
eNOFT Manual
Abstract

This document describes the external features of eNOFT, a stand-alone utility that
displays object files native to TNS/E systems. This document also describes the
external features and usage of the ar archive facility that may be used on either
TNS/R or TNS/E systems.

Product Version

N/A

Supported Release Version Updates (RVUs)

This manual supports H06.03 and all subsequent H-series release version updates
until otherwise indicated in a replacement manual.

Part Number Published

527507-005 February 2013

Document History
Part Number Product Version Published

527507-002 N/A November 2004

527507-003 N/A May 2005

527507-004 N/A July 2005

527507-005 N/A February 2013

Legal Notices
 Copyright 2013 Hewlett-Packard Development Company L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S.
Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks and IT DialTone and The
Open Group are trademarks of The Open Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the
Open Software Foundation, Inc.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED
HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in connection
with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. This documentation and the software to
which it relates are derived in part from materials supplied by the following:

© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.
© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc.
© 1987, 1988, 1989, 1990, 1991 Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991,
1992 International Business Machines Corporation. © 1988, 1989 Massachusetts Institute of
Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989, 1990,
1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986, 1989,
1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.

This software and documentation are based in part on the Fourth Berkeley Software Distribution under
license from The Regents of the University of California. OSF acknowledges the following individuals
and institutions for their role in its development: Kenneth C.R.C. Arnold, Gregory S. Couch,
Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980, 1981, 1982, 1983,
1985, 1986, 1987, 1988, 1989 Regents of the University of California.

Printed in the US

eNOFT Manual
Glossary Index Tables
What’s New in This Manual v

Manual Information v

New and Changed Information v

About This Manual vii

Audience vii

Related Reading viii

Notation Conventions viii

HP Encourages Your Comments xii

1. Introduction to eNOFT and ar
Starting eNOFT 1-2

Interactive (Command-Line) Mode 1-2

Batch (Command File) Mode 1-2

Common Formats of Command Arguments 1-3

Argument Groupings 1-3

Input Format 1-3

Output Display Format 1-3

<proc-spec> 1-4

<source-spec> 1-4

<format-specifier> 1-5

<scope-range> 1-5

2. eNOFT Options
SET and RESET Commands 2-1

RESET 2-1

SET 2-1

SET CASE or SC 2-2

SET DEMANGLE or SDE 2-2

SET DISPLAY OR SD 2-3

SET FORMAT or SF 2-3

SET HISTORYBUFFER or SHB 2-5

SET HISTORYWINDOW or SHW 2-6
 Hewlett-Packard Company—527507-005
i

Contents 2. eNOFT Options
SET LINES or SL 2-6

SET SCOPEPROC or SSP 2-6

SET SCOPESOURCE or SSS 2-7

SET SORT or ST 2-7

Dump Commands 2-8

DUMPALL or ALL 2-8

DUMPADDRESS or DA 2-9

DUMPCODE or DC 2-9

DUMPDATA or DD 2-10

DUMPOFFSET or DO 2-12

DUMPPROC or DP 2-13

DUMPSECTION or DS 2-13

DWARF 2-14

 DYNAMIC 2-18

FILEHDR 2-18

FUNCDESC or FD 2-19

GOT 2-21

HASH 2-22

HASHVAL 2-23

LIBLIST 2-24

LIC 2-25

PROCINFO or PI 2-26

PROGHDRS 2-27

RELOC 2-27

RTDU 2-28

SECTHDRS 2-30

STRTAB 2-31

SYMTAB 2-32

TANDEMINFO 2-34

UNWIND 2-35

List Commands 2-38

DBGINFO 2-38

LAYOUT 2-39

LISTATTRIBUTE or LA 2-40

LISTCOMPILERS or LC 2-43

LISTDATA or LD 2-44

LISTDEBUG or LDE 2-46

LISTEXPORTS or LE 2-47

LISTOPTIMIZE or LO 2-47
eNOFT Manual—527507-005
ii

Contents 3. The ar Utility
LISTPROC or LP 2-48

LISTSOURCE or LS 2-50

LISTUNREFERENCED or LUR 2-52

LISTUNRESOLVED or LU 2-53

XREFPROC or XP 2-54

File Handling Commands 2-56

<Break Key> 2-56

CD 2-56

COMMENT 2-56

COMP 2-56

DEMANGLE or DE 2-57

DIR or FILES 2-58

ENV 2-58

EXIT or E or QUIT or Q 2-58

FC and ! 2-58

FILE or F 2-59

HELP or ? 2-59

HISTORY or H 2-60

LOG and OUT 2-61

NOEXIT 2-61

OBEY 2-61

SHOW 2-62

VOLUME or CD 2-62

3. The ar Utility

4. eNOFT Diagnostic Messages
Fatal Errors 4-1

Data Errors 4-1

Syntax Errors 4-1

Warnings 4-2

5. ar Diagnostic Messages

A. TNS/E Native Object Files
The Object File Format A-1

Basic Properties of Object Files A-1

Types of TNS/E Object Files A-1

How to Distinguish the Different Types of Object Files A-3

Summary of the Contents of an Object File A-3
eNOFT Manual—527507-005
iii

Contents B. Differences Between eNOFT and NOFT
The 32-Bit and 64-Bit Programming Models A-12

Code and Data Sections A-12

User Code A-13

User Data A-14

The MCB (Master Control Block) A-15

Relocation Tables A-15

The DWARF Symbol Table A-17

Archives A-18

Tools That Work With Object Files A-20

B. Differences Between eNOFT and NOFT
Architecture B-1

Debugging B-1

Displays B-1

Summary of eNOFT Commands B-1

Glossary

Index

Tables
Table A-1. Types of TNS/E Object Files A-2

Table A-2. Contents of a Loadfile or Import Library A-5

Table B-1. SET and RESET Commands B-1

Table B-2. Dump Commands B-2

Table B-3. List Commands B-5

Table B-4. File User Interface Commands B-5
eNOFT Manual—527507-005
iv

What’s New in This Manual

Manual Information
eNOFT Manual

Abstract

This document describes the external features of eNOFT, a stand-alone utility that
displays object files native to TNS/E systems. This document also describes the
external features and usage of the ar archive facility that may be used on either
TNS/R or TNS/E systems.

Product Version

N/A

Supported Release Version Updates (RVUs)

This manual supports H06.03 and all subsequent H-series release version updates
until otherwise indicated in a replacement manual.

Document History

New and Changed Information
Changes to the 527507-004 Manual

 This is a new manual. Displays have been updated between 001 and 002 EAP
versions.

Changes to the 527507-005 Manual

 Added some additional information now displayed by the LISTATTRIBUTE DETAIL
command on page 2-41.

 Replaced the example completely with the latest example output on page 2-42.

Part Number Published

527507-005 February 2013

Part Number Product Version Published

527507-002 N/A November 2004

527507-003 N/A May 2005

527507-004 N/A July 2005

527507-005 N/A February 2013
eNOFT Manual—527507-005
v

What’s New in This Manual New and Changed Information
eNOFT Manual—527507-005
vi

About This Manual
This manual explains how to use the following TNS/E native object file utilities:

 eNOFT, which displays object files

 ar, which creates and maintains archives of object files

Subsections:

 Audience on page vii

 Related Reading on page viii

 Notation Conventions on page viii

Audience
This manual is intended for systems programmers and application programmers who
are familiar with the following:

 HP NonStop™ servers

 NonStop Kernel (NSK) operating system

 The compilers and linkers supported by the NSK operating system running on
TNS/E processors.

 Object file formats supported by the NSK operating system; see Appendix A,
TNS/E Native Object Files in this manual.

 Reference manuals and programmer’s guides for the languages in which programs
are written (C/C++, COBOL, and pTAL).
eNOFT Manual—527507-005
vii

About This Manual Related Reading
Related Reading
 eld Manual

 COBOL85 Manual for TNS/E

Notation Conventions
This section contains generic information. For notations specific to eNOFT, see
Common Formats of Command Arguments on page 1-3.

Hypertext Links

Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

This requirement is described under Backup DAM Volumes and Physical Disk
Drives on page 3-2.

General Syntax Notation

This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words. Type
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words. Type these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]
eNOFT Manual—527507-005
viii

About This Manual General Syntax Notation
A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
 [-num]
 [text]

K [X | D] address

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list can be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…

[-] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be typed as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must type as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;
eNOFT Manual—527507-005
ix

About This Manual Notation for Messages
If there is no space between two items, spaces are not permitted. In this example, no
spaces are permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…

!i and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o. In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; !i,o

!i:i. In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

Notation for Messages

This list summarizes the notation conventions for the presentation of displayed
messages in this manual.

Bold Text. Bold text in an example indicates user input typed at the terminal. For example:

ENTER RUN CODE

?123

CODE RECEIVED: 123.00

The user must press the Return key after typing the input.
eNOFT Manual—527507-005
x

About This Manual Notation for Messages
Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.

lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-register

process-name

[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be
displayed, of which one or none might actually be displayed. The items in the list can
be arranged either vertically, with aligned brackets on each side of the list, or
horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

proc-name trapped [in SQL | in SQL file system]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list can be arranged
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

obj-type obj-name state changed to state, caused by
{ Object | Operator | Service }

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { OK | Failed }

% Percent Sign. A percent sign precedes a number that is not in decimal notation. The
% notation precedes an octal number. The %B notation precedes a binary number.
The %H notation precedes a hexadecimal number. For example:

%005400

%B101111

%H2F

P=%p-register E=%e-register
eNOFT Manual—527507-005
xi

About This Manual Notation for Management Programming Interfaces
Notation for Management Programming Interfaces

This list summarizes the notation conventions used in the boxed descriptions of
programmatic commands, event messages, and error lists in this manual.

UPPERCASE LETTERS. Uppercase letters indicate names from definition files. Type these
names exactly as shown. For example:

ZCOM-TKN-SUBJ-SERV

lowercase letters. Words in lowercase letters are words that are part of the notation,
including Data Definition Language (DDL) keywords. For example:

token-type

!r. The !r notation following a token or field name indicates that the token or field is
required. For example:

ZCOM-TKN-OBJNAME token-type ZSPI-TYP-STRING. !r

!o. The !o notation following a token or field name indicates that the token or field is
optional. For example:

ZSPI-TKN-MANAGER token-type ZSPI-TYP-FNAME32. !o

Change Bar Notation

Change bars are used to indicate substantive differences between this manual and its
preceding version. Change bars are vertical rules placed in the right margin of
changed portions of text, figures, tables, examples, and so on. Change bars highlight
new or revised information. For example:

The message types specified in the REPORT clause are different in the COBOL85
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for
old message types. In the CRE, the message type SYSTEM includes all
messages except LOGICAL-CLOSE and LOGICAL-OPEN.

HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to
providing documentation that meets your needs. Send any errors found, suggestions
for improvement, or compliments to docsfeedback@hp.com.

Include the document title, part number, and any comment, error found, or suggestion
for improvement you have concerning this document.
eNOFT Manual—527507-005
xii

1 Introduction to eNOFT and ar

The ar utility creates and maintains archives composed of groups of object files. You
can mix PIC and non-PIC files in an archive, but you may not mix TNS, TNS/R or
TNS/E object files within the same archive. After an archive has been created, new
files can be added and existing files can be extracted, deleted, or replaced. For details
on the use of ar, see Section 3, The ar Utility and Section 5, ar Diagnostic Messages.

The rest of the sections of this manual are concerned with eNOFT, the object file
reader. eNOFT reads and displays linkfiles, loadfiles and import libraries created by the
TNS/E compilers, assembler and linker.

eNOFT is comparable to the NOFT utility that runs on TNS/R systems. See
Appendix B, Differences Between eNOFT and NOFT for a detailed comparison of the
two utilities. At each command description in this manual you will also be given
information about the different options or actions of the two utilities.

Output of eNOFT can be sent to the display terminal or to file types native to that
environment. For TNS/E native versions, this requires presence of the Common Run-
Time Environment (CRE) and C runtime library (Crtl) in the Guardian and the Open
System Services (OSS) environments. For the Windows PC version, eNOFT runs at
the cmd.exe command prompt; no GUI is supplied.

eNOFT has the same capabilities in each environment (Guardian, OSS, PC), but each
environment may require slightly different syntax. Differences, if any, are often related
to the different types of file names and file characteristics on each of these platforms.

eNOFT commands are organized into four categories:

1. SET and RESET commands that control the format of output; for example, raw
or formatted forms

2. dump commands that displays specific parts of the object file

3. list commands that organizes and lists attributes from various parts of the
object file

4. user interface commands to specify the input object and control the eNOFT
environment

These four categories are used to classify the complete list of commands and
command options shown in Section 2, eNOFT Options.
eNOFT Manual—527507-005
1-1

Introduction to eNOFT and ar Starting eNOFT
Starting eNOFT
The eNOFT utility can be used as an interactive or batch process.

Interactive (Command-Line) Mode

eNOFT launches and runs as an interactive process if no command is specified. In
addition, the PC version of eNOFT can also be launched by double-clicking on its file
name.

eNOFT can perform most tasks from the terminal prompt by specifying the commands
serially on the command line. eNOFT terminates after the last command is processed.
Unless NOEXIT is specified, the EXIT command is not required to terminate the eNOFT
process.

In Guardian,

ENOFT [<COMMAND1>; <COMMAND2>; ...]

whereby commands must be separated by the delimiter semicolon ";". An example
follows:

>ENOFT FILE $VOL.SUBVOL.HELLOOUT; SET FORMAT INNERLIST; DUMPCODE

For OSS and PC Windows, if the commands contain characters that are considered
special to that shell environment such as spaces and semicolons, the commands must
be surrounded by double quotes or prefixed with backslashes to prevent the shell
environment from trying to parse the eNOFT commands. See examples for OSS below:

>enoft "file /usr/subdir/hello.out; set format innerlist; dumpcode"

or

>enoft file /usr/subdir/hello.out\; set format innerlist\; dumpcode

Alternately, commands may be prefixed with a hyphen in OSS and PC Windows:

enoft [command1 -<command2> ...]

whereby commands must be separated by delimiter blank space and prefixed with a
hyphen " -". Use of the prefix for the first command is optional.

An example on PC Windows,

>enoft file c:\dir\hello.exe -set format innerlist -dumpcode

Batch (Command File) Mode

eNOFT can be run as a batch process by issuing commands through a command
(obey) file as follows:

In Guardian:

ENOFT / IN INFILE [, OUT OUTFILE] /

In OSS or PC Windows:

enoft < infile [> outfile]
eNOFT Manual—527507-005
1-2

Introduction to eNOFT and ar Common Formats of Command Arguments
infile is a text file containing one or more eNOFT commands. Commands listed in
this file must follow the same rules for the command-line processing. If infile does not
exist, a syntax error will be generated and the program terminates normally.

If both an infile and commands are given, eNOFT ignores the infile.

outfile specifies a file name to which eNOFT writes its output. If the specified file
does not exist, eNOFT creates a text file with that name. If the specified file exists,
eNOFT appends to the file. eNOFT writes its output to the display terminal if no output
file is specified.

Common Formats of Command Arguments
The following lists common rules associated with eNOFT commands. Exceptions, if
any, are listed with individual commands.

Argument Groupings

[] denote grouping of optional arguments. The first argument in the options list is the
default.

{ } also denote groupings of arguments except at least one argument is mandatory.

Input Format

All commands are limited to 256 characters.

For commands that have the asterisk symbol "*" as an option, NOFT displays syntax
errors when these commands are typed without an option.

New to eNOFT, all available or applicable items will be shown when these commands
are entered with or without an asterisk.

The (default) NOFT options "BRIEF" and "B" are not supported.

Output Display Format

Most outputs of eNOFT will be left justified instead of center-justified in NOFT.

All displays are limited to 79 characters per line. If an output file is specified,
information in excess of this limit will wrap around the following line to maximum
number of characters per line allowed by that output file type; for example, 239
characters for the EDIT file type in Guardian. In such a case, information may be
truncated.

Unless otherwise specified, dumps are presented in multiples of 32-bit values; for
example, 10 decimal digits for decimal and 8 hexadecimal digits for the hexadecimal
format.

All virtual addresses are represented as 32-bit hexadecimal numbers (that is, 8
hexadecimal digits) whereby the top halves of the 64-bit addresses are ignored . If the
eNOFT Manual—527507-005
1-3

Introduction to eNOFT and ar <proc-spec>
top half of the 64-bit address was not the sign extension of the bottom half, eNOFT will
give a warning message with the truncated display.

Hexadecimal numbers are prefixed with "0x".

Sizes are represented as decimal values in bytes.

All code outputs are in multiples of 16-byte bundles of instructions.

<proc-spec>

This form of argument specifies the procedure or subprocedure.

<proc-num> | procname

<proc-num> is the procedure number that is available from LISTPROC or LP on
page 2-48.

procname is the procedure name and is case-sensitive in C and C++ but not in
COBOL or pTAL. This option limits the scope to the specified procedure and its
subprocedures. Note the demangled form of the procname cannot be used because
eNOFT does not support blank spaces in the name.

New to eNOFT, a wildcard input string may be entered to search for items containing a
match to the given pattern. For SET SCOPEPROC or SSP on page 2-6 and
DUMPPROC or DP on page 2-13, only the first item that matches the given pattern will
be shown.

For pTAL, procname.subprocname or subprocname limits the scope to the specified
subprocedure. For COBOL, subprograms beyond the second level can also be
specified.

Only the first subprocedure identified is displayed if there are multiple subprocedures
with the same name. To display other subprocedures, their fully qualified names
(procname.subprocname) must be specified.

The scope of procedures to display is determined by SET SCOPESOURCE or SSS on
page 2-7 or SET SCOPEPROC or SSP on page 2-6 if this option is not used. If no
global scope is set, all procedures are shown.

<source-spec>

Native mode object files are loosely organized in the order compilation units were
compiled into a particular object file. This organization is prevalent in the symbols for
the object file and a loose correlation can also be made for other parts of the object file.
Sometimes this organization can be taken advantage of by using the SET
SCOPESOURCE command to restrict eNOFT to looking at things related to only a
certain compilation unit. A compilation unit typically represents a single relocatable
object file specified to the compiler to form an executable object. This relocatable
object file may be derived from several source files, including preprocessed “include
eNOFT Manual—527507-005
1-4

Introduction to eNOFT and ar <format-specifier>
files." The <source_spec> form of argument specifies the compilation unit entry in the
object file.

<sourcendx> | sourcename

<sourcendx>

compilation unit index available from LISTSOURCE.

sourcename may specify a fully qualified path (for example, node name, volume, and
subvolume for Guardian) or a filename only.

New to eNOFT, wildcard input string may be entered to search for items containing a
match to the given pattern. For SET SCOPESOURCE, a list of items that matches will
be shown if multiple items match.

<format-specifier>

This form of argument specifies how the information is to be formatted.

READABLE | R | ASCII | A | DECIMAL | D | HEX | H | ICODE | IC
| INNERLIST | IN

See SET FORMAT or SF on page 2-3 for details on these options.

<scope-range>

This form of argument specifies the display range in numerical value.

<start> [TO <end> |

 FOR { <number> | * } [UNITS | U | BYTES | B]]

BYTES are in multiples of 8-bit values and UNITS as either 4 or 16 bytes, depending
on the part of the object file. New to eNOFT, this unit of output is in multiples of 16-byte
bundles of code instructions when accessing any code section, otherwise in multiples
of 4 bytes all other sections.

<start>and <end> values must be in the form 0XXXXXXXXX where X is a
hexadecimal digit. New to eNOFT, values must be on a 16-byte boundary when
displaying in ICODE or INNERLIST formats. For other formats, any value within a valid
range for that display is acceptable. New to eNOFT, the <start> no longer needs to
be on a 4-byte or 16-byte alignment; that is, eNOFT will round down to the beginning of
the bundle when dumping within a code section.

If <end> is not specified, one "unit" of information will be displayed.

For the DUMPADDRESS command, eNOFT will display information to the end of the
section if the asterisk option "*" is specified else to the end of file for the
DUMPOFFSET command. New to eNOFT, section headings will be displayed when
trespassing into another section. For the DUMPPROC command, eNOFT will display
information either to the end of the procedure or subprocedure if <proc_spec> is
specified.
eNOFT Manual—527507-005
1-5

Introduction to eNOFT and ar <scope-range>
If <number> is specified without any keyword, output will be in appropriate "units" of
bytes, depending on the part of the object file. New to eNOFT, <number> defaults to
decimal unless its value is prefixed with 0x for hexadecimal.

Notes:

 <start> and <end> values differs for DUMPADDRESS, DUMPOFFSET and
DUMPPROC. For DUMPADDRESS, the values denote the virtual address range
set in the object file. For DUMPOFFSET, these values denote the file offset values
whereby 0x0 denotes the beginning of the file. Use LAYOUT to find the starting
value of a section for DUMPADDRESS and DUMPOFFSET. For DUMPPROC, the
values denote the relative offset from the procedure containing the address range;
that is, 0x0 denotes the beginning of the specified procedure.

 The name of the procedure that the starting address points to will be given in the
heading. If the address range crosses into another procedure, a line displaying that
procedure name will be inserted in the output.

 Except for the DUMPOFFSET command, the range of addresses must be entirely
within one section. If <proc_spec> is specified, the range of address must be
entirely within one procedure. If an address range ends outside this section or
procedure, eNOFT will stop at the end of that section (or procedure for
DUMPPROC) and a warning message will be emitted. When displaying in ICODE
or INNERLIST formats, the address range will be rounded up to a whole number of
16-byte bundles of code instructions. eNOFT will display information either to the
end of the procedure or subprocedure if <proc_spec> is specified or to the end of
the section if no range is specified; for example, <start> without <end>, or with
asterisk option "*".
eNOFT Manual—527507-005
1-6

2 eNOFT Options

This section contains the following information:

SET and RESET Commands - globally set how and where eNOFT will dump specified
parts of the object file.

Dump Commands - display contiguous parts of the object file.

List Commands - organize and list specific sections of the object file.

File Handling Commands - affect the user interface.

SET and RESET Commands
SET and RESET commands globally set how and where eNOFT will dump specified
parts of the object file. These global commands affect the output display of dump and
list commands and remain in force until the specified SET command is changed or
reset.

 SET <set-cmd> <argument> specifies the set-cmd setting where
<argument> is a mandatory parameter. Use of the SET <set-cmd> without
an argument will generate a syntax error message.

 RESET <set-cmd> sets the current SET <set-cmd> setting back to the
default setting. The NOFT argument OFF is not supported.

All SET and RESET commands will echo back the new setting, thus acting as a check
for the user.

The NOFT argument "?" is not supported. Use SHOW <set-cmd> to display the current
setting for set-cmd and SHOW without any option to display all SET settings.

RESET

RESET [* | set-cmd]

This command resets one or more eNOFT target object file parameters to their
default values.

This command sets all prior SET command settings to their respective defaults if
the asterisk option "*" is specified. New to eNOFT, typing RESET without any option
also resets all the SET command settings.

SET

[set-cmd [argument]]

This command displays the current setting for one or all <set-cmd> attributes of
the target object file, including DEMANGLE if C++ sources are opened and within
scope.
eNOFT Manual—527507-005
2-1

eNOFT Options SET CASE or SC
New to eNOFT, SET <set-cmd> without an argument will echo the current setting
of <set-cmd> and SET by itself shows all <set-cmd> settings.

SET <set-cmd> <argument> sets the set-cmd to argument.

The default display shows all current SET commands settings:

enoft> set
Sorting: (none)
Formatting: Readable
Current Scope: (none)
Input Case: Sensitive
History Size: 50
History Window: 10
Lines Per Page 0
Brief/Detail: (none)
C++ Demangle: Off

SET CASE or SC

 SC { OFF | ON }

This command sets case sensitivity for source names, procedure names, and path
names.

The default setting is "Not Sensitive". eNOFT becomes case-sensitive on opening
of the object file with C/C++ code and case insensitive for all other object files,
regardless of the platform environment eNOFT runs on. RESET CASE sets case
sensitivity to the default setting, regardless of the current object file.

