
FORTRAN Reference
Manual
Abstract

This reference manual documents the HP implementation of the FORTRAN 77
language including HP extensions. Readers should already be familiar with the
FORTRAN 77 language.

Product Version

FORTRAN D20

Supported Release Version Updates (RVUs)

This manual supports D20.00 and all subsequent D-series RVUs, and G02.00 and all
subsequent G-series RVUs until otherwise indicated in a new edition.

Part Number Published
528615-001 August 2004

Document History
Part Number Product Version Published
82515 A00 FORTRAN B40 October 1986

15546 FORTRAN C20 March 1989

065115 FORTRAN D10 January 1993

528615-001 FORTRAN D20 August 2004

FORTRAN Reference Manual
Glossary Index Examples Figures Tables
What’s New in This Manual xvii
Manual Information xvii
New and Changed Information xvii

About This Manual xix
Who Should Use This Manual xix
Manual Organization xix
Prerequisites xx
Notation Conventions xxi

1. Summary of HP Extensions
Character Set and Identifier Names 1-2
Data Types 1-2
Procedures 1-2
Input and Output Operations 1-2
Files 1-3
Access to Operating System Procedures 1-3
Mixed-Language Programming 1-4
Memory Management 1-4
Fault-Tolerant Programming 1-4
Interprocess Communication 1-4

2. Language Elements
The FORTRAN Character Set 2-1
Program Line Format 2-2

Initial Line 2-3
Continuation Line 2-3
Comment Line 2-3
Compiler Directives 2-4
Treatment of Blanks in a Program Line 2-4

Symbolic Names 2-6
Scope of Symbolic Names 2-7

Data Types 2-7
 Hewlett-Packard Company—528615-001
i

Contents 2. Language Elements (continued)
2. Language Elements (continued)
Implicit and Explicit Typing 2-9
Data Storage—Standard Conformance 2-10

Constants 2-11
Arithmetic Constants 2-11
Logical Constants 2-13
Character Constants 2-13

Variables 2-14
Arrays 2-14

Dimensioning an Array 2-14
Array References 2-16
Array Size 2-17
Storage Order 2-17

Substrings 2-19
Records 2-20

Writing a RECORD Declaration 2-21
Referencing a RECORD Field 2-22
RECORD Storage 2-23
Equivalencing RECORDs 2-23
Equivalencing RECORD Fields 2-24

3. Expressions
Arithmetic Expressions 3-2

Evaluation of Arithmetic Expressions 3-3
Determination of Result Type 3-4

Character Expressions 3-6
Relational Expressions 3-7

Evaluation of Relational Expressions 3-8
Logical Expressions 3-9
Operator Precedence 3-11

4. Program Units
The Main Program and Subprograms 4-1
Communication Between Program Units 4-3
Function Subprograms 4-4

Assigning a Value to the Function Name 4-6
Subroutines 4-7

Subroutines With Alternate Return Specifiers 4-8
Saving Values Computed in Procedure Subprograms 4-9
FORTRAN Reference Manual—528615-001
ii

Contents 4. Program Units (continued)
4. Program Units (continued)
Recursion 4-10
Using Multiple Entry Points in Functions and Subroutines 4-10
Using Adjustable Dimensions for Arrays and String Variables 4-11

Assumed-Size Array Declarator 4-12
Adjustable Array Declarator 4-13
Assumed-Size Length Declarator 4-13

Using Common Blocks 4-14
The Block Data Subprogram 4-15

5. Introduction to File I/O in the HP NonStop Environment
FORTRAN I/O Statements 5-1
Records 5-2
FORTRAN Files 5-3

External and Internal Files 5-3
File Properties 5-4

Units 5-8
File Existence 5-9
Opening a File 5-9
Unit Existence 5-10
Unit Assignment 5-10
Unit Connection 5-13
Specifying File Attributes 5-13

File Characteristics 5-16
Unstructured Files 5-16
Structured Files 5-18
Operations on HP-defined Files 5-24

Control Specifiers in I/O Statements 5-24
I/O Lists 5-26

Using Implied DO Lists 5-27
Unformatted I/O 5-28
Formatted I/O 5-28

List-Directed I/O 5-28
I/O Performance 5-31

Sequential Block Buffering 5-31
Read-Through Locks 5-31
FORTRAN Reference Manual—528615-001
iii

Contents 6. Introduction to Statements
6. Introduction to Statements
Executable and Nonexecutable Statements 6-1
Statement Types 6-3
Statement Order 6-4
Statement Labels 6-5
Error Numbers 6-5

7. Statements
Type Declaration Statements 7-1
Type Declaration Statements—CHARACTER 7-2
Type Declaration Statements—LOGICAL 7-3
Type Declaration Statements—NUMERIC 7-4
Statement Function 7-5
Assignment Statement 7-7
ASSIGN Statement 7-9
BACKSPACE Statement 7-10
BLOCK DATA Statement 7-12
CALL Statement 7-13
CHECKPOINT Statement 7-15
CLOSE Statement 7-18
COMMON Statement 7-20
CONTINUE Statement 7-23
DATA Statement 7-24
DIMENSION Statement 7-26
DO Statement 7-27
ELSE Statement 7-30
ELSE IF Statement 7-30
END Statement 7-30
ENDFILE Statement 7-31
END IF Statement 7-33
ENTRY Statement 7-33
EQUIVALENCE Statement 7-36

Equivalence With Length Differences 7-37
Equivalencing Items in Common Blocks 7-37

EXTERNAL Statement 7-38
FORMAT Statement 7-39

Format Control 7-39
Termination of Format Control 7-40
Edit Descriptors 7-40
FORTRAN Reference Manual—528615-001
iv

Contents 7. Statements (continued)
7. Statements (continued)
Editing Numeric Data 7-43
Logical Editing 7-50
Alphanumeric Editing 7-51
Positional Editing 7-52
Slash Editing 7-53
Sign Control 7-53
Blank Control 7-53

FUNCTION Statement 7-54
GO TO Statement 7-55

Unconditional GO TO 7-56
Computed GO TO 7-56
Assigned GO TO 7-56

IF Statement—Arithmetic 7-58
IF Statement—Logical 7-59
IF Statement—Block 7-60
IMPLICIT Statement 7-63
INQUIRE Statement 7-64
INTRINSIC Statement 7-69
OPEN Statement 7-70
PARAMETER Statement 7-79
PAUSE Statement 7-81
POSITION Statement 7-81
PRINT Statement 7-86
PROGRAM Statement 7-88
READ Statement 7-88
RECORD Statement 7-94
RETURN Statement 7-95
REWIND Statement 7-97
SAVE Statement 7-99
START BACKUP Statement 7-100
STOP Statement 7-105
SUBROUTINE Statement 7-106
WRITE Statement 7-107

8. Intrinsic Functions
Declaring Intrinsic Functions 8-1
Referencing an Intrinsic Function 8-2
Using Generic and Specific Function Names 8-3
FORTRAN Reference Manual—528615-001
v

Contents 8. Intrinsic Functions (continued)
8. Intrinsic Functions (continued)
ABS Function 8-4
ACOS Function 8-5
AIMAG Function 8-6
AINT Function 8-6
ANINT Function 8-7
ASIN Function 8-8
ATAN Function 8-8
ATAN2 Function 8-9
CHAR Function 8-10
CMPLX Function 8-10
CONJG Function 8-11
COS Function 8-12
COSH Function 8-12
DBLE Function 8-13
DIM Function 8-14
DPROD Function 8-14
EXP Function 8-15
FILENUM Function 8-16
ICHAR Function 8-17
INDEX Function 8-18
INT Function 8-19
LEN Function 8-20
LOG Function 8-21
LOG10 Function 8-22
MAX Function 8-23
MIN Function 8-24
MOD Function 8-25
NINT Function 8-26
REAL Function 8-26
SIGN Function 8-27
SIN Function 8-28
SINH Function 8-28
SQRT Function 8-29
TAN Function 8-30
TANH Function 8-30
FORTRAN Reference Manual—528615-001
vi

Contents 9. Program Compilation
9. Program Compilation
Compiling a Program 9-2

Command Line Length 9-4
Examples 9-4
Using a Tape or Disk File for the Listing Output 9-4

TACL PARAM Commands 9-5
Compiling With FORTRAN and BINSERV in the Same CPU 9-6
Specifying a Volume for the Compiler’s Temporary Files 9-6
Specifying the Line Length for the Listing File 9-6

Compiler Operation 9-7
Interpreting Compilation Listings 9-8

Page Heading 9-9
Compiler Heading 9-9
Source Listing 9-10
Code and Data Blocks MAP Listing 9-13
Symbolic Name MAP Listing 9-13
CODE Listing 9-14
ICODE Listing 9-15
CROSSREF Listing 9-17
LMAP Listing 9-17
Completion Message 9-19
Compiler Termination Codes 9-20

Separate Compilation 9-21
Compilation Unit 9-21
Code Blocks and Data Blocks 9-21

Compiling Programs That Use Extended Data Space 9-23
Binding Programs That Use Extended Memory 9-24
User Library Alternatives for Utility Subprograms 9-25
Sample Programs Using the Search Directive 9-25

Using the SEARCH Directive—Sample Program 1 9-25
Using the SEARCH Directive—Sample Program 2 9-31

10. Compiler Directives
Using Compiler Directives 10-4
ABORT Compiler Directive 10-6
ANSI Compiler Directive 10-7
BOUNDSCHECK Compiler Directive 10-8
CODE Compiler Directive 10-9
COLUMNS Compiler Directive 10-9
FORTRAN Reference Manual—528615-001
vii

Contents 10. Compiler Directives (continued)
10. Compiler Directives (continued)
COMPACT Compiler Directive 10-11
CONSULT Compiler Directive 10-12
CROSSREF Compiler Directive 10-15
DATAPAGES Compiler Directive 10-16
ENDIF Compiler Directive 10-17
ENV Compiler Directive 10-18

Using ENV COMMON 10-18
ERRORFILE Compiler Directive 10-21
ERRORS Compiler Directive 10-23
EXTENDCOMMON Compiler Directive 10-24
EXTENDEDREF Compiler Directive 10-24
FIXUP Compiler Directive 10-26
FMAP Compiler Directive 10-27
GUARDIAN Compiler Directive 10-28
HIGHBUFFER Compiler Directive 10-29
HIGHCOMMON Compiler Directive 10-30
HIGHCONTROL Compiler Directive 10-31
HIGHPIN Compiler Directive 10-32
HIGHREQ Compiler Directive 10-33
ICODE Compiler Directive 10-35
IF Compiler Directive 10-36
IFNOT Compiler Directive 10-37
INSPECT Compiler Directive 10-39
INTEGER Compiler Directive 10-39
LARGECOMMON Compiler Directive 10-40
LARGEDATA Compiler Directive 10-42
LARGESTACK Compiler Directive 10-44
LIBRARY Compiler Directive 10-45
LINES Compiler Directive 10-46
LIST Compiler Directive 10-46
LMAP Compiler Directive 10-47
LOGICAL Compiler Directive 10-48
LOWBUFFER Compiler Directive 10-48
MAP Compiler Directive 10-49
NONSTOP Compiler Directive 10-50
PAGE Compiler Directive 10-51
POP Compiler Directive 10-52
PRINTSYM Compiler Directive 10-53
FORTRAN Reference Manual—528615-001
viii

Contents 10. Compiler Directives (continued)
10. Compiler Directives (continued)
PUSH Compiler Directive 10-54
RECEIVE Compiler Directive 10-55
RESETTOG Compiler Directive 10-57
RUNNAMED Compiler Directive 10-58
SAVE Compiler Directive 10-59
SAVEABEND Compiler Directive 10-60
SEARCH Compiler Directive 10-61
SECTION Compiler Directive 10-61
SETTOG Compiler Directive 10-62
SOURCE Compiler Directive 10-63
SUBTYPE Compiler Directive 10-65
SUPPRESS Compiler Directive 10-65
SYMBOLS Compiler Directive 10-66
SYNTAX Compiler Directive 10-66
UNIT Compiler Directive 10-67
WARN Compiler Directive 10-69

11. Running and Debugging Programs
Running a FORTRAN Program 11-1
Using TACL PARAM Commands 11-4
Disabling Level-3 Spooling 11-4

Disabling Level-3 Spooling With ENV OLD 11-4
Disabling Level-3 Spooling With ENV COMMON 11-5

Using the EXECUTION-LOG PARAM 11-5
The EXECUTION-LOG PARAM and Standard Input 11-6
The EXECUTION-LOG PARAM and Standard Output 11-7
The EXECUTION-LOG PARAM and Standard Log 11-7

Using Debug Facilities 11-8
Using the INSPECT TACL PARAM 11-9

Using Inspect 11-10
High-Level Inspect 11-10
Low-Level Inspect 11-10

Using the NONSTOP PARAM 11-11
Using SWITCH-nn PARAM 11-11
FORTRAN Reference Manual—528615-001
ix

Contents 12. Memory Organization
12. Memory Organization
Code Space 12-1
Data Space 12-2

Upper Memory 12-5
Storage Areas 12-5
Storage of Entities in Common Blocks 12-9
Extended Memory 12-11

Debugging Programs That Use Extended Memory 12-13
TNS Processor Memory Organization 12-13

Accessing Data 12-14

13. Mixed-Language Programming
The Common Run-Time Environment—CRE 13-1

Using the CRE 13-1
Sharing Files When ENV COMMON Is in Effect 13-2
Module Compatibility 13-3
Referencing Separately-Compiled Procedures 13-4

Using Binder 13-4
Using Program Libraries 13-4
Using Global Data in Mixed Language Programming 13-6
The FORTRAN Calling Sequence 13-7

Calling Other Language Procedures From FORTRAN 13-12
General Restrictions 13-13
Using GUARDIAN and CONSULT Directives 13-13
Calling Routines Without Using GUARDIAN and CONSULT Directives 13-15
Calling TAL Subprograms From FORTRAN 13-17
Calling COBOL85 Subprograms From FORTRAN 13-19
Calling C Subprograms From FORTRAN 13-20
Calling Pascal Subprograms From FORTRAN 13-21
The COBOLEXT Files 13-22
Compatibility With the Old Form of Procedure Calls Not Written in

FORTRAN 13-22
Calling FORTRAN Procedures From Other Languages 13-23

Calling FORTRAN Subprograms From TAL 13-23
Calling FORTRAN Subprograms From COBOL85 13-24
Calling FORTRAN Subprograms From C 13-25
Calling FORTRAN Subprograms From Pascal 13-25
Intrinsic Function Declarations 13-25

Using ENV COMMON 13-26
FORTRAN Reference Manual—528615-001
x

Contents 13. Mixed-Language Programming (continued)
13. Mixed-Language Programming (continued)
Using Shared Files 13-27

14. Interprocess Communication
Managing $RECEIVE 14-3
Using $RECEIVE 14-5

$RECEIVE as an Input File 14-6
$RECEIVE as an Input/Output File 14-7
$RECEIVE as Separate Input/Output Files 14-8
READ Statement With $RECEIVE 14-9
Using the READ Statement PROMPT Specifier 14-10
WRITE Statement With $RECEIVE 14-10

Message Queuing 14-11

15. Utility Routines
System-Related Routines 15-1
FORTRANCOMPLETION Routine 15-2
FORTRAN_COMPLETION_ Routine 15-5
FORTRAN_CONTROL_ Routine 15-8
FORTRAN_SETMODE_ Routine 15-9
FORTRAN_SPOOL_OPEN_ Routine 15-11
FORTRANSPOOLSTART Routine 15-16

Choosing a Spooling Level 15-19
SSWTCH Routine 15-20
Saved Message Utility 15-21
Using SMU Routines 15-23
Types of SMU Routines 15-24

Getting Environment Information 15-24
Changing Environment Information 15-25
Deleting Environment Information 15-26

Saved Messages 15-26
The PARAM Message 15-26
The ASSIGN Messages 15-27
The Startup Message 15-27

Checkpoint Considerations for Saved Message Utility Routines 15-28
ALTERPARAMTEXT Routine 15-29
CHECKLOGICALNAME Routine 15-31
CHECKMESSAGE Routine 15-32
CREATEPROCESS Routine 15-33
FORTRAN Reference Manual—528615-001
xi

Contents 15. Utility Routines (continued)
15. Utility Routines (continued)
DELETEASSIGN Routine 15-35
DELETEPARAM Routine 15-37
DELETESTARTUP Routine 15-38
GETASSIGNTEXT Routine 15-39
GETASSIGNVALUE Routine 15-40
GETBACKUPCPU Routine 15-41
GETPARAMTEXT Routine 15-42
GETSTARTUPTEXT Routine 15-43
PUTASSIGNTEXT Routine 15-45
PUTASSIGNVALUE Routine 15-47
PUTPARAMTEXT Routine 15-48
PUTSTARTUPTEXT Routine 15-50

16. Fault-Tolerant Programming
Assigning a Process Name 16-2
Processes 16-3
Process Pairs 16-3
Overview of Fault- Tolerant Programs 16-4
Checkpointing 16-6

Checkpointing File Buffers 16-7
Checkpointing File Status Information 16-7
Checkpointing $RECEIVE 16-10
Checkpointing Large Amounts of Data 16-10

Starting a New Backup Process 16-12

A. ASCII Character Set

B. Syntax Summary
FORTRAN Statements B-1
Compiler Directives B-12

C. Converting Programs to HP FORTRAN

D. Data Type Correspondence and Return Value Sizes

E. Compiler Limits

F. Compile-Time Diagnostic Messages
Error Messages F-2
Warning Messages F-34
FORTRAN Reference Manual—528615-001
xii

Contents G. Run-Time Diagnostic Messages
G. Run-Time Diagnostic Messages
I/O Errors G-1
START BACKUP and CHECKPOINT Errors G-2
Intrinsic Errors G-3
Error Messages G-3
Diagnostic Messages With ENV OLD G-3

READ and WRITE Message Format G-3
System Error Message Format G-4
Intrinsic Error Message Format G-6

Diagnostic Messages With ENV COMMON G-6
Message Format G-6
Formatter Run-Time Messages G-8
System Messages G-14
Trap Messages G-15
Run-Time Core Messages G-17
Intrinsic Error Messages G-22
Input/Output Messages G-25

H. Hollerith Constants and Punch Card Codes
Editing Hollerith Data H-2
Hollerith Constants as Subprogram Arguments H-3
Hollerith Punch Card Codes H-3

Glossary

Index

Examples
Example 2-1. Sample FORTRAN Program: Program Lines 2-5
Example 4-1. Calling Program and Subroutine 4-7
Example 9-1. Compiler Listing—Source Listing 9-11
Example 9-2. Compiler Listing—Code and Data Blocks MAP Listing 9-13
Example 9-3. Compiler Listing—ICODE Listing 9-16
Example 9-4. Compiler Listing—Completion Message 9-20
Example 14-1. Example Requesters R1 and R2 for Queued Server 14-12
Example 14-2. Example Queued Server (Part 1 of 3) 14-17
Example 14-3. Example Queued Server (Part 2 of 3) 14-19
Example 14-4. Example Queued Server (Part 3 of 3) 14-20
FORTRAN Reference Manual—528615-001
xiii

Contents Figures
Figures
Figure 2-1. FORTRAN Data Storage 2-9
Figure 2-2. Storage Order of Array Elements 2-18
Figure 2-3. Memory Allocation for Equivalenced Fields in a RECORD 2-25
Figure 4-1. Function Subprogram and Calling Program 4-5
Figure 5-1. Disk File Organization 5-5
Figure 6-1. Order of FORTRAN Statements 6-3
Figure 9-1. The Compilation Process 9-2
Figure 9-2. Compiler Listing—Page Heading 9-9
Figure 9-3. Compiler Listing—MAP Listing 9-13
Figure 9-4. Compiler Listing—CODE Listing 9-14
Figure 10-1. The Effect of the COMPACT Directive 10-12
Figure 12-1. User Data Segment for ENV OLD 12-3
Figure 12-2. User Data Segment for ENV COMMON 12-4
Figure 12-3. Normal and EXTENDCOMMON Addressing 12-10
Figure 12-4. Extended Data Segment 12-12
Figure 12-5. Program Memory Environment 12-14
Figure 14-1. A Process That Access Databases 14-1
Figure 14-2. Multiple Processes Accessing the Same Databases 14-2
Figure 14-3. Requesters and Servers 14-3
Figure 14-4. Structure Allocation to Support NonStop Requester Processes 14-5
Figure 14-5. A Queued Server 14-11
Figure 15-1. Process Messages Manipulated by the SMU 15-23
Figure 16-1. Fault-Tolerant Processing 16-6

Tables
Table i. Summary of Contents xix
Table 2-1. FORTRAN Character Set 2-2
Table 2-2. FORTRAN Data Types 2-8
Table 2-3. Array Based at One 2-15
Table 2-4. Array With Negative Subscripts 2-15
Table 2-5. Calculating Array Element Storage Locations 2-16
Table 3-1. Arithmetic Operators 3-2
Table 3-2. Determination of Expression Type 3-4
Table 3-3. Evaluation of Mixed-Type Exponential Expressions 3-5
Table 3-4. Relational Operators 3-7
Table 3-5. Logical Operators 3-9
Table 3-6. Evaluation of Logical Expressions 3-10
Table 3-7. Operator Precedence 3-11
FORTRAN Reference Manual—528615-001
xiv

Contents Tables (continued)
Tables (continued)
Table 4-1. FORTRAN Program Units 4-2
Table 5-1. FORTRAN I/O Statements 5-1
Table 5-2. File Attributes 5-3
Table 5-3. FORTRAN Default File Attributes 5-4
Table 5-4. FORTRAN Access Methods for HP-defined Files 5-7
Table 5-5. File Attribute Specification 5-14
Table 5-6. Valid Operations on HP-defined Files 5-24
Table 5-7. I/0 Control Specifiers 5-25
Table 5-8. Input Format in List-Directed I/O 5-29
Table 6-1. FORTRAN Statements 6-1
Table 6-2. FORTRAN Statement Types 6-4
Table 7-1. Repeatable Edit Descriptors 7-41
Table 7-2. Nonrepeatable Edit Descriptors 7-42
Table 7-3. Values Converted With the B Descriptor 7-47
Table 7-4. Values Converted With the O Descriptor 7-47
Table 7-5. Values Converted With the Z Descriptor 7-48
Table 7-6. Values Edited With the G Descriptor 7-49
Table 7-7. Comparison of F and G Editing 7-49
Table 7-8. File Protection and Mode Interaction Between Opening

Processes 7-77
Table 7-9. Option Bits for START BACKUP OPTION Specifier 7-101
Table 7-10. Status Codes Returned for CHECKPOINT and START

BACKUP 7-102
Table 8-1. FORTRAN Intrinsic Functions 8-2
Table 9-1. PARAM Commands 9-5
Table 9-2. Compiler Listing Options 9-8
Table 9-3. LMAP Code Block Listing 9-17
Table 9-4. Data Block Listing 9-18
Table 9-5. FORTRAN Data Blocks 9-22
Table 10-1. Summary of Compiler Directives 10-1
Table 10-2. System Messages 10-56
Table 11-1. Run-Time TACL PARAM Commands 11-4
Table 12-1. Data Blocks 12-5
Table 12-2. Compiler Directives That Control Data Allocation 12-6
Table 14-1. Layout of Request Message From $RECEIVE Returned on READ

Statement 14-10
Table 15-1. FORTRAN Run-Time Utility Routines 15-1
Table 15-2. Saved Message Utility Routines 15-21
FORTRAN Reference Manual—528615-001
xv

Contents Tables (continued)
Tables (continued)
Table 15-3. SMU Routines for Obtaining Environment Information 15-25
Table 15-4. The Portions of the ASSIGN Message 15-27
Table 15-5. The Portions of the Startup Message 15-28
Table A-1. ASCII Character Set A-1
Table D-1. Integer Types, Part 1 D-1
Table D-2. Integer Types, Part 2 D-2
Table D-3. Floating, Fixed, and Complex Types D-3
Table D-4. Character Types D-3
Table D-5. Structured, Logical, Set, and File Types D-4
Table D-6. Pointer Types D-5
Table H-1. Hollerith Constant String Lengths H-2
Table H-2. Hollerith Characters H-3
FORTRAN Reference Manual—528615-001
xvi

What’s New in This Manual
Manual Information

FORTRAN Reference Manual

Abstract

This reference manual documents the HP implementation of the FORTRAN 77
language including HP extensions. Readers should already be familiar with the
FORTRAN 77 language.

Product Version

FORTRAN D20

Supported Release Version Updates (RVUs)

This manual supports D20.00 and all subsequent D-series RVUs, and G02.00 and all
subsequent G-series RVUs until otherwise indicated in a new edition.

Document History

New and Changed Information
This publication has been updated to reflect new product names:

• Since product names are changing over time, this publication might contain both
HP and Compaq product names.

• Product names in graphic representations are consistent with the current product
interface.

The following changes have been made for this edition:

• Added message 255 on page G-8.

• Migrated the manual to current authoring tools.

• Rebranded and updated for new release terminology and manual titles.

Part Number Published
528615-001 August 2004

Part Number Product Version Published
82515 A00 FORTRAN B40 October 1986

15546 FORTRAN C20 March 1989

065115 FORTRAN D10 January 1993

528615-001 FORTRAN D20 August 2004
FORTRAN Reference Manual—528615-001
xvii

What’s New in This Manual New and Changed Information
FORTRAN Reference Manual—528615-001
xviii

About This Manual
This manual describes the HP implementation of the full ANSI FORTRAN 77 (X3.9-
1978) language. It also describes HP extensions that optimize FORTRAN for the
transaction-oriented, fault-tolerant environment. All HP extensions provide capabilities
beyond those stated in the FORTRAN standard.

Who Should Use This Manual
This manual is for system and application programmers.

Manual Organization
Table i. Summary of Contents (page 1 of 2)

Section Title This section . . .
1 Summary of HP Extensions An introduction to FORTRAN. If you are

thoroughly familiar with FORTRAN, you need
read only the description of RECORD
structures in Section 2, Language Elements
and in Section 5, Introduction to File I/O in the
HP NonStop Environment.

2 Language Elements

3 Expressions

4 Program Units

5 Introduction to File I/O in the
HP NonStop Environment

6 Introduction to Statements

7 Statements Language statements and intrinsic functions.

8 Intrinsic Functions

9 Intrinsic Functions Using compiler directives and compiling and
running FORTRAN programs.10 Compiler Directives

11 Running and Debugging
Programs

12 Memory Organization Using features of the HP FORTRAN
environment.13 Mixed-Language Programming

14 Interprocess Communication

15 Utility Routines

16 Fault-Tolerant Programming

A ASCII Character Set Lists ASCII characters.

B Syntax Summary Provides a syntax summary for FORTRAN
statements and compiler directives.

C Converting Programs to
HP FORTRAN

Contains suggestions to convert a FORTRAN
application program that was not written for
HP FORTRAN to the syntax and semantics of
HP FORTRAN.
FORTRAN Reference Manual—528615-001
xix

About This Manual Prerequisites
The Glossary provides definitions for terms used in the manual.

Although Section 7, Statements, Section 8, Intrinsic Functions, and Section 10,
Compiler Directives, comprise the reference part of the manual, consult the other
sections for further clarification and more complete examples.

Prerequisites
If you are unfamiliar with the FORTRAN programming language, any of the numerous
tutorial texts currently available are recommended as supplemental reading. If you are
unfamiliar with the TNS systems or the HP NonStop™ Kernel operating system, refer
to the following HP manuals:

D Data Type Correspondence and
Return Value Sizes

Lists the return value size generated by HP
NonStop language compilers for each data
type.

E Compiler Limits Summarizes the limits of the FORTRAN
compiler

F Compile-Time Diagnostic
Messages

Lists the FORTRAN 77 compiler diagnostic
messages that FORTRAN might report in the
program listing.

G Run-Time Diagnostic Messages Describes the features of FORTRAN
statements and utility routines. Also, describes
the format and content of the diagnostic
messages.

H Hollerith Constants and Punch
Card Codes

Describes Hollerith constants and punch card
codes.

Manual Description
Introduction to Tandem NonStop
Systems

Describes the application environment, architecture,
and networking capabilities of NonStop systems and
explains basic concepts, terms, and entities in the
NonStop environment.

Introduction to D-Series Systems Provides an overview of D-series enhancements to
the HP NonStop Kernel operating system.

Guardian Application Conversion
Guide

Describes how to convert C, COBOL85, Pascal, TAL,
and TACL applications to use the extended features of
the NonStop Kernel.

Guardian User’s Guide Explains how to run program files and how to create
keyed files using the File Utility Program (FUP).

Guardian Procedure Calls
Reference Manual

Describes the syntax for Guardian procedure calls.

ENSCRIBE Programmer’s Guide Describes the Enscribe database record manager.

Table i. Summary of Contents (page 2 of 2)

Section Title This section . . .
FORTRAN Reference Manual—528615-001
xx

About This Manual Notation Conventions
Notation Conventions
Hypertext Links

Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

This requirement is described under Backup DAM Volumes and Physical Disk
Drives on page 3-2.

General Syntax Notation
This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words. Type
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words. Type these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

Spooler Programmer’s Guide Describes the HP spooler program.

CRE Programmer’s Guide Explains features of the CRE, including file sharing
and error handling.

TACL Reference Manual Describes command interpreter commands.

Inspect Manual Describes how to use Inspect, an interactive symbolic
debugging utility.

Binder Manual Explains the binding of object files.

Debug Manual Describes how to use Debug, an interactive low-level
debugging utility.

CROSSREF Manual Explains how to use the cross-reference listing tool.

Manual Description
FORTRAN Reference Manual—528615-001
xxi

About This Manual General Syntax Notation
[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
 [-num]
 [text]

K [X | D] address

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list can be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…
[-] {0|1|2|3|4|5|6|7|8|9}…
An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be typed as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must type as shown. For example:

"[" repetition-constant-list "]"
FORTRAN Reference Manual—528615-001
xxii

About This Manual Notation for Messages
Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no
spaces are permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…

!i and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o. In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; !i,o

!i:i. In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

Notation for Messages
This list summarizes the notation conventions for the presentation of displayed
messages in this manual.
FORTRAN Reference Manual—528615-001
xxiii

About This Manual Notation for Messages
Bold Text. Bold text in an example indicates user input typed at the terminal. For example:

ENTER RUN CODE

?123

CODE RECEIVED: 123.00

The user must press the Return key after typing the input.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.

lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-register

process-name

[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be
displayed, of which one or none might actually be displayed. The items in the list can
be arranged either vertically, with aligned brackets on each side of the list, or
horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

proc-name trapped [in SQL | in SQL file system]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list can be arranged
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

obj-type obj-name state changed to state, caused by
{ Object | Operator | Service }

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { OK | Failed }
FORTRAN Reference Manual—528615-001
xxiv

About This Manual Notation for Management Programming Interfaces
% Percent Sign. A percent sign precedes a number that is not in decimal notation. The
% notation precedes an octal number. The %B notation precedes a binary number.
The %H notation precedes a hexadecimal number. For example:

%005400

%B101111

%H2F

P=%p-register E=%e-register

Notation for Management Programming Interfaces
This list summarizes the notation conventions used in the boxed descriptions of
programmatic commands, event messages, and error lists in this manual.

UPPERCASE LETTERS. Uppercase letters indicate names from definition files. Type these
names exactly as shown. For example:

ZCOM-TKN-SUBJ-SERV

lowercase letters. Words in lowercase letters are words that are part of the notation,
including Data Definition Language (DDL) keywords. For example:

token-type

!r. The !r notation following a token or field name indicates that the token or field is
required. For example:

ZCOM-TKN-OBJNAME token-type ZSPI-TYP-STRING. !r

!o. The !o notation following a token or field name indicates that the token or field is
optional. For example:

ZSPI-TKN-MANAGER token-type ZSPI-TYP-FNAME32. !o

Change Bar Notation
Change bars are used to indicate substantive differences between this manual and its
preceding version. Change bars are vertical rules placed in the right margin of
changed portions of text, figures, tables, examples, and so on. Change bars highlight
new or revised information. For example:

The message types specified in the REPORT clause are different in the COBOL85
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for
old message types. In the CRE, the message type SYSTEM includes all
messages except LOGICAL-CLOSE and LOGICAL-OPEN.
FORTRAN Reference Manual—528615-001
xxv

About This Manual Change Bar Notation
FORTRAN Reference Manual—528615-001
xxvi

1 Summary of HP Extensions
HP FORTRAN for NonStop systems implements the full ANSI FORTRAN 77 (X3.9-
1978) language. In addition, HP FORTRAN extensions to the ANSI standard enable
you to:

• Use 31-character identifier names.

• Use RECORD declarations to define and reference data structures containing data
of different types.

• Combine procedures written in C, COBOL85, FORTRAN, Pascal, and TAL into an
executable program.

• Write fault-tolerant programs.

• Access key-sequenced, relative, and entry-sequenced files by primary or alternate
keys, and make full use of the ENSCRIBE facilities.

• Use standard READ and WRITE statements to communicate with other processes.

• Invoke Guardian system procedures as if they were FORTRAN subroutines.

• Use the Binder, Crossref, and Inspect development tools.

• Access extended data storage and use large common and local data blocks.

These features are described briefly in these topics:

Topic Page
Character Set and Identifier Names 1-2

Data Types 1-2

Procedures 1-2

Input and Output Operations 1-2

Files 1-3

Access to Operating System Procedures 1-3

Mixed-Language Programming 1-4

Memory Management 1-4

Fault-Tolerant Programming 1-4

Interprocess Communication 1-4
FORTRAN Reference Manual—528615-001
1-1

Summary of HP Extensions Character Set and Identifier Names
Character Set and Identifier Names
The HP FORTRAN character set includes the following symbols that are not part of the
ANSI standard character set:

• _ for use in names

• % to designate octal integers

• ^ for use in RECORD references and section names

• ? to identify a line of source that contains compiler directives

• \ for pass-by-value parameters

• " for defining the string that the PAGE directive prints at the top of each page

For additional information, see Section 2, Language Elements.

The names of external subprograms, common block names, variables, arrays, and
statement functions can be up to 31 characters long.

Data Types
You can declare word, doubleword, or quadrupleword INTEGER entities and word or
doubleword LOGICAL entities. For additional information, see Section 2, Language
Elements.

You can use Hollerith constants in DATA statements or as actual arguments in CALL
statements. See Section H, Hollerith Constants and Punch Card Codes.

Using the RECORD and END RECORD statements, you can declare RECORD
structures that mix different data types in one record and support the processing of
database records. For additional information, see Section 2, Language Elements.

Procedures
HP FORTRAN supports recursive subprograms. For additional information, see
Section 4, Program Units.

Input and Output Operations
You can mix numeric data for real and integer entities: on input, numeric data is
automatically converted to the data type of the corresponding input list item; on output,
numeric data is converted to the data type required by the format specification. For
additional information, see Section 5, Introduction to File I/O in the HP NonStop
Environment.
FORTRAN Reference Manual—528615-001
1-2

Summary of HP Extensions Files
A record can be shorter than the entity specified in the I/O list. The formatter fills the
remainder of a short input record with blanks. For additional information, see Section 5,
Introduction to File I/O in the HP NonStop Environment.

FORMAT statements can specify binary, octal, and hexadecimal numeric conversion.
For additional information, see Section 7, Statements.

Files
Your program can use both formatted and unformatted I/O on the same file.

You can position a structured file for keyed access by using the POSITION statement.
You can update and delete records in structured files by using the UPDATE specifier
with READ and WRITE statements. For additional information, see Section 5,
Introduction to File I/O in the HP NonStop Environment, and Section 7, Statements.

Your program can open a file multiple times by having more than one UNIT reference
the file. For additional information, see Section 5, Introduction to File I/O in the
HP NonStop Environment.

The function FILENUM returns the Guardian file number associated with the specified
unit. For additional information, see Section 8, Intrinsic Functions.

The TIMEOUT specifier for the READ and WRITE statements provides timed access
to files. For additional information, see the description of the READ and WRITE
statements in Section 7, Statements.

The LENGTH specifier for the READ statement obtains the actual length of a
variablelength record. The LENGTH specifier for the WRITE statement determines the
last character position used in a data transfer to an internal file. For additional
information, see the description of the READ and WRITE statements inSection 7,
Statements.

The PROMPT and PROMPTLENGTH specifiers for the READ statement provide
prompting for input from interactive terminals. The OPEN statement’s control list
includes the optional SYNCDEPTH, PROTECT, MODE, SPACECONTROL, STACK,
and TIMED specifiers for additional file control capabilities. For more information, see
the descriptions of the READ and OPEN statements in Section 7, Statements.

Access to Operating System Procedures
Using the GUARDIAN directive described in Section 10, Compiler Directives,
FORTRAN programs can invoke Guardian procedures as subroutines or external
functions as if they were written in FORTRAN. For additional information, see
Section 13, Mixed-Language Programming, and Section 15, Utility Routines.
FORTRAN Reference Manual—528615-001
1-3

Summary of HP Extensions Mixed-Language Programming
Mixed-Language Programming
You can specify external functions and subroutines in C, COBOL85, Pascal, or TAL
and bind these modules, along with your FORTRAN modules, into a single executable
program using the Binder program.

For additional information, see Section 9, Program Compilation, and Section 13,
Mixed-Language Programming.

Memory Management
A FORTRAN program can have up to 32 code segments—each code segment
containing up to 128KB—and up to 127.5MB of data storage in an extended data
segment.

You can use compiler directives to:

• Allocate space in upper memory and in extended memory

• Reference items in common blocks using indexed addressing

For additional information, see Section 12, Memory Organization.

Fault-Tolerant Programming
The START BACKUP and CHECKPOINT statements support fault-tolerant processes.
For additional information, see Section 6, Introduction to Statements.

Interprocess Communication
The $RECEIVE facility is available to FORTRAN programs for interprocess
communication.

• The RECEIVE directive specifies $RECEIVE message-handling options.

• The SOURCE specifier with the READ statement receives message information.

• The MSGNUM and REPLY specifiers with the WRITE statement enable you to
reply to messages received from $RECEIVE.

For additional information, see Section 14, Interprocess Communication.
FORTRAN Reference Manual—528615-001
1-4

2 Language Elements
Topics covered in this section include:

The FORTRAN Character Set
The FORTRAN character set, shown in Table 2-1 on page 2-2, consists of 26 letters,
10 digits, and 19 special characters. These characters are the only acceptable
characters in the text of a FORTRAN statement, although you can use any character in
the ASCII character set in character constants, literals, comment lines, and Hollerith
field descriptors. The FORTRAN collating sequence follows the order of the ASCII
character set, shown in Appendix A, ASCII Character Set.

The FORTRAN compiler ignores case except in character constants. The following two
statements are identical in FORTRAN:

PROGRAM random number generator

PROGRAM RANDOM NUMBER GENERATOR

To help you distinguish keywords from symbols in this manual, keywords are shown in
uppercase characters, and symbolic names are shown in lowercase characters.

Topic Page
The FORTRAN Character Set 2-1

Program Line Format 2-2

Symbolic Names 2-6

Data Types 2-7

Constants 2-11

Variables 2-14

Arrays 2-14

Substrings 2-19

Records 2-20
FORTRAN Reference Manual—528615-001
2-1

Language Elements Program Line Format
Program Line Format
FORTRAN program lines are initial lines, continuation lines, comment lines, or
compiler directives.

By default, each source line can be a maximum of 132 characters. FORTRAN treats
characters beyond the maximum line length as comments. You can use the COLUMNS
compiler directive to change the maximum length of a source line to any number of
characters from 12 through 132.

The ANSI standard requires that source lines be exactly 72 characters. When the ANSI
compiler directive is in effect, each line can be from 72 to 132 characters in length. If a
line is shorter than 72 characters, the compiler appends blanks to make it 72
characters. If a line is longer than 72 characters, the compiler treats characters beyond
position 72 as comments.

The ANSI directive differs from the COLUMNS 72 directive. When the ANSI directive is
in effect, the compiler ensures that all source lines are at least 72 characters long by
appending blanks to lines that contain fewer than 72 characters. If the COLUMNS 72
directive is in effect, the compiler does not append blanks to lines that have fewer than
72 characters. The difference between the COLUMNS 72 directive and the ANSI
directive is important when a character constant is continued from one line to the next.

If your program specifies both an ANSI directive and a COLUMNS directive, the ANSI
directive overrides the COLUMNS directive.

Table 2-1. FORTRAN Character Set
Alphabetic a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Numeric 0 1 2 3 4 5 6 7 8 9

Special = Equals , Comma

+ Plus . Decimal point

- Minus $ Currency symbol

* Asterisk ' Apostrophe

/ Slash : Colon

(Left parenthesis Space

) Right parenthesis

HP Extensions ^ Circumflex % Percent

\ Backslash ? Question mark

_ Underscore " Quotation mark
FORTRAN Reference Manual—528615-001
2-2

Language Elements Initial Line
FORTRAN source lines contain the following elements:

Initial Line
A statement label, if present, begins anywhere in columns 1 through 5 (blanks are
ignored). Column 6 can be a blank or a zero (0). FORTRAN statements begin in
column 7.

Continuation Line
Continuation lines enable you to continue a statement beyond the limits of a physical
line. You designate a continuation line by placing any character, except a 0 or a blank,
in column 6. Begin the text of a continuation line in or after column 7. Following an
initial line, you can use up to 19 continuation lines to write one FORTRAN statement.

Comment Line
Designate comment lines by specifying the character C or an asterisk (*) in column 1.
The compiler treats all characters from column 2 to the end of the line as a comment.
You can place comment lines anywhere in a program. A line that contains all blanks is
a comment line. You can use blank lines to improve readability.

Column Meaning
1 If column 1 contains the letter “C” or an asterisk, the entire source line is a

comment.

If column 1 contains a question mark (?), the remainder of the record
contains compiler directives.

If column 1 contains a blank, the record is a continuation record or an
optionally labeled FORTRAN statement.

If column 1 contains any character other than a “C”, an asterisk, or a digit
from 0 through 9, FORTRAN reports a syntax error.

1 through 5 If column 1 does not contain a “C” or an asterisk, columns 1 through 5
contain a label. The label consists of any combination of the digits 0
through 9. Blanks, if present, are ignored. If columns 1 through 5 are
blank, the record does not contain a label.

6 If column 6 contains any character other than a zero (0) or a blank,
column 7 is the beginning of a continuation line. If column 6 is a zero or a
blank, column 7 is the beginning of a new FORTRAN statement.

7 through end
of line

If column 1 specifies a comment, columns 7 through the end of the line
are comment text.

If column 6 is a zero or a blank, column 7 is the beginning of a new
FORTRAN statement.

If column 6 is any character other than a zero or a blank, column 7 is the
beginning of a new FORTRAN statement.
FORTRAN Reference Manual—528615-001
2-3

Language Elements Compiler Directives
You cannot use continuation lines to continue comments. Write multi-line comments as
multiple comment lines, as shown in the following example:

* This is such a lengthy comment line that I am afraid

* I shall have to continue it over several lines.

Compiler Directives
Designate compiler directives by placing a question mark (?) in column one, followed
by the directive name. For example:

?SYNTAX

DIMENSION A(100),B(100)

COMMON A

.

100 STOP

END

You can write more than one directive on a line by inserting a comma between
directives. The following directive lines are equivalent:

?ANSI, PAGE "This is the first page"

?ANSI

?PAGE "This is the first page"

Some directives can occupy multiple lines. Begin each line that continues a directive
with a question mark in the first column. For example:

?SOURCE routines (probability, random, trig, volume,

?combinations, permutations)

Note that some directives must be written last on a directive line. For more information
about using directives, see Section 10, Compiler Directives. The compiler ignores
blanks in directives, except within character constants.

Treatment of Blanks in a Program Line
The FORTRAN compiler ignores blanks in columns 1 through 5, and in columns 7
through the end of the line of initial and continuation lines of all statements, except
within character and Hollerith constants. The following two statements are equivalent;
both assign the value 5 to the variable READN:

read n = 5

readn=5
FORTRAN Reference Manual—528615-001
2-4

Language Elements Treatment of Blanks in a Program Line
Example 2-1. Sample FORTRAN Program: Program Lines
C This program converts Fahrenheit to Celsius.

C

C It reads an initial Fahrenheit value (i), a terminal

C Fahrenheit value (j), and an increment value (k) from the

C terminal. Then it prints a table showing the

C corresponding Celsius values.

C

C Set up table for titles, headings, and entries

?SYNTAX

?LIST, CODE

 PROGRAM conversion

 WRITE (6,50)

 WRITE (6,60)

50 FORMAT (x,'TABLE SHOWING TEMPERATURE CONVERSION FROM

 + FAHRENHEIT TO CELSIUS')

60 FORMAT (5X, 'Fahrenheit', 4X, 'Celsius')

70 FORMAT (5X, I4, 10X, F6.2)

C Set up double loop: inner for computation of Celsius

C temperature, outer to supply values for I, J, and K.

 DO 200 kount = 1,2

 READ *, i, j, k

 DO 100 fahrenheit = i, j, k

 celsius = 5./9. * (fahrenheit - 32)

 WRITE (6, 70) fahrenheit, celsius

100 CONTINUE

200 CONTINUE

 END
FORTRAN Reference Manual—528615-001
2-5

Language Elements Symbolic Names
Symbolic Names
You use symbolic names to represent the following entities:

• Main program name

• Common block name

• Block data subprogram name

• Subroutine name

• External function name

• Variable name

• Array name

• RECORD and RECORD-field name

• Symbolic constant name

• Intrinsic function name

• Statement function name

• Dummy procedure name

Symbolic names can contain the letters A through Z, the numbers 0 through 9, and the
underscore character (_). References to RECORD fields can also contain the
circumflex character (^).

A symbolic name can be up to 31 characters long. The first character of a symbolic
name must be a letter. The symbolic name can include blanks (in addition to the 31
characters), but the compiler ignores them. The compiler also ignores case. The
compiler treats the following names identically:

MATHROUTINES Math Routines

mathroutines math routines

The following names are valid FORTRAN symbolic names:

a1b4300891

visitors march 1985 with free passes

The following names are invalid:

85 taxes <-- name cannot begin with a digit

amount$ <-- name cannot contain a dollar sign

Context determines whether a particular sequence of characters identifies a keyword
or a symbolic name. No sequence of characters is reserved in all contexts in
FORTRAN.
FORTRAN Reference Manual—528615-001
2-6

Language Elements Scope of Symbolic Names
Scope of Symbolic Names
The scope of a symbolic name is the range within which the symbolic name is defined:
a name’s scope can be an executable program, a program unit, a statement function
statement, or an implied DO list in a DATA statement.

• The name of the main program and the names of block data subprograms,
external functions, subroutines, and common blocks have the scope of an
executable program.

• The names of variables, arrays, RECORDs, RECORD fields, constants, statement
functions, intrinsic functions, and dummy procedures have the scope of a program
unit.

• The names of variables that appear as dummy arguments in a statement function
statement have the scope of that statement.

• The names of variables that appear as the DO variable of an implied DO in a DATA
statement have the scope of the implied DO list.

No two entities in the same scope can have the same symbolic name, except that a
common block name can be the same as a program unit name.

If you use the name of a FORTRAN intrinsic function as a symbolic name, all
references to that name within the program unit that declares the symbolic name
reference your identifier name. You cannot invoke the intrinsic function from that
program unit.

Avoid using FORTRAN keywords as symbolic names. Although the FORTRAN
compiler does not report a warning or an error if you use a keyword as a symbolic
name, your program is less readable.

Data Types
Every variable, array, RECORD field, symbolic constant, statement function, and
function name has a type. FORTRAN recognizes the following data types:

• Integer

• Real

• Double precision

• Complex

• Logical

• Character

The symbolic name of a main program, subroutine, common block, or block data
subprogram does not have a data type.
FORTRAN Reference Manual—528615-001
2-7

Language Elements Data Types
The data types INTEGER*4 and INTEGER*8, and the compiler directives INTEGER*4,
INTEGER*8, and LOGICAL*4 enable you to allocate additional storage for large
integers and logical type data.

Figure 2-1 on page 2-9 shows the storage allocated for each type.

Table 2-2. FORTRAN Data Types
Type Range/Storage Precision (digits)
Integer*2 -32,768 +32,767

Integer*4 -2,147,483,648
+2,147,438,647

Integer*8 -9,223,372,036,854,775,808
+9,223,372,036,854,775,807

Real ±8.646000 E-78
±1.579208 E+77

6.9

Double Precision\ ±8.6361685550944446 E-78
±1.15792089237316189 E+77

16.5

Complex ±8.6361685550944446 E-78
±1.15792089237316189 E+77

6.9

Logical*2 (default) word storage

Logical*4 (directive) doubleword storage

Character 255 string length
1/2 word per character
FORTRAN Reference Manual—528615-001
2-8

Language Elements Implicit and Explicit Typing
Implicit and Explicit Typing
By default, FORTRAN interprets symbolic names that begin with the letters I, J, K, L,
M, and N as type integer and interprets names that begin with any other letter as type
real. You can override the default type by using one of the following type declaration
statements:

INTEGER*2

INTEGER*4

INTEGER*8

REAL

DOUBLE PRECISION

LOGICAL

COMPLEX

CHARACTER

The INTEGER type declaration, without an explicit length, refers to the prevailing
integer type as determined by an INTEGER*2, INTEGER*4, or INTEGER*8 compiler
directive. In the absence of such a directive, INTEGER means INTEGER*2. Similarly,

Figure 2-1. FORTRAN Data Storage

LOGICAL*4

WORDS

1 2 3 4

COMPLEX

LOGICAL*2

REAL*4

INTEGER*4

DOUBLE
PRECISION

INTEGER*8

INTEGER*2

REAL

VST0201.vsd

IMAGINARY
FORTRAN Reference Manual—528615-001
2-9

Language Elements Data Storage—Standard Conformance
the LOGICAL type declaration refers to the prevailing logical type as determined by the
LOGICAL*4 compiler directive. In the absence of such a directive, LOGICAL means
LOGICAL*2.

The general form of a type declaration statement is:

type

is a declaration statement name such as INTEGER*2 or COMPLEX

var-name

is the symbolic name of a constant, variable, array, RECORD field or function

For example, the following statement declares a double precision variable called
INVENTORY:

DOUBLE PRECISION inventory

You can use an IMPLICIT statement to change the default type associated with the
letters of the alphabet. For example, the following statement reverses the default type
setting:

IMPLICIT REAL (i-n), INTEGER (a-h, o-z)

Data Storage—Standard Conformance
The ANSI standard requires that integer, real, and logical variables occupy the same
amount of storage space. To write a program that conforms to the standard, begin the
program with INTEGER*4 and LOGICAL*4 directives, and avoid using the INTEGER*n
form to declare variables and other symbolic names. For example:

PROGRAM main

?INTEGER*4, LOGICAL*4

INTEGER patient number <-- Declares INTEGER*4 variable

LOGICAL discharged <-- Declares LOGICAL*4 variable

.

END

type var-name [, var-name]...
FORTRAN Reference Manual—528615-001
2-10

Language Elements Constants
Constants
A constant is an unvarying datum. A constant can be a number, a constant expression,
a complex value, a logical value, or a string of characters.

You can use a PARAMETER statement to create a symbolic name for a constant. See
the PARAMETER Statement on page 7-79.

Arithmetic Constants
Integer, real, double precision, and complex constants are called arithmetic constants.

Integer Constants
You must express an integer constant as a whole number. You can place a minus sign
in front of an integer to indicate a negative number. The following are examples of
integer constants:

123 <-- word integer

-52381 <-- doubleword integer

9814387278 <-- quadrupleword integer

An integer constant is considered to be of the smallest size (INTEGER*2, INTEGER*4,
INTEGER*8) that can contain it.

An integer constant cannot contain a decimal point or a comma. However, you can
make a constant more readable by grouping digits of the constant and separating the
groups with blanks. The compiler ignores the blanks. For example:

9 814 387 278

You can represent an integer constant in octal notation. An octal constant has the
range of a quadrupleword integer and is a string of from 1 to 22 digits—only the digits
0, 1, 2, 3, 4, 5, 6, and 7 are valid—prefixed with a percent sign (%). Precede the
percent sign with a minus sign if the number is negative. The following is an example
of a negative, octal integer.

-%1034621

Real Constants
A real constant is a string of decimal digits that must include a decimal point or an
exponent. It cannot include commas, but you can use embedded spaces for
readability. You can express a real constant as a decimal number. For example:

7.5

-.0001

24578.342
FORTRAN Reference Manual—528615-001
2-11

Language Elements Arithmetic Constants
You can also express a real constant in “exponential” form:

where coefficient is a decimal integer or real constant, and exponent is a decimal
integer constant. For example:

The number following the letter E designates a power of 10. For example:

3.2E2 is the same as 3.2 * 10**2

1.23E-3 is the same as 1.23 * 10**-3

The following real constants are invalid:

2,345,125 <-- Number must not include commas

$3.21E5 <-- Number must not include special characters

23E83 <-- Number is too large

Double Precision Constants
A double precision constant is a quadrupleword real constant. Write a double precision
constant like a real constant, but use the letter D to indicate the exponent part of the
constant, as shown in the following syntax:

This shows examples of double precision constants:

Exponential Notation Value
2.5E2 250

-1E-5 -.00001

-.00028E5 -28

Exponential Notation Value
5.834D2 583.4

3122D5 312,200,000

14.D-6 .000014

+
-

 coefficient E
+
-

 exponent

+
-

 coefficient D
+
-

 exponent
FORTRAN Reference Manual—528615-001
2-12

Language Elements Logical Constants
Complex Constants
You express a complex constant as a pair of real or integer constants separated by a
comma and enclosed in parentheses:

(real, imaginary)

where real is a real or integer constant that specifies the real part, and imaginary a
real or integer constant that specifies the imaginary part. For example:

(1, 7.5)

(5, 1)

(-2.5E3, 3.67)

Logical Constants
There are two logical constants:

.TRUE.

.FALSE.

You must write the enclosing decimal points. A logical value is stored in one 16-bit
word. The LOGICAL*4 compiler directive provides doubleword logical values. The only
values used for logical constants are all bits set to 1 for .TRUE., and all bits set to for
.FALSE..

Character Constants
A character constant is a string of up to 255 characters enclosed in apostrophes ('). A
space character in a string occupies a position and is therefore significant. The
following is an example of a character constant:

'April 1985'

If the string contains an apostrophe, you must use two apostrophes to distinguish it
from the terminating apostrophe. The compiler treats two adjacent apostrophes as one
apostrophe.

'Mozart''s "Don Giovanni"'

'The ''customer'' is always right!'

The following character constants are invalid:

"Report Summary" <-- The constant is not enclosed in
apostrophes.

'Sam's Diner' <-- The inner apostrophe is not doubled.

Character constants are case sensitive—the compiler retains uppercase and
lowercase letters exactly as you specify them in the character constant.
FORTRAN Reference Manual—528615-001
2-13

Language Elements Variables
You can use Hollerith constants to represent character data. You might need to use
Hollerith data if you are working with pre-FORTRAN 77 programs. For additional
details, see Appendix H, Hollerith Constants and Punch Card Codes.

Variables
A variable names a storage location whose contents can change during program
execution. You identify a variable by a symbolic name.

You can use a declaration statement to declare explicitly the data type of a variable.
For example:

INTEGER*8 employee

REAL balance, tax

DOUBLE PRECISION tonnage (12, 365)

If the variable is type character, you must specify its length when you declare its type.
For example:

CHARACTER name*15, address*20, city*10, state*4, zip*9

The preceding CHARACTER declaration creates five variables whose lengths are 15,
20, 10, 4, and 9 bytes respectively. FORTRAN allocates one byte of storage for
CHARACTER variables that do not include a length specification.

The range, precision, and storage allocation for variables is the same as for constants.

Arrays
An array is a sequence of elements of the same type, identified by one symbolic name.

Dimensioning an Array
A FORTRAN array has a minimum of one dimension and a maximum of seven
dimensions. You can specify the dimensions of an array using a DIMENSION,
COMMON, RECORD, or type declaration statement. When you declare an array, you
must also declare its dimensions in the following form:

array-name (d [, d]...)

array-name is the name of the array and d specifies the bounds of an array
dimension and takes the form:

[lower :] upper

lower specifies the lower bound of the dimension. The lower bound can be zero,
negative, or positive. If you do not specify a lower bound, the compiler uses 1 as the
lower bound.

upper specifies the upper bound of the dimension. The upper bound can be zero,
negative, or positive. The upper bound must be greater than or equal to the lower
FORTRAN Reference Manual—528615-001
2-14

Language Elements Dimensioning an Array
bound. The number of elements in each dimension is one greater than the difference
between the upper and lower bounds.

The following statement declares and dimensions the array DICTIONARY, a one
dimensional character array. The first element is DICTIONARY(1) and the last element
is DICTIONARY(100). Each of the 100 elements of DICTIONARY consists of 10
characters.

CHARACTER * 10 dictionary (100)

The following statement declares and dimensions the array CUSTOMERS. FORTRAN
determines the array type implicitly as real. The array has seven dimensions—the
maximum for a FORTRAN array:

DIMENSION customers (31, 5, 24, 52, 2, 1, 165)

Table 2-3 shows the organization of the array declared by the statement:

DIMENSION ta (6,6)

Table 2-4 shows the organization of the array declared by the statement:

DIMENSION tb (-3:2,-2:3)

Note that TA and TB are exactly the same size. TA, however, is based at 1,1 whereas
TB is based at -3,2.

Table 2-3. Array Based at One
ta(1,1) ta(1,2) ta(1,3) ta(1,4) ta(1,5) ta(1,6)

ta(2,1) ta(2,2) ta(2,3) ta(2,4) ta(2,5) ta(2,6)

ta(3,1) ta(3,2) ta(3,3) ta(3,4) ta(3,5) ta(3,6)

ta(4,1) ta(4,2) ta(4,3) ta(4,4) ta(4,5) ta(4,6)

ta(5,1) ta(5,2) ta(5,3) ta(5,4) ta(5,5) ta(5,6)

ta(6,1) ta(6,2) ta(6,3) ta(6,4) ta(6,5) ta(6,6)

Table 2-4. Array With Negative Subscripts
tb(-3,-2) tb(-3,-1) tb(-3,0) tb(-3,1) tb(-3,2) tb(-3,3)

tb(-2,-2) tb(-2,-1) tb(-2,0) tb(-2,1) tb(-2,2) tb(-2,3)

tb(-1,-2) tb(-1,-1) tb(-1,0) tb(-1,1) tb(-1,2) tb(-1,3)

tb(0,-2) tb(0,-1) tb(0,0) tb(0,1) tb(0,2) tb(0,3)

tb(1,-2) tb(1,-1) tb(1,0)\ tb(1,1) tb(1,2) tb(1,3)

tb(2,-2) tb(2,-1) tb(2,0) tb(2,1) tb(2,2) tb(2,3)
FORTRAN Reference Manual—528615-001
2-15

Language Elements Array References
Array References
You can reference an entire array using the array name, or you can reference a
specific array element using the array name followed by a subscript. A reference to an
array element takes the following form:

name (e [, e]...)

where name is the symbolic name of the array and e is an integer subscript
expression. For example:

CUSTOMERS (2,3,100)

You must specify a value for each dimension of an array when you reference an
element of that array. The following reference is invalid because it specifies only two
dimensions of a three-dimensional array:

REAL inventory(10,31,365)

inventory (1,1) = 234.52

If you refer to an entire array, FORTRAN accesses the elements in the order indicated
in Figure 2-2 on page 2-18.

A subscript can contain function references, but the evaluation of the function must not
alter the value of any other subscript expression in the array. In the following example,
the subscript used in the reference to EVEN NUMBERS includes the variable J:

DIMENSION even numbers (100)

DO 20 j = 1,100

even numbers (j) = j * 2

20 CONTINUE

You can calculate the storage location of an array element using the formulas in
Table 2-5.

Table 2-5. Calculating Array Element Storage Locations (page 1 of 2)

Dimensions Position of Array Element
1 1 + (s1 - j1)

2 1 + (s1 - j1) + (s2 - j2) * n1

3 1 + (s1 - j1) + (s2 - j2) * n1 + (s3 - j3) * n1 * n2

4 1 + (s1 - j1) + (s2 - j2) * n1 + (s3 - j3) * n1 * n2 + (s4 - j4) * n1 * n2 * n3

. .

. .

. .

7 1 + (s1 - j1) + (s2 - j2) * n1 + (s3 - j3) * n1 * n2 + (s4 - j4) * n1 * n2 * n3 + (s5 -
j5) * n1 * n2 * n3 * n4 + (s6 - j6) * n1 * n2 * n3 * n4 * n5 + (s7 - j7) * n1 * n2 * n3
* n4 * n5 * n6
FORTRAN Reference Manual—528615-001
2-16

Language Elements Array Size
Array Size
The number of elements in an array is equal to the product of the number of elements
in each dimension of the array.

Storage Order
FORTRAN stores array elements as a linear sequence of words. The type and the
number of elements in an array determine the number of words of memory FORTRAN
reserves for the array.

FORTRAN reserves one word of storage for each element in an array of one-word
elements, two times the number of elements for an array of doubleword elements, and
four times the number of elements for an array of quadrupleword elements. For
character arrays, the number of storage words allocated equals half the number of
characters in each element of the array times the number of elements in the array.

The following array requires storage for 200 characters or 100 storage words:

CHARACTER * 10 product (20)

FORTRAN stores array elements in ascending locations by columns. The first
(leftmost) subscript increases most rapidly, the last (rightmost) subscript increases
least rapidly. Figure 2-2 on page 2-18 shows the storage order for the following array:

DIMENSION income(2,3,4)

ji
ki
ni
si

Lower bound of dimension i.
Upper bound of dimension i.
Size of dimension i. If the lower bound is one, ni= ki. Otherwise, ni = (ki - ji+ 1).
Value of the subscript expression specified for dimension i.

Table 2-5. Calculating Array Element Storage Locations (page 2 of 2)

Dimensions Position of Array Element
FORTRAN Reference Manual—528615-001
2-17

Language Elements Storage Order
To find the position of EMPLOYEE(-2, 7, 3) in the array EMPLOYEE(-5:5, 8, 5):

pos = 1 + (-2 -(-5))

 + (7 - 1) * 11

 + (3 - 1) * 11 * 8

pos = 1 + 3 + 66 + 176

pos = 246

The following example shows how to find the position of a character in a character
array. For example, to find ADDRESS(1, 52), you first determine the array element in
which the character appears:

CHARACTER*10 address(2,100)

array-element = 1 + (1 - 1)

 + (52 - 1) * 2

array-element = 103

Figure 2-2. Storage Order of Array Elements

VST0202.vsd

Plane 1

1,1,1

2,3,1

1,3,1

2,2,1

1,2,1

2,1,1

1,2,1

2,1,2

1,2,2

2,2,2

1,3,2

2,3,2

1,1,4

2,1,3

1,2,3

2,2,3

1,3,3

2,3,3

1,1,3

2,1,4

1,2,4

1,2,4

1,3.4

2,3,4

Plane 2 Plane 3 Plane 4
FORTRAN Reference Manual—528615-001
2-18

Language Elements Substrings
Second, using the array-element you just calculated, determine the byte offset of the
character relative to the beginning of the array. The character storage position is equal
to:

1 + (array-element -1) * character-length

1 + 102 * 10

1021

Considerations
• Use a DIMENSION, type-declaration, or COMMON statement to declare the

number of dimensions and the number of elements in each dimension of an array.

• You must declare the array before the first reference to the array.

• Declare the array type explicitly unless you want the array to be typed by default.

• Do not use subscript values that are outside the range of the declared minimum
and maximum bounds of the array. For additional information, see the
BOUNDSCHECK Compiler Directive on page 10-8.

• You can use an arithmetic expression that evaluates to an integer to determine a
subscript value.

• If you use an unsubscripted array name, the compiler assumes that you are
referencing the entire array.

• You cannot redefine the dimensions or size of an array within an executable
program.

For a discussion of assumed-size and adjustable-size array declarators, see Section 4,
Program Units.

Substrings
You can reference a character-type variable in its entirety or in part. To reference a part
of a character-type variable, you must append a subscript reference to the variable
name. A subscript reference uses the form:

var-name

is the name of the variable

first

specifies the position of the first character in the substring

var-name ([first] : [last])
FORTRAN Reference Manual—528615-001
2-19

Language Elements Records
last

specifies the position of the last character in the substring

For example, if you store the string ABRACADABRA in the variable PASSWORD, the
substring

password (3:6)

refers to the characters RACA.

If you omit first, the substring begins with the first character in var-name. If you omit
last, the substring ends with the last character in var-name. For example:

password (:5)

refers to the characters ABRAC;

password (7:)

refers to the characters DABRA.

You can reference a substring of an array element in a character array by specifying
the array element, followed by the substring reference. For example, if the fifth element
of the array GAMES(100) contains the string HANGMAN, the following substring
reference contains the characters HANG.

games(5)(1:4)

Records
The RECORD declaration statement is a HP extension that enables you to declare
structured data. Unlike arrays, the elements of RECORDs can be different types. The
following is an example of a RECORD declaration:

RECORD addresses <-- addresses is the RECORD name

 FILLER*5

 CHARACTER*10 lastname <-- data type declaration

 CHARACTER*10 firstname (RECORD field name)

 CHARACTER*1 middle

 FILLER*2 <-- FILLER declaration

 CHARACTER*20 street

 CHARACTER*10 city

 CHARACTER*2 state

 CHARACTER*9 zip

END RECORD

Records defined in RECORD declaration statements are called RECORDs. The
individual elements of a record are called RECORD fields.
FORTRAN Reference Manual—528615-001
2-20

Language Elements Writing a RECORD Declaration
You can use the Data Definition Language (DDL) to share FORTRAN RECORD
definitions between FORTRAN modules. For more information, see the Data Definition
Language (DDL) Reference Manual.

Writing a RECORD Declaration
A RECORD declaration must begin with a RECORD statement and end with an END
RECORD statement. You can declare a dimensioned RECORD, but a dimensioned
RECORD cannot have more than one dimension.

The fields of a RECORD declaration can be:

• Data type declarations

• FILLER declarations

• RECORD declarations

• EQUIVALENCE statements

A data type declaration, including an array declaration, is an elementary field of a
RECORD. An elementary field is a field that is not itself a RECORD. RECORD fields
that are arrays can have only one dimension:

RECORD a

 INTEGER b(20) <-- One-dimensional array is OK

 INTEGER c(10, 20) <-- Two-dimensional array is NOT valid

END RECORD

A FILLER declaration defines a specified number of one-byte pad characters within a
RECORD and enables you to align character positions when you equivalence
RECORDs. You write a FILLER declaration in the following form:

FILLER * number

where number specifies the number of pad characters. number cannot exceed 255.

A RECORD declaration can include nested records. A nested RECORD is a
nonelementary field of a RECORD and has the properties associated with data of type
character. A nested RECORD can have at most one dimension. You can nest
RECORDs within RECORDs to a maximum depth of 15 levels.

An EQUIVALENCE statement in a RECORD declaration can refer to any data item that
appears at the same nesting level as the EQUIVALENCE statement. You must refer to
any equivalenced entity as a unit. You can equivalence array names or character
variable names but not array elements or substrings.
FORTRAN Reference Manual—528615-001
2-21

Language Elements Referencing a RECORD Field
Referencing a RECORD Field
In an executable statement, you refer to a field within a RECORD by appending a
circumflex to the end of the RECORD name followed by the name of the field that you
want to reference. You might have a succession of circumflex/field-name combinations
if you reference a field of a RECORD that is nested more than one level deep.

record-name

is the name of the outermost RECORD.

field-name

is the name of a field within a RECORD. field-name can be any field within a
RECORD except a FILLER.

In the following example, the syntax to reference each field of the employee RECORD
appears to the right of the field:

RECORD employee <-- employee

 FILLER*10 <-- cannot be referenced

 CHARACTER*10 name <-- employee^name

 CHARACTER*10 hired <-- employee^hired

 RECORD salary <-- employee^salary

 REAL pay <-- employee^salary^pay

 INTEGER dept <-- employee^salary^dept

 END RECORD

END RECORD

You must always fully qualify a field name to access it.

