err := ssputtkn (res^buffer, zspi^tkn^endlist) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^endlist, true);

END; ! End of process^spi^buffer procedure

?PAGE "PROC process^requests"
!==!
! Proc : process^requests !
! Function : This procedure will process the requests received !
! on $RECEIVE !
!==!

Example E-11. TAL File: A Simple SPI Server (page 6 of 10)
SPI Programming Manual—427506-007
E-50

SPI Programming Examples Example E-11: A Simple SPI Server in TAL
PROC process^requests;
BEGIN

 ! Read in the spi^command received

 CALL readupdatex (rcv^file^num, req^buffer, max^bufsize,
 spi^buffer^size);
 CALL fileinfo (rcv^file^num, last^file^err);

 CASE (last^file^err) OF ! data was found in the buffer
 BEGIN
 6 -> ! system message
 ! first word of req^buffer is message type.
 CASE (req^buffer[0]) OF
 BEGIN
 -30 -> ! OPEN message
 !Don’t reject the OPEN for sending the STARTUP msg.
 IF (req^buffer [9] <> "#ZSPI ") AND
 (startup^recvd := -1) THEN
 BEGIN
 ! Reject the open with file error 11.
 file^error := 11;
 END;
 OTHERWISE ->
 res^buffer ':=' req^buffer FOR max^bufsize/2 WORDS;
 END;
 0 -> ! non-system message
 ! first word of msg (Z^MSGCODE) is a -28 for a SPI msg.
 CASE (req^buffer[0]) OF
 BEGIN
 -1 -> ! Process Startup message
 res^buffer ':=' req^buffer FOR max^bufsize/2 WORDS;
 startup^recvd := -1;
 -28 ->
 CALL process^spi^buffer;
 OTHERWISE ->
 res^buffer ':=' req^buffer FOR max^bufsize/2 WORDS;
 END;

 OTHERWISE -> !unexpected message not a SPI or system message
 res^buffer ':=' req^buffer FOR max^bufsize/2 WORDS;
 continue := false;
 END; -- of CASE (last^file^err)

END; -- of PROC process^requests

?PAGE "INT PROC validate^tokens"
!==!
! Proc : validate^tokens !
! Function : This procedure will determine if the "req^buffer" contains !
! a valid SPI command. All required tokens must be present. !
! Duplicate tokens, invalid tokens, invalid token values are !
! rejected. !
! Returns : An error code indicating the error found in the command !
! buffer or zspi^err^ok (0) which indicates no error was found.!
!==!

Example E-11. TAL File: A Simple SPI Server (page 7 of 10)
SPI Programming Manual—427506-007
E-51

SPI Programming Examples Example E-11: A Simple SPI Server in TAL
 INT PROC validate^tokens;
BEGIN
 STRUCT .l^ssid (zspi^ddl^ssid^def);

 ! set default token values
 ! IF any of these have to appear for a command set them to
 ! null values here & check them in the command^ code
 ! reset token counts
 context^count := 0;
 tkn^count := 1;

 ! get the header tokens- validate that they were retrieved ok
 IF err := ssgettkn (req^buffer, zspi^tkn^ssid, l^ssid) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^ssid, true);

 ! check if the SSID matches mine, but don’t check the version.
 IF l^ssid <> my^ssid FOR 5 WORDS THEN
 BEGIN
 tkn^code := zspi^tkn^ssid;
 RETURN (zcom^err^tkn^val^inv);
 END;

 IF err := ssgettkn (req^buffer, zspi^tkn^maxresp, max^resp) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^maxresp, true);

 IF max^resp < -1 THEN
 BEGIN
 tkn^code := zspi^tkn^maxresp;
 RETURN (zcom^err^tkn^val^inv);
 END;

 ! reposition to head of SPI buffer
 tkn^value := 0;

 IF err := ssputtkn (req^buffer, zspi^tkn^initial^position,
 tkn^value) THEN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^initial^position, true);
 ! walk through the buffer pulling out tokens
 WHILE (err := ssgettkn (req^buffer, zspi^tkn^nextcode, tkn^code,,
 tkn^count)) = zspi^err^ok
 DO
 BEGIN
 CASE $INT (tkn^code) OF
 BEGIN
 zspi^tnm^comment ->
 ! Check the entire token code, just to be sure.
 IF tkn^code <> zspi^tkn^comment THEN
 RETURN (zcom^err^tkn^code^inv);
 IF err := ssgettkn (req^buffer, zspi^tkn^comment, in^string) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^comment, true);

 zspi^tnm^context ->
 ! Check the entire token code, just to be sure.
 IF tkn^code <> zspi^tkn^context THEN
 RETURN (zcom^err^tkn^code^inv);

Example E-11. TAL File: A Simple SPI Server (page 8 of 10)
SPI Programming Manual—427506-007
E-52

SPI Programming Examples Example E-11: A Simple SPI Server in TAL

 tkn^code := zspi^tkn^context;
 context^count := context^count + tkn^count;
 IF context^count <> 1 THEN
 BEGIN
 RETURN (zcom^err^tkn^dup);
 END ELSE
 BEGIN
 ! retrieve and validate the context
 IF err := ssgettkn (req^buffer, zspi^tkn^context, the^context) THEN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^context, true);
 IF (the^context.len > $len(context^template)) OR
 (the^context.len <> ($offset(context^template.con^string) +
 the^context.con^string.len + 2)) OR
 (the^context.command <> spi^command) OR
 (the^context.index > the^context.con^string.len) THEN
 BEGIN
 RETURN (zcom^err^tkn^cntxt^code^inv);
 END;
 END;

 OTHERWISE ->
 RETURN (zcom^err^tkn^code^inv);

 END; -- of CASE

 END; -- of WHILE LOOP

 RETURN (zspi^err^ok); ! no errors found, RETURN ok
END; ! validate^tokens
PAGE "INT PROC verify^msg"
!==!
! Proc : verify^msg !
! Function : This procedure will determine if a valid SPI buffer was !
! received. !
! Returns : An error code indicating the error found, !
! or zspi^err^ok (0) which indicates no error was found. !
!==!

INT PROC verify^msg (p^count);
INT p^count; !size of data read must be at least 6!
BEGIN
 IF p^count < 6 THEN
 RETURN (zspi^err^invbuf);
 ! Reset the buffer
 tkn^count := 1;
 IF err := ssputtkn (req^buffer, zspi^tkn^reset^buffer,
 bufsize) THEN
 BEGIN
 CALL display^spi^error (err, zspi^val^ssputtkn,
 zspi^tkn^reset^buffer, false);
 RETURN (zspi^err^invbuf);
 END;

Example E-11. TAL File: A Simple SPI Server (page 9 of 10)
SPI Programming Manual—427506-007
E-53

SPI Programming Examples Example E-11: A Simple SPI Server in TAL
 ! header type must be a complete header
 ! SSGET of zspi^tkn^hdrtype returns a token value of zspi^val^cmdhdr
 IF err := ssgettkn (req^buffer, zspi^tkn^hdrtype, tkn^value,
 ,tkn^count) THEN
 BEGIN
 CALL display^spi^error (err, zspi^val^ssgettkn,
 zspi^tkn^hdrtype, false);
 RETURN (zspi^err^invbuf);
 END;

 IF tkn^value <> zspi^val^cmdhdr THEN
 RETURN (zspi^err^invbuf);

 tkn^code := zspi^tkn^hdrtype;
 RETURN (err);
END; ! procedure verify^msg
?PAGE "PROC server MAIN"
!==!
! MAINLINE ROUTINE STARTS HERE. !
! !
!==!

PROC server MAIN;

BEGIN
 INT l^reply^length;

 CALL initialization;

 continue := true;
 WHILE continue = true DO
 BEGIN
 ! Clear important fields
 res^buffer ':=' 0 & res^buffer FOR $OCCURS (res^buffer) - 1 WORDS;
 req^buffer ':=' 0 & req^buffer FOR $OCCURS (req^buffer) - 1 WORDS;
 ! Read a request message from $RECEIVE
 CALL process^requests;

 ! SEND reply buffer to $RECEIVE
 l^reply^length := max^bufsize;
 IF file^error THEN
 BEGIN
 l^reply^length := 0;
 END;

 CALL replyx (res^buffer, l^reply^length, !count^sent!,
 !tag!, file^error);
 IF < THEN
 BEGIN
 CALL get^file^error (rcv^file^num);
 continue := false;
 END;

 ! Clear important fields
 file^error := 0;

 END; ! End of WHILE continue DO

 CALL stop;

END; -- of PROC server

Example E-11. TAL File: A Simple SPI Server (page 10 of 10)
SPI Programming Manual—427506-007
E-54

SPI Programming Examples Example E-12: A Simple SPI Server in C
Example E-12: A Simple SPI Server in C

Example E-12 is a simple SPI server that performs simple string manipulations on
strings provided by the requester shown in Example E-9 on page E-28. The server is
started automatically when you run the requester, SECREQRO.

Source File

SECSERVC

Object File

SECSERVO

Example E-12. C File: A Simple SPI Server (page 1 of 12)

/* File name: secservc
 * SPI EXAMPLE C Basic Server model.
 */
#pragma symbols
#pragma inspect
#pragma nomap
#pragma nolmap
#pragma nostdfiles

#define max_bufsize 1010 /* in bytes */
#define version 0x4414u /* Set to the value: "D20" */

#include "secc.h"
#include "secr.h"

short
 context_count, /* Number of CONTEXT tokens */
 dest_idx, /* Destination index for SSMOVETKN */
 file_error,
 max_resp, /* From the SPI message */
 object_type, /* Object type */
 rcv_file_num, /* $RECEIVE’s file number */
 resp_type, /* From the SPI message */
 source_idx, /* Source index for SSMOVETKN */
 spi_buffer_size, /* Size of last SPI buffer read. */
 spi_command, /* From the SPI message */
 tkn_count, /* The number of tokens */
 tkn_retcode;

_lowmem string_template out_string; /* output string */

#define res_buffer b2 /* Response buffer (same as b2) */

#include "zcomc (constants)" nolist

#pragma PAGE "FORWARD DECLARATIONS"
void build_hdr_response(void);

void error_response(short p_err_num);

void initialization(void);
SPI Programming Manual—427506-007
E-55

SPI Programming Examples Example E-12: A Simple SPI Server in C
void process_spi_buffer(void);

void process_requests(void);

short validate_tokens(void);

short verify_msg (short p_count);

#include "seccutlc"
#pragma PAGE "PROC build_hdr_response"
void build_hdr_response(void)
/*
 *==
 * Proc : build_hdr_response =
 * Function : This procedure will build the header for responses. =
 *==
 */
{

 object_type = ZSPI_VAL_NULL_OBJECT_TYPE;

 /* Initialize response buffer */
 if (err = SSINIT (res_buffer, max_bufsize, (short *) &my_ssid,
 ZSPI_VAL_CMDHDR, spi_command, object_type))
 display_spi_error (err, ZSPI_VAL_SSINIT, 0L, true);

 /* Put in server version token */
 if (err = SSPUTTKN (req_buffer, ZSPI_TKN_SERVER_VERSION,
 (char *) &my_version))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_SERVER_VERSION, true);

} /* End of build_hdr_response procedure */

#pragma PAGE "PROC error_response"
void error_response (short p_err_num)
/*
 *==
 * Proc : error_response =
 * Function : This procedure will format responses for unsuccessful =
 * processing of spi_command. =
 *==
 */
/* max_resp token from SPI buffer must be previously set. */
/* tkn_code of the token which caused error must be previously set. */
{

 zspi_ddl_error_def l_err_def;

 build_hdr_response();

 source_idx = 1;
 dest_idx = 1;
 tkn_count = 1;
 }

Example E-12. C File: A Simple SPI Server (page 2 of 12)
SPI Programming Manual—427506-007
E-56

SPI Programming Examples Example E-12: A Simple SPI Server in C
 /* Start Data list only if (ZSPI_TKN_MAXRESP is not = 0 */
 if (max_resp)
 if (err = SSPUTTKN (res_buffer, ZSPI_TKN_DATALIST))
 {
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_DATALIST, false);
 return;
 }

 /* Put return code token in response buffer */
 if (err = SSPUTTKN (res_buffer, ZSPI_TKN_RETCODE, (char *) &p_err_num))
 {
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_RETCODE, false);
 return;
 }

 /* Put error list token */
 if (err = SSPUTTKN (res_buffer, ZSPI_TKN_ERRLIST))
 {
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_ERRLIST, false);
 return;
 }

 memcpy (&l_err_def.z_ssid, &my_ssid, 12);
 l_err_def.z_error = p_err_num; /* Error number from validate_tokens */

 if (err = SSPUTTKN (res_buffer, ZSPI_TKN_ERROR, (char *) &l_err_def))
 {
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_ERROR, false);
 return;

 /* Put endlist token for end of response (End list of Error list) */
 if (err = SSPUTTKN (res_buffer, ZSPI_TKN_ENDLIST))
 {
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_ENDLIST, false);
 return;
 }

 /* Put endlist token for end of response (End list of Data list) */
 if (max_resp)
 if (err = SSPUTTKN (res_buffer, ZSPI_TKN_ENDLIST))
 {
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_ENDLIST, false);
 return;
 }

} /* End of error_response procedure */

#pragma PAGE "PROC initialization"

Example E-12. C File: A Simple SPI Server (page 3 of 12)
SPI Programming Manual—427506-007
E-57

SPI Programming Examples Example E-12: A Simple SPI Server in C
 /*
 *===
 * Proc : initialization =
 * Function : This procedure will open $RECEIVE. It also sets the =
 * server_banner. =
 *===
 */
void initialization(void)
{
 char l_filename [24];
 short l_err;
 short l_status;

 memset (&server_banner.u_z_c.z_b, ' ', sizeof (server_banner));
 memcpy (server_banner.u_z_c.z_b, "C SERVER Version 1.01 (27MAR95)", 31);
 /* Assign values to ssid definitions */
 memcpy (l_filename, "$RECEIVE ", 24);
 bufsize = max_bufsize;
 rcv_file_num = -1;
 /* open $RECEIVE */
 do /* retry opening $RECEIVE until ok */
 {
 l_status = OPEN ((short *) &l_filename[0], &rcv_file_num,
 040000, 5); /* Recv depth = 5 */
 }
 while (rcv_file_num == -1);
 if (l_status != CCE) /* error handling */
 {
 if (l_status == CCG)
 {
 FILEINFO (rcv_file_num, &l_err);
 if (l_err > 0)
 {
 DEBUG();
 continue_flag = false;
 }
 } else
 {
 DEBUG();
 continue_flag = false;
 }
 }
} /* initialization */

#pragma PAGE "PROC process_spi_buffer"
void process_spi_buffer(void)
/*
 *===
 * Proc : process_spi_buffer =
 * Function : This procedure will format responses for successful =
 * processing of spi_command. =
 *===
 */
{
 short
 l_err,
 l_idx,
 l_len,
 l_start_idx;

Example E-12. C File: A Simple SPI Server (page 4 of 12)
SPI Programming Manual—427506-007
E-58

SPI Programming Examples Example E-12: A Simple SPI Server in C
 /* determine if this is a valid SPI message */
 if ((l_err = verify_msg (spi_buffer_size)))
 {
 error_response (l_err);
 return;
 }

 /* get the spi_command from the request buffer */
 if ((err = SSGETTKN (req_buffer, ZSPI_TKN_COMMAND, (char *) &spi_command)))
 {
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_COMMAND, true);
 }

 if ((l_err = validate_tokens()))
 {
 error_response (l_err);
 return;
 }

 /* Security checks on the command/user could be done here. */

 build_hdr_response ();

 source_idx = 1;
 dest_idx = 1;
 tkn_count = 1;