OFF forces this setting to "Not Sensitive" and vice versa for ON. Note certain source
files or procedures may not be matched correctly depending on the language used
in the object file.

This setting is automatically set to the default setting upon opening a new object.

For object files with C/C++ and non-C/C++ source codes, if proc or source scoping
restricts to a source file that does not have C/C++ code, CASE automatically
reverts to "Not Sensitive" mode and returns to "Sensitive" when restricted scoping
is removed.

SET DEMANGLE or SDE

SDE [ON | OFF]

This command sets C++ symbols name display to demangled format.

With the default “OFF”, names are displayed in the mangled format. This
command is only applicable to files with C++ symbols.
eNOFT Manual—527507-005
2-2

eNOFT Options SET DISPLAY OR SD
SET DISPLAY OR SD

SD [BRIEF | B | DETAIL | D]

New to eNOFT, this command globally sets the display format to BRIEF or
DETAIL and is applicable to the following commands: COMP, RTDU,
UNWINDINFO, LISTATTRIBUTE, LISTCOMPILERS, LISTDEBUG,
LISTPROC, LISTSOURCE, LISTUNRESOLVED, LISTUNREFERENCED, and
XREFPROC.

In the default format, “none”, queries of single records (for example, procedure
specified) will be displayed in DETAIL format whereas queries resulting in multiple
records will be displayed in BRIEF format. This command overrides this default
behavior resulting in one consistent format regardless of the result of the query.

SET FORMAT or SF

SF { READABLE | R | ASCII | A | DECIMAL | D | HEX | H | ICODE |
IC | INNERLIST | IN }

This command sets the output display format.

READABLE or R is the default format. In this mode, eNOFT determines the
applicable format based on the item type and part of the object file being displayed.
For example, eNOFT displays code sections in disassembled program code
(ICODE), ASCII format for literals, hexadecimal format for virtual addresses, and
decimal for non-address values.

ASCII or A displays the specified part of the object file in ASCII text format. The
following sample shows a continuous dump of 64 bytes per line:

0x70000420: '......4...8...<<...<.p.$.2@....$$..<...<.p.$.2H....$$..<...<.p.

0x70000460: $.2T....$$..<...<.p.$.2\....$$..<...<.p.$.2h....$$..<...<.p.$.2l

DECIMAL or D displays the specified part of the object file in decimal format. The
following sample shows 16 bytes per line in chunks of ten-digit decimal values:

0x70000420: 0666763208 2948530228 2946760760 2946826300 '... ...4 ...8
...<

0x70000430: 1006700544 1006989312 0614806080 0243237392 <... <.p. $.2@
....

HEX or H displays the specified part of the object file in hexadecimal format. The
following sample shows 16 bytes per line in chunks of eight-digit hexadecimal
values:

0x70000420: 27bdffc8 afbf0034 afa40038 afa5003c '... ...4 ...8 ...<

0x70000430: 3c010800 3c057000 24a53240 0e7f8210 <... <.p. $.2@

ICODE or IC displays the specified part of the object file in disassembled code.
A syntax error may generate if used in an area not corresponding to actual instructions.
The following sample shows 2 bundles of code instructions. Note the values
eNOFT Manual—527507-005
2-3

eNOFT Options SET FORMAT or SF
"2:001:0013:0" shown next to the procedure "main" denotes the source index, file
index, line number (ordinal shown here), and bundle instruction, respectively:

[2:001:0013:0 main]

0x70010cc0: {0: 02c00916800 M alloc r32 = ar.pfs, 0x09, 0x00, 0x02, 0x00

 1: 00000000000 M adds sp = -48, sp

 2: 10800100880 I adds r34 = 0x00, gp ;;

 template: 0x09}

[: : : main]

0x70010cd0: {0: 00008000000 M nop.m 0x00

 1: 00000000000 I mov r33 = rp

 2: 00008000000 I nop.i 0x00 ;;

 template: 0x01}

INNERLIST or IN displays the specified part of the object file in disassembled
program code with the source code interspersed throughout the dump. The source
code will not be shown if the source file is not at the path specified when the object
file was built. This option only applies to code dumps and reverts to the default
format for all other dumps. New to eNOFT, object files compiled on OSS for
Guardian target execution ("System Type" in LISTATTRIBUTE DETAIL) can now
have the source code (remaining) on OSS be shown in the Guardian platform.

******** Innerlist Dump of Procedure main

[Src:Fil:Line:i Procedure]

MemAddress Contents

DW_LINE File: 1 d:\temp\foo.cpp

 13 {

[2:001:0013:0 main]

0x00000000: {0: 02c00916800 M alloc r32 = ar.pfs, 0x09, 0x00, 0x02, 0x00

 1: 00000000000 M adds sp = -48, sp

 2: 10800100880 I adds r34 = 0x00, gp ;;

 template: 0x09}
eNOFT Manual—527507-005
2-4

eNOFT Options SET HISTORYBUFFER or SHB
[: : : main]

0x00000010: {0: 00008000000 M nop.m 0x00

 1: 00000000000 I mov r33 = rp

 2: 00008000000 I nop.i 0x00 ;;

 template: 0x01}

[: : : main]

0x00000020: {0: 10800c60500 M adds r20 = 0x030, sp ;;

 1: 00000000000 M st8 [r20] = r34

 2: 00008000000 I nop.i 0x00

 template: 0x0a}

 14 T399myClass<long> thisMyClass;

[2:004:0014:0 main]

0x00000030: {0: 00008000000 M nop.m 0x00

 1: 00000000000 I nop.i 0x00

 2: 0b1fe7db000 B br.call.sptk.many rp = $-49456 ;;

 template: 0x11}

[: : : main]

0x00000040: {0: 10800c60500 M adds r20 = 0x030, sp ;;

 1: 00000000000 M ld8 r34 = [r20]

 2: 00008000000 I nop.i 0x00 ;;

 template: 0x0b}

When specified, the local command format option <format_spec> will take
precedence over this command.

SET HISTORYBUFFER or SHB

SHB <num>

This command sets maximum number of command lines available for retrieval by
the HISTORY command.

<num> specifies the number of command lines in the history buffer. New to eNOFT,
this argument is mandatory.

The default is 50 with a range from zero to 65535.

Notes:
eNOFT Manual—527507-005
2-5

eNOFT Options SET HISTORYWINDOW or SHW
 If the buffer size is reduced, the number of command lines in storage is
truncated with the oldest commands in this queue deleted first (FIFO). The
command lines deleted from the buffer are not retrievable.

 If the buffer size is increased, commands in queue are retained with additional
buffer allocated to handle up to the specified buffer size.

SET HISTORYWINDOW or SHW

SHW <num>

This command specifies the number of command lines displayed with the
HISTORY command.

<num> changes this command window to show the specified number of
commands. New to eNOFT, this argument is mandatory.

The default value is 10 with a range from zero (0) to 50.

SET LINES or SL

SL <num>

This command specifies the number of lines to display before pausing so that an
area of output does not scroll beyond the terminal display line size.

<num> changes the number of lines that will be shown before a prompt is given to
continue. New to eNOFT, this argument is mandatory.

This command is not applicable in the command-line mode.

The default value is zero and causes output to continue until all results are
displayed. The range is from 0 to 65535.

SET SCOPEPROC or SSP

SSP <proc-spec>

This command narrows the scope to a single procedure or subprocedure and
affects the following commands: LISTCOMPILERS, LISTDEBUG,
LISTEXPORTS, LISTOPTIMIZE, LISTPROC, LISTSOURCE,
LISTUNRESOLVED, LISTUNREFERENCED, DWARF INFO, SYMTAB, UNWIND,
UNWINDINFO, XREFPROC, and DUMPALL.

The following commands are not affected by this command: LISTDATA, RELOC.

The default setting is "none" ; all procedures (and subprocedures as applicable)
are considered.

This command is automatically reset upon opening a new object file.
eNOFT Manual—527507-005
2-6

eNOFT Options SET SCOPESOURCE or SSS
Use of this command or its equivalent RESET command overrides any existing SET
SCOPESOURCE setting.

This command takes precedence over the local command scope option <proc-
spec> in event of a conflict.

The alias NOFT command PROC is not supported.

SET SCOPESOURCE or SSS

SSS <source-spec>

This command narrows the scope to a single source file. This is helpful when trying
to find unique items within a source file and to limit the output to a range within the
designated scope.

The following commands are affected by this command: LISTCOMPILERS,
LISTDEBUG, LISTPROC, LISTSOURCE, LISTUNRESOLVED,
LISTUNREFERENCED, UNWIND, UNWINDINFO, DWARF, SYMTAB,
LISTEXPORTS, LISTOPTIMIZE, dumps in ICODE or INNERLIST formats,
XREFPROC, and DUMPALL.

The default setting is "none" ; all source files are considered.

This command is automatically reset upon opening a new object file.

Use of this command or its equivalent RESET command overrides any existing SET
SCOPEPROC setting.

New to eNOFT, this command takes precedence over the local command scope
option <proc-spec> in event of a conflict.

The alias NOFT command SOURCE is not supported.

SET SORT or ST

ST { NONE | N | ALPHA | A | LOC | L }

This command specifies the sorting order of the output.

It is applicable to the following commands: PROCINFO, SYMTAB, UNWIND,
UNWINDINFO, LISTDEBUG, LISTEXPORTS, LISTOPTIMIZE, LISTPROC,
LISTSOURCE (ALPHA only), LISTUNREFERENCED (ALPHA only),
LISTUNRESOLVED (ALPHA only), and XREFPROC (LOC only).

NONE or N is the default order of sorting. This order is determined by the system
and depends on the applicable table and whether the items therein are
procedures, source files, or other attributes.

ALPHA or A sorts the output in alphabetical order. Depending on the eNOFT
command, the names being alphabetized may be source file names, procedure
names, or similar attributes.
eNOFT Manual—527507-005
2-7

eNOFT Options Dump Commands
LOC or L sorts the output in virtual address order and is not applicable to linkfiles.
Often the addresses being sorted are addresses of procedures. When source files
are being sorted, the address of the source file is the same as the address of the
first procedure or subprocedure in the source file.

Dump Commands
The dump commands display contiguous parts of the object file. The following are
methods to narrow the scope of the display:

 DUMPADDRESS sets the virtual address.

 DUMPOFFSET sets the offset within the object file.

 DUMPPROC sets the procedure or subprocedure name.

 DUMPSECTION sets the object file section.

Additional commands further organize sections by similar interests (for example
DUMPCODE, DWARF, RTDU) or serve as aliases to DUMPSECTION for common
sections (for example DYNAMIC and GOT).

Unless otherwise specified, the default format is READABLE.

DUMPALL or ALL

DUMPALL [* | LIST]

This command displays all non-zero size sections in the object file in order of their
relative offsets. It expands the command LAYOUT to show the section contents.
Unlike DUMPSECTION * DETAIL, this command includes displays of the file,
program and section headers, and stops on any command that fails, for example
with a data error.

The asterisk additionally displays all applicable list commands after displays of all
sections in the object file.

LIST restricts the display to only applicable List Display commands, so that it
complements DUMPSECTION * DETAIL.
eNOFT Manual—527507-005
2-8

eNOFT Options DUMPADDRESS or DA
DUMPADDRESS or DA

DA <scope-range> [IN <format-specifier>]

This command displays the object file contents from a virtual address inside a
loadfile's memory space and is applicable to loadfiles and import libraries. Use
SECTHDRS or LAYOUT to locate the starting address and size of any particular
section.

The following sample shows two 16-byte bundles of code instructions for the .text
section, automatically shown in format ICODE because this is in a code area.

enoft> dumpaddress 0x70000420 for 2

 ******** Readable Dump Of .text Section (File Offset 0x0390)

[demo 2]::

0x70000420: {0: 08082000800 M ld4 r32 = [r32]

 1: 10801800dc0 I adds r55 = 0x0, r24

 2: 10800a40b00 I adds r44 = 0x20, ret2

 dispersal: 00}

[demo 2]::

0x70000430: {0: 00008000000 M nop.m 0x0

 1: 00008000000 F nop.f 0x0

 2: 12000006440 I addl r17 = 0x3, r0 ;;

 dispersal: 0d}

Note that if a single bundle is specified and no source file and line number
information is available for that bundle, eNOFT will display from nearest preceding
bundle with available line info.

DUMPCODE or DC

DC [BRIEF | B | IN <format_spec>]

New to eNOFT, this command displays all available code in the object file:
.gateway, .plt, and every section that begins with ".text" or ".restext". Use
DUMPSECTION to display individual code sections.

BRIEF or B is an alias to command LAYOUT CODE.

<format_spec> defaults to the ICODE format if not specified. See SET FORMAT
for details.
eNOFT Manual—527507-005
2-9

eNOFT Options DUMPDATA or DD
The following sample shows the content of the .plt section of a loadfile in the
default ICODE format. Each code section displayed will be prefixed with its name
in the header.

enoft> dumpcode

******** Section .plt in Icode (File Offset 0x800)

(Source file not located for this symbol; no proc or

 or src line number is available for this kind of symbol.)

Src:Fil:Line:i Procedure]

MemAddress Contents

[: : : #import_stubs]

0x70000800: {0: 120001803c0 M addl r15 = 0x040, gp ;;

 1: 00000000000 M ld8 r16 = [r15], 0x08

 2: 10800100380 I adds r14 = 0x00, gp ;;

 template: 0x0b}

[: : : #import_stubs]

0x70000810: {0: 080c0f00040 M ld8 gp = [r15]

 1: 00000000000 I mov b6 = r16, $+0x0

 2: 0010000c000 B br.cond.sptk.few b6 ;;

 template: 0x11}

[: : : #import_stubs]

0x70000820: {0: 120001a03c0 M addl r15 = 0x050, gp ;;

 1: 00000000000 M ld8 r16 = [r15], 0x08

 2: 10800100380 I adds r14 = 0x00, gp ;;

 template: 0x0b}

 . . .

This command replaces the following NOFT commands: ALLTEXT, USERGATE,
RESTEXT, and TEXT.

DUMPDATA or DD

DD [BRIEF | B | IN <format_spec>]

New to eNOFT, this command displays all initialized user data sections in the object
file: .data, .sdata, .rdata, and .rconst . Use DUMPSECTION to display individual data
sections.
eNOFT Manual—527507-005
2-10

eNOFT Options DUMPDATA or DD
BRIEF or B is an alias to command LAYOUT DATA.

<format_spec> defaults to the HEX format if not specified. See SET FORMAT for
details.

The following sample shows all available data sections in the default hexadecimal
format. Each data section displayed will be prefixed with its name in the header.

enoft> dumpdata

******** Section .rconst in Hex (File Offset 0x7d0)

MemAddress Contents

 32 zero bytes skipped.

******** Section .data in Hex (File Offset 0x2000)

MemAddress Contents

0x08000000: 080001b0 01000000 02000000 00000000

0x08000010: aaaa4d43 4220aaaa 00000000 00000000 ..MC B

 112 zero bytes skipped.

0x08000090: 00000000 00000000 20010000 00000000

 256 zero bytes skipped.

******** Section .data1 is empty.

******** Section .rodata in Hex (File Offset 0x21a0)

MemAddress Contents

0x080001a0: 25730000 00000000 00000000 00000000 %s..

0x080001b0: 48656c6c 6f2c2057 6f726c64 0a000000 Hell o, W orld

******** Section .rdata in Hex (File Offset 0x21c0)

MemAddress Contents

eNOFT Manual—527507-005
2-11

eNOFT Options DUMPOFFSET or DO
0x080001c0: 00000000 080001d0 00000000 00000000

******** Section .pdata is empty.

******** Section .xdata is empty.

******** Section .sdata is empty.

******** Section .srodata is empty.

******** Section .sdata1 is empty.

 . . .

This command replaces the following NOFT commands: DATA, READONLY,
LARGEDATA, and SMALLDATA.

DUMPOFFSET or DO

DO <scope-range> [IN <format-specifier>]

This command displays code and data range from a physical offset within the
object file whereby 0x00000000 denotes the beginning of the object file. Use
LAYOUT to find the starting offset value of a section.

The following sample shows 128 bytes of the .text section in a locally specified
hexadecimal format instead of the default ICODE format for this code part of the
object file.

enoft> dumpoffset 0x390 to 0x410 in hex

******** Hex Dump of Offset 0x00000390 To 0x0000410 ********

Offset Mem Addr Contents

--

0x00000390: 27bdffc8 afbf0034 3c010800 3c065800 '... ...4 <... <.X.

0x000003a0: 24c60068 24250000 3c04c000 0e76800c $..h $%.. <... .v..

0x000003b0: afa0002c 8fbf0034 00000000 03e00008 ..., ...4

0x000003c0: 27bd0038 27bdffd8 afbf0014 3c015800 '..8 '... <.X.

0x000003d0: 24260060 27a40026 0e768008 27a50020 $&.` '..& .v.. '..

0x000003e0: 3c015800 8c260060 87a40026 8fa50020 <.X. .&.` ...& ...

0x000003f0: 0c00017e 00000000 0e7681d8 00402025 ...~v.. .@ %
eNOFT Manual—527507-005
2-12

eNOFT Options DUMPPROC or DP
DUMPPROC or DP

DP <proc-spec> [<scope-range>] [IN <format-specifier>]

This command displays some or all parts of a procedure. Use LISTPROC to find all
available procedures or subprocedures.

The default format is ICODE.

The following shows procedure "main" in the default disassembled code format:

enoft> dumpproc main

******** Icode Dump of Procedure main

[Src:Fil:Line:i Procedure]

Offset Contents

[0:004:1812:0 main]

0x00000000: {0: 02c0163c880 M alloc r34 = ar.pfs, 0x16, 0x0, 0x8, 0x0

 1: 119f0c80300 M adds sp = -192, sp

 2: 10800100900 I adds r36 = 0x0, gp ;;

 template: 0x09}

[: : : main]

0x00000010: {0: 00008000000 M nop.m 0x0

 1: 00008000000 I nop.i 0x0

 2: 001880008c0 I mov r35 = rp

 template: 0x00}

 . . .

DUMPSECTION or DS

DUMPSECTION or DS
[* [DETAIL | D] | sect_name | <sect_num>]
[IN <format_spec>]

New to eNOFT, this command displays one specified section of the object file.
The default display is a subset listing from the LAYOUT command whereby only the
sections are listed; that is, it excludes file, program, and section headers.

DETAIL or D dumps all non-zero size sections in the object file. Unlike DUMPALL,
this command excludes the file, program, and section headers and continues even
if any dump command fails (for example, data error).

<sect_num> and sect_name specifies the section index and name, respectively,
that are available from SECTHDRS or LAYOUT.
eNOFT Manual—527507-005
2-13

eNOFT Options DWARF
The following sample shows parts of the .rela.dyn section in (raw) hexadecimal
format. See RELOC for the default READABLE format display of this section.

enoft> dumpsection .rela.dyn in hex

********** .rela.dyn Section (File Offset 0x1880)

Offset Mem Addr Contents

0x00000000 0x00000880 00000000 00003260 00000000 0000006e

0x00000010 0x00000890 00000000 00000000 00000000 00003268

0x00000020 0x000008a0 00000000 0000006e 00000000 00000000

0x00000030 0x000008b0 00000000 000031c0 00000015 00000046

0x00000040 0x000008c0 00000000 00000000 00000000 00003240

0x00000050 0x000008d0 00000017 00000026 00000000 00000000

0x00000060 0x000008e0 00000000 000031b8 0000001a 00000026

DWARF

[* | INFO | ABBREV | LINE [ORDINAL] | LOC]

New to eNOFT, this command displays the DWARF Version 2 symbol table.

The default display shows all available DWARF sections, .debug_info,
.debug_abbrev, and .debug_line.

INFO displays the .debug_info section which contains the debugging information
entries ("dies").

ABBREV displays the .debug_abbrev abbreviation tables section which contains a
concatenation of abbreviation tables from all compilation units.

LINE displays the line number table with information for code contributed to an
object file. This section is referenced by a corresponding debugging information
entry in the .debug_info section.

If the .debug_line section has modifications to support the EDIT line table (that is,
there is a .debug_line_nsk section), the EDIT line table format will be displayed
instead of the standard line table format. Use keyword ORDINAL to display the line
number table in the standard line table format.

LOC displays the list for data items that can change location. This section is
referenced by a corresponding debugging information entry in the .debug_info
section.

Note the .debug_relocs section is displayed using the command RELOC and is
applicable to DLLs only.

The following shows displays for all available dwarf debug sections of a loadfile:

enoft> dwarf
eNOFT Manual—527507-005
2-14

eNOFT Options DWARF
******** Section .debug_info (File Offset 0x3000)

0x0000b DW_AB_CODE_compile_unit (0x1)

 DW_TAG_compile_unit (0x11) DW_CHILDREN_yes

 DW_AT_ DW_FORM_ VALUE

 comp_dir (0x001b) string (0x08) "\SPEEDY.$DATA06.T8432H01"

 language (0x0013) data1 (0x0b) DW_LANG_C89

 name (0x0003) string (0x08)
"\SPEEDY.$DATA06.T8432H01.CPLMAIN

C"

 producer (0x0025) string (0x08)
"T0549H01_01OCT2004_CCOM_22Mar200

4_GRD 3.3 TOOLSY02 Release"

HP_compile_time (0x2024) string (0x08) [unsupported attr 0x2024]

 stmt_list (0x0010) data8 (0x07) 0x0

 <unknown attr> (0x2025) data8 (0x07) [unsupported attr 0x2025]

0x000b0 DW_AB_CODE_compile_unit_nopc (0x2)

 DW_TAG_file_type (0x29) DW_CHILDREN_no

 DW_AT_ DW_FORM_ VALUE

 name (0x0003) string (0x08) "EDIT"

0x000b6 DW_AB_CODE_compile_unit_prof (0x3)

 DW_TAG_base_type (0x24) DW_CHILDREN_no

 DW_AT_ DW_FORM_ VALUE

 byte_size (0x000b) data1 (0x0b) 0

 encoding (0x003e) data1 (0x0b) DW_ATE_signed

 name (0x0003) string (0x08) "void"

 . . .

******** Section .debug_abbrev (File Offset 0x3958)

0x00000 DW_AB_CODE_compile_unit (0x1)

 DW_TAG_compile_unit (0x11) DW_CHILDREN_yes

 DW_AT_ DW_FORM_

 comp_dir (0x001b) string (0x08)

 language (0x0013) data1 (0x0b)

 name (0x0003) string (0x08)

 producer (0x0025) string (0x08)

HP_compile_time (0x2024) string (0x08)
eNOFT Manual—527507-005
2-15

eNOFT Options DWARF
 stmt_list (0x0010) data8 (0x07)

 <unknown attr> (0x2025) data8 (0x07)

0x00015 DW_AB_CODE_compile_unit_nopc (0x2)

 DW_TAG_file_type (0x29) DW_CHILDREN_no

 DW_AT_ DW_FORM_

 name (0x0003) string (0x08)

0x0001c DW_AB_CODE_compile_unit_prof (0x3)

 DW_TAG_base_type (0x24) DW_CHILDREN_no

 DW_AT_ DW_FORM_

 byte_size (0x000b) data1 (0x0b)

 encoding (0x003e) data1 (0x0b)

 name (0x0003) string (0x08)

0x00027 DW_AB_CODE_subprogram_void (0x4)

 DW_TAG_subprogram (0x2e) DW_CHILDREN_no

 DW_AT_ DW_FORM_

 edit_decl_line (0x201e) data2 (0x05)

 decl_line (0x003b) data1 (0x0b)

 . . .