You cannot access a FILLER field.

record-name^ field-name [^ field-name]...
FORTRAN Reference Manual—528615-001
2-22

Language Elements RECORD Storage
The following example includes references to fields in the employee RECORD:

CHARACTER*10 emp_name

REAL emp_pay

INTEGER emp_dept

emp_name = employee^name

emp_pay = employee^pay <-- Error: Not fully qualified

emp_pay = employee^salary^pay

emp_dept = employee^salary^dept

emp_temp = employee^filler <-- Error: Cannot refer to FILLER

RECORD Storage
FORTRAN allocates the fields of a RECORD in the order in which they appear in the
RECORD declaration. It allocates to each field the amount of storage required by the
field’s type. If the field is an array, the amount of storage is the size of an element of
the array multiplied by the number of elements in the array. A field of type character or
RECORD is allocated beginning at the next free byte. A field of type logical or numeric
is aligned at the next word boundary. If a RECORD itself is dimensioned and contains
at least one field of type logical or numeric, FORTRAN ensures that the record starts at
an even-byte address. A RECORD at the outermost level always begins on a word
boundary.

Equivalencing RECORDs
You can equivalence RECORDs only to other RECORDs. You can use an
EQUIVALENCE statement:

• Within a RECORD declaration to equivalence any data items at the same nesting
level as the EQUIVALENCE statement.

• Outside a RECORD declaration, to equivalence RECORDs only at their outermost
level.
FORTRAN Reference Manual—528615-001
2-23

Language Elements Equivalencing RECORD Fields
The following example shows a nested RECORD declaration that contains two
equivalenced subrecords:

RECORD dependent

 RECORD depdata1

 FILLER*5

 RECORD depfields

 CHARACTER*10 firstname

 CHARACTER*20 lastname

 CHARACTER*2 birthday

 CHARACTER*2 birthmonth

 CHARACTER*2 birthyear

 END RECORD

 END RECORD

 RECORD depdata2

 RECORD depkey

 CHARACTER*5 employeenum

 END RECORD

 FILLER*36

 END RECORD

 EQUIVALENCE (depdata1, depdata2)

END RECORD

Equivalencing RECORD Fields
You can declare two or more fields in a RECORD that share the same storage by
referencing the items in an EQUIVALENCE declaration. The items need not be the
same data type. You can equivalence character and numeric variables only within a
FORTRAN Reference Manual—528615-001
2-24

Language Elements Equivalencing RECORD Fields
RECORD. You cannot equivalence character and numeric variables in declarations
outside of a RECORD.

?GUARDIAN OPEN

 RECORD file

 INTEGER*2 name(12)

 CHARACTER namestring * 24

 EQUIVALENCE (name, namestring)

 END RECORD

 file^namestring = '$data subvol myfile '

 CALL open (file^name, n, %2001)

If two fields of different sizes are equivalenced within a RECORD, the next field begins
after the larger of the two equivalenced fields. For example, in the RECORD
declaration:

RECORD stock

 REAL open, high, low, close

 REAL price (4)

 EQUIVALENCE (price, open)

END RECORD

the field STOCK^HIGH is not in the same location as the second element of the
STOCK^PRICE array, but instead follows the fourth element of the STOCK^PRICE
array. Figure 2-3 illustrates how the fields of the STOCK RECORD are allocated in
memory.

Figure 2-3. Memory Allocation for Equivalenced Fields in a RECORD

Price (1)

VST0203.vsd

Price (2) Price (3) Price (4)

closeopen lowhigh

RECORD stock
 REAL open high, low ,cose
 REAL price (4)
 EQUIVALENCE (price, open)
END RECORD
FORTRAN Reference Manual—528615-001
2-25

Language Elements Equivalencing RECORD Fields
Considerations
• You cannot use a DATA statement to initialize the value of a RECORD, or a field of

a RECORD.

• You cannot declare a RECORD within a BLOCK DATA subprogram.

• A common block can contain at most one RECORD.

• A common block that contains a RECORD cannot contain variables or arrays.

• The maximum size of a RECORD, or of one element of a dimensioned RECORD,
is 32,767 bytes, including all of its constituent fields.
FORTRAN Reference Manual—528615-001
2-26

3 Expressions
This section describes the syntax and semantics of FORTRAN expressions. An
expression consists of operands, operators, and parentheses. The evaluation of an
expression yields a single value, whose type is determined by the type of the
operands.

Topics covered in this section include:

A FORTRAN expression is either simple or compound. A simple expression consists of
a single element: a constant, variable, array element, or RECORD field. A compound
expression consists of one or more operands and one or more operators.

FORTRAN recognizes four types of expressions.

• Arithmetic

• Character

• Relational

• Logical

FORTRAN also processes constant expressions. A constant expression contains only
constants and symbolic constants. A constant expression can be arithmetic, character,
or logical:

3 + 4 <-- An arithmetic-type expression

'Rip' // 'Van' // 'Winkle' <-- A character-type expression

.TRUE. <-- A logical-type expression

Topic Page
Arithmetic Expressions 3-2

Character Expressions 3-6

Relational Expressions 3-7

Logical Expressions 3-9

Operator Precedence 3-11
FORTRAN Reference Manual—528615-001
3-1

Expressions Arithmetic Expressions
Arithmetic Expressions
The combination of arithmetic operands and operators makes up an arithmetic
expression. An arithmetic expression expresses a numeric computation; the evaluation
of an arithmetic expression produces a numeric value.

The syntax of an arithmetic expression is:

prefix-op

is one of

+

-

item

is a variable, constant, symbolic constant, record field, function reference, or an
arithmetic expression enclosed in parentheses.

infix-op

is one of:

**

*

/

+

-

If a signed element (prefix-op item) follows an infix operator, you must enclose
the signed element in parentheses as in the following example:

A + (-B)

[prefix-op] item [infix-op item]...

Table 3-1. Arithmetic Operators
Operator Operation Example Meaning
** Exponentiation A ** B Raise A to the power B

* Multiplication A * B Multiply A and B

/ Division A / B Divide A by B

+ Addition A + B Add A and B

+ Identity + A Positive A

- Subtraction A - B Subtract B from A

- Negation - A Negative A
FORTRAN Reference Manual—528615-001
3-2

Expressions Evaluation of Arithmetic Expressions
Evaluation of Arithmetic Expressions
The hierarchy of arithmetic operators determines the order in which the operands are
combined:

** <-- Highest

* and /

+ and - <-- Lowest

For example, in the following expression, the exponentiation operator takes
precedence over the negation operator:

-A ** 5 <-- Evaluated as -(A ** 5)

You can use parentheses to override the normal sequence of evaluation. Within a
compound expression, FORTRAN evaluates an expression enclosed in parentheses
first. If you use nested parentheses, FORTRAN evaluates the deepest level expression
first. Within parentheses, evaluation proceeds in the normal sequence. Parenthetical
expressions must be balanced: you must match every left parenthesis with a
corresponding right parenthesis. FORTRAN uses the following rules to evaluate
expressions whose value depends upon precedence of operators:

• If adjacent operators have different precedence, the operator with higher
precedence is evaluated first.

• Adjacent operators that have the same precedence are evaluated according to
their associativity: right-to-left for the exponentiation operator, left-to-right for all
others.

The preceding rules specify the order in which operators are executed, but not the
order in which an operator’s operands are evaluated. Thus, for example, the
expression A + B + C is evaluated as (A + B) + C, but the compiler could evaluate C
before it evaluates (A + B). If evaluating an operand can have side effects, for example
by calling a function, the order in which the operands are evaluated can be important.

The following examples illustrate how HP FORTRAN evaluates expressions. The
shaded portion at each step, consisting of an operator and two operands, shows the
operator evaluated at that step.

• Example 1

5 + - 6* 23

5 + 3 * 2 - 6

5 + - 66

11 - 6

5

VST0301.vsd
FORTRAN Reference Manual—528615-001
3-3

Expressions Determination of Result Type
• Example 2

• Example 3

Determination of Result Type
FORTRAN determines the data type of an arithmetic expression according to the data
types of its operands.

If all the operands of an expression are the same type, the resulting value is also of
that type.

If operands of different types appear in an expression, the data type of the result is
determined by conversion rules that FORTRAN applies to the intermediate results
generated during the evaluation of the expression. Table 3-2 shows how FORTRAN
determines the type of an arithmetic expression involving two operands.

Table 3-2. Determination of Expression Type (page 1 of 2)

X2
x1 I2 R2 D2 C2
l1 I = I1 ~ I2 R = REAL(I1) ~ R2 D = DBLE(I1) ~ D2 C =

CMPLX(REAL(I1),0
. ~ C2

R1 R = R1 ~
(REAL(12)

R = R1 ~ R2 D = DBLE(R1) ~
D2

C = CMPLX(R1,0.)
~ C2

(5 + 3) (2 - 6)*

(5 + 3) (2 - 6)*

(2 - 6)*

8 -4*

-32

VST0302.vsd

VST0303.vsd

2 ** 2 ** 3

2 ** 2 ** 3

2 ** 8

256
FORTRAN Reference Manual—528615-001
3-4

Expressions Determination of Result Type
The result of integer division is the signed, nonfractional part of the quotient. The
fractional part is truncated, not rounded. For example, the values of K after the
following assignments are 0:

K = 2/3 + 1/3 <-- = 0 + 0

K = -2/3 <-- = 0

Exponentiation entails additional restrictions. Table 3-3 shows the results when
operands of different types are combined in an exponential expression.

D1 D = D1 ~ DBLE(I2) D = D1 ~
DBLE(R2)

D = D1 ~ D2 Illegal

C1 C = C1 ~ CMPLX
(REAL(I2),0.)

C = C1 ~
CMPLX(R2,0.)

Illegal C = C1 ~ C2

REAL, DBLE, CMPLX are type-conversion functions as described in Section 8, Intrinsic Functions
~ is +, -, *, or /.
I = INTEGER, R = REAL, D = DOUBLE PRECISION, C = COMPLEX.

Table 3-3. Evaluation of Mixed-Type Exponential Expressions
Exponent

Base Integer Real Double Precision Complex
Integer Integer Real Double Precision Complex

Real Real Real Double Precision Complex

Double Precision Double Precision Double Precision Double Precision Illegal

Complex Complex Complex Illegal Complex

Negative type of base Illegal Illegal Complex

Table 3-2. Determination of Expression Type (page 2 of 2)

X2
x1 I2 R2 D2 C2
FORTRAN Reference Manual—528615-001
3-5

Expressions Character Expressions
Character Expressions
A character expression is composed of character elements and the concatenation
operator. The evaluation of a character expression produces a result of type character.

The syntax of a character expression is:

char-element

is a constant, symbolic constant, variable, RECORD name, array element,
substring reference, function reference, or another character expression. char-
element must be of type character.

//

is the concatenation operator.

The result of a character expression is a string, whose length is equal to the combined
lengths of all the character elements appearing in the expression. The following
constant character expression:

'Tomorrow'//' and tomorrow'//' and tomorrow--'

has the value

Tomorrow and tomorrow and tomorrow--

A character expression can contain up to 64 operands. A character expression cannot
contain an operand whose length specification is an asterisk in parentheses, unless
the operand is a symbolic constant.

Parentheses do not affect the value of a character expression. The following
expressions are identical:

name // city // zip

name // (city // zip)

char-element [// char-element]...
FORTRAN Reference Manual—528615-001
3-6

Expressions Relational Expressions
Relational Expressions
A relational expression compares the values of two arithmetic or two character
operands. Relational expressions can appear only within logical expressions. The
evaluation of a relational expression produces a logical type result, whose value is
either true or false.

The syntax of a relational expression is:

expression

is an arithmetic or character expression.

rel-operator

is one of

.LT.

.LE.

.EQ.

.NE.

.GT.

.GE.

A relational expression has a value of .TRUE. only if the values of the operands satisfy
the relation specified by the operator. Its value is .FALSE. otherwise.

expression rel-operator expression

Table 3-4. Relational Operators
Operator Operation Example Meaning
.LT. Less than A .LT. B Is A less than B?

.LE. Less than or equal to A .LE. B Is A less than or equal to B?

.EQ. Equal to A .EQ. B Is A equal to B?

.NE. Not equal to A .NE. B Is A not equal to B?

.GT. Greater than A .GT. B Is A greater than B?

.GE. Greater than or equal to A .GE. B Is A greater than or equal to B?
Note: The enclosing decimal points are required.
FORTRAN Reference Manual—528615-001
3-7

Expressions Evaluation of Relational Expressions
In the following example, if the integer variables J and K have a value of 1 and 100
respectively, the relational expressions have the indicated values:

j .GT. k <-- 1 .GT. 100 is false

k .GT. j <-- 100 .GT. 1 is true

k .GE. j <-- 100. GE. 1 is true

Evaluation of Relational Expressions
If a relational arithmetic expression contains operands of different types, FORTRAN
converts the lower ranking data type to the higher ranking data type before comparing
the operands.

A character string X is less than a character string Y if, starting at the left end of both
strings, the first character in X that is not equal to the corresponding character in Y is
less than the character in Y in the ASCII collating sequence. Similarly, a character
string X is greater than a character string Y if, starting at the left end of both strings, the
first character in X that is not equal to the corresponding character in Y is greater than
the character in Y in the ASCII collating sequence.

If the character expressions being compared are different lengths, FORTRAN pads the
shorter expression with trailing blanks until it is equal in length to the longer
expression.

Considerations
• You cannot compare a COMPLEX value and a DOUBLE PRECISION value.

• You can use a COMPLEX value in an arithmetic relational expression only if the
relational operator is .EQ. or .NE..

The following examples include valid relational expressions:

LOGICAL a, b

COMPLEX x, y

READ (*,*) w, x, y, z

a = x .EQ. y

b = w .GE. z

CHARACTER * 10 a, b

LOGICAL order

READ (*,*) a, b

order = a .GT. b
FORTRAN Reference Manual—528615-001
3-8

Expressions Logical Expressions
The following examples are invalid:

DOUBLE PRECISION y

COMPLEX x, z

LOGICAL a, b

READ (*,*) x, y, z

a = x .LE. y <-- Cannot compare complex and

double precision values

b = z .GT. x <-- Relational operator is not .EQ.

or .NE. and one of the operands is a complex value.

Logical Expressions
A logical expression designates a logical computation whose result is either true or
false. The syntax of a logical expression is:

logic-exp

is a logical expression enclosed in parentheses, a relational expression, a logical
constant, a logical symbolic constant, a logical variable, a logical array element
reference, or a logical function reference.

logic-op

is one of:

AND.

.OR.

.EQV.

.NEQV.

Table 3-5 describes the meaning and use of the logical operators.

[.NOT.] logic-exp [logic-op [.NOT.] logic-exp]...

Table 3-5. Logical Operators
Operator Operation Example Meaning
.NOT. Negation .NOT. x Complement X

.AND. Conjunction x .AND. y Boolean product of X and Y

.OR. Inclusive disjunction x .OR. y Boolean sum of X and Y

.EQV. Equivalence x .EQV. y X and Y are both true or both false

.NEQV. Nonequivalence x .NEQV. y X is true and Y is false, or X is false and
Y is true
FORTRAN Reference Manual—528615-001
3-9

Expressions Logical Expressions
If a logical expression contains two or more logical operators, FORTRAN uses the
following hierarchy to determine the order in which the operators are evaluated:

.NOT. <-- Highest

.AND.

.OR.

.EQV. or .NEQV. <-- Lowest

The following expressions are equivalent:

x .OR. y .AND. z

x .OR. (y .AND. z)

You can use parentheses to override the normal order of precedence, as in the
following example:

(x .OR. y) .AND. z

If an expression contains two or more adjacent .AND. operators, .OR. operators, .EQV.
operators, or .NEQV. operators, FORTRAN evaluates the expression from left to right.
Table 3-6 shows the results of combining two logical elements with the logical
operators.

Table 3-6. Evaluation of Logical Expressions (page 1 of 2)

Operator Operand Operand Result
.NOT. .TRUE. .FALSE.

..FALSE. ..TRUE.

.AND. .TRUE. .TRUE. .TRUE.

.TRUE. .FALSE. .FALSE.

.FALSE. .TRUE. .FALSE.

.FALSE. .FALSE. .FALSE.

.OR. .TRUE. .TRUE. .TRUE.

.TRUE. .FALSE. .TRUE.

.FALSE. .TRUE. .TRUE.

.FALSE. .FALSE. .FALSE.

.EQV. .TRUE. .TRUE. .TRUE.

.TRUE. .FALSE. .FALSE.

.FALSE. .TRUE. .FALSE.

.FALSE. .FALSE. .TRUE.
FORTRAN Reference Manual—528615-001
3-10

Expressions Operator Precedence
Operator Precedence
Each FORTRAN operator has a precedence relative to all other operators. When the
compiler evaluates an expression, it compares the precedence of two adjacent
operators. If one operator has higher precedence than the other, the operator with the
higher precedence is evaluated first. For further information on operator precedence
within an operator class, see the appropriate discussion in this section.

You can override the normal operator precedence by enclosing expressions in
parentheses.

Table 3-7 shows the precedence of all FORTRAN operators, where 0 is the highest
precedence, 9 is the lowest precedence.

.NEQV. .TRUE. .TRUE. .FALSE.

.TRUE. .FALSE. .TRUE.

.FALSE. .TRUE. .TRUE.

.FALSE. .FALSE. .FALSE.

Table 3-7. Operator Precedence (page 1 of 2)

Operator Class Operator Precedence
Arithmetic **

unary +

unary -

*

/

+

-

0

1

1

2

2

3

3

Table 3-6. Evaluation of Logical Expressions (page 2 of 2)

Operator Operand Operand Result
FORTRAN Reference Manual—528615-001
3-11

Expressions Operator Precedence
Character // 4

Relational .LT.

.LE.

.EQ.

.NE.

.GE.

.GT.

5

5

5

5

5

5

Logical .NOT.

.AND.

.OR.

.EQV.

.NEQV.

6

7

8

9

9

Table 3-7. Operator Precedence (page 2 of 2)

Operator Class Operator Precedence
FORTRAN Reference Manual—528615-001
3-12

4 Program Units
This section describes the format of FORTRAN external procedures and BLOCK DATA
subprograms. Topics covered in this section include:

The Main Program and Subprograms
A program unit consists of a sequence of statements and optional comment lines, and
ends with an END statement. Each program unit is either a main program or a
subprogram.

An executable FORTRAN program must contain exactly one main program unit. A
main program is a program unit that does not have a FUNCTION, SUBROUTINE, or
BLOCK DATA statement as its first statement. It can have a PROGRAM statement as
its first statement and must end with an END statement.

In mixed-language programs, the executable program’s main routine might be written
in a language other than FORTRAN. For more information, see Section 13, Mixed-
Language Programming.

Your program begins executing with the first executable statement in your main
program.

Subprograms other than BLOCK DATA are known collectively as procedures and
include:

• External functions

• Subroutines

• Intrinsic functions

• Statement functions

Topic Page
The Main Program and Subprograms 4-1

Communication Between Program Units 4-3

Function Subprograms 4-4

Subroutines 4-7

Recursion 4-10

Using Multiple Entry Points in Functions and Subroutines 4-10

Using Adjustable Dimensions for Arrays and String Variables 4-11

Using Common Blocks 4-14

The Block Data Subprogram 4-15
FORTRAN Reference Manual—528615-001
4-1

Program Units The Main Program and Subprograms
The term external function refers to

• External functions specified in function subprograms

• External functions written in languages other than FORTRAN subprograms

The term subroutine refers to

• Subroutines specified in subroutine subprograms

• Subroutines written in languages other than FORTRAN

Intrinsic functions are described in Section 8, Intrinsic Functions. Statement functions
are described in Section 7, Statements.

Section 13, Mixed-Language Programming, describes non-FORTRAN procedures that
are either system procedures or procedures written in languages other than
FORTRAN.

A FORTRAN procedure (or other subprogram) is a program unit that begins with a
FUNCTION or SUBROUTINE statement, and ends with an END statement. You can
compile subprograms separately from the main program. Section 9, Program
Compilation, describes separate compilation.

FORTRAN also includes a nonexecutable subprogram called a BLOCK DATA
subprogram that you can use to assign initial data values to COMMON entities.

Table 4-1. FORTRAN Program Units

Main Program
Subroutine
Program

Function
Subprogram

Block Data
Subprogram

Executable Executable Executable Nonexecutable

Not typed Not typed Typed implicitly or
explicitly

Not typed

RETURN not
allowed

Alternate RETURN
allowed

RETURN allowed RETURN not
allowed

N.A. Accepts values
through arguments
or common blocks

Accepts values
through arguments
or common blocks

N.A.

N.A. Returns values
through arguments
or common blocks

Returns a value for
the function name, or
through arguments
or common blocks

N.A.
FORTRAN Reference Manual—528615-001
4-2

Program Units Communication Between Program Units
Communication Between Program Units
A calling program unit and a referenced procedure can exchange data in common
blocks and in arguments to the procedure. You can specify up to 63 arguments in a
statement function or external function.

The calling program unit passes actual arguments to the referenced procedure. The
arguments of the referenced procedure are called dummy arguments. When the
referenced procedure executes, the actual arguments passed to it from the calling
program unit replace the dummy arguments. To avoid error conditions, you must make
sure that the type, order, and number of the actual and dummy arguments correspond.

• If the dummy argument is a variable name, it can be associated with an actual
argument that is a variable, array element, substring, or expression. Note,
however, that if information is passed back from the subprogram using a dummy
argument, its associated actual argument cannot be an expression.

If the associated actual argument is a constant or a symbolic constant, a function
reference, an expression involving operators, or an expression enclosed in
parentheses, the variable must not be redefined within the subprogram.

• If the dummy argument is an array name, it can be associated with an actual
argument that is an array, array element, or array element substring. The size and
dimensions of associated arrays can be different. If the actual argument is a
noncharacter array name, the size of the dummy array must not exceed the size of
the actual array. Each actual array element becomes associated with the dummy
array element that has the same subscript value as the actual array element.

If the actual argument is a noncharacter array element, the size of the dummy
array must not exceed the size of the actual array plus one, minus the subscript
value of the array element.

Association by array elements exists for character arrays if the lengths of dummy
and actual array elements are the same. If they are not, association still exists, but
the dummy and actual array elements will not consist of the same characters.

• If the dummy argument is a RECORD name, it can be associated with a character
array, character variable, or RECORD name.

• If the dummy argument is a procedure name and the dummy procedure is to be
referenced as a function, the actual procedure must be the name of an intrinsic
function, external function, or dummy procedure. If the name of the dummy
function is the same as the name of an intrinsic function, that intrinsic function
cannot be referenced in the same subprogram.

If the dummy procedure is to be referenced as a subroutine, the actual procedure
must be the name of a subroutine or dummy procedure.

To use a procedure name as an actual argument, the name must appear in an
EXTERNAL statement (for external procedures or dummy procedures) or in an
INTRINSIC statement (for intrinsic functions) in the referencing program unit. For
FORTRAN Reference Manual—528615-001
4-3

Program Units Function Subprograms
additional information about the EXTERNAL and INTRINSIC statements, see
Section 7, Statements.

Because you can compile FORTRAN program units independently, you must declare
the data type of arguments both in the calling and referenced program unit, unless the
arguments are typed by default.

Example
If you call the following function subprogram:

FUNCTION tinterest(principal, payment, rate, months)

.

END

using the statement,

total = tinterest(loans(cash, credit), pay, .06, 12 - x)

the execution of the function LOANS with arguments CASH and CREDIT provides the
value of the first argument. The second argument is defined by the value of PAY. The
constant .06 provides the value of the third argument, and the expression 12-X
determines the value of the fourth argument.

Function Subprograms
A function subprogram returns a single value to the calling program unit. The calling
program can be the main program, another function subprogram, a subroutine, or the
function subprogram itself. As an extension to the ANSI standard, HP FORTRAN
allows recursive functions.

A function subprogram executes when a calling program references its name in an
expression. The function reference consists of the function name followed by an actual
argument list, enclosed in parentheses. The parentheses are required also when there
are no actual arguments. Figure 4-1 on page 4-5 shows the relationship between the
function subprogram and the calling program.
FORTRAN Reference Manual—528615-001
4-4

Program Units Function Subprograms
When the function reference executes, FORTRAN evaluates any actual arguments
that are expressions, and associates the actual arguments with the corresponding
dummy arguments in the FUNCTION statement. Control then passes to the
subprogram. The function subprogram must contain the following statements:

• A FUNCTION statement as its first statement

• A statement establishing a value for the function name

• An END statement as its last statement

The function subprogram cannot contain a PROGRAM, SUBROUTINE, BLOCK DATA,
or another FUNCTION statement.

Write the FUNCTION statement in the following form:

FUNCTION function-name (dummy-argument-list)

FORTRAN determines the type of a function name in the same way as it determines
the type of any symbolic name. You can place a type declaration on the same line as
the FUNCTION statement as in the following example:

CHARACTER*20 FUNCTION employee (dept, empnumber)

Or you can declare its type with a separate declaration statement; for example:

FUNCTION employee (dept, empnumber)

CHARACTER employee*20

If you use a FUNCTION statement to declare a function’s type, you cannot declare it
again using a type-declaration statement in the same program unit. Note, however, that
you must also declare the function’s type in each calling program unit, unless it is typed
by default.

Figure 4-1. Function Subprogram and Calling Program

function reference

actual arguments

function name

dummy arguments

correspond to

used in

function name must be defined
within function subprogram

VST0401.vsd

PROGRAM main
.
.
READ(5,*) a, b, c
.
cost = rate * metric(a, b, c)
.
.
END

FUNCTION metric (x, y, z)
.
.
.
.
metric = x * y * z
.
.
.
END
FORTRAN Reference Manual—528615-001
4-5

Program Units Assigning a Value to the Function Name
Assigning a Value to the Function Name
The symbolic function name serves as the main entry point to the function subprogram.
The function subprogram must contain a statement that stores a value in the function
name. If more than one statement stores a value in the name of the function, the last
value stored is the value returned to the calling program.

You can define the function name in any one of the following ways:

• By using an assignment statement

• By using an input statement

• By using the function name as an actual argument in a statement calling another
function or subroutine subprogram

In the following example, the function TINTEREST uses an assignment statement to
define the value of the function:

FUNCTION tinterest (principal, payment, rate, months)

REAL interest

tinterest = 0

balance = principal

DO 10 j = 1,months

 interest = balance * (rate/12)

 amount = payment - interest

 balance = balance - amount

 tinterest = tinterest + interest

10 CONTINUE

RETURN

END

In the following example, the value returned by the function is the value read by a
READ statement:

FUNCTION sum(a,b)

READ (5,*) sum

.

RETURN

END
FORTRAN Reference Manual—528615-001
4-6

Program Units Subroutines
In the next example, the value returned by the function is determined when subroutine
SUBA returns a value for NUMBER:

FUNCTION number(a,b,c)

.

CALL suba(number,x)

.

END

SUBROUTINE suba(j,k)

READ (5,*) k

j = k*3.2

.

END

Subroutines
A subroutine subprogram performs a procedure for a calling program unit. The calling
program unit can be the main program, a function subprogram, another subroutine, or
the subroutine itself.

The subroutine subprogram executes when a CALL statement invokes its name.

Example 4-1 shows the relation between the calling program unit and the subroutine
subprogram:

Example 4-1. Calling Program and Subroutine
PROGRAM numbers

INTEGER x,y

READ(5,4) x, y

FORMAT (2I2)

IF (x .LT. y) CALL error1 <-- subroutine call

result = x * 100

STOP

END

SUBROUTINE error1 <-- subroutine name

WRITE (6,1)

1 FORMAT (5x, 'Number is out of range')

RETURN

END
FORTRAN Reference Manual—528615-001
4-7

Program Units Subroutines With Alternate Return Specifiers
When a CALL statement executes, FORTRAN first evaluates any actual arguments
that are expressions, and then associates the actual arguments with the dummy
arguments specified in the SUBROUTINE statement. The CALL statement then
transfers control to the subroutine.

The subroutine subprogram must contain the following statements:

• A SUBROUTINE statement as its first statement

• An END statement as its last statement

In addition to these two statements, you can use any FORTRAN statement in a
subroutine except PROGRAM, FUNCTION, BLOCK DATA, or another SUBROUTINE
statement. Write the SUBROUTINE statement in the following form:

SUBROUTINE name (dummy-argument-list)

As Example 4-1 on page 4-7 shows, a SUBROUTINE statement does not require a
dummy argument list or the parentheses that would enclose a dummy argument list.

Subroutines With Alternate Return Specifiers
Normally, when a subroutine executes, it returns control to the statement following the
CALL statement. However, you can specify an alternate point of return from a
subroutine by including an actual argument in the following form in the actual argument
list in the calling statement:

* label

label is the label of a statement in the calling program unit to which the called
subroutine can return.
FORTRAN Reference Manual—528615-001
4-8

Program Units Saving Values Computed in Procedure Subprograms
The following statements declare a subroutine, RATE, in which the third and fourth
dummy arguments are the labels of executable statements; and a CALL statement that
invokes the RATE subroutine:

CALL rate (tonnage, distance, *500, *600)

500 CONTINUE

C -- Arrive here if more than 1000 tons

. . .

600 CONTINUE

C -- Arrive here if less than or equal 1000 tons

END

SUBROUTINE RATE(tons, dist, *, *)

IF (tons .GT. 1000) iexp = 1

iexp = 2

. . .

RETURN iexp

END

IEXP must be an integer expression. In the preceding example, if the argument TONS
is greater than 1000, RATE transfers control to the statement labeled 500; if TONS is
less than or equal to 1000, RATE transfers control to the statement labeled 600. If
IEXP is not equal to 1 or 2, RATE returns to the statement following the CALL
statement.

Saving Values Computed in Procedure Subprograms
Executing a RETURN or END statement normally terminates the association of actual
arguments with dummy arguments in a subroutine or external function subprogram,
and causes the subprogram’s local variables and arrays to become undefined.
However, entities in common blocks and local entities named in DATA statements or
SAVE statements remain defined, also after a subprogram returns.

The SAVE statement cannot include dummy argument names, procedure names, or
names of entities in common blocks.

If you use a SAVE statement without specifying any names, FORTRAN saves the
values of all allowable entities in the subprogram.
FORTRAN Reference Manual—528615-001
4-9

Program Units Recursion
Recursion
As an extension to the standard, HP FORTRAN permits recursive calls in
subprograms. The following program, which returns the factorial of a number, uses the
recursive function FACTORIAL:

INTEGER factorial, j

10 CONTINUE

READ (*,*, PROMPT = ' Enter argument: ', END=20) j

WRITE (*,*) ' Factorial is ', factorial(j)

20 CONTINUE

END

INTEGER FUNCTION factorial (n)

INTEGER n

IF (n .GT. 1) THEN

 factorial = n * factorial (n-1)

ELSE

 factorial = 1

END IF

END

Using Multiple Entry Points in Functions and
Subroutines

The ENTRY statement provides additional entry points for subroutine and function
subprograms. The ENTRY statement takes the form:

ENTRY name (argument-list)

The ENTRY name, just like the subroutine and function name, must be unique to the
executable program. Likewise, the ENTRY argument list must agree in number, type,
and length with the actual argument list of the function reference or CALL statement
that executes the subprogram beginning with the ENTRY statement. In a function
subprogram of type character, every entry point must also be type character.
FORTRAN Reference Manual—528615-001
4-10

Program Units Using Adjustable Dimensions for Arrays and String
Variables
The following subroutine, HEADING, prints a page heading. The alternate entry point,
DETAIL, prints the values of four variables which comprise the data lines of the report.

SUBROUTINE heading (product, price, amount, salesman)

1 WRITE (*,2)

2 FORMAT ('1',T50, 'SALES REPORT FOR MARCH'//T55, 'FREMONT')

ENTRY detail (product, price, amount, salesman)

4 WRITE (*,5) product, price, amount, salesman

5 FORMAT (T5, I6, T4, F10.2, T4, I5, T4, A)

END

A line count in the calling program determines whether the subroutine executes from
statement 1 or statement 4:

PROGRAM MAIN

 .

IF (line count .GT. 45) THEN

 CALL heading (prod, cost, amt, sales)

ELSE

 CALL detail (prod, cost, amt, sales)

END IF

 .

END

Using Adjustable Dimensions for Arrays and
String Variables

If you use an array as an actual argument to a subroutine or function call, the size and
type of the associated array in the subroutine or function must correspond to the actual
array. The following example uses a subroutine to calculate the average test score for
a class of up to one hundred students. The program stores the test scores in the one
dimensional array RESULT:
FORTRAN Reference Manual—528615-001
4-11

Program Units Assumed-Size Array Declarator
PROGRAM MAIN

REAL result(100), avg

READ *, n

READ *, (result(j), j = 1,n)

CALL mean(n, result, avg)

PRINT *, avg

END

SUBROUTINE mean(n,data,average)

REAL data(100), average, sum

sum = 0

DO 10 j = 1,n

sum = sum + data(j)

10 CONTINUE

average = sum/n

END

The main program passes values for the number of students and test scores to the
subroutine, which accumulates the sum of the test scores, calculates their average,
and returns the value of AVERAGE to the calling program. Note that you must
dimension the associated dummy array DATA in the subprogram.

The requirement that associated dummy arrays be dimensioned in the subprogram
would restrict the availability of the subprogram to calling programs that pass arrays of
the same size as declared by the dummy argument. You can use one of the following
two methods to avoid explicitly declaring the array size in the subroutine:

• Use an assumed-size array declarator in the subroutine

• Use an adjustable array declarator in the subroutine

Assumed-Size Array Declarator
An assumed-size array declarator takes the form:

array-name(d [, d]... ,[lower:]*)

where d is a dimension declarator in the form

[lower:] upper

You can use an asterisk only for the upper dimension bound of the last dimension.
FORTRAN Reference Manual—528615-001
4-12

Program Units Adjustable Array Declarator
In the preceding program example, the declaration would be:

REAL data(*), average, sum

The asterisk indicates that the size of the numeric dummy array is the same as that of
the associated numeric actual array.

You can use the * array declarator in associated character arrays, provided the
declared element length of the associated arrays is the same.

Adjustable Array Declarator
An adjustable array declarator determines the size of a dummy through the use of a
variable dummy argument that indicates a dimension of the array. The following
example uses adjustable dimensions to yield the transposition of a matrix:

SUBROUTINE transpose (original, j, k, trans)

REAL original (j, k), trans (k, j)

DO 10 m = 1, j

 DO 20 n = 1, k

 trans(n,m) = orig(m,n)

20 CONTINUE

10 CONTINUE

RETURN

END

You might call TRANSPOSE as follows:

REAL matrix(8,9), tmatrix(9,8)

.

CALL transpose (matrix, 8, 9, tmatrix)

You must include the adjustable dimension declarator in the dummy argument list.

Assumed-Size Length Declarator
You can also use the asterisk (*) as an assumed-size character length declarator. In
the following subroutine, the dummy argument Y assumes the length of the associated
actual argument each time MESSAGE is called.

SUBROUTINE message(y)

 CHARACTER y*(*)

 PRINT *, y

END
FORTRAN Reference Manual—528615-001
4-13

Program Units Using Common Blocks
If the actual argument is an array name, the length of the associated dummy argument
is the length of an array element in the actual argument array.

Using Common Blocks
Common blocks define a common storage area whose contents can be referenced by
two or more program units. All subprograms that contain a declaration of the same
common block can define and reference the entities included in that common block.
The use of common blocks can reduce memory requirements as well as execution
time.

You can declare common blocks either as blank common or named common blocks:

COMMON name-list <-- blank common

COMMON / block-name/ name-list <-- named common

A program can contain more than one named common block, but only one unnamed
common block. The list of names in the common statement specifies the variables and
arrays that you can access from any program unit that declares that common block.

FORTRAN associates entities in common blocks by storage rather than by name. This
means that the order of names in COMMON statements determines which variable
names or array element names are associated among program units. In the following
example, FORTRAN associates the variable JDEPT in the main program with the
variable LOC in the subroutine; it associates SALARY with WAGE, and VACATION
with TIME OFF:

PROGRAM MAIN

COMMON /employee/jdept, salary, vacation

SUBROUTINE overtime

COMMON /employee/loc, wage, time off

Considerations
• Associated entities in common blocks must correspond with respect to type.

• If a common block contains a character variable or character array, all names in
that block must store character values.

• COMMON statements are nonexecutable and must precede all DATA and
executable statements in the program unit.

• HP FORTRAN allows a common block to have the same name as a program unit.
The ANSI standard does not permit this.
FORTRAN Reference Manual—528615-001
4-14

Program Units The Block Data Subprogram
For additional information on using common blocks and memory organization, see
Section 12, Memory Organization.

The Block Data Subprogram
The BLOCK DATA subprogram is a nonexecutable declaration subprogram that
assigns initial values to entities in common blocks. By using the BLOCK DATA
subprogram to initialize common block entities you can save the execution time and
code space that would otherwise be needed to initialize these entities.

A BLOCK DATA subprogram can be either named or unnamed. A FORTRAN program,
however, can contain only one unnamed BLOCK DATA subprogram.

The BLOCK DATA subprogram has the following form:

BLOCK DATA [name]

.

END

ABLOCK DATA subprogram can contain only the following statements:

type declaration COMMON

IMPLICIT SAVE

PARAMETER DATA

DIMENSION EQUIVALENCE

Considerations
• If the BLOCK DATA subprogram contains an IMPLICIT statement, it must appear

after the BLOCK DATA statement but before any other statements in the
subprogram.

• DATA statements must appear before the END statement but after all other
statements.

• A COMMON statement must include all elements of the common block, even if you
initialize only some of these elements in the BLOCK DATA subprogram.

• Although you can initialize entities in several common blocks in one BLOCK DATA
subprogram, you can use only one BLOCK DATA subprogram to initialize data in
one particular common block.

• A BLOCK DATA subprogram cannot contain local variables or arrays. Local
variables and arrays must be in common blocks.

• BLOCK DATA subprograms cannot contain RECORD declarations, whether they
are in common blocks or not.
FORTRAN Reference Manual—528615-001
4-15

Program Units The Block Data Subprogram
The following sample program specifies that the variables COMMISSION, TAX,
SHIPPING, and VAT are in the named common block COST, and that the array
QUANTITY is in the named common block PRODUCT:

BLOCK DATA cost data INTEGER*4 quantity

 REAL commission, tax, shipping

 COMMON /product/quantity(1000)

 COMMON /cost/commission, tax, shipping, vat

 DATA commission, tax, shipping/.20, .06, .15/

 DATA quantity/1000 * 0/

END

The first DATA statement initializes three of the variables in COST to the values shown.
The second DATA statement initializes each element in the QUANTITY array to zero.
FORTRAN Reference Manual—528615-001
4-16

5
Introduction to File I/O in the
HP NonStop Environment

This section introduces FORTRAN I/O in the HP NonStop environment. Topics covered
in this section include:

FORTRAN I/O Statements
FORTRAN I/O statements include data transfer statements, file status statements, and
file positioning statements. Table 5-1 summarizes FORTRAN I/O statements. For a
detailed description of each statement, see Section 7, Statements.

Data transfer statements direct the transfer of data between internal storage and
external media or internal files. Data transfer statements include:

• Formatted READ, WRITE, and PRINT statements

• Unformatted READ and WRITE statements

• List-directed READ, WRITE, and PRINT statements

File status statements, OPEN, CLOSE, and INQUIRE, determine the properties of the
connection to the external medium.

Topic Page
FORTRAN I/O Statements 5-1

Records 5-2

FORTRAN Files 5-3

Units 5-8

File Characteristics 5-16

Control Specifiers in I/O Statements 5-24

I/O Lists 5-26

Unformatted I/O 5-28

Formatted I/O 5-28

I/O Performance 5-31

Table 5-1. FORTRAN I/O Statements (page 1 of 2)

Name Action
BACKSPACE Positions file just before the preceding record.

CLOSE Disconnects file from unit.

ENDFILE Writes an end of file record as the next record of a file.
FORTRAN Reference Manual—528615-001
5-1

Introduction to File I/O in the HP NonStop
Environment

Records
The file positioning statements, REWIND, BACKSPACE, ENDFILE, and POSITION,
determine the position of a file.

File status and positioning statements are also known as auxiliary I/O statements.

Records
Input and output involve reading records from files or writing records to files. A record
is a sequence of values or characters. FORTRAN uses three kinds of records:
formatted records, unformatted records, and end-of-file records.

A formatted record consists of a sequence of ASCII characters. The length of a
formatted record depends primarily on the number of characters put into the record
when it is written. A record can have a length of zero. You can read formatted records
with either formatted or unformatted I/O statements.

An unformatted record consists of a sequence of values and can contain character
data, noncharacter data, or no data. The length of an unformatted record is measured
in bytes and depends on the output list used when you write the record. You can
transmit unformatted records using either formatted or unformatted I/O statements.

You can write an end-of-file record only as the last record of a file which you can
access sequentially. The end-of-file record does not have a length attribute.

INQUIRE Ascertains properties of a file or of its connection.

OPEN Connects a structured file to a unit. Creates an unstructured file
and connects it to a unit.

POSITION Enables random access of files.

PRINT Outputs data to the preconnected output unit, unit 6.

READ Inputs data from specified unit or file.

REWIND Positions connected file to its initial point.

WRITE Outputs data to a specified unit.
Character literals used as control specifiers in I/O statements (for example, 'DIRECT', 'EXACT', 'FORMATTED',
and so forth) must be in uppercase characters.

Note. Records used for I/O operations are not the same as records defined by RECORD and
END RECORD declaration statements. This text refers to the former as records and to the
latter as RECORDs.

Table 5-1. FORTRAN I/O Statements (page 2 of 2)

Name Action
FORTRAN Reference Manual—528615-001
5-2

Introduction to File I/O in the HP NonStop
Environment

FORTRAN Files
FORTRAN Files
A file is a sequence of records. When a program executes, those files that are
available to it are said to exist for that program.

A file that exists for a program might not contain any records, as would be the case
with a newly created file. A file can be known to the Guardian file system but, for
security reasons, might not be visible to a program. The INQUIRE, OPEN, CLOSE,
WRITE, and PRINT statements can refer to files that do not exist.

External and Internal Files
A FORTRAN file is either external or internal.

An external file is a collection of records stored on a medium external to primary
memory. An internal file is a means of transferring data from one location to another
within memory.

The attributes of external files are determined by the device that handles their data
transfer, the file structure, and the method you use to access the file. The subsection
File Characteristics on page 5-16 describes the file structure of HP external files.

An internal file is a character variable, character array, character array element,
RECORD name, or character substring. It has the following attributes:

• FORTRAN treats a file that is a character variable, character array element,
substring, undimensioned RECORD, or a RECORD array element as a single
record. The length of the record equals the length of the variable, array element,
substring, undimensioned RECORD, or RECORD array element. FORTRAN treats
RECORDs like character variables and arrays.

Table 5-2. File Attributes
Attribute Definition
Name Every file has a name that is defined either by the user when the file is

created or by the system when the file is opened. for additional
information, see HP File Names on page 5-5.

Position A file connected to a unit has a position attribute. The execution of a
WRITE, READ, PRINT, BACKSPACE, REWIND, ENDFILE, OPEN, or
POSITION statement affects the file’s position.

Initial Point The initial point of a file is the position just before the first record.

Terminal Point The terminal point of a file is the position just after the last record.

Current Record The current record is the record where the file is currently positioned.

Preceding Record If the current record is n, the preceding record is the n-1 record.

Next Record If the current record is n, the next record is the n+1 record.
FORTRAN Reference Manual—528615-001
5-3

Introduction to File I/O in the HP NonStop
Environment

File Properties
• FORTRAN treats each element of a file that is a character array or a RECORD
array as a record. The ordering of the records is the same as the ordering of the
elements of the array. The length of a record equals the length of an array element.

• A variable, array element, substring, RECORD, or RECORD array element that is
a record of an internal file is defined when you write that record. If the number of
characters written is less than the declared length of the record, FORTRAN pads
the remainder of the record with blanks.

• A record can be read only if it has been defined.

• An internal file is always positioned at the beginning of the first record prior to data
transfer.

Considerations
• You can access internal files only sequentially.

• You cannot use auxiliary I/O statements to refer to internal files.

File Properties
To access an external file that exists for a program, you must connect the file to a
FORTRAN unit. At the time of connection a file has the following properties:

• A unit number (see Units on page 5-8)

• A file name

• A form of data (formatted, unformatted, or both)

• A method of access (sequential, direct, or keyed)

• A record length

Table 5-3 lists the default values for file attributes that you do not specify when
connecting the file to a FORTRAN unit.

Table 5-3. FORTRAN Default File Attributes
Attribute Setting
File name A temporary file in the default disk volume

File type Unstructured

File code 0

Extent size One page (2048 bytes)

Record size 132 bytes

Access mode 'I-O'

Exclusion mode 'SHARED'

Tandem File Names
FORTRAN Reference Manual—528615-001
5-4

Introduction to File I/O in the HP NonStop
Environment

File Properties
HP File Names
You can specify a file name when you connect a file to a unit as in the following
example:

OPEN (15, FILE='newaccts', FORM='FORMATTED', STATUS='NEW')

A file name specifies the location of a file and consists of four 8-character names
separated by periods. A file name consists of a:

• Node name (system name)

• Volume name

• Subvolume name

• File ID

Here is an example of a fully qualified file name:

\ANODE.$AVOLUME.MYSUB.MYFILE

Figure 5-1 illustrates the preceding disk file name model.

In a network, the file name can also include a node name, as in the following example:

\PARIS.$SALES.JONES.PROGRAMS

The preceding file name identifies the file identifier PROGRAMS, in the subvolume
JONES, in the volume $SALES, at node \PARIS. As shown in the preceding example,
you must insert a period between file name components.

Figure 5-1. Disk File Organization

SVOL1 SVOL2 ACCT1

FILE A

FILE C

FILE B

FILE A

MYFILE

 INFILE

OUTFILE

 MYFILE

Disk File
Indentifiers

VST0501.vsd

1

2

3

Full File Name = "$VOL1.SVOL1.FILEA"

Full File Name = "$VOL1.SVOL2.FILEA"

Full File Name = "$VOL1.ACCT1.INFILE"

Legend

1 2 3

$VOL1

Volume Name
Subvolume Names

~
~

~

~

FORTRAN Reference Manual—528615-001
5-5

Introduction to File I/O in the HP NonStop
Environment

File Properties
Considerations
• The first character of the node name must be a backslash (\).

• The first character of the volume name must be a dollar sign ($).

• Each component of a file name can contain up to eight characters.

• If ENV OLD is in effect, the volume name in a file name that references a file at a
remote node can be a maximum of seven characters including the dollar sign. If
ENV COMMON is in effect, the VOLUME name can be eight characters including
the dollar sign.

Formatted and Unformatted Files
An unformatted file consists of unformatted records, and a formatted file consists of
formatted records. FORTRAN processes unformatted files more quickly than it
processes formatted files, because the processing of unformatted files does not require
that data be converted to an external representation. Note, however, that the HP
implementation of FORTRAN permits a file to contain both formatted and unformatted
records.

You specify the data format for a file when you connect the file to a unit, as in the
following example:

OPEN (22, FILE='budget', FORM='FORMATTED')

File Access
You can use three methods for accessing the records of an external file: sequential,
direct, and keyed.

When you access a file sequentially, you access each record in the file in the order in
which the records appear in the file. You can access sequential files only by
sequentially reading or writing each record in the file. If you need to read the tenth
record of a sequential file, you must process the preceding nine records first. You can
only access internal files sequentially.

You can use direct access I/O to write or read specific records in a file without
accessing any other record in the file. You can access an external file either
sequentially or directly.

If you use one of the three file types described in Structured Files on page 5-18, you
can also use primary or alternate key fields for keyed access when you read the file.

You determine the access method for an external file when you connect that file to a
unit; for example:

OPEN (100, FILE='oldaccts', ACCESS='DIRECT')

Some files are restricted to only one access method. For example, you can access
printer files only sequentially. Table 5-4 on page 5-7 shows the valid access methods
for HP-defined files.
FORTRAN Reference Manual—528615-001
5-6

Introduction to File I/O in the HP NonStop
Environment

File Properties
When connected for sequential access, a file has the following attributes:

• If direct access is not permitted for the file, record order corresponds to the order in
which the records were written. If you can also access the file directly, the order of
the records is the same as that specified for direct access.

• The file’s records can be formatted, unformatted, or mixed. This is an HP
extension.

• The last record can be an end-of-file record.

When connected for direct access, a file has the following attributes:

• The end-of-file record (if any) is not considered to be a part of the file.

• The file’s records can be formatted, unformatted or mixed. This is an HP extension.

• Each record of the file has a unique, nonnegative record number that you must
specify when you write the record. You can never change the number of a record.

• You cannot delete the record, but you can rewrite it.

• In an EDIT format file, a record number is an EDIT line number times 1000 (that is,
line number 12.34 is record number 12340). A line can have record number 0. In
other unstructured files and in relative files, record numbers are positive integers.

• You can update (rewrite) records in all file types capable of direct access.

• You can delete records in some file types by rewriting a zero-length record with an
unformatted WRITE statement that specifies UPDATE = .TRUE. and does not
have a data list.

• Records are ordered by record number, but you can read or write records in any
order. For example, you can write record 3 although records 1 and 2 do not exist,
or you can read any defined record while the file is connected to a unit.

The attributes of files that can be connected for keyed access are described in
Structured Files on page 5-18.

Table 5-4. FORTRAN Access Methods for HP-defined Files (page 1 of 2)

Access Method
File Type Sequential Direct Keyed
Magnetic tape Y N N

Card reader Y N N

Printer Y N N

Terminal Y N N

Process Y N N

$RECEIVE Y N N

EDIT format file Y Y N
FORTRAN Reference Manual—528615-001
5-7

Introduction to File I/O in the HP NonStop
Environment

Units
Logical Record Length
The HP Formatter software package performs all FORTRAN I/O, both formatted and
unformatted. The Formatter allocates a buffer whose size is equal to the record size
you specify with one of the following:

• The RECL specifier in an OPEN statement.

• The REC specifier in a UNIT compiler directive.

• The REC specifier in a TACL ASSIGN command.

• The REC specifier in a FUP CREATE command that creates the file (for structured
files only).

If you use more than one method to specify the size of a record, the record length
specified in an OPEN statement overrides the record length specified in an ASSIGN
statement, which overrides the record length specified in a UNIT directive. For a
structured file, the REC specifier in the FUP CREATE command overrides all other
record-length specifications.

If you open a file without specifying its record length by any of the above methods,
FORTRAN uses the configured record length for the device the file is on (for example,
80 bytes for a card reader). For devices such as disk volumes and processes,
FORTRAN uses 132-byte records.

The following statement connects the file INFO to unit 49, and specifies the record
length to be 124 characters:

OPEN (49, FILE='info', RECL=124)

Units
A FORTRAN program accesses an external file by “connecting” the file to a “unit” for
that program. Units are the handles by which FORTRAN I/O statements refer to files
after they are connected. Files have names, but units have numbers. Valid unit
numbers are integers in the range 1 to 999 inclusive. The OPEN and INQUIRE
statements are the only FORTRAN I/O statements that can refer to a file by its file
name. All other statements must use unit numbers.

For any Guardian program running under the operating system, a file can:

Unstructured Y Y N

Entry-sequenced Y N Y

Key-sequenced Y N Y

Relative Y Y Y

Table 5-4. FORTRAN Access Methods for HP-defined Files (page 2 of 2)

Access Method
File Type Sequential Direct Keyed
FORTRAN Reference Manual—528615-001
5-8

Introduction to File I/O in the HP NonStop
Environment

File Existence
• Exist or not exist

• Be open or not open

For a FORTRAN executable program, a unit can:

• Exist or not exist

• Be assigned or not assigned

• Be connected or not connected

File Existence
A disk file exists if it is known to the system. It need not have any data records in it.

If you do not name the file at the time of connection, FORTRAN creates a temporary
file, which it purges when you close the file or your process terminates.

You create a structured file only by using utility programs (such as FUP) that initialize
the required record key indexing data structures within the file. For additional
information, see Structured Files on page 5-18.

A nondisk file name is simply a device name or a process name. Such a file exists if
and only if the device or process exists.

Opening a File
A file is open for an executing program if the system is prepared to accept requests
from that program for transferring data to or from that file, for example, if the program
has at least one Guardian open file number for the file. The open state begins and
ends with calls to the Guardian file-system procedures OPEN and CLOSE,
respectively. The FORTRAN processor makes such calls automatically when a
FORTRAN unit is connected or disconnected. A file must exist before it can be
opened. For a disk file, FORTRAN automatically creates the file, if necessary, to satisfy
this requirement. Thus, for FORTRAN, creating a file and opening a file can be one
single operation.

A disk file can be opened by more than one opener at the same time. The multiple
openers can be in different processes or in the same process. The openers can be
from routines written in FORTRAN or in other HP NonStop languages. FORTRAN
associates each open of a Guardian file with the unit number you specify in a
FORTRAN OPEN statement. Thus, you can have one or more unit numbers
associated with the same Guardian file, each with its own Guardian file number.
FORTRAN Reference Manual—528615-001
5-9

Introduction to File I/O in the HP NonStop
Environment

Unit Existence
Unit Existence
A unit exists for a FORTRAN executable program if and only if its unit number has
been made known in one or more of the following ways:

• The unit number appears, in the form of an integer constant or a symbolic constant
whose value is an integer, as the unit number parameter in at least one FORTRAN
I/O statement, of any kind, anywhere in the compilation.

• The unit number is defined in a UNIT compiler directive anywhere in the
compilation. Use a UNIT compiler directive to establish the existence of a unit only
if all the I/O statements that refer to that unit use a variable or an expression (other
than a constant) as their unit designator.

• Units 4, 5, and 6 always exist by default.

FORTRAN I/O statements other than CLOSE or INQUIRE must refer to units that exist
for the program.

Unit Assignment
A unit is assigned for a FORTRAN executable program if and only if the unit number
has been associated with a file name. Assignment can be established in any of the
following ways:

• Units 4, 5, and 6 are always assigned by default. Unless one of the other methods
listed below specifies otherwise, units 4, 5, and 6 are automatically assigned to the
program’s home terminal, standard input file, and standard output file, respectively.
The file names for these files are specified or assumed in the runoptions TERM,
IN, and OUT, respectively, in the command that initiates execution of the program.

• When the program is compiled, the UNIT compiler directive can specify the file
name for the unit. If the unit number is 5 or 6 this file-name specification overrides
the default described above. If the file name is not fully qualified, execution-time
defaults are supplied for the missing parts of the file name. The UNIT directive can
also specify a unit name for use in ASSIGN commands. For more information, see
The ASSIGN Command on page 5-11.

• Before you run your program, you can specify the file name for the unit in a TACL
ASSIGN command. The file name you specify in the ASSIGN command overrides
the file name specified or assumed at compile time by either of the preceding
methods. The ASSIGN command associates a logical name, for example, FT uuu
or the name you specify in a UNIT directive, with a physical—or external—file
name, as shown in the following:

ASSIGN FT009, external-name

• During execution of the program, the FILE specifier of an OPEN statement can
establish a new file name for the unit, overriding all the above methods.

Note that assigning a file name to a unit number does not, by itself, cause the file to
exist (that is, the assignment does not create the file).
FORTRAN Reference Manual—528615-001
5-10

Introduction to File I/O in the HP NonStop
Environment

Unit Assignment
The ASSIGN Command
The TACL ASSIGN command enables you to assign the name of an actual file to a unit
specified in a program and to specify the characteristics of the file at run time.

logical-unit

is the unit name specified in the UNITNAME option of the UNIT compiler directive.
The name can be from 1 to 31 characters including letters, digits, and hyphens. If
no UNIT directive specifies the name of a unit, the default unit name has the form
FT uuu, where uuu is a three-digit decimal integer from 1 through 999 which
specifies the unit to be connected: Unit 2 is FT002, unit 99 is FT099, and so forth.

filename

is an HP file name (\ node.$ volume. subvol. fileid). An OPEN statement
can override this value with a FILE specifier.

create-spec

is a specification for one or more of the following file attributes:

exclusion-spec

is the exclusion mode of logical-unit and determines how other
processes can access the file. It is one of the following keywords:

An OPEN statement can override the value of exclusion-spec with a
PROTECT specifier.

ASSIGN [logical-unit [,[filename][, create-spec]...]]

Keyword Meaning
EXCLUSIVE No other processes can access the filename while the

program containing logical-unit has the file open.

SHARED Other processes can read and write to filename while the
program containing logical-unit has the file open. This
is the default value.

PROTECTED Other processes can read, but not write to, filename while
the program containing logical-unit has the file open
for write access.
FORTRAN Reference Manual—528615-001
5-11

Introduction to File I/O in the HP NonStop
Environment

Unit Assignment
access-spec

is one of the following access modes for logical-unit.

An OPEN statement can override the value of access-spec with the MODE
specifier.

REC record-size

is an integer ranging from 1 through 65,535 which sets the length (in bytes) of
records in logical-unit.

An OPEN statement can override this value with a RECL specifier.

CODE file-code

specifies the file code of the file being connected. 101 specifies an EDIT format
file.

extent-spec

assumes one of the following three forms:

EXT pri-extent

EXT (pri-extent)

EXT ([pri-extent] , sec-extent)

where pri-extent is an integer in the range from 1 to 65,535 inclusive that
specifies the size of the primary extent, and sec-extent is an integer in the
same range that specifies the size of each secondary extent. Each extent size
is the number of 2048-byte disk pages to be allocated at one time.

BLOCK block-size

is an integer in the range of 1 through 65,535 that specifies the size (in bytes)
of the data blocks used by logical-unit. Although you can specify the
block size, the FORTRAN (and COBOL85) run-time environments do not use
the value you specify.

For example, the following TACL ASSIGN command assigns the file name DATAFILE
to unit 2:

1> ASSIGN FT002, datafile, input, exclusive

To get a list of the attributes of a logical file, enter:

1> ASSIGN logical-unit

Keyword Meaning
I-O This process can both read from and write to the file. I-O is

the default value.

INPUT This process can only read the file.

OUTPUT This process can only write to the file.
FORTRAN Reference Manual—528615-001
5-12

Introduction to File I/O in the HP NonStop
Environment

Unit Connection
If you entered FT002 for logical-unit, the following information would be displayed:

FT002

PHYSICAL FILE: DATAFILE

EXCLUSION: EXCLUSIVE

ACCESS: INPUT

To get a list of the assigned attributes of all logical units, enter:

1> ASSIGN

For additional information on the ASSIGN command, see the TACL Reference Manual.

Unit Connection
A BACKSPACE, ENDFILE, OPEN, POSITION, PRINT, READ, REWIND, or WRITE
statement establishes a connection to a unit. A CLOSE statement closes the
connection to a unit. An INQUIRE statement does not alter whether a unit is connected
or not.

A unit cannot be connected to more than one file at a time, but a file can be connected
to any number of units at the same time.

No FORTRAN I/O statement requires that the unit be connected before you execute
the statement. All I/O statements except CLOSE and INQUIRE automatically connect
the unit if it is not already connected. That is, they create the file if it does not already
exist (except for structured files), and open it if necessary.

If an OPEN statement opens a unit that is already connected, the unit is closed and
opened anew. For example, the effect of the following statements is the same as if a
CLOSE statement without a STATUS specifier had been executed between the opens
for FILE1:

OPEN (15, FILE= 'file1')

OPEN (15, FILE= 'file2')

If any I/O statement connects a unit that is not assigned to a file name (the unit number
is not 4, 5, or 6, and no UNIT directive or ASSIGN command has specified a file name
for the unit, and the I/O statement is not an OPEN statement with FILE = a nonblank
name), then the system creates a new temporary file with a unique file name on the
default disk volume for the program, and opens it, thus connecting the new file to the
unit.

Specifying File Attributes
You can use the UNIT directive and the ASSIGN command to specify other file
attributes in addition to the file name. For details, see the UNIT Compiler Directive on
page 10-67 and the description of the ASSIGN command in this section.
FORTRAN Reference Manual—528615-001
5-13

Introduction to File I/O in the HP NonStop
Environment

Specifying File Attributes
If you use more than one method to specify the same file attribute, the compiler uses
the following order of precedence to determine the attribute value:

OPEN statement <-- highest

ASSIGN TACL command

UNIT compiler directive

Default <-- lowest

That is, an attribute value specified in an OPEN statement overrides a different value
specified for the same attribute of that unit in an ASSIGN command, and so forth.

Table 5-5 shows the different ways that you can specify file attributes. Note that you
cannot specify the file type, file code, extent sizes, or block size in an OPEN statement,
and that you can specify structured disk file types (relative, entry-sequenced, and
keysequenced) only by creating the file outside of FORTRAN, for example by using the
CREATE command in the FUP utility program.

If an executing FORTRAN program opens a file that already exists (that is, the file has
been created, though it might be empty), any attributes specified for the file in UNIT
directives, ASSIGN commands, or the OPEN statement, must agree with those of the
actual file.

If the file does not already exist, FORTRAN creates the file with the attributes you
specify.

Table 5-5. File Attribute Specification (page 1 of 2)

Attribute Default Unit Directive
Assign
Command Open Statement

File name temporary file name file name FILE = cexp
File type Unstructured ---- ---- ----

File code 0 CODE num CODE num ----

Extent Size 1 page EXT (pri, sec) EXT (pri, sec) ----

Record size 132 REC num REC num RECL = exp

Access mode I-O access access MODE = cexp

Exclusion SHARED exclusion exclusion PROTECT = cexp

Unit name FTuuu UNITNAME
name

logical unit ----

temporary is a unique file name created by the system.

file name is an HP file name. If it is not fully qualified, run-time defaults are supplied for the missing
parts of the file name. In the OPEN statement, cexp is a character expression whose value
is in the file name.
FORTRAN Reference Manual—528615-001
5-14

Introduction to File I/O in the HP NonStop
Environment

Specifying File Attributes
Example: Connecting Units to Files
As an example, consider the following FORTRAN program:

?UNIT (2, input.data, REC 200, UNITNAME vector)

?UNIT (3, result.file, REC 200, EXCLUSIVE)

?UNIT (6, , CODE 101)

PROGRAM example

CHARACTER result file * 34, text * 72

REAL values (100)

READ (4,*, PROMPT =' Iterations: ', END = 30)

& iterations

READ (4, 10, PROMPT = ' Result file: ', END = 30)

& result file

READ (5, 10) text

10 FORMAT (A)

WRITE (6, 20) text

20 FORMAT ('1', A)

WRITE (1) iterations

READ (2) values

...

OPEN (3, FILE = result file, RECL = 400)

WRITE (3) values

30 listing = 7

WRITE (listing, 20) text

STOP

END

num is an unsigned integer. In an OPEN statement, exp is an integer expression.

access is I-O, INPUT, or OUTPUT. In an OPEN statement, cexp is a character expression whose
value is one of these.

exclusion is SHARED, PROTECTED, or EXCLUSIVE. In the OPEN statement, cexp is a character
expression whose value is one of these.

Table 5-5. File Attribute Specification (page 2 of 2)

Attribute Default Unit Directive
Assign
Command Open Statement
FORTRAN Reference Manual—528615-001
5-15

Introduction to File I/O in the HP NonStop
Environment

File Characteristics
After you compile the program but before you run it, you might enter the following
ASSIGN commands:

1> ASSIGN vector, $data.test.input, REC 400

2> ASSIGN ft003, , OUTPUT, EXT 4

When the object program runs, units 4, 5, and 6 are automatically connected to the
home terminal, standard input file, and standard output file respectively. If the standard
output file does not already exist, FORTRAN creates it as an EDIT format file, because
the UNIT 6 directive specifies file code 101.

The first reference to unit 1 is a WRITE statement. FORTRAN creates the file (as an
unstructured code 0 disk file in the default volume with a temporary file name, onepage
primary and secondary extent sizes, and 132-byte block and record lengths) and
opens it, all automatically, using defaults in the absence of a UNIT directive, ASSIGN
command, or OPEN statement for the unit.

Unit 2 is specified in both a UNIT directive and an ASSIGN command, using the unit
name VECTOR to establish this linkage. The file name and record length in the
ASSIGN command override those of the UNIT directive. The record length provides for
100 type REAL elements of 4 bytes each.

Unit 3 is also specified in both a UNIT directive and an ASSIGN command. In this
case, the default unit name FT003 (corresponding to unit number 3) provides the
linkage. The UNIT directive specifies a file name, a record length, and a protection
attribute, while the ASSIGN command specifies an access mode and an extent size.

The OPEN statement specifies a file name and a record length, overriding those of the
UNIT directive. The typed-in file name will be connected.

The program’s execution will terminate abnormally when it gets to the WRITE
statement after statement 30, because unit 7 does not exist.

File Characteristics
This subsection describes how you use FORTRAN files in the NonStop environment, in
which files are either structured or unstructured. An unstructured file is a byte array. It
is normally used as a code file or EDIT format file. The application process determines
the length and locations of records within the file. Structured files contain logical
records whose order depends on the type of structured file used.

Unstructured Files
You address data stored in an unstructured file (except for EDIT format files) in terms
of fixed-length numbered records. The first record in a file is record number 1, the
second is record number 2, and so forth. All records in the file have the same length
and are stored without any record delimiters, data compression, record indexing, or
other data structuring of any kind. The total size of the file (in bytes) is the record
length times the number of records in the file (given by the highest-numbered record
written so far). Thus, in an unstructured file:
FORTRAN Reference Manual—528615-001
5-16

Introduction to File I/O in the HP NonStop
Environment

Unstructured Files
• All physical records are the same length.

• All logical records are the same length.

• You can access records sequentially or directly.

• You can read, write, or update any record in the file but you can never delete a
record once it has been written.

• You cannot use alternate keys.

EDIT Format Files
EDIT format files are unstructured files. Each line of an EDIT format file is a record of
that file. The record number equals the EDIT line number times 1000; for example, line
number 12.34 is record number 12340.

You can create an EDIT format file in any of the following ways:

• Specify CODE 101 in a UNIT directive

• Specify CODE 101 in a TACL ASSIGN command

• Use the FUP utility. The following commands create the EDIT format file
CREDITOR:

In an EDIT format file:

• Physical records vary in length. The maximum length is always 239 bytes.

• Logical records also vary in length, up to the maximum length specified when the
file is connected.

• You can read records sequentially.

• You can rewind the file.

• You cannot use keyed access.

• For a FORTRAN program running as a NonStop process pair:

° You cannot write, update, or delete records in the file.

° You cannot backspace over records in the file.

° You cannot use direct access.

• For a FORTRAN program that is not running as a NonStop process pair:

1> FUP
File Utility Program - T6553D10 - (08JUN92) System \ASYS
Copyright Tandem Computers Incorporated 1981, 1983, 1985-1992
-set type u
-set code 101
-create creditor
CREATED - $AVOL.USER.CREDITOR
-exit
2>
FORTRAN Reference Manual—528615-001
5-17

Introduction to File I/O in the HP NonStop
Environment

Structured Files
° You can read and write records sequentially.

° You can backspace the file, rewind the file, or write an endfile record to the file.

° You can use direct access for reading and writing records in the file. The
record number is the record’s EDIT line number times 1000. Use values of -1
for the beginning of the file and -2 for the end of the file.

° You can change the length of a record as long as the length does not exceed
the specified record size for the file.

° You can delete records.

• If you READ the file directly with REC= specifying the nonnegative record number
(including 0) of a record that does not exist, then:

° If the specified record number is beyond the end of the file, you get an end-
offile indication.

° If the specified record number is not beyond the end of the file, you get the
record with the smallest record number that is greater than or equal to the
specified record number. FORTRAN does not consider this an error.
Consequently, you should have an INQUIRE statement with a NEXTREC
specifier after every such READ, to determine the record number of the record
actually obtained.

Structured Files
Structured files are entry-sequenced, relative, or key-sequenced files. You create a
structured file using the File Utility Program (FUP). You cannot create a structured file
using FORTRAN.

Use the following procedure to create a structured file:

1. Start the File Utility Program by entering the following at the TACL prompt:

1> FUP

2. Assign values to file creation parameters with the SET command. FUP maintains a
table of creation parameters. The values in this table determine the attributes of
any file you create with FUP. FUP uses the following codes to identify file types:

Entry-sequenced E

Relative R

Key-sequenced K

Note. EDIT format files are not structured files and are not protected by TMF. Although you
can do random positioning and updating of EDIT format files in FORTRAN programs (except in
programs that run as NonStop process pairs), you should avoid such actions for applications in
which fault tolerance or data integrity is important.
FORTRAN Reference Manual—528615-001
5-18

Introduction to File I/O in the HP NonStop
Environment

Structured Files
3. Check the values of file creation parameters with the SHOW command. Note that
the SHOW command displays default values for file attributes in addition to the
values you specify.

4. Create the file with the CREATE command. FUP checks the values you chose with
the SET command and creates a file if those values will result in a legal file.

5. Specify STATUS='OLD' in the OPEN statement for a structured file. This is the
default when the file already exists.

6. To delete a record from a structured file do an unformatted WRITE to the file.
Specify UPDATE=.TRUE. but do not include a data list on the WRITE statement.