 /* Start Data list only if (ZSPI_TKN_MAXRESP is not = 0 */
 if (max_resp)
 {
 if (err = SSPUTTKN (res_buffer, ZSPI_TKN_DATALIST))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_DATALIST, true);
 }

 l_start_idx = 0;
 /* Check for CONTEXT token. */
 if (context_count)
 {
 /* Here the CONTEXT token was sent. Copy the passed context. */
 out_string.len = the_context.con_string.len;
 memcpy (out_string.data, the_context.con_string.data,
 out_string.len);
 l_start_idx = the_context.index;
 }

 /* Now perform the spi_command */
 tkn_retcode = ZSPI_ERR_OK;
 switch (spi_command)
 {
 case ZSPI_CMD_GETVERSION :
 /* Put SERVER BANNER token in response buffer */
 if ((err = SSPUTTKN (res_buffer, ZSPI_TKN_SERVER_BANNER,
 (char *) &server_banner)))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_SERVER_BANNER, true);
 break;

Example E-12. C File: A Simple SPI Server (page 5 of 12)
SPI Programming Manual—427506-007
E-59

SPI Programming Examples Example E-12: A Simple SPI Server in C
 case 1 : /* string to reverse. */
 l_len = in_string.len;
 for (l_idx = l_start_idx; l_idx < l_len; l_idx++)
 {
 out_string.data [l_len - l_idx - 1] = in_string.data [l_idx];
 }
 out_string.len = in_string.len;
 if (err = SSPUTTKN (res_buffer, ZSPI_TKN_COMMENT,
 (char *) &out_string))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_COMMENT, true);
 break;

 case 2 : /* Shift string to uppercase */
 /*
 * This could be done in one operation, but to show the use of
 * the CONTEXT token, it will be done one character at a time.
 */
 l_len = in_string.len;
 out_string.data [l_start_idx] = in_string.data [l_start_idx];
 SHIFTSTRING (&out_string.data [l_start_idx],
 1 /* only one byte at a time */,
 0 /*upshift*/); /* Change to upper-case */
 l_start_idx = l_start_idx + 1;
 out_string.len = l_start_idx;

 if (out_string.len < in_string.len)
 {
 /* update the context and add it to the returned buffer.
 */
 the_context.command = spi_command;
 the_context.index = l_start_idx;
 the_context.con_string.len = out_string.len;
 memcpy (the_context.con_string.data, out_string.data,
 out_string.len);
 the_context.len = offsetof (context_template, con_string) +
 out_string.len + 2;
 if (err = SSPUTTKN (res_buffer, ZSPI_TKN_CONTEXT,
 (char *) &the_context))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_CONTEXT, true);
 }

Example E-12. C File: A Simple SPI Server (page 6 of 12)
SPI Programming Manual—427506-007
E-60

SPI Programming Examples Example E-12: A Simple SPI Server in C
 /*
 * Here I have the option to add the work that has been done to
 * returned buffer. This depends on the function being performed.
 * I will add it here just for illustration purposes.
 */
 if (err = SSPUTTKN (res_buffer, ZSPI_TKN_COMMENT,
 (char *) &out_string))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_COMMENT, true);
 break;

 case 3 : /* Shift string to lowercase */
 out_string.len = in_string.len;
 memcpy (out_string.data, in_string.data, in_string.len);

 SHIFTSTRING (out_string.data,
 out_string.len,
 1 /*downshift*/); /* Change to lower-case */
 if (err = SSPUTTKN (res_buffer, ZSPI_TKN_COMMENT,
 (char *) &out_string))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_COMMENT, true);
 break;

 default : /* (invalid command) */
 tkn_retcode = ZSPI_ERR_NOTIMP;
 break;

 } /* End of CASE (spi_command) */

 /* Put return code token in response buffer */
 if (err = SSPUTTKN (res_buffer, ZSPI_TKN_RETCODE, (char *) &tkn_retcode))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_RETCODE, true);

 /* Put endlist token for end of response */
 if (max_resp && (resp_type != ZSPI_VAL_ERR_AND_WARN))
 if (err = SSPUTTKN (res_buffer, ZSPI_TKN_ENDLIST))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_ENDLIST, true);

} /* End of process_spi_buffer procedure */

Example E-12. C File: A Simple SPI Server (page 7 of 12)
SPI Programming Manual—427506-007
E-61

SPI Programming Examples Example E-12: A Simple SPI Server in C
#pragma PAGE "PROC process_requests"
/*
 *==
 * Proc : process_requests =
 * Function : This procedure will process the requests received =
 * on $RECEIVE. =
 *==
 */
void process_requests(void)
{

 /* Read in the spi_command received */

 READUPDATEX (rcv_file_num, (char *) &req_buffer[0], max_bufsize,
 &spi_buffer_size);
 FILEINFO (rcv_file_num, &last_file_err);

 switch (last_file_err) /* data was found in the buffer */
 {
 case 6 : /* system message */
 /* first word of req_buffer is message type. */
 switch (req_buffer[0])
 {
 case -30 : /* OPEN message */
 if (memcmp((char *) &req_buffer[9], "#ZSPI ", 8))
 {
 /* Reject the open with file error 11. */
 file_error = 11;
 }
 break;
 default :
 memcpy (res_buffer, req_buffer, max_bufsize);
 break;
 }
 break;

 case 0 : /* non-system message */
 /* first word of msg (Z_MSGCODE) is a -28 for a SPI msg. */
 switch (req_buffer[0])
 {
 case -28 :
 process_spi_buffer();
 break;
 default :
 memcpy (res_buffer, req_buffer, max_bufsize);
 break;
 }
 break;

 default : /* unexpected message not a SPI or system message */
 memcpy (res_buffer, req_buffer, max_bufsize);
 continue_flag = false;
 break;
 } /* of switch (last_file_err) */

} /* of PROC process_requests */

Example E-12. C File: A Simple SPI Server (page 8 of 12)
SPI Programming Manual—427506-007
E-62

SPI Programming Examples Example E-12: A Simple SPI Server in C
#pragma PAGE "validate_tokens"
/*
 *===
 * Proc : validate_tokens =
 * Function : This procedure will determine if the "req_buffer" =
 * contains a valid SPI command. All required tokens =
 * must be present. Duplicate tokens, invalid tokens, =
 * invalid token values are rejected =
 * Returns : An error code indicating the error found in the =
 * command buffer or ZSPI_ERR_OK (0) which indicates =
 * no error was found. =
 *===
 */
short validate_tokens(void)
{
 zspi_ddl_ssid_def l_ssid;

 /* set default token values
 * if (any of these have to appear for a command set them to
 * null values here & check them in the command_ code
 * reset token counts
 */
 context_count = 0;
 tkn_count = 1;

 /* get the header tokens- validate that they were retrieved ok */
 if (err = SSGETTKN (req_buffer, ZSPI_TKN_SSID, (char *) &l_ssid))
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_SSID, true);

 /* check if the SSID matches mine, but don’t check the version. */
 if (memcmp (&l_ssid, &my_ssid, 10) != 0)
 {
 tkn_code = ZSPI_TKN_SSID;
 return (ZSPI_ERR_TKN_VAL_INV);
 }

 if (err = SSGETTKN (req_buffer, ZSPI_TKN_MAXRESP, (char *) &max_resp))
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_MAXRESP, true);

 if (max_resp < -1)
 {
 tkn_code = ZSPI_TKN_MAXRESP;
 return (ZSPI_ERR_TKN_VAL_INV);
 }

 /* reposition to head of SPI buffer */
 tkn_value = 0;

 if (err = SSPUTTKN (req_buffer, ZSPI_TKN_INITIAL_POSITION,
 (char *) &tkn_value))
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_INITIAL_POSITION, true);

Example E-12. C File: A Simple SPI Server (page 9 of 12)
SPI Programming Manual—427506-007
E-63

SPI Programming Examples Example E-12: A Simple SPI Server in C
 /* walk through the buffer pulling out tokens */
 while (err = SSGETTKN (req_buffer, ZSPI_TKN_NEXTCODE,
 (char *) &tkn_code,, &tkn_count) == ZSPI_ERR_OK)
 {
 switch (tkn_code)
 {
 case ZSPI_TKN_COMMENT :
 /* Check the entire token code, just to be sure. */
 if (tkn_code != ZSPI_TKN_COMMENT)
 return (ZCOM_ERR_TKN_CODE_INV);
 if (err = SSGETTKN (req_buffer, ZSPI_TKN_COMMENT,
 (char *) &in_string))
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_COMMENT, true);
 break;

 case ZSPI_TKN_CONTEXT :
 /* Check the entire token code, just to be sure. */
 if (tkn_code != ZSPI_TKN_CONTEXT)
 return (ZCOM_ERR_TKN_CODE_INV);

 tkn_code = ZSPI_TKN_CONTEXT;
 context_count = context_count + tkn_count;
 if (context_count != 1)
 {
 return (ZCOM_ERR_TKN_DUP);
 } else
 {
 /* retrieve and validate the context */
 if (err = SSGETTKN (req_buffer, ZSPI_TKN_CONTEXT,
 (char *) &the_context))
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_CONTEXT, true);
 if ((the_context.len > sizeof(context_template)) ||
 (the_context.len != (offsetof (context_template, con_string) +
 the_context.con_string.len + 2)) ||
 (the_context.command != spi_command) ||
 (the_context.index > the_context.con_string.len))
 {
 return (ZCOM_ERR_TKN_CNTXT_CODE_INV);
 }
 }
 break;

 default :
 return (ZCOM_ERR_TKN_CODE_INV);
 break;

 } /* of switch */
 } /* of while */

 return (ZSPI_ERR_OK); /* no errors found, return ok */
} /* validate_tokens */

Example E-12. C File: A Simple SPI Server (page 10 of 12)
SPI Programming Manual—427506-007
E-64

SPI Programming Examples Example E-12: A Simple SPI Server in C
#pragma PAGE "verify_msg"
/*
 *==
 * Proc : verify_msg =
 * Function : This procedure will determine if a valid SPI buffer was =
 * received. =
 * Returns : An error code indicating the error found, =
 * or ZSPI_ERR_OK (0) which indicates no error was found. =
 *==
 */
short verify_msg (short p_count)
/* size of data read must be at least 6 */
{
 if (p_count < 6)
 return (ZSPI_ERR_INVBUF);
 /* Reset the buffer */
 tkn_count = 1;
 if (err = SSPUTTKN (req_buffer, ZSPI_TKN_RESET_BUFFER,
 (char *) &bufsize))
 {
 display_spi_error (err, ZSPI_VAL_SSPUTTKN,
 ZSPI_TKN_RESET_BUFFER, false);
 return (ZSPI_ERR_INVBUF);
 }

 /* header type must be a complete header */
 /* SSGET of ZSPI_TKN_HDRTYPE returns a token value of ZSPI_VAL_CMDHDR */
 if (err = SSGETTKN (req_buffer, ZSPI_TKN_HDRTYPE, (char *) &tkn_value,
 , &tkn_count))
 {
 display_spi_error (err, ZSPI_VAL_SSGETTKN,
 ZSPI_TKN_HDRTYPE, false);
 return (ZSPI_ERR_INVBUF);
 }

 if (tkn_value != ZSPI_VAL_CMDHDR)
 return (ZSPI_ERR_INVBUF);

 tkn_code = ZSPI_TKN_HDRTYPE;
 return (err);
 } /* procedure verify_msg */

Example E-12. C File: A Simple SPI Server (page 11 of 12)
SPI Programming Manual—427506-007
E-65

SPI Programming Examples Example E-12: A Simple SPI Server in C
#pragma PAGE "PROC server MAIN"
/*
 *==
 * MAINLINE ROUTINE STARTS HERE. =
 * =
 *==
 */
main(/* int argc, char *argv[] */)
{
 short l_reply_length;
 short l_status;

 initialization();

 continue_flag = true;
 do
 {
 /* Clear important fields */
 memset (res_buffer, '0', sizeof (res_buffer));
 memset (req_buffer, '0', sizeof (req_buffer));
 /* Read a request message from $RECEIVE */
 process_requests();

 /* SEND reply buffer to $RECEIVE */

 l_reply_length = max_bufsize;
 if (file_error)
 {
 l_reply_length = 0;
 }

 l_status = REPLYX ((char *) &res_buffer[0], l_reply_length,
 /*count_sent*/, /*tag*/, file_error);
 if (l_status == CCL)
 {
 get_file_error (rcv_file_num);
 continue_flag = false;
 }

 /* Clear important fields */
 file_error = 0;

 } while (continue_flag == true);

 STOP();

} /* of main */

Example E-12. C File: A Simple SPI Server (page 12 of 12)
SPI Programming Manual—427506-007
E-66

SPI Programming Examples Example E-13: Common Declarations for TAL Examples
Example E-13: Common Declarations for TAL Examples

This TAL code contains common declarations used by the other TAL example
programs.

Source File

SETCDECS

Example E-13. TAL File: SETDECS Supporting Code

?SYMBOLS, INSPECT, NOCODE, NOMAP, NOLMAP, DATAPAGES 64
?NOLIST, SOURCE ZSPITAL
?LIST
--
-- File name: SETCDECS
-- SPI EXAMPLE TAL Common Declarations and variables.
--
LITERAL tkn^1 = 1D '<<' 24 + 1D '<<' 16 + 1D;
LITERAL tkn^2 = 1D '<<' 24 + 1D '<<' 16 + 2D;
LITERAL tkn^3 = 1D '<<' 24 + 1D '<<' 16 + 3D;
LITERAL tkn^4 = 1D '<<' 24 + 1D '<<' 16 + 4D;
LITERAL tkn^5 = 1D '<<' 24 + 1D '<<' 16 + 5D;
LITERAL tkn^6 = 1D '<<' 24 + 1D '<<' 16 + 6D;

LITERAL false = 0,
 true = -1;
-- SPI related variables
INT .b1 [0:max^bufsize/2]; ! SPI buffer 1
INT .b2 [0:max^bufsize/2]; ! SPI buffer 2
INT bufsize;
INT err := 0;
INT last^file^err; ! Set by "get^file^error"
INT .ssid [0:5] := ["EXAMPLES", 1, 0];
INT(32) tkn^code;
STRUCT tkn^code^def (zspi^ddl^tokencode^def) = tkn^code;
INT .tkn^buffer^i [0:49]; ! For GET and PUT
INT .tkn^value := @tkn^buffer^i; ! For GET and PUT
INT(32) .tkn^value^2 := @tkn^buffer^i; ! For GET and PUT
STRING .tkn^buffer := @tkn^buffer^i '<<' 1; ! For GET and PUT
STRING val;

-- Program misc. variables
INT continue; ! flag
INT line [0:50]; ! output buffer for the home term.
STRING .sline := @line '<<' 1;
STRING .sp; ! String pointer.
INT term; ! The home term’s file number.
INT .termname [0:11]; ! The home term’s name.
SPI Programming Manual—427506-007
E-67

SPI Programming Examples Example E-14: Common Declarations for C Examples
Example E-14: Common Declarations for C Examples

This C code contains common declarations used by the other C example programs.