******** Section .debug_line_nsk (File Offset 0x3ddc)

Source: 0 \SPEEDY.$DATA06.T8432H01.CPLMAINC

Prologue:

 Length: 265

 DWARF Version: 2

 Prologue Length: 138

 Min Instr Length: 1

 Default isStmt: 0

 Line Base: -1

 Line Range: 4

 Opcode Base: 10

File Directories:

 0 \SPEEDY.$DATA06.T8432H01

 1 \SPEEDY.$DATA06.T8432H01

 2 \SPEEDY.$DATA01
eNOFT Manual—527507-005
2-16

eNOFT Options DWARF
 3 \SPEEDY.$DATA01.TOOLSY02

FiNdx Dir File_Name Size Time

 0 1 CPLMAINC

 1 2 #0062090

 2 3 STDIOH

 3 3 SYSTYPEH

 4 3 ERRNOH

ADDRESS LINE COL STMT BB FILE(II)

0x0000000070000880:0 45. 0 T F \SPEEDY.$DATA06.T8432H01.CPLMAINC

0x00000000700008a0:1 49. 0 T F \SPEEDY.$DATA06.T8432H01.CPLMAINC

 . . .

******** Section .debug_loc (File Offset 0x9e4)

 OFFSET BEGIN END EXPRESSION

0x00000000 0x0000000000000000 0x0000000000000020 DW_OP_regx 32

 OFFSET BEGIN END EXPRESSION

0x00000024 0x0000000000000000 0x0000000000000020 DW_OP_regx 33

This command replaces the following NOFT commands: AUXSYMTBL,
EXTSYMTBL, FILETBL, INDFILETBL, LINBRTBL, LOCSYMTBL, PROCTBL,
SYMHDR, and SYMBOLS.
eNOFT Manual—527507-005
2-17

eNOFT Options DYNAMIC
 DYNAMIC

This is an alias for DUMPSECTION.dynamic and is applicable to loadfiles and import
libraries.

The dynamic section contains information about other sections that are needed by the
runtime loader, such as virtual addresses of the .liblist through .rela.dyn sections and
sizes.

The following shows the dynamic section of a loadfile.

enoft> dynamic

******** Section .dynamic (File Offset 0x498)

Index Tag Value (e.g., Address/Size)

 0 HASH 0x70000f70

 1 STRTAB (.dynstr) 0x70001630

 2 SYMTAB (.dynsym) 0x700010f0

 3 STRSZ (.dynstr sz) 179

 4 SYMENT (.dynsym entry sz) 24

 5 HASHVAL 0x700016e4

 6 LIBLIST 0x700005d8

 7 LIBLISTNO (nbr. entries) 4

 8 SYMTABNO (nbr. entries) 56

 9 STRTAB2 (.dynstr2) 0x700005f8

 10 STRSZ2 (.dynstr2 sz) 36

 11 PLTGOT (GP value) 0x080001f0

 12 RELA (.rela.dyn) 0x700017c8

 13 RELASZ (.rela.dyn sz) 288

 14 RELAENT (.rela.x entry sz) 24

 15 TANDEM_FPTR (.fptr) 0x080001d0

 16 TANDEM_FPTRSZ (.fptr sz) 32

 17 LIC 0x70000328

 18 LICSZ (.lic sz) 368

FILEHDR

This command displays the ELF header information for the entire file and is always
found at the start of an ELF file.
eNOFT Manual—527507-005
2-18

eNOFT Options FUNCDESC or FD
A sample display of this command is shown below for a loadfile:

enoft> filehdr

******** ELF File Header

Ident: ELF64-bit Big_Endian VER_1 NSK

Type: PIC_Program (loadfile)

Target Machine: IA64

Version: 1 (current)

Entry Point Address: 0x70000ae0

Program Hdr file offset: 0x00000040

Sections Hdr file offset: 0x000040b0

Flags: (0x2500000)

 Target OSS

 32-bit DATA MODEL

 IEEE_float

 Non-empty Liblist

 Localized

 DATA1 (unprotected)

File Hdr Size: 64

Program Hdr Size: 56

Nbr Program Hdrs: 6

Sections Hdr Size: 64

Nbr Section Hdrs: 36

String Table Index: 35

This command can no longer be called from its "parent" command HEADERS because
that command is not implemented in eNOFT.

FUNCDESC or FD

New to eNOFT, this command displays the contents of the function descriptor sections
and is only applicable to loadfiles. The two possible sections are the local function
descriptors .IA_64.pltoff and the official function descriptor .fptr.
eNOFT Manual—527507-005
2-19

eNOFT Options FUNCDESC or FD
The following shows the function descriptor section of a loadfile.

enoft> funcdesc

******** Section .fptr (File Offset 0x21d0)

Mem_Addr Proc_Addr GP_Value

0x080001d0 0x0000000070000880 0x00000000080001f0

0x080001e0 0x0000000070000880 0x00000000080001f0

******** Section .IA_64.pltoff (File Offset 0x2230)

Mem_Addr GP_Offset Proc_Addr GP_Value

0x08000230 0x00000040 0x0000000078154160 0x00000000781bc170

0x08000240 0x00000050 0x00000000780c2900 0x00000000781bc170

0x08000250 0x00000060 0x0000000078154f00 0x00000000781bc170

0x08000260 0x00000070 0x0000000078155940 0x00000000781bc170
eNOFT Manual—527507-005
2-20

eNOFT Options GOT
GOT

This is an alias for DUMPSECTION .got and is only applicable to loadfiles.

The .got global offset table section contains 64-bit addresses of data items that are
referenced indirectly, as well as the addresses of official function descriptors and
EnterPriv labels. The following shows the global offset table section of a loadfile.

enoft> got

******** Section .got (File Offset 0x21f0)

GP: 0x080001f0

 Address_of Computed Value_of

Index GOT_Entry GP_offset GOT_Entry Symbols_Name

 0 0x080001f0 0x00000000 0x0000000008000008

 1 0x080001f8 0x00000008 0x0000000078167570

 2 0x08000200 0x00000010 0x0000000078167590

 3 0x08000208 0x00000018 0x0000000008000010

 4 0x08000210 0x00000020 0x0000000008000000

 5 0x08000218 0x00000028 0x0000000008000004

 6 0x08000220 0x00000030 0x00000000080001a0

(For this file, the GP value is the start of the GOT.)
eNOFT Manual—527507-005
2-21

eNOFT Options HASH
HASH

This command displays the contents of the .hash and .hash.gblzd sections and is only
applicable to loadfiles. Section .hash also applies to import libraries.

The .hash and .hash.gblzd sections are used for looking up symbols in the .dynsym
and .dynsym.gblzd sections, respectively.

 The NOFT option GLOBALIZED is not supported. Use DUMPSECTION to display the
.hash.gblzd section.

The following shows the hash section of a loadfile. (No .hash.gblzd section is available
for this file.)

enoft> hash

******** Section .hash (File Offset 0xf70)

Number of buckets: 37 Symbol Chain Length: 56

 (Computed) Chain Dynsym Dynsym

Bucket Hash Value Index Index Name

 0 0x006c994f 40 errno

 1 0x0f021913 52 __INIT__1_C

 2 0x00000000

 3 0x00000000

 4 0x000737fe 48 48 main

 5 0x00000000

 6 0x00000000

 7 0x000006f7 50 hw

 8 0x00000000

 9 0x00000000

 10 0x00064172 47 _MCB

 11 0x00000000

 12 0x00000000

 13 0x035b39df 35 35 C_INT_INIT_COMPLETE_

 14 0x00000000

 15 0x077905a6 36 printf

 16 0x05079511 41 myproc1

 17 0x08384a3e 55 T8432H01_01OCT2004_CCPLMAIN

 18 0x00000000

 19 0x066050ba 42 _initz
eNOFT Manual—527507-005
2-22

eNOFT Options HASHVAL
 20 0x00000000

 21 0x00000000

 22 0x06399473 44 _DTORS

 23 0x00000061 54 54 a

 24 0x00000062 37 b

. . .

 (Computed) Next in Dynsym Dynsym

Chain Hash Value Chain Index Name

 0 0x00000000

 1 0x00000000

 . . .

 34 0x00000000

 35 0x06389473 43 _CTORS

 36 0x00000000

 37 0x00000000

 . . .

HASHVAL

This command displays the contents of the .hashval and .hashval.gblzd sections and is
only applicable to loadfiles.

The .hashval section contains the precomputed hash values for the symbols listed in
the .dynsym section. When filling in relocation sites for references across loadfile
boundaries, these hash values provide a convenient means to look up corresponding
symbols in sections of other loadfiles without first having to calculate the value from the
hash function.

The NOFT option GLOBALIZED is not supported. Use DUMPSECTION to individually
display the .hashval and .hashval.gblzd sections.
eNOFT Manual—527507-005
2-23

eNOFT Options LIBLIST
The following shows the hash section of a loadfile:

enoft> hashval

******** Section .hashval (File Offset 0x16e4)

Index Hash_Value Info Bucket Dynsym_Name

 0 0x00000000 0x00000000 0 *** No symbol ***

 1 0x00000000 0x00000000 0 *** No symbol ***

. . .

 17 0x00000000 0x035b39df 0 *** No symbol ***

 18 0x077905a6 0x00000062 15 printf

 19 0x006415de 0x0efd772f 23 _MAIN

 20 0x006c994f 0x05079511 0 errno

 21 0x066050ba 0x06389473 19 _initz

 22 0x06399473 0x0c5d093e 22 _DTORS

 23 0x066ac94a 0x00064172 4 _termz

 24 0x000737fe 0x065bb693 4 main

 25 0x000006f7 0x065ab693 7 hw

 26 0x0f021913 0x0006cf04 1 __INIT__1_C

 27 0x00000061 0x08384a3e 23 a

LIBLIST

This is an alias for DUMPSECTION.liblist and is applicable to loadfiles and import
libraries.

This section contains the names of the DLLs that were on the linker command line
when the linker built this loadfile. It is not required if no DLLs were so specified. In an
import library that represents a single DLL, it contains the same information as in that
DLL. Neither the user library nor implicit libraries appear in the program's liblist.
eNOFT Manual—527507-005
2-24

eNOFT Options LIC
The following shows the .liblist section of a loadfile:

enoft> liblist

******** Section .liblist (File Offset 0x5d8)

Count ReExport NotFound DLL_Name

 1 no no zcrtldll

 2 no no zcredll

 3 no no ZI18NDLL

 4 no no ZICNVDLL

LIC

New to eNOFT, this is an alias for DUMPSECTION.lic, the library import
characterization section, and is only applicable to loadfiles that have been preset. For
loadfiles that have not been preset, this section serves as a placeholder.

This section contains information about the DLLs that were used to preset the loadfile.
It is created by the linker upon binding all symbols in the target loadfile to the DLLs.

The following shows the .lic section for a loadfile with 3 export digests.

enoft> lic

 ********** .lic Section (File Offset 0x34c67)

Flag: HasUnres

Index Reloc Export Digest

--

 1 -1 8b 32 f3 87 21 88 4f 6f 71 e5 84 9d a9 c8 ce 93

 2 -1 21 88 4f 6f 71 e5 84 9d a9 c8 ce 93 56 1a 3c 5f

 3 0 71 e5 84 9d a9 c8 ce 93 63 58 5f 4d 89 30 6b 3c
eNOFT Manual—527507-005
2-25

eNOFT Options PROCINFO or PI
PROCINFO or PI

New to eNOFT, this is an alias for DUMPSECTION.procinfo and is only applicable to
linkfiles.

The names, addresses, "attributes", and nesting of procedures and subprocedures
parts of the section are used by the linker to create stack unwinding information in
loadfiles. The entry points that have the callable attribute are used to create gateways.

The following shows the .procinfo section for a linkfile:

enoft> procinfo

******** Section .procinfo (File Offset 0x6e06b0)

PiNdx Offset Proc_Name

 Attributes Opt Parm Parent Section

 0 0x00000000 T9219M01^01MAY03^ACKPT^M01

 0 0 none .text0

 1 0x00000000 IOPRM_CHECKPOINT_SEND_

 E PR 0 10 none .restext1

 2 0x00000000 IOPRM_CHECKPOINT_SEND_.CLEAR^CKPT^PKG

 R 0 0 1 .restext2

 3 0x00000000 IOPRM_ALTER_OPEN_

 E PR 0 3 none .restext0

. . .

Key: A = alt entry point C = callable E = extensible

 G = Gateway K = kernel callable M = main N = Cobol nonstop

 P = privileged R = resident S = shell

 pTAL subprocs and Cobol nested procs have a 'parent'.
eNOFT Manual—527507-005
2-26

eNOFT Options PROGHDRS
PROGHDRS

This command displays the contents of the program headers and is applicable to
loadfiles and import libraries.

The following shows a listing of the program headers for a loadfile.

enoft> proghdrs

******** ELF Program Headers (File Offset 0x40)

Type Offset VirtAddr File_Size Mem_Size Align RWX

LOAD 0x00000000 0x70000000 0x00002000 0x00002000 4096 R-X

LOAD 0x00002000 0x08000000 0x00001000 0x00001000 4096 RW-

DYNAMIC 0x00000498 0x70000498 0x00000140 0x00000140 0 R--

TANDEMINFO 0x00000190 0x70000190 0x00000198 0x00000198 0 R--

LIB_IMPORT_CHAR 0x00000328 0x70000328 0x00000170 0x00000170 0 R--

UNWIND 0x00000620 0x70000620 0x000000a8 0x000000a8 0 R-

This command can no longer be called from its "parent" command HEADERS because
that command is not implemented in eNOFT.

RELOC

This command displays the contents of all relocation tables in the object file. This
command in NOFT had included the following sections: .text, .data, and .rdata. The
possible relocation table sections are the sections whose names start ".rela". There are
typically several of these in linkfiles. There are at most two in loadfiles, named .rela.dyn
and .rela.gblzd.

For linkfiles, the relocation tables .rela.x (for respective sections named .x) describe
the relocation sites as offsets relative to the symbols listed in the .symtab symbol
tables.

The relocation table describes the relocation site (the location where the contents of
one place need to be filled in with the address of another) for that section.

For loadfiles, dynamic relocation tables .rela.dyn and .rela.gblzd describe the
relocation sites as offsets relative to the symbols listed in .dynsym and .dynsym.gblzd
dynamic symbol tables, respectively.
eNOFT Manual—527507-005
2-27

eNOFT Options RTDU
The following shows the dynamic relocation table for a loadfile:

enoft> reloc

******** Section .rela.dyn (File Offset 0x17c8)

Index Reloc_Site Reloc_Type Addend Section

 Target_Symbol

 0 0x0000000008000000 REL32MSB 0x0000000000000000

 1 0x0000000008000220 REL64MSB 0x0000000000000000

 2 0x0000000008000230 IPLTMSB 0x0000000000000000

 C_INT_INIT_COMPLETE_

 3 0x0000000008000240 IPLTMSB 0x0000000000000000

 printf

 4 0x00000000080001f0 DIR64MSB 0x0000000000000000 .data

 b

 5 0x0000000008000250 IPLTMSB 0x0000000000000000

 C_INT_INIT_START_

 6 0x00000000080001f8 DIR64MSB 0x0000000000000000

 errno

 7 0x0000000008000200 DIR64MSB 0x0000000000000000

 environ

 8 0x0000000008000208 DIR64MSB 0x0000000000000000 .data

 _MCB

 9 0x0000000008000210 DIR64MSB 0x0000000000000000 .data

 hw

 10 0x0000000008000260 IPLTMSB 0x0000000000000000

 exit

 11 0x0000000008000218 DIR64MSB 0x0000000000000000 .data

 a

This command incorporates the NOFT command DYNREL.

RTDU

[{ * | SOURCE | OBJECT } [DETAIL | D]]

New to eNOFT, this command displays the header information for the RTDU
sections in the object file.
eNOFT Manual—527507-005
2-28

eNOFT Options RTDU
Note linkfiles only have source RTDU's .source.rtdu, while programs have both
source RTDU's and at most one object RTDU .object.rtdu. Use DUMPSECTION to
display an individual section else STRTAB RTDU for the name section.

DETAIL or D option adds the memory content of the RTDU data section
information for each procedure.

The following shows the RTDU section of a linkfile:

enoft> rtdu

******** Section .source.rtdu (File Offset 0x2e9c7)

Index DataOffset Size Name

 0 0x00000000 20553 SQLTEST4

 1 0x00005049 1622 SQLTEST4-SUB1

 2 0x0000569f 842 SQL-CALL-1

 3 0x000059e9 830 SQL-CALL-4

 4 0x00005d27 844 SQL-CALL-2
eNOFT Manual—527507-005
2-29

eNOFT Options SECTHDRS
SECTHDRS

This command displays the contents of the section headers.

The following shows a listing of sections for a loadfile:

enoft> secthdrs

******** ELF Section Headers (File Offset 0x40b0)

ShNdx Name FileOffset VirtAddr Size

 Type Flags Link Info AddrAlign Entsize

 0 0x00000000 0x00000000 0

 NULL 0 0 0 0

 1 .tandem_info 0x00000190 0x70000190 408

 TANDEM_INFO A 0 0 8 0

 2 .lic 0x00000328 0x70000328 368

 TANDEM_LIC A 0 0 8 0

 3 .dynamic 0x00000498 0x70000498 320

 DYNAMIC A 5 0 8 16

 4 .liblist 0x000005d8 0x700005d8 32

 TANDEM_LIBLIST A 5 4 8 8

 5 .dynstr2 0x000005f8 0x700005f8 36

 STRTAB A 0 0 1 0

 . . .

 Key to Flags:

 W-write, A-alloc, X-execute, R-resident, G-gateway, S-short

This command can no longer be called from its "parent" command HEADERS because
that command is not implemented in eNOFT.
eNOFT Manual—527507-005
2-30

eNOFT Options STRTAB
STRTAB

STRTAB [* | DYNSTR | DYNSTR2 | PROCNAMES | RTDU | SHSTRTAB |
STRTAB | UNWIND]

New to eNOFT, this command displays the contents of all string tables in the object
file. For linkfiles, the possible string tables are sections named .procnames,
.shstrtab, and .strtab. For loadfiles, the possible string tables are sections named
.dynstr, .dynstr2, .IA_64.unwind.strings, and .shstrtab, as well as the source RTDU
names section.

The default display shows all string tables in the object file.

DYNSTR displays the .dynstr section, which is the string space that is pointed at
from the .dynsym section.

DYNSTR2 displays the .dynstr2 section that contains the string space pointed at
from the .dynamic, .liblist, and .dynsym.gblzd sections. It is not required if the
.liblist and .dynsym.gblzd sections are absent and there are no strings represented
in the .dynamic section.

PROCNAMES displays the .procnames section that contains the standard ELF string
space names pointed at from the .procinfo section.

SHSTRTAB displays the .shstrtab section that contains the names of the sections.

STRTAB displays the .strtab section that contains that contains the string space
pointed at from the .symtab section.

RTDU displays the section that contains that contains the string space pointed at
from the .rtdu section.

UNWIND displays the .unwind.strings section that contains the string space pointed
at from the .unwind section.

The following shows the .dynstr section for a loadfile:
eNOFT Manual—527507-005
2-31

eNOFT Options SYMTAB
enoft> strtab dynstr

******** Section .dynstr (File Offset 0x1630)

Count Offset String

 1 0x0000 <null string>

 2 0x0001 _ctors

 3 0x0008 _CTORS

 4 0x000f _dtors

 5 0x0016 _DTORS

 6 0x001d _initz

 7 0x0024 _termz

 8 0x002b C_INT_INIT_COMPLETE_

 9 0x0040 _MAIN

 10 0x0046 C_INT_INIT_START_

 11 0x0058 errno

 12 0x005e environ

 13 0x0066 _MCB

 14 0x006b main

 15 0x0070 __INIT__1_C

 16 0x007c exit

 17 0x0081 T8432H01_01OCT2004_CCPLMAIN

 18 0x009d myproc1

 19 0x00a5 hw

 20 0x00a8 a

 21 0x00aa b

 22 0x00ac printf

This command replaces NOFT commands DYNSTR and DYNSTR2.

SYMTAB

[* | { EXPORT | E } | { PROC | P } | { DATA | D }]

Similar to NOFT command DYNSYM, this command displays the contents of the
.symtab symbol table in linkfiles and the .dynsym and .dynsym.gblzd in loadfiles.

The .dynsym dynamic symbol table provides symbolic information in loadfiles as
needed by the loader, or information in loadfiles and import libraries as needed by
the linker.
eNOFT Manual—527507-005
2-32

eNOFT Options SYMTAB
By definition, the .dynsym.gblzd section only contains symbols that are exported or
undefined.

Option EXPORT or E lists all exported symbols that are global and defined from
sections .dynsym and .dynsym.gblzd in loadfiles and import libraries. Symbols
available only to other linkfiles and local to loadfiles (not exported) are not listed.

Option DATA or D lists data symbols and option PROC or P lists code
symbols.

The NOFT option GLOBALIZED is not supported herein. Use DUMPSECTION to
exclusively display the .dynsym.gblzd section.

The following shows the dynamic symbol table for a loadfile:

enoft> symtab

******** Section .dynsym (File Offset 0x10f0)

SymNdx Address/Value Symbol_Name

 Bind Type EM Lang FDescAddr/Size Section

 0 0x00000000

 Lcl None Asm 0 UNDEF

 1 0x70000190

 Lcl Sect Asm 0 .tandem_info

 2 0x70000328

 Lcl Sect Asm 0 .lic

 . . .

 53 0x00000000 exit

 Glob Code Ptal 0 UNDEF

 54 0x08000004 a

 Lcl Data C 1 .data

 55 0x70000cc0 T8432H01_01OCT2004_CCPLMAIN

 Lcl Code C 0 .text

 ('Bind' tells if the symbol is local or global)

 ('Type' tells if it is code or data or some special kind of entry)

 ('E' = STO_EXPORT set, 'M' = STO_MULTIPLE_DEF_OK set)
eNOFT Manual—527507-005
2-33

eNOFT Options TANDEMINFO
This command replaces NOFT commands ELFSYMTBL and DYNSYM.

TANDEMINFO

This is an alias for DUMPSECTION .tandem_info and is applicable to loadfiles and
import libraries.

The following shows the .tandem_info section for a loadfile:

enoft> tandeminfo

******** Section .tandem_info (File Offset 0x190)

Create_Timestamp: May 06 14:42:58 2004 (Julian)

Update_Timestamp: May 06 14:42:58 2004 (Julian)

Flags: 0x00f08018

 HIGHPIN

 HIGH_REQUESTORS

 RUNTIME_UNRES_CHECKING: ERROR

 CPP_DIALECT: (Neutral)

 DEFAULT_DEBUGGER: Visual Inspect

Version: 0

Unwind Offset: 0x00000620

Unwind Size: 7

Libname: (none)

Fingerprint: Ver 0, Value 0 0

Process Subtype: 0

Heap Max: 0x0

Mainstack Max: 0x0

Space Guarantee: 0x0

DLL Name: (none)

Export Digest: 41 16 b5 32 d3 c2 b1 06 64 45 5b bf ce ce 06 ce

ctors Address: 0x00000000

dtors Address: 0x00000000

initz Address: 0x080001c0

termz Address: 0x00000000

Linker Vproc: TNS/E Linker Internal Build Date April 8, 2004.

This command incorporates the DLL- equivalent features of NOFT command
SRLDIGEST which dumps the export digest.
eNOFT Manual—527507-005
2-34

eNOFT Options UNWIND
UNWIND

New to eNOFT, this command displays the contents of the sections of stack unwinding
information and is applicable to linkfiles and loadfiles.

.IA_64.unwind and .IA_64.unwind_info sections describe the stack frame information
about procedures from the .text and .restext sections.