For a complete description of structured files see the ENSCRIBE Programmer’s Guide.

Entry-Sequenced Files
An entry-sequenced file appends records to the end of a file in the order in which they
are written. In an entry-sequenced file:

• Records are searched sequentially from the beginning of the file.

• The length of a record depends upon the length specified when it is written. Once
you delete a record, its space can only be used for another record of the same
size.

• Records added to the file can vary in length, but once a new record is added, its
length cannot change.

• Records in the file can be updated but not deleted.

• You cannot use direct access.

• You can access records by alternate keys. See Using Alternate Keys on
page 5-22.

• Records are always written at the end of the file, also after a REWIND or OPEN
statement. The only exception to this is a WRITE statement with an UPDATE =
.TRUE. specifier.
FORTRAN Reference Manual—528615-001
5-19

Introduction to File I/O in the HP NonStop
Environment

Structured Files
The following example shows how to create the entry-sequenced file VISITORS. The
default record size for the file is 80 bytes.

Your FORTRAN program might include the following statement to connect the file to a
unit:

OPEN (13, FILE='visitors', ACCESS='SEQUENTIAL',

& STATUS='OLD', FORM='FORMATTED')

The following statement adds a record to the file:

WRITE (13, FMT=20) name, address, date

The following statements update a record in the file:

READ (13, FMT=30, REC=80, UPDATE=.TRUE.) name, address, date
address='145 N. Main'

WRITE (13, FMT=30, UPDATE=.TRUE.) name, address, date

Relative Files
A relative file stores records relative to the beginning of the file, according to a record
number supplied by the application program. In a relative file:

• All physical records are the same length.

• Logical records can vary in length.

• Each record is uniquely identified by a record number, which denotes an ordinal
position in a file. You can access a record by record number or by alternate key.
(For more information about alternate key access, see Using Alternate Keys on
page 5-22.)

• You can delete a record.

• You can change the length of a record so long as the length does not exceed the
specified record size for the file.

• A value of -2 for the REC= specifier inserts a record in the first empty position. A
value of -1 appends a record to the end of the file.

• You can access records sequentially or directly.

1> FUP
File Utility Program - T6553D10 - (08JUN92) System \ASYS
Copyright Tandem Computers Incorporated 1981, 1983, 1985-1992
-SET TYPE E <-- Set file type
-SHOW <-- Show current values
 TYPE E
 EXT (1 PAGES, 1 PAGES)
 REC 80
 BLOCK 4096
 MAXEXTENTS 16
-CREATE visitors <-- Create the file
CREATED - $JUICE.BUJES.VISITORS
-EXIT <-- Exit FUP
2>
FORTRAN Reference Manual—528615-001
5-20

Introduction to File I/O in the HP NonStop
Environment

Structured Files
• If you READ the file directly with REC= specifying the nonnegative record number
(including 0) of a record that does not exist, then

° If the specified record number is beyond the end of the file, you get an end-
offile indication.

° Otherwise, you get the record with the smallest record number that is greater
than or equal to the specified record number. FORTRAN does not consider this
an error. Consequently, you should execute an INQUIRE statement with the
NEXTREC specifier after this type of READ.

The following example shows how to create the file RESERVED:

To connect the file to a unit for direct access, your program might contain the following:

OPEN (15, file='reserved', ACCESS='DIRECT',

& FORM='FORMATTED', STATUS='OLD')

To read a record from the file:

READ *, k

READ (15, FMT=20, REC=k) name, date, flight

To update a record:

READ *, k

WRITE (15, FMT=20, UPDATE=.TRUE., REC=k) name, date, flight

Key-Sequenced Files
Records in key-sequenced files are logically stored in order of ascending primary-key
values. A primary key is a record field that uniquely identifies the record. You can also
use alternate keys to access data in a key-sequenced file.

In a key-sequenced file:

• The space occupied by the record depends on the length you specify when you
write it.

• You can shorten, lengthen, or delete records.

1> FUP
File Utility Program - T6553D10 - (08JUN92) System \ASYS
Copyright Tandem Computers Incorporated 1981, 1983, 1985-1992
-SET TYPE R <-- Set file type
-SET REC 120 <-- Set record length
-SHOW <-- Show the current values
 TYPE R
 EXT (1 PAGES, 1 PAGES)
 REC 120
 BLOCK 4096
 MAXEXTENTS 16
-CREATE reserved <-- Create file
CREATED - $JUICE.BUJES.RESERVED
-EXIT <-- Exit FUP
2>
FORTRAN Reference Manual—528615-001
5-21

Introduction to File I/O in the HP NonStop
Environment

Structured Files
The following example shows how to create the key-sequenced file VENDORS.

The following statement opens the VENDORS file:

OPEN(22, file='vendors', STATUS= 'OLD', ACCESS='SEQUENTIAL',

& FORM='FORMATTED')

The following statement writes a record to the file:

WRITE(22, FMT=30) name, address, amount, discount

You can position the file for a subsequent read or write:

READ *, name

POSITION(22, KEY=name, MODE='EXACT')

Using Alternate Keys
To use alternate keys to access data in a structured file, you must use FUP SET
commands to:

• Define a two-letter key specifier that identifies the alternate key as an access path
for positioning the file.

• Define the record offset where the alternate-key field begins.

• Define the length of the alternate key field.

• Create an alternate-key file for each structured file having one or more alternate
keys.

The following record in the relative file SALES can be accessed by alternate keys:

1> FUP
File Utility Program - T6553D10 - (08JUN92) System \ASYS
Copyright Tandem Computers Incorporated 1981, 1983, 1985-1992
-SET TYPE K <-- Set file type
-SET REC 120 <-- Set record length
-SET KEYLEN 24 <-- Set primary key length
-SHOW <-- Show values
 TYPE K
 EXT (1 PAGES, 1 PAGES)
 REC 120
 BLOCK 4096
 IBLOCK 4096
 KEYLEN 24
 KEYOFF 0
 MAXEXTENTS 16
-CREATE vendors <-- Create file
CREATED - $JUICE.BUJES.VENDORS
-EXIT <-- Exit FUP
2>
FORTRAN Reference Manual—528615-001
5-22

Introduction to File I/O in the HP NonStop
Environment

Structured Files
The following FUP commands create the relative file SALES:

To connect the file to a unit for sequential access, your program might contain the
following:

OPEN (20, file='sales', ACCESS='SEQUENTIAL', RECL=80,

& FORM='FORMATTED', STATUS='OLD')

The following statements position the file for a search by an alternate key:

READ *, product

POSITION(20, KEY=product, KEYLEN=10, KEYID='PR',

& MODE='EXACT')

Once the file is positioned you can read or write the desired data as in the following
statements:

READ (20,5) customer, product, quantity

PRINT *, customer, product, quantity

1> FUP
File Utility Program - T6553D10 - (08JUN92) System \ASYS
Copyright Tandem Computers Incorporated 1981, 1983, 1985-1992
-SET TYPE R
-SET REC 80
-SET ALTKEY ("CN", KEYOFF 0, KEYLEN 32) <-- Define alternate
-SET ALTKEY ("PR", KEYOFF 32, KEYLEN 32) keys
-SET ALTFILE (0, altsale) <-- Name alternate-
-SHOW key file
 TYPE R
 EXT (1 PAGES, 1 PAGES)
 REC 80
 BLOCK 4096
 ALTKEY ("CN", FILE 0, KEYOFF 0, KEYLEN 32)
 ALTKEY ("PR", FILE 0, KEYOFF 32, KEYLEN 32)
 ALTFILE (0, $JUICE.FTRAN.ALTSALE)
 ALTCREATE
 MAXEXTENTS 16
-CREATE sales
CREATED - $JUICE.FTRAN.SALES
CREATED - $JUICE.FTRAN.ALTSALES
-RESET
-EXIT
2>

VST0502.vsd

Customer Name Product Name Quantity

0 Alternate Key CN 32 Alternate Key PR 64 80
FORTRAN Reference Manual—528615-001
5-23

Introduction to File I/O in the HP NonStop
Environment

Operations on HP-defined Files
Operations on HP-defined Files
Table 5-6 shows the operations that you can perform on HP-defined files. For
additional information about $RECEIVE and process files, see Section 14, Interprocess
Communication.

Considerations
If your program uses a POSITION statement for a relative file, you cannot rewind or
backspace the file after executing the POSITION statement.

Control Specifiers in I/O Statements
I/O statements are described in Section 7, Statements.

Table 5-7 on page 5-25 describes the most commonly used I/O control specifiers.

Table 5-6. Valid Operations on HP-defined Files
File Type Read Write Rewind Backspace Endfile Position
Magnetic tape Y Y Y Y Y N

Card reader Y N N N N N

Printer, console N Y N N N N

Terminal Y Y N N N N

Process Y Y Y N N N

$RECEIVE Y Y N N N N

EDIT format file Y Y* Y Y* Y* Y*

Unstructured Y Y Y Y Y Y

Entry-sequence Y Y Y N N N

Key-sequence Y Y N N N Y

Relative Y Y Y Y N Y
* Operation is not valid in a FORTRAN program that runs as a NonStop process
FORTRAN Reference Manual—528615-001
5-24

Introduction to File I/O in the HP NonStop
Environment

Control Specifiers in I/O Statements
Table 5-7. I/0 Control Specifiers (page 1 of 2)

Control
Specifier Meaning
UNIT = unit Is an integer expression ranging from 1 through 999 that specifies the

FORTRAN unit to use. unit can be an asterisk (*) implying the default
input unit in a READ statement or the default output unit in a WRITE
statement.

unit can also be the name of a character variable, array, array element,
or substring identifying an internal file.

If you omit the UNIT= part of this specifier, unit must be the first item in
the control specifier list.

FMT = fmt Specifies a format to be used for formatted I/O; fmt can be:

• A statement label of a FORMAT statement in the same program unit.

• A character expression whose value is the format specification.

• A character array name whose elements, concatenated together,
contain the format specification.

• An integer variable that has been assigned the statement number of
a FORMAT statement by an ASSIGN statement.

• An asterisk (*) indicating list-directed I/O.

If fmt is a character array name or a character expression, its value must
be a format specification (as described in FORMAT Statement on
page 7-39) except that it does not begin with the word FORMAT. It must,
however, include the parentheses that enclose the list of format items, as
in the following example:

FMT = '(I5, A8)'

If you omit the FMT= part of this specification, fmt must be the second
item in the control list, and the unit specifier, without the characters
UNIT=, must be the first item in the list.

REC = rn Specifies the number of the record to be read or written to a file that is
opened for direct access. This is applicable to unstructured, relative, and
EDIT format files.
FORTRAN Reference Manual—528615-001
5-25

Introduction to File I/O in the HP NonStop
Environment

I/O Lists
I/O Lists
The I/O list of an I/O statement specifies the items to transfer and the order of
transmission. Separate list items with commas. FORTRAN transmits the items
sequentially from left to right.

A list item can be a variable name, an array or array element name, a character
substring name, a RECORD, a RECORD field name, or an implied DO list. In a PRINT
or WRITE statement, a list item can also be an expression. An array name in an I/O list
specifies the entire array in the order in which it is stored.

Considerations
• A standard-conforming program should not use an expression in an I/O list to

reference a function if such a reference would cause any I/O operations to be
executed or if the reference would cause the value of any element in the I/O list to
change.

• You cannot use assumed-size arrays without subscripts in an I/O list.

END = label Specifies the label of an executable statement to which FORTRAN
transfers control if an end of file is encountered during an input operation.
You can use this specifier only with the READ statement.

ERR = label Specifies the label of an executable statement to which FORTRAN
transfers control if an error condition is encountered during I/O
processing.

IOSTAT = ios Specifies an integer variable or array element. After the execution of an
I/O statement, ios returns zero if no error occurred, a file system error,
an error defined by the FORTRAN run-time library, or -1 if an end of file
was encountered. If ios is less than 10000, ios is a file system-defined
error number. If ios is greater than 10000, ios is a FORTRAN run-time
library-defined error number and the actual error number is ios - 10000.

If an I/O statement does not specify an ERR or an IOSTAT option and an
I/O error occurs, FORTRAN terminates the program and displays a
diagnostic message.

Table 5-7. I/0 Control Specifiers (page 2 of 2)

Control
Specifier Meaning
FORTRAN Reference Manual—528615-001
5-26

Introduction to File I/O in the HP NonStop
Environment

Using Implied DO Lists
Using Implied DO Lists
An implied DO list has the following form:

([(]... ar-nam1(var1 [, var2]...)

[, ar-nam2(var1 [, var2]...)]... ,

var1 = iexp1, fexp1°[, incr1])

[, var2 = iexp2, fexp2°[, incr2°])]...

ar-name

is the name of an array.

var

is an integer, real, or double precision control variable. It must be a simple variable,
not an array element or a RECORD component.

iexp

is an expression that specifies the initial value of each var.

fexp

is an expression that specifies the final value of each var.

incr

is an expression that specifies the increment value of each var. The default value
for incr is 1.

You can specify a DO list both in DATA statements and in data transfer statements.

The following example uses an implied DO list to initialize the array INVENTORY to 0:

DATA (inventory(i), i = 1, 25) / 25 * 0 /

You can use an implied DO list to initialize partial arrays. For example, the following
DATA statement initializes the first 10 elements and the last 10 elements of the array
PAY(30) to 0:

INTEGER pay(30)

DATA (pay(k), k = 1,10), (pay(k), k = 21,30) /20 * 0/

You can read the elements of multidimensional arrays using an implied DO list. For
example, the following READ statement reads all elements of the two-dimensional
array A:

INTEGER a(2, 4)

READ(10,100) ((a(i,j), i = 1,2), j = 1,4)
FORTRAN Reference Manual—528615-001
5-27

Introduction to File I/O in the HP NonStop
Environment

Unformatted I/O
You can use a WRITE statement to write the elements of more than one array. The
following WRITE statement writes the 100 elements in each of the three arrays A, B,
and C:

INTEGER a(10, 10), b(10, 10), c(10, 10)

WRITE(9,10) ((a(i,j), b(i,j), c(i,j), i = 1,10), j=1,10)

Unformatted I/O
If a data transfer statement does not contain a format specifier in its control list, it is an
unformatted I/O statement. Unformatted READ and WRITE statements transfer data as
is between memory and an external device. Each statement transfers exactly one
record.

Formatted I/O
Formatted I/O is either list-directed or edit-directed:

• If the format specifier of a data transfer statement is an asterisk (*), the statement
is a list-directed I/O statement.

• If the control list of a data transfer statement contains a format specifier (other than
an asterisk), the statement is an edit-directed I/O statement.

• The first character of an edit-directed output record controls the vertical spacing for
an output device (by default, a terminal, a printer, or a process).

You can use the SPACECONTROL specifier in the OPEN statement to cause
FORTRAN to treat the first character of such a record as a datum. For additional
information, see OPEN Statement on page 7-70.

This subsection describes only list-directed I/O. Edit-directed I/O is described in
Section 7, Statements.

List-Directed I/O
FORTRAN uses the format of the data it reads to determine the type of input data, and
formats output data according to the values contained in the variables it writes.

You must specify at least one of END= or IOSTAT= if you want your program to
continue running if an end of file is encountered.

Character Vertical Spacing Before Printing
Blank One line

0 Two lines

1 To first line of next page

+ No advance
FORTRAN Reference Manual—528615-001
5-28

Introduction to File I/O in the HP NonStop
Environment

List-Directed I/O
List-Directed Input
The form of the input field must be acceptable for the type of the input list item. Input
data consists of a string of values separated by one or more blanks, by a comma, or by
a slash (/). If the separator is a comma or a slash, it can be preceded and/or followed
by any number of blanks. The end of a record is treated as a blank character. Input
values must not contain embedded blanks nor span records except for character
values or complex numbers.

To repeat a value, enter an integer repeat constant followed by an asterisk and the
value to repeat. Do not use blanks in a repeat specification.

READ *, j, k

Input: 2*50 Value: 50 50

Table 5-8. Input Format in List-Directed I/O
Type Format
Integer Integer constant format.

Real Valid FORTRAN format for real or double precision numbers. If you omit the
decimal point, FORTRAN assumes that the decimal point is to the right of the
mantissa.

Complex Two real values, separated by a comma, and enclosed in parentheses. The
parentheses are not considered to be separators. You can omit the decimal
points in each of the components.

Character A string of characters enclosed by apostrophes. Use two adjacent
apostrophes with no intervening blanks to indicate an enclosed apostrophe.
You can continue a character constant from the end of one record to the
beginning of the next, for as many records as are needed.

You can read character values only into character arrays, character variables,
and substrings. If the string is shorter than the list item, FORTRAN left-
justifies and blank fills the string; if the string is longer than the list item,
FORTRAN truncates the rightmost characters; for example:

CHARACTER*11 title

READ *, title

Input: 'Quarterly Results'

Value: Quarterly R

Logical An optional period, followed by T or F, followed by optional characters which
do not include separators.
FORTRAN Reference Manual—528615-001
5-29

Introduction to File I/O in the HP NonStop
Environment

List-Directed I/O
If you input a null in place of a constant, the value of the corresponding list entity is not
changed. Indicate a null using a comma as the first character in the input string or two
commas separated by blanks; for example:

READ *, j, k

Input: 2, 10 Value: 2 10

 , 5 2 5

 1, 7 1 7

 , , 1 7

A slash value separator causes FORTRAN to treat the remaining list elements as nulls
and to discard the remainder of the current record.

READ *, j, k

Input: 10, 10 Value: 10, 10

 /5 10, 10

List-Directed Output
List-directed output transfers data from storage locations specified in the I/O list to a
unit in the same way as list-directed input except that null values, slashes, repeated
constants, and apostrophes to indicate character values are not produced. The
formatter suppresses trailing zeros in the mantissa and leading zeros in the exponent.

List-directed output statements always produce a blank for carriage control as the first
character of each output record.
FORTRAN Reference Manual—528615-001
5-30

Introduction to File I/O in the HP NonStop
Environment

I/O Performance
Logical values are output as T or F. Complex values are enclosed in parentheses with
a comma separating the real from the imaginary part. The following sample program is
an example of list-directed output:

PROGRAM example

INTEGER k(5)

COMPLEX a, b

REAL c

DATA a, b, c, k/(6, 1), (3, -2), 1.E-3,5,10,20,40,1/

PRINT *, a, b

PRINT *, c

PRINT *, k

END

Output: (6, 1) (3, -2)

 .001

 5 10 20 40 1

I/O Performance
You can increase the execution speed of your FORTRAN programs by using
techniques provided by the Guardian file system to read and write files faster.

Sequential Block Buffering
If a file is a structured (relative, entry-sequenced, or key-sequenced) disk file, and its
OPEN statement specifies:

MODE = 'INPUT'

ACCESS = 'SEQUENTIAL'

PROTECT = 'PROTECTED' or PROTECT = 'EXCLUSIVE'

FORTRAN uses the “sequential block buffering” feature of the Guardian file system to
read the file. Sequential block buffering can make your program run significantly faster
by transferring data from the disk process to the FORTRAN program one block at a
time rather than one logical record at a time.

Read-Through Locks
If your FORTRAN program is reading a structured file when another process is
updating the file and your program tries to read a record while the updating process
has that record locked, your program usually waits until the updating process unlocks
the record.
FORTRAN Reference Manual—528615-001
5-31

Introduction to File I/O in the HP NonStop
Environment

Read-Through Locks
However, your program can read a locked record, without waiting for the lock to be
released, by calling the Guardian SETMODE procedure to specify use of the
“readthrough locks” feature as follows:

CALL SETMODE (FILENUM (u), 4, 6, 0)

The SETMODE call tells the operating system to allow your program to read through
locks on the specified file. Call SETMODE after you have opened the file, but before
the first read from the file.

Then if you read a locked record, instead of waiting until the record is unlocked, your
FORTRAN program reads the record immediately and the READ statement’s IOSTAT
specifier returns error code 9 (locked record read) but the contents of the data record
are delivered intact. FORTRAN considers this code a warning rather than a serious
error.

The following example shows how your program might read a record:

READ (u, IOSTAT = error) data-list

IF (error .EQ. 9) error = 0

IF (error .NE. 0) handle-error

Because this technique defeats the purpose of record locks, your program might read
inconsistent data if you read the data before the updating process has completed its
work. Use this technique only in programs for which speed is more important than
accuracy and in which you understand how the records in the file are updated.
FORTRAN Reference Manual—528615-001
5-32

6 Introduction to Statements
This section provides introductory information to Section 7, Statements. Topics covered
in this section include:

Executable and Nonexecutable Statements
A FORTRAN statement is either executable or nonexecutable.

• An executable statement causes the FORTRAN compiler to generate machine
instructions that execute when you run your program.

• A nonexecutable statement provides information that controls how the FORTRAN
compiler compiles your program.

Table 6-1 lists the FORTRAN executable and nonexecutable statements.

Topic Page
Executable and Nonexecutable Statements 6-1

Statement Types 6-3

Statement Order 6-4

Statement Labels 6-5

Error Numbers 6-5

Table 6-1. FORTRAN Statements (page 1 of 3)

Statement
Executable or
Nonexecutable Type Described Under

ASSIGN Executable Assignment ASSIGN

BACKSPACE Executable I/O BACKSPACE

BLOCK DATA Nonexecutable Program Unit BLOCK DATA

CALL Executable Control CALL

CHARACTER Nonexecutable Specification CHARACTER

CHECKPOINT Executable Control CHECKPOINT

CLOSE Executable I/O CLOSE

COMMON Nonexecutable Specification COMMON

COMPLEX Nonexecutable Specification Type Declaration

CONTINUE Executable Control CONTINUE

DATA Nonexecutable Assignment DATA

DIMENSION Nonexecutable Specification DIMENSION

DO Executable Control DO

DOUBLE
PRECISION

Nonexecutable Specification Type Declaration
FORTRAN Reference Manual—528615-001
6-1

Introduction to Statements Executable and Nonexecutable Statements
ELSE Executable Control IF (Block)

ELSE IF Executable Control IF (Block)

END Nonexecutable Program Unit END

ENDFILE Executable I/O ENDFILE

END IF Executable Control IF (Block)

END RECORD Nonexecutable Specification RECORD

ENTRY Nonexecutable Specification ENTRY

EQUIVALENCE Nonexecutable Specification EQUIVALENCE

EXTERNAL Nonexecutable Specification EXTERNAL

FILLER Nonexecutable Specification RECORD

FORMAT Nonexecutable I/O FORMAT

FUNCTION Nonexecutable Program Unit FUNCTION

GO TO Executable Control GO TO

IF Executable Control IF (Arithmetic) IF
(Logical) IF (Block)

IMPLICIT Nonexecutable Specification IMPLICIT

INQUIRE Executable I/O INQUIRE

INTEGER Nonexecutable Specification Type Declaration

INTRINSIC Nonexecutable Specification INTRINSIC

LOGICAL Nonexecutable Specification Type Declaration

OPEN Executable I/O OPEN

PARAMETER Nonexecutable Specification PARAMETER

PAUSE Executable Control PAUSE

POSITION Executable I/O POSITION

PRINT Executable I/O PRINT

PROGRAM Nonexecutable Program Unit PROGRAM

READ Executable I/O READ

REAL Nonexecutable Specification Type Declaration

RECORD Nonexecutable Specification RECORD

RETURN Executable Control RETURN

REWIND Executable I/O REWIND

SAVE Nonexecutable Specification SAVE

START BACKUP Executable Control START BACKUP

Statement Function Nonexecutable Specification Statement Function

Table 6-1. FORTRAN Statements (page 2 of 3)

Statement
Executable or
Nonexecutable Type Described Under
FORTRAN Reference Manual—528615-001
6-2

Introduction to Statements Statement Types
Statement Types
Each FORTRAN statement is classified into one of the following groups:

• Program unit statements

• Specification statements

• Assignment statements Control statements

• I/O statements

Figure 6-1 shows the type of each FORTRAN statement. Vertical items in the table
designate varieties of statements that can be interspersed. Horizontal items designate
varieties of statements that cannot be interspersed.

STOP Executable Control STOP

SUBROUTINE Nonexecutable Program Unit SUBROUTINE

THEN Executable Control IF (Block)

WRITE Executable I/O WRITE

Figure 6-1. Order of FORTRAN Statements

Table 6-1. FORTRAN Statements (page 3 of 3)

Statement
Executable or
Nonexecutable Type Described Under

END Statement

PARAMETER
Statements

Comment
 Lines

FORMAT and
ENTRY

Statements

DATA
Statements

IMPLICIT
Statements

Other
Specification
Statements

Statement
Function

Statements

Executable
Statements

VST0601.vsd

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA Statement
FORTRAN Reference Manual—528615-001
6-3

Introduction to Statements Statement Order
Table 6-2 lists the characteristics of each group of statements.

Statement Order
The order of statements in a FORTRAN program can determine whether the program
compiles successfully. The following list describes the order in which you can specify
statements in your FORTRAN program.

• A PROGRAM statement can appear only as the first statement of a main program.

• An END statement is required as the last statement of each program unit.

• The first statement of a subprogram must be a FUNCTION, SUBROUTINE, or
BLOCK DATA statement.

• Comments can appear anywhere in a program. FORTRAN associates comments
that follow an END statement with the program unit, if any, that begins after the
END statement.

• Specification statements must precede executable statements, statement function
statements, and DATA statements in a program unit.

• Within the specification statements, IMPLICIT statements must precede all other
specification statements except PARAMETER statements.

• Statement function statements must precede all executable statements.

• If the default type of the symbolic name of a constant is not the correct type, you
must specify the symbolic name’s type prior to its first appearance in a
PARAMETER statement.

• The PARAMETER statement must precede any statement that refers to the entity
defined by the PARAMETER statement.

• FORMAT statements can appear anywhere in a program unit.

• ENTRY statements can appear anywhere in a program unit except in the body of a
block-IF or DO statement.

Table 6-2. FORTRAN Statement Types
Type Action
Program unit Nonexecutable. Marks the beginning or end of a program unit.

Specification Nonexecutable. Specifies the characteristics of the user-defined
symbolic names used in the program.

Assignment Executable. Defines or redefines the values of variables in a program.

Control Executable. Modifies the normal sequential flow of execution in a
program.

I/O Executable. Transfers data between your program and internal or
external files, and returns information about the status of files.
FORTRAN Reference Manual—528615-001
6-4

Introduction to Statements Statement Labels
Figure 6-1 on page 6-3 shows the order in which statements can appear in your
program.

Statement Labels
A statement label uniquely identifies a statement within a program unit and must not be
defined more than once in that unit. A statement label consists of from one to five
digits, ranging in value from 1 to 99999. All digits must appear in columns one to five.
Blanks are ignored. The following examples show labels:

12334 CONTINUE <-- Valid (label is "12334")

123 4 CONTINUE <-- Valid (label is "1234")

123 45CONTINUE <-- Label is "1234"; "5" specifies that

 this line is a continuation line

A label is known only in the program unit containing it. You cannot reference it from a
different program unit. You can label any statement, but only the FORMAT statement
and executable statements can be referenced by other statements.

Error Numbers
The following I/O statements include an IOSTAT = ios option specifier:

BACKSPACE INQUIRE READ

CLOSE OPEN REWIND

ENDFILE POSITION WRITE

The error numbers returned in the IOSTAT = ios option specifier are different for many
errors in FORTRAN programs compiled with ENV COMMON in effect than the error
numbers returned to programs compiled with ENV OLD in effect.

In programs compiled with ENV OLD in effect, error numbers returned in ios are file
system errors except error numbers 256 through 274, which are formatter error
numbers.

In programs compiled with ENV COMMON in effect, if ios is less than 10000, the error
number in ios is a Guardian error number. If ios is greater than 10000, the error
number in ios corresponds to an error detected by the FORTRAN run-time library, and
the actual error number is the value in ios minus 10000. For example, if ios is 48, the
error returned is file system error 48, “Security Violation.” If ios is 10257, the error
number is 257, “Invalid Parameter Value.”
FORTRAN Reference Manual—528615-001
6-5

Introduction to Statements Error Numbers
FORTRAN Reference Manual—528615-001
6-6

7 Statements
This section describes the FORTRAN language statements. Topics covered in this
section include:

For a summary of FORTRAN statements and an explanation of statement order and
statement types, see Section 6, Introduction to Statements.

Type Declaration Statements
You use type declaration statements to override or confirm implicit typing and to specify
the dimensions of arrays.

The appearance of the symbolic name of a constant, variable, array, external function,
RECORD field, or statement function in a type declaration statement specifies the data
type of that name throughout the program unit.

You can use a type declaration statement to declare the type of an array as well as to
specify the array’s dimensions. The following statement dimensions the array ZIP and
declares it to be an integer array:

INTEGER zip (100)

You must specify an array’s dimensions in a type declaration statement, a COMMON
statement, or a DIMENSION statement. An array’s dimensions must be declared only
once in a program unit.

Considerations
• You can define the data type of an entity only once in a program unit.

• You cannot use type declaration statements to redefine the data type of an intrinsic
function.

• You cannot specify a type for the name of a main program, subroutine, or block
data program unit.

For additional information about implicit and explicit data types, see Section 2,
Language Elements.

Topic Page
Type Declaration Statements 7-1

Statement Function 7-5

Assignment Statement 7-7
FORTRAN Reference Manual—528615-001
7-1

Statements Type Declaration Statements—CHARACTER
Type Declaration Statements—CHARACTER
The CHARACTER statement defines a variable, array, RECORD field, symbolic
constant, function name, or dummy procedure as character type.

len

is an unsigned, nonzero positive constant, an integer constant expression enclosed
in parentheses, or an asterisk enclosed in parentheses that specifies the length, in
bytes, of name.

name

is the symbolic name of a constant, variable, array, RECORD field, function, or
dummy procedure.

dimension

is an array bounds specification in the form:

([lower:] upper [,[lower:] upper]...)

where lower is an integer expression that specifies the lower bound, and upper
is an integer expression that specifies the upper bound of an array dimension.

Considerations
• len must be in the range 1 through 255. If you omit the length specification,

FORTRAN assumes the length is one character.

• If len is not an integer constant, you must enclose it in parentheses:

PARAMETER (word = 10)

CHARACTER * (word) name, city, state

• A length specification following an individual name specifies the number of
characters in that name:

CHARACTER name * 20

• A length specification immediately following the word CHARACTER defines the
length of each name that does not specify a length. If name is an array, the length
specification defines the length of each array element.

• Using an asterisk for len

When you express the length of name as an asterisk enclosed in parentheses (*):

° If a dummy argument uses the (*) length specification, the dummy argument
assumes the length of its associated actual argument on each call to the

CHARACTER [* len] name [dimension] [* len]
[, name [dimension] [* len]]...
FORTRAN Reference Manual—528615-001
7-2

Statements Type Declaration Statements—LOGICAL
subroutine or function. If the actual argument is an array name, len equals the
length of an array element.

° If an external function uses the (*) length specification in a function
subprogram, the function name must appear as the name of a function in a
FUNCTION or ENTRY statement within the same subprogram. When a calling
program unit references this function, len assumes the length declared for
that external function name in the calling program unit.

° If a symbolic character constant uses the (*) length specification, the constant
assumes the length of its corresponding constant expression in the
PARAMETER statement. In the following example the symbolic constant name
MONTH has a length of 7:

CHARACTER *(*) month

PARAMETER (month = 'january')

• The length specification for a character function declared in any program unit that
references the function must agree with the length specification in the subprogram
that defines the function.

Example
In the following statement, the variables SCHOOL, CITY, and STATE each have a
declared length of 8, and the variable NAME has a declared length of 20.

CHARACTER * 8 name * 20, school, city, state

Type Declaration Statements—LOGICAL
The LOGICAL statement defines a variable, array, symbolic constant, RECORD field,
function name, or dummy procedure name as logical type.

name

is the symbolic name of a constant, variable, array, RECORD field, function or
dummy procedure.

dimension

is an array bounds specification in the form:

([lower:] upper [, [lower:] upper]...)

where lower is an integer expression indicating the lower bound, and upper is an
integer expression indicating the upper bound of an array dimension.

LOGICAL name [dimension] [, name [dimension]]...
FORTRAN Reference Manual—528615-001
7-3

Statements Type Declaration Statements—NUMERIC
Considerations
See the description of the LOGICAL*4 directive in Section 10, Compiler Directives. For
information about two-word logical types and standard conformance, see Section 2,
Language Elements.

Example
The following statement declares that the variable CONDITION is of logical type:

LOGICAL condition

Type Declaration Statements—NUMERIC
NUMERIC type declaration statements specify the numeric type of a symbolic
constant, variable, array, RECORD field, function name, or dummy procedure name.

name

is the symbolic name of a constant, variable, array, RECORD field, function, or
dummy procedure.

d

is an array bounds specification in the form:

([lower:] upper [, [lower:] upper]...)

where lower is an integer expression indicating the lower bound, and upper is an
integer expression indicating the upper bound of an array dimension.

Considerations
You can declare the length of an integer variable explicitly by using an INTEGER*2,
INTEGER*4, or INTEGER*8 type declaration statement. If you declare a variable
(explicitly or by default) as INTEGER without a length specification, its length is
determined by the INTEGER* n compiler directive in effect for that program unit.

 name [d] [, name [d]]...

INTEGER

INTEGER*2

INTEGER*4

INTEGER*8

REAL

DOUBLE PRECISION

COMLEX

FORTRAN Reference Manual—528615-001
7-4

Statements Statement Function
For additional information about numeric type declarations, see Section 2, Language
Elements.

Examples
The following statement declares EXPENSE as a double precision variable:

DOUBLE PRECISION expense

The following statement declares the variable CURRENT as a complex variable:

COMPLEX current

The following statement declares the variables POPULATION and CONSUMPTION as
doubleword integers.

INTEGER*4 population, consumption

Statement Function
A statement function is a nonexecutable single-statement computation.

function-name

is an identifier that specifies the function name.

dmy

is a variable that is a statement function dummy argument.

expression

is an arithmetic or character expression.

Considerations
• A statement function has the scope of its containing program unit. It must appear

following all declaration statements and before the first executable statement of
that program unit.

• The relationship between function-name and expression must conform to the
rules for assignment statements. See the Assignment Statement on page 7-7.

• The actual arguments passed to a statement function must agree in number, order,
and type with the dummy arguments of the statement function.

• FORTRAN executes a function statement as follows:

1. It evaluates actual arguments that are expressions.

2. It associates actual arguments with their corresponding dummy arguments.

function-name ([dmy [, dmy]...]) = expression
FORTRAN Reference Manual—528615-001
7-5

Statements Statement Function
3. It computes a value for expression.

4. It converts the resulting value to the data type of the function name.

When execution of the statement function terminates, FORTRAN assigns the
resulting value to the function name in the referencing statement.

In the following example, FORTRAN uses the value of (DIAMETER/2) in the
referencing statement to obtain a value for the statement function:

volume(radius) = 4.189 * radius**3 <-- statement function

sphere = volume(diameter/2) <-- referencing

 statement

• Note that statement function definitions and assignment statements with an array
element on the left of the equals sign look exactly the same. The difference
between them depends upon whether the name at the beginning of the statement
has been declared as an array name. Thus, the compiler interprets the following
statement

name (a, b) = expression

as a statement function definition if name has not been declared as an array name.

• Each symbolic name in the expression of a statement function can reference either
a variable within the same program unit or a dummy argument of the statement
function.

• You can reference a dummy argument of a function or subroutine statement in the
expression of a statement function within the same subprogram.

• You can reference the dummy argument of an ENTRY statement in the expression
of a statement function only if the ENTRY statement precedes the statement
function in the same subprogram.

• A statement function’s dummy argument names have the scope of the statement
function definition.
FORTRAN Reference Manual—528615-001
7-6

Statements Assignment Statement
Example
The following example defines and references the statement function NETPAY to
calculate the net pay of each employee:

REAL netpay, salary, tax, insure

netpay(salary,tax,insure) = salary-(tax*salary)-insure

DO 5 j = 1,n

READ (*,*) employee, s, t, x

salary = netpay(s,t,x)

WRITE (*,*) employee, salary

5 CONTINUE

Assignment Statement
An assignment statement defines the value of an arithmetic, character, or logical entity.

name

is the name of a variable, array element, substring, RECORD, RECORD field,
RECORD array element, or RECORD substring.

arithmetic-expression

is an arithmetic expression.

character-expression

is a character expression.

logical-expression

is a logical expression.

Considerations
• Arithmetic assignment statement

When your program executes an assignment statement, FORTRAN evaluates
arithmetic-expression according to the rules described in Section 3,
Expressions. It then converts arithmetic-expression to the type of name, and
stores the value of arithmetic-expression in name. If name is too small to

name =

arithmetic ressionexp–

character ressionexp–

logical-expression° ° ° °

FORTRAN Reference Manual—528615-001
7-7

Statements Assignment Statement
contain the value, arithmetic overflow occurs. The type of name need not be the
same as the type of arithmetic-expression, but both must be arithmetic
types. If either name or arithmetic-expression is type character, both must
be type character. If either name or arithmetic-expression is type logical,
both must be type logical.

• Character assignment statement

When your program executes a character assignment statement, FORTRAN
evaluates character-expression to produce a character string, and stores the
string in name. The type of name must be character, but it can have a different
length from character-expression.

If name is shorter than character-expression, FORTRAN truncates the
excess rightmost characters of character-expression. If name is longer than
character-expression, FORTRAN pads character-expression with
blanks (on the right) until its length is equal to that of name.

The character expression cannot refer to any character position included in name.
For example, the following statement is invalid:

name(3:9) = name(2:7)

because the string NAME(3:7) appears on both sides of the equals sign. The
following expression is valid because the two substrings are separate entities:

name(1:3) = name(4:6)

If name refers to a substring, only that substring is affected by the assignment
statement.

• Note that in the case of character assignments, intermediate results are not stored
in temporary locations. The evaluation of a character expression progresses from
left to right, character by character to the receiving location. In the following
example, the value of A is “abcdeabcde” not “abcdefghij”:

CHARACTER*10 A

A = 'fghij'

A = 'abcde' // A

For additional information about character expressions, see Section 3,
Expressions.

• Logical assignment statement

When a logical assignment statement executes, FORTRAN evaluates
logical-expression and assigns its value to name, which must be of logical
type.
FORTRAN Reference Manual—528615-001
7-8

Statements ASSIGN Statement
Examples
In the following example, the expression BALES * 345.87 is evaluated, converted to a
double precision number, and stored in the variable WEIGHT.

DOUBLE PRECISION weight

weight = bales * 345.87

In the following example, the variable X is typed as a logical variable and assigned a
logical value of .TRUE..

LOGICAL x

x = .TRUE.

The following example stores in FULLNAME the concatenation of the characters
stored in FIRST, a blank character, the characters stored in LAST, a comma, a blank,
and the first character of MIDDLE.

CHARACTER*10 full*25, first, last, middle

fullname = first // ' ' // last // ', ' // middle(1:1)

Note that the concatenation produces a 24-character string which is stored in
FULLNAME, but, because FULLNAME has a declared length of 25 characters,
FORTRAN stores a blank character after MIDDLE(1:1).

ASSIGN Statement
The ASSIGN statement assigns the value of a statement label to an integer variable.
You can use the ASSIGN statement to specify the label of an executable statement
(see the GO TO Statement on page 7-55), or to specify the label of a FORMAT
statement.

label

is the label of an executable statement or a FORMAT statement in the same
program unit as the ASSIGN statement.

name

is the symbolic name of an integer variable. It cannot be an array element.

Considerations
You must define a variable with a statement label value before you reference it in an
assigned GO TO statement or as a format identifier in an I/O statement. (See the GO
TO Statement on page 7-55.) These two uses are the only valid means of referencing
a variable to which you have assigned a statement label.

ASSIGN label TO name
FORTRAN Reference Manual—528615-001
7-9

Statements BACKSPACE Statement
You can use 501 ASSIGN statements within a single program unit.

Example
ASSIGN 10 to J

GO TO 50

10 CONTINUE

.

ASSIGN 20 TO J

GO TO 50

20 CONTINUE

.

50 statement

.

GO TO J(10,20)

BACKSPACE Statement
The BACKSPACE statement backspaces by one record the file connected to a unit. If
there is no preceding record in the file, FORTRAN ignores the statement.

unit

is an integer expression from 1 through 999 that identifies an external unit
connected for sequential access. The unit must be connected to a magnetic tape,
an unstructured file with fixed-length records, an EDIT format file, or a relative file.
You cannot backspace entry-sequenced, key-sequenced, or $RECEIVE files.

ios

is an integer variable or integer array element in which FORTRAN returns an error
number if an error occurred while executing the BACKSPACE statement. If the
BACKSPACE operation is successful, ios is zero. For more information about
error numbers, see the Error Numbers on page 6-5.

BACKSPACE

unit

unit
, IOSTAT=ios
, ERR=lbl

. . .

UNIT=unit
IOSTAT=ios
ERR=lbl

, UNIT=unit
, IOSTAT=ios
, ERR=lbl

 . . .

FORTRAN Reference Manual—528615-001
7-10

Statements BACKSPACE Statement
lbl

is the label of an executable statement in the current program unit to which
FORTRAN transfers control if an error occurs while executing the BACKSPACE
statement.

You can write the control specifiers in any order, except that if you omit the UNIT
keyword, you must write the unit specifier as the first item in the list.

Considerations
• If the file is an unstructured disk file that does not exist, the BACKSPACE

statement creates it.

• Backspacing over records that were written using list-directed formatting is likely to
cause an error because in general you do not know how many records are
processed by a given list-directed statement.

• After a BACKSPACE statement on an EDIT format file, an INQUIRE statement’s
NEXTREC option returns the record number of the line preceding the new current
record (or -1 if there is none) as the latest record number.

• You cannot backspace an EDIT format file if your program runs as a NonStop
process.

If you specify the ENV COMMON and NONSTOP directives, you cannot
backspace an EDIT format file, even if your program is not running as a NonStop
process.

• If you backspace unit 5 or unit 6 and you have not already established a
connection for the unit, BACKSPACE implicitly opens the unit using default
parameters. If you specify ENV COMMON and you backspace unit 5 or unit 6, your
FORTRAN routines share access to standard input or standard output,
respectively, with routines written in other languages only if the access mode for
unit 5 is INPUT and for unit 6 is OUTPUT. However, the default access mode for
both units 5 and 6 is I-O. If you want to share access to the file connected to the
unit, you must set the unit’s access mode to INPUT (unit 5) or OUTPUT (unit 6)
before you execute the BACKSPACE statement. You can set the access mode:

° In a FORTRAN OPEN statement, as in:

OPEN(5, MODE = 'INPUT')

OPEN(6, MODE = 'OUTPUT')

° In a TACL ASSIGN command, as in:

ASSIGN FT005, , INPUT

ASSIGN FT006, , OUTPUT
FORTRAN Reference Manual—528615-001
7-11

Statements BLOCK DATA Statement
° In a UNIT compiler directive, as in:

UNIT (5, INPUT)

UNIT (6, OUTPUT)

For more information about using units 5 and 6 as shared files, see the OPEN
Statement on page 7-70.

• If a BACKSPACE statement causes unit 5 or unit 6 to be implicitly opened and your
program is running as a NonStop process, the FORTRAN run-time library does a
stack checkpoint to the backup process as a part of the implicit open.

• Error conditions

If you specify lbl, and an error occurs during backspacing, the BACKSPACE
statement terminates, the file position becomes indeterminate, and FORTRAN
transfers control to the statement identified by lbl. If you also specified ios, you
can determine the error that occurred by analyzing ios.

If you specify ios, but not lbl, and an error occurs during backspacing, your
program continues executing with the statement that follows the BACKSPACE
statement. You can analyze ios to determine the error that occurred, if any.

If you do not specify ios or lbl, and an error occurs, FORTRAN terminates your
program and displays a run-time diagnostic message.

Examples
BACKSPACE (3, IOSTAT=iproblem, ERR=450)

BACKSPACE (40)

BLOCK DATA Statement
The BLOCK DATA statement marks the beginning of a block data subprogram. A block
data subprogram assigns initial values to entities in common blocks.

subprog-name

is the symbolic name of the block data subprogram.

Considerations
• A block data subprogram is a nonexecutable subprogram. An executable program

can include more than one block data subprogram.

• The optional subprog-name has the scope of an executable program.
subprog-name must be different from any global name or local name within the
subprogram.

BLOCK DATA [subprog-name]
FORTRAN Reference Manual—528615-001
7-12

Statements CALL Statement
• Observe the following restrictions when using the BLOCK DATA statement:

° Write the BLOCK DATA statement as the first statement of a block data
subprogram.

° Use only one unnamed block data subprogram in an executable program.

° Terminate the BLOCK DATA subprogram with an END statement.

° You cannot initialize RECORD fields in BLOCK DATA subprograms.

° You can initialize variables and arrays in common blocks only in BLOCK DATA
subprograms.

• For additional information about block data subprograms, see Section 4, Program
Units.

Example
The following example shows the block data subprogram TAXRATES. It initializes the
entities SURCHARGE, VAT, and SALES to the values .05, .25, and .06 respectively.

BLOCK DATA taxrates

REAL surcharge, vat, sales

COMMON/taxes/ surcharge, vat, sales

DATA surcharge/.05/, vat/.25/, sales/.06/

END

CALL Statement
The CALL statement transfers control to the specified subroutine.

subroutine-name

is the name of a subroutine or dummy procedure.

arg

is an actual argument that is an expression, an array name, a RECORD field, an
intrinsic function name, an external procedure name, a dummy procedure name, or
an alternate return specifier of the form

* label

where label is the label of an executable statement in the same program unit as
the CALL statement.

CALL subroutine-name [([arg [, arg]...])]
FORTRAN Reference Manual—528615-001
7-13

Statements CALL Statement
Considerations
• Actual arguments in a CALL statement must agree in number, order, and type with

the dummy arguments specified in the SUBROUTINE statement of the called
subroutine.

• An actual argument cannot be a character expression involving the concatenation
of an operand having a length specification of (*), unless the operand is the
symbolic name of a constant.

• You can use a dummy argument of a subprogram as an actual argument in a CALL
statement within that subprogram.

• For additional information about the CALL statement and the use of alternate
return specifiers, see Section 4, Program Units.

• For information about calling non-FORTRAN routines, see Section 13, Mixed-
Language Programming.

Example
In the example below, the CALL statement calls the subroutine CHECKBAL, passing
the actual arguments DEPOSIT, WITHDRAWAL, and SERVICE to the subroutine.

PROGRAM main

CALL checkbal(deposit, withdrawal, service)

.

END

SUBROUTINE checkbal(d, w, s)

REAL d, w, s

.

END
FORTRAN Reference Manual—528615-001
7-14

Statements CHECKPOINT Statement
CHECKPOINT Statement
The CHECKPOINT statement establishes a takeover point for a backup process, or
transfers the data and environment information needed by the backup process to take
over, or both. CHECKPOINT is an HP extension to the ANSI standard.

CHECKPOINT enables you to use the HP fault-tolerant programming facility.

unit

is an integer expression having a value ranging from 1 through 999 that identifies
the number of a FORTRAN unit whose status is to be checkpointed. You can
specify any number of units in one CHECKPOINT statement.

cpt-spec

is one of the following:

FILENUM = exp

exp is an integer expression whose value is the Guardian file number of a file
whose status is to be checkpointed. You can specify any number of files in one
CHECKPOINT statement.

ERR = label

label is the label of an executable statement in the current program unit to
which FORTRAN transfers control if an error occurs while executing the
CHECKPOINT statement.

BACKUPSTATUS = status

status is an integer variable in which FORTRAN returns the status of the
backup process after executing the CHECKPOINT statement. Table 7-10 on
page 7-102 lists the status codes that can be returned to your program after it
executes a CHECKPOINT or START BACKUP statement. Status codes
greater than or equal to 1000 indicate that the backup was not successfully
started.

STACK = stack

stack is a character expression whose value (ignoring any trailing blanks) is
either 'YES' or 'NO'. The default value is 'YES'. See Considerations.

CHECKPOINT

 [data [, data]...]

UNIT=[]unit , UNIT=unit°[] . . . , cpt spec–[] . . . ()

cpt spec , cpt spec–[] . . .–()
FORTRAN Reference Manual—528615-001
7-15

Statements CHECKPOINT Statement
CPLIST = cplist

is an array that contains a checkpoint list constructed by the Saved Message
Utility procedures. You can provide any number of CPLIST specifiers in one
CHECKPOINT statement. See Considerations.

data

is a variable name, array name, array element name, RECORD name, or common
block name that specifies a data item whose value is to be checkpointed by
CHECKPOINT. See Considerations.

Considerations
• If you omit the UNIT keyword from the unit specifier, unit must be the first item in

the list.

• If the data item is the name of a common block, you must enclose it in slashes; for
example:

CHECKPOINT (10, ERR=100) /accounts/

• You can identify files to be checkpointed either by their FORTRAN unit numbers or
by their Guardian file numbers.

• You must explicitly specify variables, arrays, and RECORDS to be checkpointed in
the data list:

° If they are in common blocks

° If they are local data named in SAVE or DATA statements

° If you specify STACK = 'NO'

Local data not named in SAVE or DATA statements is checkpointed automatically if
STACK = 'YES' is specified or assumed.

• The data list can include data items with extended addresses. However, the total
size of a checkpoint message cannot exceed 32,767 16-bit words.

• STACK specifier.

If stack has the value 'YES' (the default value), FORTRAN checkpoints the
memory stack from the initial L register setting to the current S register setting (top
of stack), the corresponding portion of the extended memory stack (if any), the
entities specified in the data list, and all units specified in UNIT specifiers; this
establishes a takeover point for the backup process.

If stack has the value 'NO', FORTRAN checkpoints the entities specified in the
data list and the UNIT= specifiers but does not checkpoint the memory stack and
does not establish a takeover point. If a failure occurs, the backup uses the
takeover point established by the most recent CHECKPOINT statement that
specified or defaulted to a 'YES' stack option. This form is useful if you have to
FORTRAN Reference Manual—528615-001
7-16

Statements CHECKPOINT Statement
checkpoint large amounts of data to the backup process. For more information on
this usage, see Section 16, Fault-Tolerant Programming.

• CPLIST specifier

The CPLIST specifier enables you to checkpoint changes to saved messages. You
must provide a complete checkpoint list in the form of an INTEGER*4 array for
cplist. The first element is a header for the list and each remaining element is a
single entry in the checkpoint list. The following statements declare a CPLIST for
programs compiled with ENV OLD in effect:

INTEGER*4 cplist1 (0:100)

INTEGER*2 cpinit1 (2)

EQUIVALENCE (cplist1,cpinit1)

DATA cpinit1/ 100, 0 /

Each entry in the CPLIST1 array contains one doubleword. If you compile your
program with ENV COMMON in effect, each entry is 2.5 doublewords. You must
change the upper bound of the CPLIST1 array and the first entry in the DATA
statement to specify enough space for the wider entries used when you specify
ENV COMMON. If you generalize the preceding statements to:

INTEGER*4 cplist1 (0:n)

INTEGER*2 cpinit1 (2)

EQUIVALENCE (cplist1,cpinit1)

DATA cpinit1/ n, 0 /

the following formula determines the value of N:

n = INT((2.5 * number_cplist_entries) + .5)

The following lines show the code you must enter to have the same number of
entries, 100, with ENV COMMON in effect as you do with ENV OLD in effect:

INTEGER*4 cplist1 (0:250)

INTEGER*2 cpinit1 (2)

EQUIVALENCE (cplist1,cpinit1)

DATA cpinit1/ 250, 0 /

Note that you must change the upper bound of the CPLIST1 array as well as the
value stored in CPINIT1(1) by the DATA statement, which specifies the number of
doubleword entries in the array.

CPLIST1 is the checkpoint list and the cplist parameter for the routine. The
checkpoint list contains one header entry (CPINIT1) and one hundred saved
message checkpoint entries. The required number of INTEGER*4 array elements
depends on the number of operations the list must record prior to checkpoint. For
additional information, see the Checkpoint Considerations for Saved Message
Utility Routines on page 15-28.
FORTRAN Reference Manual—528615-001
7-17

Statements CLOSE Statement
• For further information, see Section 16, Fault-Tolerant Programming.

Examples
CHECKPOINT

CHECKPOINT (ERR=200, BACKUPSTATUS=ierr) accountno

CHECKPOINT (6, STACK='YES') msgnum, replycode

CLOSE Statement
The CLOSE statement disconnects a file from a specified unit and specifies the status
of the file after disconnection.

close-spec

is one of the following:

[UNIT=] unit

unit is an integer expression from 1 through 999 that identifies an external
unit connected for sequential access. If you omit the UNIT keyword, you must
write this specifier as the first item on the list.

IOSTAT = ios

is an integer variable or integer array element in which FORTRAN returns an
error number if an error occurred while executing the CLOSE statement. If the
CLOSE operation is successful, ios is zero. For more information about error
numbers, see the Error Numbers on page 6-5.

ERR = label

label is the label of an executable statement in the current program unit to
which FORTRAN transfers control if an error occurs while executing the
CLOSE statement.

STATUS = statstat

is a character expression with a value of either 'KEEP' or 'DELETE' and which
determines whether the file is to be kept or deleted after disconnection. For
additional details, see Considerations on page 7-19.

STACK = stack

stack is a character expression whose value is either 'YES' or 'NO'. The
default value is 'YES'. For additional details, see Considerations on page 7-19.

CLOSE (close-spec [, close-spec]...)
FORTRAN Reference Manual—528615-001
7-18

Statements CLOSE Statement
Considerations
• Use of the CLOSE statement

You do not need to include the CLOSE statement in the program unit which
opened the file.

After you have disconnected a unit using the CLOSE statement, you can reconnect
the unit within the same program to the same or to a different file.

A CLOSE statement that refers to a unit that does not exist or that has no file
connected to it has no effect.

When a program terminates normally, FORTRAN automatically disconnects any
units that you have not explicitly closed.

• Error conditions

If you specify label, and an error occurs during the CLOSE operation, the
CLOSE statement terminates, the file position becomes indeterminate, and
FORTRAN transfers control to the statement identified by label. If you specified
ios, you can determine the error that occurred by analyzing ios.

If you specify ios, but not label, and an error occurs during the CLOSE
operation, your program continues executing with the statement that follows the
CLOSE statement. You can analyze ios to determine the error that occurred, if
any.

If you do not specify ios or label, and an error occurs, FORTRAN terminates
your program and displays a run-time diagnostic message.

• STATUS = stat

The file disposition specifier, STATUS = stat, determines the status of the file
after it is disconnected from the specified unit. If you do not include a status
specifier, one of the following occurs:

° If you opened the file with STATUS = 'SCRATCH', FORTRAN deletes the file.

° FORTRAN always deletes temporary files when the open count for the file
reaches zero.

For all other types of files, FORTRAN keeps the file. If you specify STATUS =
'DELETE', FORTRAN returns file system error 12, “File in Use,” if your process or
another process has the file associated with unit open.

• The STACK specifier

When a fault-tolerant program is being run, execution of a CLOSE statement
automatically checkpoints program environment information.

If you specify STACK = 'YES' (the default value), FORTRAN checkpoints the
memory stack from the initial L register setting to the current S register setting (top
of stack), the corresponding portion of the extended memory stack (if any), and the
FORTRAN Reference Manual—528615-001
7-19

Statements COMMON Statement
unit specified in the UNIT specifier; this establishes a takeover point for the backup
process.

If you specify STACK = 'NO', FORTRAN does not checkpoint the memory stack
and does not establish a takeover point. If failure occurs, the backup uses the
takeover point established by a previous OPEN, CLOSE, or CHECKPOINT
statement that specified STACK = 'YES' or did not specify a STACK option.

Examples
CLOSE(25, ERR=500, STATUS='DELETE', STACK='NO')

CLOSE(IOSTAT=error, ERR=100, UNIT=10, STATUS='KEEP')

COMMON Statement
The COMMON statement enables multiple program units to share data.

cb

is the name of the block containing the entities in list. If you omit cb, FORTRAN
places the entities in blank common.

list

is a list of entities to be included in the common block. Separate list items with
commas. An entity can be a variable name, an array name with or without
dimensions, or a RECORD name with or without a dimension.

Considerations
• Blank and named common

There are two types of common storage: unnamed or “blank” common and named
common. Before executing a program, FORTRAN allocates a block of storage for
blank common and a block of storage for each named common block.

If you omit the block name, all the entities in the associated list are stored in the
blank common block. If the first specification in the COMMON statement is for
blank common, you can also omit the slashes.

• Character, numeric, and logical data in common blocks

You can place numeric and logical type entities in the same common block. A
common block containing character data cannot contain any other data type.

• Multiple declarations of the same block

COMMON [/ [cb] /] list [[,] / [cb] / list]...
FORTRAN Reference Manual—528615-001
7-20

Statements COMMON Statement
If you declare a common block name more than once in the same program unit,
the compiler treats each such common block as a continuation of the first
declaration. The following statements:

COMMON /tax/ jan,feb,march,//tax rate

COMMON /tax/ april,may,//surcharge

are equivalent to the single statement:

COMMON /tax/ jan,feb,march,april,may,//tax rate,surcharge

• Storage of items in common blocks

Each program unit references data items in its common blocks according to the
layout it declares. Thus, if program unit A includes the statement

COMMON /customer/ debit, credit, balance

and program unit B includes the statement

COMMON /customer/ balance, credit, debit

the data items in the CUSTOMER common block have the following form:

Program A and program B both declare a common block named CUSTOMER that
contains three 32-bit REAL variables. The diagram shows that:

° Program A’s variable DEBIT and program B’s variable BALANCE share the
same 32 bits.

° Program A’s variable CREDIT and program B’s variable CREDIT share the
same 32 bits.

° Program A’s variable BALANCE and program B’s variable DEBIT share the
same 32 bits.

If program unit A modifies the value of DEBIT, it also modifies the value of
BALANCE in program unit B. If this is not the effect sought, be careful to maintain
consistent naming of common storage items.

• Equivalencing entities in common blocks

Entities declared in COMMON statements cannot be equivalenced to each other,
but a variable, array, or array element that is not in a COMMON block can be
equivalenced to a data item that is in a common block. Although an
EQUIVALENCE statement must not attempt to expand a common block by adding
entities to storage ahead of the first entity in the block, it can extend a common

DEBIT

CREDIT

BALANCE

BALANCE DEBIT

CREDITPROGRAM A:

PROGRAM B:

32 bits 32 bits 32 bits

VST071.vsd
FORTRAN Reference Manual—528615-001
7-21

Statements COMMON Statement
block beyond its last storage location. The following examples illustrate this
restriction:

You cannot equivalence fields of two different common blocks in the same program
unit.

• Common block size

The size of a common block is equal to the combined lengths of the entities it
contains, plus the additional storage space (if any) associated with it by
EQUIVALENCE statements.

• Common storage and memory management

The LARGECOMMON, HIGHCOMMON, and EXTENDCOMMON directives affect
the addressing and storage of entities in common blocks. For additional
information, see Section 12, Memory Organization.

• Observe the following constraints when using the COMMON statement:

° You cannot use the same symbolic name in more than one common block
within a program unit.

° You cannot include function names in common blocks.

° You cannot include names of dummy arguments in common blocks.

° If you include a RECORD name in a common block, it must be the only item in
that block, and the block must be named.

° A RECORD cannot have more than one dimension.

° If a common block contains type character data it must not contain data of any
other type.

• If a program’s source code must be compatible with other FORTRAN compilers,
you must also observe the following restrictions:

° Entities in a named common block can become undefined on execution of a
return from a subprogram. This is not the case with blank common.

° A named common block must be the same size in all program units that
declare it. The blank common block can be different sizes in each program unit
that declares it.

Illegal Legal

COMMON xitem COMMON xitem

REAL price(5) REAL price(5)

EQUIVALENCE(xitem,price(5)) EQUIVALENCE(xitem,price(1))
FORTRAN Reference Manual—528615-001
7-22

Statements CONTINUE Statement
Example
The following example shows how the main program unit shares data with a subroutine
and function subprogram through the use of common blocks. The same area of blank
common is used in the main program and in the function COST OF SALES. The
common block SALES is used in the main program and in the subroutine
SALESREPORT.

PROGRAM main

COMMON product, price

COMMON /sales/salesman, commission

.

END

SUBROUTINE salesreport(x, y)

COMMON /sales/salesrep, commission due

.

END

FUNCTION cost of sales ()

COMMON item, price

.

END

CONTINUE Statement
The CONTINUE statement does nothing except provide a location for a statement
label. It is most often used as the last statement of a DO loop.

Considerations
The CONTINUE statement is an executable statement. You can place it anywhere in
the executable statement portion of a program without affecting the sequence of
execution.

Typically, you use a CONTINUE statement as the last statement of a DO loop, but it is
required at the end of a DO loop only if a GO TO or IF statement would otherwise be
the last statement of the loop.

CONTINUE
FORTRAN Reference Manual—528615-001
7-23

Statements DATA Statement
Example
In the following example, the PRINT statement executes when J is greater than 10:

sum = 0

DO 100 j = 1, 10

sum = sum + 1

100 CONTINUE

PRINT *, sum

DATA Statement
The DATA statement assigns initial values to variables, arrays, array elements, and
substrings at compile time.

list

is a list of entities separated by commas. An entity can be a variable name, array
name, array element name, substring name, or an implied DO list.

data

is:

value [, value]...

value

is:

datum

is a constant or symbolic constant. You can use Hollerith constants to specify
datum.

count

is an unsigned, non-zero, integer constant or symbolic name specifying a
repeat count for datum. For additional information, see Appendix C,
Converting Programs to HP FORTRAN.

DATA list / data / [[,] list / data /]...

datum

count*datum

FORTRAN Reference Manual—528615-001
7-24

Statements DATA Statement
Considerations
• DATA statements must follow any specification statements that define the entities

initialized by the DATA statement. Except for this restriction, DATA statements can
appear anywhere in a program unit.

• list cannot include the name of a RECORD, dummy argument, function, entry
point, or entity in blank common.

list can include names of entities in a named common block only within a
BLOCK DATA subprogram.

• Each list must contain the same number of items as the corresponding data. In
the following example, A is initialized to 3.0, B is initialized to 4.0, and C is
initialized to the string “Total Revenue”:

CHARACTER c*20

DATA a, b, c/ 3.0, 4.0, 'Total Revenue'/

• Corresponding list and data items must agree with respect to type. If the length
of a list character item exceeds the length of its corresponding data, the excess
characters are initially defined as blanks. If the length of a list character is less
than its corresponding data, the trailing data characters are truncated.

• The DATA specification statement accepts real numbers in decimal format as well
as in exponential D and E formats. For example:

DOUBLE PRECISION weight

DATA number, weight/3, 1.31D3/

• If you specify an unsubscripted array name as a list item, the corresponding
data must contain one value for each element of that array. Values are assigned
to the array elements in a predefined progression, with the leftmost subscript
varying most rapidly.

• The repeat count form

If you need to initialize a series of variables to a single value, you can use the
repeat count form of the DATA statement. The following statement stores the value
of 98.6 in the variables A, B, C, and D:

DATA a, b, c, d / 4 * 98.6 /

To initialize each element of the array INVENTORY(100) to 0, enter:

DATA inventory / 100 * 0 /

• The implied DO list form

See Using Implied DO Lists on page 5-27.
FORTRAN Reference Manual—528615-001
7-25

Statements DIMENSION Statement
Examples
DATA stock,rate,high,low/3500,15.25,42.75,13/

CHARACTER * 12 headings(5)

DATA headings/'April','May','June','July','August'/

DIMENSION Statement
The DIMENSION statement declares an array name and the number and size of its
dimensions.

name

is the symbolic name of an array or a RECORD.

dimension

is the array bounds specification in the form:

[lower:] upper [, [lower:] upper]...

lower

is an integer expression that specifies the lower bound of a dimension. lower
must be less than or equal to upper. lower defaults to one if you omit it.

upper

is an integer expression that specifies the upper bound of the dimension.

Considerations
• You can declare an array’s dimensions only once in a program unit.

• You can specify an array’s dimensions in a COMMON statement or type statement,
instead of in a DIMENSION statement.

• The number of [lower:] upper pairs in an array’s dimension specification
establishes the number of dimensions of the array.

• An array can have up to seven dimensions.

• A RECORD cannot have more than one dimension.

• The bounds of an array can be positive, negative, or zero.

• For information about assumed-size arrays or adjustable dimensions, see
Section 4, Program Units.

DIMENSION name (dimension) [, name (dimension)]...
FORTRAN Reference Manual—528615-001
7-26

Statements DO Statement
• For additional information about array size and storage, see Section 2, Language
Elements.

Examples
The following statements declare and dimension a 10-element array, in which each
array element contains 15 characters:

CHARACTER item*15

DIMENSION item(0:9)

The following statement declares a two-dimensional array:

DIMENSION numbers(5, 11)

DO Statement
The DO statement specifies a DO loop that repeats execution of one or more
statements.

label

is the label of an executable statement called the terminal statement of the DO
loop.

var

is an integer, real, or double precision control variable. It must be a simple variable,
not an array element or a RECORD component.

iexp

is an expression that specifies the initial value of var.

fexp

is an expression that specifies the maximum value of var within the loop.

incr

is an expression that specifies the increment value of var. The default value for
incr is 1.

Considerations
• A DO loop includes all the executable statements following the DO statement up to

and including the terminal statement.

• Execution of the DO loop proceeds as follows:

DO label [,] var = iexp, fexp [, incr]
FORTRAN Reference Manual—528615-001
7-27

Statements DO Statement
1. The expressions iexp, fexp, and incr are evaluated and converted to the
type of the control variable var if necessary.

2. The control variable is assigned the value of iexp.

3. The iteration count is calculated according to the following expression:

MAX(INT((fexp - iexp + incr)/ incr),0)

The INT function truncates the result of the expression to an integer value; the
MAX function selects the larger of that value or zero. For example, the
statement

DO 100 j = 1,27,3

generates an iteration count of 9.

4. If the iteration count is not zero, the DO loop executes. If the iteration count is
zero, execution continues with the statement following the terminal statement
of the DO loop; the control variable retains its most recent value.

5. The control variable is incremented by the value of incr.

6. The iteration count is decremented by 1.

7. Steps 4 through 6 are repeated until the iteration count equals zero.

If the DO loop executes zero times, the control variable is equal to iexp.
Otherwise, the control variable is equal to its most recent value plus the value of
incr.

If the DO loop becomes inactive before the iteration count equals zero, the control
variable retains its most recent value. A DO loop becomes inactive if you execute a
GO TO statement that branches outside of the range of the DO loop.

The control variable retains its most recent value if:

° A RETURN statement is executed within the range of the DO loop.

° A STOP statement in the executable program is executed, or execution is
terminated for any other reason.

• The last statement of a DO loop must not be any of the following:

° A nonexecutable statement

° An unconditional or assigned GO TO statement

° An arithmetic or block-IF statement

° An ELSE, ELSE IF, or END IF statement

° A DO statement

° A RETURN statement

° A STOP statement
FORTRAN Reference Manual—528615-001
7-28

Statements DO Statement
° An END statement

• Nested DO loops

When a DO loop contains another DO loop, the arrangement is called nesting. The
range of a DO statement can include other DO statements as long as the range of
each inner DO is entirely within the range of the containing DO statements.

The last statement of an inner DO loop must be either the same as that of its
containing DO loop or occur before it.

Example A shows nested DO loops that share the same terminal statement.
Example B shows nested DO loops with different terminal statements:

Example
The following example uses a nested DO loop to calculate the average purchase
amount in one business day at several store locations:

REAL purchase, sum, average

INTEGER customers

READ (*,*) m

DO 50 j = 1, m

SUM = 0

READ (*,*) customers

DO 25 k = 1, customers

READ (*,*) purchase

sum = sum + purchase

25 CONTINUE

average = sum/customers

PRINT *, 'Average purchase for store', j, '=',
average

50 CONTINUE

Example A Example B

 DO 5 m = 1,5

.

DO 5 n = 1,10

.

5 CONTINUE

 DO 1 j = 1,10

.

DO 2 k = 2,20,2

.

2 CONTINUE

.

1 CONTINUE
FORTRAN Reference Manual—528615-001
7-29

Statements ELSE Statement
ELSE Statement
The ELSE statement defines the beginning of a block of statements to execute as an
alternative to the block of statements that follows an IF or ELSE IF statement. For
more information about the ELSE statement, see the IF Statement—Block on
page 7-60.

ELSE IF Statement
The ELSE IF statement defines the end of a block of statements that began with an IF
statement or ELSE IF statement, and defines the beginning of a block of statements to
execute as an alternative to the block of statements that follows the preceding IF or
ELSE IF statement. For more information about the ELSE IF statement, see the IF
Statement—Block on page 7-60.