Source File

SECCH

Example E-14. C File: SECCH Supporting Code

#include <tal.h> nolist
#include <cextdecs> nolist
#include <ctype.h> nolist
#include <stdio.h> nolist
#include <stdlib.h> nolist
#include <stddef.h> nolist
#include <time.h> nolist
#include <string.h> nolist
#include <memory.h> nolist
#include <fcntl.h> nolist
#include "zspic" nolist
#pragma list
/*
** File name: secch
** SPI EXAMPLE C Common Declarations and variables.
*/
#define tkn_1 16842753lu /* 1D '<<' 24 + 1D '<<' 16 + 1D */
#define tkn_2 16842754lu /* 1D '<<' 24 + 1D '<<' 16 + 2D */
#define tkn_3 16842755lu /* 1D '<<' 24 + 1D '<<' 16 + 3D */
#define tkn_4 16842756lu /* 1D '<<' 24 + 1D '<<' 16 + 4D */
#define tkn_5 16842757lu /* 1D '<<' 24 + 1D '<<' 16 + 5D */
#define tkn_6 16842758lu /* 1D '<<' 24 + 1D '<<' 16 + 6D */

#define false 0
#define true -1

/* SPI related variables */
short b1 [max_bufsize/2]; /* SPI buffer 1 */
short b2 [max_bufsize/2]; /* SPI buffer 2 */
short bufsize;
short err = 0;
short last_file_err; /* Set by "get_file_error" */
short get_count; /* Count param to SSGET/SSGETTKN
*/
long tkn_code;
short tkn_buffer_i [50]; /* For GET and PUT */
short* tkn_value; /* = @tkn_buffer_i; /* For GET and PUT */
long* tkn_value_2; /* = @tkn_buffer_i; /* For GET and PUT */
char* tkn_buffer; /* = @tkn_buffer_i '<<' 1; /8 For GET and PUT */
char val;
zspi_ddl_ssid_def ssid = {{'E','X','A','M','P','L','E','S'}, 1, 0};
zspi_ddl_tokencode_def tkn_code_def; /* = tkn_code; */

/* Program misc. variables */
short continue_flag; /* flag */
SPI Programming Manual—427506-007
E-68

SPI Programming Examples Example E-15: Common Routines for TAL Examples
Example E-15: Common Routines for TAL Examples

This TAL code contains common routines used by the other TAL example programs.

Source File

SETCUTIL

Example E-15. TAL File: SETCUTIL Supporting Code (page 1 of 5)

-- File name: SETCUTIL
-- SPI EXAMPLE TAL Common Utility procedures.
--
?PAGE "FORWARD declarations"
PROC display^token (p^tkn^code);
INT(32) p^tkn^code;
FORWARD;
--
?PAGE "PROC display^spi^error"
!==!
! Proc : display^spi^error !
! Function : This procedure will format the SPI error that is passed into !
! a text message and display it on the home term. It will call !
! DEBUG if the "p^call^debug" parameter is true. !
!==!

PROC display^spi^error (p^spi^err, p^spi^proc, p^tkn^code, p^call^debug);
INT p^spi^err;
INT p^spi^proc;
INT(32) p^tkn^code;
INT p^call^debug;
BEGIN
 sline ':=' "Error from " -> @sp;
 CASE p^spi^proc OF
 BEGIN
 ZSPI^VAL^SSINIT -> sp ':=' "SSINIT" -> @sp;
 ZSPI^VAL^SSGET -> sp ':=' "SSGET" -> @sp;
 ZSPI^VAL^SSGETTKN -> sp ':=' "SSGETTKN" -> @sp;
 ZSPI^VAL^SSMOVE -> sp ':=' "SSMOVE" -> @sp;
 ZSPI^VAL^SSMOVETKN -> sp ':=' "SSMOVETKN" -> @sp;
 ZSPI^VAL^SSNULL -> sp ':=' "SSNULL" -> @sp;
 ZSPI^VAL^SSPUT -> sp ':=' "SSPUT" -> @sp;
 ZSPI^VAL^SSPUTTKN -> sp ':=' "SSPUTTKN" -> @sp;
 ZSPI^VAL^BUFFER^FORMATSTART -> sp ':=' "FORMATSTART" -> @sp;
 ZSPI^VAL^BUFFER^FORMATNEXT -> sp ':=' "FORMATNEXT" -> @sp;
 ZSPI^VAL^BUFFER^FORMATFINISH -> sp ':=' "FORMATFINISH" -> @sp;
 ZSPI^VAL^FORMAT^CLOSE -> sp ':=' "FORMATCLOSE" -> @sp;
 OTHERWISE -> sp ':=' "???Unknown???" -> @sp;
 END; -- of CASE p^spi^proc
 IF p^tkn^code <> 0d THEN
 CALL display^token (p^tkn^code);
 sp ':=' " (" -> @sp;
 IF p^spi^err < 0 THEN
 BEGIN
 sp ':=' "-" -> @sp;
 @sp := @sp '+' dnumout (sp, $DBL(-p^spi^err), 10);
 END ELSE
 BEGIN
 @sp := @sp '+' dnumout (sp, $DBL(p^spi^err), 10);
 END;
SPI Programming Manual—427506-007
E-69

SPI Programming Examples Example E-15: Common Routines for TAL Examples
 sp ':=' ", " -> @sp;
 CASE p^spi^err OF
 BEGIN
 ZSPI^ERR^INVBUF -> sp ':=' "Invalid Buffer" -> @sp;
 ZSPI^ERR^ILLPARM -> sp ':=' "Illegal Param" -> @sp;
 ZSPI^ERR^MISPARM -> sp ':=' "Missing Param" -> @sp;
 ZSPI^ERR^BADADDR -> sp ':=' "Illegal Address" -> @sp;
 ZSPI^ERR^NOSPACE -> sp ':=' "Buffer full" -> @sp;
 ZSPI^ERR^XSUMERR -> sp ':=' "Invalid Checksum" -> @sp;
 ZSPI^ERR^INTERR -> sp ':=' "Internal Error" -> @sp;
 ZSPI^ERR^MISTKN -> sp ':=' "Missing Token" -> @sp;
 ZSPI^ERR^ILLTKN -> sp ':=' "Illegal Token" -> @sp;
 ZSPI^ERR^BADSSID -> sp ':=' "Bad SSID" -> @sp;
 ZSPI^ERR^NOTIMP -> sp ':=' "Not implemented" -> @sp;
 ZSPI^ERR^NOSTACK -> sp ':=' "Insufficient Stack" -> @sp;
 ZSPI^ERR^ZFIL^ERR -> sp ':=' "File system error" -> @sp;
 ZSPI^ERR^ZGRD^ERR -> sp ':=' "OS Kernel error" -> @sp;
 ZSPI^ERR^INV^FILE -> sp ':=' "Invalid template file" -> @sp;
 ZSPI^ERR^CONTINUE -> sp ':=' "Continue" -> @sp;
 ZSPI^ERR^NEW^LINE -> sp ':=' "New line" -> @sp;
 ZSPI^ERR^NO^MORE -> sp ':=' "No more" -> @sp;
 ZSPI^ERR^MISS^NAME -> sp ':=' "Missing name" -> @sp;
 ZSPI^ERR^DUP^NAME -> sp ':=' "Duplicate name" -> @sp;
 ZSPI^ERR^MISS^ENUM -> sp ':=' "Missing enumeration" -> @sp;
 ZSPI^ERR^MISS^STRUCT -> sp ':=' "Missing STRUCT" -> @sp;
 ZSPI^ERR^MISS^OFFSET -> sp ':=' "Missing offset" -> @sp;
 ZSPI^ERR^TOO^LONG -> sp ':=' "Too long" -> @sp;
 ZSPI^ERR^MISS^FIELD -> sp ':=' "Missing field" -> @sp;
 ZSPI^ERR^NO^SCANID -> sp ':=' "No SCAN ID" -> @sp;
 ZSPI^ERR^NO^FORMATID -> sp ':=' "No Format ID" -> @sp;
 ZSPI^ERR^OCCURS^DEPTH -> sp ':=' "Occurs depth" -> @sp;
 ZSPI^ERR^MISS^LABEL -> sp ':=' "Missing label" -> @sp;
 ZSPI^ERR^BUF^TOO^LARGE-> sp ':=' "Buffer is too big" -> @sp;
 ZSPI^ERR^OBJFORM -> sp ':=' "Object form" -> @sp;
 ZSPI^ERR^OBJCLASS -> sp ':=' "Object class" -> @sp;
 ZSPI^ERR^BADNAME -> sp ':=' "Bad name" -> @sp;
 ZSPI^ERR^TEMPLATE -> sp ':=' "Template" -> @sp;
 ZSPI^ERR^ILL^CHAR -> sp ':=' "Illegal character" -> @sp;
 ZSPI^ERR^NO^TKNDEFID -> sp ':=' "No TKNDEF ID" -> @sp;
 ZSPI^ERR^INCOMP^RESP -> sp ':=' "Incomplete response" -> @sp;
 OTHERWISE -> sp ':=' "???Unknown???" -> @sp;
 END; -- of CASE p^spi^err
 sp ':=' ")" -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 ! Write a blank line for output clarity
 sline ':=' " " & sline FOR 79 BYTES;
 CALL writex (term, sline, 2);
 IF p^call^debug THEN CALL DEBUG;
END;

Example E-15. TAL File: SETCUTIL Supporting Code (page 2 of 5)
SPI Programming Manual—427506-007
E-70

SPI Programming Examples Example E-15: Common Routines for TAL Examples
?PAGE "PROC display^token"
!==!
! Proc : display^token !
! Function : This procedure will add the token name of the passed !
! token code to the current position pointer to by "sp". !
! Nothing is written to the home term. !
!==!

PROC display^token (p^tkn^code);
INT(32) p^tkn^code;
BEGIN
 sp ':=' " " -> @sp;
 IF p^tkn^code = tkn^1 THEN
 sp ':=' "(TKN^1)" -> @sp;
 IF p^tkn^code = tkn^2 THEN
 sp ':=' "(TKN^2)" -> @sp;
 IF p^tkn^code = tkn^3 THEN
 sp ':=' "(TKN^3)" -> @sp;
 IF p^tkn^code = tkn^4 THEN
 sp ':=' "(TKN^4)" -> @sp;
 IF p^tkn^code = tkn^5 THEN
 sp ':=' "(TKN^5)" -> @sp;
 IF p^tkn^code = tkn^6 THEN
 sp ':=' "(TKN^6)" -> @sp;
 IF p^tkn^code = zspi^tkn^command THEN
 sp ':=' "(COMMAND)" -> @sp;
 IF p^tkn^code = zspi^tkn^comment THEN
 sp ':=' "(COMMENT)" -> @sp;
 IF p^tkn^code = zspi^tkn^context THEN
 sp ':=' "(CONTEXT)" -> @sp;
 IF p^tkn^code = zspi^tkn^datalist THEN
 sp ':=' "(DATALIST)" -> @sp;
 IF p^tkn^code = zspi^tkn^endlist THEN
 sp ':=' "(ENDLIST)" -> @sp;
 IF p^tkn^code = zspi^tkn^errlist THEN
 sp ':=' "(ERRLIST)" -> @sp;
 IF p^tkn^code = zspi^tkn^error THEN
 sp ':=' "(ERROR)" -> @sp;
 IF p^tkn^code = zspi^tkn^hdrtype THEN
 sp ':=' "(HDRTYPE)" -> @sp;
 IF p^tkn^code = zspi^tkn^initial^position THEN
 sp ':=' "(INITIAL^POSITION)" -> @sp;
 IF p^tkn^code = zspi^tkn^manager THEN
 sp ':=' "(MANAGER)" -> @sp;
 IF p^tkn^code = zspi^tkn^maxresp THEN
 sp ':=' "(MAXRESP)" -> @sp;
 IF p^tkn^code = zspi^tkn^nextcode THEN
 sp ':=' "(NEXTCODE)" -> @sp;
 IF p^tkn^code = zspi^tkn^nexttoken THEN
 sp ':=' "(NEXTTOKEN)" -> @sp;
 IF p^tkn^code = zspi^tkn^object^type THEN
 sp ':=' "(OBJECT^TYPE)" -> @sp;
 IF p^tkn^code = zspi^tkn^parm^err THEN
 sp ':=' "(PARM^ERR)" -> @sp;
 IF p^tkn^code = zspi^tkn^proc^err THEN
 sp ':=' "(PROC^ERR)" -> @sp;
 IF p^tkn^code = zspi^tkn^reset^buffer THEN
 sp ':=' "(RESET^BUFFER)" -> @sp;
 IF p^tkn^code = zspi^tkn^retcode THEN
 sp ':=' "(RETCODE)" -> @sp;
 IF p^tkn^code = zspi^tkn^server^banner THEN
 sp ':=' "(SERVER^BANNER)" -> @sp;

Example E-15. TAL File: SETCUTIL Supporting Code (page 3 of 5)
SPI Programming Manual—427506-007
E-71

SPI Programming Examples Example E-15: Common Routines for TAL Examples
 IF p^tkn^code = zspi^tkn^server^version THEN
 sp ':=' "(SERVER^VERSION)" -> @sp;
 IF p^tkn^code = zspi^tkn^ssid THEN
 sp ':=' "(SSID)" -> @sp;
END;

?PAGE "PROC dump^buf"
PROC dump^buf (p^spi^buf);
!==!
! Proc : dump^buf !
! Function : This procedure will perform a labeled dump of the passed SPI !
! buffer and display it on the home term. !
!==!

INT .p^spi^buf;
BEGIN
 LITERAL numeric^format = 10, ! Decimal
 string^format = 0, ! Char codes 32 - 126
 type^override = 0, ! No TYPE overrides
 show^redef = 0, ! Don’t show redefines
 show^hidden = 1, ! Show hidden fields
 no^header = 0, ! Show header and data fields
 name^or^label = 1, ! Use DDL names
 ems^or^ss = 1,
 tkn^label^len = 30,
 field^label^len = 0,
 max^lines = 10,
 max^line^len = 80;
 ! Note that the SPI_formatnext procedure can modify the spi buffer.
 ! Thus I will move it to l^spi^buf and display it from here.
 INT .l^spi^buf [0:max^bufsize]; ! buffer to display
 INT .l^format^buf [0:max^lines * max^line^len / 2];
 STRING .l^sformat^buf := @l^format^buf '<<' 1;
 INT .l^lengths [0:max^lines];
 INT l^buf^len,
 l^idx,
 l^cmd^num,
 l^done := 0,
 l^format^id, !used by formatting routines to keep track of info.
 l^status,
 l^status1,
 l^status2;

 l^spi^buf ':=' p^spi^buf FOR $OCCURS (l^spi^buf) WORDS;
 ! get a format area reserved
 err := spi_buffer_formatstart_ (l^format^id, numeric^format, string^format,
 type^override, show^redef, show^hidden,
 no^header, name^or^label, ems^or^ss,
 tkn^label^len, field^label^len,
 l^status1, l^status2);
 IF err THEN
 CALL display^spi^error (err, zspi^val^buffer^formatstart, 0d, true);
 err := 0;
 WHILE NOT l^done DO
 BEGIN
 err := spi_buffer_formatnext_ (l^format^id,
 l^spi^buf,
 l^sformat^buf: max^lines*max^line^len,
 max^lines,
 l^lengths,
 l^status1,
 l^status2);

Example E-15. TAL File: SETCUTIL Supporting Code (page 4 of 5)
SPI Programming Manual—427506-007
E-72

SPI Programming Examples Example E-16: Common Routines for C Examples
Example E-16: Common Routines for C Examples

This C code contains common routines used by the other C example programs.