For loadfiles, the .IA_64.unwind.strings section pointed at from .IA_64.unwind function
will be dumped using the STRTAB command.
eNOFT Manual—527507-005
2-35

eNOFT Options UNWIND
The following shows the .IA_64.unwind section of a loadfile. Display for the
complementary .IA_64.unwind_info is not available as of this writing.

enoft> unwind

******** Section .IA_64.unwind (File Offset 0x620)

UwNdx Proc_Addr Symbol_Name

 InfoPtr_Addr UnwindAddr Parent Attribute Section

 info_ptr begin_address name_offset

 0 0x70000800 #import_stubs

 0x70000624 0x70000620 none .plt

 0x00000000 0x000001e0 0x0000012d

 1 0x70000880 __INIT__1_C

 0x700006c8 0x70000638 none .text

 0x0000008c 0x00000260 0x00000147

 2 0x70000ae0 _MAIN

 0x700006e8 0x70000650 none M .text

 0x00000094 0x000004c0 0x0000013b

 3 0x70000cc0 T8432H01_01OCT2004_CCPLMAIN

 0x70000708 0x70000668 none .text

 0x0000009c 0x000006a0 0x00000129

 4 0x70000ce0 myproc1

 0x70000720 0x70000680 none .text

 0x0000009c 0x000006c0 0x0000012d

 5 0x70000d00 main

 0x70000738 0x70000698 none .text

 0x0000009c 0x000006e0 0x0000011d

 6 0x70000f70 #end_of_code

 0x700006b4 0x700006b0 none not found

 0x00000000 0x00000950 0x000000c2

Key: A = alt entry point C = callable E = extensible

 G = Gateway K = kernel callable M = main N = Cobol nonstop
eNOFT Manual—527507-005
2-36

eNOFT Options UNWIND
 P = privileged R = resident S = shell

 pTAL subprocs and Cobol nested procs have a 'parent'.

For linkfiles, this command shows the following:

enoft> unwind

******** Section .IA_64.unwind (File Offset 0x510)

UwNdx Start_Offset End_Offset Info_Ptr Section_Name

 0 0x00000000 0x00000020 0x00000000 .text

 1 0x00000020 0x00000290 0x00000018 .text

This command replaces NOFT command RUNTIMEPROC.
eNOFT Manual—527507-005
2-37

eNOFT Options List Commands
List Commands
The following commands organize and list specific sections of the object file.

Unless otherwise specified, the default format is READABLE.

DBGINFO

{ <proc_addr> | <proc_spec> }

New to eNOFT, this command lists compilation source and debug file information
for a given procedure name, index, or address. When <proc_addr> is specified,
line number and instruction bundle index will also be given. This command is
applicable to loadfiles and import libraries.

<proc_addr> value must be in the form 0XXXXXXXXX where X is a hexadecimal
digit. The value must be in a code section. In addition, the address value must be
on a 16-byte alignment otherwise eNOFT will round down to the beginning of the
address bundle. Note that if line number information is not available for that
bundle, eNOFT will display from nearest preceding bundle with available line
information.

Note that if the demangled (original) name exists, that name will be shown.

enoft> dbg 245

Procedure: 0x600309a0
CLS_SC_REBIND_REBASE::bfnLookupInLoadfile(CLS_SC_REBIND_REBASE *,
GR_SYMBOL_ADDR_INFO *, bool, bool *)

Source: 0 \SPEEDY.$DATA06.T0428TSK.ZRLDSRLP

File: 25 \SPEEDY.$DATA06.T0428TSK.rebndbsp

enoft> dbg 0x600309a0

Procedure: 0x600309a0
CLS_SC_REBIND_REBASE::bfnLookupInLoadfile(CLS_SC_REBIND_REBASE *,
GR_SYMBOL_ADDR_INFO *, bool, bool *)

Source: 0 \SPEEDY.$DATA06.T0428TSK.ZRLDSRLP

File: 25 \SPEEDY.$DATA06.T0428TSK.rebndbsp

Line Number: 2210

Enoft> dbg 0x60000000

******** Debug information matching address not found.
eNOFT Manual—527507-005
2-38

eNOFT Options LAYOUT
LAYOUT

[* | CODE | DATA]

This command lists the parts of the current object file in the order of their relative
file offsets.

New to eNOFT,CODE limits the display to code sections only and DATA limits the
display to data sections only.

New to eNOFT, virtual addresses are shown for all applicable sections. The section
type is only displayed for sections of unknown name. The following shows the
layout of a loadfile:

enoft> layout

******** Layout of ELF File Sections

ShNdx FileOffset Size Content

 VirtAddr

 - 0x00000000 64 File Header

 (no value)

 - 0x00000040 336 Program Headers

 0x70000000

 1 0x00000190 408 .tandem_info operating system info

 0x70000190

. . .

 33 0x00003b8e 590 .debug_line of type PROGBITS

 (no value)

 34 0x00003ddc 379 .debug_line_nsk of type PROGBITS

 (no value)

 35 0x00003f57 343 .shstrtab strings for section headers

 (no value)

 - 0x000040b0 2304 Section Headers

 (no value)
eNOFT Manual—527507-005
2-39

eNOFT Options LISTATTRIBUTE or LA
LISTATTRIBUTE or LA

[DETAIL | D]

This command lists common file and process attributes associated with the object file.
These attributes are from the .tandeminfo section, unless otherwise noted. The
following attributes are displayed for all object types:

Name (was "Object File" in NOFT)
File Format (from ELF Header)
Type (was "Type of Executable")
Debugging Symbols (was "Symbols/INSPECT Region")
Floating-Point Type (from ELF Header)

In addition, the following attributes are displayed for loadfiles and import libraries:

Float-overrule (from ELF Header; n/a to DLLs)
System Type (from ELF Header)
Creation Timestamp (was "Timestamp")
Process Subtype
Highrequestors
Runnamed
Highpin
Saveabend
Main is PRIV/CALLABLE (was "Priv or Callable")
CALLABLE Procs (was "Callable")
eNOFT Manual—527507-005
2-40

eNOFT Options LISTATTRIBUTE or LA
The following shows file and process attributes for a program file:

enoft> listattribute

******** List of Common File Attributes

Name: d:/temp/hello.out

File Format: ELF64-bit, Big_Endian, IA64

Type: PIC_Program (loadfile)

Debugging Symbols: Yes

Float-Point Type: IEEE_FLOAT

System Type: OSS

Creation Timestamp: 2004 May 6, 14:42:58

Process Subtype: 0

Highrequestors: Yes

Runnamed: No

Highpin: Yes

Saveabend: No

PRIV or CALLABLE Main: No

CALLABLE Procs: No

Default Debugger: Visual Inspect

New to eNOFT, the DETAIL or D option adds the following parameters to the display,
as applicable to the file type:

Entry Point
Unresolved References (PIC only)
C++ Dialect
Maximum Heap Size
Main Stack Size
Space Guarantee
Fingerprint
Fingerprint Version
Ctors_vaddr
Dtors_vaddr
Initz_vaddr
Termz_vaddr
User Library Name
Interpose User Library
Globalized Symbols (PIC only)
Limit Runtime Paths (PIC only)
MCB Address (from .data section)
Nbr Procedures
Nbr Ptal AltEntrPts
Languages and Dialects
eNOFT Manual—527507-005
2-41

eNOFT Options LISTATTRIBUTE or LA
Instrumented File
Ansistreams

The following NOFT attributes do not apply to TNS/E and thus are not shown in eNOFT:

DEBUG/INSPECT
PFS Size
Directly Needed Public SRLs
Directly Needed Public SRL Bitmap
Userlibrary Timestamp
SRL Client. Attribute "Executable" in the NOFT command is also not supported.

enoft> LISTATTRIBUTE DETAIL

******** List of Common File Attributes

Name: $guest.bn.aomevtct

File Format: ELF64-bit, Big_Endian, IA64

Type: PIC_Program (loadfile)

Debugging Symbols: Yes

> Nbr SubProgs: 7476

> Nbr Variables: 24550

> Nbr SrcFiles: 66

> Compiler(s): Cobol85 C89 C++

Float-Point Type: TANDEM_FLOAT

Float-overrule: No

System Type: Guardian

Creation Timestamp: 2012-10-08 08:56:22

Process Subtype: 0

Highrequestors: No

Runnamed: Yes

Highpin: Yes

Saveabend: Yes

PRIV or CALLABLE Main: No

CALLABLE Procs: No

Default Debugger: Visual Inspect
eNOFT Manual—527507-005
2-42

eNOFT Options LISTCOMPILERS or LC

(build proc symbols table... done)

Entry Point: _MAIN

Unresolved References: ERROR

C++ Dialect: V3

Maximum Heap Size: 0x00000000

Main Stack Size: 0x00000000

Space Guarantee: 0x00000000

Fingerprint: 0000-0000-0000-0000

Fingerprint Version: 0

Ctors_vaddr: 0x0815b5f0

Dtors_vaddr: 0x00000000

Initz_vaddr: 0x0815b740

Termz_vaddr: 0x00000000

User Library Name: (none)

Interpose User Library: Off

Globalized Symbols: Yes

Limit Runtime Paths: No

MCB address: 0x08001170

Nbr Procedures: 7489 (excl comp/linker generated procs)

Nbr Ptal AltEntrPts: 0

Languages and Dialects: Asm C C++V3 Cobol Ptal

Instrumented File: No

Ansistreams: Yes

LISTCOMPILERS or LC

[DETAIL | D]

This command lists version information about the compiler components and object file
linker used to create the target object file.

DETAIL or D provides the toolset for each source file in the object.

The following shows three source files built from two toolsets. Note: header files are
not listed and the file numbers are from LISTSOURCE.

enoft> listcompilers detail

******** Compiler Information

Linker Vproc: TNS/E Linker Internal Build Date April 8, 2004.
eNOFT Manual—527507-005
2-43

eNOFT Options LISTDATA or LD
Compiler: C89

Descript: T0549H01_01OCT2004_CCOM_22Mar2004_GRD 3.3 TOOLSY02 Release

Compiler: C89

Descript: T0549H01_01OCT2004_CCOM_22Mar2004_WIN32 3.3 TOOLSY02 Release

LISTDATA or LD

This is an alias for SYMTAB DATA that lists all data symbols from sections .dynsym and
.dynsym.gblzd in loadfiles and import libraries, and section .symtab from linkfiles.

The display shows a subset of the applicable elf symbols sections. See SYMTAB for the
full listing of all symbols from the dynamic symbols table.

enoft> listdata

******** Section .dynsym (data symbols only)

SymNdx Address/Value Symbol_Name

 Bind Type EM Lang FDescAddr/Size Section

 37 0x08000008 b

 Lcl Data C 1 .data

 40 0x00000000 errno

 Glob Data C 0 UNDEF

 42 0x080001c0 _initz

 Lcl Data Asm 16 .rdata

 43 0x700007d0 _CTORS

 Lcl Data Asm 8 .rconst

 44 0x700007d8 _DTORS

 Lcl Data Asm 8 .rconst

 45 0x00000000 environ

 Glob Data C 0 UNDEF

 46 0x700007e0 _termz

 Lcl Data Asm 8 .rconst

 47 0x08000010 _MCB
eNOFT Manual—527507-005
2-44

eNOFT Options LISTDATA or LD
 Lcl Data C 400 .data

 49 0x700007d8 _dtors

 Lcl Data Asm 8 .rconst

 50 0x08000000 hw

 Lcl Data C 4 .data

 51 0x700007d0 _ctors

 Lcl Data Asm 8 .rconst

 54 0x08000004 a

 Lcl Data C 1 .data

Number of symbols matching scope: 12

 ('Bind' tells if the symbol is local or global)

 ('Type' tells if it is code or data or some special kind of entry)

 ('E' = STO_EXPORT set, 'M' = STO_MULTIPLE_DEF_OK set)

******** Section .dynsym.gblzd not found.
eNOFT Manual—527507-005
2-45

eNOFT Options LISTDEBUG or LDE
LISTDEBUG or LDE

[* | PROC | P | DATA | D] [DETAIL | D]

New to eNOFT, this command lists all names in the .debug_info symbols table that
meet the variable (data) or subprogram (subprogram, subroutine, entry point)
criteria.

DETAIL or D provides more information, such as type of the symbol.

enoft> listdebug * detail

******** List of Debugging Symbols

Count Src:Fil Line Edit_Line Type Start_Addr

 Symbol_Name (mangled)

 1 0:001 40 44. Proc 0x70049200

 __INIT__1_C

 2 0:001 45 55. Proc 0x700494a0

 _MAIN

 3 1:001 8 8. Proc 0x70049680

 T8432H01_01OCT2004_CCPLMAIN

 4 2:001 10 10. Proc 0x700496a0

 T8432H01_10OCT2004_ETK_EAP

 5 3:001 2531 Proc 0x700496c0

 get_8__FRPc

 6 3:002 494 Proc 0x00000000

 __ct__13DynArrayErrorFi

 7 3:002 1697 Proc 0x00000000

 Data__16Dw_File_Info_RepCFv

 8 3:002 1880 Proc 0x00000000

 __ct__8Dw_ErrorFQ2_8Dw_Error5Codes

. . .
eNOFT Manual—527507-005
2-46

eNOFT Options LISTEXPORTS or LE
LISTEXPORTS or LE

This is an alias for SYMTAB EXPORT and is applicable to loadfiles and import libraries.

This command lists all exported symbols that are global and defined from sections
.dynsym and .dynsym.gblzd in loadfiles and import libraries. Symbols available only to
other linkfiles and local to loadfiles (not exported) are not listed.

The display shows a subset of the .dynsym and .dynsym.gblzd sections whereby only
global symbols that are defined are shown. See SYMTAB for the full listing of all
symbols from the dynamic symbols table.

enoft> listexports

******** Section .dynsym (exported symbols only)

SymNdx Address/Value Symbol_Name

 Bind Type EM Lang FDescAddr/Size Section

 30 0x780006e0 PROC1B

 Glob Code Asm 0x78010000 .text

 32 0x78000740 ENTRY1B

 Glob Code Asm 0x78010010 .text

 38 0x780005e0 PROC1A

 Glob Code Asm 0x78010020 .text

 ('Bind' tells if the symbol is local or global)

 ('Type' tells if it is code or data or some special kind of entry)

 ('E' = STO_EXPORT set, 'M' = STO_MULTIPLE_DEF_OK set)

LISTOPTIMIZE or LO

[* | 0 | 1 | 2 | EXCLUDE | E | BRIEF | B]

This command lists procedures based on the optimization level of 0, 1, or 2.

The default display shows all procedures in the object file, sorted by optimization
level.

EXCLUDE or E removes display of symbols that are generated by the compiler or
symbols not found in the .debug_info section.
eNOFT Manual—527507-005
2-47

eNOFT Options LISTPROC or LP
BRIEF or B limits display to counts of symbols matching scope.

enoft> listoptimize

******** Optimization of Procedures

UwNdx Opt Procedure Name

 2 2 T8432G08_01FEB2001_CRTLMAIN

 0 2 __INIT__1_C

 1 2 _MAIN

 3 1 main

LISTPROC or LP

{ * | <proc_spec> }

[EXCLUDE | E | SUBPROC | SP | NOSUBPROC | NSP] [DETAIL | D]

This command lists procedures and subprocedures, as determined by the current
scope. All procedures listed are defined.

Without any local or global scope setting, the default display shows all available
procedure and applicable subprocedure items. If procedure P contains
subprocedure S, a LISTPROC P command line lists S, as it is contained within P.

EXCLUDE or E removes display of symbols that are generated by the compiler or
symbols not found in the .debug_info section.

SUBPROC or SP removes display of parent procedures. If procedure P contains
subprocedure S, a LISTPROC S SUBPROC command line lists only S (and all its
duplicates if available) and not P even though P encompasses S.

NOSUBPROC or NSP removes display of subprocedures. If procedure P contains
subprocedure S, a LISTPROC P NOSUBPROC command line lists only P and not S
even though S is within P.

The following shows all defined procedures for a loadfile. Note for C++ procedures,
"mangled" names are shown by default.

enoft> listproc

******** List of Procedures

UwNdx Proc_Addr Proc_Name

 1 0x70000880 __INIT__1_C
eNOFT Manual—527507-005
2-48

eNOFT Options LISTPROC or LP
 2 0x70000ae0 _MAIN

 3 0x70000cc0 T8432H01_01OCT2004_CCPLMAIN

 4 0x70000ce0 myproc1

 5 0x70000d00 main

DETAIL or D provides detailed information about procedures and subprocedures.
For C++ procedures, DETAIL provides the "demangled" (original) names as well as
the "mangled" internal equivalents. New to eNOFT, this command displays the specified
procedure (or subprocedure) in the DETAIL format if <proc-spec> scoping is
specified here or globally.

enoft> listproc * detail

******** List of Procedures

UwNdx Proc_Addr Proc_Name

 InfoPtr_Addr ProcSz SrNdx Opt Parent Attributes Section

 1 0x70000880 __INIT__1_C

 0x700006c8 608 0 0 none .text

 2 0x70000ae0 _MAIN

 0x700006e8 480 0 0 none M .text

 3 0x70000cc0 T8432H01_01OCT2004_CCPLMAIN

 0x70000708 32 1 0 none .text

 4 0x70000ce0 myproc1

 0x70000720 32 2 0 none .text

 5 0x70000d00 main

 0x70000738 624 2 0 none .text

Key: SrNdx = Src Index Opt = optimization level

 A = alt entry point C = callable E = extensible

 G = Gateway K = kernel callable M = main N = Cobol nonstop

 P = privileged R = resident S = shell

 pTAL subprocs and Cobol nested procs have a 'parent'.
eNOFT Manual—527507-005
2-49

eNOFT Options LISTSOURCE or LS
LISTSOURCE or LS

[* | <source-spec>] [DETAIL | D]

This command lists all source files in an object file, as determined by the current
scope.

The default display shows all available source files.

New to eNOFT, the display will be in the DETAIL format if <source-spec> or
<proc-spec> is specified here or globally.

The following shows two source files used to build a linkfile. The NOFT attribute
"Address" is not supported.

enoft> listsource

******** List of Source Files (Compilation Units)

SrNdx NoSrc Source_and_Header_Files

 0 1 \SPEEDY.$DATA06.T8432H01.CPLMAINC

 \SPEEDY.$DATA06.T8432H01\CPLMAINC

 \SPEEDY.$DATA01\#0062090

 \SPEEDY.$DATA01.TOOLSY02\STDIOH

 \SPEEDY.$DATA01.TOOLSY02\SYSTYPEH

 \SPEEDY.$DATA01.TOOLSY02\ERRNOH

 1 1 \SPEEDY.$DATA06.T8432H01.VERSNMNC

 \SPEEDY.$DATA06.T8432H01\VERSNMNC

 2 1 d:\temp\hello.c

 d:\temp\hello.c

DETAIL or D displays detailed information about the specified source file.
eNOFT Manual—527507-005
2-50

eNOFT Options LISTSOURCE or LS
The attributes "Size", "Address of First Procedure", "Optimization Level Default", and
"Symbols" in the NOFT command are not supported.

enoft> listsource * detail

******** List of Source Files (Compilation Units)

Source: 0 \SPEEDY.$DATA06.T8432H01.CPLMAINC

Copies: 1

Compiler: C89

Descript: T0549H01_01OCT2004_CCOM_22Mar2004_GRD 3.3 TOOLSY02 Release

Header: \SPEEDY.$DATA06.T8432H01\CPLMAINC

Header: \SPEEDY.$DATA01\#0062090

Header: \SPEEDY.$DATA01.TOOLSY02\STDIOH

Header: \SPEEDY.$DATA01.TOOLSY02\SYSTYPEH

Header: \SPEEDY.$DATA01.TOOLSY02\ERRNOH

Source: 1 \SPEEDY.$DATA06.T8432H01.VERSNMNC

Copies: 1

Compiler: C89

Descript: T0549H01_01OCT2004_CCOM_22Mar2004_GRD 3.3 TOOLSY02 Release

Header: \SPEEDY.$DATA06.T8432H01\VERSNMNC

Source: 2 d:\temp\hello.c

Copies: 1

Compiler: C89

Descript: T0549H01_01OCT2004_CCOM_22Mar2004_WIN32 3.3 TOOLSY02 Release

Header: d:\temp\hello.c

Time: 2004 May 6, 13:44:02

Size: 402
eNOFT Manual—527507-005
2-51

eNOFT Options LISTUNREFERENCED or LUR
LISTUNREFERENCED or LUR

[* | PROC | P | DATA | D] [DETAIL | D]

This command is similar to that in NOFT except the asterisk "*" is optional.

This command lists all the names that are undefined and unreferenced in this
object file and need to be linked in before it is executable.

enoft> listunreferenced * detail

******** List of Unreferenced Symbols

SymNdx Address/Value Symbol_Name

 Bind Type EM Lang FDescAddr/Size Section

 Calling_Procedure

 26 0x00000000 BLAHZERO

 Glob Data 0 UNDEF

 27 0x00000000 BLAH1

 Glob Data 0 UNDEF

 28 0x00000000 BLAH2

 Glob Data 0 UNDEF

 29 0x00000000 BLAH3

 Glob Data 0 UNDEF
eNOFT Manual—527507-005
2-52

eNOFT Options LISTUNRESOLVED or LU
LISTUNRESOLVED or LU

[* | PROC | P | DATA | D] [EXCLUDE | E]

This command is similar to that in NOFT in that it lists all the names that are
undefined (yet referenced) in this object.

However the asterisk "*" is optional and this command also lists "unresolved" data
symbols.

enoft> listunresolved * detail

******** List of Unresolved (undefined) Symbols

SymNdx Address/Value Symbol_Name

 Bind Type EM Lang FDescAddr/Size Section

 Calling_Procedure

 26 0x00000000 BLAHZERO

 Glob Data 0 UNDEF

 27 0x00000000 BLAH1

 Glob Data 0 UNDEF

 28 0x00000000 BLAH2

 Glob Data 0 UNDEF

 29 0x00000000 BLAH3

 Glob Data 0 UNDEF

 30 0x00000000 STOP

 Glob Code 0 UNDEF

The NOFT argument "EXCLUDE" is not supported.
eNOFT Manual—527507-005
2-53

eNOFT Options XREFPROC or XP
XREFPROC or XP

[* | <proc-spec>] [CALLEDBY | CALLS | BOTH] [DETAIL | D]

This command displays an alphabetical cross-reference listing of procedures.

CALLEDBY option lists each procedure and the procedures it is called by (default).

CALLS option lists each procedure and the procedures it calls.

BOTH option gives both sets of information, first CALLEDBY, then CALLS.

If <proc-spec> is specified, the display will be restricted to the specified procedure
and the procedures that calls it else to the procedures that it calls if CALLS option is
used.

DETAIL or D option lists the called or calling procedures referenced by the indicated
procedures and the addresses where the calls are made.

The following shows a listing of procedures and the procedures that they call.

enoft> xrefproc * both detail

******** List of Cross-Referenced Symbols

 Called Procedures

 UwNdx Calling Procedures

 Address(es)

 C_INT_INIT_COMPLETE_

 2 _MAIN

 0x70000c80

 C_INT_INIT_START_

 1 __INIT__1_C

 0x70000b70

 exit

 2 _MAIN

 0x70000d50

 main

 2 _MAIN

 0x70000d20

 malloc

 5 main

 0x70000df0

 printf

 5 main
eNOFT Manual—527507-005
2-54

eNOFT Options XREFPROC or XP
 0x70000e50

 6 proc1

 0x70000ec0

 proc1

 5 main

 0x70000e60

 strcpy

 5 main

 0x70000e30

Number of Called (callee) procedures: 8

UwNdx Calling Procedures

 Called Procedures

 Address(es)

 1 __INIT__1_C

 0x70000b70 C_INT_INIT_START_

 2 _MAIN

 C_INT_INIT_COMPLETE_

 0x70000c80

 exit

 0x70000d50

 main

 0x70000d20

 5 main

 malloc

 0x70000df0

 printf

 0x70000e50

 proc1

 0x70000e60

 strcpy

 0x70000e30

 6 proc1

 0x70000ec0 printf

eNOFT Manual—527507-005
2-55

eNOFT Options File Handling Commands
File Handling Commands
The following user interface commands retain the styles and content of NOFT as much
as practical to maintain continuity for users.

<Break Key>

This feature terminates the output of the current command and if eNOFT is running in
command-line mode, terminates the eNOFT program itself.

On some emulators, the control key <CTL> is required to be pressed concurrently with
the break key
.

CD

[pathname]

This command sets the current working directory.

New to eNOFT, this command is an alias for the VOLUME command in Guardian. See
that command for syntax requirements when using this command in the Guardian
environment.