END Statement
The END statement identifies the physical end of a program unit.

Considerations
• If a subprogram reaches the END statement during program execution, the

subprogram returns to the program unit that called it.

• If a main program reaches the END statement during program execution,
FORTRAN terminates your program.

• The END statement is the only FORTRAN statement that you must write on one
line; it cannot have any continuation lines.

• If the source file includes comment lines following the END statement of the last (or
only) program unit of a compilation, the compiler prints them but otherwise ignores
them.

Example
PROGRAM main

PRINT*, 'On vacation!'

END

END
FORTRAN Reference Manual—528615-001
7-30

Statements ENDFILE Statement
ENDFILE Statement
The ENDFILE statement writes an endfile record as the next record of the file
connected to the specified unit.

You can write the ENDFILE specifiers in any order. However, if you omit the UNIT
keyword when you specify unit, unit must be the first item in the list.

unit

is an integer expression from 1 through 999 that identifies an external unit
connected for sequential access. The unit must be connected to either a magnetic
tape, an unstructured file with fixed-length records, or an EDIT format file.

ios

is an integer variable or integer array element in which FORTRAN returns an error
number if an error occurred while executing the ENDFILE statement. If the
ENDFILE operation is successful, ios is zero. For more information about error
numbers, see the Error Numbers on page 6-5.

lbl

designates the label of an executable statement in the current program unit to
which ENDFILE transfers control if an error occurs while executing the ENDFILE
statement.

Considerations
• Following execution of an ENDFILE statement, the file is positioned beyond the

endfile record. You must use a BACKSPACE, POSITION, or REWIND statement to
reposition a file before executing any data transfer I/O statements.

• If the file can also be connected for direct access, only those records that precede
the endfile record are considered to have been written, and only those records can
be read during subsequent direct-access connections to the file.

• Execution of the ENDFILE statement for a file that is connected, but that does not
exist, creates that file.

• Error conditions

If you specify lbl, and an error occurs while writing the end of file, the ENDFILE
statement terminates, the file position becomes indeterminate, and FORTRAN
transfers control to the statement identified by lbl. If you also specified ios, you
can determine the error that occurred by analyzing ios.

ENDFILE
unit

UNIT=[] unit°() , IOSTAT= ios°()[] , ERR= label°()[]()

FORTRAN Reference Manual—528615-001
7-31

Statements ENDFILE Statement
If you specify ios, but not lbl, and an error occurs while writing the end of file,
your program continues executing with the statement that follows the ENDFILE
statement. You can analyze ios to determine the error that occurred, if any.

If you do not specify ios or lbl, and an error occurs, FORTRAN terminates your
program and displays a run-time diagnostic message.

• Using an ENDFILE statement with EDIT format files

An ENDFILE statement deletes all lines in the file following the line last read or
written.

After an ENDFILE statement, an INQUIRE statement’s NEXTREC option returns a
value of -2 as the last record number for an EDIT format file.

If you last opened the EDIT format file with ACCESS ='DIRECT', the ENDFILE
statement has no effect.

• You cannot write an endfile record to an EDIT format file if your program runs as a
NonStop process.

If you specify the ENV COMMON and NONSTOP directives, you cannot write an
endfile record to an EDIT format file, even if your program is not running as a
NonStop process.

• If you write an endfile record to unit 6 and you have not already established a
connection for the unit, ENDFILE implicitly opens the unit using default
parameters. If you specify ENV COMMON and you write an endfile record to unit
6, your FORTRAN routines share access to standard output with routines written in
other languages only if the access mode for the unit is OUTPUT. However, the
default access mode for unit 6 is I-O. If you want to share access to the file
connected to unit 6, you must set the unit’s access mode to OUTPUT before you
execute the ENDFILE statement. You can set the access mode:

° In a FORTRAN OPEN statement, as in

OPEN(6, MODE = 'OUTPUT')

° In a TACL ASSIGN command, as in

ASSIGN FT006, , OUTPUT

° In a UNIT compiler directive, as in

UNIT (6, OUTPUT)

For more information about using unit 6 as a shared file, see the OPEN Statement
on page 7-70.

• If an ENDFILE statement causes unit 6 to be implicitly opened and your program is
running as a NonStop process, the FORTRAN run-time library does a stack
checkpoint to the backup process as a part of the implicit open.
FORTRAN Reference Manual—528615-001
7-32

Statements END IF Statement
Examples
ENDFILE 40

ENDFILE (40, IOSTAT=error, ERR=300)

END IF Statement
The END IF statement defines the end of a block of statements that began with an IF,
ELSE IF, or ELSE statement. For more information about the END IF statement, see
the IF Statement—Block on page 7-60.

ENTRY Statement
The ENTRY statement provides an alternate entry point for a subprogram. It also
enables you to specify an alternative dummy argument list for the subprogram.

name

is the symbolic name of the entry point.

dummy

is a dummy argument that can be a variable name, an array name, a RECORD
name, a dummy procedure name, or an asterisk (*).

Considerations
• Execution of a subprogram normally begins with the first executable statement

following the FUNCTION or SUBROUTINE statement. An ENTRY statement
enables you to begin execution of a function or subroutine at a location other than
the first executable statement of the subprogram. A subprogram can have multiple
entry points.

• An ENTRY statement in a function subprogram identifies an entry point that you
can reference as an external function. An ENTRY statement in a subroutine
identifies an entry point that you can reference as a subroutine.

• You can place an ENTRY statement anywhere after the SUBROUTINE or
FUNCTION statement in the subprogram. You cannot, however, place an ENTRY
statement in the body of a block-IF statement or the body of a DO loop.

• If there are no dummy arguments, you can write the ENTRY statement as follows:

ENTRY name

ENTRY name [([dummy [, dummy]...])]
FORTRAN Reference Manual—528615-001
7-33

Statements ENTRY Statement
When you invoke a function specified by this form, you must reference it as

name(). For example:

PROGRAM main

x = surcharge()

END

FUNCTION tax (a, b, c)

ENTRY surcharge

END

• Dummy arguments

The dummy argument list in an ENTRY statement can be different from the dummy
argument list in the FUNCTION or SUBROUTINE statement of the subprogram in
which it appears, or from the argument lists in other ENTRY statements in the
same program. However, the actual arguments in any reference to a subprogram
entry point must agree in number, order, and data type with their associated
dummy arguments.

An asterisk (*) dummy argument is allowed only in a SUBROUTINE ENTRY
statement where it functions as an alternate return specifier. For additional
information, see Section 4, Program Units.

• Observe the following restrictions in using the ENTRY statement:

° An entry point name has the scope of an executable program. It cannot appear
both as an entry point name and as a dummy argument in a FUNCTION,
SUBROUTINE, or other ENTRY statement. An entry point name can appear in
a type statement.

° You can reference an entry point name in any program unit of the executable
program. The ANSI standard does not allow you to reference an entry point
name in the program unit that declares it, but HP FORTRAN removes this
restriction because it supports recursive subprograms.

° If an entry point name in a function subprogram is of character type, every
entry point name in the subprogram, and the name of the FUNCTION
statement, must be of character type, and must specify the same character
length: either a numeric value or an asterisk (*) enclosed in parentheses. If any
of those names has a length specification of (*), all such entities must have a
length specification of (*); otherwise, they must all have a length specification
of the same integer value.

° If the name of the FUNCTION statement is any type other than character, then
the types of the entry point names can be the same as or different from the
FUNCTION name and each other in any combination, but none can be type
character.
FORTRAN Reference Manual—528615-001
7-34

Statements ENTRY Statement
° In a function subprogram, an entry point name must not appear in any
statement other than a type declaration statement preceding the ENTRY
statement for that name.

° A dummy argument name must not appear in any statement in a subprogram
other than a type declaration statement prior to its first appearance as a
dummy argument in a SUBROUTINE, FUNCTION, or ENTRY statement.

° A dummy argument must not be used in an executable statement if the
subprogram is entered via an entry point for which the dummy argument is not
in the argument list of the ENTRY point invoked by the subprogram’s caller.

Example
If the function below is called by the statement

plus = ADD(amt)

FORTRAN ignores the ENTRY statement and executes statements 1, 3, and 4. If the
program is called by the statement

more = ADD1(num, mice)

FORTRAN executes statements 2, 3, and 4.

FUNCTION add(a)

1 b = a**2

GO TO 3

ENTRY add1(a,b)

2 c = b

3 add = a + c

4 RETURN

END

Within a function subprogram all variables whose names are also the names of entries
are associated with each other and with the variable whose name is also the name of
the function subprogram. Therefore, in the preceding example, when ADD becomes
defined, ADD1 also becomes defined.
FORTRAN Reference Manual—528615-001
7-35

Statements EQUIVALENCE Statement
EQUIVALENCE Statement
The EQUIVALENCE statement defines the sharing of storage space by two or more
entities in a program unit.

var-list

is a comma-separated list of variable names array names, array element names,
character substring names, or RECORD names.

Considerations
• The compiler assigns the same storage location to all entities in var-list. If the

equivalenced items are of different data types, the EQUIVALENCE statement does
not cause type conversion nor imply mathematical equivalence.

• Equivalencing specifies that all entities in var-list share the same first storage
word. For character entities, equivalencing specifies that all entities in the list share
the same first character storage position.

• If var-list includes an array element, the number of subscript expressions must
be the same as the number of dimensions declared for that array. An
unsubscripted array name in an EQUIVALENCE statement implicitly specifies that
equivalencing begin with the first element of that array.

• Subscript expressions, and substring expressions used in var-list must be
integer constant expressions.

• Observe the following restrictions with the EQUIVALENCE statement:

° var-list cannot contain names of external procedures, dummy arguments,
or variable names that are also function names.

° You cannot use the EQUIVALENCE statement to assign the same storage
location to more than one element of the same array.

° You cannot equivalence an entity of character type to an item of any other data
type.

° You can equivalence RECORDs only to other RECORDs. For additional
information, see the Records on page 2-20.

EQUIVALENCE (var-list) [, (var-list)]...
FORTRAN Reference Manual—528615-001
7-36

Statements Equivalence With Length Differences
Equivalence With Length Differences
You can equivalence fields of different lengths as long as the EQUIVALENCE
statement does not violate the implicit alignment rules of these fields. The following
example equivalences the integer array N and the real array W and shows the
alignment of the two arrays:

DIMENSION n(9), w(6)

EQUIVALENCE (n(1), w(1))

Two elements of the array N occupy the same storage location as one element of the
array W.

Equivalencing Items in Common Blocks
Two entities in a common block cannot be equivalenced to each other, but a variable,
array, or array element in either a calling program or a subprogram can be made
equivalent to an item in a common block. In this case, an EQUIVALENCE statement
must not attempt to expand a common block by adding entities to storage ahead of the
first entity in the block. You can extend a common block beyond its current last storage
location. The following examples illustrate this restriction:

You cannot equivalence elements of two different common blocks.

Example
In the following example, the first five elements of the array RATE share the same
storage locations with the five-element array TOTAL:

DIMENSION rate(30), total(5)

EQUIVALENCE (rate(1), total(1))

Illegal Legal
COMMON xitem COMMON xitem

REAL price(5) REAL price(5)

EQUIVALENCE(xitem,price(5)) EQUIVALENCE(xitem,price(1))

DIMENSION n(9), w(6)
EQUIVALENCE (n(1), w(1))

n(1) n(7)n(4)n(3)n(2) n(8) n(9)n(6)n(5)

W(1) W(2) W(3) W(4) W(5) W(6)

VST0702.vsd
FORTRAN Reference Manual—528615-001
7-37

Statements EXTERNAL Statement
EXTERNAL Statement
The EXTERNAL statement declares the name of an external procedure and enables
you to use the name as an actual argument.

proc-name

is the name of an external procedure, dummy procedure, or block data
subprogram.

Considerations
If you use an external procedure name or dummy procedure name as an actual
argument in a program unit, you must declare it in an EXTERNAL statement in the
program unit. When you use proc-name in the argument list of a CALL statement or
function reference, FORTRAN treats it as a subprogram name rather than a variable or
array name.

If an intrinsic function name appears in an EXTERNAL statement in a program unit,
that name becomes the name of an external procedure and you cannot reference the
intrinsic function of the same name in that program unit.

Example
In the following example, the function name MULTIPLY must appear in an EXTERNAL
statement because it is used as an argument for the external function

CALC:

PROGRAM main

EXTERNAL multiply

4 p = CALC(a, b, multiply)

END

FUNCTION CALC(r,s,t)

1 CALC = s**2 + t(r)

END

EXTERNAL proc-name [, proc-name]...
FORTRAN Reference Manual—528615-001
7-38

Statements FORMAT Statement
FORMAT Statement
The FORMAT statement is used together with formatted I/O statements to write
formatted output or read formatted input.

format-list

is a list of items, separated by field separators (, /):

repeat

is a nonzero, unsigned, integer constant that specifies the number of
successive appearances of ed or format-list.

ed

is a repeatable edit descriptor.

ned

is a nonrepeatable edit descriptor.

Format Control
Formatted data transfer using a format specification initiates format control. Format
control depends upon the correspondence between an edit descriptor contained in a
format specification and an item in the I/O list of a WRITE, READ, or PRINT statement.

For every I/O list item there must be a repeatable edit descriptor in the format
specification, except that for every complex item, there must be two repeatable edit
descriptors: one for the real part and one for the imaginary part.

You can use an empty format specification of the form () if you specify no list items. In
this case, FORTRAN skips one input record or writes one output record containing no
characters.

A format specification is interpreted from left to right. FORTRAN processes a format
specification containing a repeat specification as a list containing a repeat number of
the format specification. For example, FORTRAN interprets the following specification:

FORMAT (2I6, 2F6.2, 2(I5, E3.1))

FORMAT ([format-list])

repeat[]ed
ned

repeat[] format list–()

FORTRAN Reference Manual—528615-001
7-39

Statements Termination of Format Control
as

FORMAT (I6, I6, F6.2, F6.2, (I5, E3.1, I5, E3.1))

Blanks are not significant in a format specification unless they are part of a literal
string.

Termination of Format Control
For each repeatable edit descriptor in a format specification, format control determines
whether there is a corresponding I/O list item. If it finds a corresponding item, it
transmits the specified edited information between the item and the record and
proceeds to the next item. If it does not find a corresponding item, format control
terminates.

If format control encounters a colon edit descriptor in a format specification and you
have not specified another item, format control terminates.

If format control encounters the rightmost parenthesis of a complete format
specification and you have not specified another list item, format control terminates.

However, if there is another list item, FORTRAN positions the file at the beginning of
the next record and format control reverts to the beginning of the format specification
terminated by the last preceding right parenthesis. If there is no preceding right
parenthesis, format control reverts to the first left parenthesis of the format
specification. If format control reverts to a parenthesis that is preceded by a repeat
specification, it reuses the repeat specification. In the following examples, the arrows
indicate the position of format control in the case of an extra list item:

FORMAT (I5, F4.2, 3(4G9.3, I2))

 !

FORMAT (I5, F4.2, G13.6)

 !

After FORTRAN processes each I, F, E, D, G, B, O, Z, L, A, H, or apostrophe edit
descriptor, it positions the file after the last character read or written in the current
record.

After FORTRAN processes each T, TL, TR, X, or slash edit descriptor, it positions the
file as specified by that edit descriptor.

During a read operation, any unprocessed characters of the record are skipped when
the next record is read.

Edit Descriptors
Edit descriptors specify data conversions to perform. Repeatable edit descriptors direct
the editing of values in a data list. Nonrepeatable edit descriptors provide edit control
between the FORMAT statement and one or more records.
FORTRAN Reference Manual—528615-001
7-40

Statements Edit Descriptors
Table 7-1 lists the repeatable edit descriptors. Table 7-2 on page 7-42 lists the
nonrepeatable edit descriptors. The following subsections provide additional
information about the use of these edit descriptors.

Table 7-1. Repeatable Edit Descriptors (page 1 of 2)

Descriptor Type
Format
Example

Sample
Output Description

Ew.d numeric E8.1 0.1E+03 Single precision floating-point
with exponent

Ew.dEe numeric E8.2E2 0.12E+06 Single precision floating-point
with explicitly specified exponent
length

Fw.d numeric F6.0 342. Single precision floating-point
without exponent

Dw.d numeric D6.1 .1E+02 Double precision floating-point
with or without exponent

Gw.d numeric G8.2 1.2 Single precision floating-point
with or without exponent

Gw.dEe numeric G9.2E2 0.12E+05 Single precision floating-point
with explicit exponent length

Iw numeric I5 12 Decimal integer

Iw.m numeric I5.3 012 Decimal integer with minimum
number of digits

Iw.m.b numeric I5.3.2 1100 Base b integer with minimum
number of digits

Bw numeric B3 101 Unsigned binary conversion

Bw.m numeric B6.6 000101 Unsigned binary conversion with
the minimum number of digits

Ow numeric O3 10 Unsigned octal conversion

Ow.m numeric O3.3 010 Unsigned octal conversion with
minimum number of digits

Zw numeric Z2 1D Unsigned hexadecimal
conversion

Zw.m numeric Z3.3 21D Unsigned hexadecimal
conversion with minimum number
of digits

Lw logical T Logical

A character A blue Character with data-dependent
length

AW character A6 yellow Character with specified length
FORTRAN Reference Manual—528615-001
7-41

Statements Edit Descriptors
w Nonzero unsigned integer constant specifying the field width in number of character positions in the external
 record. Depending on the edit specifier (I, E, F, D, G, B, O, Z or A), the field width can specify the number of
 positions necessary to accommodate digits, characters, leading blanks, + or - signs, decimal point, and
 exponent.
d Unsigned integer constant specifying the number of digits to the right of the decimal point. On output all
 numbers are rounded.
e Nonzero unsigned integer constant specifying the number of digits in the exponent.
m Unsigned integer constant specifying the minimum number of digits to output.
b Unsigned integer constant specifying the number base for the output data.

Table 7-2. Nonrepeatable Edit Descriptors
Descriptor Type Action
SP Numeric output control Write plus signs (+).

SS Suppress plus signs.

S Suppress plus signs.

BN Numeric output control Ignore blanks.

BZ Treat blanks as zeros.

nX Tabulation control Position forward n spaces.

Tn Transmit next character at nth character
position.

TRn Position forward n spaces.

TLn Position backward n spaces.

' ' Character Write the characters within the apostrophes.

nH Write the n characters that follow the H of
the descriptor.

: Format control Terminate format control if no I/O list items
remain.

/ End of record Indicate end of current input or output
record.

kP Scale Establish scaling for numeric editing.
Note: Default values are underlined.

Table 7-1. Repeatable Edit Descriptors (page 2 of 2)

Descriptor Type
Format
Example

Sample
Output Description
FORTRAN Reference Manual—528615-001
7-42

Statements Editing Numeric Data
Editing Numeric Data
The edit descriptors:

B G

D I

E O

F Z

specify the external format of integer, real, double precision, and complex data.

The following general rules apply to numeric editing:

• On input, leading blanks are not significant. The treatment of other blanks is
determined either by the BLANK= specifier in an OPEN statement or by any BN or
BZ specifiers for that unit. The formatter treats a field of all blanks as zero.

• A decimal point in the input field overrides the decimal point specification of a
numeric field descriptor. The following example shows the editing performed for a
field described as E5.1:

• On output, positive values are prefixed with a blank unless you use the SP edit
descriptor to specify that a plus sign is mandatory. Negative values are prefixed
with a minus sign.

• The formatter right-justifies data in the output field for all output conversions. The
field width, w, must be large enough to accommodate all characters in the field
including, where appropriate, the sign for base and exponent, and decimal point for
base. If the number of characters produced by the conversion is less than the
specified field width, the formatter inserts leading blanks in the output field unless
you specify a minimum number of digits in which case leading zeros are produced
as necessary. If the number of characters produced by the conversion exceeds the
specified field width, the formatter writes asterisks throughout the field.

• For the B, O, and Z edit descriptors, the data value is treated as unsigned,
regardless of its data type. The output data never includes a plus or minus sign.

• Because complex data items must be represented by two floating-point quantities,
you must use two conversion elements in the format specification, one for the real
part and one for the imaginary part. In the following example the real part of A has

Input Stored Value
.5671 0.5671

56.71 56.71

5671 567.1
FORTRAN Reference Manual—528615-001
7-43

Statements Editing Numeric Data
the format specification of F5.2 and the imaginary part has the format specification
of E6.3:

COMPLEX a

WRITE (6, 5) a, b

5 FORMAT(F5.2,E6.3,F4.2)

The I Descriptor
The I w, I w. m, and I w. m. b descriptors specify that the field occupies w character
positions. Optionally, they also define the number base for the output data (b) and the
minimum number of digits (m). Base 10 is assumed when b is omitted; 1 is assumed
when m is omitted. The corresponding I/O list item can be any numeric type.

On input, the string in the input field must be of an optionally-signed integer constant.
An I w. m descriptor is equivalent to an I w descriptor.

The following example shows an input record (circumflexes designate blanks) and a
READ statement that reads the data:

135^-12^10^^^5^1

READ (*,8) i, j, k, l, m

8 FORMAT(BN,I3, I4, I3, I2, I4)

After executing the READ statement, the variables contain the following values: I
contains 135, J contains -12, K contains 10, L contains 0, and M contains 51.

The output field for the I w or I w.1. b edit descriptor consists of zero or more leading
blanks followed by a minus sign (if the value of the datum is negative), or an optional
plus sign, followed by the magnitude of the internal value as an unsigned integer
constant without leading zeros. An integer constant always consists of at least one
digit.

The output field for an I w. m or I w. m. b descriptor is the same as for an I w or I w.1. b
descriptor, except that the unsigned integer constant always consists of at least m
digits, so the number might contain leading zeros. m must be less than or equal to w.

For example, if I contains 33, J contains -99, and K contains 239134, the following
statements:

WRITE(*,9) i, j, k

9 FORMAT(I3,2(I6))

output the following data (circumflexes indicate blanks):

^33^^^-99239134
FORTRAN Reference Manual—528615-001
7-44

Statements Editing Numeric Data
The F Descriptor
The F descriptor specifies conversion between an internal real or double precision
number and an external floating-point number with or without an exponent. The F w. d
form specifies that the field occupies w positions, the fractional part of which consists of
d digits.

The input field consists of an optional sign, followed by a string of digits, optionally
containing a decimal point. If the input field does not contain a decimal point,
FORTRAN interprets the rightmost d digits, with leading zeros assumed if necessary,
as the fractional part of the value. The basic form can be followed by an exponent in
one of the following forms:

• Signed integer constant

 integer-constant

• E or D, followed by zero or more blanks, followed by an optionally signed integer
constant

 integer-constant

The output field consists of zero or more leading blanks followed by a minus sign if
the internal value is negative, or an optional plus sign, followed by a string of digits
containing a decimal point that represents the magnitude of the internal value,
modified by any scale factor in effect and rounded to d fractional digits. A leading
zero is inserted to the left of the decimal point only if the value is less than one.

The following example processes the input record and stores 452.301 in A and
1.E-04 in B. (Circumflexes indicate blanks.)

READ (*,8) a, b

8 FORMAT (F7.3, 2X, F5.4)

Input record: ^452301^^.001^

The following example displays the values shown (circumflexes indicate blanks):

x = .32812

y = 45.439

WRITE (*,7) x, y

7 FORMAT (5X, F4.3, 2X, F4.0)

Output:

^^^^^.328^^^45.

+
-

E
D

 +

-

FORTRAN Reference Manual—528615-001
7-45

Statements Editing Numeric Data
The E and D Descriptors
The E descriptor specifies conversion between an internal real or double precision
value and an external floating point number with an exponent. The D descriptor
specifies conversion between an internal double precision value and an external
floating point number with an exponent.

The E descriptor uses one of the following forms:

E w. d

E w. dE e

The field occupies w positions, the fractional part of which consists of d digits, unless
the scale factor in effect is greater than one, and the exponent part consists of e digits.
The e has no effect on input.

The form of the input field for E editing is the same as previously described for F
editing.

The D descriptor uses the form D w. d and is processed exactly the same as the E w. d
edit descriptor for both input and output.

The form of the output field for E editing with a zero scale factor is:

sign 0 . x1 x2 ... xd exp

sign is a minus sign if the value is negative, or an optional plus sign otherwise. x1 x2
... xd are the d most significant digits of the value after rounding. exp is a decimal
exponent in one of the following forms (z is a digit):

If you specify a scale factor, k, to control decimal normalization:

• If k is greater than - d and less than or equal to zero, the output field contains
exactly | k| leading zeros and d - | k| significant digits after the decimal point.

• If k is greater than zero and less than d + 2, the output field contains exactly k
significant digits to the left of the decimal point and d - k + 1 significant digits to the
right of the decimal point. Other values of k are not permitted.

The B Descriptor
The B w and B w. m descriptors convert a data value to a binary (base two) external
representation. You can also produce binary conversion using an I w. m.2 descriptor.
The binary digits are 0 and 1. Each binary digit represents one bit of the internal data
value.

Edit Descriptor
Absolute Value of
Exponent Form of Exponent

E w. d | exp| £ 99 E ± z1z2 or ± 0z1z2

E w. dEe | exp| £ (10** e) - 1 E ± z1z2 ... z e

D w. d | exp| £ 99 D ± z1z2
or E ± z1z2 or ± Oz1z2
FORTRAN Reference Manual—528615-001
7-46

Statements Editing Numeric Data
For example, suppose the data item is type INTEGER*4. The binary conversions
produced are shown in Table 7-3 (circumflexes designate blank characters).

The O Descriptor
The O w and O w. m descriptors convert a data item to octal (base eight) external
representation. You can also produce octal conversion using an I w. m.8 descriptor. The
octal digits are 0 through 7. Each octal digit represents three bits of the internal data
value.

For example, suppose the data item is type INTEGER*4. The octal conversions
produced are shown in Table 7-4 (circumflexes designate blank characters).

Table 7-3. Values Converted With the B Descriptor

Internal Value
Format
Descriptor External Value

0 I10.1.2 ^^^^^^^^^0

5 I10.1.2 ^^^^^^^101

-3 I10.1.2 ^^^^^^^-11

0 B10 ^^^^^^^^^0

5 B10 ^^^^^^^101

-3 B10 **********

0 B36 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^0

5 B36 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^101

-3 B36 ^^^^11111111111111111111111111111101

0 I36.6.2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^000000

5 I36.6.2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^000101

-3 I36.6.2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^-000011

0 B36.6 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^000000

5 B36.6 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^000101

-3 B36.6 ^^^^11111111111111111111111111111101

Table 7-4. Values Converted With the O Descriptor (page 1 of 2)

Internal Value Format Descriptor External Value
0 I10.1.8 ^^^^^^^^^0

5 I10.1.8 ^^^^^^^^^5

-3 I10.1.8 ^^^^^^^^-3

0 O10 ^^^^^^^^^0

5 O10 ^^^^^^^^^5

-3 O10 **********
FORTRAN Reference Manual—528615-001
7-47

Statements Editing Numeric Data
The Z Descriptor
The Z w and Z w. m descriptors convert a data value to a hexadecimal (base sixteen)
external representation. You can also produce hexadecimal conversion using an I w.
m.16 descriptor. The hexadecimal digits are 0 through 9 and uppercase letters A
through F. Each hexadecimal digit represents four bits of the internal data value. On
input, the lowercase letters a through f are equivalent to the corresponding uppercase
letters.

For example, suppose the data item is type INTEGER*4. The hexadecimal
conversions produced are shown in Table 7-5 (circumflexes designate blank
characters).

0 O20 ^^^^^^^^^^^^^^^^^^^0

5 O20 ^^^^^^^^^^^^^^^^^^^5

-3 O20 ^^^^^^^^^37777777775

0 I20.6.8 ^^^^^^^^^^^^^^000000

5 I20.6.8 ^^^^^^^^^^^^^^000005

-3 I20.6.8 ^^^^^^^^^^^^^-000003

0 O20.6 ^^^^^^^^^^^^^^000000

5 O20.6 ^^^^^^^^^^^^^^000005

-3 O20.6 ^^^^^^^^^37777777775

Table 7-5. Values Converted With the Z Descriptor (page 1 of 2)

Internal Value
Format
Descriptor External Value

0 I6.1.16 ^^^^^0

5 I6.1.16 ^^^^^5

-3 I6.1.16 ^^^^-3

0 Z6 ^^^^^0

5 Z6 ^^^^^5

-3 Z6 ******

0 Z12 ^^^^^^^^^^^0

5 Z12 ^^^^^^^^^^^5

-3 Z12 ^^^^FFFFFFFD

0 I12.8.16 ^^^^00000000

5 I12.8.16 ^^^^00000005

-3 I12.8.16 ^^^-00000003

Table 7-4. Values Converted With the O Descriptor (page 2 of 2)

Internal Value Format Descriptor External Value
FORTRAN Reference Manual—528615-001
7-48

Statements Editing Numeric Data
The G Descriptor
The G w. d and G w. dE e edit descriptors indicate that the field occupies w positions,
the fractional part of which consists of d digits, unless a scale factor greater than one is
in effect, and the exponent consists of e digits.

G input editing is exactly the same as F input editing.

The form of the output field depends on the magnitude of the datum to be represented.
If the value is less than 0.1, or equal to or greater than 10** d, G editing is exactly the
same as E editing. Any scale factor specified controls decimal normalization. If the
value is greater than or equal to 0.1 and less than 10** d, the scale factor has no
effect, and the value determines the editing as shown in Table 7-6.

Table 7-7 shows a comparison of the editing done on output data by similar F and G
edit descriptors.

0 Z12.8 ^^^^00000000

5 Z12.8 ^^^^00000005

-3 Z12.8 ^^^^FFFFFFFD

Table 7-6. Values Edited With the G Descriptor
Not Less Than But Less Than Equivalent Editing Effected
0.1 1.0 F(w-n).d, n('b')

1.0 10.0 F(w-n).d-1, n('b')

10.0 100.0 F(w-n).d-2, n('b')

. . .

. . .

. . .
10**(d-2) 10**(d-1) F(w-n).1, n('b')

10**(d-1) 10**d F(w-n).0, n('b')
where n is 4 for Gw.d and e+2 for Gw.dEe, and b is a blank.

Table 7-7. Comparison of F and G Editing (page 1 of 2)

Value F13.6 Editing G13.6 Editing
.01234567 0.012346 0.123457E-01

.12345678 0.123457 0.123457

1.23456789 1.234568 1.23457

12.34567890 12.345679 12.3457

Table 7-5. Values Converted With the Z Descriptor (page 2 of 2)

Internal Value
Format
Descriptor External Value
FORTRAN Reference Manual—528615-001
7-49

Statements Logical Editing
The P Descriptor
The P descriptor has the form

kP

where k is an integer constant called the scale factor. If you omit this specification,
FORTRAN assumes a default value of 0 for k.

The P descriptor affects the position of the decimal point on input or output. You can
use the P descriptor preceding D, E, F, and G format specifications or independently.
Once you specify a scale factor, it applies to all subsequent D, E, F, and G descriptors
in a FORMAT specification until it is overridden by another scale factor.

On input, for F, E, D, and G editing, the external number is divided by 10** k and
stored.

On output, for F editing, the external number is the internal number multiplied by 10**
k. When the number is output, the decimal point stays fixed and the number is
adjusted to the left or right depending on whether k is positive or negative.

For E and D editing, the kP specification shifts the output coefficient left k places and
reduces the exponent by k. The scale factor also controls decimal normalization
between the coefficient and the exponent such that if k is less than or equal to zero,
there will be exactly - k leading zeros and d+ k significant digits after the decimal point.

If k is greater than zero, there will be exactly k significant digits to the left of the
decimal point and d-1+ k significant digits to the right of the decimal point.

The scale factor does not affect G editing unless the magnitude of the number output
exceeds the range that permits use of the F conversion. In this case the scale factor
has the same effect as for E and D editing.

Logical Editing
The L w edit descriptor specifies that the external field occupies w positions. An I/O list
item matched with an L edit descriptor must be of logical type. On input, the list item
will become defined with a logical value; on output, the list item must have been
previously defined with a logical value.

123.45678900 123.456789 123.457

1234.56789000 1234.567890 1234.57

12345.67890000 12345.678900 12345.7

123456.78900000 123456.789000 123457.

1234567.89000000 ************* 0.123457E+07

Table 7-7. Comparison of F and G Editing (page 2 of 2)

Value F13.6 Editing G13.6 Editing
FORTRAN Reference Manual—528615-001
7-50

Statements Alphanumeric Editing
The input field consists of optional blanks, optionally followed by a decimal point,
followed by an uppercase T for true or an upper-case F for false (lowercase letters are
invalid). Additional characters (uppercase or lowercase) can follow the T or F. Note that
the logical constants .TRUE. and .FALSE. are valid input forms.

The output field consists of w-1 blanks, followed by the letter T or the letter F,
depending on the logical value of the internal datum.

Alphanumeric Editing
The A descriptor, apostrophe descriptor, and H descriptor control editing of character
data.

The A Descriptor
The A descriptor has the form

A or Aw

It is used with an I/O list item of type character.

On input, if w is greater than the length of the list item, the input quantity is left justified
and stored; FORTRAN fills the remaining character positions with blanks. If

w is less than the length of the item, FORTRAN stores the rightmost characters and
ignores the rest. If you omit w, FORTRAN sets the length of the field equal to the length
of the list item.

On output, if w is less than the length of the list item, the leftmost characters are output.
If w is greater than the length of the list item, the characters are output right justified
and padded with blanks. For example, the following statements

CHARACTER*8 password

password = 'sesame'

WRITE (6,10) password

10 FORMAT(1x,A10)

output the string (circumflexes indicate blanks):

^^sesame^^

Note that one leading blank has been consumed for carriage control.

The Apostrophe Descriptor
The apostrophe edit descriptor has the form of a character constant. It causes the
characters (including blanks) within the delimiting apostrophes to be written directly to
the output record from the edit descriptor itself. The width of the field is the number of
characters contained between the delimiting apostrophes. The formatter writes a single
apostrophe to the output device if encounters two adjacent apostrophes within an
apostrophe descriptor.
FORTRAN Reference Manual—528615-001
7-51

Statements Positional Editing
Do not use an apostrophe edit descriptor on input.

The H Descriptor
The nH edit descriptor causes the n characters (including blanks) that immediately
follow the H to be written to the output record directly from the edit descriptor itself, in
the same way as the characters in an apostrophe edit descriptor are written to the
output device.

You cannot use an H descriptor on input.

Unlike an apostrophe descriptor, adjacent apostrophes in an H descriptor do not have
special significance. If you specify two adjacent apostrophes in an H descriptor, they
are both written to the output device. However, if within a character constant, you use
an H descriptor that contains an apostrophe, you must specify two apostrophes in
succession to enter a single apostrophe in the output record. The two successive
apostrophes count as a single character with respect to n in the nH descriptor.

WRITE(*, FMT = '(13H Eat at Mom''s)')

Positional Editing
The T, TL, TR, and X edit descriptors specify the position at which the next character
will be transmitted to or from the record. On output, these edit descriptors do not, by
themselves, cause characters to be written, and therefore do not affect the length of
the record. If you write characters to positions at or after the position specified by a
positional descriptor, any positions skipped and not previously filled are filled with
blanks. The result is as if the entire record were initially filled with blanks.

The Tn edit descriptor specifies that the nth character position of the record will be the
next one transmitted. The nth character position can be in either direction—forward or
backward—from the current position. On input, the Tn edit descriptor enables your
program to process portions of a record more than once, perhaps using different
editing each time.

The TLn descriptor indicates that the transmission of the next character to or from the
record occurs at the character position n characters back from the current position. If
the current position is less than or equal to position n, the transmission of the next
character occurs at position one of the current record.

The TRn descriptor indicates that the transmission of the next character to or from the
record occurs at the character position n characters forward from the current position.

The position specified by an X descriptor is forward from the current position. On input,
you can specify a position beyond the last character of the record as long as no
characters are transmitted from such a position.
FORTRAN Reference Manual—528615-001
7-52

Statements Slash Editing
Slash Editing
The slash edit descriptor (/) indicates the end of data transfer on the current record.

On input from a file connected for sequential access, a slash descriptor causes
FORTRAN to skip the remaining part of the current record and to position the file at the
beginning of the next record, which becomes the current record. On output to a file
connected for sequential access, the slash descriptor causes FORTRAN to begin a
new record, which becomes the last and current record of the file.

For a file connected for direct access, the slash descriptor causes FORTRAN to
increase the record number by one, and to position the file at the beginning of the
record that has that record number.

Sign Control
The S, SP, and SS edit descriptors control the optional plus sign in the numeric output
field.

The SP edit descriptor directs the system to prefix each subsequent output value with
a plus sign if the value is greater than or equal to zero. However, an I w. m or I w. m. b
descriptor with m equal to 0 produces an all-blank field when the internal value is zero,
regardless of the sign control in effect.

The SS edit descriptor suppresses plus signs for positive output values.

The S descriptor is treated as an SS descriptor.

In the following example, the system produces plus signs for the first two integer
entities, and suppresses the plus sign for the subsequent real item:

FORMAT('1', SP, 2(I5), SS, F5.2)

Blank Control
The BN and BZ edit descriptors specify the interpretation of blanks in numeric input
fields. These edit descriptors override the OPEN statement’s BLANK= specifier.

The BN edit descriptor directs the formatter to ignore embedded blanks in numeric
input fields. A field of all blanks is interpreted as having a value of zero.

The BZ edit descriptor specifies that all embedded blank characters in succeeding
numeric fields be treated as zeroes.

For example, given the following input record (circumflexes indicate blanks),

10^^2^^3

the statements:

READ (6, 9) i, y

9 FORMAT (BZ, I3, F5.2)

PRINT *, i, y
FORTRAN Reference Manual—528615-001
7-53

Statements FUNCTION Statement
output the value of 100 for I, and 20.03 for Y.

Given the preceding input record, the following statements output the value of 10 for J,
and 0.23 for B.

READ (6, 11) j, b

11 FORMAT (BN, I3, F5.2)

PRINT *, j, b

FUNCTION Statement
The FUNCTION statement designates the beginning of a function subprogram.

type

is INTEGER, INTEGER*2, INTEGER*4, INTEGER*8, REAL, DOUBLE
PRECISION, COMPLEX, LOGICAL, or CHARACTER [* len].

func-name

is the name of the function subprogram designated by the FUNCTION statement.

dmy

is a variable, array, RECORD, or dummy procedure name that designates a
dummy argument.

Considerations
• The FUNCTION subprogram can include multiple entry points (see the ENTRY

Statement on page 7-33) and zero or more RETURN statements (see the
RETURN Statement on page 7-95). Terminate the FUNCTION subprogram with an
END statement.

• You can specify the type of the function name implicitly according to the default
FORTRAN convention, or explicitly by a type entry preceding the word
FUNCTION or in a type declaration statement after the FUNCTION statement.
However, if you override the default, you must include that specification in both the
calling program and the FUNCTION statement.

• func-name has the scope of an executable program and must be different from
any other external name.

• You must assign a value to the function name (or any of its other names defined by
ENTRY statements) at least once during the execution of the function subprogram.

• dmy is unique to the program unit which begins with the FUNCTION statement and
ends with the END statement; it must not appear in an EQUIVALENCE,

[type] FUNCTION func-name ([dmy [, dmy]...])
FORTRAN Reference Manual—528615-001
7-54

Statements GO TO Statement
PARAMETER, SAVE, INTRINSIC, DATA, or COMMON statement, except as a
common block name. FORTRAN replaces dmy with an actual argument when it
executes the function.

• If dmy is an array name, you must dimension the array within the function
subprogram using a DIMENSION or type statement. For the use of adjustable
dimension declarators and for further information about function subprograms, see
Section 4, Program Units.

Example
The following example shows the external function OVERTIME, which calculates
overtime pay, given the number of hours worked and the hourly rate.

FUNCTION overtime (rate, hours)

over = hours - 40

xpay = rate * 1.5

overtime = over * xpay

END

GO TO Statement
The GO TO statement transfers control to another statement in the same program unit.
FORTRAN provides the following three forms of the GO TO statement:

Unconditional GO TO statement:

Computed GO TO statement:

Assigned GO TO statement:

label

is an integer that designates the label of an executable statement within the same
program unit.

exp

is an integer arithmetic expression.

GO TO label

GO TO (label [, label]...) [,] exp

GO TO ivar [[,] (label [, label]...)]
FORTRAN Reference Manual—528615-001
7-55

Statements Unconditional GO TO
ivar

is an integer variable previously assigned a label value in an ASSIGN statement.

Considerations
A GO TO statement must not transfer control to a statement within a DO loop.

Unconditional GO TO
An unconditional GO TO statement transfers program control directly to the statement
whose label is specified by the GO TO statement. In the following example, control
passes from the GO TO statement to the PRINT statement labeled 300. Intervening
statements, if any, are skipped:

GO TO 300

.

300 PRINT *, answer

Computed GO TO
A computed GO TO statement consists of the word GO TO followed by a comma
separated list of labels enclosed in parentheses, followed by an arithmetic expression.

Each label must be associated with an executable statement. FORTRAN evaluates the
expression and transfers control to the statement whose label’s position in the list of
labels is equal to the value of the expression. The index of the first label in the list is 1.

In the following example, FORTRAN evaluates the expression and truncates it, if
necessary, to an integer result:

GO TO (100, 200, 200, 300), k + 1

FORTRAN transfers control to statement 100 if k+1 equals 1, to statement 200 if k+1
equals 2 or k + 1 equals 3, and to statement 300 if k+1 equals 4.

If the value of the expression is less than one or greater than the number of labels in
the list, FORTRAN transfers control to the statement that follows the computed GO TO
statement.

Assigned GO TO
An assigned GO TO statement transfers control to the statement whose label was
assigned to ivar in an ASSIGN statement that was executed previously in the same
run of the program unit containing the assigned GO TO.

Before your program executes an assigned GO TO statement, you must assign a label
to ivar using an ASSIGN statement. The following example shows an ASSIGN
FORTRAN Reference Manual—528615-001
7-56

Statements Assigned GO TO
statement and a GO TO statement that uses the label stored by the ASSIGN
statement:

ASSIGN 10 to j

.

IF (x .GT. 0) THEN

ASSIGN 20 to j

END IF

GO TO j,(10,20)

.

10 CONTINUE

.

20 CONTINUE

The program branches to 20 if X is greater than 0 and to 10 if X is less than or equal to
0.

Considerations
FORTRAN ensures that all labels referenced in the assigned GO TO statement are in
the current program unit and are associated with executable statements. At run time,
however, FORTRAN does not check that the label to which your program branches is
in the list of labels. FORTRAN transfers control to the statement whose label was
specified in the last ASSIGN statement executed before the GO TO statement,
regardless of whether that label is in the list of labels for the current assigned GO TO
statement.

Examples
The following example shows an unconditional GO TO:

IF (x .GT. y) GO TO 30

.

30 difference = x - y
FORTRAN Reference Manual—528615-001
7-57

Statements IF Statement—Arithmetic
The following example shows a computed GO TO:

INTEGER region

5 READ (*,*) region

READ (*,*) time

GO TO (10, 20, 30) region

10 charge = time * .25

GO TO 40

20 charge = time * .27

GO TO 40

30 charge = time * .36

GO TO 40

40 CONTINUE

The following example shows an assigned GO TO:

10 ASSIGN 20 TO k

20 I = 50

.

.(main processing loop)

.

250 IF (type .EQ. 'end') ASSIGN 350 TO k

.

340 GO TO k, (20,350)

350 TOT = i + m

.

.

IF Statement—Arithmetic
The arithmetic IF statement conditionally transfers control to one of three statement
labels.

exp

is an arithmetic expression.

IF (exp) label1, label2, label3
FORTRAN Reference Manual—528615-001
7-58

Statements IF Statement—Logical
label1, label2, label3

are integers designating the labels of executable statements in the same program
unit. The same statement label can appear more than once in the same arithmetic
IF statement.

Considerations
The arithmetic IF statement transfers control to

• label1 if the value of exp is negative.

• label2 if the value of exp is zero.

• label3 if the value of exp is greater than zero.

Example
The following example transfers control to statement 10 if BALANCE is negative, to
statement 20 if BALANCE equals zero, and to statement 30 if BALANCE is greater
than zero:

READ (8, 99) balance

IF (balance) 10, 20, 30

10 PRINT *, 'You''re overdrawn by', balance

GO TO 40

20 PRINT *, 'You have a zero balance'

GO TO 40

30 PRINT *, 'You have a balance of', balance

40 CONTINUE

IF Statement—Logical
The logical IF statement conditionally executes a specified statement.

exp

is a logical expression.

statement

is any executable statement except a DO, block IF, ELSE IF, ELSE, END IF, END,
or another logical IF statement.

IF (exp) statement
FORTRAN Reference Manual—528615-001
7-59

Statements IF Statement—Block
Considerations
The logical IF statement executes statement if exp is true, or continues to the next
executable statement if exp is false.

Example
IF (balance .GT. 10000) account = preferred account

IF Statement—Block
The block IF statement is used with the END IF statement and, optionally, with the
ELSE IF and ELSE statements, to select groups of statements to execute.

exp

is a logical expression.

if-block

consists of all the executable statements following the block IF statement up to, but
not including, the next ELSE IF, ELSE, or END IF statement at the same level as
the block IF statement.

Considerations
• A block IF statement begins with an IF statement and ends with an END IF

statement. A block IF statement can include ELSE and ELSE IF statements that
define the execution of subgroups of statements within the larger block. The
following example illustrates the simplest form of the block IF statement:

READ (*,*) answer

IF (answer .EQ. 1) THEN

deductions = 1000

END IF

If ANSWER equals 1, the program executes the statement between the IF and the
END IF statements. Otherwise, control passes to the first executable statement
after the END IF statement.

IF (exp) THEN if-block
 [ELSE IF (exp) THEN if-block]...
 [ELSE if-block]
END IF
FORTRAN Reference Manual—528615-001
7-60

Statements IF Statement—Block
• You can use an ELSE statement to specify a group of statements to execute if the
initial condition is false:

IF (loan type .EQ. 'consumer') THEN

rate = normal rate

premium = 1000

ELSE

rate = normal rate * .9

premium = 500

END IF

• If more than two conditions must be considered, you can use ELSE IF statements,
each followed by an if-block:

IF(loan type .EQ. 'A') THEN

rate = normal rate

premium = 1000

ELSE IF (loan type .EQ. 'B') THEN

rate = normal rate * .9

premium = 500

ELSE IF (loan type .EQ. 'C') THEN

rate = normal rate * .85

premium = 100

END IF
FORTRAN Reference Manual—528615-001
7-61

Statements IF Statement—Block
• You can ensure that your program executes at least one if-block by using ELSE
IF and ELSE statements:

IF(loan type .EQ. 'A') THEN

rate = normal rate

premium = 1000

ELSE IF (loan type .EQ. 'B') THEN

rate = normal rate * .9

premium = 500

ELSE IF (loan type .EQ. 'C') THEN

rate = normal rate * .85

premium = 100

ELSE

rate = normal rate * .75

premium = 50

END IF

• You can code an empty if-block if you want to test for a specific value but not
take action for that value. In the following example, if LOAN TYPE equals “A”, no
statements are executed and control passes immediately to the statement
following the END IF statement:

IF(loan type .EQ. 'A') THEN

ELSE

rate = normal rate * .75

premium = 50

END IF

• Do not transfer control into an IF block from outside the IF block.

• You can nest block IF statements. Terminate each block IF statement with an END
IF statement. The first IF statement is paired with the last END IF statement, the
following IF statement is paired with the next to last END IF statement, and so
forth. The nesting scheme is similar to the nested DO loop structure. The following
example shows a nested IF block structure.
FORTRAN Reference Manual—528615-001
7-62

Statements IMPLICIT Statement
Example
IF (sales .GT. 5000) THEN

IF (travel .LT. 1000) THEN

bonus = 100

ELSE

bonus = 50

END IF

ELSE

bonus = 50

END IF

IMPLICIT Statement
The IMPLICIT statement redefines or confirms the default typing of variables, arrays,
and functions, based on the first letter of the item’s name.

type

is one of the following data type specifiers: INTEGER, INTEGER*2, INTEGER*4,
INTEGER*8, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, or
CHARACTER [* length].

char-list

indicates one or more characters either in the form of a list or a range. Separate list
items with commas. Indicate a range as:

first-char - last-char

Considerations
• An IMPLICIT statement declares that the data type of any variable, array, function,

or RECORD field whose name begins with the letters in char-list is the data
type you specify for that letter in an IMPLICIT statement unless you explicitly
declare the data type of the symbolic name.

• IMPLICIT statements must precede all declaration statements except
PARAMETER statements.

• If you do not specify a length for character-type data, the length is assumed to be
one. You must specify the length as an integer constant or an integer constant
expression enclosed in parentheses. The specified length applies to all entities in
char-list. The following statement declares that all symbolic names beginning

IMPLICIT type (char-list) [, type (char-list)]...
FORTRAN Reference Manual—528615-001
7-63

Statements INQUIRE Statement
with A, X, Y, and Z are character type and represent character data that is 15
characters long.

IMPLICIT CHARACTER*15 (a, x-z)

• The data type of an item declared in a type declaration statement overrides the
type specified in an IMPLICIT statement. The following statements declare that
symbolic names that begin with the letters M through Z are type real and names
that begin with C are type character with a length of 15:

IMPLICIT REAL (m-z), CHARACTER * 15 (c)

INTEGER margin, point of sale

CHARACTER *20 city

DIMENSION net(10)

The variable names MARGIN and POINT OF SALE are explicitly declared to be
integer, and CITY is a character variable with length 20. The data type of NET
defaults to real.

Examples
IMPLICIT INTEGER*4(a-e), DOUBLE PRECISION(f-h)

IMPLICIT CHARACTER*20 (i,j,l-o)

INQUIRE Statement
The INQUIRE statement ascertains the properties of a file or the properties of the
connection of a specified unit.

[UNIT=] unit

is a unit specifier. unit is an integer expression whose value is in the range 1
through 999 that identifies the unit for which information is to be returned.

FILE = file-name

is a file specifier where file-name is a character expression that specifies the
name of the file for which information is to be returned. The file might neither exist
nor be connected to a unit. For information about the format of file names, see the
Guardian Programmer’s Guide.

INQUIRE ([, inq-spec]...)
UNIT=[] unit

FILE=filename

FORTRAN Reference Manual—528615-001
7-64

Statements INQUIRE Statement
inq-spec

is a keyword followed by an equal sign followed by a variable or array element in
which FORTRAN returns the information specified by the keyword. You can specify
inq-specs in any order. inq-spec is one of the following:

IOSTAT = ios

ios is an integer variable or integer array element in which FORTRAN returns
an error number if an error occurs while executing the INQUIRE statement. If
the INQUIRE statement is successful, ios is zero. For more information about
error numbers, see the Error Numbers on page 6-5.

ERR = label

label is the label of an executable statement in the current program unit to
which FORTRAN transfers control if an error occurs while executing the
INQUIRE statement.

EXIST = ext

ext is a logical variable or array element. For an inquiry of a Guardian file, if
the specified file exists, ext returns a value of .TRUE.. If no such file exists, ext
returns a value of .FALSE.. For an inquiry of a unit, if the specified unit exists,
ext returns a value of .TRUE.. If the unit does not exist, ext returns .FALSE..

OPENED = open

open is a logical variable or array element. For an inquiry of a Guardian file, if
the specified file is connected to a unit, open returns a value of .TRUE.; if the
file is not connected, open returns a value of .FALSE.. For an inquiry by unit, if
the specified unit is connected to a file, open returns a value of .TRUE.; if the
unit is not connected to a file, open returns a value of .FALSE..

NUMBER = n

n is an integer variable or array element. If file-name or the file referenced
by unit, whichever you specify, is open, FORTRAN returns the smallest unit
number of all open units to the file. If the referenced file is not open, FORTRAN
returns the smallest unit number of all units connected to the file.

NAMED = named

named is a logical variable or array element. named returns a value of .TRUE.
if the file has a user-specified name. If the file has a system-assigned,
temporary name, named returns a value of .FALSE..

NAME = fname

fname is a character variable or array element. fname is the file’s user-
specified or temporary name. If the specified unit is not connected, fname
returns all blanks. See Considerations on page 7-67
FORTRAN Reference Manual—528615-001
7-65

Statements INQUIRE Statement
ACCESS = acc

acc is a character variable or array element. If the file is connected for
sequential access, acc returns the value 'SEQUENTIAL'; if the file is
connected for direct access, acc returns the value 'DIRECT'.

SEQUENTIAL = seq

seq is a character variable or array element. If sequential access is one of the
access methods for the file (regardless of its present connection), seq returns
the value 'YES'; if the file can never be connected for sequential access, seq
returns the value 'NO'. If the system cannot determine whether sequential
access is permitted, seq returns the value 'UNKNOWN'.

HP FORTRAN always returns 'YES' in seq.

DIRECT = dir

dir is a character variable or array element. If direct access is one of the
access methods for the file (regardless of its present connection), dir returns
the value 'YES'; if the file can never be connected for direct access; dir
returns the value 'NO'. If the system cannot determine whether direct access is
permitted, dir returns the value 'UNKNOWN'.

HP FORTRAN returns:

• 'YES' for unstructured files, EDIT format files, and relative files

• 'NO' for all other files with Guardian device codes less than 12

• 'UNKNOWN' for all other files

FORM = fm

fm is a character variable or array element. If the file is connected for formatted
I/O, fm returns the value 'FORMATTED'; if the file is connected for unformatted
I/O, fm returns the value 'UNFORMATTED'.

FORMATTED = fmt

fmt is a character variable or array element. If the file can be connected for
formatted I/O (regardless of its present connection), fmt returns the value
'YES'. If the file can never be connected for formatted I/O, fmt returns the
value 'NO'. If the system cannot determine whether formatted I/O is permitted,
fmt returns the value 'UNKNOWN'. If there is no connection, fmt remains
unchanged.

HP FORTRAN always returns 'YES' in fmt.

UNFORMATTED = unf

unf is a character variable or array element. If the file can be connected for
unformatted I/O (regardless of its present connection), unf returns the value
FORTRAN Reference Manual—528615-001
7-66

Statements INQUIRE Statement
'YES'. If the file can never be connected for unformatted I/O, unf returns the
value 'NO'. If the system cannot determine whether unformatted I/O is
permitted, unf returns the value 'UNKNOWN'.

HP FORTRAN always returns 'YES' in fmt.

RECL = rcl

rcl is an integer variable or array element that returns the record length,
specified in bytes, for the file. rcl returns a value of zero if the file is not open.

NEXTREC = nr

nr is an INTEGER*4 variable or array element. For an open unstructured or
relative disk file, the system obtains the record number of the last record read
or written, adds 1, and stores the result in nr. If no records have been
transferred since the file was connected, nr returns the value 1.

For an open EDIT format file, nr returns the EDIT line number, multiplied by
1000, of the most recently read or written record. If the last line had the number
12.34, nr returns the value 12340. If the file is rewound, nr returns -1.

If the most recent record read or written is an end of file, nr returns -2. For an
open file that is not capable of direct access, nr returns -1. For a file that does
not exist or is not connected, nr returns 0.

BLANK = blank

blank is a character variable or array element. If the file is connected for
formatted I/O, and was opened with zero blank control or numeric input fields
(null is assumed if the OPEN statement contained no blank specifier or there
was no OPEN statement for the file), blank returns the value 'ZERO'.
Otherwise, blank returns 'NULL'.

Considerations
• There are two forms of the INQUIRE statement: inquiry by file and inquiry by unit,

depending on whether you specify file-name or unit in the statement. A single
INQUIRE statement can execute only one type of inquiry.

• The INQUIRE statement must specify either a file name or a unit, but not both, and
not more than one each of the other control specifiers listed in the syntax diagram.
The control specifiers can appear in any order, except that if you omit the UNIT=
keyword, the unit specifier must be the first item in the list.

• In the INQUIRE statement, FORTRAN returns all string values in upper case
letters.

• NAME= fname

The file name assigned to fname when you execute an INQUIRE statement is the
fully qualified name of the file and is, therefore, not necessarily the same as the
FORTRAN Reference Manual—528615-001
7-67

Statements INQUIRE Statement
name you specify in the FILE = file-name specifier for an inquiry by file. For
example, after execution of the following:

file id = 'myfile'

INQUIRE (FILE=file id, NAME = title)

TITLE contains a fully qualified file name such as $MYVOL.MYSVOL.MYFILE (if
the specified file exists), while the value of FILE ID is still MYFILE (either the full
name or the short form is acceptable when specifying the file name in an OPEN or
INQUIRE statement). If the file you specify is a temporary file, the name returned is
the temporary file name (for example, $VOLUME.#1234). To hold the full file name
without truncation, fname should have a declared length of at least 35 characters.

• Error conditions

If an error occurs while FORTRAN processes the INQUIRE statement, all the
inquiry specifier entities remain unchanged except ios.

If you specify label, and an error occurs during the INQUIRE statement,
FORTRAN transfers control to the statement identified by label. If you also
specified ios, you can determine the error that occurred by analyzing ios.

If you specify ios, but not label, and an error occurs during the INQUIRE
statement, your program continues executing with the statement that follows the
INQUIRE statement. You can analyze ios to determine the error that occurred, if
any.

If you do not specify ios or label, and an error occurs, FORTRAN terminates
your program and displays a run-time diagnostic message.

Examples
LOGICAL nee, up, am

CHARACTER whosit*34

INQUIRE(UNIT=3,EXIST=am,OPENED=up,NAMED=nee,NAME=whosit)

LOGICAL ready

INTEGER number, howlong

INQUIRE(FILE=infile,OPENED=ready,NUMBER=number,RECL=howlong)
FORTRAN Reference Manual—528615-001
7-68

Statements INTRINSIC Statement
INTRINSIC Statement
The INTRINSIC statement identifies the names of intrinsic functions, and enables you
to specify intrinsic function names as actual arguments to subprograms.

function

is an intrinsic function name.

Considerations
• If you use an intrinsic function name as an actual argument in a CALL statement or

function reference, you must declare it in an INTRINSIC statement in that program
unit.

• Do not use the following intrinsic functions as actual arguments:

° Type conversion functions (CHAR, CMPLX, DBLE, FLOAT, ICHAR, IDINT,
IFIX, INT, REAL, SNGL)

° Largest/smallest value functions (MAX, MAX1, AMAX0, AMAX1, DMAX1, MIN,
MIN0, MIN1, AMIN0, AMIN1, DMIN1)

• Generic function names do not lose their generic property when they appear in
INTRINSIC statements.

• Do not include an intrinsic name in more than one INTRINSIC statement in a
program unit.

• Do not declare the same name in an INTRINSIC statement and in an EXTERNAL
statement in the same program.

INTRINSIC function [, function]...
FORTRAN Reference Manual—528615-001
7-69

Statements OPEN Statement
Example
SUBROUTINE A

INTRINSIC SQRT

 .

CALL number(x, y, SQRT)

 .

END

SUBROUTINE number(a, b, c)

CALL C(A)

CALL C(B)

END

OPEN Statement
The OPEN statement associates an existing file with a unit number, or creates a new
file and associates it with a unit number.

unit

is an integer expression ranging from 1 through 999. Once defined, the properties
of this unit are the same for all program units of the executable program.

open-spec

is one of the following specifiers. You can specify open-specs in any order.

IOSTAT = ios

ios is an integer variable or integer array element in which FORTRAN returns
an error number if an error occurred while opening the unit. If the OPEN is
successful, ios is zero. For more information about error numbers, see the
Error Numbers on page 6-5.

ERR = label

label is the label of an executable statement in the current program unit to
which FORTRAN transfers control if an error occurs while opening the unit.

OPEN ([UNIT=] unit [, open-spec]...)
FORTRAN Reference Manual—528615-001
7-70

Statements OPEN Statement
FILE = fn

fn is a character expression that specifies the name of the file to connect to
unit. It can also be a DEFINE name. For more information about the format of
file names, see the Guardian Programmer’s Guide.

STATUS = stat

stat is a character expression with the value of 'OLD', 'NEW', 'SCRATCH', or
'UNKNOWN'. The default is 'UNKNOWN'.

ACCESS = acc

acc is a character expression with the value of 'DIRECT' or 'SEQUENTIAL'.
The default is 'SEQUENTIAL'.

FORM = form

form is a character expression with the value of 'FORMATTED' or
'UNFORMATTED'. The compiler accepts a value for this specifier, but because
HP FORTRAN allows a file to contain both formatted and unformatted records,
this specifier has no effect other than setting a file attribute that can be
returned by subsequent INQUIRE statements.

RECL = rcl

rcl is an integer expression that specifies the length in bytes of each record in
the file. rcl must be greater than zero. The default is 132.

BLANK = blank

blank is a character expression with the value of 'NULL' or 'ZERO'. For more
information, see Considerations on page 7-72. The default is 'NULL'.

TIMED = time

time is a logical expression that controls timed I/O for the specified file. For
more information, see Considerations on page 7-72.

SPACECONTROL = spc

spc is a character expression with the value 'YES', 'NO', or 'DEVICE'; it
specifies whether the first character of an output record controls vertical
spacing for an output device or is a data character. The default is 'DEVICE'.

SYNCDEPTH = sync

sync is an integer expression that specifies the number of nonretryable I/O
operations your FORTRAN process can execute before it does a checkpoint.
The Guardian file system or other server process must save the replies to your
program’s sync most recent requests to support your program if your program
runs as a NonStop process.
FORTRAN Reference Manual—528615-001
7-71

Statements OPEN Statement
The default value for sync is device dependent. For more information, see the
FILE_OPEN_ procedure in the Guardian Procedure Calls Reference Manual.

MODE = mode

mode is a character expression with the value 'INPUT', 'OUTPUT', or 'I-O' that
specifies whether the file is to be used for reading, writing, or reading and
writing. The default value (in the absence of a UNIT directive or ASSIGN
command specifying otherwise) is 'I-O'.

PROTECT = prtct

prtct is a character expression with the value 'SHARED', 'PROTECTED', or
'EXCLUSIVE' that specifies how the file is to be shared. The default value is
'SHARED'. For more information, see Considerations and the Guardian
Programmer’s Guide.

STACK = stack

stack is a character expression with the value 'YES' or 'NO'. For additional
information, see Considerations.

Considerations
• An OPEN statement must contain one unit specifier and not more than one each

of the other control specifiers.

• If you omit the UNIT keyword from the unit specifier, unit must be the first item in
the list.

• You can change the value of the blank specifier for an open file by executing an
OPEN statement that specifies BLANK = blank. You cannot change the value of
any other open-spec for a unit that is already open.

• All specifiers that are quoted values (for example, 'YES') must be in upper case
letters.

• Using OPEN with EDIT format files

The file does not have to exist before you open it, but if it does not exist, you must
have specified file code 101 for the file in a UNIT directive or an ASSIGN
command. For information on how to create an EDIT format file, see Section 5,
Introduction to File I/O in the HP NonStop Environment. The SYNCDEPTH and
TIMED specifiers do not apply to EDIT format files.

Specifying PROTECT='SHARED' when a process can have the file open with
MODE='OUTPUT' or 'I-O' can cause inconsistent results.

If you specify the ENV COMMON and NONSTOP compiler directives, the
FORTRAN run-time system reports error 257 if you specify MODE = 'OUTPUT' or
MODE = 'I-O'.
FORTRAN Reference Manual—528615-001
7-72

Statements OPEN Statement
• Improving program performance

If a file is a structured disk file (relative, entry-sequenced, or key-sequenced), your
FORTRAN program runs faster if you specify the following attributes in the file’s
OPEN statement. These attributes enable sequential block buffering:

ACCESS = 'SEQUENTIAL'

MODE = 'INPUT'

PROTECT = 'PROTECTED' or 'EXCLUSIVE'

• Spooler output with ENV OLD

By default, your program uses level-3 spooling if the file you write to is a spooler
collector. If you open a spooler collector for which you want to specify level-2 or
level-3 spooling parameters and your program does not specify ENV COMMON,
you must call the FORTRANSPOOLSTART routine after the OPEN statement and
before the first WRITE statement for the file. For more information about
FORTRANSPOOLSTART, see the FORTRANSPOOLSTART Routine on
page 15-16.

• Spooler output with ENV COMMON

By default, your program uses level-3 spooling if the file you write to is a spooler
collector. If you want to open a spooler collector and specify level-2 or level-3
spooling parameters, and your program specifies ENV COMMON, you must call
the FORTRAN_SPOOL_OPEN_ routine. FORTRAN_SPOOL_OPEN_ combines
the functionality of both the OPEN statement and the FORTRANSPOOLSTART
routine that you use in programs that do not specify ENV COMMON. For more
information about FORTRAN_SPOOL_OPEN_, see the
FORTRAN_SPOOL_OPEN_ Routine on page 15-11.

• FILE specifier

fn must be a valid file name. If fn is all blanks, or if you omit this specifier and you
do not supply a file name using a UNIT directive or ASSIGN command for the
unit, FORTRAN creates a temporary file, which is deleted if the number of
connections to the file goes to zero, or, if the file hasn’t been closed already, then
when your job ends. The temporary file is deleted regardless of the status specified
when you execute an OPEN or CLOSE statement.

If ENV COMMON is in effect, fn can reference a device on another node, even if
the device name on the node contains eight characters, as in the following:

OPEN (8, FILE = \NODENAM.$USERVOL.ASUBVOL.AFILE)

You can access a volume on another node, even if the volume name contains an
eight-character volume name, only if the node that you access is running a D-
series system. If, when you run your program, \NODENAM is running a C-series
operating system, your request will fail, even if the node on which your program is
running is using a D-series system.

• Sharing access to unit 5 and unit 6
FORTRAN Reference Manual—528615-001
7-73

Statements OPEN Statement
If you compile your program with ENV COMMON, your program can share access
to unit 5 and unit 6 with modules written in languages other than FORTRAN. Your
FORTRAN routines can share access to standard input (accessed through unit 5)
and standard output (accessed through unit 6) with routines in your process written
in other languages if:

° The file name for the unit is the same as the file name specified in—or defaults
to—the name in the TACL IN (unit 5) or OUT (unit 6) run-option when you
run your program.

° MODE is 'INPUT' for unit 5, 'OUTPUT' for unit 6.

° STATUS is 'UNKNOWN' or not specified.

° SYNCDEPTH is 0, 1, or unspecified.

° ACCESS is 'SEQUENTIAL' or unspecified.

° The file name is not all blanks.

° The device type is either not yet known or, if known, is a process, a terminal, a
printer (if unit 6), or an unstructured or entry-sequenced disk file.

° PROTECT matches the PROTECT specifier of all previous opens to the same
shared file by routines written in other languages in your process. If you do not
specify the PROTECT specifier, its default is the value specified on a previous
OPEN, or is device dependent if you do not specify it and this is the first open
of the specified file (fn).

The preceding values are the defaults for each of the OPEN option specifiers
except MODE, for which the default value is 'I-O'. Therefore, you must specify an
appropriate value for MODE when you open a file that you want to share. If you do
not specify MODE when you open unit 5 or unit 6 and you do not specify it in a
TACL ASSIGN command or a FORTRAN UNIT directive, your FORTRAN routines
will not take advantage of the file sharing features of the COMMON environment.

• STATUS specifier

The default is 'UNKNOWN'.

If you specify 'OLD', the file must exist; if you specify 'NEW' the file must not exist.
Successful execution of an OPEN statement with STATUS= 'NEW' creates the
specified file and changes its status to 'OLD'.

If you specify 'SCRATCH' and a file name (FILE = fn), fn can contain only the
names of a node and volume. You cannot specify a subvolume name or a file id if
you specify STATUS = 'SCRATCH'. The unit is connected to a file with a system
assigned temporary name for the duration of the program run or until the program
closes that unit, at which time the file is deleted.

If you specify 'UNKNOWN', and the file exists, it is connected to the specified
unit. If the file does not exist, it is created and connected. In either case, the
status of the file becomes 'OLD'.
FORTRAN Reference Manual—528615-001
7-74

Statements OPEN Statement
• ACCESS specifier

The default setting is 'SEQUENTIAL'.

If you open a file with ACCESS = 'SEQUENTIAL' specified or assumed:

° An INQUIRE statement’s ACCESS specifier returns 'SEQUENTIAL'.

° For an EDIT format file, an ENDFILE statement or a non-update WRITE
statement deletes all records following the current position.

° For a structured (relative, entry-sequenced, or key-sequenced) disk file, READ
statements use sequential block buffering if the OPEN statement also specifies

° MODE = 'INPUT' and PROTECT = 'PROTECTED' or 'EXCLUSIVE' for the file.