Source File

SECCUTLC

 USE l^idx2;
 IF err = 0 OR err = zspi^err^continue THEN
 BEGIN
 l^idx2 := 0;
 FOR l^idx2 := 0 TO max^lines - 1 DO
 BEGIN
 IF l^lengths [l^idx2] > -1 THEN
 BEGIN
 CALL writex (term, l^sformat^buf [l^idx2 * max^line^len],
 l^lengths [l^idx2]);
 END; -- of IF l^lengths [l^idx2] > -1
 END; -- of FOR l^idx2 := 0 to max^lines - 1 DO
 END ELSE -- IF err = 0 OR err ... ELSE
 BEGIN
 ! an error found, l^done printing
 l^done := true;
 CALL display^spi^error (err, zspi^val^buffer^formatnext, 0d, true);
 END; -- of IF err = 0 OR err ELSE

 ! we are l^done printing IF all found (err = 0)
 IF NOT err THEN l^done := true;

 END; -- of WHILE NOT l^done DO

 ! release the format area
 CALL spi_buffer_formatfinish_ (l^format^id, l^status1, l^status2);
 ! Write a blank line for output clarity
 l^sformat^buf ':=' " " & l^sformat^buf FOR 79 BYTES;
 CALL writex (term, l^sformat^buf, 2);

END; ! End of dump^buf PROC

?PAGE "PROC get^file^error"
!==!
! Proc : get^file^error !
! Function : This procedure will get the file error from the file !
! number that is passed and store it in "last^file^err". !
!==!

PROC get^file^error (p^file^num);
INT p^file^num;
BEGIN
 CALL fileinfo (p^file^num, last^file^err);
 CALL debug;
END; -- of PROC get^file^error

Example E-15. TAL File: SETCUTIL Supporting Code (page 5 of 5)
SPI Programming Manual—427506-007
E-73

SPI Programming Examples Example E-16: Common Routines for C Examples
Example E-16. C File: SECCUTLC Supporting Code (page 1 of 5)

/* File name: seccutlc
** SPI EXAMPLE C Common Utility procedures.
*/
#pragma PAGE "FORWARD declarations"
void display_spi_error (short p_spi_err,
 short p_spi_proc,
 long p_tkn_code,
 short p__debug);

void display_token (long p_tkn_code);

void dump_buf (short* p_spi_buf);

void get_file_error (short p_file_num);

/*===*
#pragma PAGE "display_spi_error"
/*
==
== Proc : display_spi_error =
== Function : This procedure will format the SPI error that is passed =
== into a text message and display it on the home term. It =
== will call DEBUG if the "p__debug" parameter is true. =
==
*/
void display_spi_error (short p_spi_err,
 short p_spi_proc,
 long p_tkn_code,
 short p__debug)
{
 printf ("Error from ");
 switch (p_spi_proc)
 {
 case ZSPI_VAL_SSINIT : printf("SSINIT"); break;
 case ZSPI_VAL_SSGET : printf("SSGET"); break;
 case ZSPI_VAL_SSGETTKN : printf("SSGETTKN"); break;
 case ZSPI_VAL_SSMOVE : printf("SSMOVE"); break;
 case ZSPI_VAL_SSMOVETKN : printf("SSMOVETKN"); break;
 case ZSPI_VAL_SSNULL : printf("SSNULL"); break;
 case ZSPI_VAL_SSPUT : printf("SSPUT"); break;
 case ZSPI_VAL_SSPUTTKN : printf("SSPUTTKN"); break;
 case ZSPI_VAL_BUFFER_FORMATSTART : printf("FORMATSTART"); break;
 case ZSPI_VAL_BUFFER_FORMATNEXT : printf("FORMATNEXT"); break;
 case ZSPI_VAL_BUFFER_FORMATFINISH : printf("FORMATFINISH"); break;
 case ZSPI_VAL_FORMAT_CLOSE : printf("FORMATCLOSE"); break;
 default : printf("???Unknown???"); break;
 } /* of switch (p_spi_proc) */
 if (p_tkn_code != 0L)
 display_token (p_tkn_code);
 printf(" (%d, ", p_spi_err);
 switch (p_spi_err)
 {
 case ZSPI_ERR_INVBUF : printf("Invalid Buffer"); break;
 case ZSPI_ERR_ILLPARM : printf("Illegal Param"); break;
 case ZSPI_ERR_MISPARM : printf("Missing Param"); break;
 case ZSPI_ERR_BADADDR : printf("Illegal Address"); break;
 case ZSPI_ERR_NOSPACE : printf("Buffer full"); break;
SPI Programming Manual—427506-007
E-74

SPI Programming Examples Example E-16: Common Routines for C Examples
 case ZSPI_ERR_XSUMERR : printf("Invalid Checksum"); break;
 case ZSPI_ERR_INTERR : printf("Internal Error"); break;
 case ZSPI_ERR_MISTKN : printf("Missing Token"); break;
 case ZSPI_ERR_ILLTKN : printf("Illegal Token"); break;
 case ZSPI_ERR_BADSSID : printf("Bad SSID"); break;
 case ZSPI_ERR_NOTIMP : printf("Not implemented"); break;
 case ZSPI_ERR_NOSTACK : printf("Insufficient Stack"); break;
 case ZSPI_ERR_ZFIL_ERR : printf("File system error"); break;
 case ZSPI_ERR_ZGRD_ERR : printf("OS Kernel error"); break;
 case ZSPI_ERR_INV_FILE : printf("Invalid template file"); break;"
 case ZSPI_ERR_CONTINUE : printf("Continue"); break;
 case ZSPI_ERR_NEW_LINE : printf("New line"); break;
 case ZSPI_ERR_NO_MORE : printf("No more"); break;
 case ZSPI_ERR_MISS_NAME : printf("Missing name"); break;
 case ZSPI_ERR_DUP_NAME : printf("Duplicate name"); break;
 case ZSPI_ERR_MISS_ENUM : printf("Missing enumeration"); break;
 case ZSPI_ERR_MISS_STRUCT : printf("Missing STRUCT"); break;
 case ZSPI_ERR_MISS_OFFSET : printf("Missing offset"); break;
 case ZSPI_ERR_TOO_LONG : printf("Too long"); break;
 case ZSPI_ERR_MISS_FIELD : printf("Missing field"); break;
 case ZSPI_ERR_NO_SCANID : printf("No SCAN ID"); break;
 case ZSPI_ERR_NO_FORMATID : printf("No Format ID"); break;
 case ZSPI_ERR_OCCURS_DEPTH : printf("Occurs depth"); break;
 case ZSPI_ERR_MISS_LABEL : printf("Missing label"); break;
 case ZSPI_ERR_BUF_TOO_LARGE: printf("Buffer is too big"); break;
 case ZSPI_ERR_OBJFORM : printf("Object form"); break;
 case ZSPI_ERR_OBJCLASS : printf("Object class"); break;
 case ZSPI_ERR_BADNAME : printf("Bad name"); break;
 case ZSPI_ERR_TEMPLATE : printf("Template"); break;
 case ZSPI_ERR_ILL_CHAR : printf("Illegal character"); break;
 case ZSPI_ERR_NO_TKNDEFID : printf("No TKNDEF ID"); break;
 case ZSPI_ERR_INCOMP_RESP : printf("Incomplete response"); break;
 default : printf("???Unknown???"); break;
 } /* of switch (p_spi_err) */
 printf(")\n");

 /* Write a blank line for output clarity */
 printf (" \n");
 if (p__debug) DEBUG();
}

#pragma PAGE "display_token"
/*
==
== Proc : display_token =
== Function : This procedure will add the token name of the passed =
== token code and write its name. =
==
*/
void display_token (long p_tkn_code)
{
 printf(" ");
 if (p_tkn_code == tkn_1)
 printf("(TKN_1)");
 if (p_tkn_code == tkn_2)
 printf("(TKN_2)");
 if (p_tkn_code == tkn_3)
 printf("(TKN_3)");

Example E-16. C File: SECCUTLC Supporting Code (page 2 of 5)
SPI Programming Manual—427506-007
E-75

SPI Programming Examples Example E-16: Common Routines for C Examples
 if (p_tkn_code == tkn_4)
 printf("(TKN_4)");
 if (p_tkn_code == tkn_5)
 printf("(TKN_5)");
 if (p_tkn_code == tkn_6)
 printf("(TKN_6)");
 if (p_tkn_code == ZSPI_TKN_COMMAND)
 printf("(COMMAND)");
 if (p_tkn_code == ZSPI_TKN_COMMENT)
 printf("(COMMENT)");
 if (p_tkn_code == ZSPI_TKN_CONTEXT)
 printf("(CONTEXT)");
 if (p_tkn_code == ZSPI_TKN_DATALIST)
 printf("(DATALIST)");
 if (p_tkn_code == ZSPI_TKN_ENDLIST)
 printf("(ENDLIST)");
 if (p_tkn_code == ZSPI_TKN_ERRLIST)
 printf("(ERRLIST)");
 if (p_tkn_code == ZSPI_TKN_ERROR)
 printf("(ERROR)");
 if (p_tkn_code == ZSPI_TKN_HDRTYPE)
 printf("(HDRTYPE)");
 if (p_tkn_code == ZSPI_TKN_INITIAL_POSITION)
 printf("(INITIAL_POSITION)");
 if (p_tkn_code == ZSPI_TKN_MANAGER)
 printf("(MANAGER)");
 if (p_tkn_code == ZSPI_TKN_MAXRESP)
 printf("(MAXRESP)");
 if (p_tkn_code == ZSPI_TKN_NEXTCODE)
 printf("(NEXTCODE)");
 if (p_tkn_code == ZSPI_TKN_NEXTTOKEN)
 printf("(NEXTTOKEN)");
 if (p_tkn_code == ZSPI_TKN_OBJECT_TYPE)
 printf("(OBJECT_TYPE)");
 if (p_tkn_code == ZSPI_TKN_PARM_ERR)
 printf("(PARM_ERR)");
 if (p_tkn_code == ZSPI_TKN_PROC_ERR)
 printf("(PROC_ERR)");
 if (p_tkn_code == ZSPI_TKN_RESET_BUFFER)
 printf("(RESET_BUFFER)");
 if (p_tkn_code == ZSPI_TKN_RETCODE)
 printf("(RETCODE)");
 if (p_tkn_code == ZSPI_TKN_SERVER_BANNER)
 printf("(SERVER_BANNER)");
 if (p_tkn_code == ZSPI_TKN_SERVER_VERSION)
 printf("(SERVER_VERSION)");
 if (p_tkn_code == ZSPI_TKN_SSID)
 printf("(SSID)");
}

Example E-16. C File: SECCUTLC Supporting Code (page 3 of 5)
SPI Programming Manual—427506-007
E-76

SPI Programming Examples Example E-16: Common Routines for C Examples

#pragma PAGE "dump_buf"
void dump_buf (short* p_spi_buf)
/*
===
== Proc : dump_buf =
== Function : This procedure will perform a labeled dump of the passed =
== SPI buffer and display it on the home term. =
===
*/
{
 #define numeric_format 10 /* Decimal */
 #define string_format 0 /* Char codes 32 - 126 */
 #define type_override 0 /* No TYPE overrides */
 #define show_redef 0 /* Don’t show redefines */
 #define show_hidden 1 /* Show hidden fields */
 #define no_header 0 /* Show header and data fields */
 #define name_or_label 1 /* Use DDL names */
 #define ems_or_ss 1
 #define tkn_label_len 30
 #define field_label_len 0
 #define max_lines 10
 #define max_line_len 80
 /*
 ** Note that the SPI_formatnext procedure can modify the spi buffer.
 ** Thus I will move it to l_spi_buf and display it from here.
 */
 short l_spi_buf [max_bufsize]; /* buffer to display */
 short l_format_buf [max_lines * max_line_len / 2];
 char l_line [max_line_len + 1]; /* Add 1 for terminator */
 short l_lengths [max_lines];
 short l_idx,
 l_done = 0,
 l_format_id, /* used by formatting routines to keep track of
info.*/
 l_status1,
 l_status2;

 memcpy (&l_spi_buf, p_spi_buf, (max_bufsize * 2)); /* Copy the buffer */
 /* get a format area reserved */
 err = SPI_BUFFER_FORMATSTART_ (&l_format_id,
 numeric_format,
 string_format,
 type_override,
 show_redef,
 show_hidden,
 no_header,
 name_or_label,
 ems_or_ss,
 tkn_label_len,
 field_label_len,
 &l_status1,
 &l_status2);
 if (err)
 display_spi_error (err, ZSPI_VAL_BUFFER_FORMATSTART, 0L, true);

Example E-16. C File: SECCUTLC Supporting Code (page 4 of 5)
SPI Programming Manual—427506-007
E-77

SPI Programming Examples Example E-16: Common Routines for C Examples
 err = 0;
 while (! l_done)
 {
 err = SPI_BUFFER_FORMATNEXT_ (l_format_id,
 l_spi_buf,
 (char *) &l_format_buf,
 max_lines * max_line_len,
 max_lines,
 l_lengths,
 &l_status1,
 &l_status2);
 if (err == 0
 || err == ZSPI_ERR_CONTINUE)
 {
 for (l_idx = 0; l_idx < max_lines; ++l_idx)
 {
 if (l_lengths [l_idx] > -1)
 {
 memcpy (&l_line, &l_format_buf [l_idx * max_line_len / 2],
 l_lengths [l_idx]); /* Copy the output line */
 l_line [l_lengths [l_idx]] = 0; /* terminate the string */
 printf("%s\n", l_line);
 } /* of if */
 } /* of for */
 } else /* if */
 {
 /* an error found, done printing */
 l_done = true;
 display_spi_error (err, ZSPI_VAL_BUFFER_FORMATNEXT, 0L, true);
 } /* of if */

 /* we are done printing if all found (err = 0) */
 if (! err) l_done = true;

 } /* of while */

 /* release the format area */
 SPI_BUFFER_FORMATFINISH_ (&l_format_id, &l_status1, &l_status2);
 /* Write a blank line for output clarity */
 printf(" \n");

} /* End of dump_buf */

#pragma PAGE "get_file_error"
/*
===
== Proc : get_file_error =
== Function : This procedure will get the file error from the file =
== number that is passed and store it in "last_file_err". =
===
*/
void get_file_error (short p_file_num)
{
 FILEINFO (p_file_num, &last_file_err);
 DEBUG ();
} /* of get_file_error */

Example E-16. C File: SECCUTLC Supporting Code (page 5 of 5)
SPI Programming Manual—427506-007
E-78

SPI Programming Examples Example E-17: Declarations for TAL Requesters and
Servers
Example E-17: Declarations for TAL Requesters and Servers

This TAL code contains common declarations used by the TAL requester and server
example programs.

Source File

SETRDECS
SPI Programming Manual—427506-007
E-79

SPI Programming Examples Example E-17: Declarations for TAL Requesters and
Servers
Example E-17. TAL File: SETRDECS Supporting Code

-- File name: SETRDECS
-- SPI EXAMPLE TAL Requester Declarations and variables.
--
STRUCT ci^startup^def (*);
 BEGIN
 INT msgcode;
 STRUCT default;
 BEGIN
 INT volume [0:3],
 subvol [0:3];
 END; -- of STRUCT
 STRUCT infile;
 BEGIN
 INT volume [0:3],
 subvol [0:3],
 dname [0:3];
 END; -- of STRUCT
 STRUCT outfile;
 BEGIN
 INT volume [0:3],
 subvol [0:3],
 dname [0:3];
 END; -- of STRUCT
 STRING param [0:255];
 END; -- of STRUCT

STRUCT .start^buffer (ci^startup^def);
STRUCT .param^msg = start^buffer;
 BEGIN
 INT msg^code,
 param^count;
 STRING param [0:1023];
 END;
STRUCT .startup^msg (ci^startup^def);

STRUCT string^template(*);
BEGIN
 INT len;
 STRING data [0:199];
END;

STRUCT context^template(*);
BEGIN
 INT len;
 INT command;
 INT index; ! Current index into the string
 STRUCT con^string (string^template); ! The converted string, so far
END;
STRUCT .in^string (string^template); ! Input string
STRUCT .the^context (context^template); ! continuation context
STRUCT .server^banner (zspi^ddl^char50^def);
STRUCT .my^ssid (zspi^ddL^ssid^def);
INT my^version := version;

DEFINE req^buffer = b1#; ! Request buffer (same as b1)
SPI Programming Manual—427506-007
E-80

SPI Programming Examples Example E-18: Declarations for C Requesters and Servers
Example E-18: Declarations for C Requesters and Servers

This C code contains common declarations used by the C requester and server
example programs.