For OSS, the target file may be a Guardian subvolume by use of "/G/vol/subvol" path
name. For files across a node, prefix the path name with the node name "/E/node".

pathname may be fully qualified or relative, with forward slashes for OSS names and
reverse slashes for the PC environment.

Without any option, this command reverts to the default directory (directory at the time
eNOFT was invoked.)

No validation of specified pathname is performed; validation is only performed while
attempting to open the target file.

Relative path names are accepted with the default directory being the current directory
from which eNOFT command is typed.

COMMENT

This command adds the remainder of the command input line as comment to the
designated output. Start each successive comment line with this option.

COMP

[ref-objfile] target-objfile [DETAIL | D]

New to eNOFT, this command allows comparison between two object files for major
differences, including file headers and program headers.
eNOFT Manual—527507-005
2-56

eNOFT Options DEMANGLE or DE
ref-objfile is the reference object file. If not specified, the current object file is
used (if it exists).

Target-objfile is the target object file.

As COMP processes each section/header, it displays a message each time it
encounters a difference between the two objects. If there are no differences in the
sections/headers, then a message is displayed stating that the sections/headers
compared identically.

When COMP is done processing all the sections/headers, it displays the final result of
the comparison. If there were any differences encountered, then the result is that the
two objects are not identical. If no differences are encountered then the result is that
the two objects are identical.

In brief mode (when DETAIL is not specified), only differences and the final result of
the comparison are displayed.

The COMP command compares the following headers and sections:

 File Header

 Program Headers

 Section Headers

 Tandem Info Section

 Data Sections

 Gateway Sections

 RTDU Sections

 Relocation Sections

 PIC Sections

 Procedure Sections

 Symbol Table Sections

 Unwind Sections

The COMP command does not compare DWARF Symbol Tables.

DEMANGLE or DE

<proc_spec>

New to eNOFT, this command displays C++ symbol names in demangled format. An
object file need not be opened prior to use of this command.

enoft> demangle __ct__7CMRWOUTFUiT1

CMRWOUT::CMRWOUT(unsigned int, unsigned int)
eNOFT Manual—527507-005
2-57

eNOFT Options DIR or FILES
DIR or FILES

<pathname>

New to eNOFT, this command lists all entries in the specified directory.

pathname may be fully qualified or relative, with forward slashes for OSS names
and reverse slashes for the PC environment.

Without any option, this command reverts to the default directory (directory at the
time eNOFT was invoked.)

No validation of specified pathname is performed; validation is only performed
while attempting to open the target file.

Relative path names are accepted with the default directory being the current
directory from which eNOFT command is typed.

ENV

This command displays the current values of the eNOFT program environment and that
of the target object file. Use SHOW to see all globally SET commands.

enoft> env

Object File: c:\idis\comptest.exe

Environment: PC

Out File: (none)

Log File: (none)

Obey File: (none)

Current Path: .

EXIT or E or QUIT or Q

These commands terminate eNOFT with return code "0" (EXIT_SUCCESS).

FC and !

[<history-num> | -<history-offset> | text]

The ! (exclamation point) command executes a previously executed command line and
is applicable in an interactive session only. The FC performs the same task except it
first echoes a previous command and is therefore convenient for editing.

By default, both commands revert to the previous command, as applicable.

<history-num> is the ordinal value from the HISTORY command.

-<history-offset> is a negative offset from the current command; for example,
the command before is FC -1.

text corresponds to the last command starting with that text.
eNOFT Manual—527507-005
2-58

eNOFT Options FILE or F
FILE or F

objectfile

This command opens the specified target object file. The NOFT option "?" is not
supported. Use ENV to view the current file settings.

objectfile must match the eNOFT product input requirements. If the new object file
is valid, the prior object file, if any, is closed and SET CASE is set to the applicable
sensitivity of the new object file. Invalid arguments to this command will generate a
syntax error and reset the currently opened object file, if any, and its case sensitivity to
their default settings ("none"). Regardless, its associated global scope settings SET
SCOPEPROC and SET SCOPESOURCE are set to their default settings, as applicable.

The file name must be specified in the format of the host platform; for example, the
Guardian file format must be used when running eNOFT in the Guardian environment.
For OSS, the target file may be a Guardian object file by use of "/G/vol/subvol" path
name. For files across a node, prefix the path name with the node name "/E/node".

Specifying fully qualified path may not be required. If the specified file name is not fully
specified, eNOFT first attempts to resolve the file name to the current location
established by CD or VOLUME if different from the default path location (path location at
the time eNOFT was invoked). If the specified file is not found, eNOFT next attempts to
resolve the file name using the default path location.

enoft> f c:\comptest.exe

Object File: c:\comptest.exe

File Format: ELF64-bit, Big_Endian, IA64

Current Scope: (none)

Case: Sensitive

HELP or ?

[command | help-topic]

This command displays a one-line description of each command and available help-
topics in eNOFT. This supercedes the requirement to type option ALL in NOFT. The
NOFT option UNDOCUMENTED is not supported.

command presents the user with detailed help on the command in question, including
syntax and other information. The content is similar to the data provided on the OSS
manual page as well as the written manual, although certain exceptional behavior may
be left out of the online documents.
eNOFT Manual—527507-005
2-59

eNOFT Options HISTORY or H
help-topic gives detailed information on specific topics about eNOFT or the ELF
object file format. The NOFT help topic shortcuts is not supported.

enoft> help

Type "HELP <topic>" or "? <topic>" for details on

syntax of individual commands:

******** SET and RESET Commands

RESET resets one or more set-cmds to default values

SET sets or show one or more set-cmds in current session

SET CASE SC sensitivity for source, procedure, and path names

SET DEMANGLE SDE sets C++ symbols name displays to DEMANGLE

SET DISPLAY SD sets the display format to BRIEF or DETAIL

SET FORMAT SF formatting of DUMP commands set

SET HISTORYBUFFER SHB size of previous commands stored

SET HISTORYWINDOW SHW number of previous commands seen

SET LINES SL number of lines displayed before pause

SET SCOPEPROC SSP limits to looking at individual procedures

SET SCOPESOURCE SSS limits to looking at individual source files

SET SORT ST sorting of LIST commands set

******** DUMP Display Commands

DUMPALL ALL all non-zero sections + file, prgrm, & section hdrs

DUMPADDRESS DA program text or data range (executables)

DUMPCODE DC all code in object file, optionally disassembled

 . . . and so on . . .

HISTORY or H

[<num>]

This command displays the list of previous commands.

<num> is the number of command lines to be displayed. The default is 10 lines.

This parameter is useful only in an interactive session, because options given in the
command line are not stored in the history buffer.

enoft> history

 1> f c:\comptest.exe

 2> env

 3> history
eNOFT Manual—527507-005
2-60

eNOFT Options LOG and OUT
LOG and OUT

[OFF | outfile [ASCII]]

The LOG command echoes a copy of the current session's input and output to a
specified file. The OUT command redirects the output listings from the standard
terminal to a specified file; the input remains being displayed to the standard terminal.
The NOFT option "?" is not supported.

OFF resets to not logging. New to eNOFT, this command also resets to not logging if no
option is entered.

outfile defaults to the EDIT file type in the Guardian environment and ASCII text file
type in OSS and PC Windows.

ASCII specifies the file type will be ASCII text mode with file code "180". This option
replaces option "BINARY" in the NOFT command and is not applicable to OSS or PC
Windows.

If specified outfile does not exist, eNOFT creates it. If the specified file name is not fully
specified, the log file is created in the current path set by CD or VOLUME. Specifying a
partial path location is accepted (for example, only specify subvolume without the node
and volume) with the current path as the default path from which the file is created.

If specified outfile is an existing file, eNOFT appends the log output to the file.

If logging is already in progress, eNOFT closes the previous log file and begins logging
to the new file. If the file is the same as the previous log file, eNOFT ignores this
command and continues logging to the same file.

The alias NOFT commands SET LOG and SET OUT are not supported.

NOEXIT

After executing prior listed commands on the command line, reverts program to
Interactive mode and generates eNOFT prompt.

Note commands listed after this command on the command line are ignored. Also
commands that are not applicable to Command-Line mode (for example, SET LINES)
will be ignored if specified prior to this command.

This program is only applicable to Command-Line mode.

OBEY

infile

This command directs eNOFT to read from the specified command script file.

infile is mandatory; a syntax error will generate if no file name is given and a data
error will generate if eNOFT cannot open the specified file.
eNOFT Manual—527507-005
2-61

eNOFT Options SHOW
In the Guardian environment, infile must be of the EDIT file type. A data error will be
generated if the file type is not of this code.

The command files may be nested to any depth but cannot be circularly linked; for
example, recursive. Opening a currently opened OBEY command file will result in an
error.

The commands listed in this file must follow the rules specified for command-line
processing.

SHOW

[* | set-cmd]

This command is an alias for the command SET, except that option <argument> of SET
is not available; that is, SHOW cannot be used to set a <set cmd>.

Unlike NOFT, attributes associated with the ENV command are not shown with output
from this command. Use that command to show name of current target object file and
its environment.

This command replaces NOFT commands SET <set-cmd>? and OPTIONS.

VOLUME or CD

[\<node>] [.$<volume>] [.<subvolume>]

This command changes the default node, volume or subvolume and is applicable to
the Guardian environment only. Use CD and its syntax for the PC Windows and OSS
personalities.

New to eNOFT, CD is an alias for this command on the Guardian environment.

Without any option, this command reverts to the default directory (directory at the time
eNOFT was invoked.)

Specifying a partial file name is acceptable (for example, only specify subvolume
without the node and volume) with the default path being the current location from
which eNOFT command is typed.

No validation of specified node name, volume, or subvolume; file validation is
performed while attempting to open the target file.

The alias NOFT command SYSTEM is not supported.
eNOFT Manual—527507-005
2-62

3 The ar Utility

The ar utility creates and maintains archives composed of groups of object files. You
can mix PIC and non-PIC files in an archive. After an archive has been created, new
files can be added and existing files can be extracted, deleted, or replaced.

The ar utility runs in the following environments:

 Guardian

 Open System Services (OSS)

 The following PC platforms:

To run the ar utility, use the following syntax. The syntax is the same in every
environment in which ar runs:

action-option

is an ar option that specifies the action to be performed. The action options are as
follows:

Platform

Operating System

Windows 98 Windows NT Windows 2000 Windows XP

TDS1 Yes Yes No No

ETK2 No Yes Yes Yes

1. HP Tandem Development Suite

2. HP Enterprise Toolkit—NonStop Edition

ar action-option [modifier-option ...] [position_name]
 archive [file ...]

Name Function (page 1 of 2)

-d Delete the specified files from the archive.

-m Move the specified files. The -a, -b, or -i option with the
position-name operand indicates the destination of the
move; otherwise, move the files to the end of the archive.

-p Write the contents of the specified files from the archive to
the standard output. If no files are specified, write the
contents of all files in the archive, from first to last.

-q Quickly append the specified files to the end of the
archive file. In this case, ar does not check whether the
added members are already in the archive. This is useful
to bypass the searching otherwise done when creating a
large archive file piece by piece.
eNOFT Manual—527507-005
3-1

The ar Utility
-r Replace or add files to the archive. If the archive specified
by archive does not exist, ar creates a new archive
and writes a diagnostic message to standard error (unless
you specify the -c option). If no files are specified and the
archive exists, no changes are made to that archive. Files
that replace existing files do not change the order of the
archive; files that do not replace existing files are
appended to the archive.

-t Write a table of contents of archive to the standard
output. The specified files are included in the written list. If
no file operands are specified, all files in the archive
are included in the list, in the order in which they occur in
the archive.

-Wobey obey-file Indicates that an option and a list of files to be processed
should be read from the file obey-file rather than from
the command line. The -Wobey option cannot be used on
the command line when any other option is used on the
command line.

Use the -Wobey option to speed up execution of the ar
command when more than one file must be processed.

The file obey-file must be either a Guardian EDIT file
or a OSS text file. In the obey-file, you must specify
one and only one option from the required-flag set
dmpqrtx.

You can also specify any number of optional flags from
the set abcilsuvCT. If you select a modifier-option
(a, b, or i), you must also specify the name of a file within
the library (position_name) immediately following the
option list and separated from it by a space.

-x Extract the specified files from the archive. The contents
of the archive file are not changed. If no file operands
are specified, ar extracts all files in the archive. ar sets
the modification time of each extracted file to the time at
which the file is extracted from the archive.

When ar is running in the Guardian environment, it gives
file code 700 to extracted TNS/R files and file code 800 to
extracted TNS/E files; it gives file code 180 to all other
extracted files.

If the filename of a file to be extracted is longer than that
supported in the directory to which it is being extracted,
an error occurs and ar does not extract the file unless the
-T option is specified, in which case ar extracts the file
and renames it with the truncated filename. If the name of
a file to be extracted is not valid on the platform where ar
is running, ar does not extract the file but issues a
diagnostic instead.

Name Function (page 2 of 2)
eNOFT Manual—527507-005
3-2

The ar Utility
modifier-option

is an ar option that gives instructions for the operation of the action-option.
The modifier-options are as follows:

Name Function (page 1 of 2)

-a Position new files in the archive after the file specified by the
position-name operand.

-b Position new files in the archive before the file specified by the
position-name operand.

-c Suppress the diagnostic message that would be written to standard
error by default when the archive file is created.

-C Prevent extracted files from replacing like-named files in the file
system. This option is useful when -T is also used, to prevent
truncated filenames from replacing files with the same prefix.

-i Position new files in the archive before the file specified by the
position-name operand (same function as the -b option).

-l In the OSS environment, create temporary files in the local current
working directory instead of the directory specified by the
environmental variable TMPDIR. In the Guardian environment and
on Windows platforms, this option is ignored; temporary files are
always created in the default subvolume in the Guardian
environment and in the current folder on platforms running
Windows.

-s Force regeneration of the archive symbol table even if ar is not
invoked with an option that modifies the archive file contents.

-T Allow filename truncation of extracted files having archive names
that are longer than the file system supports. By default, an error
occurs when attempting to extract a file with a name that is too long;
ar writes a diagnostic message and does not extract the file.

-u Update older files. When used with the -r option, this option causes
ar to replace a file within the archive only if the corresponding file
has a modification time that is at least as new as the modification
time of the file within the archive.
eNOFT Manual—527507-005
3-3

The ar Utility
When modifier options are used in combination, the preceding hyphen can be
omitted for all but the first option specified.

position-name

is the name of a file in the archive that is used for relative positioning. See the
descriptions of the -m and -r options.

-v Give verbose output.

 When used with the -d, -r, or -x options, this option causes
ar to write the name of each file involved in archiving
operations.

 When used with -p, this option causes ar to write the name of
each file to the standard output before writing the file itself to the
standard output.

 When used with -t, this option causes ar to include a long
listing of information about each file within the archive, including
access, ownership, size, and date-and-time information. The
specific content of the listing is as follows:

access info, user ID, group ID, member size,
month, day, hour, minute, year, Filename

When used with -t on Windows platforms, the ownership fields
are shown (although shown as zero), because Windows
provides for ownership, but access information for group and
other is shown as “no access,” because these fields are not
relevant under Windows. ar makes no use of the file access
information saved for archive members.

-Wfiletype Display the file type. When this option is used with the -tv option,
ar displays [elf], [tns], or nothing after the filename. This can
be useful to discover the cause of the problem when ar fails to
generate a symbol table because the archive contains a mix of TNS,
TNS/R, or TNS/E files. This option is available in the OSS and
Guardian environments.

Name Function (page 2 of 2)
eNOFT Manual—527507-005
3-4

The ar Utility
archive

depends on the platform, as follows:

The maximum size of an archive file in the Guardian environment is 128,073,728
bytes. If operations on an archive file cause it to exceed that size, ar returns an
error and the archive file becomes corrupted.

file

can be PIC or non-PIC and depends on the platform as follows:

The possible combinations of options and operands are:

ar accepts many kinds of files as archive members. ar recognizes three kinds of HP
object files: TNS, TNS/R, and TNS/E. All other files, including text files, are considered
target-independent files. Only archives composed entirely of the same kind of HP

Environment Archive

Guardian is the pathname of the archive file to be created or modified. Archives
created in the Guardian environment are given file code 700 on
TNS/R, and file code 800 on TNS/E platforms.

OSS is the filename of the archive file to be created or modified.

PC is the filename of the archive file to be created or modified. It can be
partially or fully qualified, and can include system and folder names.

Environment File

Guardian is the fully qualified or partially qualified filename of a file whose file
code is 100, 180, 700, or 800. If partially qualified, the value of the
#DEFAULTS DEFINE supplies the missing components of the
filename.

OSS is the pathname of a filename.

PC is a fully qualified or partially qualified pathname, which can include
system or folder names. Wild-card characters (? and *) can be used
in the filename portion of the path, but cannot be used in folder
names.

ar -d [-v] [-l] archive file ...

ar -m [-abilv] [position-name] archive file ...

ar -p [-v] [-s] archive [file ...]

ar -q [-clv] archive [file ...]

ar -r [-cuv] [-abil] [position-name] archive [file ...]

ar -t [-v] [-s] [-Wfiletype] archive [file ...]

ar -x [-v] [-sCT] archive [file ...]
eNOFT Manual—527507-005
3-5

The ar Utility
object file and target-independent files contain an archive symbol table and are suitable
for use by Binder or the linkers(nld, ld or eld).

If ar detects mixing of the kinds of HP object files, it generates the archive but does
not generate a symbol table, issuing an appropriate warning message instead.

When an archive contains a mix of TNS, TNS/R, or TNS/E object files, it is not usable
by either Binder or the linkers (nld, ld, or eld)because no symbol table is
generated. When such an archive is generated on Windows platforms, however, no
error message is displayed because TNS files are not recognized as object files in that
environment.

An archive symbol table is created as the first file member of the archive file for a
successful archive operation when there is at least one object file in the archive. The
symbol table is maintained by ar and is used by Binder or the linkers(nld, ld or
eld) to search the archive. Whenever ar is used to create or update the contents of
such an archive, ar rebuilds the symbol table. The -s option of ar forces the symbol
table to be rebuilt.

An archive file embedded as a member of another archive file is not usable by Binder
or the linkers(nld, ld or eld).

A file within an archive is named by a filename, which is the last component of the
pathname used when the file was entered into the archive. The comparison of a file
operand to the name of a file in an archive is performed by comparing the last
component of the operand to the name of the archive file. In the Guardian environment
and on platforms running Windows, this comparison is case-insensitive.

Multiple files in an archive can have the same name. In such a case, however, each
file and position-name operand matches only the first archive file having a name
that is the same as the last component of the operand.

In the OSS environment, ar accepts OSS files as archive members. Archive libraries
built by ar in any environment can be used for linking in any environment where
Binder or the linkers(nld, ld or eld) run, provided the archive contains a symbol
table and the appropriate kind of HP object file for the linker used.

It is your responsibility to ensure that archive members are appropriate for the target
environment; for example, archive members must be compiled as OSS targets when
they are to be used to construct an application that will run in the OSS environment.

For more information on the ar utility, see the Open System Services Shell and
Utilities Manual.
eNOFT Manual—527507-005
3-6

4 eNOFT Diagnostic Messages

eNOFT sends all information to the standard output and does not differentiate error
messages from its standard output when redirection of output is specified. A return
code of "1" is generated on fatal termination and "0" (EXIT_SUCCESS) otherwise.

In interactive mode, messages that appear in the output listing fall into one of four
severity levels:

Fatal Errors on page 4-1

Data Errors on page 4-1

Syntax Errors on page 4-1

Warnings on page 4-2.

Fatal Errors

Fatal errors are generated when memory cannot be allocated, most likely due to an
internal problem with the program; for example, illegal access into memory.

enoft> FATAL ERROR *** [code]

<description of error>

where code is a value from 1 to 999.

Memory allocated data are destroyed and the program aborts with a return code of "1"
(EXIT_FAILURE).

Data Errors

This type of error is generated when eNOFT cannot continue processing because the
object file is incomplete or damaged or if the specified command is not applicable to
the target object type.

enoft> DATA ERROR *** [code]

<description of error>

where code is a value from 1000 to 1999.

In interactive mode, eNOFT returns a prompt after the error message is displayed. In
command-line mode, eNOFT continues with the next command after the error message
is displayed.

Syntax Errors

This type of error is generated when eNOFT cannot recognize the entered command or
its syntax.

enoft> SYNTAX ERROR *** [code]

<description of error>
eNOFT Manual—527507-005
4-1

eNOFT Diagnostic Messages Warnings
where code is a value from 3000 to 3999.

In interactive mode, eNOFT returns a prompt after the error message is displayed. In
command-line mode, eNOFT continues with the next command after the error message
is displayed.

Warnings

eNOFT generates a recovery mode message and course of action.

enoft> WARNING *** [code]

<description of error and corrective action>

where code is a value from 2000 to 2999.

eNOFT continues processing the command in accordance to its understanding of the
user intent.
eNOFT Manual—527507-005
4-2

5 ar Diagnostic Messages

The ar utility produces messages when errors occur in command input or in data on
which the utility is operating. The following messages are in alphabetic order.

Cause. The maximum size of an archive file is 128,073,728 bytes. If operations on the
archive file cause the file to exceed that size limit, the ar command returns an error
message and the archive file becomes corrupted because ar cannot create the
symbol table information.

Recovery. See the Guardian Procedure Errors and Messages Manual.

Cause. The maximum size of an archive file is 128,073,728 bytes. If operations on the
archive file cause the file to exceed that size limit, the ar command returns an error
message and the archive file becomes corrupted because ar cannot create the
symbol table information.

Recovery. See the Guardian Procedure Errors and Messages Manual.

Cause. This is an advisory message. Object files for the NonStop servers are linked
together using the linking program Binder. TNS/R object files are linked together using
the linking utility nld. TNS/E object files are linked using eld. ar attempts to build a
symbol table for the archive so that the linking program can know the archive contents.
A different symbol table is required for each linking program, so ar cannot build a
single symbol table when both types of object files are represented in the archive. If the
archive is not to be used for linking, no action is required. The archive contains all the
members specified.

Recovery. If the archive is to be used for linking, separate the members into separate
archives, one containing TNS object files and the others containing either TNS/R or
TNS/E object files. Note that you may mix PIC and non-PIC TNS/R object files in an
archive, but you may not have TNS/R and TNS/E PIC files in the same archive.

ar: archive: Guardian or User Defined Error 43
 Unable to obtain disk space for file extent.

ar: archive: Guardian or User Defined Error 45
 The resulting file size exceeds 128,073,728
 bytes and the file is not a valid archive
 file.

ar: cannot create archive symbol table due to ELF/TNS mix.
eNOFT Manual—527507-005
5-1

ar Diagnostic Messages
Cause. When building an archive in the Guardian environment, ar encountered a File
System error identified by the number errnum when processing the specified member.
The archive should be intact except for the member that caused the error.

Recovery. Correct the error condition and add the member to the archive using the -r
option, also specifying a or b if the position of the member is relevant.

Cause. When building an archive in the Guardian environment, the maximum size for
a single member is approximately 128,073,728 bytes.

Recovery. Rebuild the archive, excluding the file that is too large.

Cause. When building an archive in the Guardian environment, each member file
must be an odd, unstructured disk file. In particular, Edit-format (code 101) files are not
allowed in archives.

Recovery. Rebuild the archive, excluding files that are of invalid types.

Cause. An I/O error occurred when the specified archive was being closed prior to
constructing the archive symbol table.

Recovery. Correct the condition that caused the I/O error, then build the symbol table
by using ar with the -ts options.

Cause. An error occurred when ar attempted to open the specified archive.

Recovery. Identify the error and remedy the situation, then rebuild the archive.

ar: member: encountered error errnum.

ar: member: file too large.

ar: member: invalid file type.

archive, cannot close to reposition for symbol table.

archive, cannot open.
eNOFT Manual—527507-005
5-2

ar Diagnostic Messages
Cause. An I/O error occurred in the Guardian environment when ar attempted to
open the specified archive to set the file permissions.

Recovery. Use the FUP utility to look at the permissions on the archive and make any
corrections needed.