° You can still use direct or keyed access on the file, if the file type permits
these.

If you specify ACCESS = 'DIRECT' when you open a file:

° The OPEN statement does not detect an error if the file is not capable of direct
access. An error is detected only when you try to read or write the file with
direct or keyed access.

° An INQUIRE statement’s ACCESS specifier returns 'DIRECT'.

° An ENDFILE statement has no effect for the file.

° READ statements do not use sequential block buffering.

° You can still access the file sequentially.

• RECL specifier

The RECL specifier establishes the number of bytes per record in the file that you
are opening. FORTRAN determines the number of bytes per record as follows:

° FORTRAN uses rcl if you specify it in the OPEN statement.

° If you do not specify rcl and the file is a structured disk file, FORTRAN uses
the maximum length specified when the file was created.

° If the file is not a structured disk file, FORTRAN uses the value you specify for
the REC parameter in a TACL ASSIGN command.

° If you do not specify the record length in a TACL ASSIGN command,
FORTRAN uses the value you specify for the REC parameter in a UNIT
compiler directive for the specified unit.

° If the file is not a disk file, FORTRAN uses the configured record length for the
device you are accessing.

° If none of the preceding items apply, FORTRAN uses 132 bytes as the default
for RECL.

• BLANK specifier
FORTRAN Reference Manual—528615-001
7-75

Statements OPEN Statement
The blank specifier is meaningful only when you use formatted I/O on a file. The
default value for the blank specifier is 'NULL'.

If you specify 'NULL', all blank characters read into formatted numeric input fields
are ignored; a field of all blanks is treated as zero. If you specify 'ZERO', all blanks
except leading blanks are treated as zero.

If you open a file that is already connected to the specified unit, only the BLANK
specifier can be different from the original open.

• TIMED specifier

.FALSE. is the default value.

If time is .TRUE., timed I/O operations are allowed for the file and a TIMEOUT
specifier is required in all reads and writes to the file. If time is .FALSE., or if you
omit this specifier, the compiler ignores a TIMEOUT specifier in any I/O statement
that refers to the file.

Your program uses level-1—unbuffered—spooling if you specify TIMED = .TRUE.
and the file you open is a spooler collector.

• SPACECONTROL specifier

If you specify 'YES', the system interprets the first character of an output record as
a vertical spacing control character for an output device according to the values
shown in the following table:

If you specify 'NO', the system interprets the first character of an output record as
data.

If you specify 'DEVICE', the handling of a record depends on its destination. If it is
being sent to a print device, terminal, or process, the first character is used to
control vertical spacing; otherwise the whole record is assumed to be data.

• SYNCDEPTH specifier

To enable recovery from path failure during a write, sync must be greater than
zero. The default value is 1.

For NonStop processes, the SYNCDEPTH specifier also specifies the maximum
number of write operations you can safely issue to the file without executing a
CHECKPOINT statement to your backup process. For additional information about
checkpointing and NonStop processes, see Section 14, Interprocess
Communication.

Character Vertical Spacing Before Printing
Blank One line

0 Two lines

1 To first line of next page

+ No advance
FORTRAN Reference Manual—528615-001
7-76

Statements OPEN Statement
• PROTECT specifier

When a process opens a Guardian file, the PROTECT option specifies to what
degree the process is willing to share access to the file with other openers or
potential openers of the file. The other openers might be in other processes or in
the same process as the current opener.

For example, if a process specifies PROTECT = 'EXCLUSIVE', the file must be
closed when the process opens the file. Furthermore, any subsequent attempt to
open the same file, including by the process that already has the file open, will fail
until the original process closes the file.

On the other hand, two processes can open the same file if both specify
PROTECT = 'SHARED'.

The default value is 'SHARED'.

° 'SHARED' specifies that multiple openers can access the file for both input and
output.

° 'PROTECTED' specifies that the file can be opened for output by only one
opener. Other openers can only read from the file.

° 'EXCLUSIVE' specifies that the file can be opened by only one opener.
Attempts to establish more than one open fail. Attempts to open a file with
exclusive access when the file is already open also fail.

Table 7-8 shows whether your attempt to open a file succeeds or fails, based on
the attribute value:

° You specify for the:

° MODE option ('INPUT', 'OUTPUT', or 'I-O')

° PROTECT option ('SHARED', 'PROTECTED', or 'EXCLUSIVE')

° Specified by other current openers of the same file for the:

° MODE option ('INPUT', 'OUTPUT', or 'I-O')

° PROTECT option ('SHARED', 'PROTECTED', or 'EXCLUSIVE')

Table 7-8. File Protection and Mode Interaction Between Opening
Processes (page 1 of 2)

File Already Open With
Open Operation Attempted With SHARED PROTECTED EXCLUSIVE
Protection
Specifier Mode Specifier I O I-O I O I-O I O I-O
SHARED INPUT S S S S S S F F F

OUTPUT S S S S S S F F F

I-O S S S F F F F F F
FORTRAN Reference Manual—528615-001
7-77

Statements OPEN Statement
If your program is compiled with ENV COMMON in effect, and you open unit 5 or
unit 6 without specifying a PROTECT attribute, the FORTRAN run-time library
determines the protection attribute based on the type of device you are accessing
and the protection attribute of any previous opens of the same unit.

• STACK checkpoint specifier

PROTECTED INPUT S S F F F F F F F

OUTPUT S F F S F F F F F

I-O S F F F F F F F F

EXCLUSIVE INPUT F F F F F F F F F

OUTPUT F F F F F F F F F

I-O F F F F F F F F F
S means that the open is successful; F means that the open fails.

Note. If you compile your program with either a C-series FORTRAN compiler or a D-series
FORTRAN compiler for which you specify ENV OLD, and you open unit 5 or unit 6, the
FORTRAN run-time routines use 'SHARED' as the value for the PROTECT attribute if you do
not specify one.

If you compile your program with a D-series FORTRAN compiler, you specify ENV COMMON,
and you open unit 5 or unit 6 without specifying the PROTECT attribute, FORTRAN determines
the PROTECT attribute as follows:

• If the file is already open, FORTRAN uses the PROTECT attribute specified when the file
was first opened.

• If the file is not already open, FORTRAN determines the PROTECT attribute based on the
type of device you are opening. This table shows the default protection for the devices you
can open for units 5 and 6:

Device Unit 5 Unit 6

Process 'PROTECTED' 'EXCLUSIVE'

$RECEIVE 'EXCLUSIVE‘ N.A.

Disk 'PROTECTED' 'EXCLUSIVE'

Printer N.A. 'EXCLUSIVE'

Terminal 'SHARED’ 'SHARED'

Table 7-8. File Protection and Mode Interaction Between Opening
Processes (page 2 of 2)

File Already Open With
Open Operation Attempted With SHARED PROTECTED EXCLUSIVE
Protection
Specifier Mode Specifier I O I-O I O I-O I O I-O
FORTRAN Reference Manual—528615-001
7-78

Statements PARAMETER Statement
If you run your program as a NonStop process, an OPEN statement automatically
checkpoints program environment information to your backup process. The effect
of this specifier is the same as that in the CHECKPOINT statement, which is
described in this section and in Section 14, Interprocess Communication.

• Error conditions

If you specify label, and an error occurs while FORTRAN is opening the file, the
OPEN statement terminates, the file position becomes indeterminate, and
FORTRAN transfers control to the statement identified by label. If you also
specified ios, you can determine the error that occurred by analyzing ios.

If you specify ios, but not label, and an error occurs on the OPEN statement,
your program continues executing with the statement that follows the OPEN
statement. You can analyze ios to determine the error that occurred, if any.

If you do not specify ios or label, and an error occurs, FORTRAN terminates
your program and displays a run-time diagnostic message.

Examples
OPEN (60, FILE='outfile',STATUS='NEW',IOSTAT=misopen)

OPEN (UNIT=1, FILE='$receive',MODE='INPUT',RECL=346)

OPEN (UNIT=master,FILE='mastrprt', SYNCDEPTH=1)

PARAMETER Statement
The PARAMETER statement assigns a symbolic name to a constant value.

name

is a symbolic name.

exp

is a constant expression.

Considerations
• The PARAMETER statement defines the value of each name by evaluating its

corresponding expression.

° If the first letter of name designates a numeric type, exp must be an arithmetic
expression.

° If the first letter of name designates a character type, exp must be a character
expression.

PARAMETER (name = exp [, name = exp]...)
FORTRAN Reference Manual—528615-001
7-79

Statements PARAMETER Statement
° If the first letter of name designates a logical type, exp must be a logical
expression.

• If a symbolic name appears in the constant expression, it must have been
previously defined in the same or a different PARAMETER statement in the same
program unit.

• If the implicit data type of name is not the correct type for exp, you must specify the
type of name in a type statement or an IMPLICIT statement before you use name in
a PARAMETER statement.

If exp is a character constant that has more than one character, you must specify
the number of characters in name before using it in a PARAMETER statement.

• Once you have defined a symbolic name with the PARAMETER statement, it can
only identify its corresponding constant in that program unit.

• You cannot use the symbolic name of a constant in a format specification.

• You cannot use the symbolic name of a constant to form part of another constant,
for example either part of a complex constant.

• You cannot change the type or length of the symbolic name of a constant in
subsequent statements.

• You cannot define the symbolic name of a constant more than once in a program
unit.

Examples
Numeric type:

REAL fees, student body dues

PARAMETER (fees = 207.50, student body dues = 15.33)

REAL tuition

PARAMETER (tuition = fees + student body dues)

total fees = tuition * credits

Character type:

CHARACTER title*20

PARAMETER (title = 'Engineering Report')

Logical type:

LOGICAL yes, no

PARAMETER (yes = .TRUE., no = .FALSE.)
FORTRAN Reference Manual—528615-001
7-80

Statements PAUSE Statement
PAUSE Statement
The PAUSE statement temporarily halts program execution.

message

is an unsigned integer constant of up to five digits or a character constant of up to
80 characters that is displayed when the program executes the PAUSE statement.

If you compile your program with ENV OLD in effect, FORTRAN displays message
on your home terminal unless you specify the TERM run-option when you run your
program, in which case FORTRAN displays message on the device you specify in
the TERM run-option.

If you compile your program with ENV COMMON, FORTRAN writes message to
the standard log file. For more information about the standard log file, see the CRE
Programmer’s Guide.

Considerations
• The PAUSE statement temporarily halts execution of the program in which it

occurs, until you enter a carriage return via the home terminal. Program execution
resumes with the next executable statement following the PAUSE statement. The
program ignores any data entered at the home terminal while in the paused state.

• message enables you to display a numeric identifier or a text message when the
PAUSE statement executes. message is optional; if you do not specify message,
FORTRAN displays the single word “PAUSE”.

Examples
PAUSE 55566

PAUSE 'Mount next tape!'

POSITION Statement
The POSITION statement makes it possible for sequential-access I/O statements to
perform random access of structured files, either by record number or by specified
primary or alternate keys.

unit

is an integer expression from 1 through 999 that specifies the unit to be positioned.

PAUSE [message]

POSITION ([UNIT =] unit [, IOSTAT = ios]
 [, ERR = lbl], position)
FORTRAN Reference Manual—528615-001
7-81

Statements POSITION Statement
ios

is a variable or array element of integer type that returns an error number or zero
(no error) following execution of the POSITION statement. For more information
about error numbers, see the Error Numbers on page 6-5.

lbl

is an integer expression that designates the label of an executable statement in the
same program unit to which control passes if an I/O error occurs during
positioning.

position

is a position specifier that assumes one of the following, mutually exclusive, forms:

REC = recno

or

KEY= key, KEYLEN= exp, KEYID= kid, MODE= mode

[, COMPARELEN= clen] [, SKIPEXACT= skip]

recno

is an expression of INTEGER*4 type that specifies the record number to which
the file is to be positioned. Note that the first record in a file is record number
one.

key

is a character expression whose value is a primary or alternate key value.

exp

is an integer expression that specifies the number of bytes in the key field to
compare to the same number of bytes in key.

kid

is an integer or character expression whose value specifies which key to use.
See Considerations on page 7-83 The default value is 0.

mode

is a character expression whose value is either 'APPROXIMATE', 'GENERIC',
or 'EXACT'. The default value is 'APPROXIMATE'.

clen

is an integer expression whose value is in the range 0 through 255. The default
value is 0.
FORTRAN Reference Manual—528615-001
7-82

Statements POSITION Statement
skip

is a character expression whose value is either 'YES' or 'NO'. The default value
is 'NO'.

Considerations
• A POSITION statement establishes the record to access on the next READ or

WRITE statement. The POSITION statement does not perform I/O operations, nor
does it check for the existence of the specified record. The file is positioned to the
specified record when your program executes the next data transfer statement. For
more information about positioning structured files, see the ENSCRIBE
Programmer’s Guide.

• You can code the control specifiers in any order, except that if you omit the UNIT
keyword from the unit specifier, the UNIT specifier must be the first item in the list.

• If you use the KEY specifier, you must also specify values for KEYLEN, KEYID,
and MODE. The file must be a relative, entry-sequenced, or key-sequenced file.
The key can be an alternate key for any of the allowed file types, or the primary
key of a key-sequenced file. For additional information, see Section 5, Introduction
to File I/O in the HP NonStop Environment.

• KEYLEN specifier

If you omit the KEYLEN specifier, the compiler uses the actual length of the key
field.

• KEYID specifier

If you use an alternate key to position the file, kid must be a character expression
having a value equal to the two-character ENSCRIBE key tag defined for the
alternate key.

If you use the primary key to position the file, kid must be either 0 or blank.

If you omit this specifier, the compiler assumes a value of 0.

• MODE specifier

If you specify 'APPROXIMATE', ENSCRIBE uses the specified key as the full or
partial value of the key that starts the sequential reading of the file. The system
detects an end-of-file condition when it reaches the end of the file.

If you specify 'GENERIC', ENSCRIBE uses the specified key as the full or partial
value of the key that starts the sequential reading of the file. The system detects an
end-of-file condition when the record key no longer matches key for the specified
key length. 'EXACT' is the same as 'GENERIC', except that ENSCRIBE interprets
key as the full value of the key to be used.

The default value is 'APPROXIMATE'.

• COMPARELEN specifier
FORTRAN Reference Manual—528615-001
7-83

Statements POSITION Statement
When performing a GENERIC file search on an alternate key, the record made
available to the program is the first one that satisfies the search requirements. If
you want a later record, you can use the COMPARELEN specifier to include
characters of the primary key in the alternate key comparison. For example, if you
are searching for the alternate key 'RIVET', and it is known that part numbers (the
primary key) in the 12100 range refer to 1-inch rivets, the 12200 range to 2-inch
rivets, and so on, a key value of RIVET 122 with a COMPARELEN=8 specifier can
concatenate the first three characters of the primary key with the 5-character
alternate key to narrow the search. The value you specify with COMPARELEN is
therefore the sum of the full length of the key plus additional characters from the
primary key.

Do not use this specifier if you are performing an EXACT search or using the
primary key.

If you omit this specifier, the compiler assumes a value of 0 for COMPARELEN.

• SKIPEXACT specifier

If you are using an alternate key to perform a file search, the first record found that
specifies the search requirements is made available to the program. If you save
the key values of that record and use them in a subsequent search, the same
record is found. If you specify SKIPEXACT='YES', the record that exactly matches
the previously found record is skipped and the next record with the same alternate
key is made available.

If you omit this specifier, the compiler assumes a value of 'NO' for the SKIPEXACT
specifier.

Note that you can use this specifier with primary keys thus allowing a FORTRAN
server to read the next record in a file and remain context free.

• Direct Access

You can use the REC specifier only with EDIT format files, unstructured files, and
relative disk files. In all of these file types, records are identified by INTEGER*4
record number values. You do not need to use a POSITION statement to position
direct access files. The compiler treats any READ or WRITE statement containing
a REC= specifier as a POSITION statement followed by a sequential READ or
WRITE statement.

If you do use a POSITION statement, a subsequent READ statement reads the
record with the smallest record number that is greater than or equal to the
specified record number. A WRITE statement inserts or replaces a record with the
specified record number.

To append new lines at the end of an EDIT format file, OPEN the file and execute a
POSITION or WRITE statement, with REC= -2.

You cannot POSITION an EDIT format file in a FORTRAN program that is running
as a NonStop process.
FORTRAN Reference Manual—528615-001
7-84

Statements POSITION Statement
• If you position unit 5 or unit 6 and you have not already established a connection
for the unit, POSITION implicitly opens the unit using default parameters. If you
specify ENV COMMON and you position unit 5 or unit 6, your FORTRAN routines
share access to standard input or standard output, respectively, with routines
written in other languages only if the access mode for unit 5 is INPUT and for unit 6
is OUTPUT. However, the default access mode for both units 5 and 6 is I-O. If you
want to share access to the file connected to the unit, you must set the unit’s
access mode to INPUT (unit 5) or OUTPUT (unit 6) before you execute the
POSITION statement. You can set the access mode:

° In a FORTRAN OPEN statement, as in

OPEN(5, MODE = 'INPUT')

OPEN(6, MODE = 'OUTPUT')

° In a TACL ASSIGN command, as in

ASSIGN FT005, , INPUT

ASSIGN FT006, , OUTPUT

° In a UNIT compiler directive, as in

UNIT (5, INPUT)

UNIT (6, OUTPUT)

 For more information about using units 5 and 6 as shared files, see the OPEN
Statement on page 7-70.

• If a POSITION statement causes unit 5 or unit 6 to be implicitly opened and your
program is running as a NonStop process, the FORTRAN run-time library does a
stack checkpoint to the backup process as a part of the implicit open.

• Error conditions

If you specify lbl, and an error occurs during the position operation, the
POSITION statement terminates, the file position becomes indeterminate, and
FORTRAN transfers control to the statement identified by lbl. If you also specify
ios, you can determine the error that occurred by analyzing ios.

If you specify ios, but not lbl, and an error occurs during the position operation,
your program continues executing with the statement that follows the POSITION
statement. You can analyze ios to determine the error that occurred, if any.

If you do not specify ios or lbl, and an error occurs, FORTRAN terminates your
program and displays a run-time diagnostic message.
FORTRAN Reference Manual—528615-001
7-85

Statements PRINT Statement
Examples
POSITION(UNIT=100, IOSTAT=inerror, REC=inrecnum)

POSITION(8,ERR=30,KEY=partnum,KEYID=0,KEYLEN=5,MODE='EXACT')

POSITION(UNIT=12, KEY=pname, KEYID='PN', KEYLEN=20,

& MODE='GENERIC', COMPARELEN=8, SKIPEXACT='YES')

PRINT Statement
The PRINT statement writes data to the preconnected output unit (unit 6) only.

format

is one of the following:

° The label of a FORMAT statement in the same program unit

° An integer variable in which an ASSIGN statement has stored the label of a
FORMAT statement

° The name of a character array that contains a format specification

° A character expression that yields a format specification

° An asterisk indicating list-directed formatting

output-list

is a list of entries, separated by commas; an entry can be any valid expression
except a character expression involving concatenation of a dummy argument
having a length specification of (*). An entry can also take the form of an implied
DO list. See Using Implied DO Lists on page 5-27.

Considerations
• A PRINT statement writes data from its output list to unit 6. If you have not already

established a connection for unit 6, a PRINT statement implicitly opens unit 6 using
default parameters.

• If a PRINT statement causes unit 6 to be implicitly opened and your program is
running as a NonStop process, the FORTRAN run-time library does a stack
checkpoint to the backup process as a part of the implicit open.

• If you specify ENV COMMON, your FORTRAN routines share access to standard
output with routines in your process written in languages other than FORTRAN
only if the access mode for unit 6 is OUTPUT. However, the default access mode
for unit 6 is I-O. If you want to share access to the file connected to unit 6 you must
set the access mode for unit 6 to OUTPUT. You can set the access mode:

PRINT format [, output-list]
FORTRAN Reference Manual—528615-001
7-86

Statements PRINT Statement
° In a FORTRAN OPEN statement, as in

OPEN(6, MODE = 'OUTPUT')

° In a TACL ASSIGN command, as in

ASSIGN FT006, , OUTPUT

° In a UNIT compiler directive, as in

UNIT (6, OUTPUT)

For more information about using unit 6 as a shared file, see the OPEN Statement
on page 7-70.

• The PRINT statement uses the first character of each record to control vertical
spacing if you specify

° SPACECONTROL = 'YES' when you open unit 6.

° SPACECONTROL = 'DEVICE' when you open unit 6—explicitly or implicitly—
and the device is a terminal, a printer, or a process.

The default value for SPACECONTROL is 'DEVICE'. The following table shows
how FORTRAN interprets the first character of each record printed if
SPACECONTROL is 'YES' or if SPACECONTROL is 'DEVICE' and the device to
which you are printing is a terminal, a printer, or a process.

Note that these codes do not control vertical spacing on all devices.

• Execution of a PRINT statement for a file that does not exist creates that file (if no
error condition occurs).

• An entry in the output-list can assume the form of an implied DO list. For
example, the following statement prints every element of array EMPLOYEES:

PRINT 90, (employees(k), k = 1,289)

• You cannot PRINT an EDIT format file in a FORTRAN program that is running as a
NonStop process.

• If you specify ENV OLD or you do not specify an ENV directive, your program uses
the C-series FORTRAN library.

If you specify ENV COMMON, your program uses the D-series FORTRAN runtime
library. For more information, see Section 13, Mixed-Language Programming.

Character Vertical Spacing Before Printing
Blank One line

0 Two lines

1 To first line of next page

+ No advance
FORTRAN Reference Manual—528615-001
7-87

Statements PROGRAM Statement
Examples
PRINT *, 'Balance Due :$', balance

PRINT 200, base squared, base cubed

PROGRAM Statement
The PROGRAM statement assigns a symbolic name to the main program unit.

prog-name

is a valid symbolic name

Considerations
• The PROGRAM statement is optional. If you use it, it must be the first statement of

the main program unit.

• prog-name is global to the executable program and must be different from the
name of every external procedure, block data subprogram, or common block in the
same executable program. prog-name must not be the same as any local name
in the main program.

Example
The following statement assigns the name PRIMES to the main program unit.

PROGRAM primes

READ Statement
The READ statement inputs data from a specified unit or file.

format

is either the label of a FORMAT statement in the same program unit, the name of
an integer variable in which the ASSIGN statement has stored the label of a
FORMAT statement, the name of a character array that contains a format
specification, a character expression that yields a format specification, or an
asterisk indicating list directed formatting.

PROGRAM prog-name

READ
format , input list–[]
read spec , read spec–[]. . . –() input list–[]

FORTRAN Reference Manual—528615-001
7-88

Statements READ Statement
input-list

is a list of items separated by commas. A list item is either the name of a variable,
an array, an array element, a character substring, a RECORD, a RECORD field, or
an implied DO list.

read-spec

is one of the following control specifiers. You can write these specifiers in any order
unless you omit the UNIT or FMT keywords; for more information, see
Considerations on page 7-91.

[UNIT=] unit

unit is one of the following:

° An integer expression from 1 through 999 that corresponds to a unit
previously connected by an OPEN statement or to a preconnected unit.

° An asterisk (*), which implies unit 5. Unit 5 is preconnected for formatted
sequential input.

° An internal file identifier.

If you omit the UNIT keyword, unit must be the first entry in the list.

For information about external and internal files, see External and Internal Files
on page 5-3.

[FMT=] format

See the format on page 7-86

If you use an asterisk to indicate list-directed formatting, you cannot use a
record specifier in the control list.

If you omit the optional FMT keyword, format must be the second item on the
control list and unit, without the UNIT specifier, must be the first item on the
list.

REC = rec

rec is an expression of INTEGER*2 or INTEGER*4 type that specifies the
record number of the record to read.

IOSTAT = ios

ios is an integer variable or integer array element in which FORTRAN returns
an error number if an error occurs while executing the READ statement. If the
READ statement is successful, ios is zero. If the READ statement encounters
an end of file, ios is -1. For more information about error numbers, see the
Error Numbers on page 6-5.
FORTRAN Reference Manual—528615-001
7-89

Statements READ Statement
ERR = lbl

label is the label of an executable statement in the current program unit to
which FORTRAN transfers control if an error occurs while executing the READ
statement.

END = endlbl

endlbl is an integer that specifies the label of an executable statement within
the same program unit to which control passes if the READ statement
encounters an end of file.

LOCK = lock

lock is a logical expression that specifies whether records are available to
other processes.

UPDATE = update

update is a logical expression that indicates whether records in structured
files are to be updated or deleted.

LENGTH = len

len is an INTEGER*2 variable that returns the actual length, in bytes, of the
record most recently read.

TIMEOUT = to

to is an INTEGER*2 or INTEGER*4 expression that specifies the maximum
time the system should wait for the read operation to complete.

PROMPT = message

message is a character expression that specifies the prompt message to
display when input is expected.

PROMPTLENGTH = plen

plen is an integer expression that specifies the length of the prompt message.

SOURCE = receive

is an integer array of at least 16 elements that contains information about the
requester. For additional details, see Section 14, Interprocess Communication.
FORTRAN Reference Manual—528615-001
7-90

Statements READ Statement
Considerations
• Order of read specifiers

Entries for read-spec can be in any order, except that:

° If you omit the UNIT keyword, unit must be the first item in the list.

° If you omit the FMT keyword, format must be the second item in the list, unit
must be the first item in the list, and you must specify unit without the UNIT
keyword.

• REC specifier

The control list must not contain a record specifier if any of the following are true:

° The file is connected for sequential access

° The unit specifier names an internal file

° The format specifier is an asterisk

You cannot use a record specifier on an EDIT format file in a FORTRAN program
that is running as a NonStop process.

If the control list contains a record specifier, it must not contain an end-of-file
specifier.

• IOSTAT specifier

See the Error conditions on page 7-93 and End-of-file condition on page 7-93.

• ERR specifier

See the Error conditions on page 7-93.

• END specifier

See the End-of-file condition on page 7-93.

• LOCK specifier

The default value is .FALSE.. The LOCK specifier is relevant only for structured
files.

The lock specifier coordinates access to a file shared by two or more processes. If
lock is .TRUE., the current record becomes temporarily unavailable to other
processes. Use a subsequent WRITE statement with lock set to .FALSE. to
restore record access to other processes sharing the file.

• UPDATE specifier

The default value is .FALSE.. This specifier is relevant only for disk files (except
EDIT format files) and processes.

If the value of update is .TRUE., FORTRAN uses the READUPDATE or
READUPDATELOCK procedure; if the value is .FALSE., FORTRAN uses the
FORTRAN Reference Manual—528615-001
7-91

Statements READ Statement
READ or READLOCK procedure. For additional information about these
procedures, see the Guardian Procedure Calls Reference Manual.

• LENGTH specifier

Use the LENGTH specifier to determine the actual length of variable-length
records. If the READ statement terminates, len returns the actual length, in bytes,
of the record most recently read.

Note that the amount of the input record actually read may depend on format
control; len returns the full length of the record, whether or not all the record is
actually returned to your program.

• TIMEOUT specifier

to represents a number of hundredths of a second. If the READ operation has not
completed when this time has elapsed, statement execution terminates with file
management error 40.

You can use the TIMEOUT specifier to impose a time limit only if you specify
TIMED=.TRUE. when you open the file.

• PROMPT and PROMPTLENGTH specifiers

These specifiers are relevant only if the file is a terminal or a process.

The first character of the prompt has the effect defined by the SPACECONTROL
specifier of the OPEN statement.

You do not need to include a PROMPTLENGTH specifier. If you omit plen, the
actual number of characters defined for msg is output.

• Implied DO list

See Using Implied DO Lists on page 5-27.

• Reading from unit 5

If you read a record from unit 5 and you have not already established a connection
for the unit, READ implicitly opens the unit using default parameters. If you specify
ENV COMMON and you read a record from unit 5, your FORTRAN routines share
access to standard input with routines written in other languages only if the access
mode for the unit is INPUT. However, the default access mode for unit 5 is I-O. If
you want to share access to the file connected to unit 5, you must set the unit’s
access mode to INPUT before you execute the READ statement. You can set the
access mode:

° In a FORTRAN OPEN statement, as in

OPEN(5, MODE = 'INPUT')

° In a TACL ASSIGN command, as in

ASSIGN FT005, , INPUT
FORTRAN Reference Manual—528615-001
7-92

Statements READ Statement
° In a UNIT compiler directive, as in

UNIT (5, INPUT)

For more information about using unit 5 as a shared file, see the OPEN Statement
on page 7-70.

• If a READ statement causes unit 5 to be implicitly opened and your program is
running as a NonStop process, the FORTRAN run-time library does a stack
checkpoint to the backup process as a part of the implicit open.

• End-of-file condition

If you specify endlbl, and the read operation encounters an end of file, the READ
statement terminates and FORTRAN transfers control to the statement identified
by endlbl. If you also specify ios, it will have a value of -1.

If you specify ios, but not endlbl, and the read operation encounters an end of
file, your program continues executing with the statement that follows the READ
statement. You can analyze ios to determine the error that occurred. ios will
have a value of -1 for an end-of-file condition.

If you do not specify ios or endlbl, and the read operation encounters an end of
file, FORTRAN terminates your program and displays a run-time diagnostic
message.

• Error conditions

If you specify lbl, and an error occurs during the read operation, the READ
statement terminates, the file position becomes indeterminate, and FORTRAN
transfers control to the statement identified by lbl. If you also specify ios, you
can determine the error that occurred by analyzing ios.

If you specify ios, but not lbl, and an error occurs during the read operation,
your program continues executing with the statement that follows the READ
statement. You can analyze ios to determine the error that occurred, if any.

If you do not specify ios or lbl, and an error occurs, FORTRAN terminates your
program and displays a run-time diagnostic message.

Examples
READ (4,*) firstname, age

READ (UNIT=4, PROMPT= ' Enter part no. ',FMT=*) partnum

READ (infile, 400, ERR=30, END=500, REC=numrec)

+ (array(k), k=1, stop)
FORTRAN Reference Manual—528615-001
7-93

Statements RECORD Statement
RECORD Statement
The RECORD statement defines a data structure, which can include data of different
types.

record-name

is a symbolic name or array declarator

field-declaration

is either a data type declaration, an EQUIVALENCE statement, a record
declaration, or a FILLER * nnn where nnn is an unsigned integer constant in the
range of 1 through 255.

lower

is an integer expression that specifies the lower bound of a one-dimensional array.

upper

is an integer expression that specifies the upper bound of a one-dimensional array.

Considerations
• Observe the following restrictions in using the RECORD statement:

° Start a RECORD declaration with the RECORD statement and end it with the
END RECORD statement.

° You can nest RECORD declarations, up to 15 deep.

° You can use an array in a RECORD or sub-RECORD, but the array can have
only one dimension.

° You can declare a RECORD’s dimensions using a COMMON, DIMENSION, or
RECORD statement; but you can declare the RECORD’s dimensions only
once in a program unit.

° You can equivalence RECORDs only to other RECORDs.

° You cannot use a DATA statement to initialize RECORDs.

° You cannot declare RECORDs in a BLOCK DATA subprogram.

• For additional information about the RECORD statement, see the Records on
page 2-20.

RECORD record-name [([lower:] upper)]
 [field-declaration]...
END RECORD
FORTRAN Reference Manual—528615-001
7-94

Statements RETURN Statement
Example
RECORD employees

FILLER*19

RECORD address

CHARACTER*20 street

CHARACTER*10 city

CHARACTER*5 state

INTEGER zip

END RECORD

RECORD grade

CHARACTER*10 department

REAL pay

INTEGER*4 empnumber

END RECORD

END RECORD

RETURN Statement
The RETURN statement terminates execution of a subprogram and returns control to
the calling program unit.

iexp

is an integer expression that designates an alternate return from the subroutine.

Considerations
• A procedure subprogram ends with an END statement. However, both function

subprograms and subroutine subprograms can include one or more RETURN
statements to designate alternate exit points. For example:

SUBROUTINE numbers (j, k, n)

.

READ (*,*) number

IF (number .GT. 1) RETURN

.

END

RETURN [iexp]
FORTRAN Reference Manual—528615-001
7-95

Statements RETURN Statement
• A RETURN statement without an iexp entry returns control to the first executable
statement that follows the statement which called it. The iexp entry, which must
be an integer expression, specifies that control return to the statement label
specified in the calling statement that corresponds to the position of the alternate
return expression in the actual parameter list of the calling program unit.

• If FORTRAN cannot execute an alternate return because the value for iexp is less
than one or greater than the number of dummy arguments, control passes to the
first executable statement after the CALL statement.

• Executing a RETURN statement terminates the association of actual arguments
with dummy arguments in a subprogram. For information about how to preserve
associated values after exiting a subprogram, see the SAVE Statement on
page 7-99.

Example
In the following example, control passes to statement 100 if the first RETURN
statement executes, and to statement 230 if the second RETURN statement executes:

PROGRAM MAIN

CALL products (price, tax, *100, *230)

.

END

SUBROUTINE products (p, t, *, *)

.

RETURN 1

.

RETURN 2

.

END
FORTRAN Reference Manual—528615-001
7-96

Statements REWIND Statement
REWIND Statement
The REWIND statement positions a file connected to a specified unit at its initial point.
If the file is already at its initial point, or if the file is connected but does not exist, the
REWIND statement has no effect.

unit

is an integer expression from 1 through 999 that identifies an external unit
connected for sequential access. The unit must be connected to a magnetic tape,
a process, an unstructured file with fixed-length records, a relative file, an EDIT
format file or an entry-sequenced file.

ios

ios is a variable or array element of integer type that returns an error number or
zero (no error) following the REWIND operation. For more information about error
numbers, see the Error Numbers on page 6-5.

lbl

lbl is the label of an executable statement in the same program unit to which
control passes if an error occurs during a rewind operation.

Considerations
• If you rewind unit 5 or unit 6 and you have not already established a connection for

the unit, REWIND implicitly opens the unit using default parameters. If you specify
ENV COMMON and you rewind unit 5 or unit 6, your FORTRAN routines share
access to standard input or standard output, respectively, with routines written in
other languages only if the access mode for unit 5 is INPUT and for unit 6 is
OUTPUT. However, the default access mode for both units 5 and 6 is I-O. If you
want to share access to the file connected to the unit, you must set the unit’s
access mode to INPUT (unit 5) or OUTPUT (unit 6) before you execute the
REWIND statement. You can set the access mode:

REWIND

unit

unit ,
IOSTAT=ios

ERR=lbl

. . .

UNIT=unit

IOSTAT=ios

ERR=lbl

 ,

UNIT=unit

IOSTAT=ios

ERR=lbl

 . . .

FORTRAN Reference Manual—528615-001
7-97

Statements REWIND Statement
° In a FORTRAN OPEN statement, as in

OPEN(5, MODE = 'INPUT')

OPEN(6, MODE = 'OUTPUT')

° In a TACL ASSIGN command, as in

ASSIGN FT005, , INPUT

ASSIGN FT006, , OUTPUT

° In a UNIT compiler directive, as in

UNIT (5, INPUT)

UNIT (6, OUTPUT)

For more information about using units 5 and 6 as shared files, see the OPEN
Statement on page 7-70.

• If a REWIND statement causes unit 5 or unit 6 to be implicitly opened and your
program is running as a NonStop process, the FORTRAN run-time library does a
stack checkpoint to the backup process as a part of the implicit open.

• Error conditions

If you specify lbl, and an error occurs during the rewind operation, the REWIND
statement terminates, the file position becomes indeterminate, and FORTRAN
transfers control to the statement identified by lbl. If you also specify ios, you
can determine the error that occurred by analyzing ios.

If you specify ios, but not lbl, and an error occurs during the rewind operation,
your program continues executing with the statement that follows the REWIND
statement. You can analyze ios to determine the error that occurred, if any.

If you do not specify ios or lbl, and an error occurs, FORTRAN terminates your
program and displays a run-time diagnostic message.

• Use of REWIND with EDIT format files

After a REWIND statement, the NEXTREC specifier of an INQUIRE statement
returns -1 as the latest number of an EDIT format file.

Examples
REWIND 123

REWIND (ERR=370, UNIT=2)
FORTRAN Reference Manual—528615-001
7-98

Statements SAVE Statement
SAVE Statement
The SAVE statement saves the status of specified entities after the termination of a
subprogram.

name

is a common block name enclosed in slashes, a variable name, array name, or
RECORD name.

Considerations
• All entities defined in a subprogram unit become undefined when a RETURN or

END statement executes except for the following:

° Entities named in a SAVE statement

° Entities in any common block

° Entities declared in a DATA statement

• If the SAVE statement specifies an entity local to the subprogram, FORTRAN
saves the current value of that entity when the subprogram terminates and makes
it available to the subprogram the next time it executes.

• If you omit the name list, the SAVE statement saves all the allowable entities
defined by the subprogram.

• The SAVE statement cannot include dummy argument names, procedure names,
or names of entities in common blocks.

• To save anything in a common block, you must save everything in it by specifying
the common block name as follows:

SAVE /customers/

Saving common blocks has no effect in HP FORTRAN because all common blocks
are always saved, but SAVE is supported for ANSI standard conformance.

Example
SAVE personnel, payroll, /employee/

SAVE [name [, name]...]
FORTRAN Reference Manual—528615-001
7-99

Statements START BACKUP Statement
START BACKUP Statement
The START BACKUP statement defines control options for fault-tolerant processing. It
also starts the backup process, ensures that the backup process opens all files
currently open in the primary process, checks file synchronization information, and
checkpoints all usable memory. START BACKUP is an extension to the ANSI

standard and gives the FORTRAN user access to the HP fault-tolerant programming
facility.

start-spec

is one of the following specifiers:

CPU = number

number is an integer expression with a value from -1 through 15 that specifies
in which processor to start the backup process. The default value is 0. If you
specify CPU = -1, the system determines the processor in which the backup
process runs.

ERR = label

label is an integer that designates an executable statement, in the same
program unit, to which control passes if an error occurs during an attempt to
start a backup process.

OPTION = int

int is an integer expression that controls a number of options for NonStop
process. Table 7-9 on page 7-101 shows the meaning of each OPTION bit.

BACKUPSTATUS = var

var is an integer variable that returns zero (no error) or an integer that
identifies the error following execution of a START BACKUP statement.
Table 7-10 on page 7-102 shows the status codes that FORTRAN returns to
your program.

Considerations
• The START BACKUP statement does not establish a takeover point. You must

execute a CHECKPOINT statement to establish a takeover point.

• You can write the start-specs in any order, but you cannot specify any item
more than once.

• For additional information about fault-tolerant programming, see Section 16, Fault-
Tolerant Programming.

START BACKUP [(start-spec [, start-spec]...)]
FORTRAN Reference Manual—528615-001
7-100

Statements START BACKUP Statement
Table 7-9. Option Bits for START BACKUP OPTION Specifier
Bit Option
0-5 Reserved; must be zero.

6 If ENV OLD, bit 6 must be zero.

If ENV COMMON, bit 6 specifies whether START BACKUP should
checkpoint the extended stack when a backup process is created.

0 Do not checkpoint when starting the backup.

1 Checkpoint when starting the backup.

7 Specifies whether to maintain an outstanding NOWAIT read operation on
$RECEIVE:

0 Maintain a read.

1 Do not maintain a read.

8 Reserved; must be zero.

9 Specifies FORTRAN action if your program successfully executes an OPEN
statement but the system cannot open the same file in the backup process:

0 The primary closes the file.

1 The primary stops the backup process.

For more information, see the “CHECKOPEN Procedure” if you compile your
program with ENV OLD, or the “FILE_OPEN_CHKPT_” procedure if you
compile your program with ENV COMMON, both in the Guardian Procedure
Calls Reference Manual.

10 Specifies how FORTRAN handles a “bad checkpoint parameter” error on
CHECKPOINT:

0 The primary ABENDs.

1 FORTRAN returns an error code to the FORTRAN program.

11 Specifies when to recreate a backup process after a takeover: 0 At the next
CHECKPOINT statement. 1 Immediately.

12 Reserved; must be zero.

13 Specifies the disposition of the backup if the primary is stopped by a TACL
STOP command or a programmatic call to the STOP or PROCESS_STOP_
system procedure:

0 The backup stops also.

1 The backup becomes the primary and attempts to create a new backup
(this feature is useful for testing).

14 Reserved; must be zero.

15 Reserved; must be zero.
Note: Following the standard HP convention, bit positions are numbered 0 to 15 from left to right within a 16-bit
word.
FORTRAN Reference Manual—528615-001
7-101

Statements START BACKUP Statement
Table 7-10. Status Codes Returned for CHECKPOINT and START
BACKUP (page 1 of 2)

Error
Number Description
0 No error.

100 Takeover by backup; primary process stopped.

101 Takeover by backup; primary process ABENDed.

102 Takeover by backup; primary processor module failed.

103 Takeover by backup; primary process called the CHECKSWITCH system
procedure.

1000 Backup processor module is down.

2nnn Communication error; nnn is a File System Error code.

3nnn Failure to open a file in the backup process that is open in the primary process;
nnn is a File System Error code.

4nnn If ENV OLD, a NEWPROCESS failure. If ENV COMMON, a
PROCESS_CREATE_ failure; nnn is a Guardian file management error, for 0 <
nnn < 512.1

49xx If ENV OLD, other NEWPROCESS failure. If ENV COMMON, other
PROCESS_CREATE_ failure; : xx is1:
FORTRAN Reference Manual—528615-001
7-102

Statements START BACKUP Statement
ENV OLD
01: Undefined externals

02: No PCB available

04: Unable to allocate map

05: Unable to get virtual disk space

06: Illegal file format

07: Unlicensed privileged program

10: Unable to communicate with
System Monitor

12: Program file and library file
specified are the same file

13: Extended data segment
initialization error

14: Extended segment swap file
error

15: Illegal home terminal

16: I/O error to home terminal

18: Object file with illegal process
device subtype

19: Process device subtype in
backup process is not the same as
in primary process

24: Unrecognized error from remote
node

ENV COMMON
02: Parameter error

03: Bounds error

04: File system error on library file

05: File system error on swap file

06: File system error on extended swap
file

08: Invalid home terminal

09: I/O error to home terminal

10: Unable to communicate with system
monitor

12: Illegal program-file format

13: Invalid library-file format

14: Process has undefined externals

15: No process control block available

16: Unable to allocate virtual address
space

17: Unlicensed privileged program

18: Library conflict

19: Program file and library file specified
are the same file

20: Object file has illegal process device
subtype

21: Process device subtype specified in
backup is not the same as that in
primary

22: Backup creation was specified but
caller is unnamed

24: DEFINE error

27: PFS size in object file is invalid

28: Unrecognized error from remote
node

5000 Too many failure/restart cycles (more than 10).

6000 Parameter passing error, or program logic error.
1For more information, see the Guardian Procedure Calls Reference Manual.

Table 7-10. Status Codes Returned for CHECKPOINT and START
BACKUP (page 2 of 2)

Error
Number Description
FORTRAN Reference Manual—528615-001
7-103

Statements START BACKUP Statement
Examples
• The following example specifies ENV OLD:

?ENV OLD

START BACKUP(CPU = 2, ERR = 400, OPTION = 16)

A START BACKUP statement with OPTION = 16 (only bit 11 is set) specifies the
following actions:

° Maintain a permanent nowait read on $RECEIVE.

° The primary process closes a file that it has just opened, if the backup process
cannot also open the file.

° The primary process ABENDs if CHECKPOINT causes a “bad checkpoint
parameter” error.

° A new backup is created immediately by the FORTRAN run-time system after
a takeover.

° The backup process stops if a STOP command stops the primary process.

• The following example specifies ENV COMMON.

?ENV COMMON

START BACKUP(CPU = 2, ERR = 400, OPTION = %1564)

If your program specifies ENV COMMON, OPTION = %1564 (all defined option
bits set to 1) specifies:

° The START BACKUP statement checkpoints the extended stack when a
backup process is created.

° FORTRAN does not maintain a permanent nowait read on $RECEIVE.

° The primary process stops the backup process if the backup process cannot
successfully open a file just opened by the primary process.

° FORTRAN returns an error code to the program if CHECKPOINT causes a
“bad checkpoint parameter” error.

° A new backup is created immediately by the FORTRAN run-time library after a
takeover.

° The backup becomes the new primary and creates a new backup if a STOP
TACL command stops the original primary.
FORTRAN Reference Manual—528615-001
7-104

Statements STOP Statement
STOP Statement
The STOP statement terminates program execution.

message

is an unsigned integer constant up to five digits long or a character constant up to
80 characters long that FORTRAN displays when your program executes a STOP
statement.

If you compile your program with ENV OLD in effect, FORTRAN displays message
on your home terminal unless you specify the TERM run-option when you run your
program, in which case FORTRAN displays message on the device you specify in
the TERM run-option.

If you compile your program with ENV COMMON, FORTRAN writes message to
the standard log file. For more information about the standard log file, see the CRE
Programmer’s Guide.

Considerations
• The STOP statement terminates execution of the entire executable program.

Executing a STOP statement in a subroutine terminates execution of that
subroutine, the calling main program, and all other subroutines called by the main
program.

• FORTRAN automatically closes files that are open when the STOP statement
executes.

• If you compile your FORTRAN program with the ENV OLD directive in effect, you
can call the FORTRANCOMPLETION utility routine instead of executing a STOP
statement. FORTRANCOMPLETION performs the same tasks as STOP, but you
can also specify completion codes and related information for the STOP and
ABEND procedures. For more information, see the FORTRANCOMPLETION
Routine on page 15-2.

If you compile your FORTRAN program with the ENV COMMON directive in effect,
you can call the FORTRAN_COMPLETION_ utility routine instead of executing a
STOP statement. FORTRAN_COMPLETION_ performs the same tasks as STOP,
but you can also specify completion codes and related information for the
PROCESS_STOP_ procedure. For more information, see the
FORTRANCOMPLETION Routine on page 15-2.

Example
STOP 'End of job.'

STOP 55489

STOP [message]
FORTRAN Reference Manual—528615-001
7-105

Statements SUBROUTINE Statement
SUBROUTINE Statement
The SUBROUTINE statement is the first statement of a subroutine.

name

is the symbolic name of the subroutine. It has the scope of an executable program.

dummy

is a variable name, an array name, a RECORD name, a dummy procedure name
or an asterisk, which corresponds to an alternate return specifier in a CALL
statement.

Considerations
• A subroutine must begin with a SUBROUTINE statement and end with an END

statement.

• A subroutine can include one or more ENTRY statements and one or more
RETURN statements.

• The name of dummy has the scope of the subroutine. Do not declare it in an
EQUIVALENCE, PARAMETER, DATA, INTRINSIC, SAVE, or COMMON statement
(except as a common block name) within the program unit.

• The subroutine name has the scope of an executable program and must be
different from any other external name.

• The subroutine name must not be the same as any common block name declared
anywhere in the executable program.

• For additional information about subroutines, see Section 4, Program Units.

Example
SUBROUTINE namelength (name, length)

CHARACTER name*(*)

length = LEN(name)

IF (length .GT. 80) THEN

PRINT *, 'YOUR ENTRY IS TOO LONG!'

END IF

END

SUBROUTINE name [([dummy [, dummy]...])]
FORTRAN Reference Manual—528615-001
7-106

Statements WRITE Statement
WRITE Statement
The WRITE statement outputs data to a specified unit.

unit

is one of the following:

° An integer expression from 1 through 999 that corresponds to a unit previously
connected by an OPEN statement or to a preconnected unit.

° An asterisk (*), which implies unit 6. Unit 6 is preconnected for formatted
sequential output.

° An internal file identifier.

If you omit the UNIT keyword, unit must be the first item in the list.

For information about external and internal files, see External and Internal Files on
page 5-3.

write-spec

is one of the following:

[FMT] = format

format is either the label of a FORMAT statement in the same program unit,
the name of an integer variable that has been assigned the label of a FORMAT
statement, the name of a character array that contains a format specification, a
character expression that yields a format specification, or an asterisk (*)
indicating a list-directed WRITE statement.

If you omit the optional FMT keyword, format must be the second item on the
control list and unit, without the UNIT specifier, must be the first item on the
list.

REC = recno

recno is an INTEGER*2 or INTEGER*4 expression that specifies the record
number of the record to write.

IOSTAT = ios

ios is a variable or array element of integer type that returns an error number
or zero (no error) following the WRITE operation. For more information about
error numbers, see the Error Numbers on page 6-5.

WRITE ([UNIT=] unit [[, write-spec]...])
 [output-item [, output-item]...]
FORTRAN Reference Manual—528615-001
7-107

Statements WRITE Statement
ERR = lbl

lbl is the label of an executable statement in the same program unit to which
control passes if an I/O error occurs during a WRITE statement.

UNLOCK = unlock

unlock is a logical expression that indicates how the file is to be shared
among two or more processes.

UPDATE = upd

upd is a logical expression that indicates whether records are to be updated,
added, or deleted.

LENGTH = len

len is an INTEGER*2 variable or array that helps you determine the last byte
position explicitly set when writing to an internal file.

TIMEOUT = to

to is an INTEGER*2 or INTEGER*4 expression that specifies (in hundredths
of a second) the maximum amount of time to wait for the WRITE operation to
complete.

MSGNUM = msgno

msgno is an integer expression. For additional information, see Section 14,
Interprocess Communication.

REPLY = reply

reply is an integer expression. For additional information, see Section 14,
Interprocess Communication.

output-item

is a valid expression, array name, array element name, RECORD name, or
implied DO list.

Considerations
• Order of control specifiers

You can write the control specifiers in any order except that if you omit the UNIT
keyword, unit must be the first item in the list. If you omit the FMT keyword, you
must specify format as the second item in the list, and the first item must be the
unit specifier without the UNIT keyword.

• Use of WRITE statement
FORTRAN Reference Manual—528615-001
7-108

Statements WRITE Statement
Execution of a WRITE statement causes values to be transferred from the output
list to the specified file.

The first character of each record has the effect defined by the SPACECONTROL
specifier in the OPEN statement.

Execution of a WRITE statement for a file that does not exist causes that file to be
created. This does not apply to structured files.

• Use of WRITE with EDIT format files

Use the INQUIRE statement’s NEXTREC specifier to obtain the line number of the
last line written.

If the WRITE statement writes more than one line, the system forms each
successive record number by adding 1000 to the last record number.

If the file was not opened with ACCESS = 'DIRECT' and the WRITE statement
does not specify upd = .TRUE., the WRITE statement deletes all lines (if any) from
the current position to the end of the file before writing the new line or lines.

You cannot WRITE to an EDIT format file in a FORTRAN program that has been
compiled to run as a NonStop process. A program compiled with ENV OLD in
effect is compiled to run as a NonStop process if it includes either a CHECKPOINT
or START BACKUP statement. A program compiled with ENV COMMON in effect
is compiled to run as a NonStop process if it includes a NONSTOP directive.

• REC specifier

The system interprets negative record numbers according to the file type, as
follows:

• UNLOCK specifier

Use the UNLOCK specifier to coordinate file access when a file is shared among
two or more processes.

If the value of unlock is .TRUE., FORTRAN uses the WRITEUPDATEUNLOCK
procedure to restore access to the current record for the other processes that
share the file. For additional information about file and record locking, see the
ENSCRIBE Programmer’s Guide.

• UPDATE specifier

The UPDATE specifier enables you to update, add, or delete records in structured
files.

File Type REC = -1 REC = -2
EDIT format Beginning of file End of file

Other unstructured End of file End of file

Relative End of file First unused record position
FORTRAN Reference Manual—528615-001
7-109

Statements WRITE Statement
If the value of upd is .TRUE., FORTRAN uses the WRITEUPDATE procedure to
update or delete a record. If the UNLOCK specifier is also present, FORTRAN
uses the WRITEUPDATEUNLOCK procedure.

If you omit this specifier or specify .FALSE. for upd, FORTRAN uses the WRITE
procedure to add a record to the file. For additional information about these
procedures, see the ENSCRIBE Programmer’s Guide.

• LENGTH specifier

The LENGTH specifier returns the last byte position explicitly set when writing to
an internal file. When writing to an internal file that can have multiple records, len
must be an array with at least as many elements as there are records in the
internal file.

Following execution of the WRITE statement, each element of len that
corresponds to a record not reached by the WRITE operation contains a value of -
1; each element that corresponds to a record that was written contains the number
of bytes explicitly set.

• TIMEOUT specifier

If the WRITE operation has not completed by the time to (where to is the timeout
value) centiseconds have elapsed, statement execution terminates with file system
error 40; if you use the IOSTAT specifier, ios returns 40.

You can use the TIMEOUT specifier to impose a time limit only if you specify
TIMED=.TRUE. when you open the file.

• MSGNUM and REPLY specifiers

For information about these specifiers, see Section 14, Interprocess
Communication.

• Implied DO list

See Using Implied DO Lists on page 5-27.

• Writing to unit 6

If you write a record to unit 6 and you have not already established a connection
for the unit, WRITE implicitly opens the unit using default parameters. If you
specify ENV COMMON and you write a record to unit 6, your FORTRAN routines
share access to standard output with routines written in other languages only if the
access mode for the unit is OUTPUT. However, the default access mode for unit 6
is I-O. If you want to share access to the file connected to unit 6, you must set the
unit’s access mode to OUTPUT before you execute the WRITE statement. You can
set the access mode:

In a FORTRAN OPEN statement, as in

OPEN(6, MODE = 'OUTPUT')
FORTRAN Reference Manual—528615-001
7-110

Statements WRITE Statement
In a TACL ASSIGN command, as in

ASSIGN FT006, , OUTPUT

In a UNIT compiler directive, as in

UNIT (6, OUTPUT)

A PRINT statement also opens unit 6 implicitly.

For more information about using unit 6 as a shared file, see the OPEN Statement
on page 7-70.

• If a WRITE statement causes unit 6 to be implicitly opened and your program is
running as a NonStop process, the FORTRAN run-time library does a stack
checkpoint to the backup process as a part of the implicit open.

• Error conditions

If you specify lbl, and an error occurs during the write operation, the WRITE
statement terminates, the file position becomes indeterminate, and FORTRAN
transfers control to the statement identified by lbl. If you also specify ios, you can
determine the error that occurred by analyzing ios.

If you specify ios, but not lbl, and an error occurs during the write operation,
your program continues executing with the statement that follows the WRITE
statement. You can analyze ios to determine the error that occurred, if any.

If you do not specify ios or lbl, and an error occurs, FORTRAN terminates your
program and displays a run-time diagnostic message.

Examples
WRITE(UNIT=6) ((array(j,k), k=1,2), J=1,2)

WRITE(payfile, ERR=20, UPDATE=.TRUE.,UNLOCK=.TRUE.) payrec

WRITE(4,200, ERR=250) name, address1, address2, codenumber
FORTRAN Reference Manual—528615-001
7-111

Statements WRITE Statement
FORTRAN Reference Manual—528615-001
7-112

8 Intrinsic Functions
Intrinsic functions are compiler-defined procedures that return a single value. Topics
covered in this section include:

Table 8-1 on page 8-2 summarizes the FORTRAN intrinsic functions described in this
section.

The general form of an intrinsic function reference is:

function-name (argument-list)

function-name is the generic or specific name of a FORTRAN intrinsic function.

argument-list consists of one or more expressions separated by commas. Each
argument you supply must correspond to the type required by function-name.

Declaring Intrinsic Functions
FORTRAN defines the type returned by each intrinsic function. If your program
includes a type declaration that specifies the name of an intrinsic function, the intrinsic
function’s name retains its meaning only if the type you specify is the same as the type
of the intrinsic defined in the FORTRAN environment.

If your type declaration specifies a type other than the intrinsic function’s type, or if you
use the name of an intrinsic function as the name of a variable, array, RECORD,
dummy argument, subprogram, or statement function in your program, the intrinsic
function’s name takes on the meaning you define. Within that program unit, you cannot
reference the intrinsic.

If you refer to an external function with the same name as an intrinsic function name,
you must declare the external function in an EXTERNAL statement. For additional
information, see Section 7, Statements.

If you pass an intrinsic function name as an argument in a CALL statement or external
function reference, and that intrinsic function name has not appeared as a referenced
function anywhere in the same program unit, FORTRAN assumes the name is a
variable rather than an intrinsic function, unless you declare the name as the name of
an intrinsic function in an INTRINSIC statement described in Section 7, Statements.

Topic Page
Declaring Intrinsic Functions 8-1

Referencing an Intrinsic Function 8-2

Using Generic and Specific Function Names 8-3
FORTRAN Reference Manual—528615-001
8-1

Intrinsic Functions Referencing an Intrinsic Function
Referencing an Intrinsic Function
You can reference an intrinsic function in a main program or in a subprogram.

You reference an intrinsic function by using it in an expression. For example, in the
following assignment statement, FORTRAN evaluates the MAX function to determine
the largest value in its argument list, multiplies the result of the MAX function by 5, and
stores the result in X:

x = MAX (dmon, tue, wed, thu, fri) * 5

Table 8-1. FORTRAN Intrinsic Functions (page 1 of 2)

Generic Function Name Description of Returned Value
ABS Absolute value

ACOS Arccosine expressed in radians

AIMAG Imaginary part of a complex number

AINT Integer after truncation

ANINT Nearest whole number

ASIN Arcsine expressed in radians

ATAN Arctangent expressed in radians

ATAN2 Arctangent expressed in radians

CHAR Character value of a specified position in the ASCII collating
sequence

CMPLX Conversion of any numeric type to complex

CONJG Conjugate of a complex number

COS Cosine of an angle in radians

COSH Hyperbolic cosine

DBLE Conversion of any numeric type to double precision

DIM Positive difference

DPROD Double precision product

EXP Exponential

FILENUM Guardian file number of a connected unit

ICHAR Character position of a character in the ASCII collating
sequence

INDEX Starting position of a substring within a string

INT Conversion of any numeric type to integer

LEN Length of a character string

LOG Natural logarithm

LOG10 Base 10 logarithm

MAX Largest value
FORTRAN Reference Manual—528615-001
8-2

Intrinsic Functions Using Generic and Specific Function Names
Using Generic and Specific Function Names
When you reference an intrinsic function using its generic name, the function accepts
arguments of several types, and returns a value whose type corresponds to the type of
the arguments you supply when you invoke the function. For example, if you supply a
list of real values in a MAX function, MAX returns a real value; if you supply a double
precision argument in an EXP function, EXP returns a double precision value.

The generic functions which perform type conversions (CMPLX, DBLE, INT, and
REAL) are the only exception to this rule.

When you reference an intrinsic function using its specific name, for example DSIN,
the function accepts arguments of a predetermined type. For example, the function
AMAX0 selects the largest integer from its argument list and returns it as a real value.

Generic names simplify references to intrinsic functions. The generic and specific
names of some intrinsic functions are identical. However, because the compiler
replaces the generic name with the specific name that corresponds to the type of the
function’s arguments, your program always invokes the correct intrinsic function.

Because HP FORTRAN includes integer types of different sizes—INTEGER*2,
INTEGER*4, and INTEGER*8—in addition to the standard INTEGER type, all intrinsic
functions that return INTEGER according to the ANSI standard, return INTEGER*2 in
HP FORTRAN. HP FORTRAN provides analogous intrinsic functions for types
INTEGER*4 and INTEGER*8.

This section describes FORTRAN intrinsic functions. The functions are listed in
alphabetical order according to their generic type. For example, all sine routines,
including ASIN, DSIN, and so forth, are listed under the sine function.

In each function description, the generic function name is listed first in the table of
acceptable function names. Argument and function types are not specified for the
generic entry because they can be any valid type for the function. The valid types for

MIN Smallest value

MOD Remainder

NINT Nearest integer

REAL Conversion of any numeric type to real

SIGN Value after transferring a sign

SIN Sine of an angle in radians

SINH Hyperbolic sine

SQRT Square root

TAN Tangent of an angle in radians

TANH Hyperbolic tangent

Table 8-1. FORTRAN Intrinsic Functions (page 2 of 2)

Generic Function Name Description of Returned Value
FORTRAN Reference Manual—528615-001
8-3

Intrinsic Functions ABS Function
the arguments and return value are shown in the entries that follow the generic name
in the table.

Considerations
• All items in the argument list of an intrinsic function must be the same type, unless

the function’s description specifies otherwise.

• When you use an intrinsic name as an actual argument, you must use a specific
function name, not a generic function name. In other contexts, you can use either a
generic or specific function name.

• You can use either a specific or a generic function name in an INTRINSIC
statement.

• If you use a specific or generic function name as a dummy argument, FORTRAN
does not interpret it as an intrinsic function reference within that program unit.

ABS Function
The ABS function returns the absolute value of its argument.

The following table describes the argument and function type of the generic ABS
function and its associated specific functions.

Considerations
• For an integer, real, or double precision argument, the result type of the ABS

function is the same as the type of its argument.

• For a complex argument z = CMPLX (x, y), the value of ABS (z) is defined as

 and its type is real.

Syntax Argument Type Function Type
ABS (x)

ABS (x) Real Real

IABS (x) Integer Integer

IABS4 (x) Integer*4 Integer*4

IABS8 (x) Integer*8 Integer*8

DABS (x) Double Precision Double Precision

CABS (x) Real Real
x is an arithmetic expression.

X
2

Y
2

+

FORTRAN Reference Manual—528615-001
8-4

Intrinsic Functions ACOS Function
Examples of the ABS Function
The following program prints a value of 530.01 for X, 530.01 for Y, and 0.5E-03 for Z:

COMPLEX xnumber

xnumber = (5.3e2, -3.2)

realnum = -.0005

x = CABS (xnumber)

y = ABS (xnumber)

z = ABS (realnum)

PRINT '(2F9.2, E9.1)', x, y, z

END

ACOS Function
The ACOS function returns an arccosine expressed in radians.

The table below shows the argument and function type for the generic ACOS function
and its associated specific function.

Considerations
• The result type of the ACOS function is the same as the type of its argument.

• The value of ACOS (x), where ABS (x) ≤ 1.0, is the angle a (in radians) such that

 and x = COS (a)

• If ABS (x) > 1.0, program execution terminates abnormally with an error message.

Example of the ACOS Function
FORTRAN stores the value .967937 in Y:

y = ACOS (.567)

Syntax Argument Type Function Type
ACOS (x)

ACOS (x) Real Real

DACOS (x) Double Precision Double Precision
x is an arithmetic expression.

0 a π≤ ≤
FORTRAN Reference Manual—528615-001
8-5

Intrinsic Functions AIMAG Function
AIMAG Function
The AIMAG function returns the imaginary part of a complex number.

z

is a complex expression

Considerations
The AIMAG function returns the imaginary part of a complex number. Its type is always
real. That is, if

z = CMPLX (x, y)

then,

AIMAG (z) = y

Example of the AIMAG Function
In the following example, if the value (4E3,-2.1) is read into XNUMBER, the value -2.1
is stored in Y.

COMPLEX xnumber

READ (*, *) xnumber

y = AIMAG (xnumber)

AINT Function
The AINT function returns the non-fractional part of a number.

The table below shows the argument and function type of the AINT generic function
and of its associated specific function.

Considerations
• The result type of the AINT function is the same as the type of its argument.

• If the absolute value of x is less than 1.0, AINT returns zero.

AIMAG (z)

Syntax Argument Type Function Type
AINT (x)

AINT (x) Real Real

DINT (x) Double Precision Double Precision
x is an arithmetic expression.
FORTRAN Reference Manual—528615-001
8-6

Intrinsic Functions ANINT Function
• If ABS (x) > 1.0, AINT returns the integer whose magnitude is the largest integer
that does not exceed the magnitude of x and whose sign is the same as that of x.

Examples of the AINT Function
x = DINT (y)

a = AINT (.01 * c)

ANINT Function
The ANINT function returns the whole number that is closest in value to its argument.

The table below shows the argument and function type for the ANINT function and its
associated specific function.

Considerations
• The result type of the ANINT function is the same as the type of its argument.

• If x is zero, ANINT returns zero.

• If x is greater than zero, ANINT returns:

AINT (x + 0.5)

• If x is less than zero, ANINT returns:

AINT (x - 0.5)

Example of the ANINT Function
esttax = ANINT (price) * .07 * items

Syntax Argument Type Function Type
ANINT (x)

ANINT (x) Real Real

DNINT (x) Double Precision Double Precision
x is an arithmetic expression.
FORTRAN Reference Manual—528615-001
8-7

Intrinsic Functions ASIN Function
ASIN Function
The ASIN function returns an arcsine expressed in radians.

The table below shows the argument and function type for the generic ASIN function
and its associated specific function.

Considerations
• The result type of the ASIN function is the same as the type of its argument.

• The value of ASIN (x), where ABS (x) < 1.0, is the angle a (in radians) such that

 and x = SIN (a)

• If ABS (x) > 1.0, program execution terminates abnormally with an error message.

Example of the ASIN Function
The value .602859 is stored in Y:

y = ASIN (.567)

ATAN Function
The ATAN function returns an arctangent expressed in radians.

The table below shows the argument and function type for the ATAN generic function
and its associated specific function.

Syntax Argument Type Function Type
ASIN (x)

ASIN (x) Real Real

DASIN (x) Double Precision Double Precision
x is an arithmetic expression.

Syntax Argument Type Function Type
ATAN (x)

ATAN (x) Real Real

DATAN (x) Double Precision Double Precision
x is an arithmetic expression.

π 2⁄ a π 2⁄≤ ≤–
FORTRAN Reference Manual—528615-001
8-8

Intrinsic Functions ATAN2 Function
Considerations
• The result type of the ATAN function is the same as the type of its argument.

• The value of ATAN (x), for any x, is the angle a (in radians) such that

 and x = TAN (a)

Example of the ATAN Function
v = ATAN (x)

ATAN2 Function
The ATAN2 function returns an arctangent expressed in radians.

The table below shows the argument and function type for the ATAN2 generic function
and its associated specific function.

Considerations
• The result type of the ATAN2 function is the same as the type of its arguments.

Both arguments must be the same type.

• The value of ATAN2 (y, x) is the angle a (in radians) such that

 and y/x = TAN (a)

and the quadrant of a is determined by the signs of the ordinate y and the abscissa
x as follows:

if y < 0 then a < 0

if x < 0 then |a| > π/2

if x = 0 then |a| = π/2

• If x and y are both zero, program execution terminates abnormally with an error
message.

Example of the ATAN2 Function
a = ATAN2 (4.0, 5.0)

Syntax Argument Type Function Type
ATAN2 (y, x)

ATAN2 (y, x) Real Real

DATAN2 (y, x) Double Precision Double Precision
y and x are arithmetic expressions.

π 2⁄ a π 2⁄≤ ≤–

π a< π≤–
FORTRAN Reference Manual—528615-001
8-9

Intrinsic Functions CHAR Function
CHAR Function
The CHAR function returns the character value of a specified position in the ASCII
collating sequence.

n

is an integer expression with a value from 0 through 127.

Considerations
• The CHAR function result is always type character*1.

• The value of CHAR (n) is undefined for argument values of

n ≤ 0 or n > 127

• The CHAR function is the inverse of the ICHAR function.

• The ASCII collating sequence is given in Appendix A, ASCII Character Set.

Examples of the CHAR Function
The following example returns a value of “Z” for LETTER and a value of “#” for SIGN:

CHARACTER letter, sign

letter = CHAR (90)

sign = CHAR (35)

CMPLX Function
The CMPLX function returns the complex value of any numeric type.

x

is an expression of integer, real, double precision, or complex type. See
Considerations.

y

is an expression of integer, real, or double precision type.

CHAR (n)

CMPLX
x()
x y,()

FORTRAN Reference Manual—528615-001
8-10

Intrinsic Functions CONJG Function
Considerations
• If you specify two arguments, they must be the same type: integer, real, or double

precision. The data type of the value returned by CMPLX is always complex.

• For one argument of complex type, CMPLX (x) returns x. For one argument of
integer, real, or double precision type, CMPLX (x) is equivalent to CMPLX (x, 0).

• If you specify both arguments, CMPLX (x, y) returns a complex number with a
real part equal to REAL (x) and an imaginary part equal to REAL (y).

Example of the CMPLX Function
REAL a

COMPLEX x

READ (*, *) a

x = CMPLX (a)

CONJG Function
The CONJG function returns the conjugate of a complex number.

z

is an arithmetic expression of complex type.

Considerations
• If the argument is z = CMPLX (x, y), then the value of CONJG (z) is defined as

CMPLX (x, - y)

• Note that for any complex number z = CMPLX (x, y),

CABS (z) =

and

z * CONJG (z) = CMPLX (x2 + y2, 0)

Example of the CONJG Function
COMPLEX a, b

b = CONJG (a)

CONJG (z)

REAL Z∗ CONJG Z()()
FORTRAN Reference Manual—528615-001
8-11

Intrinsic Functions COS Function
COS Function
The COS function returns the cosine of an angle expressed in radians.