Source File

SECRH

Example E-18. C File: SECRH Supporting Code

/* File name: secrh
** SPI EXAMPLE C Requester Declarations and variables.
*/

typedef struct
{
 short msg_code,
 param_count;
 char param [1024];
} param_msg;

typedef struct
{
 short len;
 char data [200];
} string_template;

typedef struct
{
 short len;
 short command;
 short index; /* Current index into the string */
 string_template con_string; /* The converted string, so far */
} context_template;

startup_msg_type startup_msg;
string_template in_string; /* Input string */
context_template the_context; /* continuation context */
zspi_ddl_char50_def server_banner;
zspi_ddl_ssid_def my_ssid = {{ZSPI_VAL_TANDEM},
 ZSPI_SSN_NULL, version};
short my_version = version;

#define req_buffer b1 /* Request buffer (same as b1) */
SPI Programming Manual—427506-007
E-81

SPI Programming Examples Example E-19: Routines for TAL Requesters and Servers
Example E-19: Routines for TAL Requesters and Servers

This TAL code contains common routines used by the TAL requester and server
example programs.

Source File

SETRUTIL

Example E-19. TAL File: SETRUTIL Supporting Code (page 1 of 4)

-- File name: SETRUTIL
-- SPI EXAMPLE TAL Requester Utility procedures.
--
?PAGE "report^newprocess^error"
!==!
! Proc : report^newprocess^error !
! Function : This procedure will format a NEWPROCESS error and write it !
! to the home term. !
!==!

PROC report^newprocess^error (p^program^fname, p^error);
INT .p^program^fname,
 p^error;
BEGIN
 INT l^len;
 STRING l^err^sbuf [0:79];

 SUBPROC format^file^error;
 BEGIN
 sp ':=' " (ERROR " -> @sp;
 CALL numout (sp, p^error.<8:15>, 10, 3);
 sp [3] ':=' ")" -> @sp;
 END; -- of SUBPROC

 l^err^sbuf ':=' " " & l^err^sbuf [0] FOR $OCCURS(l^err^sbuf) - 1;
 l^err^sbuf ':=' "NEWPROCESS ERROR #" -> @sp;
 CALL numout (sp, p^error.<0:7>, 10, 2);
 sp[2] ':=' "," -> @sp;
 CALL numout (sp, p^error.<8:15>, 10, 3);
 @sp := @sp[3];
 CALL writex (term, l^err^sbuf, @sp '-' @l^err^sbuf);
 IF <> THEN CALL get^file^error (term);

 CASE p^error.<0:7> OF
 BEGIN
 0 -> l^err^sbuf ':=' "No error" -> @sp;
 1 -> l^err^sbuf ':=' "Undefined Externals" -> @sp;
 2 -> l^err^sbuf ':=' "No PCB Available" -> @sp;
 3 -> l^err^sbuf ':=' "File System Error on Program File " -> @sp;
 l^len := fnamecollapse (p^program^fname, sp);
 @sp := @sp[l^len];
 CALL format^file^error;
 4 -> l^err^sbuf ':=' "Unable to Allocate Map" -> @sp;
 5 -> l^err^sbuf ':=' "File System Error on Swap File " -> @sp;
 CALL format^file^error;
 6 -> l^err^sbuf ':=' "Illegal File Format for " -> @sp;
 l^len := fnamecollapse (p^program^fname, sp);
 @sp := @sp[l^len];
SPI Programming Manual—427506-007
E-82

SPI Programming Examples Example E-19: Routines for TAL Requesters and Servers
 7 -> l^err^sbuf ':=' "Unlicensed PRIV program " -> @sp;
 l^len := fnamecollapse (p^program^fname, sp);
 @sp := @sp[l^len];
 8 -> l^err^sbuf ':=' "Process Name Error " -> @sp;
 CALL format^file^error;
 9 -> l^err^sbuf ':=' "Library Conflict" -> @sp;
 10 -> l^err^sbuf ':=' "Unable to communicate with System Monitor" -> @sp;
 11 -> l^err^sbuf ':=' "File System Error on Library File " -> @sp;
 l^len := fnamecollapse (p^program^fname[12], sp);
 @sp := @sp[l^len];
 CALL format^file^error;
 12 -> l^err^sbuf ':=' "Program and Library Files are the Same" -> @sp;
 13 -> l^err^sbuf ':=' "Invalid Segment Size" -> @sp;
 14 -> l^err^sbuf ':=' "File System Error on Initial Setup of Swap " &
 "File " -> @sp;
 CALL format^file^error;
 15 -> l^err^sbuf ':=' "Illegal Home Terminal " -> @sp;
 CALL format^file^error;
 16 -> l^err^sbuf ':=' "I/O Error on Home Terminal " -> @sp;
 CALL format^file^error;
 17 -> l^err^sbuf ':=' "DEFINE context propagation error" -> @sp;
 18 -> l^err^sbuf ':=' "OBJECT file with an illegal process Device " &
 "subtype" -> @sp;
 19 -> l^err^sbuf ':=' "process device subtype specified in Backup " &
 "Process not the same as that in primary " &
 "process " -> @sp;
 OTHERWISE -> l^err^sbuf ':=' "Unknown Error " -> @sp;
 END; -- of CASE

 CALL writex (term, l^err^sbuf, @sp '-' @l^err^sbuf);
 IF <> THEN CALL get^file^error (term);

END; -- of PROC report^newprocess^error
? PAGE "restart^server"
!===!
! Proc : restart^server !
! Function : This procedure will start and re-start the server up to a !
! maximum number to times. !
!===!

PROC restart^server;
BEGIN
 STRING l^err^msg^1 [0:30] := "Server restart retries exceeded",
 l^err^msg^2 [0:15] := "Server restarted";
 INT l^process^flags := 0,
 l^priority := 0; ! Flag to start up server in INSPECT

 IF srvr^retry^count > 0 THEN
 BEGIN
 CALL writex (term, l^err^msg^2, $OCCURS (l^err^msg^2));
 IF <> THEN CALL get^file^error (term);
 END;
 srvr^retry^count := srvr^retry^count + 1;
 IF srvr^retry^count > 3 THEN
 BEGIN
 CALL writex (term, l^err^msg^1, $OCCURS (l^err^msg^1));
 IF <> THEN CALL get^file^error (term);
 CALL stop;
 END;

Example E-19. TAL File: SETRUTIL Supporting Code (page 2 of 4)
SPI Programming Manual—427506-007
E-83

SPI Programming Examples Example E-19: Routines for TAL Requesters and Servers
 !
 ! If debug^flag is set, then bring up the server in DEBUG.
 !
 l^process^flags.<15> := debug^flag;
 l^priority.<0> := debug^flag;
 process^id ':=' " " & process^id [0] FOR $OCCURS (process^id) - 1;
 CALL newprocess (server^name, l^priority, !memory pages!, !processor!,
 process^id, file^error, process^name, !home term!,
 l^process^flags);
 IF file^error THEN
 BEGIN
 CALL report^newprocess^error (server^name, file^error);
 RETURN;
 END;

 CALL open^server;

END; ! -- of PROC restart^server;
?PAGE "write^read^server"
!==!
! Proc : write^read^server !
! Function : This procedure will write a message to the server and reason !
! the reply. It handles any file errors on the server’s file. !
!==!

PROC write^read^server;
BEGIN
 INT
 l^await^done,
 l^op^done,
 l^recoverable^err;

 l^op^done := false;
 DO
 BEGIN
 CALL writereadx (srvr^file^num, req^buffer, max^bufsize,
 $OCCURS (req^buffer), read^count);
 IF <> THEN CALL get^file^error (srvr^file^num);

 l^await^done := false;
 DO
 BEGIN
 file^num := -1; ! Don’t Cancel

 CALL awaitiox (file^num, !buffer!, read^count, !tag!, time^to^wait);
 IF < THEN
 BEGIN
 CALL fileinfo (file^num, file^error);
 IF file^error = 40 THEN ! TIMEOUT Error
 BEGIN
 sline ':=' "Waiting for the Server" -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 IF <> THEN CALL get^file^error (term);
 END ELSE ! IF file^error = 40 ELSE

Example E-19. TAL File: SETRUTIL Supporting Code (page 3 of 4)
SPI Programming Manual—427506-007
E-84

SPI Programming Examples Example E-20: Routines for C Requesters and Servers
Example E-20: Routines for C Requesters and Servers

This C code contains common routines used by the C requester and server example
programs.

Source File

SECRUTLC

 BEGIN
 l^await^done := true;
 server^up := false;
 l^recoverable^err := false; ! Set default value
 IF file^error = 201 THEN l^recoverable^err := true;
 IF file^error = 211 THEN l^recoverable^err := true;
 IF file^error = 6 THEN ! System message
 BEGIN
 start^buffer ':=' req^buffer FOR read^count BYTES;
 IF start^buffer.msgcode = -5 THEN ! STOP message
 l^recoverable^err := true;
 IF start^buffer.msgcode = -6 THEN ! ABEND message
 l^recoverable^err := true;
 END; -- of IF file^error = 6

 sline ':=' "File system error (" -> @sp;
 CALL numout (sp, file^error, 10, 3);
 sp [3] ':=' ") on WRITEREAD to the SERVER" -> @sp;
 CALL writex (term, sline, @sp '-' @sline);
 IF <> THEN CALL get^file^error (term);

 IF l^recoverable^err THEN
 BEGIN
 DO
 BEGIN
 CALL restart^server;
 END
 UNTIL server^up := true;
 CALL cancel (srvr^file^num); ! Cancel the IO
 END ELSE ! IF l^recoverable^err ELSE
 BEGIN
 CALL debug;
 END; -- of IF l^recoverable^err
 END; -- of IF file^error = 40

 END ELSE ! IF < ELSE
 BEGIN
 l^op^done := true;
 l^await^done := true;
 END; -- of IF <

 END
 UNTIL l^await^done = true;

 END
 UNTIL l^op^done = true;

END; ! -- of PROC write^read^server;

Example E-19. TAL File: SETRUTIL Supporting Code (page 4 of 4)
SPI Programming Manual—427506-007
E-85

SPI Programming Examples Example E-20: Routines for C Requesters and Servers
Example E-20. C File: SECRUTLC Supporting Code (page 1 of 4)

/* File name: secrutlc
 * SPI EXAMPLE C Requester Utility procedures.
 */
#pragma PAGE "report_newprocess_error"
/*
 *==
 * Proc : report_newprocess_error =
 * Function : This procedure will format a NEWPROCESS error and write =
 * it to the home term. =
 *==
 */
void report_newprocess_error (short* p_program_fname, short p_error)
{
 short l_len;
 char l_err_sbuf [80];

 printf ("NEWPROCESS ERROR # %d, %d\n",
 ((p_error & 0xFF00) >> 8) /* Bits 0-7 */,
 (p_error & 0x00FF) /* Bits 8-15 */);

 switch (((p_error & 0xFF00) >> 8) /* Bits 0-7 */)
 {
 case 0 : printf ("No error");
 break;
 case 1 : printf ("Undefined Externals");
 break;
 case 2 : printf ("No PCB Available");
 break;
 case 3 : printf ("File System Error on Program File ");
 l_len = FNAMECOLLAPSE (p_program_fname, l_err_sbuf);
 l_err_sbuf [l_len] = 0;
 printf ("%s", l_err_sbuf);
 printf (" (ERROR %d)", (p_error & 0x00FF) /* Bits 8-15 */);
 break;
 case 4 : printf ("Unable to Allocate Map");
 break;
 case 5 : printf ("File System Error on Swap File ");
 printf (" (ERROR %d)", (p_error & 0x00FF) /* Bits 8-15 */);
 break;
 case 6 : printf ("Illegal File Format for ");
 l_len = FNAMECOLLAPSE (p_program_fname, l_err_sbuf);
 l_err_sbuf [l_len] = 0;
 printf ("%s", l_err_sbuf);
 break;
 case 7 : printf ("Unlicensed PRIV program ");
 l_len = FNAMECOLLAPSE (p_program_fname, l_err_sbuf);
 l_err_sbuf [l_len] = 0;
 printf ("%s", l_err_sbuf);
 break;
 case 8 : printf ("Process Name Error ");
 printf (" (ERROR %d)", (p_error & 0x00FF) /* Bits 8-15 */);
 break;
 case 9 : printf ("Library Conflict");
 break;
 case 10 : printf ("Unable to communicate with System Monitor");
 break;
SPI Programming Manual—427506-007
E-86

SPI Programming Examples Example E-20: Routines for C Requesters and Servers
 case 11 : printf ("File System Error on Library File ");
 l_len = FNAMECOLLAPSE (&p_program_fname[12], l_err_sbuf);
 l_err_sbuf [l_len] = 0;
 printf ("%s", l_err_sbuf);
 printf (" (ERROR %d)", (p_error & 0x00FF) /* Bits 8-15 */);
 break;
 case 12 : printf ("Program and Library Files are the Same");
 break;
 case 13 : printf ("Invalid Segment Size");
 break;
 case 14 : printf ("File System Error on Initial Setup of Swap File ");
 printf (" (ERROR %d)", (p_error & 0x00FF) /* Bits 8-15 */);
 break;
 case 15 : printf ("Illegal Home Terminal ");
 printf (" (ERROR %d)", (p_error & 0x00FF) /* Bits 8-15 */);
 break;
 case 16 : printf ("I/O Error on Home Terminal ");
 printf (" (ERROR %d)", (p_error & 0x00FF) /* Bits 8-15 */);
 break;
 case 17 : printf ("DEFINE context propagation error");
 break;
 case 18 : printf ("OBJECT file with an illegal process Device subtype");
 break;
 case 19 : printf ("process device subtype specified in Backup ");
 printf ("Process not the same as that in primary process ");
 break;
 default : printf ("Unknown Error ");
 break;
 } /* of switch */
 printf ("\n");
} /* of report_newprocess_error() */

#pragma PAGE "restart_server"
/*
 *===
 * Proc : restart_server =
 * Function : This procedure will start and re-start the server up to =
 * a maximum number to times. =
 *===
 */
void restart_server(void)
{
 short l_process_flags = 0,
 l_priority = 0; /* Flag to start up server in INSPECT */

 if (srvr_retry_count > 0)
 {
 printf ("Server restarted\n");
 }
 srvr_retry_count = srvr_retry_count + 1;
 if (srvr_retry_count > 3)
 {
 printf ("Server restart retries exceeded\n");
 STOP();
 }

Example E-20. C File: SECRUTLC Supporting Code (page 2 of 4)
SPI Programming Manual—427506-007
E-87