Cause. An I/O error occurred when the specified archive was being reopened prior to
constructing the archive symbol table.

Recovery. Correct the condition that caused the I/O error, then build the symbol table
by using ar with the -ts options.

Cause. An I/O error occurred in the Guardian environment when ar attempted to set
the file permissions on the specified archive.

Recovery. Use the FUP utility to look at the permissions on the archive and make any
corrections needed.

Cause. When running in the Guardian environment, ar encountered an error closing
the specified archive.

Recovery. Correct the error condition and rebuild the archive.

Cause. When running in the Guardian environment, ar encountered an error
reopening the specified archive.

Recovery. Correct the error condition and rebuild the archive.

archive, cannot open archive to set permissions.

archive, cannot reopen to add symbol table.

archive, cannot set archive permissions.

archive, error on close.

archive, error on reopen.
eNOFT Manual—527507-005
5-3

ar Diagnostic Messages
Cause. In the Guardian environment, a file specified as an existing archive must be an
odd, unstructured file having file code 700 or 800.

Recovery. If archive refers to a file that is not currently in archive format, delete that
file and reenter the ar command. If archive refers to an archive that was built by the
ar utility in another environment, check the file code of that file using the FUP utility; if
the file code is not 700 or 800, change it using FUP.

Cause. ar cannot obtain additional memory space for the symbol table. The archive
file, if created, will not be usable by nld or eld.

Recovery. Retry the command when there are fewer active processes in the system
or break up a large archive file into smaller archive files.

Cause. ar cannot obtain additional memory space for the symbol table. The archive
file, if created, will not be usable by nld or eld.

Recovery. Break the archive into several smaller archives.

Cause. ar detected inconsistencies in the object file member and cannot finish its
operation. The archive symbol table is unusable by nld or eld.

Recovery. Either remove the object file member from the archive file or obtain a valid
copy of the object file and repeat the ar operation.

Cause. An error occurred during the operation; for example, a member file cannot be
found. The archive symbol table contained in the archive may have been corrupted or
may not contain up-to-date information required by nld or eld for resolving external
references.

Recovery. Identify the source of the error and remedy the situation so that the archive
operation can be finished normally. The -s option can also be used to restore or
regenerate the symbol table.

archive, not a valid archive file.

cannot malloc space for symbol table.

cannot realloc space.

corrupted object file <filename>.

error during operation, archive archive may not contain
correct symbol table usable by the binder/nld/eld.
eNOFT Manual—527507-005
5-4

ar Diagnostic Messages
Cause. During an extract (-x) operation, the filename of the specified file is longer
than the maximum supported by the File System; the specific member is not extracted.

Recovery. Use the -T option to truncate the filename to the maximum length allowed
by the File System during extraction.

Effect. The identified option combination is not allowed.

Recovery. Reenter the command correctly.

Cause. This is an advisory message. It warns when an archive member is not
extracted because a file of that name already exists.

Recovery. To overwrite the existing file, either purge it before using ar or be sure not
to use the C option on the ar command.

Cause. The specified archive has an invalid file format.

Recovery. Rebuild the archive.

Cause. When running in the Guardian environment, ar does not allow files to be
extracted to the OSS file space.

Recovery. Specify a location in the Guardian file space where members can be
extracted.

Cause. The file member specified in the file operand is not in the archive. The -t
option can be used to find out what members exist in the archive.

Recovery. Reenter the command with correct member names.

file name filename: filename too long for filesystem.

illegal option combination for option.

member already exists.

member: archive: bad file format.

member, cannot extract because destination is not in Guardian
filespace.

member: not found in archive.
eNOFT Manual—527507-005
5-5

ar Diagnostic Messages
Cause. A positional option must be followed by a position operand preceding the
name of the archive.

Recovery. Reenter the command correctly.

Cause. An ar command with the operational option specified requires file-member
operands.

Recovery. Reenter the command correctly.

An archive file is not specified in the command. Usually this indicates that either no
operand or one operand (when a position operand is required) is specified in the
command. Reenter the command with the correct number of operands.

Cause. One of the listed options is required.

Recovery. Reenter the command correctly.

Cause. Only one positional option is allowed in an ar command.

Recovery. Reenter the command correctly.

Cause. The specified position operand is not in the archive. The -t option can be
used to find out what members exist in the archive.

Recovery. Reenter the command with correct member names as the position
operand.

no position operand specified.

no archive members specified.

no archive specified.

one of the options -dmpqrtx is required.

only one of -a and -[bi] options allowed.

posname: archive member not found.
eNOFT Manual—527507-005
5-6

ar Diagnostic Messages
Cause. The flag specified with the -W option is not recognized by ar.

Recovery. Reenter the command correctly.

W option is not a recognized flag.
eNOFT Manual—527507-005
5-7

ar Diagnostic Messages
eNOFT Manual—527507-005
5-8

A TNS/E Native Object Files

This appendix contains the following information:

The Object File Format - the types of object files and their content.

Code and Data Sections - the "ordinary" code and data sections that come from
application source code, possibly with additions by the compiler or linker.

Relocation Tables - when code is relocated, who resolves the address and prepares
relocation tables?

The DWARF Symbol Table - this table contains information used by debuggers and the
Cobol compiler.

Archives - contains an extension of material covered in a previous section of this
manual.

Tools That Work With Object Files - a quick look at which NSK tools use object files.

The Object File Format
This general information may also be found in the eld Manual.

Basic Properties of Object Files

User versions of TNS/E tools may run in the following places:

 All TNS/E versions of the NSK operating system, including both the Guardian
and OSS “personalities” of NSK.

 Some TNS/R versions of the NSK operating system, at least in the Guardian
personality.

 Appropriate versions of the Windows operating system on PC’s.

TNS/E object files only run on TNS/E.

On Guardian, and in Guardian subvolumes of OSS, object files are unstructured files
that are “odd unstructured”, the same as in TNS/R.

On Guardian, and in Guardian subvolumes of OSS, TNS/E object files have the file
code 800.

TNS/E object files use the 64-bit version of the ELF file format.

TNS/E object files are big endian. This means that all their data is big endian. Code
on the IPF (Itanium Processor Family) platform is always little endian.

Types of TNS/E Object Files

There are the following four types of TNS/E object files.
eNOFT Manual—527507-005
A-1

TNS/E Native Object Files Types of TNS/E Object Files
Collectively, programs and DLL’s are called loadfiles. Loadfiles and import libraries are
built by the linker.

This appendix describes all four types of object files. The main distinctions occur
between linkfiles and loadfiles. There is little difference between a program and a DLL
as far as the file format is concerned, and an import library is a subset of what is in a
DLL.

A loadfile may refer by name to symbols that exist in other loadfiles in the same
process. Such references are resolved when the loadfiles are brought into memory by
the runtime loader, which is named rld, or by the runtime procedure named dlopen.
When the loadfile was originally built by the linker it is also possible that the linker tried
to resolve such references. A loadfile whose references have been resolved by the
linker is said to be preset.

A process can also use one user library. A user library is a DLL. Nothing within a user
library distinguishes it from other DLLs, and a DLL that serves as the user library for
one program can also be used like any other DLL by other programs. The only
difference between the user library and other DLL’s is in the way the program identifies
the user library that it uses. For a DLL to be used as a user library at runtime its
filename must be in the Guardian name space.

An import library can take the place of a DLL at link time. One use of import libraries is
to save space. Another use is for security, when it is necessary for the linker to read
the header information but it is not desirable for others to be able to see the code.
Import libraries are further categorized as complete or incomplete. The difference is
that an incomplete import library need not contain the correct addresses for symbols.
A complete import library can be used by the linker when presetting a loadfile. The
linker can use an incomplete import library to check for unresolved references, but not
to preset.

Table A-1. Types of TNS/E Object Files

Type of Object File Description

Linkfile This is the term for the object files that are produced by a compiler
or by the assembler, and can be given as input to the linker. It is
also possible for the linker to produce a linkfile as output when run
with the -r option.

Program This is the term for a main program. There is one program in
every process.

DLL This stands for dynamic-link library. It is an object file that is not a
program but can also be part of a process. A process can contain
any number of DLL’s. DLL’s are also used by the linker when
building other programs or DLL’s.

Import Library This is a file that contains just the part of a DLL that is needed at
link time to build other programs or DLL’s.
eNOFT Manual—527507-005
A-2

TNS/E Native Object Files How to Distinguish the Different Types of Object
Files
DLL’s and import libraries can also be used at compile time by the COBOL compiler to
find out information about procedure call interfaces.

Some DLL’s are called public libraries because they are provided as part of the TNS/E
implementation and are found in a special way by the linker and runtime loader. A
public library has the same format as any other DLL, and can have an import library to
represent it.

Some of the public libraries are called implicit libraries because they are used at link
time and run time without explicit mention on the part of the user. There are several
implicit libraries, and there is a bit in a DLL that tells if it is an implicit library. A single
implicit library never has an import library to represent it to the linker. Rather, at link
time, when building a loadfile that is not an implicit library, a single import library
represents the entire set of implicit libraries. That is called the import library that
represents the implicit libraries, and it is always a complete import library.

How to Distinguish the Different Types of Object Files

The first four bytes of an ELF file (in the ELF header) identify the file as an ELF file.

The fifth byte, named e_ident [EI_CLASS], tells if it is the 32-bit or 64-bit version of
ELF. This distinguishes between TNS/R and TNS/E object files.

The e_machine field of the ELF header identifies the target platform. This also
distinguishes between TNS/R and TNS/E object files.

The e_type field of the ELF header distinguishes among the four types of TNS/E object
files described in this section, except that the same value, ET_DYN, is used both for
DLL’s and import libraries.

When e_type = ET_DYN, the EF_TANDEM_IMPORT_LIB bit of the e_flags field tells if
it is a DLL or an import library. When it is an import library, the
EF_TANDEM_IMP_LIB_COMPLETE bit tells if it is complete or incomplete.

The EF_TANDEM_IMPLICIT_LIB bit of the e_flags field tells if this DLL is one of the
implicit libraries, and is also set in the import library that represents the implicit
libraries. The import library that represents the implicit libraries is also identified by the
DLL name “__IMPLICIT_LIB__” found in the DT_SONAME record of the .dynamic
section.

Summary of the Contents of an Object File

This appendix does not specify the ordering of sections within linkfiles. Compilers and
the assembler are free to arrange sections as they wish, and so can the linker when it
creates a linkfile with the -r option. The following is a list of the things that may exist in
linkfiles:

ELF Header

Stack Unwinding Information (.IA_64.unwind and .IA_64.unwind_info)

Text Sections (sections whose names begin .text or .restext)
eNOFT Manual—527507-005
A-3

TNS/E Native Object Files Summary of the Contents of an Object File
User Data Sections (.data, .sdata, .bss, .sbss, .rdata, .srdata, and .rconst)

A .tandem_info section (possibly abbreviated to four bytes)

The .procinfo and .procnames Sections

DWARF Symbol Table Sections

Relocation Table Sections (.rela.x, where .x could be any of the section names
listed above)

ELF Symbol Table Sections (.symtab and .strtab)

Source RTDU Sections (.rtdu.index, .rtdu.names, and .rtdu.data)

ELF Section Headers and the .shstrtab Section

This appendix does, however, specify the ordering of sections within loadfiles and
import libraries, as shown in Contents of a Loadfile or Import Library on page A-5.

It is also possible for the compilers or assembler to create sections of names not listed
here. The characteristics of such sections, as listed in their ELF section headers,
would tell the linker what to do with them, and they would be propagated by the linker
into its output file.

Linkfiles also contain a section named .comment, but it is discarded by the linker.

In a loadfile, some of the sections are organized into segments. There is always a text
segment, which comes at the beginning of the file. There may be a gateway segment.
There may be either one or two data segments. When there are two data segments,
they are called the data constant segment, followed by the data variable segment.

The first column in the table on the following page lists the items that may be found in a
loadfile, in the order they would exist. Note that the text segment is always the first
segment in the file, and that there may be one or two data segments. Note that the
placement of the .gateway section (equivalent to the gateway segment) depends on
whether the loadfile is a program or a DLL, and that the placement of the .data section
depends on whether there are one or two data segments. The last two columns have
an “X” next to those sections that may be referenced with 22-bit global pointer (GP) -
relative addressing, or that may be found in import libraries, respectively.

The segments are loaded into virtual memory. The layout in virtual memory is the
same as in the file within each segment, but there are choices for where each segment
is placed into virtual memory.

The .sbss and .bss sections don’t actually take up any space in loadfiles. The table
only shows where they would be placed in virtual memory.
eNOFT Manual—527507-005
A-4

TNS/E Native Object Files Summary of the Contents of an Object File
Table A-2. Contents of a Loadfile or Import Library

Loadfile Contents
GP-
Relative

Import
LIbrary

ELF Header X

ELF Program Headers X

.tandem_info X

.lic

.dynamic X

.liblist X

.dynsym.gblzd X

.hash.gblzd X

.hashval.gblzd

.rela.gblzd

.dynstr2 X

.IA_64.unwind

.IA_64.unwind_info

.IA_64.unwind.strings

.rconst

.plt

.restext

.text

.hash X

.dynsym X

.dynstr X

.hashval

.rela.dyn

.gateway (for a program)

.data (can have more than one data segment)

.rdata

.fptr

.srdata X

.got X

.IA_64.pltoff X

.sdata X

.sbss X

.bss
eNOFT Manual—527507-005
A-5

TNS/E Native Object Files Summary of the Contents of an Object File
Note that the sections from .got through .sbss are purposely kept together as much as
possible, since they are all referenced with GP-relative addressing. However, when
there are two data segments, the .data section is allowed to intrude among these
sections.

Both the data constant segment and data variable segment can have data that
requires modification by rld when loaded into memory. The difference is that the data
constant segment cannot be modified thereafter, while the data variable segment can.

The following is a brief description of each of the items that can occur in a linkfile or
loadfile. Unless otherwise stated, a section is not required to be present if, based on
its description, it would not contain any useful information for a given object file.

ELF Header

This contains header information for the entire file. It is always found at the start of
an ELF file.

ELF Program Headers

These contain information that summarizes the main parts of the object file
required for loading into memory. Program headers are required in loadfiles and
import libraries.

.tandem_info Section

This contains more information of interest to the operating system. It is required in
loadfiles and import libraries. It also exists in linkfiles because some of its fields
are also meaningful there.

.lic Section

This contains information about the DLL’s that were used to preset this loadfile. It
is required in a loadfile, as a placeholder even if the loadfile is not preset.

.dynamic Section

This contains information needed by the runtime loader, such as the addresses of
the .liblist through rela.dyn sections. It is required in loadfiles and import libraries.

.gateway (for a DLL)

DWARF Symbol Table Sections X

.source.rdtu (if present, there are three of them.)

.object.rdtu (if present, there are three of them.)

.shstrtab X

ELF Section Headers X

Table A-2. Contents of a Loadfile or Import Library

Loadfile Contents
GP-
Relative

Import
LIbrary
eNOFT Manual—527507-005
A-6

TNS/E Native Object Files Summary of the Contents of an Object File
.liblist Section

In a loadfile, this tells the names of the DLL’s that were in the linker command
stream when the linker built this loadfile. In an import library that represents a
single DLL it contains the same information as in that DLL.

.dynsym.gblzd Section

This is a symbol table section, similar to the .dynsym section (see below), but just
for globalized symbols. It may be present in loadfiles and import libraries.

.hash.gblzd Section

This is a hash table section, similar to the .hash section (see below), but for looking
up symbols in the .dynsym.gblzd section.

.hashval.gblzd Section

This is similar to the .hashval section (see below), but providing information about
the symbols in the .dynsym.gblzd section.

.rela.gblzd Section

This is similar to the .rela.dyn section (see below), but for the relocation sites
whose targets are globalized symbols.

.dynstr2 Section

This is a string space that is pointed at from the .dynamic, .liblist, and
.dynsym.gblzd sections.

Stack Unwinding Sections

These contain information for stack unwinding. Note that there are two such
sections in a linkfile (not counting the relocation table section named
.rela.IA_64.unwind), and three such sections in a loadfile.

.rconst Section

This contains application-defined initialized data that does not get modified at
runtime, and does not contain addresses that might need modification when the
loadfile is first brought into memory. This may never be created by a compilation
or assembly, but when the linker sees an input section named .rdata that contains
no relocation sites it renames the section to .rconst.

.plt Section

This section contains import stubs. An import stub is created by the linker in a
loadfile when the linker cannot guarantee that the target of an IP-relative procedure
call will be resolved within the same loadfile.
eNOFT Manual—527507-005
A-7

TNS/E Native Object Files Summary of the Contents of an Object File
Text Sections

Text sections contain application-defined executable code (procedures). The
object file design also allows them to contain data, but that is not expected to
happen. In linkfiles, there can be any number of text sections. Their names must
begin either .text or .restext, corresponding to whether they contain non-resident or
resident text, respectively. In loadfiles, all the sections that had names beginning
.text are combined into a single section named .text, and similarly for .restext, and
the .restext section (if it exists) comes before the .text section. A text section is
required in a program, because there must be a main entry point. Text sections in
a loadfile can contain branch stubs, which are generated by the linker when a
procedure call would need to jump farther than its instruction format allows.

.hash Section

This is a hash table for looking up symbols in the .dynsym section. It is required in
loadfiles and import libraries.

.dynsym Section

This is the dynamic symbol table. It contains information about symbols
referenced in this loadfile or exported from this loadfile, other than globalized
symbols. It is required in loadfiles and import libraries.

.dynstr Section

This is a string space that is pointed at from the .dynsym section. It is required in
loadfiles and import libraries.

.hashval Section

This contains precomputed hash values for the symbols listed in the .dynsym
section. It is required in loadfiles.

.rela.dyn Section

This is the dynamic relocation table. It contains descriptions of the relocation sites
within this loadfile whose targets are the symbols listed in the .dynsym section.

.gateway Section

This contains gateways. A gateway is created for each procedure entry point that
has the CALLABLE or KERNEL_CALLABLE attribute.

.data Section

This contains application-defined initialized data, but doesn’t have either of the
restrictions that make it possible to put data into the .rdata or .sdata section.
eNOFT Manual—527507-005
A-8

TNS/E Native Object Files Summary of the Contents of an Object File
.rdata Section

This contains application-defined initialized data that does not get modified at
runtime (although the initial values may be addresses that need modification when
the loadfile is first brought into memory).

.fptr Section

This section contains official function descriptors. An official function descriptor
contains the address and GP value for a procedure that exists in this loadfile.
Procedure pointers point at official function descriptors. An official function
descriptor is only created for a procedure if the address of that procedure is taken
in the same loadfile, or if the procedure is exported from the loadfile.

.srdata Section

This contains application-defined initialized data that does not get modified at
runtime (although the initial values may be addresses that need modification when
the loadfile is first brought into memory), and that furthermore is “small” data for
which 22-bit GP-relative addressing is used because the compiler or assembler
can guarantee that the target of the reference will be in the same loadfile.

.got Section

This is the global offset table, which contains addresses of data items that are
referenced indirectly, as well as the addresses of official function descriptors and
EnterPriv labels. The linker creates entries in the .got section as necessary. The
entries in the .got section are found by 22-bit GP-relative addressing.

.IA_64.pltoff Section

This section contains local function descriptors. A local function descriptor
contains the address and GP value for a procedure that is referenced from this
loadfile. Direct procedure calls (that is, not involving procedure pointers) use these
local function descriptors. The linker creates entries in the .IA_64.pltoff section as
necessary. The entries in the .IA_64.pltoff section are found by 22-bit GP-relative
addressing.

.sdata Section

This contains application-defined initialized “small” data for which 22-bit GP-relative
addressing is used because the compiler or assembler can guarantee that the
target of the reference will be in the same loadfile.

.sbss Section

This contains application-defined uninitialized “small” data for which 22-bit GP-
relative addressing is used because the compiler or assembler can guarantee that
the target of the reference will be in the same loadfile. This section occupies no
space in an object file, but rather reserves memory space that is automatically
eNOFT Manual—527507-005
A-9

TNS/E Native Object Files Summary of the Contents of an Object File
initialized to zero. The object file design supports such sections, although
compilers might not use them.

.bss Section

This contains application-defined uninitialized data, but this section doesn’t have
the restriction that makes it possible to put data into the .sbss section. It occupies
no space in an object file, but rather reserves memory space that is automatically
initialized to zero. The object file design supports such sections, although
compilers might not use them. The linker allocates .bss sections in loadfiles to
contain what the compiler called common data.

.rela.x Sections

These sections describe relocation sites within linkfiles. Relocation sites can be
within code or data sections, including unwind function sections, the .procinfo
section, and the DWARF sections. A .rela.x section is required in a linkfile for each
section named .x that has relocation sites. For example, rela.data describes the
relocation sites in the .data section.

.symtab Section

This is the ELF symbol table. It is required in linkfiles. It contains information
about symbols whose names are meaningful to the linker.

.strtab Section

This is a string space that is pointed at from the .symtab section. It is required in
linkfiles.

.procinfo Section

This section provides information about procedures and subprocedures.

.procnames Section

This is a string space pointed at by the .procinfo section.

DWARF Symbol Table Sections

These sections contain information for the debugger and for the COBOL compiler.
There are several sections that collectively form the DWARF symbol table.

Source RTDU Sections

These are sections that represent source RTDU’s, which are part of the SQL/MP
implementation. These can exist only in linkfiles and programs. In a linkfile that is
created by compiling a source file with embedded SQL/MP, the set of source
RTDU’s is represented by three sections. In a program, the set of source RTDU’s
is also represented by three sections, although not with the same section names
as in a linkfile.
eNOFT Manual—527507-005
A-10

TNS/E Native Object Files Summary of the Contents of an Object File
Object RTDU Sections

An object RTDU, which is part of the SQL/MP implementation, can be placed into a
program by a tool named SQLCOMP. The object RTDU is represented by three
sections.

.shstrtab Section

This is a string space that is pointed at from the ELF section headers. It is
required.

ELF Section Headers

These contain header information to describe everything in the object file, except
for the ELF header, the program headers, the section headers themselves, and
possibly unused space within the object file.

A general principle behind the loadfile design is that the sections up through .dynstr2
are expected to be small, and it can therefore be more efficient to have them all near
the front. That is the reason that the .dynstr2 section was invented, that is, to
segregate out the strings needed by other small sections near the front of the file.

Another general principle is that, after all the things that are “small”, all the things that
might need to be resident come next. More specifically, the .restext section needs to
be resident (by definition), and if it is present then some other sections also need to be
resident, and some don’t. All the other things that would also need to be resident are
placed before the .restext section, so that the .restext section (if present) marks the
end of the portion of the text segment that needs to be resident.

Note 1:

The way NSK arranges all the relocation table entries of a loadfile into sections named
rela.dyn and rela.gblzd is not the standard way to do it for IPF, at least as followed by
both Intel and HP.

In the Intel and HP implementations there is a different relocation table section for each
of the sections of the loadfile that have relocation sites, which can include the .got
section, .IA_64.pltoff section, and various user data sections. Each of these relocation
tables has its own section header. In effect, that means that the relocation sites are
sorted according to their locations, or at least according to which sections they are in.
But then, most of these relocation table sections are placed consecutively in memory,
with no rounding up of the space between them, so that you can think of them as one
relocation table section, and that is what it looks like when you find them via the same
entries in the .dynamic section that we use to find the dynamic relocation table. The
exception to this in the Intel and HP implementations is the relocation table section for
the .IA_64.pltoff section, which is found via an additional group of .dynamic section
entries.

Instead of following this approach, the NSK implementation is based on the strategy
used by SGI. Namely, relocation table entries are sorted by the target symbol. So,
they could not be segregated by section as is done by Intel and HP.
eNOFT Manual—527507-005
A-11

TNS/E Native Object Files The 32-Bit and 64-Bit Programming Models
NSK has also invented the .rela.gblzd section to handle globalized symbols in our
implementation of C++. Other implementations take different approaches, not just to
handle this specific feature of C++ but with regard to the issue of preemption in
general. This invention of the .rela.gblzd section again follows the same strategy for
NSK of segregating relocation table entries based on the target symbol, not based on
the address of the relocation site.