The table below shows the argument and function type for the COS generic function
and its associated specific functions.

Considerations
• The result type of the COS function is the same as the type of its argument.

• For a real or double precision argument, the function value is always in the range

-1.0 ≤ COS (x) ≤ 1.0

• For a complex argument z = CMPLX (x, y), the value of COS (z) is defined as

CMPLX (COS (x) * COSH (y), -SIN (x) * SINH (y))

Example of the COS Function
x = COS (.0572)

COSH Function
The COSH function returns a hyperbolic cosine.

The table below shows the argument and function type for the COSH generic function
and its associated specific function.

Syntax Argument Type Function Type
COS (x)

COS (x) Real Real

DCOS (x) Double Precision Double Precision

CCOS (x) Complex Complex
x is an arithmetic expression.

Syntax Argument Type Function Type
COSH (x)

COSH (x) Real Real

DCOSH (x) Double Precision Double Precision
x is an arithmetic expression.
FORTRAN Reference Manual—528615-001
8-12

Intrinsic Functions DBLE Function
Considerations
• The result type of the COSH function is the same as the type of its argument.

The value of COSH (x) is defined as

(EXP (x) - EXP (- x))/2.0

• Note that for all values of x

COSH (- x) = COSH (x)

and

COSH (x) ≥ 1.0

Example of the COSH Function
y = COSH (x)

DBLE Function
The DBLE function returns a double precision value.

x

is an expression of any numeric type.

Considerations
• For an argument of double precision type, DBLE (x) returns x.

• For an argument of integer or real type, DBLE (x) returns a value with as much
precision of the significant part of x as a double precision datum can contain.

• For an argument of complex type, DBLE (x) returns the real part of x with as much
precision of the significant part of x as a double precision datum can contain.

Example of the DBLE Function
DOUBLE PRECISION tincome

tincome = DBLE (pay) * population

DBLE (x)
FORTRAN Reference Manual—528615-001
8-13

Intrinsic Functions DIM Function
DIM Function
The DIM function returns a positive difference.

The table below shows the argument and function type for the DIM generic function
and its associated specific functions.

Considerations
• The result type of the DIM function is the same as the type of its arguments. Both

arguments must be the same type.

• The value of DIM (x, y) is

x - y, if x > y

y - x, if x ≤ y.

Example of the DIM Function
difference = DIM (a, b)

DPROD Function
The DPROD function returns a double precision product.

x

y

are arithmetic expressions of type real.

Syntax Argument Type Function Type
DIM (x, y)

DIM (x, y) Real Real

IDIM (x, y) Integer Integer

IDIM4 (x, y) Integer*4 Integer*4

IDIM8 (x, y) Integer*8 Integer*8

DDIM (x, y) Double Precision Double Precision
x and y are arithmetic expressions.

DPROD (x, y)
FORTRAN Reference Manual—528615-001
8-14

Intrinsic Functions EXP Function
Considerations
• Both arguments to DPROD are type real, but the DPROD function result is type

double precision.

• The value of DPROD (x, y) is defined as:

DBLE (x) * DBLE (y)

Example of the DPROD Function
REAL cost (100)

DOUBLE PRECISION ttax, tax

ttax = 0

DO 20 j = 1, 100

 tax = DPROD (cost (j), .07)

 ttax = ttax + tax

20 CONTINUE

EXP Function
The EXP function returns an exponential.

The table below shows the argument and function type for the EXP generic function
and its associated specific functions.

Considerations
• The result type of the EXP function is the same as the type of its argument.

• For a real or double precision argument x, the value of EXP(x) is

ex

where e is the natural logarithm base, or approximately

2.71828 18284 59045

• For a complex argument z = CMPLX(x, y), the value of EXP(z) is defined as:

CMPLX (EXP(x) * COS(y), EXP(x) * SIN(y))

Syntax Argument Type Function Type
EXP (x)

EXP (x) Real Real

DEXP (x) Double Precision Double Precision

CEXP (x) Complex Complex
x is an arithmetic expression.
FORTRAN Reference Manual—528615-001
8-15

Intrinsic Functions FILENUM Function
Example of the EXP Function
If the value 8 is stored in X, the following statement stores the value 2980.96 in Y:

y = EXP (x)

FILENUM Function
The FILENUM function returns the Guardian open file number of the file associated
with the specified unit number.

k

is an integer expression ranging from 1 through 999 specifying the unit number to
which the file is connected.

Considerations
• The value of FILENUM (k) is defined as:

-2 if unit number k is not defined

-1 if unit number k is defined but is not open

≥0 if unit number k is open

• The function value can be used as the file number in calls to Guardian procedures
that require a file number parameter.

FILENUM (k)
FORTRAN Reference Manual—528615-001
8-16

Intrinsic Functions ICHAR Function
Example of the FILENUM Function
The following example uses the FILENUM function to disable the echo on a terminal:

?GUARDIAN SETMODE

 CHARACTER * 10 s

 OPEN (UNIT = 4)

10 CONTINUE

C Disable echo and do a READ with PROMPT = >:

 CALL setmode (FILENUM (4), 20, 0)

 READ (UNIT = 4, FMT = 1000, PROMPT= '>', END = 20) s

1000 FORMAT (A10)

 .

C Leave the terminal with echo enabled!!!

20 CALL setmode (FILENUM (4), 20, 1)

 STOP

 END

ICHAR Function
The ICHAR function converts a character datum to an integer which represents the
character’s position in the ASCII collating sequence, as shown in Appendix A, ASCII
Character Set.

The table below shows the argument and function type for the ICHAR generic function
and its associated specific functions.

Considerations
• The result of the ICHAR function is always in the range

0 ≤ ICHAR (c) ≤ 255

• The ICHAR function is the inverse of the CHAR function.

Syntax Argument Type Function Type
ICHAR (c) Character*1 Integer

ICHAR4 (c) Character*1 Integer*4

ICHAR8 (c) Character*1 Integer*8
c is a character expression with a length of one.
FORTRAN Reference Manual—528615-001
8-17

Intrinsic Functions INDEX Function
Example of the ICHAR Function
The following program stores the number 35 in I and J.

CHARACTER name

name = '#'

i = ICHAR (name)

j = ICHAR ('#')

PRINT *, i, j

END

INDEX Function
The INDEX function returns an integer that points to the first character of a substring
relative to the string that contains it.

The table below shows the argument and function type for the INDEX generic function
and its associated specific functions.

string

is a character expression whose value is to be searched.

sub

is a character expression whose value is the substring to be found within string.

Considerations
• INDEX returns the starting position of the first occurrence of sub in string.

• INDEX returns a value of 0 if sub does not occur in string or if the length of sub
exceeds that of string.

• Blank positions in character string values are significant. For example,

CHARACTER * 15 password, try

password = 'impassable'

try = 'able'

n = INDEX (password, try)

Syntax Argument Type Function Type
INDEX (string, sub) Character Integer

INDEX4 (string, sub) Character Integer*4

INDEX8 (string, sub) Character Integer*8
FORTRAN Reference Manual—528615-001
8-18

Intrinsic Functions INT Function
sets N = 0, because the two variables are matched as follows:

password = 'impassable^^^^^'

try = 'able^^^^^^^^^^^'

Example of the INDEX Function
The following example returns a value of 1 for POSITION:

RECORD title

CHARACTER * 10 author

CHARACTER * 10 name

END RECORD

CHARACTER * 5 sub

sub = 'Ander'

title^author = 'Anderson'

position = INDEX (title^author, sub)

PRINT *, position

INT Function
The INT function returns a value of integer type.

The table below shows the argument and function type of the generic INT function and
its associated specific functions:

Syntax Argument Type Function Type
INT (x) Arithmetic* Integer

INT4 (x) Arithmetic* Integer*4

INT8 (x) Arithmetic* Integer*8

IFIX (x) Real Integer

IFIX4 (x) Real Integer*4

IFIX8 (x) Real Integer*8

IDINT (x) Double Precision Integer

IDINT4 (x) Double Precision Integer*4

IDINT8 (x) Double Precision Integer*8
x is an arithmetic expression.

* Arithmetic means the argument can be an integer, real, double precision, or complex number.
FORTRAN Reference Manual—528615-001
8-19

Intrinsic Functions LEN Function
Considerations
• For an argument of integer type, INT (x) returns x.

• For an argument of real or double precision type:

For example,

INT (-3.8) returns -3.

• For an argument of complex type, INT (x) is the same as INT (REAL (x)).

Example of the INT Function
y = INT (x / 3)

p = x + IFIX4 (s * r)

LEN Function
The LEN function returns the declared length of a character item.

The table below shows the argument and function type of the generic LEN function and
its associated specific functions:

Considerations
If the argument to LEN is a character variable, LEN returns the declared length of the
variable, not the length of a string that you assigned to the variable. In the following
example, LEN returns 20, the length of NAME, not 7, the length of the string assigned
to NAME:

CHARACTER * 20 name

INTEGER name_len

name = 'Amadeus'

name_len = LEN(name)

if | x| < 1.0 INT (x) returns 0.

if | x| ≥ 1.0 INT (x) returns the integer whose magnitude is the largest
integer that does not exceed the magnitude of x and
whose sign is the same as that of x.

Syntax Argument Type Function Type
LEN (string) Character Integer

LEN4 (string) Character Integer*4

LEN8 (string) Character Integer*8
String is a character expression.
FORTRAN Reference Manual—528615-001
8-20

Intrinsic Functions LOG Function
LEN is particularly useful to determine the length of a character type argument to a
subroutine. See the following example.

Example of the LEN Function
SUBROUTINE word (entry, length)

CHARACTER entry * (*)

length = LEN (entry)

IF (length .GT. 80) THEN

 PRINT *, 'Your entry is too long!'

 END IF

END

LOG Function
The LOG function returns a natural (or base e) logarithm.

The table below shows the argument and function type for the LOG generic function
and its associated specific functions.

Considerations
• The result type of the LOG function is the same as the type of its argument.

• For a real or double precision argument x, the value of LOG (x) is the number Y
that:

x = ey

where e is the natural logarithm base, or approximately

2.71828 18284 59045

If x < 0, program execution terminates abnormally with an error message.

• For a complex argument z = CMPLX (x, y), the value of LOG(z) is defined as

CMPLX (ALOG (CABS (z)), ATAN2 (y, x))

If x = 0 and y = 0, program execution terminates abnormally with an error
message.

Syntax Argument Type Function Type
LOG (x)

ALOG (x) Real Real

DLOG (x) Double Precision Double Precision

CLOG (x) Complex Complex
x is an arithmetic expression.
FORTRAN Reference Manual—528615-001
8-21

Intrinsic Functions LOG10 Function
• The value returned by the LOG function in programs that specify ENV OLD might
differ slightly from the value returned by the LOG function in programs that specify
ENV COMMON. The value returned by the LOG function when you specify ENV
COMMON differs slightly because of rounding methods on the final result.

Example of the LOG Function
x = ALOG (a) + ALOG (b)

LOG10 Function
The LOG10 function returns a common (or base 10) logarithm.

The table below shows the argument and function type for the LOG10 generic function
and its associated specific functions.

Considerations
• The value of LOG10 (x) is the number y such that

x = 10.0y

• The result type of the LOG10 function is the same as the type of its argument.

• If x < 0, program execution terminates abnormally with an error message.

• The value returned by the LOG10 function in programs that specify ENV OLD
might differ slightly from the value returned by the LOG10 function in programs that
specify ENV COMMON. The value returned by the LOG10 function when you
specify ENV COMMON differs slightly because of rounding methods on the final
result.

Example of the LOG10 Function
DOUBLE PRECISION x, a

x = DLOG10 (a)

Syntax Argument Type Function Type
LOG10 (x)

ALOG10 (x) Real Real

DLOG10 (x) Double Precision Double Precision
x is an arithmetic expression.
FORTRAN Reference Manual—528615-001
8-22

Intrinsic Functions MAX Function
MAX Function
The MAX function returns the largest value in its argument list.

The table below shows the argument and function type for the MAX generic function
and its associated specific functions.

Considerations
• All arguments to the MAX function must be the same type.

• The result type of the MAX function is the same as the type of its arguments.

• You can specify up to 63 arguments to the MAX function. If you need to use more
than 63 arguments, you can distribute the arguments among several MAX
functions and take the MAX of those functions:

MAX (MAX (a, b, c, ... , x), MAX (a1, b1, c1, ... , x1))

Example of the MAX Function
READ *, x, y, z

greatest = MAX (x, y, z)

Syntax Argument Type Function Type
MAX (x1, ... , xn)

MAX0 (x1, ... , xn) Integer Integer

MAX04 (x1, ... , xn) Integer*4 Integer*4

MAX08 (x1, ... , xn) Integer*8 Integer*8

AMAX0 (x1, ... , xn) Integer Real

AMAX04 (x1, ... , xn) Integer*4 Real

AMAX08 (x1, ... , xn) Integer*8 Real

MAX1 (x1, ... , xn) Real Integer

MAX14 (x1, ... , xn) Real Integer*4

MAX18 (x1, ... , xn) Real Integer*8

AMAX1 (x1, ... , xn) Real Real

DMAX1 (x1, ... , xn) Double Precision Double Precision
Each xi is an arithmetic expression.
FORTRAN Reference Manual—528615-001
8-23

Intrinsic Functions MIN Function
MIN Function
The MIN function returns the smallest number from its argument list.

The table below shows the argument and function type for the MIN generic function
and for its associated specific functions.

Considerations
• All arguments to the MIN function must be of the same type.

• The result type of the MIN function is the same as the type of its arguments.

• You can specify up to 63 arguments to the MIN function. If you need to use more
than 63 arguments, you can distribute the arguments among several MIN functions
and then take the MIN of those functions:

MIN (MIN (a, b, c, ... , x), MIN (a1, b1, c1, ... , x1))

Example of the MIN Function
REAL mon

day = MIN (mon, tues, wed, thu, fri)

Syntax Argument Type Function Type
MIN (x1, ... , xn)

MIN0 (x1, ... , xn) Integer Integer

MIN04 (x1, ... , xn) Integer*4 Integer*4

MIN08 (x1, ... , xn) Integer*8 Integer*8

AMIN0 (x1, ... , xn) Integer Real

AMIN04 (x1, ... , xn) Integer*4 Real

AMIN08 (x1, ... , xn) Integer*8 Real

MIN1 (x1, ... , xn) Real Integer

MIN14 (x1, ... , xn) Real Integer*4

MIN18 (x1, ... , xn) Real Integer*8

AMIN1 (x1, ... , xn) Real Real

DMIN1 (x1, ... , xn) Double Precision Double Precision
Each xi is an arithmetic expression.
FORTRAN Reference Manual—528615-001
8-24

Intrinsic Functions MOD Function
MOD Function
The MOD function returns the remainder of x divided by y.

The table below shows the argument and function type for the MOD generic function
and its associated specific functions.

Considerations
• The types of both arguments to MOD must be the same.

• The value of MOD (x, y) is defined as

x - (INT(x/y) * y)

• The result type of the MOD function is the same as the type of its arguments.

• If y is zero, the function is undefined.

Example of the MOD Function
The program below uses MOD to print a blank line every fifth line:

DO 20, j = 1,100

 WRITE (*, 22) customer (k)

 IF (MOD (j, 5) .EQ. 0) THEN

 PRINT *, ' '

 END IF

20 CONTINUE

Syntax Argument Type Function Type
MOD (x, y)

MOD (x, y) Integer Integer

MOD4 (x, y) Integer*4 Integer*4

MOD8 (x, y) Integer*8 Integer*8

AMOD (x, y) Real Real

DMOD (x, y) Double Precision Double Precision

x and y are arithmetic expressions.
FORTRAN Reference Manual—528615-001
8-25

Intrinsic Functions NINT Function
NINT Function
The NINT function returns the integer that is closest to the value of its argument.

The table below shows the argument and function type of the NINT generic function
and its associated specific functions:

Considerations
• If x is zero, NINT returns zero.

• If x is greater than zero, NINT returns:

INT (x + 0.5)

• If x is less than zero, NINT returns:

INT (x - 0.5)

Example of the NINT Function
DOUBLE PRECISION tonnage

INTEGER * 8 volume

volume = IDNINT8 (tonnage)

REAL Function
The REAL function returns a real type value.

The table below describes the argument and function type of the generic REAL
function and of its associated specific functions.

Syntax Argument Type Function Type
NINT (x) Real Integer

NINT4 (x) Real Integer*4

NINT8 (x) Real Integer*8

IDNINT (x) Double Precision Integer

IDNINT4 (x) Double Precision Integer*4

IDNINT8 (x) Double Precision Integer*8
x is an arithmetic expression.

Syntax Argument Type Function Type
REAL (x) Integer Real

FLOAT (x) Integer Real

SNGL (x) Double Precision Real
x is an arithmetic expression.
FORTRAN Reference Manual—528615-001
8-26

Intrinsic Functions SIGN Function
Considerations
• For an argument of real type, REAL (x) returns x.

• For an argument of integer or double precision type, REAL (x) has as much
precision of the significant part of x as a real datum can contain.

• For an argument of complex type, REAL (x) returns the value of the real part of x.

That is,

REAL(CMPLX(x, y))

returns X.

• For an integer argument, FLOAT (x) returns the same value as REAL (x).

Example of the REAL Function
total = FLOAT (number) * 2.50

SIGN Function
The SIGN function returns a value after transferring a sign.

The table below shows the argument and function type for the SIGN generic function
and its associated specific functions.

Considerations
• The result of the SIGN function is of the same type as the arguments. Both

arguments must be of the same type.

• The value of SIGN (x, y) is defined as:

|x| if y ≥ 0

-|x| if y < 0

Syntax Argument Type Function Type
SIGN (x, y)

SIGN (x, y) Real Real

ISIGN (x, y) Integer Integer

ISIGN4 (x, y) Integer*4 Integer*4

ISIGN8 (x, y) Integer*8 Integer*8

DSIGN (x, y) Double Precision Double Precision
x and y are arithmetic expressions.
FORTRAN Reference Manual—528615-001
8-27

Intrinsic Functions SIN Function
Example of the SIGN Function
z = SIGN (a, b)

SIN Function
The SIN function returns the sine of an angle expressed in radians.

The table below shows the argument and function type for the SIN generic function
and its associated specific functions.

Considerations
• The result type of the SIN function is the same as the type of its argument.

• For a real or double precision argument, the function value is always in the range

-1.0 ≤ SIN (x) ≤ 1.0

• For a complex argument z = CMPLX (X,Y), the value of SIN(Z) is defined as

CMPLX (SIN (x) * COSH (y), COS (x) * SINH (y))

Example of the SIN Function
x = SIN (y)

SINH Function
The SINH function returns a hyperbolic sine.

The table below shows the argument and function type for the SINH generic function
and its associated specific function.

Syntax Argument Type Function Type
SIN (x)

SIN (x) Real Real

DSIN (x) Double Precision Double Precision

CSIN (x) Complex Complex
x is an arithmetic expression.

Syntax Argument Type Function Type
SINH (x)

SINH (x) Real Real

DSINH (x) Double Precision Double Precision
x is an arithmetic expression.
FORTRAN Reference Manual—528615-001
8-28

Intrinsic Functions SQRT Function
Considerations
• The result type of the SINH function is the same as the type of its argument.

• The value of SINH (x) is defined as

(EXP (x) - EXP (-x))/2.0

• Note that

SINH (-x) = -SINH (x)

Example of the SINH Function
y = SINH (x)

SQRT Function
The SQRT function returns the square root of a number.

The table below shows the argument and function type for the SQRT generic function
and its associated specific functions.

Considerations
• The result type of the SQRT function is the same as the type of its argument.

• For a real or double precision argument x < 0, program execution terminates
abnormally with an error message.

• For a complex argument z = CMPLX (x, y), the value of SQRT (z) is defined as

CMPLX (, SIGN (,)

• If ABS (z) < x, program execution terminates abnormally with an error message.

Example of the SQRT Function
COMPLEX y, z

z = CSQRT (y)

a = SQRT (b)

Syntax Argument Type Function Type
SQRT (x)

SQRT (x) Real Real

DSQRT (x) Double Precision Double Precision

CSQRT (x) Complex Complex
x is an arithmetic expression.

Z X+() 2.0⁄ Z X–() 2.0⁄ Y°)°
FORTRAN Reference Manual—528615-001
8-29

Intrinsic Functions TAN Function
TAN Function
The TAN function returns the tangent of an angle expressed in radians.

The table below shows the argument and function type for the TAN generic function
and its associated specific function.

Considerations
• The result type of the TAN function is the same as the type of its argument.

• The value of TAN (x) is defined as:

SIN (x)/COS (x)

and is undefined for values of x for which COS (x) = 0.

Example of the TAN Function
x = TAN (y)

TANH Function
The TANH function returns a hyperbolic tangent.

The table below shows the argument and function type for the TANH generic function
and its associated specific function.

Considerations
• The result type of the TANH function is the same as the type of its argument.

• The value of TANH (x) is defined as

SINH (x)/COSH (x)

Syntax Argument Type Function Type
TAN (x)

TAN (x) Real Real

DTAN (x) Double Precision Double Precision
x is an arithmetic expression.

Syntax Argument Type Function Type
TANH (x)

TANH (x) Real Real

DTANH (x) Double Precision Double Precision
x is an arithmetic expression.
FORTRAN Reference Manual—528615-001
8-30

Intrinsic Functions TANH Function
Note that

TANH (-x) = -TANH (x)

Example of the TANH Function
y = TANH (x)
FORTRAN Reference Manual—528615-001
8-31

Intrinsic Functions TANH Function
FORTRAN Reference Manual—528615-001
8-32

9 Program Compilation
You run the FORTRAN compiler, which resides in a file named
$SYSTEM.SYSTEM.FORTRAN, by using the TACL implied RUN command.

The FORTRAN compiler accepts source files containing FORTRAN statements,
comment lines, and compiler directives. Source files alone or in combination with other
source files and object files constitute the input to a compilation. Topics covered in this
section include:

The compilation of a FORTRAN program involves the following three processes:

• FORTRAN, which compiles code and calls BINSERV and SYMSERV for additional
processing as needed. FORTRAN produces all listings after BINSERV and
SYMSERV have completed processing.

• BINSERV, the compile-time binder, is present throughout a compilation (unless you
specify only syntax checking). BINSERV stops when it detects an error in the
source code. Output listings always contain binder statistics if an object file was
produced.

• SYMSERV, which produces object-file symbol tables and source level cross-
reference information. SYMSERV is present throughout a compilation.

FORTRAN starts BINSERV and SYMSERV automatically. Figure 9-1 shows the
relationship among the processes.

Topic Page
Compiling a Program 9-2

TACL PARAM Commands 9-5

Compiler Operation 9-7

Interpreting Compilation Listings 9-8

Separate Compilation 9-21

Compiling Programs That Use Extended Data Space 9-23

Binding Programs That Use Extended Memory 9-24

User Library Alternatives for Utility Subprograms 9-25

Sample Programs Using the Search Directive 9-25
FORTRAN Reference Manual—528615-001
9-1

Program Compilation Compiling a Program
Compiling a Program
The syntax diagram below describes the implied RUN command to compile a
FORTRAN program.

source

is the name of a disk file, process, $RECEIVE, magnetic tape (unlabeled and
unblocked only), class map DEFINE, or terminal from which the compiler reads
source-language statements and compiler directives. Disk files can be structured,
unstructured, or EDIT format. FORTRAN reads 132-byte records from source
until it encounters an end-of-file record.

The form of source is one of the following:

[\node.][$volume.][subvolume.] fileid

$device-name

$logical-device-number

$process-name

Figure 9-1. The Compilation Process

FORTRAN [/[IN source] [,OUT [list]] [, option]... /]
 [object] [; directive [, directive]...]

VST0901.vsd

Fsource

Prog1

Sub1

FORTRAN Listing

Object FileBINSERV

Fobject

Common

Sub2

Object Files

SYMSERV

Source Files
FORTRAN Reference Manual—528615-001
9-2

Program Compilation Compiling a Program
If you omit IN source, the compiler reads from the TACL IN file, normally the
home terminal.

list

is the name of a process (including a spooler collector), class map or spool
DEFINE, printer, magnetic tape (unlabeled and unblocked only), terminal, or disk
file to which FORTRAN directs its listing output. A disk file can be structured (but
not key-sequenced), unstructured, or an EDIT format file. The list name uses the
same form as source. (See Using a Tape or Disk File for the Listing Output on
page 9-4 when list is a magnetic tape or disk file.) If you omit OUT list,
FORTRAN uses the TACL OUT file, normally the home terminal. When a disk file
name is given that doesn’t exist, an EDIT format file is created for the listing output.
When list is a spooler collector process, the compiler uses Level-3 spooling,
regardless of any SPOOLOUT parameter given. If you specify OUT but omit list,
output is suppressed.

option

is any of the RUN options defined by TACL. The following are among the more
frequently used options. For a complete list of run options, see the TACL
Reference Manual.

CPU cpu-number

is an integer ranging from 0 through 15 that specifies in which processor to run
the compiler. If you omit this option, the compiler runs in the same processor
as TACL. (If your system runs a $CMON process, the $CMON process might
assign a different processor for the compilation. For information about $CMON,
see the Guardian Programmer’s Guide.)

PRI priority

is an integer ranging from 1 through 199 that specifies the execution priority of
the compiler. Processes with higher numbers execute first.

MEM num-pages

is an integer ranging from 1 through 64 that specifies the maximum number of
virtual data pages to allocate for the process. If you omit this option, FORTRAN
allocates 64 pages. If you specify a smaller number, the compiler run usually
fails.

NOWAIT

specifies that TACL display a prompt after it sends the startup message to the
compiler, rather than waiting for the compilation to complete.
FORTRAN Reference Manual—528615-001
9-3

Program Compilation Command Line Length
TERM terminal-name

is the name of a terminal or process that acts as the home terminal for the
compiler. If you omit this option, FORTRAN uses the TACL home terminal.

object

specifies the disk file name that BINSERV gives the compiled object program. If
you omit this entry, FORTRAN uses a file named OBJECT on your current system,
volume, and subvolume. If OBJECT already exists, BINSERV purges it before
creating the target file. If BINSERV cannot name the file with either object or
OBJECT, it assigns the target file a name in the form of ZZBI nnnn, where nnnn is
a random number.

directive

is a FORTRAN compiler directive described in Section 10, Compiler Directives.

Command Line Length
The FORTRAN command (or any other TACL command) can contain a maximum of
132 characters on the same line. You can enter commands of up to 528 characters by
ending each line of the command (except the last) with an ampersand character (&).

The following two commands are equivalent:

1> FORTRAN/ IN mortgage, OUT listmort, NOWAIT/;INTEGER*4

1> FORTRAN/ IN mortgage, OUT listmort, NOWAIT/&

2> ;INTEGER*4

The directives following the semicolon can have a total length of up to 280 characters.

Examples
The following TACL command compiles the source file BUGS, sends the compiler
listing to LIST, and creates the object file OBUGS:

1> FORTRAN/ IN bugs, OUT list/ obugs

The following TACL command compiles the source file NEWPROG, sends the compiler
listing to a printer, and creates the object file OBJECT. It uses the NOWAIT option and
the compiler directives INTEGER*4 and ANSI.

1> FORTRAN/ IN newprog, OUT $s.#lp, NOWAIT/;INTEGER*4, ANSI

Using a Tape or Disk File for the Listing Output
If the device to which FORTRAN writes its listing file is a process, a printer, or a
terminal, FORTRAN takes care of vertical format control (skip a line, start a new page,
and so on) by issuing CONTROL and SETMODE requests.
FORTRAN Reference Manual—528615-001
9-4

Program Compilation TACL PARAM Commands
When the list file is a magnetic tape or any kind of disk file, the compiler writes each
line beginning with a control character (0 to skip a line, 1 to start a new page, and so
forth) according to the FORTRAN 77 ANSI standard. You can print such a file correctly
by sending it to the spooler with a FORTRAN program such as the following:

INTEGER max rec, rec len

CHARACTER * 132 line

1 FORMAT (A)

OPEN (5, ACCESS = 'SEQUENTIAL', FORM = 'FORMATTED',

 X MODE = 'INPUT', PROTECT = 'PROTECTED')

OPEN (6, ACCESS = 'SEQUENTIAL', FORM = 'FORMATTED',

 X MODE = 'OUTPUT', PROTECT = 'EXCLUSIVE')

INQUIRE (5, RECL = max rec)

10 READ (5, 1, END = 30, LENGTH = rec len) line (1: max rec)

WRITE (6, 1) line (1: rec len)

GO TO 10

30 STOP

END

TACL PARAM Commands
Before you execute the FORTRAN compiler, you can enter TACL PARAM commands
that alter compile-time attributes of the FORTRAN compiler. Table 9-1 lists the compile-
time PARAMs recognized by FORTRAN and shows how they affect your compilation.

Table 9-1. PARAM Commands
PARAM Effect
OUTWIDTH n Specifies the number of columns to write to your program’s listing

file.

SAMECPU Specifies whether to force processes started by the FORTRAN
compiler to run in the same CPU as the compiler.

SWAPVOL volume Specifies the name of the volume that the compiler uses for
temporary files.
FORTRAN Reference Manual—528615-001
9-5

Program Compilation Compiling With FORTRAN and BINSERV in the
Same CPU
Compiling With FORTRAN and BINSERV in the Same CPU
By default, FORTRAN, BINSERV, and SYMSERV run in different CPUs. If you want to
reduce interprocessor message traffic, use the TACL PARAM SAMECPU command to
run FORTRAN and BINSERV in the same CPU. The form of the command is

1> PARAM SAMECPU n

where n is a nonzero integer. For example:

1> PARAM SAMECPU 3

Note that the nonzero value does not designate in which CPU the processes run. Use
the TACL CPU run-option when you run your program if you want to specify the CPU in
which the processes run.

Specifying a Volume for the Compiler’s Temporary Files
Use a TACL PARAM SWAPVOL command to specify a volume other than the logon
default volume for the storage of the compilation’s temporary files. If you are running
the compiler over the network, this command can reduce unnecessary network traffic.
In this case, the SWAPVOL volume should be on the same system as the compiler.

The PARAM SWAPVOL command has the form:

1> PARAM SWAPVOL [\node.]$volume

If you do not use this command, the FORTRAN compiler uses the default volume;
BINSERV and SYMSERV use the volume of the object file.

If the compiler cannot create its first temporary file on the specified volume, compilation
proceeds as though you did not specify a PARAM SWAPVOL command.

Specifying the Line Length for the Listing File
The OUTWIDTH compiler PARAM specifies the maximum length of the lines written to
the compiler’s listing output file. The PARAM OUTWIDTH command must precede the
FORTRAN command.

The PARAM OUTWIDTH command has the form:

1> PARAM OUTWIDTH number

where number is an unsigned integer in the range 72 through 132. number can be
less than, equal to, or greater than the file’s assumed record length.

The assumed record length of the compiler’s OUT file is:

• Its maximum record length if a structured disk file

• Its physical record length if a printer or terminal

• 132 characters if any other kind of file
FORTRAN Reference Manual—528615-001
9-6

Program Compilation Compiler Operation
In the absence of PARAM OUTWIDTH, the compiler writes records of the file’s
assumed record length.

If PARAM OUTWIDTH number is specified, and

• number is at least 72, but less than or equal to the file’s assumed record length,
the compiler writes records of number characters.

• number exceeds the file’s assumed record length, the compiler formats a line of
number characters and writes the line as one or more records of the file’s
assumed record length.

• number is less than 72, then the compiler ignores the PARAM entirely. If number
is greater than 132, the compiler treats it as 132.

For most portions of its listing, the compiler can format line images in two lengths: 80
and 132 characters. If the assumed record length of the compiler’s OUT file is at least
132 characters and the PARAM OUTWIDTH specifies at least 132 characters or is not
present, the compiler formats output line images of 132 characters. For all other cases,
the compiler formats output line images of 80 characters.

Compiler Operation
Except when generating certain global tables, the compiler treats each program unit as
a separate entity. Global tables include information about procedures and their
arguments, I/O units and buffer areas, and the names and lengths (but not the
contents) of COMMON data blocks.

The compilation process for a program unit proceeds as follows:

• The compiler parses source code and makes skeletal table entries. Then, it
generates intermediate code in the form of “trees,” with each tree corresponding to
a source statement. The compiler detects any scanning or syntax errors during this
stage.

• The compiler completes the symbol table entries. It processes information from
COMMON, SAVE, DATA, and EQUIVALENCE statements to make run-time
address assignments and to build tables for global processing.

• The compiler emits object code to allocate data storage for local data, and
processes the intermediate code to generate the final object code for the program
unit.

Note. It can be helpful to limit the compiler’s output to an 80-character width when the listing
output file is an EDIT format file that is displayed on a terminal screen, or sent to a spooler
location that prints on 8 1/2 by 11 inch paper. Limiting the compiler’s output to 80 character
lines can also be useful if you are directing the compiler’s output to a narrow device such as a
terminal, but you want the lines formatted as if for a 132-character wide device.
FORTRAN Reference Manual—528615-001
9-7

Program Compilation Interpreting Compilation Listings
BINSERV binds the appropriate object modules from FORTLIB (a library of object
modules supplied by HP) into the target file. It also binds in code and data blocks
located via the SEARCH directive.

Any unresolved references to procedures are represented in the program file in a
procedure identifier list. The operating system uses this list to resolve such references
the first time you execute the object program. These procedures include any Formatter,
I/O procedures, and Guardian procedures you specify in the program.

If you have not bound the procedures you call into a program file prior to execution,
and the operating system cannot find them in a run-time library, it displays the following
message at run time:

UNRESOLVED EXTERNAL

You can input the compiled object file to a later compilation or to an interactive Binder
session. You can bind other procedures with the target file to create an executable
program. Use the SEARCH directive to use the object file as input to a compilation.

For information about binding program units written in C, COBOL85, Pascal, and TAL
with FORTRAN program units, see Section 13, Mixed-Language Programming.

Interpreting Compilation Listings
The following is a guide to the interpretation of the various parts of the listing produced
by the FORTRAN compiler. The presence or absence of a given listing depends on the
listing options you specify. The compiler directives shown in Table 9-2 control listing
options (default values are underlined).

For additional information about the listing directives, see Section 10, Compiler
Directives.

Table 9-2. Compiler Listing Options (page 1 of 2)

Directive Action
ANSI NOANSI Ignore characters in columns 73 through 132.

CODE NOCODE List octal instruction code generated for each
program unit.

COLUMNS n Define the line length of each record in a source
file.

CROSSREF NOCROSSREF Generate cross-reference information for selected
identifier classes.

ERRORFILE file Write compilation error messages in file.

FMAP NOFMAP Include a file map in the listing.

ICODE NOICODE List symbolic instruction codes generated for each
program unit.

LINES number Write number lines to the listing file before skipping
page.
FORTRAN Reference Manual—528615-001
9-8

Program Compilation Page Heading
Page Heading
FORTRAN displays a heading that lists the page number, the file ordinal, file name,
and the date and time the source file currently being compiled was last modified, the
date and time at the start of compilation, the current program unit type and name, and
an optional title (specified by the PAGE directive) at the top of each page of the listing.

Compiler Heading
The first page of the listing contains a heading that lists the version number and
release date of the FORTRAN compiler in use, the default compiler options, and the
FORTRAN compiler copyright notice. If you specified other listing options in the RUN

LIST NOLIST List source lines: enables CODE, CROSSREF,
ICODE, LMAP, MAP, and PAGE.

LMAP NOLMAP List load maps.

MAP NOMAP List tables of local identifiers for each program unit;
list table of entities in common storage.

PAGE title Eject current page of list file (except for first
occurrence).
Print title at the top of next page.

PRINTSYM NOPRINTSYM List unreferenced identifiers in map listings.

SUPPRESS NOSUPPRESS List only error messages and compilation statistics.
Overrides LIST.

WARN NOWARN List compiler warning messages.

Figure 9-2. Compiler Listing—Page Heading

Table 9-2. Compiler Listing Options (page 2 of 2)

Directive Action

VST0902.vsd

Page
number

File
number

File
name

Date and time the
compiler was created

Date and time the
compiler was run

Page 1 [1] $USER.FTNTOOLS.MYSOURCE 1992-09-05 23:01:01 1992-09-05 23:06:05
FORTRAN Reference Manual—528615-001
9-9

Program Compilation Source Listing
command when you initiated the compilation, FORTRAN lists those directives just
before the first line of the source code.

Source Listing
If the LIST option is in effect, FORTRAN lists the text of the source program following
the compiler heading. Each line of the listing is preceded by a line number that
corresponds to its line number in the EDIT format file containing the source code.

The compiler prints information about each line of source text between the line number
and the source line image itself. The information is one or two characters, as follows:

Tandem FORTRAN - T9252D10 - (08JUN92) Default options: on
(LIST,MAP,WARN,LMAP) - off (CODE,ICODE,ANSI)
Copyright Tandem Computers Incorporated 1978, 1979, 1980, 1981, 1982,
1983, 1984, 1985, 1986, 1987, 1988, 1989, 1991

Character Meaning
n For the first (or only) line of a FORTRAN statement, where n is a one- or

two-digit block nesting level. It is zero normally (printed as a blank), and it
increases by one for each block-IF or DO-loop that has begun but not yet
ended.

- For each continuation line of a FORTRAN statement.

* For a FORTRAN comment line (C or c or * in column 1 of the source line, or
an allblank source line).

? For a compiler directive (? in column 1).

For an IF-skipped line (a source line that is read and printed but not
otherwise processed by the compiler because of skipping initiated by an IF
or IFNOT directive and not yet terminated by a matching ENDIF directive).
FORTRAN Reference Manual—528615-001
9-10

Program Compilation Source Listing
Example 9-1. Compiler Listing—Source Listing (page 1 of 2)
1. ? ?ICODE

2. * C Program to set up table of lot number, name, property

3. * C value and determine tax charge.

4. * C

5. * C avalue = average property value

6. * C atax = average tax

7. * C tvalue = sum of property values

8. * C ttax = total tax

9. * C

10. 40 FORMAT ('0',5x, i4, 5x,a11,5x,f6.0,f7.2)

11. 50 FORMAT ('0',5x,'Lot #',4x, 'Owner''s Name',5x,'Value',4x

12. - & 'Tax Charge')

13. * C

14. 100 CHARACTER name*11

15. REAL value, tax, taxch, tvalue, ttax, avalue, atax

16. DATA avalue, atax, ttax, tvalue/4*0/

17. * C

18. 150 WRITE (6,50)

19. * C

20. * C Execute loop to determine taxcharge and to accumulate

21. * C total value and total taxcharge:

22. * C

23. 200 DO 400 j = 1,5

24. 1 READ *, lotnum, name, value

25. 1 tvalue = tvalue + value

26. 1 IF (value .LT. 10000) THEN

27. 2 taxchg = .03 * VALUE

28. 2 ELSE

29. 2 taxchg = .04 * VALUE

30. 2 ENDIF

31. 1 WRITE (6,40) lotnum, name, value, taxchg

32. 1 ttax = ttax + taxchg

33. 1 400 CONTINUE

34. * C

35. 450 atax = ttax/5

36. avalue = tvalue/5

37. * C
FORTRAN Reference Manual—528615-001
9-11

Program Compilation Source Listing
The compiler inserts a line that identifies the source input file being read when it begins
to read a different source file defined by a SOURCE directive and when it finishes
reading the source file.

The format of the inserted print line image is:

Source file: [n] file-name yyyy-mm-dd hh:mm:ss

where:

[n]

is the file ordinal (same as in the listing page title),

file-name

is the fully qualified source file name

yyyy-mm-dd hh:mm:ss

is the date and time file-name was last modified.

The compiler prints error messages and warning messages in the output listing. Note,
however, that error messages are associated with FORTRAN statements, not lines.
Because of the FORTRAN continuation line convention, it is impossible for the
compiler to know that it has seen the last line of a statement until it sees the first line of
the next statement: the compiler accumulates the entire statement before it parses the
line. Therefore, an error or warning message in the source listing could refer to any
item in the preceding statement (including comment lines and blank lines) and is not
restricted to the physical preceding line.

If FORTRAN detects a syntax error and you use the NOLIST or SUPPRESS directives
to disable listing, FORTRAN displays the text of the last line it read, its EDIT line
number, and the ordinal of the file from which the line was read before it writes the
error message. However, as noted in the preceding paragraph, the error or warning
message refers to the entire last statement, not just to the last line whose text it
displays.

If the MAP, CODE, or ICODE option is in effect, the specified list items follow each
program unit. The MAP output for each program unit is in two parts: the code and

38. 460 PRINT *, ' '

39. PRINT *, ' '

40. PRINT *, 'Sum of property values is ', tvalue

41. PRINT *, 'Total tax is ', ttax

42. PRINT *, 'Average property values is ', avalue

43. PRINT *, 'Average tax charge is ', atax

44. 500 END

Example 9-1. Compiler Listing—Source Listing (page 2 of 2)
FORTRAN Reference Manual—528615-001
9-12

Program Compilation Code and Data Blocks MAP Listing
data blocks, and the symbolic name map. The maps are in addition to the entry point
and data block maps that BINSERV provides after all compiler-generated output
following the last program unit.

Code and Data Blocks MAP Listing
The MAP option provides a summary of the code and data blocks in the compiled
program unit, showing the name of each block the program unit uses and the amount
of memory space it occupies. The summary can help you determine each program
unit’s contribution to the total code size, dynamic data space, and static data space
requirements of the executable program. You can use this information, for example, to
determine the optimal amounts for the DATAPAGES and LARGESTACK directives
when the estimates made by the compiler are not sufficient.Example 9-2 shows the
format of this map.

Symbolic Name MAP Listing
The MAP option provides a map of identifiers in alphabetic order. Unreferenced local
variables are not listed in the map. FORTRAN does not allocate space for data items
that your program does not reference. The map includes the names of unreferenced
variables if you specify the PRINTSYM directive. Figure 9-3 shows the format for each
line in the map:

Each identifier (symbolic name or statement label) in the MAP listing is further qualified
by the following information:

Example 9-2. Compiler Listing—Code and Data Blocks MAP Listing
CODE AND DATA BLOCKS - Program MAIN^

BLOCK DESCRIPTION SIZE IN BYTES BLOCK NAME

Program unit executable code: 1392 MAIN^

Dynamically allocated local data: 40 Standard run-time stack

Statically allocated local data: 16 +MAIN^

Common data blocks: None

Figure 9-3. Compiler Listing—MAP Listing

VST0903.vsd

Identifier Class Type Relative
Address

Block
Name

TAXCHG
150

VARIABLE
LABEL

REAL
L+014
77777

Mode

DORECT
FORTRAN Reference Manual—528615-001
9-13

Program Compilation CODE Listing
You can use MAP listing information with DEBUG and low-level Inspect which use
memory addresses to reference program locations.

The load map lists the address of the common blocks.

CODE Listing
The CODE option lists the instruction codes for a program unit.

Class Specifies the type of entity represented by the identifier.

Type Specifies the data type of the identifier. If the identifier does not appear
in a data type statement, an exclamation point preceding the entry
shows that the data type is implicitly declared.

Relative Address Is the relative address of the identifier. The relative address is specified
as:

• L+ nnn for variables and arrays in local storage.

• L- nnn for dummy arguments of a subprogram.

• LX+ nnn for dynamically allocated local data items in the extended
data segment.

• &nnn for a statically allocated data items in the extended data
segment.

• C+ nnn for entities in common (where nnn represents an offset
from the start of the common block. The actual offset is shown
later in the common map).

• nnnnn for statement labels (an offset from the start of the program
unit. The actual offset is shown later in the load map).

The map does not include an entry for a program unit name.

Mode States whether the address mode of a variable or array is direct or
indirect. Integer, logical, and real variables in local storage are DIRECT.
Variables of all other data types, arrays, and entities that appear in
COMMON, SAVE, or DATA statements, or that are equivalenced to
such entities are INDIRECT.

Block Name Is the name of the common block where the identifier resides, if it is an
entity in common. FORTRAN indicates the unnamed common block as
BLANK^. All items having extended addresses are EXTENDED.

Figure 9-4. Compiler Listing—CODE Listing

VST0904.vsd

0 3 0 0 0 0
1 7 7 7 7 7

Memory addresses
of code words

Code Words

0 0 0 0 0
0 0 0 2 0

0 0 0 4 0 1
0 0 0 2 1 2

0 0 0 0 1 6
0 0 3 4 0 2

0 0 0 0 0 0
0 0 2 0 0 0

0 0 0 0 1 6
0 0 0 4 0 1

0 0 0 0 0 0
0 0 0 0 5 6

0 4 0 0 0 0
1 7 7 7 7 7

0 4 0 0 0 0
0 0 0 0 5 6
FORTRAN Reference Manual—528615-001
9-14

Program Compilation ICODE Listing
Each address listed is the octal starting address for the adjacent code, expressed as
an offset from the beginning of the program unit. The code is the octal representation
of the instruction code emitted by the compiler.

ICODE Listing
The ICODE option provides a listing of the symbolic form of the instruction code for the
program unit. The listing contains references to code “landmarks”; for example, START
OF PROGRAM UNIT, STATEMENT LABEL 200 + 2, and so forth. Use these to locate
specific instructions; the mnemonics following each landmark heading correspond to
one executable statement. Note that the “+ n” offsets used in the landmark headings
refer to executable statements; for example:

STATEMENT LABEL 200 + 2 <-- second executable statement
FORTRAN Reference Manual—528615-001
9-15

Program Compilation ICODE Listing
You can also generate an ICODE listing, either interactively or from a command file,
using Inspect or Binder. The following Binder command displays the object code in
ICODE format from all code blocks in the object file MYOBJ:

DUMP CODE * ICODE FROM myobj

For more information about the DUMP command, see the Binder Manual.

Example 9-3. Compiler Listing—ICODE Listing
 OBJECT CODE WITH INSTRUCTION MNEMONICS
 START OF PROGRAM UNIT
000000 7 CON %000401 7 CON %000016 7 CON %000000
000003 7 CON %000016 7 CON %000000 7 CON %000026
000006 7 CON %000026 7 CON %030000 0 7 CON %037400 ?
000011 7 CON %007001 7 CON %032405 5 7 CON %104404
000014 7 CON %032405 5 7 CON %100413 7 CON %032405 5
000017 7 CON %105006 7 CON %000212 7 CON %003402
000022 7 CON %002000 7 CON %000401 7 CON %000056 .
000025 7 CON %177777 7 CON %000056 . 7 CON %177777
000030 7 CON %000036 7 CON %000036 7 CON %030114 0L
000033 7 CON %067564 ot 7 CON %020043 # 7 CON %047567 Ow
000036 7 CON %067145 ne 7 CON %071047 r' 7 CON %071440 s
000041 7 CON %047141 Na 7 CON %066545 me 7 CON %053141 Va
000044 7 CON %066165 lu 7 CON %062524 eT 7 CON %060570 ax
000047 7 CON %020103 C 7 CON %064141 ha 7 CON %071147 rg
000052 7 CON %062400 e 7 CON %037400 ? 7 CON %007001
000055 7 CON %032405 5 7 CON %037400 ? 7 CON %007405
000060 7 CON %032404 5 7 CON %037400 ? 7 CON %012014
000063 7 CON %032405 5 7 CON %037400 ? 7 CON %020005
000066 7 CON %032404 5 7 CON %037400 ? 7 CON %022412 %
000071 7 CON %002000 7 CON %000000 7 CON %000002
000074 7 CON %000004 7 CON %000006 7 PCAL 000
000077 7 ADDS +002 0 LWP -007 1 LWP -007
000102 2 LWP -007 3 LWP -007 7 PUSH 733
000105 0 LADR L+016 7 STAR 7 0 STRP 0
000110 0 LLS 01 7 STAR 6 0 LDRA 6
000113 7 PUSH 700 7 ADDS +014
 STATEMENT LABEL 15 LINE # 9.000
000115 0 LADR S-000 7 STOR L+002 7 ADDS +012
000120 0 RDP 0 ADDI -076 1 LDI +006
000123 7 PUSH 711 0 LDLI +100 1 LADR L+001
000126 7 PUSH 711 7 ADDS +002 0 LDI +074
000131 7 PUSH 700 0 PCAL 000 7 STRP 7
000134 7 ADDS +014 0 LDLI +200 1 LADR L+001
000137 7 PUSH 711 7 ADDS +002 0 LDI +014
000142 7 PUSH 700 0 PCAL 000 1 LADR L+002,I
000145 0 SETS 7 STRP 7
 STATEMENT LABEL 20 LINE # 10.000
000147 0 LDI +001 0 BUN +174,I
 STATEMENT LABEL 20 + 1 LINE # 11.000
000151 0 LADR S-000 7 STOR L+002 7 ADDS +013
000154 0 LDI +005 7 PUSH 700 0 LDLI +160
000157 0 ORRI +001 1 LADR L+001 7 PUSH 711
000162 7 ADDS +002 0 LDI +034 7 PUSH 700
000165 0 PCAL 000 7 STRP 7 0 LADR L+013
000170 1 LDI +002 2 LDI +002 3 LDI +001
000173 7 PUSH 733 7 ADDS +010 0 LDLI +360
000176 0 ORRI +001 1 LADR L+001 2 LADR S-013
FORTRAN Reference Manual—528615-001
9-16

Program Compilation CROSSREF Listing
You can view the code in a running process or in an Inspect save file using the Inspect
ICODE command. The following Inspect command lists in ICODE format the machine
instructions for the first four FORTRAN statements in a subprogram named MYSUB:

ICODE at #MYSUB FOR 4

For more information about the ICODE command, see the Inspect Manual.

CROSSREF Listing
If the CROSSREF option is in effect, SYMSERV collects cross reference data for
FORTRAN’s output listings. The first page of the map lists the source files in the
compilation. Subsequent pages list the cross reference for specified identifier classes.

For more information, see the CROSSREF Manual.

LMAP Listing
If the LMAP option is in effect, BINSERV prints a map of all the procedures included in
the object file. A second map of all common data blocks is included in the output.
Table 9-3 shows the categories for the LMAP code block listing for a routine named
NAME and Table 9-4 on page 9-18 shows the categories for the LMAP data block
listing.

Table 9-3. LMAP Code Block Listing (page 1 of 2)

Name Meaning
PEP Code-relative octal address of the entry in the Procedure Entry Point

(PEP) table for NAME

BASE Code-relative octal address of the first word of NAME

LIMIT Code-relative octal address of the last word of NAME

ENTRY Code-relative octal address of the entry point of NAME; that is, the
address where execution begins for that entry point

ATTRS The attributes of NAME, where

 M is the name of the main program unit

 E is the name of a secondary entry point

 V indicates that NAME has a variable number of parameters.

M is the name of the main program unit

E is the name of a secondary entry point

V indicates that NAME has a variable number of parameters

NAME Name of a user-written or FORTRAN-supplied program unit, entry point,
or library procedure that is bound into the object file by BINSERV

DATE The date NAME was compiled
FORTRAN Reference Manual—528615-001
9-17

Program Compilation LMAP Listing
The map is in alphabetic order by name. If you specify the LOC option for the LMAP
listing, BINSERV displays an additional map that shows the same data listed in
ascending order of base addresses.

The LMAP * option also requests entry point and common block cross-reference lists in
addition to the maps ordered by name and base address. Note that maps for entry
points and for data blocks are listed.

To find the actual address of an item in your program, you must add any code-relative
address (format specification or statement label in a program unit map, or a code offset
in a CODE or ICODE listing) to the BASE address for that program unit. You can use
this information to test, debug, and monitor the object program.

TIME The time of day NAME was compiled

LANGUAGE The source language of NAME

SOURCE FILE The name of NAME’s source file

Table 9-4. Data Block Listing
Name Meaning
BASE Lowest address of the data block. Either the G-relative address (six octal

digits) of the first word of the block, or the extended address (ten octal
digits) of the first bytes of the block.

LIMIT Highest address of the data block. Either the G-relative address (six octal
digits) of the last word of the block, or the extended address (ten octal
digits) of the last byte of the block.

TYPE The data block type: COMMON, OWN, or SPECIAL.

MODE The allocation characteristic of the block. WORD indicates that the block
must begin on a word (even-numbered byte) boundary, and STRING
means that the block cannot be in the upper half of the user data
segment.

NAME The symbolic name of the data block.

DATE The date of compilation of the object file from which the block was
obtained.

TIME The time of day of the compilation.

LANGUAGE The source language of the procedure that declares the data block.

SOURCE FILE The file name of that procedure’s source file.

Table 9-3. LMAP Code Block Listing (page 2 of 2)

Name Meaning
FORTRAN Reference Manual—528615-001
9-18

Program Compilation Completion Message
Completion Message
BINSERV and FORTRAN both print statistics after an object file is built. If the SYNTAX
directive is in effect, only FORTRAN statistics are listed. Numeric values are displayed
in base ten.

The BINSERV process displays the following statistics:

• Name of object file created as a result of compilation

• Total number of errors reported by BINSERV

• Total number of warnings reported by BINSERV

• Total number of words of code area needed; this includes separate listings for:

° PEP size

° Read-only arrays

° Storage occupied by program units

° Gap size at 32K boundary

° XEP size

• Total number of words of primary global storage needed

• Total number of words of secondary global storage needed

• Number of (virtual) memory code pages to be allocated for the program at run time

• Number of (virtual) memory data pages to be allocated for the program at run time

If you use the SYNTAX directive or the compiler detects a fatal error in the program,
FORTRAN displays the message

No object file created

before listing statistics from the compilation of source code.

Following these messages, FORTRAN lists these statistics from the compilation of the
source code:

• Total number of error messages issued by the compiler

• Total number of warning messages issued by the compiler

• Total number of words of primary global storage used

• Total number of words of secondary global storage used

• Number of words needed by the compiler for its symbol table

• Number of source lines in the compilation

• Elapsed time for the compilation including cross-reference operation if CROSSREF
is in effect
FORTRAN Reference Manual—528615-001
9-19

Program Compilation Compiler Termination Codes
BINSERV does not include the XEP size in the code-area size. Also, note that
FORTRAN’s global storage size might differ from BINSERV’s: FORTRAN counts only
declared data; BINSERV includes run-time data structures in the global storage size.

Compiler Termination Codes
When the compilation ends, FORTRAN sends one of the following completion codes to
TACL:

You can use TACL to check completion codes, but this is generally useful only if you
are doing batch processing. In most cases, the simplest procedure is to check the
compiler listing to find out what happened.

Example 9-4. Compiler Listing—Completion Message
 BINDER - OBJECT FILE BINDER - T9621D10 - (08JUN92) SYSTEM \USERS
 Copyright Tandem Computers Incorporated 1982-1992
 Object file \USERS.$TOOLS.FTNTOOLS.MYOBJ
 TIMESTAMP 1992-09-05 23:06:05
 47 Code pages
 3 Primary data words
 795 Secondary data words
 4 Data pages
 0 Resident code pages
 0 Extended data pages
 798 Top of stack location in words
 1 Code segment
 0 Binder Warnings
 0 Binder Errors
 0 Compiler errors
 0 Compiler warnings
 3 Primary data words
 8 Secondary data words
 2880 Maximum symbol table size in words
 43 Lines of source text
 0:00:59 Elapsed time

Completion Code Meaning
0 No errors or warnings.

1 No errors; one or more warnings. An object file was created.

2 Fatal errors; no object file was created.

3 Compilation did not complete. There may be an incomplete object file
or none at all.
Possible reasons for this are:

• Your processor is not licensed for FORTRAN

• A table overflowed

• A serious I/O error occurred

5 Internal compiler error; contact your HP analyst.

8 One or more warning messages; an object file was created but its
name was changed. See the last page of the compiler listing for the
name.
FORTRAN Reference Manual—528615-001
9-20

Program Compilation Separate Compilation
Separate Compilation
You can use Binder to bind together object files created from separate runs of the
FORTRAN compiler in addition to object files created by C, COBOL85, PASCAL, and
TAL compilations. Binder also allows you to examine, combine, or modify object files. It
operates as either of two processes:

• BINSERV, the compile-time binder, which is driven by compiler directives

• BIND, which is driven by commands that you enter interactively or that it reads
from a file

Compilation Unit
A compilation unit consists of all the input to a single run of the compiler. A compilation
unit can include any number of program units in the compiler’s input source file and
additional source files named in SOURCE directives.

FORTRAN organizes the compiled object code into blocks of code and data that
BINSERV uses to build the object file.

BINSERV can also include copies of previously compiled object code in the new object
file that it creates. This happens if the compilation unit includes a SEARCH directive
that names object files from which BINSERV can retrieve code or data to satisfy
references to other program units or to common data. These are called external
references.

The output object file from a binder process is called a target file. If the target file
includes a main program unit, the file is an executable program file. An object file can
have only one main program unit.

If you plan to use the compile time binder, see Section 10, Compiler Directives, for a
detailed description of the directives that affect building of the object file: SEARCH,
LMAP, COMPACT, and SYNTAX.

If you want to use Binder as a separate process, see the Binder Manual.

Code Blocks and Data Blocks
Blocks are the smallest relocatable (bindable) units of code or data. For FORTRAN,
these rules apply:

• Each program unit results in a separate code block. FORTRAN uses the name
given in the PROGRAM, SUBROUTINE, or FUNCTION statement to identify the
program unit’s code block. If you omit the PROGRAM statement, FORTRAN uses
the default name MAIN^ for the main program unit. A block data subprogram does
not have a code block.

• A program unit can have up to two OWN data blocks containing local data items
that are statically allocated as a result of DATA and SAVE statements. Each block
name has the same name as its program unit. The name is preceded by a plus
FORTRAN Reference Manual—528615-001
9-21

Program Compilation Code Blocks and Data Blocks
sign (+) if it is in the user data segment or by an ampersand (&) if it is in the
extended data segment.

• An executable program can have any number of COMMON data blocks shared by
the program units that declare them in one or more source program COMMON
statements. Each block name is the name that appears between slashes in
COMMON statements (FORTRAN uses BLANK^ for an unnamed common block),
preceded by a period (.) if it is in the user data segment or by a dollar sign ($) if it is
in the extended data segment.

• The compiler also creates SPECIAL data blocks. These require special handling
by the Binder, such as allocating them to specific addresses or having their
contents merged from same-named blocks in multiple object files. Every SPECIAL
data block has a pound sign (#) in its name. FORTRAN creates some data blocks
only in the OLD environment, others only in the COMMON environment, and still
others in either environment. The SPECIAL data blocks are shown in Table 9-5.

Table 9-5. FORTRAN Data Blocks (page 1 of 2)

Block Name Environment Contents
COMMON#POINTERS Both The indirect addressing pointer word for

data items in user data segment common
blocks.

$EXTENDED#STACK Both The indirect addressing pointer word for
data items in extended segment common
blocks.

EXTENDED#STACK#FRAME
and
EXTENDED#STACK#POINTERS

Both Used for addressing the extended stack
area.

#FLUT OLD The FORTRAN Logical Unit Table. It
contains the address of each File Control
Block in the PUCB, indexed by
FORTRAN I/O unit number.

#G0 OLD The first three words of the user data
segment. It contains information about
the #RUCB block.

#HIGHBUF OLD The area reserved for file buffers in the
upper half of the user data segment.

#LOWBUF OLD The area reserved for saved messages,
$RECEIVE queues, and file buffers in the
lower half of the user data segment.

#PUCB OLD The Program Unit Control Block. It
contains language-specific information,
and includes a File Control Block for
each FORTRAN I/O unit defined for the
program.
FORTRAN Reference Manual—528615-001
9-22

Program Compilation Compiling Programs That Use Extended Data Space
Many interactive Binder commands require parameters specified as block names. All
the names of blocks in an object file are listed in the load maps that result from
compilation or interactive binding.

An object file can contain blocks derived from multiple languages. You can use
COBOL85, FORTRAN, and TAL compiled code in a single program. For additional
information about mixed-language programming, see Section 13, Mixed-Language
Programming.

Compiling Programs That Use Extended Data
Space

User data space contains up to 64K words. Section 12, Memory Organization, explains
how FORTRAN allocates storage within the user data space. If your program requires
additional data space, you can use compiler directives to tell FORTRAN to store some
of your program data in extended data space.

To use extended data space in a program that you compile in a single compilation:

• Use LARGECOMMON directives for the common data blocks you want FORTRAN
to store in extended memory.

• Use LARGEDATA directives for the non-common variables, arrays, and RECORDs
you want FORTRAN to store in extended memory.

To use extended data space in a program that you compile in several separate
compilations:

• Follow the same steps listed above, but make sure that any common block listed in
a LARGECOMMON directive in one compilation is also listed in a

#RUCB OLD The Run-Unit Control Block. It contains
pointers to most other special data
blocks.

#MCB COMMON Global data area for run-time
environment.

#CRE_HEAP COMMON Global data area for run-time
environment.

#CRE_GLOBALS COMMON Pointers to data.

#RECEIVE COMMON The buffer that holds messages received
from $RECEIVE.

##FT nnn COMMON File Control Blocks.

Common Blocks Both User data declared in COMMON
statements.

Table 9-5. FORTRAN Data Blocks (page 2 of 2)

Block Name Environment Contents
FORTRAN Reference Manual—528615-001
9-23

Program Compilation Binding Programs That Use Extended Memory
LARGECOMMON directive in every compilation that includes the same common
block.

• Include an EXTENDEDREF compiler directive at the beginning of every
compilation that does not include a LARGECOMMON directive or a LARGEDATA
directive.

• Use the LARGESTACK directive (or the BIND command SET LARGESTACK) if
the extended stack area is too small.

FORTRAN can handle programs that use up to 128 megabytes of extended data
space, but to execute such programs, you must have enough free disk space on your
system to allocate a contiguous block of virtual memory for the data space.

It takes more machine instructions to manipulate 32-bit addresses than 16-bit
addresses. Programs with a large amount of data in extended memory are larger and
slower than they would be otherwise. Therefore, smaller and more frequently used
data items should be kept in the user data segment, while larger and less frequently
used data should be moved to extended memory.

Binding Programs That Use Extended Memory
Binder cannot produce object files that combine FORTRAN program units compiled
with EXTENDEDREF, LARGECOMMON, or LARGEDATA directives and FORTRAN
program units compiled without EXTENDEDREF, LARGECOMMON, or LARGEDATA
directives.

If you only use the compile-time binder, you don’t have to worry about this distinction
unless you include SEARCH directives in your program. Since all program units from a
single compilation use the same extended-memory options, FORTRAN program units
from a single compilation are always bindable.

If you use SEARCH directives or stand-alone Binder to combine program units from
different compilations, you must make sure that all program units you attempt to bind
into a single object file are compiled with extended-memory options (that is, with
LARGECOMMON, EXTENDEDREF, or LARGEDATA directives)—or that all program
units you attempt to bind are compiled without extended-memory options.
FORTRAN Reference Manual—528615-001
9-24

Program Compilation User Library Alternatives for Utility Subprograms
User Library Alternatives for Utility
Subprograms

The user library feature of the operating system is a convenient way to make packages
of general-utility subprograms available to multiple application programs. Alternative
methods are:

• Use the SEARCH directive when you compile the application programs, causing
each application program’s object file to include its own copy of the utility
subprograms that it needs. The disadvantages with SEARCH are that the
application program object files are larger than they should be, and bug fixes and
other improvements to the utility subprograms are not propagated into all of
application programs unless they are re-compiled or at least re-bound.

• Use SYSGEN to incorporate the subprogram package into the system library code
space. The disadvantage with SYSGEN is that you must request your system
manager to do this.

For more information on libraries, see the LIBRARY compiler directive in Section 10,
Compiler Directives, and the FORTRAN RUN command in Section 11, Running and
Debugging Programs.

Sample Programs Using the Search Directive
This section contains two sample programs. One shows development of a program
using SEARCH and SOURCE directives for subprograms. It also includes an
alternative development cycle using the interactive Binder.

The second program uses SEARCH to select certain subroutines from an object file of
subroutines, some of which also contain subprogram calls. (The calls can be recursive
or call other subroutines.) It shows how different users can use a subroutine object file
as a common resource.

Using the SEARCH Directive—Sample Program 1
This sample program transposes the rows and columns of a five-row, five-column
matrix named ARRAY. The steps in the development of the program are flexible. That
is, coding and compilation can take place in different sequences. However, use of the
SEARCH directive is effective only if compiled code is available to satisfy external
references; this implies that you cannot use SEARCH from a subprogram for a main
program unit.

1. Code and compile separately a subroutine subprogram that is named
PRINTARRAY. The resulting code and data blocks are in an object file named
PRINTO. (The source file name is PRINTS.)

2. Code a dummy for the transpose subroutine, TRANSPOSE. The source file name
is DUMMYS. The dummy subroutine allows program testing to occur in stages.
FORTRAN Reference Manual—528615-001
9-25

Program Compilation Using the SEARCH Directive—Sample Program 1
3. Code and compile the main program unit. The source file includes a SOURCE
directive for the DUMMYS file. A SEARCH directive identifying PRINTO as the
search list is included to have BINSERV include the object code from Step 1 in the
program file. The program file is named MAKEONE. It contains copies of the
MAIN^, PRINTARRAY, and TRANSPOSE dummy code.

4. Test run the program produced in Step 3. (This step is completely independent of
Step 5.)

5. Code the actual transpose subroutine, TRANSPOSE. The source file is named
XPOSE.

6. Based on the output of Step 5, alter the source code for the main routine. Include a
SOURCE directive for XPOSE (for the actual transpose subroutine). Include a
SEARCH directive identifying MAKEONE (to get the code and data blocks for
PRINTARRAY). Recompile the main routine, deleting the old MAIN file. (The new
version MAIN^ object code will then be in a file named MAIN.) The program file is
named MAKETWO.

Each program unit that declares ARRAY uses the source file GLOBAL for the
declarations. (The SOURCE directive for GLOBAL is part of each source file except
the dummy for the TRANSPOSE code.) GLOBAL contains these declarations for
ARRAY:

INTEGER array, asize

PARAMETER (asize = 5)

COMMON /array/ array (asize, asize)

Following are source listings for the program.

Step 1—PRINTARRAY Subprogram
Compilation of this source file results in an object file that contains a code block named
PRINTARRAY (the name on the SUBROUTINE statement). The object file has the
following data blocks: #FLUT, #G0, #LOWBUF, #PUCB, #RUCB, ARRAY and
COMMON#POINTERS. #G0 contains a pointer to #RUCB. (FORTRAN allocates no
storage for the local variables in the object file. It allocates this storage at execution
time.)
FORTRAN Reference Manual—528615-001
9-26

Program Compilation Using the SEARCH Directive—Sample Program 1
SUBROUTINE printarray

?SOURCE global

INTEGER row, column

WRITE(UNIT=6,FMT='(1h)')

DO 10 row = 1, asize

WRITE(6,1000) (array(row,column), column=1, asize)

10 CONTINUE

RETURN

1000 FORMAT(10I10)

END

Step 2—TRANSPOSE Dummy Subprogram
The following subprogram is compiled using the SOURCE directive from the main:

SUBROUTINE transpose

RETURN

END

If separately compiled, the dummy’s object file would consist of a code block named
TRANSPOSE. No common blocks would be included. (The special blocks #FLUT,
#G0, #LOWBUF, #PUCB, and #RUCB are always included in object files.)

Step 3—Main Program, Version One
Compilation of the source file shown below results in an object file containing a code
block named MAIN^ (the compiler’s default name). It also contains PRINTARRAY, and
TRANSPOSE.
FORTRAN Reference Manual—528615-001
9-27

Program Compilation Using the SEARCH Directive—Sample Program 1
?SEARCH printo

?SOURCE dummys

?SOURCE global

INTEGER row, column

C Initialize the array --

DO 20 row = 1, asize

DO 10 column = 1, asize

 array(row, column) = asize*(row-1) + column-1

 10 CONTINUE

 20 CONTINUE

C Display the initialized array

 CALL printarray

C Transpose the array

 CALL transpose

C Display the transposed array

 CALL printarray

 STOP 'End of example'

 END

Step 4—TRANSPOSE Subprogram
The object file resulting from compilation of this code has a code block, TRANSPOSE.
The file also contains the data blocks seen in earlier steps, including ARRAY. The local
data variables are allocated at execution time.
FORTRAN Reference Manual—528615-001
9-28

Program Compilation Using the SEARCH Directive—Sample Program 1
C This is the real transpose subroutine.