SPI Programming Examples Example E-20: Routines for C Requesters and Servers
 /*
 * If debug_flag is set, then bring up the server in DEBUG.
 */
 if (debug_flag)
 {
 l_process_flags |= 0x0001; /* Turn debug on */
 l_priority |= 0x8000; /* Turn debug on */
 } else
 {
 l_process_flags &= 0xFFFE; /* Turn debug off */
 l_priority &= 0x7FFF; /* Turn debug off */
 }
 strcpy ((char *) &process_id[0], " ");
 NEWPROCESS (server_name, l_priority,
 /*memory pages*/, /*processor*/,
 process_id, &file_error,
 process_name, /*home_term*/,
 l_process_flags);
 if (file_error)
 {
 report_newprocess_error (server_name, file_error);
 return;
 }

 open_server();

} /* of restart_server() */

#pragma PAGE "write_read_server"
/*
 *===
 * Proc : write_read_server =
 * Function : This procedure will write a message to the server and read =
 * the reply. It handles any file errors on the server’s file.=
 *===
 */
void write_read_server(void)
{
 short
 l_await_done,
 l_op_done,
 l_recoverable_err,
 l_status;

 l_op_done = false;
 do
 {
 l_status = WRITEREADX (srvr_file_num, (char *) &req_buffer[0],
 max_bufsize, max_bufsize, &read_count);
 if (l_status != CCE) get_file_error (srvr_file_num);

 l_await_done = false;

Example E-20. C File: SECRUTLC Supporting Code (page 3 of 4)
SPI Programming Manual—427506-007
E-88

SPI Programming Examples Example E-20: Routines for C Requesters and Servers
 do
 {
 file_num = -1; /* Don’t Cancel */

 l_status = AWAITIOX (&file_num, /*buffer*/, &read_count, /*tag*/,
 time_to_wait);
 if (l_status == CCL)
 {
 FILEINFO (file_num, &file_error);
 if (file_error == 40) /* TIMEOUT Error */
 {
 printf ("Waiting for the Server\n");
 } else /* if (file_error == 40) else */
 {
 l_await_done = true;
 server_up = false;
 l_recoverable_err = false; /* Set default value */
 if (file_error == 201) l_recoverable_err = true;
 if (file_error == 211) l_recoverable_err = true;
 if (file_error == 6) /* System message */
 {
 memcpy (&startup_msg, &req_buffer, read_count);
 if (startup_msg.msg_code == -5) /* STOP message */
 l_recoverable_err = true;
 if (startup_msg.msg_code == -6) /* ABEND message */
 l_recoverable_err = true;
 } /* of if (file_error == 6) */
 printf ("File system error (%d) on WRITEREAD to the SERVER\n",
 file_error);

 if (l_recoverable_err)
 {
 do
 {
 restart_server();
 }
 while (server_up == false);

 CANCEL (srvr_file_num); /* Cancel the IO */
 } else /* if (l_recoverable_err) else */
 {
 DEBUG();
 } /* of if (l_recoverable_err) */
 } /* of if (file_error == 40) */

 } else /* if (l_status == CCL) else */
 {
 l_op_done = true;
 l_await_done = true;
 } /* of if (l_status == CCL) */

 }
 while (l_await_done == false);

 }
 while (l_op_done == false);

} /* of PROC write_read_server; */

Example E-20. C File: SECRUTLC Supporting Code (page 4 of 4)
SPI Programming Manual—427506-007
E-89

SPI Programming Examples Example E-21: TAL Examples Compiler
Example E-21: TAL Examples Compiler

The TACL command file in Example E-21 compiles the TAL example programs. Modify
the two file assignments to specify the location of the SPI definition files on your node.
($SYSTEM.SPIDEF is the default.)

Source File

SETBUILD

Example E-22: C Examples Compiler

The TACL command file in Example E-22 compiles the C example programs. Modify
the two file assignments to specify the location of the SPI definition files on your node.
($SYSTEM.SPIDEF is the default.)

Source File

SECBUILD

Example E-21. TACL Command File to Compile TAL Program Examples

comment This TACL obey file will compile all of the SPI Example (TAL) files.
comment Change these assigns to match your system’s configuration.

ASSIGN ZSPITAL, $SYSTEM.SPIDEF.ZSPITAL
ASSIGN ZCOMTAL, $SYSTEM.SPIDEF.ZCOMTAL

TAL /in SET0204, out $s.#hold/ SET0204O
TAL /in SET0205, out $s.#hold/ SET0205O
TAL /in SET0206, out $s.#hold/ SET0206O
TAL /in SET0207, out $s.#hold/ SET0207O
TAL /in SETREQR, out $s.#hold/ SETREQRO
TAL /in SETSERV, out $s.#hold/ SETSERVO

Example E-22. TACL Command File to Compile C Program Examples

comment This TACL obey file will compile all of the SPI Example (C) files.
comment Change these SSVs to match your system’s configuration.

#push myParms

#set myParms runnable, &
 ssv0 "[#defaults]",&
 ssv1 "$DSV.ZSPIDEF"

C /in SEC0204C, out $s.#SEC0204/ SEC0204O; [myParms]
C /in SEC0205C, out $s.#SEC0205/ SEC0205O; [myParms]
C /in SEC0206C, out $s.#SEC0206/ SEC0206O; [myParms]
C /in SEC0207C, out $s.#SEC0207/ SEC0207O; [myParms]
C /in SECREQRC, out $s.#SECREQR/ SECREQRO; [myParms]
C /in SECSERVC, out $s.#SECSERV/ SECSERVO; [myParms]

#pop myParms
SPI Programming Manual—427506-007
E-90

Glossary
attribute. A characteristic of an object. For example, two attributes of a DNS alias are an

alias type and domain. Two attributes of a communications line might be its baud rate
and its retry count. In SPI messages, an attribute of an object is usually expressed as a
simple token or a field within an extensible structured token. Tokens themselves have
attributes: length, count, address, and offset. Programs can retrieve these through
special SSGET operations.

buffer. A block of memory where data that is being moved from one location to another is
stored temporarily. For instance, data to be sent in an interprocess message is
encoded in a buffer. The file system copies the contents of this buffer to another buffer
within the memory space of the recipient process. See also message buffer and SPI
buffer.

built-in. A TACL primitive function or variable. Names of built-ins begin with a pound sign
(#). TACL provides the #SSGET, #SSGETV, #SSINIT, #SSMOVE, #SSNULL, #SSPUT,
and #SSPUTV built-ins for working with SPI messages.

command. A request for action by or information from a subsystem, or the operation
demanded by an operator or application. A command is typically conveyed as an
interprocess message from an application to a subsystem.

command message. An SPI message, containing a command number and related tokens,
that a requester sends to a subsystem manager process. See SPI message.

command number. A number that represents a particular command to a subsystem. Each
subsystem with a token-oriented programmatic interface can have its own set of
command numbers, which are represented in DDL by constants with names of the
form subsys-CMD-name, and in programs by TAL literals or defines, COBOL level-01
variables, or TACL text variables. The command number is stored in the SPI message
header.

compatibility. The ability of two or more elements in a system to work together correctly.
See also version compatibility.

constant (DDL). A DDL declaration that associates a name with a number or string. A
constant defined in DDL becomes a literal or define in TAL, a level-01 variable in
COBOL, and a text variable in TACL. In the definition files supplied by HP for the
NonStop server, constants are used for command numbers, object-type numbers,
event numbers, error numbers, subsystem numbers, token data-type numbers, token
numbers, and other values.

context information. The information required by a subsystem to continue processing a
command for which a partial response was returned. Continuation of a response in
multiple response messages requires the subsystem to send context information to the
requester. The application program, in turn, must return that information to the
SPI Programming Manual—427506-007
Glossary-1

Glossary context token
subsystem in a new command message so that the subsystem can continue
processing. See context token.

context token. A token that indicates (by its presence or absence) whether or not a
subsystem has more objects to process or more response messages to return. If this
token is present in a response message, the response is incomplete and can be
continued in another response message. To obtain the next message, the requester
reissues the original command with the context token. When the server returns a
message that does not contain a context token, the requester knows that the response
is complete.

context-free server. A server that does not retain any information about command
processing after returning a response. A context-free server stores any information it
needs to continue processing an incomplete command in the context token, which it
returns to the requester. The requester must resend the command with the context
token for the server to continue processing. A context-free server allows the requester
to interrupt or abandon the continuation of a series of response messages.

context-sensitive server. A server that retains information about previous processing. For
instance, in performing a command on a list of objects, a context-sensitive subsystem
might retain, between response messages, the name of the object it last processed.
Context-sensitive servers limit or complicate the requester's ability to interrupt or
abandon the continuation of a series of response messages.

continuation. A method of completing a response in multiple response messages. The
subsystem uses a context token to indicate that the response is continued to another
message. Each response message can contain multiple response records.

control and inquiry. Those aspects of object management related to the state or
configuration of an object. Such aspects include actions that affect the state or
configuration of an object, inquiries about the object, and commands pertaining to the
session environment (for example, commands that set default values for the session).
Compare with event management.

control operation. An action that affects the recording, processing, transmission, or
interpretation of data. In SPI, an operation that modifies the contents of an SPI buffer
not by adding a token, but by performing a housekeeping function, for instance,
clearing the last SPI error number or flushing the buffer from the current position. A
positioning operation is one kind of control operation.

current token. The token in the current position. See current-token position.

current-token position. The location in the SPI buffer of the token whose token code,
token value, or attribute has just been retrieved. Compare with next-token position and
initial position.

data list. A grouping of tokens used to delimit response records in an SPI response. A data
list begins with ZSPI-TKN-DATALIST and ends with ZSPI-TKN-ENDLIST. See
response record.
SPI Programming Manual—427506-007
Glossary-2

Glossary definition files
definition files. A set of files containing data declarations for items related to SPI messages
and their processing. The core definitions required to use SPI are provided in a DDL
file and in several language-specific definition files, one for each programming
language that supports SPI. The DDL compiler generates the language-specific files
from the DDL file. Subsystems that support SPI provide additional definition files
containing subsystem-specific definitions. See also SPI standard definitions and
subsystem definitions.

Distributed Systems Management. An architecture and a set of software tools that
facilitate management of systems and networks. These tools include the ViewPoint
console application, the Subsystem Control Facility (SCF), the Subsystem
Programmatic Interface (SPI), the Event Management System (EMS), the Distributed
Name Service (DNS), and token-oriented programmatic interfaces to the manager
processes of various NonStop Kernel subsystems.

downward compatibility. The ability of a requester to operate properly with a server of a
lower revision level. In this case, the requester is downward-compatible with the server.
Compare with upward compatibility.

DSM. Distributed Systems Management.

empty list or variable. A list that has no members, or a variable that has no content.

empty response. A response record containing only the return token with a value that
means “empty response.” See return token.

EMS. Event Management System.

end-list token. ZSPI-TKN-ENDLIST, which marks the end of a list in an SPI message. This
same token is used to mark the end of all four types of SPI lists. Compare with list
token.

enumerated type. A 16-bit signed data type with a value drawn from a specific list of values
with designated meanings. The enumerated type is one of the standard token data
types defined by SPI. The list of acceptable values and their meanings varies
depending on the token number and is defined by the subsystem.

error. A condition that causes a command or other operation to fail. Compare with warning.

error list. A grouping of tokens used within a response record to provide error and warning
information. An error list begins with ZSPI-TKN-ERRLIST, ends with ZSPI-TKN-
ENDLIST, and contains an error token and other tokens explaining the error. Error lists
can be nested within other error lists. The return token cannot be included in an error
list. See return token.

error number. A value that can be assigned to a return token, or to the last field of an error
token, to identify an error that occurred. SPI defines a small set of error numbers, the
SPI extensions define many more, and still others are defined by subsystems.
SPI Programming Manual—427506-007
Glossary-3

Glossary error token
error token. A response token, ZSPI-TKN-ERROR, that identifies an error that occurred
during command processing. Every error list contains an error token. Its value is a
structure consisting of the subsystem ID and an error number identifying the error. See
error list, error number, and return token.

event. A significant change in some condition in the system or network. Events can be
operational errors, notifications of limits exceeded, requests for action needed, and so
on.

event management. The reporting and logging of important events that occur in a system
or network, the distribution and retrieval of information concerning those events, and
the actions taken by operations personnel or software in response to the events.
Compare with control and inquiry.

Event Management System. A software facility that provides event-message collection,
logging, and distribution facilities for the operating system (implemented as a major
enhancement of the operator process, $0). It provides for different descriptions of
events for people and for programs, lets an operator or application select conveniently
from event-message data, and allows for flexible distribution of event messages within
a system or network. It has programmatic interfaces based on SPI for both event
reporting and event retrieval. See event message.

event message. A special kind of SPI message that describes an event occurring in the
system or network.

extensible structured token. A token with a value that can be extended by appending new
fields in later releases. Such structures are typically used to indicate the attributes of
an object being operated on, and to return status and statistics information in
responses. The token is accessed through reference to a token map that contains field
version and null-value information that allows SPI to provide compatibility between
different versions of the structure. Compare with simple token; see also structure,
structured token, and token map.

flush. With reference to an SPI buffer, to erase all tokens, including tokens in lists, starting
at the current position and continuing to the end of the buffer. To flush a buffer, call
SSPUT with the token ZSPI-TKN-DATA-FLUSH.

generic list. The most general list construct supported by SPI. It starts with ZSPI-TKN-LIST
and ends with ZSPI-TKN-ENDLIST. Generic lists can be nested. No NonStop Kernel
subsystem provided by HP uses generic lists, but subsystems you write can do so.
Compare with data list and error list.