The reason that Intel and HP separate out the relocation table entries for the
.IA_64.pltoff section is related to the feature of “lazy evaluation”, which NSK does not
support (and which is not described in this appendix).

Note 2:

The .got is used to make indirect references to data, while the .IA_64.pltoff section is
used to make indirect references to procedures. Instead of these two names, the
names used by HP are more sensible, namely, .dlt (“data linkage table”) and .plt
(“procedure linkage table”), respectively. HP has a different name for the section of
import stubs, which NSK calls the .plt section.

Also, note that the .plt section of import stubs makes references to the .IA_64.pltoff
section of local function descriptors. That seems backwards, because you would think
that a section named pltoff would contain “offsets” into a section named plt.

The strange names that NSK uses are the ones found in the IPF standards
documents.

The 32-Bit and 64-Bit Programming Models

According to the IPF-Specific ABI Document there is a choice of two programming
models, named ILP32 and LP64. In the standard, this means two different things. On
the one hand, it tells something about your C compiler, namely, whether the sizes of
pointers and the predefined type long are 32-bits or 64-bits. On the other hand, it also
tells whether 32-bit or 64-bit addresses are stored in object files.

At the present time, the NSK C compiler supports the 32-bit model. In the future, NSK
will also support the 64-bit model. When we do that, it will not be possible for general
users to mix the two within the same loadfile, but it will be possible to mix different
types of loadfiles in the same process. Regardless of the data model supported by the
compiler, however, NSK always use the 64-bit format for object files. That allows us to
internally put 64-bit code into loadfiles that are otherwise 32-bit. When TNS/E object
files contain values that are 32-bit addresses, they correspond to the actual 64-bit
values supported by the underlying hardware via sign extension.

Code and Data Sections
This subsection discusses the "ordinary" code and data sections that come from
application source code, possibly with some things added by the compiler or linker.
Special types of data sections, such as the stack unwinding information, the .procinfo
eNOFT Manual—527507-005
A-12

TNS/E Native Object Files User Code
and .procnames sections, the DWARF sections, and the various linker-created
sections in loadfiles, are not detailed here.

User Code

In linkfiles there can be many text sections. The sections whose names begin .text
contain procedures and subprocedures that are not resident. The sections whose
names begin .restext contain procedures and subprocedures that are resident.

When the linker is building a new linkfile it concatenates each of the text sections from
the various input files into a section of the same name in the output file. On the other
hand, in loadfiles, all the non-resident code is combined into a single .text section, and
all the resident code into a single .restext section. The text sections of a loadfile may
also contain linker-generated branch stubs, which are not present in linkfiles.

Some procedures are global, which means their names are meaningful across
separate compilations. All references to global procedures must be marked with
relocation table entries. When there are duplicate copies of global procedures, the
linker picks one to use, and the relocation table entries are used by the linker to make
sure all references go to the copy that was picked.

If a procedure is in a section whose name begins either ".text." or ".restext.", and the
rest of the name is the same as that of the procedure, this is an indication by the
compiler that, if this is an unused copy of the procedure, then in fact the entire section
containing it may be ignored by the linker. In that case, the linker ignores that input
section, thus making the resulting code space smaller.

Text sections are allowed to contain data, such as branch tables. This should not
happen in sections that are marked for omission as in the previous paragraph.

The .procnames and .procinfo sections provide additional information about
procedures and subprocedures in linkfiles.

The size of executable code is always a multiple of 16 bytes, because instructions are
grouped into 128-bit bundles. However, even when a text section contains data, its
total size must still be a multiple of 16 bytes. (Actually, NSK compilers usually say that
text sections must be aligned on 32-byte boundaries, and similarly each procedure
within a code section starts at an offset within that section that is a multiple of 32 bytes.
Larger alignments can also be specified in assembler source files. When space is
wasted between procedures, the assembler fills that space with no-ops.)

The total size of a text section in any linkfile must not exceed 16 MB, so that the linker
can add branch stubs to the section if necessary. Also, it is suggested that compilers
not put all the code of a compilation into one code section, but rather divide it into
multiple code sections, such as by putting each procedure into its own section. That is
a way to avoid running into the 16 MB limit, either directly as the result of a
compilation, or later after the linker has combined many separate compilations into a
single linkfile with the -r option, since the linker will concatenate input sections that
have the same name.
eNOFT Manual—527507-005
A-13

TNS/E Native Object Files User Data
Certain procedures may be included just to identify an object file. Such a procedure is
called a VPROC ("version procedure"). The names of such procedures would always
be found in the .procinfo section of a linkfile or in the stack unwinding information of a
loadfile. Depending on whether a VPROC was visible outside its compilation, or
exported from its loadfile, it might also be found in the ELF symbol table of a linkfile, or
the dynamic symbol table of a loadfile or import library.

User Data

The .data (and .sdata) sections are for initialized data, while .bss (and .sbss) are for
uninitialized data. However, if a data item is initialized to all zeros, the compiler may
treat it as uninitialized data. That is possible, because all uninitialized data is
automatically initialized to zeroes by NSK.

When the linker combines a set of linkfiles into a new file it usually concatenates each
of the user's data sections from the various input files into a section of the same name
in the output file. For example, some of the input files may have a section named
.data, and then the output file would also have a section named .data, and it would be
the concatenation of the .data sections that existed in the input files. The names of
typical user data sections, and what each one means, were listed near the beginning of
this document. Like text sections, sizes of data sections must be multiples of 16 bytes.

The exception to the general rule given in the previous paragraph is that, if an input
section has the name .rdata, but doesn't contain any relocation sites, then the linker
changes its name to .rconst for the output file. Note that a similar optimization is not
done for .srdata because that is GP-addressable.

The sections named .sdata, .srdata, and .sbss are called small data sections with the
meaning that the compiler might choose to put "small" data items into them (that is,
data items whose sizes are no larger than 8 bytes). However, these sections actually
have no such requirement. The real meaning of these sections is that the items placed
here can be referenced directly by 22-bit GP-relative addressing, rather than getting
their addresses out of the .got section. That is only correct to do if the compiler or
assembler programmer can guarantee that the symbol cannot be preempted.

Linkfiles also have common data, which has not been allocated to any section. When
the linker builds a loadfile it allocates common data in the .bss section.

The following is how the C compiler works:

Data that is global or large, and initialized to a non-zero value, is placed into .data.

Data that is global or large, and initialized to a zero value, is placed into .bss.

Data that is local and small, and initialized to a non-zero value, is placed into
.sdata.

Data that is local and small, and initialized to a zero value, is placed into .sbss.

Data that is uninitialized is called common data.

Character strings are called local data items and placed into .rdata.
eNOFT Manual—527507-005
A-14

TNS/E Native Object Files The MCB (Master Control Block)
The MCB (Master Control Block)

The linker adds the MCB to the .data section of a program (or creates a section of this
name if there was none before). The MCB is a data item that can be referenced by the
name _MCB within the program. The linker only creates the MCB in programs (not
DLL's), and only if the program makes a reference to the symbol named _MCB.

This is a description of the fields that are nonzero in the MCB of an object file.

The Check_quad field is an 8-byte string, where the first two and last two bytes each
contain the value 0xAA and the middle four bytes contain the ASCII string "MCB ".

The Version_item field currently contains 0, but presumably could contain a different
value in the future.

The Standard_C_streams bit is set to 1, rather than 0, to indicate that the program
should use code 180 files for C text files, rather than code 101 files. The linker sets
this bit to 1 when it creates the program if the -ansistreams option is specified or if the
target platform is OSS.

The C_std_files_open bit is set to 1, rather than 0, to indicate that this program should
automatically open the standard C/C++ I/O files. This linker sets this bit to 1 if the
program contains a main procedure that is written in C or C++ and the -nostdfiles
option is not specified.

The FP_format field is set to indicate the floating point type assumed by this program,
repeating the information also found in the file header. 0 indicates that the Tandem
floating point is required. 1 indicates that the IEEE floating point is required. 2 indicates
neutral.

Relocation Tables
It is possible that the contents of one place in the code or data of an object file need to
be filled in with the address of another place in the code or data, or in some other way
based on such an address. If the compiler or assembler knows what needs to go
there, without later modification by the linker or runtime loader, then that's the end of
the story. But, if the linker or runtime loader will need to be involved, the compiler or
assembler must indicate that location accordingly, by creating relocation tables in
linkfiles to provide such information. Similarly, the linker must put relocation tables into
loadfiles if there is still work for the runtime loader to do.

The place that needs to be filled in is called the relocation site. It would either be an
operand within an executable instruction, which come in various sizes, or a data item,
which would be a 32-bit or 64-bit integer. The place whose address needs to be
calculated is called the target of the relocation. The relocation site is also said to be a
reference to the target symbol.

The target of a relocation site is described by giving an offset relative to a symbol that
is listed either in the .symtab section (in the case of a linkfile) or the .dynsym or
.dynsym.gblzd section (in the case of a loadfile). If the symbol is of type STB_LOCAL
eNOFT Manual—527507-005
A-15

TNS/E Native Object Files Relocation Tables
then it must be defined with an address in this object file, and that is the address that is
used for the symbol. If the symbol is of type STB_GLOBAL then the definition of the
symbol that is used to resolve the reference might exist in this object file or in another
object file.

The process of figuring out the target address is called resolving the reference. After a
reference has been resolved, the proper way to fill in the contents of the relocation site
depends on the site's relocation type.

The relocation types that can occur in linkfiles and loadfiles are different, and the
names of the relocation table sections are different. In linkfiles, for each code or data
section named .x that contains relocation sites there is a relocation table section
named .rela.x that describes the relocation sites in that section. This also includes
relocation tables needed to describe relocation sites in the .procinfo section, the
unwind function sections, and the DWARF symbol table sections. In loadfiles there are
relocation table sections named .rela.dyn and .rela.gblzd that describe all the
relocation sites in the data segment of the loadfile. Loadfiles never have relocation
sites in the text segment. The entries in .rela.dyn are for relocation sites whose target
symbols are in .dynsym, while the entries in .rela.gblzd are for relocation sites whose
target symbols are the globalized symbols listed in .dynsym.gblzd.

The format of the relocation information is the same in all cases. The ELF section type
is SHT_RELA, and the format of a relocation table entry is the following:

typedef struct ELF64_Rela {
 ELF64_Addr r_offset;
 ELF64_Xword r_info;
 ELF64_Xword r_addend;
}Elf64_Rela

The size of this structure is 24 bytes.

In linkfiles, relocation table entries always completely describe what needs to be filled
in at the corresponding relocation sites. So, it doesn't matter what is actually in the
operands at the relocation sites. In fact, what is there should be zero, with the
following two exceptions:

The value "-1" is filled in for relocation sites that point from DWARF information at
executable code, when they correspond to unused copies of procedures.

Relocation sites that point from one DWARF section into another, that is, giving a
section offset rather than an address, are also fixed up in linkfiles created by the linker.

For loadfiles the relocation types whose names begin R_IA_64_REL make use of the
contents of the relocation site, rather than pointing at a target symbol These relocation
table entries say that the contents of the relocation site need to be updated at runtime,
or by the -alf option of the linker, based on how much the segment pointed at by the
relocation site is rebased.

In loadfiles, the relocation sites whose targets were STB_LOCAL would only need to
be updated if the loadfile was rebased. This can happen for DLL's, but not for main
eNOFT Manual—527507-005
A-16

TNS/E Native Object Files The DWARF Symbol Table
programs (not even by the linker's -alf or -alfp options). So, such relocation table
entries may be omitted by the linker when it creates a main program.

In loadfiles, the elements of the .rela and .rela.gblzd sections are sorted by target
symbol index. In particular, that means that all the entries with the same target symbol
are consecutive. This includes the case of relocation types whose names begin
R_IA_64_REL, which don't have a target symbol, so that the target symbol index is 0.

The DWARF Symbol Table
The DWARF symbol table contains information used by debuggers and by the COBOL
compiler, whereas the .symtab, .dynsym, and .dynsym.gblzd sections contain
information used by the linker and runtime loader.

The DWARF symbol table information in an import library that represents a single DLL
is the same as the DWARF symbol table information that is present in the
corresponding DLL. There is no DWARF symbol table information in the import library
that represents the implicit libraries.

A file may be "stripped", meaning that it doesn't have debugging information in it. This
means that the DWARF symbol table is not present. Note that it is even possible for a
linkfile to be stripped. In other words, even after being stripped, a linkfile can still be
processed by the linker, because the DWARF symbol table does not contain any
information that is required by the linker. An import library can be stripped even if the
corresponding DLL is not stripped.

DWARF information is updated by the linker corresponding to the effect of its -rename
option. That is, the DWARF information does not look like what the compiler or
assembler originally generated, but rather reflects how the symbol table information
was changed by the -rename option.

DWARF Object File Sections

Here is a summary of the purposes of the DWARF sections that we use:

.debug_info

This is the main section of DWARF information. It is a tree of nodes, each node
contains various attributes.

.debug_abbrev

This section provides additional information required to decode the information in the
.debug_info section, including information about implementation-defined material.

.debug_line

This section contains information that tells how to map things to source line numbers.

.debug_line_nsk

This has a format similar to .debug_line, but to represent EDIT line numbers rather
than sequential line numbers.
eNOFT Manual—527507-005
A-17

TNS/E Native Object Files Archives
.debug_relocs

This section describes the places in DWARF sections of DLL's that contain code and
data addresses, so that they can be updated by the -alf option of the linker when that
option is used to rebase the DLL.

Archives
An archive is a single file that contains within it copies of other files, called the
"members" of the archive. Archives are created by the tool named ar. An archive may
be used for various purposes, one of which is to be an input for the linker. The linker
uses archives as a source of linkfiles. Archives are not used at load time.

The format described here, used for TNS/E archives differs in various ways from what
was used in the TNS/R implementation.

An archive contains "symbol table" information that tells which linkfile within the
archive, if any, provides a definition for a given symbol. These would be the symbols
defined in that linkfile and visible outside, that is, their binding is STB_GLOBAL and
their st_scndx field is not SHN_UNDEF in the ELF symbol table.

The first eight bytes of an archive contain the string "!<arch>", followed by a newline
character (ASCII LF). This identifies the file as an archive. After that the archive is a
concatenation of "pieces", each of which contains the following items, which always
begin at file offsets that are multiples of 2 bytes.

an ar_hdr structure

the contents of this piece

The first one or two pieces of the archive may be special. The first special piece is the
archive symbol table, which is present if the archive contains any linkfiles. The other
special piece is the "long member name string space", which is present if any of the
names of the members of the archive are longer than 16 characters. The contents of
the remaining pieces are the members of the archive.

Here is the declaration for the ar_hdr structure:

typedef struct ar_hdr {
char ar_name [16];
char ar_date [12];
char ar_uid [6];
char ar_gid [6];
char ar_mode [8];
char ar_size [10];
char ar_fmag [2];
} ar_hdr;

The size of this structure is 60 bytes.

The ar_size field tells the size of the contents of this piece of the archive, and the
ar_name field tells its name. When the name is less than 16 characters long, the rest
eNOFT Manual—527507-005
A-18

TNS/E Native Object Files Archives
of the field is filled with blanks. The other fields of the ar_hdr are all readable ASCII
character fields.

In the ar_hdr for the symbol table piece, the ar_name is a single slash ("/").

The contents of the symbol table piece are the following (in this order):

a four-byte integer that tells the number of symbols in the symbol table piece
an array of four-byte integers
a string space (see below)

The integers mentioned above are binary integers (big endian).

The string space is a concatenation of strings, telling the names of the symbols in the
symbol table piece. Each name is terminated by a zero byte. If the total size is odd,
an extra zero byte at the end makes it even. These strings are in the same order as
the previous array of four-byte integers. For each name, the corresponding four-byte
integer tells the file offset within the archive for the ar_hdr of the member that defines
that symbol. Symbols are only listed in the symbol table if they are defined
somewhere. A symbol may be defined in more than one member, but the symbol table
only points at one place.

In the ar_hdr for the long member name string space, the ar_name is two slashes ("//").

The long member name string space is a concatenation of strings, telling the names of
the members whose names are longer than 16 bytes. Each name is terminated by a
slash ("/") and a newline character. If the total size is odd, an extra newline character
at the end makes it even.

In the ar_hdr for an archive member, the ar_name tells the name of the file that was
placed into the archive. If the name is longer than 16 bytes then it is stored instead in
the long member name string space and the ar_name field for the member consists of
a slash ("/") followed by an ASCII string for the integer value that is the byte offset of
the member's name in the long member name string space. Leading zeroes are
removed from this string, and it is blank filled on the right.

The following is a summary of what is in an archive. Horizontal lines separate pieces
of the archive. This example shows the case when there is a symbol table and a long
member name string space.

!<arch>

ar_hdr for the symbol table
the number of symbols in the symbol table

file offset for the member that defines the first symbol
file offset for the member that defines the second symbol
...

eNOFT Manual—527507-005
A-19

TNS/E Native Object Files Tools That Work With Object Files
name of the first symbol
name of the second symbol
...

ar_hdr for the long member name string space
the string space of long member names

ar_hdr for the first member
contents of the first member

ar_hdr for the second member
contents of the second member

...

Tools That Work With Object Files
Here is a list of some of the tools (that is, customer products) that read or write object
files (or archives):

 Compilers and the assembler create object files.

 The linker (eld) reads and writes object files, and reads archives.

 eNOFT reads object files to display their contents.

 VPROC can read object files to print out version procedures (that is, a very
special case of what NOFT does).

 The NSK operating system, including the runtime loader (rld), reads object files
to bring them into memory.

 Debuggers read object files as well as their memory images, and can modify
the memory images.

 The archive creation tool (its standard name is ar) reads object files, and reads
and writes archives.

 SQLCOMP can read and write object files in order to create or update their
object RTDU’s.
eNOFT Manual—527507-005
A-20

B
Differences Between eNOFT and
NOFT
Architecture

NOFT supports TNS/R object files which include ELF and COFF object file structures.
eNOFT supports TNS/E architecture, which is exclusively ELF.

All TNS/E object files are big endian files with DWARF2 debugging symbol tables.
Code on the TNS/E platform is always little endian.

When accessing a code area of the object file (for example, .text), eNOFT displays in
16-byte "bundles" whereas NOFT displays in units of 4-byte "words". However eNOFT
will display virtual addresses in the same format as NOFT: 32-bit hexadecimal values.

Debugging

NOFT uses the Third Eye symbol table where some of its tables are used for linking;
eNOFT uses the DWARF2 symbol table which does not contain such information used
by the object file linker "eld" or runtime loader "rld" . One consequence of this
difference is in the behavior of eNOFT on stripped files. Commands that require the use
of the debugging information are not supported on stripped files. Because the meaning
of stripping is different between TNS/R and TNS/E architectures, eNOFT does not
support the same commands that NOFT supports. See SET and RESET Commands on
page B-1 and subsequent tables for details.

Displays

NOFT typically displays listings in a center-justified format. eNOFT displays are typically
left-aligned with the object file offset value for the specified target section in the
heading.

Summary of eNOFT Commands

The following tables list eNOFT commands and their NOFT equivalents.

Table B-1. SET and RESET Commands

NOFT eNOFT Alias Options

RESET <set-cmd>

SET <set-cmd> OFF RESET - [* | set-cmd]

SET CASE SET CASE SC {OFF | ON}
eNOFT Manual—527507-005
B-1

Differences Between eNOFT and NOFT Summary of eNOFT Commands
None SET CPPNAME SN [MANGLE |
DEMANGLE]

None SET DISPLAY SD [BRIEF | B |
DETAIL | D]

SET FORMAT SET FORMAT SF {READABLE | R |
ASCII | A |
DECIMAL | D | HEX
| H | ICODE | IC |
INNERLIST | IN}

SET
HISTORYBUFFER

SET
HISTORYBUFFER

SHB <num>

SET
HISTORYWINDOW

SET
HISTORYWINDOW

SHW <num>

SET LINES SET LINES SL <num>

SET SCOPEPROC

PROC SET SCOPEPROC SSP <proc-spec>

SET SCOPESOURCE

SOURCE SET SCOPESOURCE SSS <source-spec>

SET SORT

ALPHA

LOCATION SET SORT

SET SORT ALPHA

SET SORT LOC ST {NONE |
N| ALPHA
| A | LOC |
L}

NUMBER RESET SORT - -

Table B-2. Dump Commands

NOFT eNOFT Options
Set
format

Set
scope

Set
sort

DUMPADDRESS

<address> DUMPADDRESS <scope-range>
[IN <format-
specifier>]

Y N N

ALL

Table B-1. SET and RESET Commands

NOFT eNOFT Alias Options
eNOFT Manual—527507-005
B-2

Differences Between eNOFT and NOFT Summary of eNOFT Commands
HEADERS DUMPALL [* | LIST]

ALLTEXT

RESTEXT

TEXT

USERGATE DUMPCODE

(default ICODE) DC Y Y N

DATA

LARGEDATA

READONLY

SMALLDATA DUMPDATA
(default HEX)

[IN <format-
specifier>]

Y Y Y

DUMPOFFSET DUMPOFFSET <scope-range>
[IN <format-
specifier>]

Y N N

DUMPPROC DUMPPROC <proc-spec>
[<scope-
range>][IN
<format-
specifier>]

Y N N

ALL DUMPSECTION [* | section-
name |
<section-
num>] [IN
<format-
specifier>]

Y Y/N N/Y

AUXSYMTBL

EXTSYMTBL

FILETBL

INDFILETBL

LINBRTBL

LOCSYMTBL

PROCTBL

SYMHDR

Table B-2. Dump Commands

NOFT eNOFT Options
Set
format

Set
scope

Set
sort
eNOFT Manual—527507-005
B-3

Differences Between eNOFT and NOFT Summary of eNOFT Commands
SYMBOLS DWARF [INFO |
ABBREV |
LINE
[ORDINAL]]

Y Y N

DYNAMIC DYNAMIC - Y N N

FILEHDR FILEHDR

not applicable FUNCDESC - Y Y Y

GOT GOT - Y Y Y

HASH HASH - N Y N

MSYM HASHVAL - N Y Y

LISTSRLINFO LIBLIST - Y N N

not applicable LIC - Y N Y

not applicable PROCINFO - Y Y Y

PROGHDRS PROGHDRS

RELOC

DYNREL RELOC - N Y Y

not applicable RTDU - Y N Y

SECTHDRS SECTHDRS

DYNSTR

DYNSTR2 STRTAB [*| DYNSTR |
DYNSTR2 |
PROCNAMES
| RTDU |
SHSTRTAB |
STRTAB |
UNWIND]

N Y Y

DYNSYM

ELFSYMTBL SYMTAB [* | EXPORT |
E | PROC | P |
DATA | D]

N Y N

TANDEMINFO

SRLDIGEST TANDEMINFO - Y N N

RUNTIMEPROC UNWIND - Y Y Y

- UNWINDINFO

Table B-2. Dump Commands

NOFT eNOFT Options
Set
format

Set
scope

Set
sort
eNOFT Manual—527507-005
B-4

Differences Between eNOFT and NOFT Summary of eNOFT Commands
Table B-3. List Commands

NOFT eNOFT Options
Set
format

Set
scope

LAYOUT LAYOUT [* | CODE | DATA] N N

LISTATTRIBUTE LISTATTRIBUTE [DETAIL | D] N N

LISTCOMPILERS LISTCOMPILERS [DETAIL | D] N N

- LISTDATA

- LISTDEBUG [* | PROC | P | DATA
| D] [DETAIL | D]

LISTEXPORTS LISTEXPORTS - N N

LISTOPTIMIZE LISTOPTIMIZE [* |0|1|2] N Y

LISTPROC LISTPROC [* | <proc-spec>] [
NOSUBPROC | NSP
] [DETAIL | D]

N Y

LISTSOURCE LISTSOURCE [* |<source-spec>] [
DETAIL | D]

N Y

LISTUNREFEREN
CED

LISTUNREFERENC
ED

[* | PROC | P | DATA
| D] [DETAIL | D]

N Y

LISTUNRESOLVED LISTUNRESOLVED [* | PROC | P | DATA
| D]

N Y

XREFPROC XREFPROC [* | <proc-spec>] [
CALLEDBY | CALLS
| BOTH] [DETAIL | D
]

N Y

Table B-4. File User Interface Commands

NOFT eNOFT Options

!