 SUBROUTINE transpose

?SOURCE global

INTEGER temp, i, j

DO 20 i = 2, asize

 DO 10 j = 1, i-1

temp = array(j, i)

array(j, i) = array(i, j)

array(i, j) = temp

10 CONTINUE

20 CONTINUE

 RETURN

 END

Step 5—Version One —Program Test
Run the program. The output produced begins with zero (rather than one) as the first
subscript value. You must change the calculation in the main program to get the
planned results.

The work on TRANSPOSE is not dependent on the calculations in the main program;
therefore, you can code it concurrently with the development and testing of other
program units.

Step 6—Main Program, Version Two
The source file for MAIN is altered for the required calculation. Instruct BINSERV to
purge the old object file and use the same file name for the target file. (The FORTRAN
implied run command has the same effect as when the compiler built object files.)

The source file includes a SOURCE directive for the actual TRANSPOSE subroutine.
FORTRAN compiles the code and passes it to BINSERV. Since BINSERV has a code
block named TRANSPOSE for the target file (from the compiler), there is no external
reference to TRANSPOSE remaining when BINSERV executes the SEARCH directive.

Therefore, the dummy TRANSPOSE is ignored.

Since no data was changed, there is no need to recompile PRINTARRAY.
FORTRAN Reference Manual—528615-001
9-29

Program Compilation Using the SEARCH Directive—Sample Program 1
?SEARCH makeone

?SOURCE xpose

?SOURCE global

C Initialize the array --

DO 20 row = 1, asize

 DO 10 column = 1, asize

array(row, column) = asize*(row-1) + column

10 CONTINUE

20 CONTINUE

C Display the initialized array

 CALL printarray

C Transpose the array

 CALL transpose

C Display the transposed array

 CALL printarray

 STOP 'End of example'

 END

Alternative Development Using the Interactive Binder

For the descriptions of the ADD and BUILD commands used to perform the following
steps, see the Binder Manual.

1. Code and compile separately three routines: the main program (given the name
MAIN^ by FORTRAN), the subroutine PRINTARRAY, and a dummy for the
transpose subroutine, TRANSPOSE. The object files are in disk files named MAIN,
PRINT, and DUMMY.

2. Use the interactive Binder to build a program file by binding the object code
produced in Step 1. The file name for the program file is MAKEONE. It contains
copies of the MAIN^, PRINTARRAY, and TRANSPOSE code. No changes are
made to the MAIN, PRINT, and DUMMY disk files.

3. Run the program produced in Step 2.
FORTRAN Reference Manual—528615-001
9-30

Program Compilation Using the SEARCH Directive—Sample Program 2
4. Based on the output of Step 3, alter the source code for the main routine.
Recompile the main routine, and delete the old MAIN disk file. (The new MAIN^
object code will also be in a file named MAIN.)

5. Use the interactive Binder to build a new program file. Input to this step is the
program file MAKEONE and the new MAIN file. Since the command to build the
new program file specifies a different file name (MAKETWO), Binder does not
purge MAKEONE. MAKETWO contains copies of PRINTARRAY and
TRANSPOSE from MAKEONE along with the new MAIN^ routine from MAIN.

6. Code and compile the actual transpose subroutine, TRANSPOSE. The disk file is
named XPOSE.

7. Use the interactive Binder to build the final program file, LASTMAKE, by adding the
actual TRANSPOSE code and deleting the dummy subroutine.

Using the SEARCH Directive—Sample Program 2
This program is a pen-primer routine for use with a commercially available plotter. The
plotter source code includes a file of subroutines (not shown here). The pen primer
uses a subset of the subroutines. Using the SEARCH directive, compilation results in
the inclusion of only those code and data blocks that are needed to satisfy external
references. You do not need to use a SOURCE directive to recompile subroutine
source code.
FORTRAN Reference Manual—528615-001
9-31

Program Compilation Using the SEARCH Directive—Sample Program 2
C Main Program -- Pen Primer

?UNIT (8)

?SEARCH fpslib

COMMON/termio/kebord, icrt

COMMON/zdonz/ldevzi, ldevzo

CHARACTER*1 mess(16)

DATA mess/'P','R','I','M','I','N','G',' ',

+ 'T','H','I','S',' ','P','E','N'/

kebord = 4

icrt = 4

ldevzi = 8

ldevzo = 8

OPEN(8,FILE='$S.#PLOTS',STATUS='OLD',SPACECONTROL='NO',

+ IOSTAT=ioerr,ERR=8888)

CALL plots(53,0,8)

CALL newpen (1)

CALL symbol(2.,5.,.2,mess,0.,16)

CALL symbol(2.,4.5,.2,mess,0.,16)

CALL newpen (2)

CALL symbol(2.,4.,.2,mess,0.,16)

CALL symbol(2.,3.5,.2,mess,0.,16)

CALL newpen (3)

CALL symbol(2.,3.,.2,mess,0.,16)

CALL symbol(2.,2.5,.2,mess,0.,16)

CALL newpen (4)

CALL symbol(2.,2.,.2,mess,0.,16)

CALL symbol(2.,1.5,.2,mess,0.,16)

CALL plot(8.5,0.,999)

WRITE (icrt,1)

1 FORMAT(' ALL 4 PENS PRIMED'/)

STOP

 8888 WRITE (4,8889) ioerr
FORTRAN Reference Manual—528615-001
9-32

Program Compilation Using the SEARCH Directive—Sample Program 2
 8889 FORMAT(' FILE ERROR $PLOTS: ',I3)

STOP

END
FORTRAN Reference Manual—528615-001
9-33

Program Compilation Using the SEARCH Directive—Sample Program 2
FORTRAN Reference Manual—528615-001
9-34

10 Compiler Directives
You use compiler directives to specify and control many aspects of a compilation, such
as:

• To specify listing features

• To specify alternate source files

• To enable run-time bounds checking

• To control data allocation

• To specify data area size

• To control how the $RECEIVE file is used at run-time

• To control the building of object files

• To specify the line length for source input files

• To declare procedures not written in FORTRAN

• To specify user libraries

• To save compiler directive values

Table 10-1. Summary of Compiler Directives (page 1 of 4)

Directive Action
ABORT Specifies compiler action if a file named in a SOURCE or CONSULT

directive cannot be opened. Default is ABORT.

ANSI Treats columns 73 through 132 as comments. Default is NOANSI.

BOUNDSCHECK Compiler generates code to verify array subscripts at run-time.
Default is NOBOUNDSCHECK.

CODE Lists octal instruction codes for each program unit, following source
listing. Default is NOCODE.

COLUMNS Defines the line length of records in a source file. Default is
COLUMNS 132.

COMPACT Attempts to compact code space of object code. Default is
NOCOMPACT.

CONSULT Declares procedures not written in FORTRAN.

CROSSREF Generates cross-reference information for selected identifier
classes.

DATAPAGES Specifies the number of virtual memory pages to allocate for data
storage in the user data segment.

ENDIF Terminates the effect of a preceding IF or IFNOT directive.

ENV Specifies whether the process containing this program uses the
C-series runtime library or the D-series run-time library. Default is
ENV OLD.
FORTRAN Reference Manual—528615-001
10-1

Compiler Directives
ERRORFILE Stores compilation error messages in a file.

ERRORS Sets the maximum number of errors for a compilation. Default is
ERRORS 100.

EXTENDCOMMON Uses indexed indirect addressing to access simple variables in
common blocks. Default is NOEXTENDCOMMON.

EXTENDEDREF Generates code that uses doubleword addresses for parameters in
CALL statements and function references. Default is
NOEXTENDEDREF.

FIXUP Causes Binder processing of the object file to make it executable.
Default is FIXUP.

FMAP Includes a file map in the listing. Default is NOFMAP.

GUARDIAN Declares procedures as Guardian procedures or as utility routines.

HIGHBUFFER Allocates space for the run-time buffer pool in the upper half of the
user data segment. Default is HIGHBUFFER 0.

HIGHCOMMON Allocates common storage in upper data memory for specified
common blocks.

HIGHCONTROL IF ENV OLD is in effect, compiler allocates I/O control blocks in
upper data memory. If ENV COMMON is in effect, compiler allocates
#MCB in upper data memory. Default is NOHIGHCONTROL.

HIGHPIN Specifies whether the process containing the program with this
directive can be run at a PIN that is greater than 255. Default is
NOHIGHPIN.

HIGHREQ Specifies whether the process containing the program with this
directive can be opened by a process running at a PIN that is greater
than 255. Default is NOHIGHREQ.

ICODE Lists the symbolic instruction codes for each program unit after the
source listing. Default is NOICODE.

IF Processes subsequent source lines if the specified toggle is set.

IFNOT Processes subsequent source lines if the specified toggle is reset.

INSPECT Selects Inspect as the default debugger. Default is NOINSPECT.

INTEGER Specifies the size of all subsequent integer entities (whose size is
not specified) in the source file. Default is INTEGER*2.

LARGECOMMON Allocates specified common blocks in the extended data segment.

LARGEDATA Allocates memory space in the extended data segment for local
data.

LARGESTACK Specifies the block size for dynamically allocated variables of
LARGEDATA directives.

LIBRARY Declares a file as a user library.

Table 10-1. Summary of Compiler Directives (page 2 of 4)

Directive Action
FORTRAN Reference Manual—528615-001
10-2

Compiler Directives
LINES Specifies the number of lines to write to the listing file before a page
skip.

LIST Controls listing of source lines; enables CODE, CROSSREF,
ICODE, FMAP, LMAP, MAP, and PAGE. Default is LIST.

LMAP Causes load maps to be listed after identifier map and cross-
reference tables. Default is LMAP ALPHA.

LOGICAL Specifies the size of all subsequent logical entities in source file.
Default is LOGICAL*2.

LOWBUFFER Allocates space for the run-time buffer pool in the lower half of the
user data segment. Default is LOWBUFFER 512. LOWBUFFER has
no effect if ENV COMMON is specified in the same compilation.

MAP Lists table of data blocks and local identifiers for a program unit.
Default is MAP.

NONSTOP When present in the ‘main’ routine of a program that specifies ENV
COMMON, specifies that the program is capable of running as a
NonStop process. Default is NONONSTOP.

PAGE Prints a specified page title on the next page of the listing file, and
usually causes a page skip.

POP Restores the previous values of one or more compiler directives.

PRINTSYM Includes unreferenced identifiers in MAP listing. Default is
NOPRINTSYM.

PUSH Saves the current values of one or more compiler directives.

RECEIVE Specifies values for parameters that control aspects of interprocess
communication.

RESETTOG Resets one or more specified toggles.

RUNNAMED Specifies that the program containing this directive run as a named
process. Default is NORUNNAMED.

SAVE Saves specified information related to the starting environment of a
process.

SAVEABEND Creates a save file in case of abnormal program termination. Default
is NOSAVEABEND.

SEARCH Specifies list of object files to search for unsatisfied external
references at compile time.

SECTION Assigns a name to a section of a source file for use in a SOURCE
directive.

SETTOG Sets specified toggles for conditional compilation control.

SOURCE Causes the compiler to read part or all of an alternate source input
file.

SUBTYPE Specifies the process subtype for an object file. Default is SUBTYPE
0.

Table 10-1. Summary of Compiler Directives (page 3 of 4)

Directive Action
FORTRAN Reference Manual—528615-001
10-3

Compiler Directives Using Compiler Directives
Using Compiler Directives
The general form for compiler directives is:

?

in the first column of a source line designates that it is a compiler directive line.

directive

is one of the compiler directives described in this section.

Considerations
• FORTRAN ignores blanks in compiler directives, except within quoted strings.

• You can specify more than one directive per line. Separate directives with commas.

• You can continue directives that have a parameter list over multiple lines. The
break in the parameter list can occur between parameters anywhere after the
opening parenthesis. The continuation line must also begin with a question mark in
column one. For example:

?ERRORS 100, FMAP, SOURCE (file1, file2,

?file3)

• You can use an equal sign (=) between any directive or option keyword and its
numeric value, but it is not required. For example, ?DATAPAGES = 64 and
?DATAPAGES 64 are equivalent.

• You can use decimal or octal notation for all directives and options that require
numeric values.

Observe the following restrictions in the placement of compiler directives:

SUPPRESS Lists only error messages and compilation statistics; overrides LIST.
Default is NOSUPPRESS.

SYMBOLS Includes a symbol table in the object file for use by Inspect. Default
is NOSYMBOLS.

SYNTAX Searches source file for syntax errors; does not produce object file.

UNIT Causes a unit to exist; declares the properties of the file or files
connected to the unit.

WARN Lists warning messages regardless of the LIST setting. Default is
WARN.

? directive [, directive]...

Table 10-1. Summary of Compiler Directives (page 4 of 4)

Directive Action
FORTRAN Reference Manual—528615-001
10-4

Compiler Directives Using Compiler Directives
• Specify the following directives as the first or only directive on a line:

COLUMNS

PAGE

• Specify the following directives as the only directive on a line:

ENDIF

SECTION

• Specify the following directives last on a directive line:

IF

IFNOT

RESETTOG

SETTOG

SOURCE

• Specify the following directives either with the FORTRAN command (after the
semicolon following the object file name) or in the source input file before the first
FORTRAN statement:

ABORT FIXUP INTEGER NONSTOP

ENV FMAP LARGECOMMON RUNNAMED

ERRORFILE HIGHCOMMON LARGESTACK SUBTYPE

ERRORS HIGHPIN LIBRARY SYNTAX

EXTENDCOMMON HIGHREQ LOGICAL UNIT

EXTENDEDREF

• Specify the following directives either with the FORTRAN command, or in the
source input file preceding the first FORTRAN statement, or between the END line
of one program unit and the first FORTRAN statement of the next program unit:

ANSI CODE MAP

BOUNDSCHECK CROSSREF SYMBOLS
FORTRAN Reference Manual—528615-001
10-5

Compiler Directives ABORT Compiler Directive
• Specify the following directives either with the FORTRAN command (after the
semicolon following the object file name) or anywhere in the source input file:

COLUMNS ICODE LOWBUFFER SAVEABEND

COMPACT IF PAGE SEARCH

CONSULT IFNOT POP SECTION

DATAPAGES INSPECT PRINTSYM SETTOG

ENDIF LARGEDATA PUSH SOURCE

GUARDIAN LINES RECEIVE SUPPRESS

HIGHBUFFER LIST RESETTOG WARN

HIGHCONTROL LMAP SAVE

ABORT Compiler Directive
The ABORT directive specifies whether the compiler should abort if it cannot open a
file referenced in a SOURCE or CONSULT compiler directive.

Use the ABORT directive if you run the compiler without a home terminal or if your
home terminal is unattended—for example, if you use the NetBatch product or a TACL
macro for multiple compilations, or you compile a large program from an unattended
terminal.

The default value is ABORT.

Considerations
• Specify the ABORT directive either on the FORTRAN command line following the

semicolon after the object file name or in the source input file before the first
FORTRAN statement.

• If there are two or more properly placed ABORT directives, the compiler obeys the
last one processed at the time it fails to open a SOURCE or CONSULT file.

• If an ABORT directive appears after the first FORTRAN statement, the compiler
issues an error message and ignores the directive.

• The ABORT directive applies only if the compiler cannot open a source file
specified in a SOURCE directive or an object file specified in a CONSULT
directive.

[NO]ABORT
FORTRAN Reference Manual—528615-001
10-6

Compiler Directives ANSI Compiler Directive
• If you specify NOABORT and the compiler cannot open a SOURCE or CONSULT
file, the compiler displays the following on the home terminal:

File file-name not in directory.

Enter ?SAME to try same file.

Enter ?ABORT to abort compile.

Enter ?IGNORE to skip file.

Otherwise enter another file name.

Enter response:

If a file system error code (including EOF) is returned or you enter ?ABORT, the
compiler calls ABEND with completion code 3 (premature termination). If you enter
?SAME, or ?IGNORE, or a file name, the compiler proceeds as directed.

• If FORTRAN is unable to open a SOURCE or CONSULT file, and an ABORT
directive is in effect, the compiler does not display a message on the home
terminal. Instead, it writes the following message to its OUT file and ABENDs with
completion code 3:

OPEN OF directive FILE FAILED

FILE MANAGEMENT ERROR # n: file-name

Example
?ABORT

ANSI Compiler Directive
The ANSI directive instructs the compiler to ignore characters beyond position 72 of a
source line and to pad each line that is shorter than 72 characters with blanks.

The default value is NOANSI.

Considerations
• Specify ANSI if you need to conform to the ANSI standard line length. Note that the

ANSI directive affects only the length of source records read by the compiler. It has
no effect on other HP extensions to ANSI standard FORTRAN.

Line length can also be specified with the COLUMNS directive. For more
information, see the COLUMNS Compiler Directive on page 10-9.

• If you omit this directive, the compiler reads all characters in a source line.

[NO]ANSI
FORTRAN Reference Manual—528615-001
10-7

Compiler Directives BOUNDSCHECK Compiler Directive
• Specify the ANSI directive either with the FORTRAN command, or in the source
input file preceding the first FORTRAN statement, or between the END line of one
program unit and the first FORTRAN statement of the next program unit.

• The ANSI compiler directive is equivalent to COLUMNS 72, with the following
exceptions:

° If you specify ANSI, the compiler truncates or pads (with blanks) each source
line to make it exactly 72 characters. The COLUMNS directive makes the
compiler ignore all source text beyond the specified number of characters, but
it does not affect source lines shorter than 72 characters. This distinction can
be important if any character constants are continued from one line to the next.

° The SOURCE and SECTION directives do not affect the ANSI mode.

• The ANSI directive temporarily overrides the effects of any COLUMNS directives.

• When an ANSI directive is in effect, the compiler prints each source-line image with
a vertical bar character between the last character of a line and the first ignored
character of that line. In other words, the compiler prints a vertical bar between
columns 72 and 73 of each source-line image.

Example
?ANSI

BOUNDSCHECK Compiler Directive
The BOUNDSCHECK directive causes FORTRAN to generate code that verifies at run
time that all array subscripts are within the lower and upper bounds declared for arrays
dimensioned in the program.

The default value is NOBOUNDSCHECK.

Considerations
• Array bounds violations cause arithmetic overflow at execution time. If you specify

NOBOUNDSCHECK or omit this specification, the compiler does not perform any
verification.

• You must compile each program unit in its entirety either with bounds checking or
without.

• BOUNDSCHECK decreases program performance because of the additional code
required to check each reference to an element of an array.

• Specify the BOUNDSCHECK directive either with the FORTRAN command, or in
the source input file preceding the first FORTRAN statement, or between the END

[NO]BOUNDSCHECK
FORTRAN Reference Manual—528615-001
10-8

Compiler Directives CODE Compiler Directive
line of one program unit and the first FORTRAN statement of the next program
unit.

Example
?BOUNDSCHECK

CODE Compiler Directive
The CODE directive instructs the compiler to list the octal instruction codes generated
for each program unit, following the source listing for that program unit.

The default value is NOCODE.

Considerations
The effect of the CODE directive is suspended, but not cancelled, by the NOLIST and
SUPPRESS directives.

Specify the CODE directive either with the FORTRAN command, or in the source input
file preceding the first FORTRAN statement, or between the END line of one program
unit and the first FORTRAN statement of the next program unit.

Example
?LIST, CODE

COLUMNS Compiler Directive
The COLUMNS directive causes the compiler to treat all text as comments beyond a
specified column in each source line, beginning with the line that contains the
COLUMNS directive.

This directive is designed to make it easy for a SOURCE file to bring in other files with
different column conventions.

The default is COLUMNS 132.

number

is an unsigned integer in the range 12 through 132. The default value is 132. If you
specify a value smaller than 12, FORTRAN issues a warning and uses 12. If you
specify a value larger than 132, FORTRAN issues a warning and uses 132.

[NO]CODE

COLUMNS number
FORTRAN Reference Manual—528615-001
10-9

Compiler Directives COLUMNS Compiler Directive
Considerations
• The COLUMNS directive can appear on the FORTRAN command line following

the semicolon after the object file name. It can also appear anywhere in a source
input file. A compilation can have any number of COLUMNS directives.

When source files contain a COLUMNS directive, it must be the first or only
directive on a line, and it must appear before the first SECTION directive if there
are SECTION directives in the file.

• Use of the COLUMNS directive

The COLUMNS value in effect at any given time depends on the context, as
follows:

° At the beginning of the main input file, the COLUMNS value is set by the last
COLUMNS directive on the FORTRAN command line. If the FORTRAN
command line has no COLUMNS directive, the COLUMNS value is 132.

° A file read in by a SOURCE directive initially assumes the current COLUMNS
value of the file that contains the SOURCE directive.

° At the beginning of each section (of the main input file or of a file read in by a
SOURCE directive), the current COLUMNS value is set by the last COLUMNS
directive before a SECTION directive.

(The COLUMNS directive is the only exception to the rule that FORTRAN
ignores all directives or statements appearing outside a section specified in a
SOURCE directive.)

° Within each section, the current COLUMNS value is changed by any
COLUMNS directive included in the section. Each COLUMNS directive is in
effect only until the next COLUMNS or SECTION directive, the end of the
SOURCE directive, or the end of the file, whichever comes first.

° When a SOURCE directive is completed—that is, when all sections named in
the SOURCE directive have been read or when the end of the file is reached,
whichever comes first—the current COLUMNS value is restored to what it was
when the SOURCE directive was encountered.

° For cases not specified in this list, the current COLUMNS value is the value set
by the most recently processed COLUMNS directive.

• If a source file has comments (such as source line identification) at the ends of the
lines, place a COLUMNS directive at the beginning of the file.

• If a source file has no comments at the ends of the lines, specify COLUMNS 132 at
the beginning of the file to prevent lines from being truncated if this file is read in by
a file that has a smaller COLUMNS value.

• The ANSI compiler directive is equivalent to COLUMNS 72, but with the following
differences:
FORTRAN Reference Manual—528615-001
10-10

Compiler Directives COMPACT Compiler Directive
° In ANSI mode, the compiler truncates or pads (with blanks) each source line to
make it exactly 72 characters. The COLUMNS directive makes the compiler
ignore all source text beyond the specified number of characters, but it does
not affect source lines shorter than that. This distinction can be important if any
character constants are continued from one line to the next.

° The SOURCE and SECTION directives do not affect the ANSI mode.

• The ANSI directive temporarily overrides the effects of any COLUMNS directives.

• When the value set by COLUMNS is less than 132, the compiler prints each
source line image with a vertical bar character between the last character of a line
and the first ignored character of that line. For example, when COLUMNS 72 is in
effect, the compiler prints a vertical bar between columns 72 and 73 of each source
line image.

Examples
This directive appears at the beginning of a source file that has comments beginning at
column 81 of each line:

?COLUMNS 80

This directive appears at the beginning of a source file that has no comments at the
ends of the lines. It prevents truncation of lines if this file is read in by a file that has
narrow lines specified.

?COLUMNS 132

COMPACT Compiler Directive
The COMPACT directive specifies that BINSERV should attempt to compact the code
space of the target file.

The default value is NOCOMPACT.

Considerations
A run unit can include as many as 32 code segments: 16 in user code space and 16 in
user library space. Each code segment consists of up to 64K words. The FORTRAN
compiler generates code-space blocks that cannot straddle the 32K-word boundary in
a 64K-word code segment.

• If you specify NOCOMPACT, BINSERV allocates code-space blocks in the order in
which they are presented to the compiler. This can leave gaps between the
32Kword boundary and the last code-space block below it, and between the 64K-
word boundary and the last code-space below it.

[NO]COMPACT
FORTRAN Reference Manual—528615-001
10-11

Compiler Directives CONSULT Compiler Directive
• If you specify COMPACT, BINSERV checks each succeeding code-space block to
determine whether it will fit into either current gap. When a code-space block that
fits in a gap is found, BINSERV allocates it in the gap, thereby compressing both
the target file and the object program. Figure 10-1 illustrates this process.

Example
?COMPACT

CONSULT Compiler Directive
The CONSULT directive declares external procedures.

When you declare a procedure name in a CONSULT directive, FORTRAN checks the
procedure definition and generates an appropriate calling sequence for calls to the
procedure that occur in the compilation.

Figure 10-1. The Effect of the COMPACT Directive

CONSULT

Program A Program B Program EProgram DProgram C

10K words 12K words 16K words 4K words 5K words

! No block exceeds 32K words
! No block spans a 32K boundary

Bound with NOCOMPACT, the code requires 58K words:

BBBBBBBBBBBBAAAAAAAAAA ^^^^^^^^^
^

CCCCCCCCCCCCCCCC DDDD EEEEE

Bound with COMPACT, BINSERV rearranges the blocks to fit in 48K words:

10 22 32 48 52 58

Note: Each character above represents 1K words.

CCCCCCCCCCCCCCCC^EEEEEDDDDBBBBBBBBBBBBAAAAAAAAAA

10 22 26 31 32 48

VST1001.vsd

The compiler presents code-space blocks to BINDER in the following order:

consult item–

consult item , consult item–[] . . . –()

FORTRAN Reference Manual—528615-001
10-12

Compiler Directives CONSULT Compiler Directive
consult-item

is a Guardian file name or DEFINE name known at compile time, optionally
followed by the name of one or more procedures contained in the referenced file.
The procedure names, if present, are separated by commas and contained in
parentheses. The syntax of a consult-item is:

 [(proc-name [, proc-name]...)]

Compile-time defaults are supplied for any missing qualifiers. Each
consult-item must be an object file created by the Binder. It must contain a
Binder region. The procedure bodies in this file can be empty because FORTRAN
needs only the procedure names and attributes, along with the attributes of their
formal parameters. For more details, see Considerations. For information on the
Binder region, see the Binder Manual.

Considerations
• The CONSULT directive can appear on the FORTRAN command line following the

semicolon after the object file name, or anywhere in the source input file. A
compilation can have any number of CONSULT directives.

• If the CONSULT directive names a file without listing procedure names, the
FORTRAN compiler looks up all the procedures in that file, and records their
descriptions. If the CONSULT directive has a list of procedure names, the compiler
looks up only those procedures and records their descriptions.

• If a procedure is named in the directive but not found in the file, the compiler issues
a warning message and ignores the procedure, but continues processing the
remainder of the directive.

• If two or more procedures with the same name are found (in different files), the
compiler uses the first one and ignores the others. The compiler does not report a
warning.

• FORTRAN ignores a procedure in a file specified in a CONSULT directive if the
procedure:

° Is a main program.

° Has a name that is not a legal FORTRAN name.

° Is a C procedure with lowercase letters in its name.

° Is a C procedure with a variable number of parameters.

° Is a C procedure compiled with the OLDCALLS pragma.

° Was compiled from a source language other than C, COBOL85, FORTRAN,
Pascal, or TAL.

file name–

define name–

FORTRAN Reference Manual—528615-001
10-13

Compiler Directives CONSULT Compiler Directive
• If a consult-item names a procedure that is already defined or referenced as a
FORTRAN subprogram, the source program’s description overrides the description
in the file named in the CONSULT directive. If a consult-item does not include
a list of procedure names, the compiler ignores the procedure without displaying a
message. If the procedure is named explicitly in the consult-directive, the
compiler issues an error message and ignores the procedure.

• You can use CONSULT and GUARDIAN directives in the same compilation. The
compiler processes them in the order in which it reads them, and does not give
priority to one or the other.

• If you want the FORTRAN compiler to consult files named in LIBRARY and
SEARCH directives for calling sequences, you must specify those files in
CONSULT directives, as well as in LIBRARY and SEARCH directives.

• One way to create the proper CONSULT consult-item is to start with a TAL
source file that contains the EXTERNAL declarations of a set of procedures. Use
an editor to replace each EXTERNAL with BEGIN END, and compile the modified
source file with TAL. The resulting object file can be used with the CONSULT
directive and is minimal in size. You can also use an object file that contains the
actual procedures.

• Calling a procedure whose description is obtained by a CONSULT directive is the
same as calling a procedure whose description is obtained by a GUARDIAN
directive. Write a CALL statement or a function reference in the standard way, but
with these differences:

° If the procedure is typed (can be called as a function), it must be called as a
function in FORTRAN.

° If the procedure is VARIABLE or EXTENSIBLE, you can omit parameters in the
same way as in TAL; that is, with successive commas, or by omitting unused
trailing parameters and their commas.

• Two difficulties can arise when you use CONSULT directives along with SEARCH
directives:

° The CONSULT directive does not guarantee that the procedures will be bound.
If you want a particular procedure bound in, you must have a SEARCH
directive that names an object file containing that procedure. If you don’t want
a procedure bound in, you must ensure that no file named in any SEARCH
directive has a procedure of that name.

° When you want a procedure bound in, be sure the file names appear in the
same order in the SEARCH and CONSULT directives. Otherwise, the compiler
might obtain a procedure’s description from one file, but the Binder might get a
different procedure with the same name from another file.

These difficulties can occur because the SEARCH directive allows you to specify
file names but not individual procedures within those files. If you need more control
over the contents of the object file, use the Binder program after all of your
compilations have completed to arrange the object file exactly as desired.
FORTRAN Reference Manual—528615-001
10-14

Compiler Directives CROSSREF Compiler Directive
• For information on calling procedures not written in FORTRAN, see Section 13,
Mixed-Language Programming.

Example
?CONSULT mylib

CROSSREF Compiler Directive
The CROSSREF directive instructs the SYMSERV process to generate cross-
reference information for selected identifier classes.

identifier-class

is one or more of the following keywords:

Considerations
• Specify the CROSSREF directive either on the FORTRAN command line or in the

source file preceding the first FORTRAN statement, or between the END line of
one program unit and the first FORTRAN statement of the next program unit.

• If you omit the argument list, the CROSSREF directive lists information for all
classes listed in the syntax diagram except LITERALS and UNREF.

[NO]CROSSREF

Keyword Meaning
BLOCKS COMMON blocks

BLOCKDATAS BLOCK DATA subprograms

CONSTANTS PARAMETER-named constants

DUMMYPROCS Dummy procedures

FMTLABELS FORMAT statement labels

FUNCTIONS FUNCTION subprograms

GENERATE See Considerations

INLINES Intrinsic functions

LITERALS Unnamed constants

PROCEDURES SUBROUTINE subprograms

PROGLABELS Executable statement labels

STMTFUNCS Statement functions

UNREF Unreferenced identifiers

VARIABLES Variables, arrays, records

identifier class–

identifier class , identifier class–[] . . . –()
FORTRAN Reference Manual—528615-001
10-15

Compiler Directives DATAPAGES Compiler Directive
• The effect of the CROSSREF directive is suspended, but not cancelled, by the
NOLIST and SUPPRESS directives.

• Using GENERATE

The compiler normally lists requested cross-reference tables at the end of the
compilation. If you specify GENERATE, the compiler lists the requested cross-
reference tables at the end of the current program unit, and discards the
accumulated references up to that point. At the end of the compilation, the
compiler lists the cross-reference information since the last GENERATE listing.

• Using NOCROSSREF

The NOCROSSREF directive prevents generation of references. It takes effect at
the start of the next program unit.

If you specify a list of classes with the NOCROSSREF directive, the compiler
deletes the listed classes from the listing. The compiler does not produce a listing
unless a previous CROSSREF directive is in effect.

Example
The following example generates a cross-reference list at the end of the current
program unit. The list contains all identifiers except unreferenced variables, unnamed
constants, and intrinsic functions.

?CROSSREF, NOCROSSREF INLINES, CROSSREF GENERATE

DATAPAGES Compiler Directive
The DATAPAGES directive specifies the number of virtual memory pages to allocate
for data storage.

number

is a number in the range 0 through 64.

The default value is equal to the size of the control table plus four pages.

Considerations
• If ENV COMMON is in effect, FORTRAN always allocates 64 data pages,

regardless of the value of number.

• If you do not include this directive in the source file, FORTRAN estimates the
number of pages to use.

DATAPAGES number
FORTRAN Reference Manual—528615-001
10-16

Compiler Directives ENDIF Compiler Directive
• If you include the directive, Binder allocates precisely the number of pages you
specify whether or not that number is sufficient, and displays a warning message if
the number you specify is less than the compiler’s estimate.

Example
?DATAPAGES 16

ENDIF Compiler Directive
The ENDIF directive terminates the effect of a preceding IF or IFNOT directive that
specifies the same toggle number.

toggle

is a number in the range 1 through 15.

Considerations
• Write the ENDIF directive as the only item on a directive line.

• Use the IF, IFNOT, and ENDIF directives with the SETTOG and RESETTOG
directives to control conditional compilation.

• Note that IFNOT is not equivalent to ELSE.

Example
In the following example, if you use a SETTOG 2 directive, code A is compiled; if you
use a SETTOG 3 directive, code B is compiled.

?IF 2

code A

?ENDIF 2

?IF 3

code B

?ENDIF 3

ENDIF toggle
FORTRAN Reference Manual—528615-001
10-17

Compiler Directives ENV Compiler Directive
ENV Compiler Directive
The ENV directive determines whether your program uses the C-series or D-series
FORTRAN run-time library.

The default value is ENV OLD.

OLD

specifies that this program use the C-series FORTRAN run-time library.

COMMON

specifies that this000 program use the D-series FORTRAN run-time library.

If you specify ENV OLD, FORTRAN:

• Generates an object file that contains C-series data blocks that are compatible with
the C20 release of the FORTRAN compiler.

• Processes all calls to its run-time environment using FORTRAN run-time library
routines and subsequent calls to Guardian system procedures.

If you specify ENV COMMON, FORTRAN:

• Generates an object file that contains D-series data blocks that are defined by the
Common Run-Time Environment (CRE).

• Processes calls to its run-time environment using FORTRAN run-time library
routines, and subsequent calls to CRE routines and Guardian system procedures.

• Depends on the CRE to:

° Monitor the backup process of a NonStop process pair

° Handle traps

° Provide the math functions required by FORTRAN programs

° Optionally perform I/O operations for unit 5 and unit 6.

Using ENV COMMON
FORTRAN programs that specify ENV COMMON gain the following benefits:

• You can mix object modules compiled by the C, COBOL85, FORTRAN, Pascal,
and TAL compilers more easily. There are restrictions on the operations that each
of the language modules can perform, but fewer than when you combine programs
that do not specify ENV COMMON.

ENV
OLD
COMMON

FORTRAN Reference Manual—528615-001
10-18

Compiler Directives Using ENV COMMON
• The run-time environment provides more consistent and complete run-time error
handling for programs that specify ENV COMMON.

• You can specify an eight-character volume name when accessing information over
a network.

• FORTRAN supports the NONSTOP and HIGHPIN directives. If ENV OLD is in
effect, FORTRAN prints a warning if it encounters a NONSTOP or HIGHPIN
directive and ignores the directive.

• FORTRAN supports the EXECUTION-LOG, INSPECT, NONSTOP, and SWITCH-
nn TACL PARAMs. For more information about run-time PARAMs, see Section 11,
Running and Debugging Programs.

Considerations
• The ENV directive must appear on the FORTRAN command line after the

semicolon that follows the object file name, or in the source input file before the
first FORTRAN source statement.

If you specify more than one ENV directive in a compilation, FORTRAN uses the
first one you specify and reports a warning message for each subsequent ENV
directive that appears before the first FORTRAN statement.

FORTRAN reports an error if it encounters an ENV directive after the first
FORTRAN statement and the ENV directive specifies a different environment than
the first ENV directive in your compilation.

• Regardless of whether you specify ENV OLD or ENV COMMON, a FORTRAN
subprogram in a user library or in the system library can manipulate only its local
data and data items passed to it in its dummy arguments. It can return data only
through its dummy arguments and, if it is a function subprogram, as the value
returned by the function. It cannot directly access data items in, or equivalenced to,
items declared in COMMON, DATA, or SAVE areas, although such items can be
passed to the library routine as actual arguments.

A routine in a library cannot reference items allocated in the extended data
segment.

A library routine or utility routine can execute FORTRAN I/O statements only if the
unit number specified in the I/O statement is either specified in a UNIT directive or
as a constant value in an I/O statement in a program unit in the program’s user
code area. You can pass the unit number to the library routine as an actual
argument or you can establish the unit number by programmatic convention.

Programs that specify ENV COMMON might be affected as follows:

• You must specify ENV COMMON either for all the FORTRAN programs or for none
of the FORTRAN programs that you bind together, including programs bound into
your object file as a result of SEARCH directives. You cannot mix FORTRAN
programs, subprograms, or functions if some of the program units are compiled
with ENV COMMON and others with ENV OLD.
FORTRAN Reference Manual—528615-001
10-19

Compiler Directives Using ENV COMMON
If you bind FORTRAN modules with modules created by other compilers, all the
modules that you bind together must specify or default to ENV COMMON, ENV
NEUTRAL (TAL routines only), ENV EMBEDDED (Pascal routines only), or ENV
LIBSPACE (Pascal routines only). For more information, see the Binder Manual.

• Because the library routines in the common environment use extended addresses
for all data references, you might notice a small performance degradation when
you run your program. The actual performance degradation depends on the
percentage of time your program spends executing its own code, compared to the
time it spends executing run-time library code.

• FORTRAN programs can open unit connections only to the standard input and
standard output files. Although a FORTRAN program cannot open a unit
connection to the standard log file, messages written by FORTRAN PAUSE
statements, STOP statements, and diagnostic messages from run-time routines
are written to the standard log file.

I/O operations to unit 5 and unit 6 might be processed as they are in C-series
systems or might use file sharing routines that apply to the standard files,
depending on the values of the file’s attributes. For more information about sharing
standard files, see the OPEN Statement on page 7-70 and Using ENV COMMON
on page 13-26.

Control blocks and memory buffers are larger than and are located in different
locations than programs compiled with ENV OLD. If your program depends on the
location of control blocks and buffers, you will need to change your program. You
should consider changing your program such that it is not dependent on the size or
location of control blocks and memory buffers.

• The size or contents of the following buffers are different depending on whether
you specify ENV OLD or ENV COMMON:

° The array returned in the SOURCE specifier of a READ statement that reads
from $RECEIVE

° The CPLIST parameter to a CHECKPOINT statement and to Saved Message
Utility (SMU) routines

• You cannot use the FORTRANCOMPLETION or FORTRANSPOOLSTART
routines. Use the FORTRAN_COMPLETION_ routine instead of
FORTRANCOMPLETION. Use the FORTRAN_SPOOL_OPEN_ routine instead of
the combination of the FORTRANSPOOLSTART routine and the OPEN statement
that precedes it. For more information, see Section 15, Utility Routines.

• Run-time diagnostic messages have a different format. If you have a program that
depends on the format of run-time diagnostic messages reported by FORTRAN,
you must change the program.
FORTRAN Reference Manual—528615-001
10-20

Compiler Directives ERRORFILE Compiler Directive
Example
In the following example, toggle 2 is reset if ENV OLD is specified; toggle 2 is set if
ENV COMMON is specified:

?IFNOT 2

?ENV OLD

?ENDIF 2

?IF 2

?ENV COMMON

?ENDIF 2

...

?IFNOT 2

CALL FORTRANCOMPLETION(...)

?ENDIF 2

?IF 2

CALL FORTRAN_COMPLETION_(...)

?ENDIF 2

ERRORFILE Compiler Directive
The ERRORFILE directive saves the error messages from a compilation in a disk file.
The disk file can be used with the FIXERRS TACL command to quickly locate and
correct the errors in your source code.

file-name

is the name of the file to receive the error messages. It must be either a Guardian
file name or a DEFINE name known at compile time. Compile-time defaults are
supplied for any missing qualifiers. The file name must be specified. There is no
default file name.

ERRORFILE file-name
FORTRAN Reference Manual—528615-001
10-21

Compiler Directives ERRORFILE Compiler Directive
Considerations
• The ERRORFILE directive must appear either on the FORTRAN compiler

command line after the semicolon following the object file name, or in the source
input file preceding the first FORTRAN statement. If you include an ERRORFILE
directive after the first FORTRAN statement, the compiler issues an error message
and ignores the directive.

• If you supply two or more properly placed ERRORFILE directives, the compiler
uses the first one and issues a warning message for each of the others.

• If the source input file is anything other than an EDIT format file, the compiler
issues a warning message and ignores the ERRORFILE directive.

• The ERRORFILE directive causes the FORTRAN compiler to log all errors and
warnings to the specified file, which it creates as an entry-sequenced disk file with
file code 106.

• If the file already exists, and it is an entry-sequenced disk file with file code 106,
the compiler purges it so the file does not accumulate messages from multiple
compilations. If the compiler is unable to purge the existing file, or if the file is
anything other than an entry-sequenced disk file with file code 106, the compiler
issues a warning message and proceeds as if the ERRORFILE directive were not
present.

• The compiler creates the new file only if any error and warning messages are
issued during the compilation. The trailer page at the end of the compiler listing
states one of the following:

n messages written to error file file-name

Error file file-name was not created

• Using the File Produced by ERRORFILE

The TACL command FIXERRS runs the TEDIT text editor with one window
showing an error message and the other window showing a portion of the source
file surrounding the site of the error. After the compilation, enter the TACL
command

1> FIXERRS file-name

or

1> FIXERRS file-name ; commands

File-name is the name of the error file specified in the ERRORFILE compiler
directive, and commands is a sequence of one or more TEDIT commands.

FIXERRS runs TEDIT, which obeys the commands, if any, and then gets the first
message in the error file. TEDIT displays the text of the error message in the top
part of the screen, and the source text surrounding the error in the remainder of the
screen. Correct the source text; then use the TEDIT macros NEXTERR and
FORTRAN Reference Manual—528615-001
10-22

Compiler Directives ERRORS Compiler Directive
PREVERR to display other error messages and their source text in the same
manner.

You can assign the NEXTERR and PREVERR macros to function keys instead of
entering them on the TEDIT command line. For example, in the preceding
FIXERRS command, the commands part could be a TEDIT USE command that
references a TEDIT profile that assigns NEXTERR and PREVERR to function
keys.

NEXTERR and PREVERR are distributed as part of TACL; you can find them in
the TACL directory named UTILS:FIXERRS. Normally, you don’t need to specify a
name qualifier or any HOME or USE command to use these macros.

Example
?ERRORFILE errfile

ERRORS Compiler Directive
The ERRORS directive sets the maximum number of errors for a compilation. When
the total number of error messages issued during the compilation (warning messages
are not counted) exceeds the value you specify in the directive, the compiler stops
without processing the remainder of the source input.

The default is ERRORS 100.

number

is an unsigned integer in the range 0 through 32767.

Considerations
• The ERRORS directive must appear on the FORTRAN command line following the

semicolon after the object file name, or in the source input file before the first
FORTRAN source statement. If you specify an ERRORS directive after the first
FORTRAN statement, the compiler issues an error message and ignores the
directive.

• If you supply two or more properly placed ERRORS directives, the compiler uses
the first one and issues a warning message for each of the others.

• The ERRORS directive is useful when you suspect something is wrong with your
source input file. You could specify ERRORS 10, for example, and not waste time
trying to compile a bad input file. Limiting the errors can be useful when you are
converting a FORTRAN source program from another system.

ERRORFILE number
FORTRAN Reference Manual—528615-001
10-23

Compiler Directives EXTENDCOMMON Compiler Directive
Example
?ERRORS 250

EXTENDCOMMON Compiler Directive
The EXTENDCOMMON directive instructs the compiler to use indexed indirect
addressing to access simple variables in common blocks in the user data segment.

This method of addressing saves primary global storage but accessing the data in
common blocks is slower than if you do not specify EXTENDCOMMON.

The default value is NOEXTENDCOMMON.

Considerations
• EXTENDCOMMON has no effect on arrays, simple variables more than two words

in length, or variables in the extended data segment.

• Normally, FORTRAN allocates one pointer in primary global storage for each entity
in common in secondary global storage. If you specify the EXTENDCOMMON
directive, FORTRAN allocates only one pointer for the first entity in each common
block, one pointer for each array in each common block, and one pointer for all
scalars in each common block. The compiler locates entities that follow by
indexing.

• Specify the EXTENDCOMMON directive either with the FORTRAN command (after
the semicolon following the object file name) or in the source input file before the
first FORTRAN statement.

• For additional information, see Section 12, Memory Organization.

Example
?EXTENDCOMMON

EXTENDEDREF Compiler Directive
The EXTENDEDREF directive tells FORTRAN to generate code that uses doubleword
addresses for parameters in CALL statements or function references. Programs that
use extended data space need doubleword addresses to reference data items stored
in extended memory.

The default value is NOEXTENDEDREF, unless you use the LARGECOMMON or

[NO]EXTENDCOMMON
FORTRAN Reference Manual—528615-001
10-24

Compiler Directives EXTENDEDREF Compiler Directive
LARGEDATA directives.

Considerations
• Use of EXTENDEDREF Directive

Use the EXTENDEDREF directive when you compile program units that do not
include LARGECOMMON or LARGEDATA directives but which you plan to
combine with separately compiled program units that do include LARGECOMMON
or LARGEDATA directives.

You do not have to use the EXTENDEDREF directive in programs that include the
LARGECOMMON or LARGEDATA directives. When you use the
LARGECOMMON or LARGEDATA directives, FORTRAN automatically compiles
your program as if you included an EXTENDEDREF directive.

You must specify EXTENDEDREF either with the FORTRAN command (after the
semicolon following the object file name) or in the source input file before the first
FORTRAN statement.

The NOEXTENDEDREF form of the directive tells FORTRAN to use word
addressing.

• Use With Separately Compiled FORTRAN Program Units

You cannot bind FORTRAN program units compiled with EXTENDEDREF,
LARGECOMMON, or LARGEDATA with FORTRAN program units compiled with
NOEXTENDEDREF.

• Use With Guardian Procedures or Utility Routines

If you call Guardian procedures or FORTRAN utility routines from programs
compiled with EXTENDEDREF, LARGECOMMON, or LARGEDATA, you must
declare the called procedures in GUARDIAN directives.

Some C-series Guardian procedures use word-addressed parameters. You cannot
use a formal parameter or data item stored in extended memory as a passby-
reference argument if the dummy argument is a word-addressed item.

For additional details about using Guardian procedures and FORTRAN utility
routines, see Section 13, Mixed-Language Programming.

• Use With COBOL85 Program Units

You can call a FORTRAN program unit from a COBOL85 program unit whether or
not the FORTRAN program unit was compiled with EXTENDEDREF,
LARGECOMMON, or LARGEDATA. When the COBOL85 compiler processes an
ENTER statement, it automatically checks the object file that contains the compiled
program unit to determine whether to generate a calling sequence with word or
doubleword addresses.

[NO]EXTENDEDREF
FORTRAN Reference Manual—528615-001
10-25

Compiler Directives FIXUP Compiler Directive
You can call a COBOL85 program unit from a FORTRAN program unit whether or
not the FORTRAN program unit uses EXTENDEDREF, LARGECOMMON, or
LARGEDATA, but you must code the COBOL85 program unit to specify the
addressing mode. The COBOL85 program unit’s LINKAGE SECTION must specify
“ACCESS MODE IS EXTENDED-STORAGE” if and only if it will be called by a
program unit compiled with EXTENDEDREF, LARGECOMMON, or LARGEDATA.

Examples
FORTRAN compiles your program with doubleword argument addressing if you specify
the following directive:

?EXTENDEDREF

FORTRAN compiles your program with word argument addressing if you specify the
following directive:

?NOEXTENDEDREF

FIXUP Compiler Directive
The NOFIXUP directive instructs the compiler to omit some of the steps required to
make an object file runnable. Using this directive when compiling object files that serve
as input to a subsequent Binder run reduces the time required to do a compilation by a
few percent.

The default value is FIXUP.

Considerations
The FIXUP directive must appear either after the semicolon following the object file
name on the TACL command line that runs the FORTRAN compiler or in the source
file preceding the first FORTRAN statement.

Example
?NOFIXUP

[NO]FIXUP
FORTRAN Reference Manual—528615-001
10-26

Compiler Directives FMAP Compiler Directive
FMAP Compiler Directive
The FMAP directive causes the compiler to include a file map in the compiler listing
just before the Binder load map. The file map consists of one line for each source input
file used during the compilation, showing the file ordinal, the file’s fully qualified name,
and the date and time the file was last modified.

The default is NOFMAP.

Considerations
• The FMAP directive must appear on the FORTRAN command line following the

semicolon after the object file name, or in the source input file before the first
FORTRAN source statement. If you specify the FMAP directive after the first
FORTRAN statement, the compiler issues an error message and ignores it.

• If you specify two or more properly placed FMAP directives, the compiler uses the
first one and issues a warning message for each of the others.

• The effect of the FMAP directive is suspended, but not cancelled, by the NOLIST
and SUPPRESS directives.

• The file map is most useful when you use DEFINEs for source input file names,
because the file map identifies the files that the compiler actually read. Even if you
do not use DEFINEs, the file map provides a list of all the source files used in the
compilation. Knowing which source files were used can be helpful when you want
to be certain you included all the source files necessary to compile the program.
FMAP can also be useful if you want to know exactly which versions of the source
files FORTRAN used for a particular compilation of a program.

Example
?FMAP

[NO]FMAP
FORTRAN Reference Manual—528615-001
10-27

Compiler Directives GUARDIAN Compiler Directive
GUARDIAN Compiler Directive
The GUARDIAN directive specifies the names of Guardian system procedures and of
FORTRAN utility routines that your program calls.

If you specify a procedure name in a GUARDIAN directive, FORTRAN checks the
procedure definition and generates an appropriate TAL calling sequence for calls your
program makes to the procedure.

proc-name

is the name of a Guardian procedure or a FORTRAN utility routine.

If you specify a proc-name that is not the name of a Guardian procedure or a
FORTRAN utility routine, FORTRAN issues a warning message and generates the
normal FORTRAN calling sequence for calls to the procedure.

Considerations
• Use of the GUARDIAN directive

You must include the GUARDIAN directive that declares a Guardian procedure or
a utility routine before the first FORTRAN statement which calls that procedure.

If you compile any portion of a program with the LARGECOMMON,
EXTENDEDREF, or LARGEDATA directives, you must use the GUARDIAN
directive to declare all Guardian procedures and FORTRAN utility routines that you
call from the program.

proc-name has the scope of an executable program. If you attempt to redefine it,
FORTRAN issues an error message.

• To use the most recent version of a Guardian procedure, use the CONSULT
directive instead of the GUARDIAN directive, and specify
$SYSTEM.SYSTEM.COBOLEX0.

• Declaring Typed Procedures (functions)

If you use the GUARDIAN directive to declare a Guardian routine or a utility routine
that can be called as a function, the FORTRAN data type returned by the function
corresponds to the data type specified by the TAL routine. FORTRAN’s normal
implicit typing rules do not apply and you do not need to include an explicit type
declaration for the function.

• Using Typed Procedures (Functions)

Unlike TAL, which allows a CALL statement to invoke typed procedures, and
generates object code that discards the value returned by the typed procedure,

GUARDIAN
proc name–

proc name , proc name–[] . . .–()

FORTRAN Reference Manual—528615-001
10-28

Compiler Directives HIGHBUFFER Compiler Directive
FORTRAN requires that you invoke a procedure that can be called as a function
only by a function reference, not with a CALL statement.

• Value and Reference Parameters

HP FORTRAN released before B-series systems required that value parameters in
calls to Guardian routines be enclosed in backslashes. This convention is no
longer necessary. If you add a GUARDIAN directive to a FORTRAN program that
still uses backslashes around a value parameter, the compiler issues a warning
message.

• VARIABLE and EXTENSIBLE Procedures

When a VARIABLE or EXTENSIBLE TAL procedure is not declared with a
GUARDIAN directive, you must write omitted parameters as \0\, and you must
include the parameter mask as one or more additional parameters.

When you declare such a procedure with the GUARDIAN directive, you indicate
omitted parameters with consecutive commas and by omitting commas after the
last parameter you specify. You must not pass the parameter mask in the
arguments to the called procedure.

Examples
This directive declares the procedure FILEINFO:

?GUARDIAN FILEINFO

This directive declares the SMU routine GETSTARTUPTEXT:

?GUARDIAN GETSTARTUPTEXT

This directive declares the procedures FILEINFO, FILERECINFO, and CONTROL:

?GUARDIAN (FILEINFO, FILERECINFO, CONTROL)

HIGHBUFFER Compiler Directive
The HIGHBUFFER directive specifies the number of words to allocate for run-time data
in the upper half of the user data segment.

size

is a number in the range of 1 through 16,383.

If you specify ENV OLD or do not specify an ENV directive, HIGHBUFFER
specifies the size of the #HIGHBUF data block, which is allocated in the upper half
of the user data segment. If you do not include a HIGHBUFFER directive in the
source file, the compiler does not allocate a #HIGHBUFFER data block. All
buffered data will be allocated in the #LOWBUF data block.

HIGHBUFFER size
FORTRAN Reference Manual—528615-001
10-29

Compiler Directives HIGHCOMMON Compiler Directive
If you specify ENV COMMON, HIGHBUFFER specifies the size of the
#CRE_HEAP data block. #CRE_HEAP contains the private data used by the CRE.
If you do not specify HIGHBUFFER, FORTRAN allocates 1,024 words in
#CRE_HEAP. If you specify HIGHBUFFER in a program that specifies ENV
COMMON, always specify a minimum of 1,024 bytes for size.

Considerations
• Your program requires more memory for HIGHBUFFER if you compile your

program with ENV COMMON in effect than it does if you compile with ENV OLD in
effect.

• The layout of the memory allocated when you specify ENV COMMON is different
than the layout if you specify ENV OLD or do not specify an ENV directive.

• For additional information on buffer pools, see Section 12, Memory Organization.

Example
?HIGHBUFFER 1066

HIGHCOMMON Compiler Directive
The HIGHCOMMON directive allocates common storage in upper data memory for
specified common blocks.

block-name

is a common block name.

Considerations
• The HIGHCOMMON directive must appear before the END statement of the first

subprogram that declares the block specified in the directive.

• If you omit the HIGHCOMMON directive, the compiler allocates all COMMON
blocks in the lower half of the user data segment or in the extended data segment
depending on the LARGECOMMON directive.

• If the HIGHCOMMON directive includes a list of block names, the compiler
allocates those blocks in the upper half of the user data segment, and allocates all
other blocks in the lower half, or in the extended data segment, depending on the
LARGECOMMON directive.

• If you do not specify any common block names for the HIGHCOMMON directive,
the compiler allocates all word-addressed blocks in the upper half of the user data

HIGHCOMMON
block name–

block name , block name–[]. . .–()
FORTRAN Reference Manual—528615-001
10-30

Compiler Directives HIGHCONTROL Compiler Directive
segment, and all byte-addressed blocks in the lower half, except for blocks
explicitly specified in LARGECOMMON directives.

• You can use more than one HIGHCOMMON directive in a compilation. The effect
is the same as if you had concatenated the common block names in a single
directive. As a result, if you include one HIGHCOMMON directive without a block
name list and one with, the compiler ignores the directive without a block name list.

• You cannot explicitly mention a byte-addressed block in a HIGHCOMMON
directive. A block is byte-addressed if it contains a RECORD or any type
CHARACTER data.

• You cannot declare the same block name in a HIGHCOMMON and in a
LARGECOMMON directive.

• If your program contains both a HIGHCOMMON and LARGECOMMON directive,
one of the directives must have a block name list.

Example
?HIGHCOMMON (employee, salary, grade)

HIGHCONTROL Compiler Directive
If you compile your program with ENV OLD in effect, the HIGHCONTROL directive
instructs Binder to allocate I/O control blocks in the upper half of the user data
segment. If you do not specify HIGHCONTROL, the I/O control block resides in
secondary global storage below the stack.

If you compile your program with ENV COMMON in effect, the HIGHCONTROL
directive instructs Binder to allocate the special data block #MCB in the upper half of
the user data segment. If you do not specify HIGHCONTROL, the special data block
#MCB resides in the lower half of the user data segment.

The default value is NOHIGHCONTROL.

Example
?HIGHCONTROL

[NO]HIGHCONTROL
FORTRAN Reference Manual—528615-001
10-31

Compiler Directives HIGHPIN Compiler Directive
HIGHPIN Compiler Directive
The HIGHPIN directive specifies whether your program can run at a high PIN.

The default value is NOHIGHPIN.

Considerations
• The HIGHPIN directive must appear on the FORTRAN command line after the

semicolon that follows the object file name, or in the source input file before the
first FORTRAN source statement.

If you specify more than one HIGHPIN directive in a compilation, FORTRAN uses
the first one you specify and reports a warning for each subsequent HIGHPIN
directive that appears before the first FORTRAN statement.

FORTRAN reports an error if you specify a HIGHPIN directive after the first
FORTRAN statement.

• You can specify HIGHPIN only if you have previously specified ENV COMMON in
the same compilation.

• If you use Binder to bind multiple object files together, Binder sets the HIGHPIN
attribute in the target file only if all the object files bound into the new object file
have the HIGHPIN attribute set. You can use the Binder SET command to
establish explicitly the value of the HIGHPIN attribute:

SET HIGHPIN

You can change the value of the HIGHPIN attribute in an object file using the
CHANGE Binder command:

CHANGE HIGHPIN IN object-file

• Your program runs at a high PIN only if all the following are true:

° The HIGHPIN attribute is set in the object file.

° The HIGHPIN attribute is set in the user library file, if your application has a
user library.

° Your process’s creator—usually TACL—specifies that your process can run at
a high PIN. Processes started from TACL run at a high PIN if the TACL variable

[NO]HIGHPIN

ON

OFF

ON

OFF

FORTRAN Reference Manual—528615-001
10-32

Compiler Directives HIGHREQ Compiler Directive
#HIGHPIN is on. You can test the value of #HIGHPIN by entering its name on
the TACL command line:

1> #HIGHPIN

TACL responds with either “YES” or “NO”.

You can change the value of the TACL #HIGHPIN variable by entering the
following:

1> SET VARIABLE #HIGHPIN

You might not want all processes that you start from TACL to run at a high PIN.
Instead of setting #HIGHPIN ON, you can enable high PINs only for the current
process by specifying the HIGHPIN run-option:

RUN MYPROG / IN file1, OUT file2,... HIGHPIN ... /

° The processor in which your process runs is configured to support high PINs
and has an available PIN that is greater than 255.

• NOHIGH PIN is the default value for this directive. If you specify HIGHPIN, you
might need to make changes in your program. For information about converting
processes to run at high PINs, see the Guardian Application Conversion Guide.

Example
?HIGHPIN

HIGHREQ Compiler Directive
The HIGHREQ directive specifies whether your process can be opened as a server by
requester processes that run at a PIN that is greater than 255.

The default value is NOHIGHREQ.

[NO]HIGHREQ[x]

ON

OFF

FORTRAN Reference Manual—528615-001
10-33

Compiler Directives HIGHREQ Compiler Directive
x

is zero or more alphabetic letters or digits. For example, the following directives
have the same effect:

?HIGHREQ

?HIGHREQS

?HIGHREQUESTORS

?HIGHREQUESTER

?HIGHREQ91

Considerations
• The HIGHREQ directive must appear on the FORTRAN command line after the

semicolon that follows the object file name, or in the source input file before the
first FORTRAN source statement.

If you specify more than one HIGHREQ directive in a compilation, FORTRAN uses
the first one you specify and reports a warning message for each subsequent
HIGHREQ directive that appears before the first FORTRAN statement.

FORTRAN reports an error if you specify a HIGHREQ directive after the first
FORTRAN statement.

• The HIGHREQ directive is meaningful only in an object file that includes a main
procedure.

• The standalone Binder sets the HIGHREQUESTERS attribute in its target object
file equal to the setting of the HIGHREQUESTERS attribute in the object file that
contains the main procedure. You can use Binder to explicitly specify the value of
the HIGHREQUESTERS attribute:

SET HIGHREQUESTERS

• Your program accepts requests from processes running at high PINs:

° If your object file specifies HIGHREQ.

° If your program opens $RECEIVE by explicitly calling the FILE_OPEN_ system
procedure, rather than the OPEN system procedure.

Note. The Binder syntax for HIGHREQ requires that you enter the full attribute name, as in:

SET HIGHREQUESTERS ON

 You cannot specify:

SET HIGHREQ ON

ON

OFF

FORTRAN Reference Manual—528615-001
10-34

Compiler Directives ICODE Compiler Directive
° If you specify ENV COMMON, and do not open $RECEIVE by explicitly calling
the OPEN system procedure. If your program specifies ENV COMMON,
FORTRAN opens $RECEIVE with FILE_OPEN_, regardless of the value of the
HIGHREQ directive.

• If a process running at a high PIN attempts to open your process and your process
is running with NOHIGHREQ, the file system returns error code 560.

• If you compile your program with both ENV OLD and HIGHREQ in effect, and your
program reads from $RECEIVE, the SOURCE specifier in the READ statement will
contain a CRTPID (creation timestamp process identifier) in SOURCE(5:8). You
can use the CRTPID only to compare it with the CRTPID specified in a CPU or
NODE status change message, or to compare it to the CRTPID returned to your
program when it received an OPEN system message from a requester.

If you need to use a process identification string in any other context, you must
specify ENV COMMON or NOHIGHREQ. If you specify ENV COMMON, the value
returned in the SOURCE array is a process handle, rather than a CRTPID. For
more information, see Section 14, Interprocess Communication. For more
information about CRTPIDs and process handles, see the Guardian Programmer’s
Guide.

• NOHIGHREQ is the default value for this directive. If you specify HIGHREQ, you
might need to make changes in your program. For information about converting
your process to handle high-PIN requesters, see the Guardian Application
Conversion Guide.

Example
?HIGHREQUESTERS

ICODE Compiler Directive
The ICODE directive instructs the compiler to list the symbolic instruction codes it
generates for each program unit, following the source listing for that program unit. The
effect of the ICODE directive is suspended, but not cancelled, by the NOLIST and
SUPPRESS directives.

The default value is NOICODE.

Example
?LIST, ICODE

[NO]ICODE
FORTRAN Reference Manual—528615-001
10-35

Compiler Directives IF Compiler Directive
IF Compiler Directive
The IF directive identifies the beginning of a sequence of source records that
FORTRAN compiles only if a specified toggle is set. The compiler continues compiling
source records until it encounters either an ENDIF directive that specifies the same
toggle number as is specified in the IF directive or until it encounters the end of the
source file.

If the toggle specified on the IF directive is reset, FORTRAN skips all subsequent input
records until it encounters an ENDIF directive with the same toggle number as is
specified in the IF directive.

toggle

is a number in the range 1 through 15.

Considerations
• Write the IF directive as the last item on a directive line.

• If you have not set toggle with a SETTOG directive, the compiler skips the
source lines following the IF directive.

• You cannot nest IF directives.

• Once you have initiated skipping of source text using an IF directive, the compiler
skips source lines until the next matching ENDIF. Thus, the way to write an if-then-
else decision structure is:

?IF n

(statements to be compiled if toggle n is set)

?ENDIF n

?IFNOT n

(statements to be compiled if toggle n is reset)

?ENDIF n

• The compiler prints a “#” character in the listing file to the left of each source line
that it skips as a result of an IF directive.

IF toggle
FORTRAN Reference Manual—528615-001
10-36

Compiler Directives IFNOT Compiler Directive
Example
In the following example, if you use a SETTOG 2 directive, code A is compiled; if you
use a SETTOG 3 directive, code B is compiled.

?IF 2

code A

?ENDIF 2

?IF 3

code B

?ENDIF 3

IFNOT Compiler Directive
The IFNOT directive identifies the beginning of a sequence of source records that
FORTRAN compiles only if a specified toggle is reset. The compiler continues
compiling source records until it encounters either an ENDIF directive that specifies the
same toggle number as is specified in the IFNOT directive or until the compiler
encounters the end of the source file.

If the toggle specified on the IFNOT directive is set, FORTRAN skips all subsequent
input records until it encounters an ENDIF directive with the same toggle number as is
specified in the IFNOT directive.

toggle

is a number in the range of 1 through 15.

Considerations
• Write the IFNOT directive as the last item on a directive line.

• You cannot nest IFNOT directives.

IFNOT toggle
FORTRAN Reference Manual—528615-001
10-37

Compiler Directives IFNOT Compiler Directive
• Once you have initiated skipping of source text using an IFNOT directive, source
lines are skipped until the next matching ENDIF. Thus, the way to write an if-then-
else decision structure is:

?IF n

(statements to be compiled if toggle n is set)

?ENDIF n

?IFNOT n

(statements to be compiled if toggle n is reset)

?ENDIF n

• The compiler prints source lines skipped as a result of an IFNOT directive in the
source text listing with a “#” character to the left of the line.

Example
In the following example, the RESETTOG directive instructs the compiler to compile
code C. If you use a RESETTOG 2 and RESETTOG 3 directive, FORTRAN compiles
both code A and code B.

?RESETTOG 3

?IFNOT 2

code B

?ENDIF 2

?IFNOT 3

code C

?ENDIF 3
FORTRAN Reference Manual—528615-001
10-38

Compiler Directives INSPECT Compiler Directive
INSPECT Compiler Directive
The INSPECT directive establishes the default debugger for the object file. INSPECT
selects the Inspect debugger; NOINSPECT selects the Debug debugger.

The default value is NOINSPECT.

Considerations
• Specifying the SAVEABEND directive automatically selects the Inspect debugger.

• Make sure Inspect is available on your system if you specify INSPECT.

• For additional information, see Section 11, Running and Debugging Programs.

Example
?INSPECT

INTEGER Compiler Directive
The INTEGER directive specifies the size of each variable you declare in an INTEGER
declaration statement that does not include a size specification. The INTEGER
directive also specifies the size of variables whose first letter implicitly designates an
integer.

If you omit this directive, all integer entities not otherwise declared are INTEGER*2.

Considerations
• Use an INTEGER*4 directive for programs that require that FORTRAN allocate a

doubleword for variables declared INTEGER or for programs that rely on storage
allocation that conforms to the ANSI standard’s requirement that all integer, logical,
and real variables occupy the same amount of storage space. However, using the
INTEGER*4 directive will make your object code larger and your program run
slower than if you use INTEGER*2 (that is, word) variables.

• Specify the INTEGER directive either with the FORTRAN command (after the
semicolon following the object file name) or in the source input file before the first
FORTRAN statement.

[NO]INSPECT

INTEGER*2

INTEGER*4

INTEGER*8

FORTRAN Reference Manual—528615-001
10-39

Compiler Directives LARGECOMMON Compiler Directive
Example
?INTEGER*4

LARGECOMMON Compiler Directive
The LARGECOMMON directive tells FORTRAN to allocate space for common blocks
in extended memory.

If you specify block names in the LARGECOMMON directive, FORTRAN uses
extended memory for each common block you specify in the directive.

If you omit block names from the LARGECOMMON directive, FORTRAN uses
extended memory for all common blocks in the compilation that you do not explicitly
specify in HIGHCOMMON directives.

block-name

is the name of a common block.

Considerations
• Use of the LARGECOMMON Directive

You must specify LARGECOMMON either with the FORTRAN command (after the
semicolon following the object file name), or in your source file before the first
FORTRAN statement.

If you specify the LARGECOMMON directive, FORTRAN compiles your program
as if you had specified an EXTENDEDREF directive, even if you did not include an
EXTENDEDREF directive. (For additional considerations, see the EXTENDEDREF
Compiler Directive on page 10-24.)

You cannot use the LARGECOMMON directive in a compilation that specifies
NOEXTENDEDREF.

If you use both the LARGECOMMON and HIGHCOMMON directives in the same
compilation, at least one of the two directives must include one or more block
names. You cannot specify the same block name in both a LARGECOMMON and
HIGHCOMMON directive.

Do not use the LARGECOMMON directive in programs that call Guardian
procedures such as SEGMENT_ALLOCATE_ to allocate extended data space.

Your direct handling of extended data space—through calls to Guardian
procedures—can interfere with the memory management required for the

LARGECOMMON
block name–

block name , block name–[] . . .–()

FORTRAN Reference Manual—528615-001
10-40

Compiler Directives LARGECOMMON Compiler Directive
LARGECOMMON directive. Use LARGECOMMON directives, not Guardian
procedure calls, if your program needs extended data space.

• Executing Programs Compiled With LARGECOMMON

Accessing variables in normal user data space is faster than accessing variables in
extended data space. As a result, a program without LARGECOMMON directives
executes faster than an otherwise equivalent program that includes
LARGECOMMON directives.

• Common Block Memory Allocation

Normally, FORTRAN allocates space for common blocks in the lower half of user
data segment.

Use the LARGECOMMON directive to allocate common blocks in extended
memory; use the HIGHCOMMON directive to allocate common blocks in the upper
half of the user data segment.