GETVERSION command. An information command that retrieves the server version of the
subsystem server, and possibly additional version information about objects defined by
the subsystem. Every subsystem with an SPI command/response interface supports
the GETVERSION command.

header. See SPI message header.
SPI Programming Manual—427506-007
Glossary-4

Glossary header token
header token. A special token, present in every SPI message, that provides information
about the message as a whole. The header tokens are typically items common to all or
most messages of a specific kind. Header tokens differ from other tokens in several
ways: they exist in the buffer at initialization and their values are usually set by SSINIT,
they can occur only once in a buffer, they are never enclosed in a list, they cannot be
moved to another buffer with SSMOVE, and programs cannot position to them or
retrieve their values using the NEXTCODE or NEXTTOKEN operation. Programs
retrieve the values of header tokens by passing appropriate token codes to SSGET,
and can change the values of some header tokens by passing their token codes to
SSPUT. Examples of header tokens for commands are the command, the object type,
the maximum-response token, the server-version token, the maximum-field-version
token, and the checksum token. Examples of header tokens for event messages are
the event number, the event generation time, the logging time, the maximum-field-
version token, and the checksum token.

header type. A header token in an SPI message that indicates whether the message is a
command or response message or an event message.

information command. A command that retrieves information about an object but does not
act on the object or change it in any way. Extended SPI classifies informational
commands as nonsensitive for security purposes. Compare with command.

initial position. In an SPI buffer, the location just prior to the first token that is not a header
token. Compare with current-token position and next-token position.

initialize. To prepare a data structure to have values assigned to it. For example, the SPI
SSINIT procedure initializes the buffer by building the message header; the SSNULL
procedure initializes an extensible structured token by assigning null values to the
fields of the structure.

is-present field. A field in a structure that indicates whether the value in a related field was
supplied by the program that sent the structure. In most cases, a field to which the
program made no assignment has the null value that was set by SSNULL. A
subsystem defines a separate is-present field when no null value can be defined that is
not a valid value for the field.

list. In an SPI message, a group of tokens that defines a context for scanning the buffer
and extracting tokens with the SSGET procedure. A list imposes a hierarchy on the
buffer. To retrieve tokens from a list, a program must first enter the list by retrieving the
initial list token, then retrieve tokens from the list, and then exit the list to the next
higher level of tokens by retrieving the end-list token. SPI defines four kinds of lists:
data lists, error lists, segment lists, and generic lists.

list token. A token that marks the beginning of a list in an SPI message. The four list
tokens, each marking one of the four types of SPI lists are: ZSPI-TKN-DATALIST for
data lists, ZSPI-TKN-ERRLIST for error lists, ZSPI-TKN-SEGLIST for segment lists,
and ZSPI-TKN-LIST for generic lists. Compare with end-list token; see also syntax
token.
SPI Programming Manual—427506-007
Glossary-5

Glossary management application
management application. A program that manages a subsystem and its objects by issuing
commands, retrieving event messages, or both. A management application is a
requester with respect to the subsystem server to which it sends commands.

management interface. An interactive or programmatic interface through which one can
manage a subsystem and its objects. In some subsystems, a specific process is
dedicated to the management interface; in other subsystems, the process that provides
the management interface also performs other functions.

manager process. A subsystem process that supports the SPI command interface for that
subsystem. Management applications send commands to and receive responses from
subsystem manager processes. The Expand manager process, $ZNET, and the
X25AM line handlers are examples of manager processes.

maximum field version. In an SPI message, the latest version associated with any non-null
field of any extensible structured token in the message. The maximum field version of
the SPI message is contained in a header token. It corresponds to the version of the
oldest server or requester that can successfully process the message.

message. A block of information, usually in the form of a structure, that is sent from one
process to another. See also SPI message.

message buffer. A block of memory used for temporary storage of an interprocess
message. See also SPI buffer.

message code. The contents of the first word of an interprocess message. A message
code of -28 identifies the message as an SPI message.

nested error list. An error list contained in another error list. When an error in one
subsystem or in a library procedure prevents another subsystem from performing a
command, the calling subsystem reports this pass-through error by nesting it within its
own error list. For instance, a response from FUP might include an error list explaining
the FUP error, which in turn contains an error list explaining the SORT error that
caused the FUP error. See also pass-through error.

next-token position. The location where the next SSGET operation will take place.
Compare with current-token position and initial position.

nonsensitive command. A command that has no affect on the state of an object.
Nonsensitive commands can be issued by any user or program that is allowed access
to the subsystem. Most informational commands are nonsensitive. Compare with
sensitive command.

null value. A value in a field of an extensible structure indicating that no value was assigned
by the sending process. Null values are initialized by the SSNULL procedure.

object. In SPI, an entity subject to independent reference and control by a subsystem: for
example, the disk volume $DATA or the data communications line $X2502. An object
SPI Programming Manual—427506-007
Glossary-6

Glossary object type
typically has a name and a type known to the controlling subsystem. In DDL, an item in
a dictionary. DDL assigns each object a unique object number for identification.

object type. A category of objects to which a specific object belongs: for example, a specific
disk file might have the object type FILE and a specific terminal the object type SU. A
subsystem identifies a set of object types for the objects it manages. The operator
interface to the subsystem might have keywords to identify the types. Correspondingly,
the programmatic interface would have object-type numbers suitable for passing to the
SPI SSINIT procedure. In DDL, one of the six types of dictionary objects: records,
DEFs, constants, token types, token codes, and token maps.

object-name template. An object name, provided in a command, which the subsystem
compares with the names of its objects to identify those to which the command should
be applied. Some subsystems allow wild-card characters in object-name templates.

object-name token. A parameter or response token that identifies, by name, a particular
object of a given object type. An object-name token is a kind of object-selector token.
See object-selector token.

object-selector token. A token that identifies one or more specific objects to operate on, of
the object type given in the command. Typically, the value of such a token is either
some form of object name or an object number. An object-name token is a kind of
object-selector token. See object-name token.

object-type number. A number that represents an object type managed by a subsystem.
Each subsystem with a token-oriented programmatic interface can have its own set of
object-type numbers, which are represented in DDL by constants and in programs by
TAL literals or defines, COBOL level-01 variables, or TACL text variables. (In some
cases, object-type numbers are shared by several subsystems.) The object-type
number is a header token in commands and responses. See object type.

owner. In the case of a disk file, the user or program that created the file, or a user or
program to whom the creator has given the file with the FUP GIVE command. In the
case of a process, the user or program that created the process or, if the PROGID
option was specified in the FUP SECURE command for the code file, the user or
program that owns the code file. In the case of a token or other definition, the
subsystem that provided the definition. In the case of a subsystem, the company or
organization that provides the subsystem, or the eight-character string identifying that
company.

parameter token. In control and inquiry, a token that provides parameter information for a
command. Most tokens in the SPI message for a command are parameter tokens;
depending on the subsystem, they can include attribute tokens, object-selector or
object-name tokens, and subsystem-control tokens. Compare with syntax token. In
event management, a token representing a parameter passed by an application to an
event-message filter; such tokens are kept in a parameter buffer. For further
information, see the EMS Manual.
SPI Programming Manual—427506-007
Glossary-7

Glossary pass-through error
pass-through error. An error originally reported by one subsystem or system component
but included in a response record produced by another subsystem. Typically, a
subsystem passes an error from a second subsystem only if that error prevented the
first subsystem from performing a command successfully. A pass-through error is
expressed as an error list that is nested within another error list. See nested error list.

position descriptor. A four-word block of information that indicates a position within an SPI
buffer. A position descriptor is used as a parameter to some of the special operations
for SSGET and SSPUT.

positioning operation. An operation that gets, sets, or changes the current position in an
SPI buffer, or that creates in the buffer a construct (like a list) that provides a scope for
retrieval of data.

predefined value. A commonly used value that is given a symbolic name in an SPI
definition file.

private token type. A token type defined by, and specific to, a particular subsystem. A
private token type is built from standard SPI token data types, although it might have
additional semantic connotations for the subsystem. For example, a subsystem might
define a token type that looks to SPI like an integer but that implies to the subsystem a
range of values smaller than an integer type would allow. See token type.

procedural interface. A means for obtaining services through procedure calls; also, the set
of procedures through which services are obtained. For instance, an application has a
procedural interface to SPI; that interface consists of the procedures SSINIT, SSNULL,
SSPUT, SSPUTTKN, SSGET, SSGETTKN, SSMOVE, and SSMOVETKN.

programmatic command. A command issued by a program, rather than by a human
operator.

programmatic interface. A means for a program to communicate with another program.
On an HP NonStop system, a programmatic interface typically includes: a message
format, a set of message formats, or a set of procedures (such as the SPI procedures)
to build and decode messages; definitions of message elements (commands, data
types, objects, parameters, response data, errors, and so on); rules for communication
between the requester and the server; and software to receive and respond to
messages defined for the interface.

programmed operator. A management application that performs functions that might
otherwise be performed by a human operator.

qualified token code. A token code that includes a subsystem ID.

requester. An SPI requester. A management application that sends SPI commands to a
subsystem server.
SPI Programming Manual—427506-007
Glossary-8

Glossary requester version
requester version. The software revision level of the definition files used in the compilation
of a requester. Each subsystem has its own definitions, so the requester version can
differ in requests to different subsystems.

response. The information or confirmation supplied by a subsystem in reaction to a
command. A response is typically conveyed as one or more interprocess messages
(response messages) from a subsystem to an application.

response message. An SPI message that is sent from a subsystem to an application
program, in response to a command message. See SPI message and command
message.

response record. A set of response tokens, usually describing the results of performing a
command on one object. A response can consist of multiple response records, spread
across one or more response messages. If there are multiple response records in a
response message, each response record is enclosed in a data list. See data list. Each
response record is required to contain a return token; see return token.

response segment. A data list containing part of a segmented response record. See
“segmented response.”

response token. A token returned as an element of a response. Response tokens include
information tokens (which contain response data of interest to the application), syntax
tokens (such as list tokens), one special response-control token (the context token),
the return token, and error tokens.

response-control token. A parameter token or response token that influences or reflects
how a subsystem packages its response to a command. Response-control tokens are
defined by SPI, rather than by subsystems; they include the maximum-response token,
the response-type token, and the context token.

return token. The response token that indicates whether a command was successful and
why it failed if it did. Every response record in a response from a NonStop Kernel
subsystem contains a return token; a response record can also contain error lists that
include error tokens. The token code for the return token is ZSPI-TKN-RETCODE. Its
value consists of a single integer field. Compare with error token.

SCF. Subsystem Control Facility.

SCP. Subsystem Control Point.

segment list. An SPI list used in segmented responses to group the repeating tokens in the
response record. A segment list starts with ZSPI-TKN-SEGLIST and ends with ZSPI-
TKN-ENDLIST.

segmented response. A response in which a response record spans more than one
response message. Segmented responses can be constructed when the response
contains repeating groups of tokens. The response record contains the nonrepeating
tokens followed by the repeating groups in segment lists. All but the last segment of
SPI Programming Manual—427506-007
Glossary-9

Glossary sensitive command
the response record contain ZSPI-TKN-MORE-DATA, indicating that the response
record is incomplete.

sensitive command. A command that can be issued only by a restricted set of users, such
as the super group, because the subsystem restricts access to the command. For
extended SPI subsystems, the sensitive commands are those that can change the
state or configuration of objects; for these subsystems, the sensitive commands are
also action commands. Compare with nonsensitive command.

server. An SPI server. A subsystem process that accepts SPI commands from management
applications.

server version. The software release version of the server to which a requester using SPI
(such as a management application) is sending a command. If the server version is
older than the maximum field version in a request, the server rejects the request. SPI
puts the maximum field version into the command buffer; the server puts its own
version into each response buffer. See maximum field version.

short read. An operation in which the application reads fewer bytes than are available in a
message. In the context of SPI, the term implies that the number of bytes requested by
the application is fewer than the number of used bytes in the SPI buffer, or that the
application furnished a buffer too small to contain the response data produced by the
subsystem.

simple token. A token consisting of a token code and a value that is either a single
elementary field, such as an integer or a character string, or a fixed (nonextensible)
structure. Compare with extensible structured token.

snapshot file. A file used by context-sensitive servers to record response data for a
command. It is used to ensure a consistent response in cases where data—for
instance, statistics—might change between one reply message and the next. NonStop
Kernel subsystems provided by HP do not use snapshot files, but subsystems you
write can do so.

special operation. An operation, such as a control operation or an operation that gets
information from the buffer (rather than the header), performed by the SSGET or the
SSPUT procedure. Special operations include obtaining the length or number of
occurrences of a token, changing the current position, clearing the last-error
information, or deleting a token from the buffer. A program directs SSGET or SSPUT to
perform a special operation by passing to the procedure one of a set of special SPI
token codes. These special token codes do not represent tokens in the buffer, but
simply direct SSGET or SSPUT to perform the indicated operations.

SPI. Subsystem Programmatic Interface.

SPI buffer. A block of memory where SPI procedures create and manipulate SPI
messages.

SPI definitions. See SPI standard definitions.
SPI Programming Manual—427506-007
Glossary-10

Glossary SPI error number
SPI error number. A number that indicates whether a call to an SPI procedure completed
successfully and why it failed if it did. This number is returned in the status parameter
on calls to the SPI procedures. The SPI error number does not reflect the success or
failure of a command; it applies only to errors in the building and decoding of a
message in an SPI buffer.

SPI message header. The initial part of an SPI message. The first word of this header
always contains the value -28; the remainder of the header contains descriptive
information about the SPI message, most of which is accessible as header tokens. The
tokens in an SPI message header differ according to the header type: the header of a
message that contains a command or response differs somewhat from the header of
an event message. An application can use SSGET or EMSGET calls to retrieve the
values of header tokens, and can use SSPUT calls to change the values of some;
however, there are certain basic differences between header tokens and other tokens.
See header token.

SPI message. A message specially formatted by the SPI procedures for communication
between a management application and a subsystem, or between one subsystem and
another. An SPI message consists of a collection of tokens. To retrieve a token from
the message, the application passes a token code to SPI, which scans for the
appropriate token and returns its value to the application. An SPI message is a single
block of information sent at one time as one interprocess message. The two types of
SPI messages are distinguished by SPI message header type: 1) command and
response messages, and 2) event messages. See header type.

SPI procedures. The procedures used to build and decode SPI messages. These
procedures are SSINIT, SSNULL, SSPUT, SSPUTTKN, SSGET, SSGETTKN,
SSMOVE, SSMOVETKN, SSIDTOTEXT, and TEXTTOSSID. Corresponding TACL
built-ins are also available.

SPI standard definitions. The set of declarations available for use with the SPI procedures
regardless of the subsystem. Also a set of subsystem-specific declarations for each
subsystem, and some sets of declarations that apply to multiple subsystems exist. An
application using SPI needs the SPI standard definitions and also the subsystem
definitions for all subsystems with which it communicates. See also definition files and
subsystem definitions.

statistics token. A response token providing performance data about an object.

status token. A response token whose value indicates the status (current state) of an
object.

structure. A data item with multiple fields, possibly of different types. This kind of data item
corresponds to a DEF in DDL, to a STRUCT in TAL and TACL, and to a RECORD in
COBOL.

structured token. A token whose value is a structure. Some structured tokens are simple
tokens with fixed structures—for example, the error token, ZSPI-TKN-ERROR. Other
SPI Programming Manual—427506-007
Glossary-11

Glossary subject
structured tokens are extensible structured tokens. See structure, simple token, and
extensible structured token.

subject. In event management, a device, process, or other named entity about which a
given event message is concerned.

subordinate names option. In extended SPI subsystems, the designation that the object
name given in the command stands not just for itself, but for the names of all objects at
the next-lower level in a hierarchy. (The given object name can stand both for itself and
for the subordinate objects, or it can stand only for the subordinate objects, depending
on the value of the SUB token.) When this option is present in a command, the
subordinate names are implied even though they are not given explicitly.

subsystem. A program or set of processes that manages a cohesive set of objects. Each
subsystem has a manager process (in some cases, this process is the entire
subsystem) through which applications can request services by issuing commands
defined by that subsystem. See manager process.

Subsystem Control Facility. The interactive interface for configuring, controlling, and
collecting information from NonStop Kernel subsystems. The Subsystem Control
Facility provides many of the same functions as CMI, CUP, and PUP, plus additional
functions not available in CMI, CUP, or PUP.