FC !

FC -

Break Key Break Key -

CD CD [pathname]

COMMENT COMMENT -
eNOFT Manual—527507-005
B-5

Differences Between eNOFT and NOFT Summary of eNOFT Commands
ENV ENV -

EXIT

QUIT EXIT

QUIT E

Q -

FILE FILE objectfile

HELP

HELP ALL

HELP
UNDOCUMENTED

HELP [command |
help-topic]

HISTORY HISTORY [<num>]

LOG

SET LOG

OUT

SET OUT LOG

OUT -

OBEY OBEY infile

SHOW

SET <set-cmd> ?

OPTIONS SHOW [* | set-cmd]

SYSTEM

VOLUME VOLUME [\<node>]
[.$<volume>]
[.<subvolume>]

Table B-4. File User Interface Commands

NOFT eNOFT Options
eNOFT Manual—527507-005
B-6

Glossary
Archive file. This file contains copies of other files, called the "members" of the archive. An

archive may be used for various purposes, one of which is to be an input for the linker.
The linker uses archives as a source of linkfiles. Archives are not used at load time.

Big endian. This term describes a method of storing data so that the most significant byte
appears in a lower-numbered location in memory. As with TNS/R, TNS/E data
structure is big endian. Code on the TNS/E platform is always little endian.

Bundle. This term describes a three-instruction-wide 128-bit word used by Intel to facilitate
parallel processing of code instructions.

Code file. A file comprising instructions that can be executed or emulated by a computer.
Native code files can be either linkable (linkfiles) or loadable (loadfiles). Object files
and binaries are other names for code files.

Client (of a loadable library). A loadfile that uses functions or data from a library.

Default. The choice made when the user does not direct otherwise.

Direct reference (of a loadfile). A library listed in a loadfile’s libList.

DLL file. This is a PIC library loadfile with symbols that can be referenced by another
loadfile to resolve symbolic references at link time or runtime. It is therefore a loadfile
that offers functions or data for use by other loadfiles. For TNS/E, DLLs replace SRLs
commonly associated with the TNS/R architecture. The object file linker eld
generates DLLs for TNS/E (as does ld for the TNS/R DLLs). In UNIX, this type of file
is known as a shared object file or dynamic shared object (DSO).

Dynamic loading. Loading and opening DLLs under programmatic control after the
program is loaded and execution has begun.

EDIT Line Number. The conventional source line numbering convention is where the
source lines are numbered sequentially using integers starting at 1. The Guardian
EDIT text file (file code "101") uses a source line number convention where the lines
are assigned numbers that have three places after the decimal point, and can be
sparse within all such possible numbers.

ELF. This term stands for "executable and link format" and describes an extensible file
structure that can deal with various target platforms. Like TNS/R, TNS/E uses the ELF
file structure with Tandem extensions. However TNS/E is ELF all-inclusive whereas
TNS/R uses both ELF and COFF file structures. All TNS/E compiler/assemblers,
linkers, and loaders generate object files with this file structure.

Explicit library. Any library that is named in the libList of any client loadifle or is a user
library of a client program.
eNOFT Manual—527507-005
Glossary-1

Glossary Export.
Export. To provide a symbol definition for use by other loadfiles. A loadfile offers for export
a symbol definition for use by other loadfiles that need a data item or function
having that symbolic name.

Gateway. For every callable function there is a gateway; all calls to the function jump first to
the gateway, which effects the transition to privileged state if the caller is not
already privileged. There are two types of gateway pages, those that promote to
kernel and those that promote to executive level.

Gblzd. globalized [symbol]

Globalized import. The import-control characteristic of a loadfile that allows it to import
symbols from any loadfile in the loadList of the program with which it is loaded.
When those loadfiles offer multiple definitions of the same symbol, those loadfiles
are searched in loadList sequence and the first definition found takes precedence.
See also searchList.

Globalized symbol. An exported symbol generated by the C++ compiler that may have
multiple definitions, of which the linker and loader must assure only one is used
throughout the process.

Hybrid file. This term describes a 'pseudo-DLL' that contains non-PIC text to allow a PIC
process to call (as inputs) when building or relinking a program or DLL file. Hybrids do
not exist in TNS/E.

Implicit library. A library supplied by HP that is available in the read-only and execute-only
globally mapped address space shared by all processes without being specified to the
linker or loader. The public libraries on TNS/E that replace System Code, System
Library, and millicode. These libraries are called implicit because every loadfile is
implicitly a user of them. Contrast with public DLLs, which are explicit because a
loadfile explicitly asks to use a public DLL, although it does not specify where to find
the public DLL. See also System library. and Public Libraries.

Implicit library import library (imp-imp). An import library that can be used by the Linker
as a proxy for a set of implicit libraries. See Import library and Zimpimp file.

Import. To refer to a symbol definition from another loadfile. A loadfile imports a symbol
definition when it needs a data item or function having that symbolic name.

Import control. The characteristic of a loadfile that determines from which other loadfiles it
can import symbol definitions. The programmer sets a loadfile’s import control at link
time. That import control can be localized, globalized, or semiglobalized. A loadfile’s
import control governs the way the linker and loader construct that loadfile’s searchList
and affects the search only for symbols required by that loadfile.

Import library. This term describes one type of a loadfile whereby only enough parts of the
file are contained therein to allow the linker to resolve references, but not enough to
expose its source code; that is, exports the symbols of the DLL . It is a file that can be
used by the Linker as a proxy for one or more DLLs, but that cannot actually be loaded
eNOFT Manual—527507-005
Glossary-2

Glossary Indirect reference (of a loadfile).
and run. It is useful in cross-linking. See Implicit library import library (imp-imp) and
Zimpimp file.

Indirect reference (of a loadfile). A library in a loadfile’s searchList that is not named in its
libList.

Instance. A particular case of a class of items, objects, or events. For example, a process is
defined as one instance of the execution of a program; multiple processes might
be executing the same program simultaneously. Also, instance data refers to global
data of a program or library; each process has its own instance of this data.

Library. Generically, a collection of functions and data offered for use by clients. Libraries
can exist as source files, linkable object files, archives (aggregated of linkfiles), and
loadable object files. See also Loadable Library..

LibList. The list of libraries to be loaded along with a loadfile. However, it may not be the
complete list of loadfiles that must be loaded; see loadList definition below.When
linking the loadfile, the linker constructs the libList from the names of libraries
specified in the linker's command stream; it stores the libList within the loadfile.

Libname. An attribute of a program loadfile, which can be set by the linker, specifying the
name of a user library to be loaded with this program.

Linker. A utility whose basic function is to process one or more linkfiles to create a loadfile.

Linker platform. The system on which the linker executes. Also called host or host
platform.

LIC. Library Import Characterization: A data string that characterizes the information used
by a linker or loader to bind the global symbols of a particular loadfile. If the same
loadfile is bound on two occasions, and its LIC has not changed, the two bindings will
be the same. Thus it is possible to reuse a set of bindings if it has the same LIC as that
determined for this loadlfile in the presence of the other loadfiles with which it is being
loaded.

Linkfile. This term describes the output of the compiler and input to the linker. This object
file has accompanying tables required to build it into a PIC loadfile and can be all or
part of a loadfile. The code of a linkfile is not executable until linked. In the default
mode, the linker process one or more linkfiles to produce a loadfile. This term is
synonymous with the term "relinkable" in TNS/R .

Loader. A programming utility that transfers a program into memory so it can run. The
mechanism that brings loadfiles into memory for execution, maps them into virtual
address space, and resolves symbol references among them. Synonyms include
run-time loader and run-time linker. The loader for TNS and for TNS/R native programs
and libraries that are not position-independent code (PIC) is part of the operating
system. For PIC loadfiles and all TNS/E native programs, the loader called rld works
with the operating system to load programs and libraries.
eNOFT Manual—527507-005
Glossary-3

Glossary Loadfile
Loadfile. hThis term describes the input to the runtime loader and default output of the
linker. This object file may contain name references to symbols that exist in other
loadfiles in the same process. Such references are typically resolved when the
loadfiles are brought into memory by the runtime loader rld . This term is synonymous
with the term "executable" file. An executable object code file is one that is ready for
loading into memory and executing on the computer. Loadfiles are further classified as
executable programs (containing a main routine at which to begin execution of that
program) or executable libraries (supplying routines or variables to multiple programs
or separately loaded libraries). A TNS code file might be both a loadfile and a linkfile.
Native code files are never both. Contrast with Linkfile.

LoadList. A list of all the libraries that must be loaded for a given loadfile to execute. A
loadfile’s loadList includes all the libraries in the given loadfile’s libList plus all the
libraries in those loadfiles’ libLists, and so on. It does not include the implicit libraries.
The loadList order is the sequence in which these loadfiles are to be loaded when they
are not already loaded by a previous operation. The loadList of the program includes
all the loadfiles present in the process, in the order they were loaded.

Loadable Library. A loadfile that offers functions and data to other loadfiles. In this
document, DLLs are such libraries. A library cannot be invoked externally, for
example, by a RUN command; instead, it is invoked by calls or data references
from client loadfiles. In TNS/E, functions and data can also be obtained from the
system library and millicode.

Loader Library. A public library for loading PIC programs and libraries. It works in close
cooperation with the operating system. It is called "rld" when loading a program
and its libraries at process creation time. It also exports a set of functions for
dynamic loading.

Localized. The import-control characteristic of a loadfile that allows it to import symbols
only from the loadfile itself followed by the libraries in its libList, libraries that those
libraries re-export, and from these, any successions of re-exported libraries.

MCB. The Master Control Block. This contains global information such as the product
version number, valid file types, language dialects and floating point types that may be
used.

Millicode library. Low-level library routines. Although separate from it, the millicode can be
considered an adjunct of the system library.

Presetting. This is the process of resolving references to DLLs at linktime.

PIC. This term stands for 'position independent code' and describes a nomenclature
associated with DLLs whereby PIC text contains references do not have to be resolved
at link time. Executable code that need not be modified to run at different virtual
addresses. External reference addresses appear only in a data area that can be
modified by the loader; they do not appear in PIC code. PIC code is even more
position independent than one might imagine from the term; it can be simultaneously
eNOFT Manual—527507-005
Glossary-4

Glossary Program
mapped to different addresses for different processes in the same CPU. PIC
introduces several new elements into ELF files, some of which are adapted from the
Intel LP64 ELF structure. TNS/E supports only PIC files. TNS/R supports PIC and non-
PIC file types.

Program. This term describes one type of loadfile that is capable of being run on the
system. This is the main program and there can only be one program associated with a
process.

Public Libraries. A set of libraries (offering widely-used functions) that are managed as part
of the system, available to all users of the system, and in large part supplied by HP,
although it is possible for customers and third parties to provide DLLs to be added to
the public DLLs. A loadfile must explicitly reference a public library in order to access it.

Preempt. When the linker’s binding of a symbolic reference to a symbol defined in the
same DLL is rebound by the loader to a definition in another loadfile.

Process. An instance of the execution of a program.

Re-exported library. A library whose symbols are made available by another DLL to any
localized client of that DLL. Re-export is an attribute of the DLL's libList entry for
that library. This attribute is specified by the DLL's programmer and recorded by
the linker as a DLL is built. It affects only localized clients of the DLL. This feature
allows a symbol to be moved from one DLL to another without relinking clients of
the original DLL.

Re-exporting is transitive; that is, if A re-exports B and B re-exports C, then A re-
exports C. Thus, re-exported libraries can re-export other libraries to form a
succession of re-exported libraries of arbitrary length.

Region. The Itanium® architecture divides the address space into eight regions, indexed
by the high-order three bits of the 64-bit address. TNS/E initially implements just two,
regions 0 and 7: region 0 is mapped per-process; region 7 is shared by all processes.
Sign extension places “negative” 32-bit addresses in region 7. Note that the high bit of
the 32-bit address on TNS/E determines global addressing, and privilege is an attribute
of the page; the MIPS architecture on TNS/R is just the opposite.

Relocation. the process of assigning load addresses to the different parts of a program,
adjusting the code and data in the program to reflect the assigned addresses.

SearchList. For each loadfile, a list that specifies which libraries to examine, and in which
order, to locate symbol definitions needed by that loadfile. The linker and loader
construct the loadfile's searchList in accordance with that loadfile's import control,
which is set at link time. The system library and millicode are appended to every
searchList. A loadfile's searchList is unaffected by the import control of any other
loadfile.

Sections and Segments. The TNS/E object file is organized into contiguous items called
sections. There is an array of ELF section headers that contains the type and name of
eNOFT Manual—527507-005
Glossary-5

Glossary Strip file
each of these section items. A section is not required to be present if it would not
contain any useful information for a given object file. In loadfiles, some of the sections
are further organized in segments that get loaded into virtual memory.

Strip file. These are files do not have debugging information; that is, DWARF symbol table,
in it. Stripping can be done on any object file. It is still possible for the linker to process
a linkfile that has been stripped because the DWARF symbol table does not contain
any essential information to it. An import library can be stripped even if the
corresponding DLL is not stripped.

Symbol Resolution. When a program is built from multiple subprograms, the references
from one subprogram to another are made using symbols. For example a main
program might use a square root routine called sqrt and the math library defines
sqrt. A linker resolves the symbol by noting the location assigned to sqrt in the
math library and patches the caller’s object code so the call instruction refers to that
location.

Semi-globalized. An import control characteristic of a loadfile that allows the loadfile first to
obtain symbols from its own definitions and then to obtain others as for a
globalized loadfile. Thus, a semi-globalized loadfile cannot have its symbol
references to itself preempted. See also SearchList..

Symbol. The symbolic name of a function or data item. Symbols are defined in loadfiles
and referenced in the same or other loadfiles.

Symbol definition. a function or data item whose name is the symbol.

Symbol value. the address of a definition of that symbol.

Symbolic reference. An occurrence in code or data of a symbol that is or must be bound
to a definition of that symbol. The symbolic reference is bound (resolved and made
usable) by assigning to it the value of a definition of that symbol.

System library. TNS/E library routines required to access TNS/E operating system
functions. (Similar for TNS/R.) The loader automatically searches the system
library for definitions that satisfy a loadfile’s unresolved symbols after searching all
the loadfiles in the loadfile’s searchList.

TNS/E. The hardware platform based on the Itanium™ architecture and the HP NonStop
operating system and software that are specific to that platform. All code is PIC.

TNS/R. The hardware platform based on the MIPS™ architecture and the HP NonStop
operating system and software that are specific to that platform. Code may be PIC
or non-PIC.

TLB. Translation Lookaside Buffer: a cache of page table entries, where each entry
designates the physical memory page corresponding to a range of virtual addresses.
Information within the entry can make the translation unique to the accessing process.
Unless the appropriate TLB entry is present, the page cannot be accessed; typically
eNOFT Manual—527507-005
Glossary-6

Glossary TNS/E object file format
the processor generates a fault to allow software to find and load the missing entry
from a memory-management structure.

TNS/E object file format. This object file format is an amalgam of Intel IA-64 code
architecture and the HP NonStop operating system extensions.

TNS/E object files are categorized into three types of files: linkfiles, loadfiles, and
import libraries. The following are key differences between TNS/R and TNS/E
platforms:

User library. A loadable library; primarily a legacy feature for NonStop systems. For PIC
programs, a user library is a DLL treated as if it were the first library in the
program's libList and therefore is searched first for symbols required by the
program. However, a user library does not appear in the program's libList; instead,
its name is recorded in the program's loadfile as the libname attribute. A program
can be associated with at most one user library; the association can be specified
using the linker at link time or in a later change command, or at run time using the
process creation interfaces. (The /LIB.../ option to the RUN command in TACL
uses these interfaces.)

VHPT. Virtual Hash Page Table: an Itanium® architecture feature that can supply missing
TLB entries without generating faults.

VPROC. The version procedure number used to identify which version of the product you
are using.

Zimpimp file. The internal name of the imp-imp file. Also called the "import library that
represents the implicit DLL's", it is the file that tells which symbols are available in the
set of implicit DLL's, which collectively correspond to what was previously called the
system library. See also Implicit library import library (imp-imp).

Platform TNS/R TNS/E

Processor MIPS RISC Itanium

Architecture SGI Intel IA-64

Programming
model

32-bit (ILP32) 32-bit (ILP32)

and in future:
64-bit LP64

Object type ELF and COFF ELF exclusive

Debugging
symbols

Third-Eye DWARF2

Compiler
Backend

SGI w/ HP
extensions

Intel w/ HP
extensions

Linker, PIC ld eld
eNOFT Manual—527507-005
Glossary-7

Glossary Zreg file
Zreg file. This is the internal name of the public DLL registry file, which lists the names of
all the public DLL's.
eNOFT Manual—527507-005
Glossary-8

Index

A
ar utility 1-1
Archive file Glossary-1

B
batch mode 1-2
Big endian Glossary-1
Bundle Glossary-1

C
Client (of a loadable library) Glossary-1
Code file Glossary-1
command arguments 1-3
command line mode 1-2

D
Default Glossary-1
DEMANGLE or DE 2-57
Direct reference (of a loadfile) Glossary-1
DLL file Glossary-1
Dump Commands 2-8
DUMPADDRESS or DA 2-9
DUMPCODE or DC 2-9
DUMPDATA or DD 2-10
DUMPOFFSET or DO 2-12
DUMPPROC or DP 2-13
DUMPSECTION or DS 2-14
DWARF or DW 2-14
DYNAMIC 2-18
Dynamic loading Glossary-1

E
EDIT Line Number Glossary-1
ELF Glossary-1
ETK

ar utility and 3-1

Explicit library Glossary-1

Export Glossary-2

F
FUNCDESC or FD 2-19

G
Gateway Glossary-2
Gblzd Glossary-2
Globalized import Glossary-2
Globalized symbol Glossary-2
GOT 2-21

H
HASH 2-22
HASHVAL or MSYM 2-23
Hybrid file Glossary-2

I
Implicit library Glossary-2
Implicit library import library (imp-
imp) Glossary-2
Import Glossary-2
Import control Glossary-2
Import library Glossary-2
Indirect reference (of a loadfile) Glossary-3
Instance Glossary-3

L
LIBLIST 2-24
LibList Glossary-3
Libname Glossary-3
Library Glossary-3
LIC 2-25, Glossary-3
Linker Glossary-3
Linker platform Glossary-3
Linkfile Glossary-3
Loadable Library Glossary-4
eNOFT Manual—527507-005
Index-1

Index M
Loader Glossary-3
Loader Library Glossary-4
Loadfile Glossary-4
LoadList Glossary-4
Localized Glossary-4

M
MCB. The Master Control
Block. Glossary-4
millicode Glossary-4
Millicode library Glossary-4

N
NOEXIT 2-61

P
PIC Glossary-4
Preempt Glossary-5
Presetting Glossary-4
Process Glossary-5
PROCINFO 2-26
Program Glossary-5
Public Libraries Glossary-5

R
Region Glossary-5
RELOC 2-27
Relocation Glossary-5
RESET 2-1
Re-exported library Glossary-5
RTDU 2-28

S
SearchList Glossary-5
Sections and Segments Glossary-5
Semi-globalized Glossary-6
SET 2-1
SET and RESET Commands 2-1
SET CASE or SC 2-2

SET DEMANGLE or SDE 2-2
SET DISPLAY OR SD 2-3
SET FORMAT or SF 2-3
SET HISTORYBUFFER or SHB 2-5
SET HISTORYWINDOW or SHW 2-6
SET LINES or SL 2-6
SET SCOPEPROC or SSP 2-6
SET SCOPESOURCE or SSS 2-7
SET SORT or ST 2-7
starting enoft 1-2
stopping enoft 1-2
Strip file Glossary-6
STRTAB 2-31
Symbol Glossary-6
Symbol definition Glossary-6
Symbol Resolution Glossary-6
Symbol value Glossary-6
Symbolic reference Glossary-6
SYMTAB 2-32
System library Glossary-6
system library Glossary-4

T
TANDEMINFO 2-34
TDS

ar utility and 3-1

TLB Glossary-6
TNS/E Glossary-6
TNS/E object file format Glossary-7
TNS/R Glossary-6

U
UNWIND 2-35
User library Glossary-7

V
VHPT Glossary-7
VPROC Glossary-7
eNOFT Manual—527507-005
Index-2

Index Z
Z
Zimpimp file Glossary-7
Zreg file Glossary-8
eNOFT Manual—527507-005
Index-3

Index Z
eNOFT Manual—527507-005
Index-4

	eNOFT Manual
	Legal Notices
	Table of Contents
	What’s New in This Manual
	Manual Information
	New and Changed Information

	About This Manual
	Audience
	Related Reading
	Notation Conventions
	Hypertext Links
	General Syntax Notation
	Notation for Messages
	Notation for Management Programming Interfaces
	Change Bar Notation

	HP Encourages Your Comments

	1 Introduction to eNOFT and ar
	Starting eNOFT
	Interactive (Command-Line) Mode
	Batch (Command File) Mode

	Common Formats of Command Arguments
	Argument Groupings
	Input Format
	Output Display Format
	<proc-spec>
	<source-spec>
	<format-specifier>
	<scope-range>

	2 eNOFT Options
	SET and RESET Commands
	RESET
	SET
	SET CASE or SC
	SET DEMANGLE or SDE
	SET DISPLAY OR SD
	SET FORMAT or SF
	SET HISTORYBUFFER or SHB
	SET HISTORYWINDOW or SHW
	SET LINES or SL
	SET SCOPEPROC or SSP
	SET SCOPESOURCE or SSS
	SET SORT or ST

	Dump Commands
	DUMPALL or ALL
	DUMPADDRESS or DA
	DUMPCODE or DC
	DUMPDATA or DD
	DUMPOFFSET or DO
	DUMPPROC or DP
	DUMPSECTION or DS
	DWARF
	DYNAMIC
	FILEHDR
	FUNCDESC or FD
	GOT
	HASH
	HASHVAL
	LIBLIST
	LIC
	PROCINFO or PI
	PROGHDRS
	RELOC
	RTDU
	SECTHDRS
	STRTAB
	SYMTAB
	TANDEMINFO
	UNWIND

	List Commands
	DBGINFO
	LAYOUT
	LISTATTRIBUTE or LA
	LISTCOMPILERS or LC
	LISTDATA or LD
	LISTDEBUG or LDE
	LISTEXPORTS or LE
	LISTOPTIMIZE or LO
	LISTPROC or LP
	LISTSOURCE or LS
	LISTUNREFERENCED or LUR
	LISTUNRESOLVED or LU
	XREFPROC or XP

	File Handling Commands
	<Break Key>
	CD
	COMMENT
	COMP
	DEMANGLE or DE
	DIR or FILES
	ENV
	EXIT or E or QUIT or Q
	FC and !
	FILE or F
	HELP or ?
	HISTORY or H
	LOG and OUT
	NOEXIT
	OBEY
	SHOW
	VOLUME or CD

	3 The ar Utility
	4 eNOFT Diagnostic Messages
	Fatal Errors
	Data Errors
	Syntax Errors
	Warnings

	5 ar Diagnostic Messages
	A TNS/E Native Object Files
	The Object File Format
	Basic Properties of Object Files
	Types of TNS/E Object Files
	How to Distinguish the Different Types of Object Files
	Summary of the Contents of an Object File
	The 32-Bit and 64-Bit Programming Models

	Code and Data Sections
	User Code
	User Data
	The MCB (Master Control Block)

	Relocation Tables
	The DWARF Symbol Table
	Archives
	Tools That Work With Object Files

	B Differences Between eNOFT and NOFT
	Architecture
	Debugging
	Displays
	Summary of eNOFT Commands

	Glossary
	Index