Subsystem Control Point. An intermediate management process used by many NonStop
Kernel subsystems. There can be several instances of this process. Applications send
commands to an instance of this process, which in turn sends them on to the manager
processes of the target subsystem. The Subsystem Control Point also processes a few
commands itself. It provides security features, version compatibility, support for tracing,
and support for applications implemented as process pairs.

subsystem definitions. The set of declarations available for use with a particular
subsystem that supports a token-oriented programmatic interface. See also definition
files and SPI standard definitions.

subsystem ID. A data structure that uniquely identifies a subsystem (including whether it is
a NonStop Kernel subsystem or a subsystem you write). It consists of the name of the
owner of the subsystem (the company that provides it), a subsystem number that
denotes the subsystem within the scope of its owner, and a subsystem version
number. The subsystem ID is an argument to most of the SPI procedures.

subsystem number. An integer that identifies a subsystem within the context of its owner.
The subsystem owner, the subsystem number, and the subsystem version number
make up the subsystem ID that uniquely identifies a subsystem.

subsystem owner. A value identifying the company that supplies a particular subsystem. It
consists of a name of up to eight characters, blank-filled on the right. For example, the
owner for all subsystems supplied by HP is “TANDEMbb”. The subsystem owner, the
subsystem number, and the subsystem version number make up the subsystem ID
that uniquely identifies the subsystem.
SPI Programming Manual—427506-007
Glossary-12

Glossary Subsystem Programmatic Interface (SPI)
Subsystem Programmatic Interface (SPI). A set of procedures and associated definition
files and a standard message protocol used to define common message-based
interfaces for communication between management applications and subsystems. It
includes procedures to build and decode specially formatted messages (as described
under SPI message); definition files in TAL, COBOL, and TACL for inclusion in
programs, macros, and routines using the interface procedures; and definition files in
DDL for programmers writing their own subsystems.

subsystem version number. A 16-bit integer representing the software release version of
a subsystem. The subsystem version number is a field of the subsystem ID. If its value
is null (zero), the subsystem ID refers to any and all versions of the subsystem. See
version number.

subsystem-control token. A parameter token that influences how a subsystem performs a
command. For instance, in the START PATHWAY programmatic command, the
parameter ZPWY-TKN-DEF-PATHWAY is a subsystem-control token, because it
determines whether a cold start or a cool start is performed. Likewise, the standard SPI
token ZSPI-TKN-ALLOW-TYPE, supported by some subsystems, is a subsystem-
control token; it determines under what conditions the subsystems will continue
command processing on the next object in a sequence if errors or warnings occur.
Compare with response-control token.

summary state. One of the generally defined possible conditions of an object with respect
to the management of that object. A summary state differs from a state in two ways.
First, a summary state pertains to the management of an object, whereas a state can
convey other kinds of information about the object. Second, the set of summary states
is a common list defined the same way for all extended SPI subsystems, whereas the
set of possible states differs from subsystem to subsystem. The SPI extensions define
a number of summary states, including STARTED, STOPPED, SUSPENDED,
ABORTING, and DEFINED.

syntax token. A token whose function is not to provide information for a command or
response, but to bracket or group other tokens; its use is analogous to that of a
punctuation symbol. The tokens that begin and end lists (the list tokens) are syntax
tokens. Compare with parameter token.

token. In SPI, a distinguishable unit in an SPI message. Programs place tokens in an SPI
buffer using the SSPUT procedure (except for header tokens, which are a special
case), and retrieve them from the buffer with the SSGET procedure. A token has two
parts: an identifying code—a token code—and a token value. For command and
response messages, a token normally represents a parameter to a command, an item
of information in a response, or control information for the subsystem. For event
messages, a token normally represents an item of information about an event or about
the event message itself. In TACL, an entity recognized by the #ARGUMENT built-in
function when parsing an argument string passed to a routine.

token code. In SPI, a 32-bit value that, as the first part of a token, allows any token to be
identified and located within an SPI message. A token code consists of a token type
SPI Programming Manual—427506-007
Glossary-13

Glossary token data type
(16 bits) and a token number (16 bits). In TAL, TACL, and COBOL, names are used to
represent token codes (ZSPI-TKN-SSID, for example). In DDL, a special definition
(using the TOKEN-CODE statement) that the DDL compiler translates into an SPI
token code. Token codes have symbolic names of the form subsys-TKN-name. See
also token map and qualified token code.

token data type. The part of the token code that defines the kind of value (such as an
integer or a file name) allowed for a token. Token data types have symbolic names of
the form subsys-TDT-name.

token length. The part of a token code that indicates the length in bytes of the
corresponding token value. A token length of 255 indicates that the token value has
variable length or a length greater than 254, in which case the first word of the token
value contains the (noninclusive) byte length of the rest of the token value.

token map. An SPI structure that describes the fields of an extensible structured token.
Also, a variable name used to refer to an extensible structured token. The token map
includes a token code and a description of the token value: its fields, the null values of
those fields, and the versions of the fields. A token map defines a structure that might
change in some later code version (by the addition of new fields at the end), and the
information in the map allows SPI to provide compatibility between different structure
versions. In DDL, a special definition (using the TOKEN-MAP statement) that the DDL
compiler translates into an SPI token map. Token maps have symbolic names of the
form subsys-MAP-name.

token number. The number used by a subsystem to identify each token that it defines. The
token type and the token number together form the token code. Token numbers have
symbolic names of the form subsys-TNM-name.

token type. In SPI, a combination of the token data type and token length; part of the token
code. In DDL, a special definition (using the TOKEN-TYPE statement) that the DDL
compiler will translate into an SPI token type. Token types have symbolic names of the
form subsys-TYP-name.

token value. The value assigned to a token.

token-oriented. Programmatic interfaces that convey information in tokens, code-value
pairs accessed by code rather than by address or ordinal position. SPI is a token-
oriented programmatic interface.

upward compatibility. The ability of a requester to operate gracefully with a server of a
higher version. In this case, the requester is upward-compatible with the server, and
the server is downward-compatible with the requester. Compare with downward
compatibility.

version compatibility. The ability of a requester and server of different revision levels to
operate gracefully together.
SPI Programming Manual—427506-007
Glossary-14

Glossary version number
version number. A 16-bit integer representation of a software version. For NonStop Kernel
subsystems, this consists of an uppercase alphabetic character in its left half and a
number in its right half.

warning. A condition, encountered in performing a command or other operation, that can be
significant, but does not cause the command or operation to fail. A warning is less
serious than an error. Compare with error.
SPI Programming Manual—427506-007
Glossary-15

Glossary warning
SPI Programming Manual—427506-007
Glossary-16

	SPI Programming Manual
	Legal Notices
	Contents
	What’s New in This Manual
	New and Changed Information
	Changes in the 427506-007 Manual:
	Changes in the 427506-006 Manual:
	Changes in the G06.24 Manual:

	About This Manual
	Audience
	Related Manuals
	Notation Conventions
	General Syntax Notation
	Notation for Messages
	Notation for Management Programming Interfaces
	Change Bar Notation
	HP Encourages Your Comments

	1 Introduction to SPI
	The Components of SPI
	A Programmatic Interface
	SPI
	SPI and EMS
	Subsystem Objects
	Management Applications
	Subsystem Manager
	SPI Message Protocol
	SPI Message Format
	Tokens
	SPI Procedures
	SPI Data Definitions
	SPI and EMS
	SPI Debugging
	A Basic Interface and Extensions

	The Environment for D-Series RVUs
	Implications for Management Applications
	Converting Management Applications

	2 SPI Concepts and Protocol
	SPI Message Protocol
	Requester Initializes a Buffer
	Requester Composes a Command Message
	Requester Sends a Command Message
	Server Validates the Received Message
	Server Applies the Command to Objects
	Server Composes a Response Message
	Server Returns the Response Message
	Requester Examines the Response

	Tokens
	Token Data Type
	Token Length
	Token Type
	Token Number
	SSID
	Token Code
	Token Names
	Types of Tokens
	Simple Tokens
	Extensible Structured Tokens
	Zero-Length Tokens
	Header Tokens

	Data Definitions
	Naming Conventions
	Examples of Definition Names
	Definition Files Supplied by HP

	SPI Message Buffer
	Message Header
	Message Body
	Buffer Length
	Used Length
	Buffer Pointers
	Buffer Checksum

	Lists
	Data Lists
	Error Lists
	Segment Lists
	Generic Lists
	Pointer Manipulation and Lists
	Pointers, Lists, and ZSPI-TKN-NEXTTOKEN
	Pointers, Lists, and ZSPI-TKN-NEXTCODE

	Commands
	GETVERSION Command

	Responses
	Types of Responses
	Simple Responses
	Multirecord Responses
	Continued Responses
	Segmented Responses
	Empty Responses
	Object Identification in Responses
	Return Code
	Suppressing Response Records

	Subsystem IDs (SSIDs)
	SSID Scope

	Errors and Warnings
	Error Lists
	Pass-Through Errors
	Continuing Despite Errors
	Recovering From an Error on an Object in a Set
	Sample Error Responses

	3 The SPI Procedures
	Overview of the SPI Procedures
	Special Operations
	Manipulating Header Tokens
	Procedure Status
	Using the SPI Procedures

	SSINIT Procedure
	General Syntax

	SSNULL Procedure
	General Syntax
	Considerations

	SSPUT and SSPUTTKN Procedures
	General Syntax
	Special Operations With SSPUT and SSPUTTKN
	Considerations

	SSGET and SSGETTKN Procedures
	General Syntax
	Special Operations With SSGET and SSGETTKN
	Considerations

	SSMOVE and SSMOVETKN Procedures
	General Syntax
	Considerations
	Example: Moving Buffer Tokens Using SSMOVETKN

	SSIDTOTEXT Procedure
	General Syntax
	Considerations
	Examples

	TEXTTOSSID Procedure
	General Syntax
	Considerations
	Examples

	4 ZSPI Data Definitions
	Fundamental Data Structures
	Token Data Types
	Token Types
	Token Numbers
	Token Codes
	Token Length
	Command Numbers
	Object-Type Numbers
	Error Numbers
	Subsystem Numbers
	Miscellaneous Values

	5 General SPI Programming Guidelines
	General Guidelines for All SPI Programs
	Retrieving Tokens by Name
	Scanning a Buffer Sequentially
	Positioning the Buffer Pointers
	Working With Lists
	Checking for Null Values
	Deleting Tokens From a Buffer
	Resetting the Buffer
	Working With SSIDs
	Writing High-Level Procedures

	Guidelines for SPI Requesters
	Starting the Management Process
	Opening the Management Process
	Preparing the Command Buffer
	Sending the Command
	Receiving the Response
	Taking Action Based on the Response
	Canceling Commands
	Closing the Management Process
	Stopping the Management Process
	Maintaining Compatibility
	Summary of Requester Role

	Guidelines for SPI Servers
	Recommending a Buffer Size
	Defining Simple Tokens
	Defining Extensible Structured Tokens
	Coding Subsystem Definitions
	Using the SPI Standard DDL Definitions
	Suggestions on Data Representation
	Dividing Your Definition File Into Sections
	Version Compatibility
	Defining Objects
	Subsystem ID
	Checking the Command Message for Validity
	Checking Whether Your Subsystem Can Process the Command
	Checking Tokens in the Command
	Checking for Command Cancellation
	Using SSPUT to Place Lists in the Buffer
	Defining Commands
	GETVERSION Command
	Single and Multiple Response Records per Response
	Defining the Context Token
	Context Sensitivity
	Determining How Many Response Records Fit in a Buffer
	Consistency Between Response Records in Different Replies
	Checking the Context Token
	Reporting Errors
	Control of Types of Response Records
	Continuing Despite Errors
	Reporting Errors From the SPI Procedures
	Pass-Through Error Lists
	Summary of Server Role

	6 SPI Programming in C
	Definition Names in C
	C Definition Files
	Declarations Needed in C Programs
	SPI Buffer
	Subsystem ID
	Passing Tokens by Value
	C Types

	Interprocess Communication
	Writing a Server in C
	SPI Procedure Syntax in C
	SSINIT
	SSNULL
	SSPUT and SSPUTTKN
	SSGET and SSGETTKN
	SSMOVE and SSMOVETKN
	Examples

	7 SPI Programming in COBOL
	Definition Names in COBOL
	COBOL Definition Files
	Declarations Needed in COBOL Programs
	SPI Buffer

	Interpreting Boolean Values
	Interprocess Communication
	Selecting the External File
	Starting the Server
	Communicating With the Server

	Writing a Server in COBOL
	SPI Procedure Syntax in COBOL
	SSINIT
	SSNULL
	SSPUT
	SSPUTTKN
	SSGET
	SSGETTKN
	SSMOVE
	SSMOVETKN

	Examples

	8 SPI Programming in TACL
	Definition Names in TACL
	Limitations of TACL for SPI Programming
	TACL Definition Files
	Declarations and Data Representations in TACL
	SPI Buffer
	Subsystem ID
	Token Codes
	Token Maps
	Token Values
	Identifying Null Values
	Setting Reset Values

	Syntax of the TACL Built-Ins
	#SSINIT
	#SSNULL
	#SSPUT
	#SSPUTV
	#SSGET
	#SSGETV
	#SSMOVE

	Interprocess Communication
	Example: Printing or Displaying the Status Structure of the Subsystem Control Point (SCP)

	9 SPI Programming in TAL
	Definition Names in TAL
	TAL Definition Files
	Declarations Needed in TAL Programs
	SPI Buffer
	Subsystem ID
	Defining Token Maps

	Interprocess Communication
	SPI Procedure Syntax in TAL
	Passing Token Parameters by Value or by Reference
	SSINIT
	SSNULL
	SSPUT and SSPUTTKN
	SSGET and SSGETTKN
	SSMOVE and SSMOVETKN

	Examples

	A Errors
	0: ZSPI-ERR-OK
	-1: ZSPI-ERR-INVBUF
	-2: ZSPI-ERR-ILLPARM
	-3: ZSPI-ERR-MISPARM
	-4: ZSPI-ERR-BADADDR
	-5: ZSPI-ERR-NOSPACE
	-6: ZSPI-ERR-XSUMERR
	-7: ZSPI-ERR-INTERR
	-8: ZSPI-ERR-MISTKN
	-9: ZSPI-ERR-ILLTKN
	-10: ZSPI-ERR-BADSSID
	-11: ZSPI-ERR-NOTIMP
	-12: ZSPI-ERR-NOSTACK
	-13 Through -37: General SPI Errors

	B Summary of DDL for SPI
	The Role of DDL in SPI
	General Language Rules for DDL
	DEFINITION (DEF) Statement
	TYPE Clause
	PICTURE (PIC) Clause
	OCCURS Clause
	REDEFINES Clause
	FILLER Clause
	SPI-NULL Clause
	TACL Clause
	SSID Clause
	HEADING Clause
	DISPLAY Clause

	Constants
	Type ENUM DEFs
	Token Types, Token Codes, and Token Maps
	DDL Data Translation

	C SPI Internal Structures
	SPI Buffer Format
	Standard Part of Header
	Specialized Part of Header
	Context Part of Header

	Token Structure
	Token Code
	Single-Occurrence Tokens
	Multiple-Occurrence Tokens

	Token-Map Structure
	Token-Map Example

	List Structure

	D NonStop Kernel Subsystem Numbers and Abbreviations
	E SPI Programming Examples
	Compiling the Example Programs
	Compiling the TAL Programs
	Compiling the C Programs

	Running the Example Programs
	Running the TAL Programs
	Running the C Programs
	A Note on Program Output

	Source File Examples
	Example E-1: Basic Buffer Manipulations in TAL
	Example E-2: Basic Buffer Manipulations in C
	Example E-3: Working With Lists in TAL
	Example E-4: Working With Lists in C
	Example E-5: Displaying SPI Buffer Contents With TAL
	Example E-6: Displaying SPI Buffer Contents With C
	Example E-7: Special SSGET Operation in TAL
	Example E-8: Special SSGET Operation in C
	Example E-9: A Simple SPI Requester in TAL
	Example E-10: A Simple SPI Requester in C
	Example E-11: A Simple SPI Server in TAL
	Example E-12: A Simple SPI Server in C
	Example E-13: Common Declarations for TAL Examples
	Example E-14: Common Declarations for C Examples
	Example E-15: Common Routines for TAL Examples
	Example E-16: Common Routines for C Examples
	Example E-17: Declarations for TAL Requesters and Servers
	Example E-18: Declarations for C Requesters and Servers
	Example E-19: Routines for TAL Requesters and Servers
	Example E-20: Routines for C Requesters and Servers
	Example E-21: TAL Examples Compiler
	Example E-22: C Examples Compiler

	Glossary