Examples
The following directive tells FORTRAN to allocate extended memory for all common
blocks in the compilation except those you explicitly list in HIGHCOMMON directives:

?LARGECOMMON

The following directive tells FORTRAN to allocate extended memory for common block
xxx:

?LARGECOMMON xxx

FORTRAN allocates all other common blocks in the compilation in the user data
segment unless you include additional LARGECOMMON directives that specify names
of other common blocks. The following directives tell FORTRAN to allocate extended
memory for four common blocks—aaa, bbb, ccc, and ddd:

?LARGECOMMON (aaa, bbb, ccc)

?LARGECOMMON ddd
FORTRAN Reference Manual—528615-001
10-41

Compiler Directives LARGEDATA Compiler Directive
LARGEDATA Compiler Directive
The LARGEDATA directive causes the compiler to allocate memory space in the object
program’s extended data segment for local data.

item

is a simple variable name, an unsubscripted array name, an unsubscripted
unqualified RECORD name, or an unsigned integer constant.

If item is not a constant, FORTRAN allocates space for item in the extended data
segment, rather than in the user data segment.

If item is an integer constant, FORTRAN allocates space in the extended data
segment for all local variables having a size of at least item bytes. If you omit
item, FORTRAN interprets this as:

?LARGEDATA 256

If you specify two or more integer constant items, the compiler uses the smallest
of their values. If an item has a zero value, the compiler does not assign any data
objects to the extended data segment.

Considerations
• You can include as many LARGEDATA directives in your program as you like, and

you can place them anywhere in the input to the compiler.

° If you specify the LARGEDATA directive using the implied RUN command for
the compiler, or specify it in the source file before the first FORTRAN
statement, the directive applies to all the program units in the compilation.

° If you specify a LARGEDATA directive after the first FORTRAN statement of
your program, it applies to the program unit it is specified in.

• Specifying an item using a LARGEDATA directive causes the compiler to allocate
memory space in the object program’s extended data segment for that item and
any item associated with it in an EQUIVALENCE statement.

• The compiler allocates an item that you also declare with a DATA or SAVE
statement permanently and statically. It allocates all other items you specify in the
LARGEDATA directive dynamically on a run-time stack.

• The compiler ignores an item specification in a program unit in which the item is
known as a subprogram name, an entry point name, a statement function name, a
dummy argument name, or a symbolic constant name, or is in a common block, or
is equivalenced to a variable that is in a common block.

LARGEDATA
item

item , item[] . . .
FORTRAN Reference Manual—528615-001
10-42

Compiler Directives LARGEDATA Compiler Directive
• Specifying LARGEDATA automatically selects EXTENDEDREF.

• If a LARGEDATA directive appears anywhere in the compiler’s input, at least one
EXTENDEDREF, LARGECOMMON, or LARGEDATA directive must precede the
first FORTRAN statement. You cannot use the LARGEDATA directive in a
compilation that uses the NOEXTENDEDREF directive.

• You cannot use the LARGEDATA directive for FORTRAN program units executed
from a user library object file or from the system library.

• Do not use the LARGEDATA directive in programs that call Guardian procedures
(for example, the SEGMENT_ALLOCATE_ procedure) to allocate extended data
space. Your direct handling of extended data space through calls to Guardian
procedures can interfere with the memory management required for the
LARGEDATA directive. Use LARGEDATA directives, not Guardian procedure calls,
if your program needs extended data space.

Program Conversion Considerations
When converting an existing FORTRAN program to run on HP NonStop systems, you
should not use a LARGEDATA directive at first. If execution ends with a “stack
overflow” error, try adding a LARGEDATA directive with no items at the beginning of
the source program.

If “stack overflow” still occurs, consider the following:

• You might be executing a recursive procedure for which the termination condition is
never met.

• You might need to use SAVE statements to make some local variables static.

• You might need to use the LARGESTACK directive to specify the size of the
extended stack area.

If the program runs correctly but is too large or too slow, consider replacing the blank
LARGEDATA directive with a set of more specific ones.

Examples
?LARGEDATA (names, addresses, birth)

?LARGEDATA 128
FORTRAN Reference Manual—528615-001
10-43

Compiler Directives LARGESTACK Compiler Directive
LARGESTACK Compiler Directive
The LARGESTACK directive specifies the block size to reserve for dynamically
allocated variables specified in LARGEDATA directives.

number

is an unsigned decimal integer that specifies the number of memory pages to
allocate for dynamically allocated variables specified in LARGEDATA directives.

Considerations
• The compiler calculates the block size to reserve for dynamically allocated

variables specified in LARGEDATA directives as the sum of the block sizes in all
the program units in the compilation.

The LARGESTACK directive overrides the compiler’s calculation.

• You might need to use a LARGESTACK directive if your program uses recursion or
you use Binder to bind multiple object files together and you want to ensure that
the block size for dynamically allocated variables in the new object file created by
Binder is large enough for the executable program.

• The LARGESTACK directive must appear on the FORTRAN command line
following the semicolon after the object file name, or in the source input file before
the first FORTRAN source statement.

• If you specify a LARGESTACK directive after the first FORTRAN statement, the
compiler issues an error message and ignores the directive.

• If you specify two or more properly placed LARGESTACK directives, the compiler
uses the first one, and issues a warning message for each of the others.

• The Binder command SET LARGESTACK can also be used to set the extended
memory stack size for an object file.

Example
?LARGESTACK 512

LARGESTACK number
FORTRAN Reference Manual—528615-001
10-44

Compiler Directives LIBRARY Compiler Directive
LIBRARY Compiler Directive
The LIBRARY directive establishes the default user library for the object file. When you
run your program, the system consults the user library file specified in the LIBRARY
directive for any unsatisfied external procedure references in the object file, before it
consults the system library code space.

file-name

is a Guardian file name that specifies an object file to use as the default user
library file for the object file. It cannot be a DEFINE name. Compile-time defaults
are supplied for any missing qualifiers in file-name. file-name must be a
Binder object file.

Considerations
• The LIBRARY directive must appear on the FORTRAN command line following the

semicolon after the object file name, or in the source input file before the first
FORTRAN source statement.

• If you specify a LIBRARY directive after the first FORTRAN statement, the
compiler issues an error message and ignores the directive.

• If you specify two or more properly placed LIBRARY directives, the compiler uses
the first one, and issues a warning message for each of the others.

• If you want the FORTRAN compiler to consult the user library file for calling
sequences, you must specify that user library file in a CONSULT directive and in
the LIBRARY directive.

• If the RUN command includes a LIB file-name run-option, that file is used
instead of the file named in the LIBRARY directive. That is, the run-time
specification overrides the compile-time specification.

• You can include TAL subprograms in the user library object file. You can also
include subprograms written in FORTRAN, provided they don’t:

° Directly reference data items declared in COMMON, DATA, or SAVE
statements, or data items that are declared equivalent to such items.

° Directly reference data items allocated in the extended data segment as a
result of any LARGEDATA directives.

For more information about libraries, see Section 9, Program Compilation and
Section 11, Running and Debugging Programs.

Example
?LIBRARY mylib

LIBRARY file-name
FORTRAN Reference Manual—528615-001
10-45

Compiler Directives LINES Compiler Directive
LINES Compiler Directive
The LINES directive specifies the number of lines the compiler writes to each page of
the listing file.

number

is a number ranging from 10 through 32767. The default value is 60.

Considerations
If you use more than one LINES directive, the new value for number takes effect when
the directive is scanned.

If the value you supply for number lies outside the legal range, FORTRAN displays a
warning message and uses either the previous value for number if there was one, or
the default value.

Example
?LINES 55

LIST Compiler Directive
The LIST directive controls the listing of source lines and enables the CODE,
CROSSREF, ICODE, FMAP, LMAP, MAP, and PAGE directives.

The default value is LIST.

Example
?NOLIST

LINES number

[NO]LIST
FORTRAN Reference Manual—528615-001
10-46

Compiler Directives LMAP Compiler Directive
LMAP Compiler Directive
The LMAP directive instructs BINSERV to pass load-map information to the compiler.
The compiler then lists load maps after its identifier map and cross-reference tables.

The default value is LMAP ALPHA.

list-option

is any of the following:

ALPHA

specifies maps in alphabetic order.

LOC

specifies maps in order by base address.

XREF

specifies a cross-reference listing of all entry points and data blocks in the
object file.

*

specifies ALPHA, LOC, and object-file cross-references of entry points and
data blocks.

Considerations
A data-block map follows the entry point table. This map lists all common blocks and
compiler-generated special data blocks identified by names that contain a “#”
character. Data-block entries give the base and limit of the block. If the limit field is
blank, the data block is empty.

The effect of the LMAP directive is suspended, but not cancelled, by the NOLIST and
SUPPRESS directives.

Example
?LMAP *

[NO]LMAP
list option–

list option , list option–[] . . .–()
FORTRAN Reference Manual—528615-001
10-47

Compiler Directives LOGICAL Compiler Directive
LOGICAL Compiler Directive
The LOGICAL directive specifies the size (in bytes) of all subsequent entities in the
source file that are declared as type logical.

Considerations
• You cannot include more than one LOGICAL directive in your source program.

Specify the LOGICAL directive either with the FORTRAN command (after the
semicolon following the object file name) or in the source input file before the first
FORTRAN statement.

• If you omit this directive, all logical entities are LOGICAL*2.

• Use the LOGICAL*4 directive, along with the INTEGER*4 directive, for programs
that rely on storage allocation conforming to the ANSI standard’s requirement that
all integer, logical, and real variables occupy the same amount of storage space.

Example
?LOGICAL*4

LOWBUFFER Compiler Directive
The LOWBUFFER directive controls space allocated for the run-time buffer pool in
lower data memory.

size

is a number in the range 0 through 16383 that specifies the number of words to
allocate.

Considerations
• The LOWBUFFER directive is meaningful only if ENV OLD is in effect. If you

specify ENV COMMON, the LOWBUFFER directive has no effect on space
allocation for your program.

• If you do not include the LOWBUFFER directive in your source file, the compiler
allocates 512 words.

LOWBUFFER size

INTEGER*2

INTEGER*4

FORTRAN Reference Manual—528615-001
10-48

Compiler Directives MAP Compiler Directive
• The run-time buffer pool provides space for edit control blocks (for programs that
run as NonStop processes), level-3 spooling buffers, saved messages, and
$RECEIVE tables. The amount of space specified or assumed by the
LOWBUFFER directive is in addition to the amounts specified or assumed by the
SAVE and RECEIVE directives.

• For a FORTRAN program running as a NonStop process, the default buffer pool
size of 512 words allows you to have up to three EDIT format files open at a time,
since each requires 169 words for its edit control block. If you will have four or
more EDIT format files open at the same time, you must use the LOWBUFFER
directive to increase the buffer space to prevent a file system error 32, “unable to
obtain storage pool space,” during execution.

A program not that does not run as a NonStop process does not use space in this
area for EDIT format files because it allocates EDIT format file buffers in a
separate extended data segment, inaccessible to the FORTRAN program.

• Each level-3 spooling output file requires a 512-word buffer in either this area or
the HIGHBUFFER area, unless a call to FORTRANSPOOLSTART explicitly
provides a buffer area for the file.

• For additional information about buffer pools, see Section 12, Memory
Organization.

Example
?LOWBUFFER 1024

MAP Compiler Directive
The MAP directive instructs the compiler to list, following each program unit’s source
listing, a table of local identifiers for that program unit. MAP also lists a table of entities
in common storage following the last program unit’s listing.

The effect of the MAP directive is suspended, but not cancelled, by the NOLIST and
SUPPRESS directives.

The default value is MAP.

Considerations
Specify the MAP directive either with the FORTRAN command (following the
semicolon after the object file name) or in the source input file preceding the first
FORTRAN statement, or between the END line of one program unit and first
FORTRAN statement of the next program unit.

[NO]MAP
FORTRAN Reference Manual—528615-001
10-49

Compiler Directives NONSTOP Compiler Directive
Example
?NOMAP

NONSTOP Compiler Directive
The NONSTOP directive specifies that you want your program to run as a NonStop
process.

The default value is NONONSTOP.

If your program specifies or defaults to ENV OLD:

• FORTRAN reports a warning if it encounters a NONSTOP directive.

• FORTRAN specifies in the object file that your program run as a NonStop process
if your program includes either a START BACKUP or a CHECKPOINT statement.

• You cannot disable START BACKUP statements.

If your program specifies ENV COMMON:

• A NONSTOP directive enables your program to run as a NonStop process, even if
your program does not include a START BACKUP or a CHECKPOINT statement.

• The Binder specifies that the object file it produces can run as a NonStop process
only if the object file from which Binder reads the main procedure can run as a
NonStop process.

• When you run your program, FORTRAN does not process START BACKUP
statements if you do not specify the NONSTOP directive or if you specify a PARAM
NONSTOP OFF TACL command.

• If you specify the NONSTOP directive, the FORTRAN run-time system reports
error 257 if you attempt to open an EDIT format file with MODE = 'OUTPUT' or
MODE = 'I-O'.

Considerations
The NONSTOP directive must appear on the FORTRAN command line after the
semicolon that follows the object file name, or in the source input file before the first
FORTRAN source statement.

If the source file contains an ENV directive, the NONSTOP directive must appear after
the ENV directive.

If you specify more than one NONSTOP directive in a compilation, FORTRAN uses the
first one you specify and reports a warning message for each subsequent NONSTOP
directive that appears before the first FORTRAN statement.

[NO]NONSTOP
FORTRAN Reference Manual—528615-001
10-50

Compiler Directives PAGE Compiler Directive
FORTRAN reports an error if it encounters a NONSTOP directive after the first
FORTRAN statement.

Example
?NONSTOP

PAGE Compiler Directive
The PAGE directive ejects the current page of the list file, prints the specified character
string at the top of the next page, and skips two lines before resuming the listing.

title

is a character string. FORTRAN interprets two immediately adjacent quotation
mark characters within title as one quotation mark character when it writes title
to the listing file.

Considerations
• The PAGE directive must be the first or only directive on a line.

• The first PAGE directive establishes the title without skipping a page.

• If you do not specify a title, PAGE uses the previous title.

• The PAGE directive does not cause a page eject when NOLIST or SUPPRESS is
in effect, but if a new title is specified, it will appear at the top of the next page after
printing resumes.

• If title contains more than 60 characters, FORTRAN uses only the first 60
characters.

Examples
?PAGE "New Spelling Checker"

?PAGE "Listing for ""First Compilation"""

PAGE [" title"]
FORTRAN Reference Manual—528615-001
10-51

Compiler Directives POP Compiler Directive
POP Compiler Directive
The POP directive restores the state of a directive that was saved by a previous PUSH
directive.

directive

is any of the following FORTRAN compiler directives:

BOUNDSCHECK

CODE

ICODE

LIST

MAP

PRINTSYM

WARN

The PUSH and POP directives can be useful in auxiliary source input files that are
referenced from other files by SOURCE directives. Within an auxiliary source file, you
can save the state of certain compiler directives when you begin compiling statements
from the file, and restore the state of those directives when you complete reading from
the auxiliary source file, without knowing what the surrounding context was.

Considerations
• You can specify a POP directive on the FORTRAN command line, or anywhere in

any source input file, provided that directive is permitted there. You can have
any number of POP directives in a compilation.

• The compiler maintains a push-down stack with a maximum of 16 elements for
each directive that can be pushed and popped. If more than 16 elements have
been pushed into a directive’s stack, the oldest elements are lost. No message is
given when an element is lost.

• If more than 16 elements have been popped from a directive’s stack, the POP
directive restores the default state for that directive.

POP
directive

directive , directive[] . . .

FORTRAN Reference Manual—528615-001
10-52

Compiler Directives PRINTSYM Compiler Directive
Example
In a subroutine for which array subscript bounds checking is particularly important, the
source file could have:

?PUSH BOUNDSCHECK

?BOUNDSCHECK < -- At its beginning

.

?POP BOUNDSCHECK < -- At its end

Such a source file can be incorporated into any program with a SOURCE directive
without disturbing the bounds checking mode of the program using it.

PRINTSYM Compiler Directive
The PRINTSYM directive causes the compiler to include or omit unreferenced
identifiers in MAP listings.

The default is NOPRINTSYM.

Considerations
• You must specify the PRINTSYM directive on the FORTRAN command line

following the semicolon after the object file name, or anywhere in the source input
file. You can use any number of PRINTSYM directives in a compilation.

• If you declare a symbolic name while NOPRINTSYM is in effect, but the name is
not referenced in any EQUIVALENCE statements or in any executable statements,
the name is omitted from the MAP for the scope in which it is declared. A symbolic
name declared while PRINTSYM is in effect is included in the MAP, even if it is not
otherwise referenced.

Example
?PRINTSYM

[NO]PRINTSYM
FORTRAN Reference Manual—528615-001
10-53

Compiler Directives PUSH Compiler Directive
PUSH Compiler Directive
The PUSH directive causes the current state of a compiler directive to be saved in a
push-down stack where it can be restored by a later POP directive specifying the same
directive. The PUSH directive does not change the state of the subject directive.

directive

is any of the following FORTRAN compiler directives:

BOUNDSCHECK

CODE

ICODE

LIST

MAP

PRINTSYM

WARN

The PUSH and POP directives can be useful in auxiliary source input files that are
referenced from other files by SOURCE directives. Within an auxiliary source file, you
can save the state of certain compiler directives when you begin compiling statements
from the file, and restore the state of those compiler directives when you complete
reading from the auxiliary source file, without knowing what the surrounding context
was.

Considerations
• You can specify the PUSH directive on the FORTRAN command line, or anywhere

in any source input file, provided that directive is permitted there. You can have
any number of PUSH directives in a compilation.

• The compiler maintains a push-down stack with a maximum of 16 elements for
each directive that can be pushed and popped. If more than 16 elements are
pushed into a directive stack, the oldest elements are lost. No message is given
when an element is lost.

PUSH
directive

directive , directive[] . . .

FORTRAN Reference Manual—528615-001
10-54

Compiler Directives RECEIVE Compiler Directive
Example
In a subroutine for which array subscript bounds checking is particularly important, the
source file could have:

?PUSH BOUNDSCHECK

?BOUNDSCHECK <-- At its beginning

.

?POP BOUNDSCHECK <-- At its end

Such a source file can be incorporated into any program with a SOURCE directive
without disturbing the bounds checking mode of the program using it.

RECEIVE Compiler Directive
The RECEIVE directive enables you to specify values for parameters that control the
length of a reply, the number of processes that can open this process, the number of
messages that can be posted to this process at any given time, the number of
messages that you want resent in the event of a failure, and whether you want to
receive system messages.

receive-spec

is one of the following:

MAXREPLY reply

reply is an integer in the range 0 through 32767 that specifies the maximum
number of bytes you can include when you reply to a message previously
received from $RECEIVE. The default value for MAXREPLY is 132 if ENV OLD
is in effect, 0 if ENV COMMON is in effect.

OPEN open

open is an integer in the range 1 through 255 that specifies the maximum
number of processes that can open your process simultaneously (not counting
backup opens). If you specify SYSMSG, the value you specify for open must
include the number of processes that can open your process plus an additional
open by the operating system. The default value is 1.

QDEPTH depth

depth is an integer in the range 1 through 255 that specifies the maximum
number of messages from $RECEIVE that your process can hold at any one

RECEIVE
receive spec–

receive spec , receive spec–[] . . .–()

FORTRAN Reference Manual—528615-001
10-55

Compiler Directives RECEIVE Compiler Directive
time. Your process cannot receive additional messages until you reply to at
least one of the messages already received. The default value is 1.

SYNCDEPTH sync

sync is an integer in the range 1 through 255 that specifies the maximum
number of replies this process saves for each opener. The default value is 1.

SYSMSG

specifies that FORTRAN return system messages received from $RECEIVE to
your program. You cannot queue system messages. If a system message
requires a reply—for example, an OPEN system message—the next write to
$RECEIVE must be a reply to the system message.

Considerations
• If you specify a RECEIVE directive more than once, FORTRAN uses the last value

specified.

• If open processes have your process open, FORTRAN returns error 12, “file in
use,” to processes that attempt to open your process.

• The record length of the unit receiving system messages through $RECEIVE must
be at least 34 characters.

• If you omit the SYSMSG option, the FORTRAN facility handles system messages.

• Table 10-2 lists the C-series and D-series system messages that your process
might receive if you specify SYSMSG.

Table 10-2. System Messages (page 1 of 2)

C-Series D-Series
Msg No. Message Text Msg No. Message Text
-2 CPU down (MONITORCPUS) -2 CPU down (MONITORCPUS)

-2 CPU down: named process
deletion

-101 Process deletion: CPU down

-3 CPU up -3 CPU up

-8 Change in status of network node -100 Remote CPU down

-8 Change in status of network node -110 Loss of communication with
node

-8 Change in status of network node -111 Establishment of communication
with node

-8 Change in status of network node -113 Remote CPU up

-10 SETTIME -10 SETTIME

-11 Power ON -11 Power ON
FORTRAN Reference Manual—528615-001
10-56

Compiler Directives RESETTOG Compiler Directive
• If you specify a value other than 132 for reply, you must use the same value for the
record length of the unit that you use to send replies to $RECEIVE. You can do this
with the REC option of an ASSIGN command, or a UNIT compiler directive, or the
RECL specifier of an OPEN statement.

• For additional information, see Section 14, Interprocess Communication.

Examples
?RECEIVE (OPEN 2, SYNCDEPTH 5, MAXREPLY 132)

?RECEIVE SYSMSG

RESETTOG Compiler Directive
The RESETTOG directive resets toggles used to control conditional compilation.

toggle

is a number in the range of 1 through 15 that specifies a toggle to reset.

Considerations
• Write the RESETTOG directive as the last item on a directive line.

• If you do not specify any toggles, the RESETTOG directive resets all 15 toggles.

• The compiler initially resets all 15 toggles.

• Use the RESETTOG and SETTOG directives with the IF, IFNOT, and ENDIF
directives to control conditional compilation.

-12 NEWPROCESSNOWAIT
completion

-102 Nowait PROCESS_CREATE_
completion

-20 Break on device -105 Break on device

-22 Elapsed time timeout -22 Elapsed time timeout

-30 Process OPEN -103 Process OPEN

-31 Process CLOSE -104 Process CLOSE

-32 Process CONTROL -32 Process CONTROL

-33 Process SETMODE -33 Process SETMODE

RESETTOG [toggle [, toggle]...]

Table 10-2. System Messages (page 2 of 2)

C-Series D-Series
Msg No. Message Text Msg No. Message Text
FORTRAN Reference Manual—528615-001
10-57

Compiler Directives RUNNAMED Compiler Directive
Example
?RESETTOG 1,3,5

RUNNAMED Compiler Directive
The RUNNAMED directive specifies that your program run as a named process.

The default value is NORUNNAMED.

By specifying the RUNNAMED directive, your process can run at a high PIN and be
accessed by processes that have not been converted to use D-series features. See,
also HIGHPIN Compiler Directive on page 10-32.

Considerations
• The RUNNAMED directive must appear on the FORTRAN command line after the

semicolon that follows the object file name, or in the source input file before the
first FORTRAN source statement.

If you specify more than one RUNNAMED directive in a compilation, FORTRAN
uses the first one you specify and reports a warning message for each subsequent
RUNNAMED directive that appears before the first FORTRAN statement.

FORTRAN reports an error if you specify a RUNNAMED directive after the first
FORTRAN statement.

• If you use Binder to bind multiple object files together, Binder sets the RUNNAMED
attribute to ON in the new object file if any of the object files bound into the new
object file specify RUNNAMED ON.

You can use the Binder SET command to establish explicitly the value of the
RUNNAMED attribute:

SET RUNNAMED

• Your program runs as a named process:

° If the RUNNAMED attribute is set in the object file.

° If the process that creates your process specifies that your process run as a
named process.

If your process runs as a named process but you do not specify a process name
when you run your program, the operating system creates a unique process name
for you.

[NO]RUNNAMED

ON

OFF

FORTRAN Reference Manual—528615-001
10-58

Compiler Directives SAVE Compiler Directive
Example
?RUNNAMED

SAVE Compiler Directive
The SAVE directive specifies the system messages to save during process
initialization.

save-spec

is one of the following:

STARTUP [stup]

stup is an integer in the range 68 through 594 that specifies the number of
bytes of buffer space to allocate for the saved startup message. The default
value is 594.

PARAM [param]

param is an integer in the range 4 through 1028 that specifies the number of
bytes of buffer space to allocate for PARAM messages. The default value is
1028.

ASSIGNS [mess]

mess is an integer in the range 1 through 100 that specifies the number of
ASSIGN messages for which buffer space is reserved. The default value is 15.

ALL [allmsg]

allmsg is an integer in the range 1 through 100 that specifies a number of
ASSIGN messages for which buffer space is reserved. The default value is 15.

Section 15, Utility Routines, explains how to use the saved information.

Considerations
• Use parentheses if you specify more than one option for the SAVE directive.

• Use the STARTUP parameter to save the command interpreter startup message.

• Use the PARAM parameter to save messages generated by PARAM commands.

• Use the ASSIGNS parameter to save messages generated by ASSIGN
commands.

SAVE
save spec–

save spec , save spec–[] . . .–()

FORTRAN Reference Manual—528615-001
10-59

Compiler Directives SAVEABEND Compiler Directive
• Use the ALL parameter to save the STARTUP message, PARAM message, and all
ASSIGN messages.

• If you omit the SAVE directive, FORTRAN does not save any messages or reserve
any buffer space.

Example
?SAVE ALL

SAVEABEND Compiler Directive
The SAVEABEND directive specifies whether Inspect should automatically create a
save file if the program terminates abnormally at run time. Use the SAVEABEND
directive only with the INSPECT directive.

The default value is NOSAVEABEND.

Considerations
• The save file captures the state of your program’s data and file status information

at the point of failure. You can use Inspect to examine the save file.

• Inspect creates the save file on the same volume as the program file and assigns it
a name in the form:

ZZSA nnnn

where nnnn is a random number.

• For additional information. Example, see Section 11, Running and Debugging
Programs.

Example
?INSPECT, SAVEABEND

[NO]SAVEABEND
FORTRAN Reference Manual—528615-001
10-60

Compiler Directives SEARCH Compiler Directive
SEARCH Compiler Directive
The SEARCH directive specifies a list of object files for BINSERV to search for
unsatisfied external references at compilation time.

file-name

is the name of a disk file that contains object code produced by the C, COBOL85,
FORTRAN, Pascal, or TAL compiler. file-name can be a DEFINE name.

Considerations
• At the end of the compilation, BINSERV searches the files listed in the SEARCH

directive in the order specified. Then, BINSERV searches
$SYSTEM.SYSTEM.FORTLIB.

• You can extend the SEARCH directive over more than one line. Begin continuation
lines with a question mark in column one.

• A SEARCH directive with an empty file list clears the search list.

• The object file produced at the end of the compilation includes copies of the code
and data blocks found by the SEARCH directive. If these code and data blocks
also contain external references, BINSERV uses the search list to satisfy those
external references as well. Thus, the target file contains all required code and
data that is available via the search list.

• For additional information, see Section 9, Program Compilation.

Example
?SEARCH (object1, object2, object3)

SECTION Compiler Directive
The SECTION directive assigns a name to a section of a source file for use in
SOURCE directive in another source file.

section-name

is a symbolic name of up to 31 characters that can be a combination of A Z, 0
through 9, and the special characters circumflex (^), hyphen (-), and underscore
(_). The first character of the name must be a letter.

SEARCH

SECTION section-name

file name–

file name , file name–[] . . .–()

FORTRAN Reference Manual—528615-001
10-61

Compiler Directives SETTOG Compiler Directive
Considerations
• The section-name identifies all source text that follows the SECTION until

another SECTION directive or the end of the source file occurs.

• The SECTION directive must be the only directive on the directive line.

Example
The following example includes a file, FUNCTIONS, with a SECTION directive
identifies a section called MATHROUTINES. The program called MAIN sources the
text from the section MATHROUTINES in the file FUNCTIONS.

File: FUNCTIONS.

.

?SECTION mathroutines

SUBROUTINE random (a,b,c)

.

END

?SECTION buildarray

SUBROUTINE array (x,y,z)

.

END

You source in the RANDOM subroutine by including the following directive program:

PROGRAM main

?SOURCE function (mathroutines)

.

END

SETTOG Compiler Directive
The SETTOG directive sets toggles that control conditional compilation.

toggle

is a number in the range of 1 through 15 that specifies a toggle to set.

SETTOG [toggle [, toggle]...]
FORTRAN Reference Manual—528615-001
10-62

Compiler Directives SOURCE Compiler Directive
Considerations
• Write the SETTOG directive as the last item on a directive line.

• If you do not specify any toggle numbers, the SETTOG directive sets all 15
toggles.

• The compiler initially resets all toggles.

• Use the SETTOG and RESETTOG directives with the IF, IFNOT, and ENDIF
directives to control conditional compilation.

Example
?SETTOG 1,2,5

SOURCE Compiler Directive
The SOURCE directive causes the compiler to read source lines from the specified file,
either from the beginning of the file to the end of the file, or from the start of a specified
section in the file to the end of the section.

file-name

is the name of a file containing FORTRAN source code. If there are no section
names, the file name can be a process, $RECEIVE, a disk file, a terminal, a
magnetic tape (unlabeled and unblocked only), or a DEFINE name. Disk files can
be structured, unstructured, or EDIT format. If a section name, or a list of section
names, is specified, file-name must be a disk file. The compiler uses the current
default system, volume, and subvolume names for corresponding items omitted
from the file name.

section

is the declared name of a section in file-name. A section name can be 1 to 31
characters and can be a combination of A through Z, 0 through 9, and the special
characters circumflex (^), hyphen (-), and underscore (_). The first character of the
name must be a letter.

Considerations
When the compiler has finished reading source lines from the specified file, it resumes
reading source lines from the current file.

• The referenced source file can include other SOURCE directives, up to a
maximum nesting depth of six levels.

SOURCE file-name [(section [, section]...)]
FORTRAN Reference Manual—528615-001
10-63

Compiler Directives SOURCE Compiler Directive
• You must write the SOURCE directive as the last directive if it appears on a line
with other directives. You can continue the list of section names on subsequent
lines. Each subsequent line must begin with a question mark (?) in column 1.

• At the beginning of each section, the compiler sets the COLUMNS directive value
to that specified by the last COLUMNS directive preceding the first SECTION
directive in that file.

• When all the specified sections are read, or the end of the file is reached, the
compiler resets the COLUMNS directive value to what it was before encountering
the SOURCE directive.

• Before reading the first line from the file, and after reverting to the previous file, the
compiler prints a line showing the ordinal, file name, and timestamp of the file
currently being read. This line is suppressed by the NOLIST and SUPPRESS
directives.

• Do not use the SOURCE directive as the first line of an unnamed main program.
Name the program using a PROGRAM statement, then write the SOURCE
directive.

• If the SOURCE directive does not include a list of section names, FORTRAN reads
the entire file, regardless of whether the file contains SECTION directives.

If the SOURCE directive includes a list of section names, FORTRAN reads only
those sections of the file delimited by SECTION directives within the file, and skips
all other parts of the file. FORTRAN reads the specified sections in the order in
which they physically occur in the file, which is not necessarily the same as the
ordering of the section name list in the source directive.

For information about declaring sections in a source program, see the SECTION
Compiler Directive on page 10-61.

Examples
The following directive reads the entire file NEWPROG:

?SOURCE newprog

The following directive reads sections A and C from the file ROUTINES:

?SOURCE routines(a,c)
FORTRAN Reference Manual—528615-001
10-64

Compiler Directives SUBTYPE Compiler Directive
SUBTYPE Compiler Directive
The SUBTYPE directive specifies a process subtype for the object file.

The default is SUBTYPE 0.

number

is an unsigned integer in the range 0 through 63 that specifies a process subtype.

Considerations
• You must specify the SUBTYPE directive on the FORTRAN command line

following the semicolon after the object file name, or in the source input file before
the first FORTRAN source statement.

• If you specify a SUBTYPE directive after the first FORTRAN statement, the
compiler issues an error message and ignores the directive.

• If you specify two or more properly placed SUBTYPE directives, the compiler uses
the first one, and issues a warning message for each of the others.

• The SUBTYPE directive specifies the value that a process returns as the device
subtype when another process calls the DEVICEINFO system procedure or one of
the D-series FILE_GETINFO system procedures (FILE_GETINFO_,
FILE_GETINFOBYNAME_, FILE_GETINFOLIST_, and so forth).

• The SUBTYPE directive is effective only for an object file that includes a “main”
procedure. You can also use the Binder SET SUBTYPE command to set the
process subtype attribute of an object file.

Example
?SUBTYPE 52

SUPPRESS Compiler Directive
The SUPPRESS directive overrides the effect of the LIST directive; the compiler lists
only error messages and compilation statistics.

The default value is NOSUPPRESS.

SUBTYPE number

Note. Do not use values 1 through 47 because they are reserved for HP products.

[NO]SUPPRESS
FORTRAN Reference Manual—528615-001
10-65

Compiler Directives SYMBOLS Compiler Directive
Example
?SUPPRESS

SYMBOLS Compiler Directive
The SYMBOLS directive specifies whether to include a symbol table in the object file
for use by Inspect. You must specify this directive if you intend to use Inspect for
source-level debugging.

The default value is NOSYMBOLS.

Considerations
• You can turn the SYMBOLS directive on and off on a procedure by procedure

basis. You can delete the symbol table after you have debugged the program.

• Specify the SYMBOLS directive either with the FORTRAN command, or in the
source input file preceding the first FORTRAN statement, or between the END line
of one program unit and the first FORTRAN statement of the next program unit.

• You can respecify INSPECT, SAVEABEND, and SYMBOLS during an interactive
Binder session. For additional information, see the Binder Manual.

• You can also specify INSPECT and SAVEABEND as RUN command options.

Example
?INSPECT, SAVEABEND, SYMBOLS

SYNTAX Compiler Directive
The SYNTAX directive tells the compiler to scan the source file for syntax errors, but
does not produce an object file.

Considerations
Specify the SYNTAX directive either with the FORTRAN command (after the semicolon
following the object file name) or in the source input file before the first FORTRAN
statement.

Example
?SYNTAX

[NO]SYMBOLS

SYNTAX
FORTRAN Reference Manual—528615-001
10-66

Compiler Directives UNIT Compiler Directive
UNIT Compiler Directive
The UNIT directive causes one or more units to exist and declares the properties of the
files that will be connected to the units.

u-lower
u-upper

is a number in the range 1 through 999. u-lower is the lower bound of the range,
u-upper is the upper bound of the range.

units

is a list of unit ranges in the following form:

u-lower [- u-upper] [, u-lower [- u-upper]]...

file

is an HP file name, DEFINE name, or a network system name.

create-spec

is one of the following:

CODE file-code

file-code is an integer in the range 0 through 32767 specifying the
Guardian file code to be associated with the file. The default value is 0.

REC record-size

record-size is an integer in the range 0 through 32767 that specifies the
record size for the file. The default value is 132.

UNITNAME name

specifies a name for the unit to be used as the logical-unit name in a
TACL ASSIGN command. The default value is FT nnn where nnn is the unit
number as a three-digit decimal integer: FT001 to FT999. name can be from 1
to 31 characters consisting of letters, digits, and hyphens.

access-code

is a keyword that is either INPUT, OUTPUT, or I-O and specifies the allowable
access for the unit. The default value is I-O.

UNIT
u lower u– upper–[]–

units , file[] , create spec–[] . . .()

FORTRAN Reference Manual—528615-001
10-67

Compiler Directives UNIT Compiler Directive
exclusion-code

is one of the following keywords: EXCLUSIVE, PROTECTED, or SHARED.
exclusion-code specifies the file exclusion mode. The default value is

SHARED.

EXT pri-ext

EXT (pri-ext [, sec-ext])

pri-ext and sec-ext are integers in the range 0 through 32767 that
specify the primary and secondary extent size, in pages. If you omit sec-ext,
the compiler uses the value of pri-ext for sec-ext. The default value is
(1,1).

Considerations
• You can use one of three methods to connect a unit to a file: the UNIT directive,

the TACL ASSIGN command, or the OPEN statement. The order of precedence of
these three methods is shown below:

?UNIT (7, $s.#1, UNITNAME output) <-- lowest

ASSIGN OUTPUT, $s.#titan

OPEN (7, FILE = '$print') <-- highest

For additional information, see Units on page 5-8.

• You can specify the attributes for a range of units. The following example specifies
that the access code for units 8 through 11 is INPUT:

?UNIT (8 - 11, INPUT)

• For a structured file, you must use the CREATE command of the FUP utility to
create the file and specify additional file attributes such as file type and record key
descriptions.

• Units 4, 5, and 6 exist automatically, even if there are no UNIT directives defining
them.

• Specify the UNIT directive either with the FORTRAN command (after the
semicolon following the object file name), or in the source input file before the first
FORTRAN statement.

Example
?UNIT (15-17, spec, REC 80, OUTPUT, PROTECTED)
FORTRAN Reference Manual—528615-001
10-68

Compiler Directives WARN Compiler Directive
WARN Compiler Directive
The WARN directive instructs the compiler to list compiler warning messages,
regardless of the setting of the LIST directive. If you specify NOWARN, the compiler
suppresses warning messages.

The default value is WARN.

Example
?NOWARN

[NO]WARN
FORTRAN Reference Manual—528615-001
10-69

Compiler Directives WARN Compiler Directive
FORTRAN Reference Manual—528615-001
10-70

11
Running and Debugging Programs

This section describes how to run a FORTRAN program. It also describes the
debugging modes available to you in the Guardian environment. Topics covered in this
section include:

Running a FORTRAN Program
The following syntax diagram describes the TACL command to run a FORTRAN
program.

RUN

runs the program whose object code is contained in file. The word RUN is
optional.

RUND

runs the program whose object code is contained in file. RUND specifies that the
program is to run in debug mode; it enters the debug state before execution of the
first instruction.

file

is the name of a disk file containing the object program to run. The system expands
partial file names.

option

is one of the following run-time parameters. For additional run-time options, see
the TACL Reference Manual.

Topic Page
Running a FORTRAN Program 11-1

Using TACL PARAM Commands 11-4

Disabling Level-3 Spooling 11-4

Using the EXECUTION-LOG PARAM 11-5

Using Debug Facilities 11-8

Using Inspect 11-10

Using the NONSTOP PARAM 11-11

Using SWITCH-nn PARAM 11-11

[RUN[D]] file [/ option [, option].../] [parameters]
FORTRAN Reference Manual—528615-001
11-1

Running and Debugging Programs Running a FORTRAN Program
IN infile

where infile specifies the name of your input file. If you omit this option, the
TACL IN file is used; this is usually the home terminal.

OUT outfile

where outfile is the name of the output file. If you omit this option, TACL’s
OUT file is used; this is usually the home terminal.

NAME [process]

is the symbolic name assigned to the new process. Name is a “$” followed by
up to five alphanumeric characters of which the first must be alphabetic.

Your process must be named if you run it as a process pair. If you specify
NAME without process, the operating system supplies a process name.

If you specify the RUNNAMED compiler directive when you compile your
program, your program always runs as a named process. Binder sets the
RUNNAMED bit in the object file it creates if any of the object files it includes in
the target object file have the RUNNAMED option set. You can also set the
RUNNAMED attribute using a Binder command.

If the RUNNAMED attribute is set in file, you do not need to specify the NAME
option when you run your program, unless you want the process to have a
specific name. For information about the RUNNAMED directive, see
RUNNAMED Compiler Directive on page 10-58.

CPU cpu

is an integer ranging from 0 through 15 that specifies the processor in which to
run the process.

PRI pri

is an integer ranging from 1 through 199 that specifies the execution priority of
the process. Processes with higher numbers execute first. Your system
configuration might limit you to a priority that is smaller than 199.

INSPECT

sets the debugging environment at run time. INSPECT OFF selects the
lowlevel Debug facility. INSPECT ON selects the interactive-symbolic
debugger Inspect. INSPECT SAVEABEND is the same as INSPECT ON
except that Inspect also automatically creates a save file if the program
terminates abnormally.

OFF

ON

SAVEBAND
FORTRAN Reference Manual—528615-001
11-2

Running and Debugging Programs Running a FORTRAN Program
LIB library

where library specifies an object file to use as a user library file for this
execution of the program. The contents of this file become the library code
space for the executing program. Do not specify this option if the object file
containing user code space has more than 16 code segments. You can use the
LIB option to override the user library file name specified in the FORTRAN
LIBRARY directive when you compiled your program.

MEM pages

is an integer ranging from 1 through 64 that specifies the maximum number of
virtual data pages to allocate for the new process. pages overrides the value
specified or value estimated by the DATAPAGES compiler directive, and the
value estimated by the compiler when you compile the program.

NOWAIT

specifies that TACL return a command prompt after sending the startup
message to the new process. If you do not specify NOWAIT, TACL does not
return a prompt until the new process completes.

TERM $name

is the name of a terminal or process to use as the home terminal for the
process. The default terminal is the terminal from which you run your program.

parameters

is one or more parameters that you want to pass to the program in its start-up
message. The program must use the GETSTARTUPTEXT routine described in
Section 15, Utility Routines, to get these parameters.

The following command runs the object file SROOT using the NUMBERS input file,
and sends the listing to a printer:

1> RUN sroot/IN numbers, OUT $s.#titan, NOWAIT/

The following command runs the object file NEWPROG and selects the Inspect
debugger:

2> RUN newprog/INSPECT ON/
FORTRAN Reference Manual—528615-001
11-3

Running and Debugging Programs Using TACL PARAM Commands
Using TACL PARAM Commands
Table 11-1 shows the TACL PARAM commands that you can specify when you run
your program. For more information, see the CRE Programmer’s Guide.

Disabling Level-3 Spooling
Beginning with release C20 of FORTRAN, all program files directed to a spooler
collector use level-3 spooling by default. You do not have to change anything in
programs written prior to release C20 or recompile them to use this faster method of
spooling.

You might want to disable level-3 spooling. By entering a TACL PARAM before you run
your program, you can disable level-3 spooling.

Disabling Level-3 Spooling With ENV OLD
If you run a program that you compiled with a C-series FORTRAN compiler or a
program that you compiled with a D-series FORTRAN compiler with ENV OLD in
effect, you can disable level-3 spooling at run-time by entering a PARAM SPOOLOUT
TACL command before you run your FORTRAN program. The general form of the
SPOOLOUT PARAM is:

Table 11-1. Run-Time TACL PARAM Commands
PARAM Values Environment Effect
BUFFERED-SPOOLING ON

OFF

COMMON BUFFERED-SPOOLING OFF
ensures that your program does
not use level-3 spooling.

EXECUTION-LOG name *

file name

COMMON If present, affects the names of
standard input, standard output,
and standard log files.

INSPECT param ON

OFF

COMMON Along with EXECUTION-LOG,
determines whether your program
invokes a debugger if a run-time
error occurs.

NONSTOP param ON

OFF

COMMON Along with other parameters,
determines whether your program
runs as a NonStop process.

SPOOLOUT 0

1

OLD Controls whether your program
uses level-3 spooling.

SWITCH-nn, value nn is 1 -
15 value
is ON or
OFF

COMMON Specifies the values of software
program switches. Programs that
specify ENV COMMON can read
switch values.
FORTRAN Reference Manual—528615-001
11-4

Running and Debugging Programs Disabling Level-3 Spooling With ENV COMMON
PARAM SPOOLOUT

To disable level-3 spooling, specify:

PARAM SPOOLOUT 0

Your program uses level-1 spooling for all spooled files, except spooled files for which
you explicitly set spooling parameters by calling FORTRANSPOOLSTART. The
SPOOLOUT PARAM does not force those spooler files to use level-1 spooling. For
more information about FORTRANSPOOLSTART, see Section 15, Utility Routines.

The SPOOLOUT PARAM is meaningful only if you specify ENV OLD.

Disabling Level-3 Spooling With ENV COMMON
The BUFFERED-SPOOLING PARAM is meaningful only if you specify ENV
COMMON.

You can enable or disable level-3 spooling by specifying the BUFFERED-SPOOLING
PARAM:

PARAM BUFFERED-SPOOLING

By default, BUFFERED-SPOOLING is ON. To disable level-3 spooling, specify:

PARAM BUFFERED-SPOOLING OFF

Your program uses level-1 spooling for all spooled files, except spooled files for which
you call FORTRAN_SPOOL_OPEN_. The BUFFERED-SPOOLING PARAM does not
force those spooler files to use level-1 spooling.

For more information about FORTRAN_SPOOL_OPEN_, see the
FORTRAN_SPOOL_OPEN_ Routine on page 15-11.

Using the EXECUTION-LOG PARAM
The EXECUTION-LOG PARAM is meaningful only if you specify ENV COMMON.

The EXECUTION-LOG PARAM affects the names of the files that FORTRAN uses for
standard input, standard output, and standard log if you are using the shared file
facilities in D-series FORTRAN. For more information about file sharing in D-series
FORTRAN, see Using Shared Files on page 13-27.

0

1

0

1

FORTRAN Reference Manual—528615-001
11-5

Running and Debugging Programs The EXECUTION-LOG PARAM and Standard Input
The EXECUTION-LOG PARAM and Standard Input
FORTRAN determines the file name for standard input as follows. If the INFILE name
in your program’s startup message is:

• Not the name of your program’s home terminal, FORTRAN uses the INFILE name
from the startup message for standard input.

• Blanks, FORTRAN does not open a system file but accepts open requests and
returns end of file each time your program reads from standard input.

• The name of your program’s home terminal and

° You do not specify the EXECUTION-LOG PARAM, FORTRAN opens your
home terminal if your program opens standard input.

° You specify a file name as the EXECUTION-LOG, FORTRAN uses the file you
specify for the EXECUTION-LOG as standard input.

For example, if your home terminal is named $TERM and you specify AFILE
for EXECUTION-LOG, FORTRAN opens AFILE if a routine in your program
opens standard input:

PARAM EXECUTION-LOG AFILE

RUN myprog / IN $TERM, /

If you do not specify the IN parameter, TACL passes the name of your terminal
as the IN parameter, which has the same effect as explicitly specifying your
home terminal as the IN parameter:

PARAM EXECUTION-LOG AFILE

RUN myprog

° You specify an asterisk for the EXECUTION-LOG, FORTRAN does not open a
file for standard input. Instead, FORTRAN returns end of file each time your
program reads from standard input:

PARAM EXECUTION-LOG *

RUN myprog / IN $TERM, /

If you do not specify the IN parameter, TACL passes the name of your terminal
as the IN parameter, which has the same effect as explicitly specifying your
home terminal as the IN parameter:

PARAM EXECUTION-LOG *

RUN myprog
FORTRAN Reference Manual—528615-001
11-6

Running and Debugging Programs The EXECUTION-LOG PARAM and Standard
Output
The EXECUTION-LOG PARAM and Standard Output
FORTRAN determines the file name for standard output as follows. If the OUTFILE
name in your program’s startup message is:

• Not the name of your program’s home terminal, FORTRAN uses the OUTFILE
name from the startup message for standard output.

• Blanks, FORTRAN does not open a system file but accepts open requests,
discards records that you write to standard output, and indicates a successful write
each time your program writes to standard output.

• The name of your program’s home terminal and You do not specify the
EXECUTION-LOG PARAM, FORTRAN opens your home terminal if your program
opens standard output.

° You specify a file name as the EXECUTION-LOG, FORTRAN uses the file you
specify for the EXECUTION-LOG as standard output.

For example, if your home terminal is named $TERM and you specify AFILE
for EXECUTION-LOG, FORTRAN opens AFILE if a routine in your program
opens standard output:

PARAM EXECUTION-LOG AFILE

RUN myprog / OUT $TERM, /

° You specify an asterisk for the EXECUTION-LOG, FORTRAN does not open a
file for standard output. Instead, each time your program writes to standard
output, FORTRAN discards the record and indicates a successful write:

PARAM EXECUTION-LOG *

RUN myprog / OUT $TERM, /

The EXECUTION-LOG PARAM and Standard Log
The EXECUTION-LOG PARAM specifies a file name to which FORTRAN might write
diagnostic messages. The syntax of the EXECUTION-LOG PARAM is:

PARAM EXECUTION-LOG

By default, FORTRAN writes log messages to your process’s home terminal. You can
direct log messages to another file, however, by specifying a file name in a TACL
ASSIGN command or in a PARAM EXECUTION-LOG command.

• If an ASSIGN specifies the logical name STDERR, FORTRAN uses the physical
name from the ASSIGN as the name of standard log.

• If a PARAM specifies EXECUTION-LOG, FORTRAN uses the value of the
EXECUTION-LOG PARAM as the name of standard log. If the EXECUTION-LOG

filename

*

FORTRAN Reference Manual—528615-001
11-7

Running and Debugging Programs Using Debug Facilities
PARAM specifies an asterisk (*), FORTRAN does not write messages to standard
log.

• If an ASSIGN specifies STDERR and a PARAM specifies EXECUTION-LOG,
FORTRAN uses the physical name from the ASSIGN unless the physical name
specifies your home terminal, in which case FORTRAN uses the value of the
EXECUTION-LOG PARAM or, if the EXECUTION-LOG PARAM value is an
asterisk, FORTRAN does not open standard log.

FORTRAN does not open a Guardian file for standard log if the ASSIGN for STDERR
specifies the process’s home terminal, and the value of the EXECUTION-LOG PARAM
is an asterisk.

Using Debug Facilities
HP supports two debugging programs:

• Debug—a low-level debugger

• Inspect—an interactive, symbolic debugger

Your program uses the Debug program:

• If you specify INSPECT OFF in the RUN or RUND command, as follows:

RUND program / INSPECT OFF/

• By default if you have selected Inspect but the necessary support processes are
not running on the system on which the process to be debugged is running.

You select the Inspect facility in one of the following ways:

• By specifying the INSPECT or SAVEABEND compiler directives

?INSPECT

?SAVEABEND

• By using the Binder SET INSPECT or SET SAVEABEND commands during a
Binder session

SET INSPECT ON

SET SAVEABEND ON

• By using the TACL SET INSPECT command prior to the RUN command that starts
the process

SET INSPECT ON

• By selecting the INSPECT ON or INSPECT SAVEABEND options of the RUN
command when you run your program

RUND program / INSPECT ON/
FORTRAN Reference Manual—528615-001
11-8

Running and Debugging Programs Using the INSPECT TACL PARAM
If you use more than one method of selecting a debugger, precedence is established
as follows: A program file value (specified either in a compiler directive—INSPECT or
NOINSPECT—or a Binder command—SET INSPECT ON or SET INSPECT OFF)
overrides the value specified in the RUN command, which overrides the value
specified in a TACL session.

Using the INSPECT TACL PARAM
If an error occurs in your FORTRAN program—for example, you attempt to divide by
zero—the FORTRAN run-time routines write an error message to the standard log file
and, if you specify the INSPECT PARAM before you run your program, invoke a
debugging program.

The INSPECT PARAM is meaningful only if you specify ENV COMMON.

The following is the syntax of the INSPECT PARAM:

PARAM INSPECT

The default is INSPECT OFF.

If you specify PARAM INSPECT ON, and certain run-time errors occur, FORTRAN
invokes a debugger program—Inspect or Debug—rather than terminating your
program immediately.

If you specify PARAM INSPECT OFF or you do not specify an INSPECT PARAM, your
program terminates immediately.

The INSPECT PARAM affects only those programs that you run after you set the
PARAM. It does not affect programs that you have already started.

For more information about choosing the Debug program or the Inspect program for
debugging, see Using Debug Facilities on page 11-8.

ON

OFF

FORTRAN Reference Manual—528615-001
11-9

Running and Debugging Programs Using Inspect
Using Inspect
Inspect is an interactive-symbolic debugger that lets you control program execution,
display values, and modify values in terms of source-language symbols. Inspect has
two basic modes: high-level and low-level.

High-Level Inspect
Using high-level Inspect you can:

• Identify code and data locations using source language expressions.

• Assign values to data locations, and display values from data locations in a specific
format.

• Step through program execution by language-oriented or machine-oriented
increments.

• Display source program text surrounding the currently executing statement.

• Define names for Inspect command strings.

• Direct Inspect to suspend program execution and perform a specified action
whenever a certain code location is reached, or whenever a certain data item is
manipulated.

• Save a copy of your process environment image in a disk save file.

You must specify the FORTRAN SYMBOLS compiler directive when you compile your
program if you want to use high-level Inspect.

Low-Level Inspect
Using Inspect in low-level mode is very similar to using the Debug program. Lowlevel
Inspect offers the following additional features compared to the Debug program:

• Recognition of source-language procedure names

• Display in ICODE for machine instructions

Low-level Inspect enables you to display and modify registers. You do not need symbol
information to use low-level Inspect.

When Inspect encounters a program unit that was compiled without the SYMBOLS
directive, it automatically enters low-level mode. You can also place Inspect in lowlevel
mode by using the Inspect LOW command.

When you use low-level Inspect, you can use features of high-level Inspect that do not
require symbols. These enable you to:

Note. Unlike FORTRAN, Inspect does not allow embedded spaces in identifier names. You
must enter each identifier name as a consecutive string of nonblank characters.
FORTRAN Reference Manual—528615-001
11-10

Running and Debugging Programs Using the NONSTOP PARAM
• Inquire about or set the program environment (the default system, volume, and
subvolume)

• Use the FC command to edit a previous command

• Display help information

• Use the OBEY command to read commands from a disk file

• Display machine instructions expressed as ICODE

• Step through program execution by one or more machine instructions

• Exit from Inspect

For additional information about Inspect commands in general, and Inspect support for
FORTRAN in particular, see the Inspect Manual.

Using the NONSTOP PARAM
The NONSTOP PARAM is meaningful only if you specify ENV COMMON.

You can use the NONSTOP PARAM to specify whether you want your program to run
as a NonStop process. The syntax of the NONSTOP PARAM is

PARAM NONSTOP

The default is PARAM NONSTOP ON.

If you specify PARAM NONSTOP OFF, your program does not run as a NonStop
process. If you specify PARAM NONSTOP ON, your program runs as a NonStop
process only if your program also specifies the NONSTOP directive and you execute a
START BACKUP statement.

Using SWITCH-nn PARAM
The SWITCH- nn PARAM is meaningful only if you specify ENV COMMON.

You use the SWITCH-nn PARAM to turn on or off logical program switches that your
program can read at run time. The syntax of the SWITCH- nn PARAM is

PARAM SWITCH- nn

The default for all switches is OFF.

You can set switch values for 15 switches, identified as SWITCH-1 through SWITCH-
15. Only switch values that you specify before you run your program are meaningful.

ON

OFF

ON

OFF

FORTRAN Reference Manual—528615-001
11-11

Running and Debugging Programs Using SWITCH-nn PARAM
Changing the values of switches after your program begins running does not affect the
switch values used by your program.

You read switch values using the SSWTCH utility routine, described in Section 15,
Utility Routines.
FORTRAN Reference Manual—528615-001
11-12

12 Memory Organization
Topics covered in this section include:

The information in this section might be useful to you:

• If you need to control where FORTRAN allocates data and data blocks

• If you are using Inspect or Debug to debug a program

• If you are combining FORTRAN programs written in languages other than
FORTRAN

Code Space
The code area of a process consists of a user code space and an optional user library
space. Each space can have up to 16 code segments of 64K words, or a total of up to
1024K words in each of the two code spaces.

If an object program is executed with a user library, each code space is an object file
containing up to 16 code segments. You run the object file that includes the main
program (this file becomes the user code space), using the LIBRARY directive or the
LIB run-time option to specify the object file that becomes the user library code space.

If a program is executed without a user library, the object file can have up to 32 code
segments, for a total code size of up to 2048K words. The operating system allocates
the first 16 code segments to the user code space and any remaining code segments
to the user library space.

A program is said to use extended code space if it uses more than a one segment.

You don’t need to do anything special to write and compile programs that use extended
code space. FORTRAN compiles the program units and calls Binder to combine them
in a single object program. Binder produces an object program that uses as many code
segments as needed, up to the limit of 32 segments.

Information in a code segment consists of instruction codes and program constants.

Your program can read the contents of a code segment but the TNS hardware reports
an instruction trap if your program attempts to write to a code segment. Therefore, you
cannot modify code segments during execution.

A code segment consists of up to 65,536 16-bit words which are numbered
consecutively from C[0] (code, element 0) through C[65535].

Topic Page
Code Space 12-1

Data Space 12-2

Debugging Programs That Use Extended Memory 12-13

TNS Processor Memory Organization 12-13
FORTRAN Reference Manual—528615-001
12-1

Memory Organization Data Space
The P (program) register is the program counter. It contains the 16-bit C[0]-relative
address of the current instruction plus one. The contents of the P register are
incremented by one at the beginning of each instruction that your program executes so
that, normally, instructions are fetched (and executed) from ascending memory
locations.

Data Space
FORTRAN allocates memory for your program’s data

• In the lower half of the user data segment

• Depending on the directives you specify, in the upper half of the user data segment

• In your program’s extended memory segment

FORTRAN also allocates space for file buffers, file control blocks and other internal
data structures in the user data segment. The user data segment consists of up to
65,536 16-bit words. Addresses in the data segment start at G[0] (global data, word 0)
and progress consecutively through G[65535].

Figure 12-1 on page 12-3 shows how FORTRAN allocates data for your program if you
specify ENV OLD. Figure 12-2 on page 12-4 shows how FORTRAN allocates data for
your program if you specify ENV COMMON.

The lower half of the user data segment contains global data and the run-time stack on
which FORTRAN dynamically allocates storage for local data when your program calls
subprograms. This area is called the memory stack and is logically separated into
three areas: global, local, and sublocal (“top of the stack”).

You can address data within the global area by an instruction in a program. The
addressing base is G[0]. FORTRAN stores statically allocated data in the global area,
including:

• I/O control blocks, unless the HIGHCONTROL directive is present.

• OWN data blocks, containing local variables, arrays, and RECORDs that are
named in DATA or SAVE statements.

• Common data blocks, unless HIGHCOMMON or LARGECOMMON directives
specify otherwise.

Data within the local area is known only to the currently executing procedure and its
subprocedures. The beginning of the local area is defined by the value in the 16-bit L
register when your program begins execution. The L (local) register contains the G[0]-
relative address of the word at the beginning of this area. The addressing base for
local data is L[0]. FORTRAN stores dynamically allocated local data in this area,
including local variables, arrays, and RECORDs that are not named in DATA or SAVE
statements.

Data above the current L register is known only to the currently executing procedure.
The 16-bit S register contains the G[0]-relative address of the last word currently
FORTRAN Reference Manual—528615-001
12-2

Memory Organization Data Space
defined in the memory stack. All local data in your program is referenced relative to the
L register except the dummy arguments to statement functions, which are referenced
relative to the S register.

Word-addressable and byte-addressable data can be stored in the memory stack area.

Figure 12-1. User Data Segment for ENV OLD

Space for calls to additional subroutines

Local variables named in DATA or SAVE
statements and not in LARGEDATA

Common blocks not named in
HIGHCOMMON or LARGECOMMON

Control Blocks and Run-Time Tables
(#RUCB, #FLUT, #PUCB, FCBs ...)

if program does not specify HIGHCONTROL

COMMON#POINTERS
if program references data in COMMON blocks

allocated in the User Data Segment

#G0

G[65535]

G[32768]

S Reg

L Reg

G[0]

Upper
Memory

Global
 Data

Dynamic
Date
Stack for
Local and
Sublocal
Data

Lower
Memory

VST1201.vsd

Common blocks allocated by
HIGHCOMMON directive

Control Blocks and Run-Time Tables
(#RUCB, #FLUT, #PUCB, FCBs ...)

if program specifies HIGHCONTROL

Local and sublocal data for active subroutines

LOWBUFFER

Space allocated in HIGHBUFFER
directive
FORTRAN Reference Manual—528615-001
12-3

Memory Organization Data Space
Three logical areas within the user data segment are available to a FORTRAN
subprogram while it is active:

• COMMON, DATA, and SAVE areas, using G-plus addressing

• Subprogram parameter (argument) area, using L-minus addressing

• Local area, using L-plus addressing

Figure 12-2. User Data Segment for ENV COMMON

Space for calls to additional subroutines

G[65535]

G[32768]

S Reg

L Reg

G[0]

Upper
Memory

Global
 Data

Dynamic
Date
Stack for
Local and
Sublocal
Data

Lower
Memory

VST1202.vsd

#CRE_HEAP

#MCB
if program specifies HIGHCONTROL

Common blocks allocated in
HIGHCOMMON directives

Local data for active subroutines

FCBs if program does not specify
HIGHCONTROL

#MCB
if program does not specify HIGHCONTROL

Local variables named in DATA or SAVE
statements and not in LARGEDATA

Common blocks not named in
HIGHCOMMON or LARGECOMMON

COMMON#POINTERS
if program references data in COMMON blocks

allocated in the User Data Segment

#CRE_GLOBALS
FORTRAN Reference Manual—528615-001
12-4

Memory Organization Upper Memory
Upper Memory
The upper memory area (the “upper” 32K words of the user data segment) is optionally
available for

• Common data specified by the HIGHCOMMON directive

• Control information specified by the HIGHCONTROL and HIGHBUFFER directives

Access to upper memory is by indirect addressing only. FORTRAN stores only word-
addressable data in upper memory.

Storage Areas
The Binder load map in your program listing includes a list of the data blocks that
FORTRAN allocates to hold program data as well as data blocks that hold internal data
used by the FORTRAN run-time environment. The names and contents of these data
blocks depend on whether you compile your program with ENV COMMON or ENV
OLD in effect. Table 12-1 lists the data blocks allocated by FORTRAN. Table 12-2 on
page 12-6 lists the compiler directives that affect how FORTRAN allocates data.

Table 12-1. Data Blocks

Block OLD COMMON
Directives That Affect Block’s
Location and Size

#FLUT X – HIGHCONTROL

#PUCB X – HIGHCONTROL

#RUCB X – HIGHCONTROL

FCBs – X HIGHCONTROL

#HIGHBUF X – HIGHBUFFER

#LOWBUF X – LOWBUFFER

#G0 X – none

#MCB – X HIGHCONTROL, HIGHBUFFER

#CRE_HEAP – X HIGHBUFFER

#CRE_GLOBALS – X none

Common blocks X X HIGHCOMMON, LARGECOMMON

COMMON#POINTERS X X LARGECOMMON

#RECEIVE – X RECEIVE
X The data block is used in the specified environment

– The data block is not used in the specified environment
FORTRAN Reference Manual—528615-001
12-5

Memory Organization Storage Areas
Table 12-2. Compiler Directives That Control Data Allocation (page 1 of 2)

Effect
Directive ENV OLD ENV COMMON
DATAPAGES Specifies how many pages to

allocate for data storage in the
user data segment (Default:
Compiler estimates)

Always uses 64

EXTENDCOMMON Allocate one pointer for each
common block. (Default: allocate
one pointer for each variable
referenced in a common block)

Same as ENV OLD

EXTENDEDREF Generates code that uses
doubleword addresses for
parameters to subprograms.
(Default: use word addresses)

Same as ENV OLD

HIGHBUFFER n Allocate n-byte #HIGHBUF in
upper memory (Default: no
#HIGHBUF)

Allocate n-byte #CRE_HEAP
in upper memory (Default:
allocate 1,024-byte
#CRE_HEAP in upper
memory)

HIGHCOMMON blks Allocate all or specified common
blocks in high memory. If blks not
specified, allocate all common
blocks in high memory. See also
LARGECOMMON directive in
Section 10, Compiler Directives.
(Default: allocate common blocks
in low memory or extended
memory according to
LARGECOMMON directives)

Same as ENV OLD

HIGHCONTROL Allocate #RUCB, #FLUB, #PUCB
and FCBs in high memory
(Default: allocate blocks in low
memory)

Allocate #MCB and FCBs in
high memory (Default: allocate
#MCB and FCBs in low
memory)

LARGECOMMON
blks

Allocate all or specified common
blocks in extended memory
(Default: Allocate common
blocks in low memory or high
memory according to
HIGHCOMMON directives)

Same as ENV OLD

LARGEDATA items If items is a constant, allocate
all local data with length greater
than or equal to items, in
extended memory. If items is
not a constant, allocate items in
extended memory

Same as ENV OLD
FORTRAN Reference Manual—528615-001
12-6

Memory Organization Storage Areas
CONTROL Storage Areas With ENV OLD
If you compile your program with ENV OLD in effect, the Binder load map printed for a
FORTRAN program compilation shows three “special data blocks” named #RUCB,
#FLUT, and #PUCB. They are in the upper half of the user data segment if the
HIGHCONTROL directive is used, or in the lower half otherwise. These blocks contain
information used by the FORTRAN run-time library procedures that do the work of
FORTRAN I/O statements and handle errors detected by intrinsic functions. They are
also used by the Saved Message Utility procedures.

• The Run-Unit Control Block (#RUCB)

The #RUCB block contains pointers to the other control blocks and to the buffer
storage areas. It always contains 77 words.

• The FORTRAN Logical Unit Table (#FLUT)

The #FLUT block contains pointers to the File Control Blocks (FCBs) for all the
FORTRAN program’s I/O units. Its size is N + 2 words, where N is the largest I/O
unit number that exists in the compilation.

• The Program Unit Control Block (#PUCB)

The #PUCB block contains a 39-word fixed header area, plus a File Control Block
(FCB) area for each I/O unit that exists for the compilation, with 38 to 58 words per
FCB depending on the lengths of the file names and unit names.

BUFFER Storage Areas With ENV OLD
The Binder load map includes another “special data block” named #LOWBUF, and
might include another data block named #HIGHBUF. Both of these are buffer pools
used as “heap storage” by several of the FORTRAN run-time library procedures for
data areas that must be allocated and released dynamically as program execution

LARGESTACK n Allocate n bytes of data in
extended memory for data
specified in LARGEDATA
directives

Same as ENV OLD

LOWBUFFER n Allocate n-byte #LOWBUF
(Default: #LOWBUF is 512
bytes)

 not used

RECEIVE params Allocate space for $RECEIVE
information in #PUCB

Allocate #RECEIVE in low
memory (Default: do not
allocate #RECEIVE)

Table 12-2. Compiler Directives That Control Data Allocation (page 2 of 2)

Effect
Directive ENV OLD ENV COMMON
FORTRAN Reference Manual—528615-001
12-7

Memory Organization Storage Areas
proceeds, but that cannot be on top of the run-time stack because they must remain
allocated after the procedure creating them has returned to its caller.

The #LOWBUF area contains space for the Saved Message Utility storage area, plus
the $RECEIVE file message queue area, plus a general area for file buffers. Given the
directives:

? LOWBUFFER b

? SAVE (STARTUP s, ASSIGNS a, PARAM p)

? RECEIVE (OPEN m, MAXREPLY r, SYNCDEPTH d, QDEPTH q)

the size of the #LOWBUFFER area is:

b + 1 +

s/2 + 3 + a * 57 + p/2 + 3 +

(m + 1) * 11 + ((r + 1)/2 + 4) * m * d + q * 4

words, where the default values are:

b = 512 if not specified in a LOWBUFFER directive

s = 0, a = 0, p = 0 if not specified in a SAVE directive

m = 1, r = 132, d = 1, q = 1 if not specified in a RECEIVE directive

Thus, in the absence of these directives, the #LOWBUFFER area is allocated 609
words.

The #HIGHBUFFER area contains the number of words specified in the HIGHBUFFER
directive, or is omitted if none is specified. During program execution, the FORTRAN
run-time library procedures call the GPLIB procedures GET^BUFFER and
PUT^BUFFER to allocate and release space in the buffer pool consisting of the
#LOWBUFFER and #HIGHBUFFER areas of memory. The FORTRAN run-time
system allocates and de-allocates space in this buffer pool as follows:

• The Saved Message Utility area is allocated when the program begins execution. It
must be in the #LOWBUFFER area. Its size depends on the startup, assign, and
param system messages the process receives, and may be less than or greater
than the amount specified in the SAVE directive. This area might become larger or
smaller as the program calls Saved Message Utility routines to add, delete, and
alter saved messages.

• The $RECEIVE area is allocated when the file named $RECEIVE is opened. It can
be in either the #LOWBUFFER or #HIGHBUFFER area. Its size is exactly as
specified in the RECEIVE directive, or 96 words by default.

• When a FORTRAN program is running as a NonStop process, the system
allocates 169 words in the #LOWBUFFER area for each EDIT format file that is
open.

• The system may allocate 512 words for each output file that is open for level-3
spooling. This can be in the #LOWBUFFER or #HIGHBUFFER area. It is not
FORTRAN Reference Manual—528615-001
12-8

Memory Organization Storage of Entities in Common Blocks
allocated by the system if sufficient space is not available or if the program
specifies a level-3 buffer area with a valid address in a call to
FORTRANSPOOLSTART. The program can run correctly, though slower, without a
level-3 spooling buffer area.

User-written TAL subprograms can also call GET^BUFFER and PUT^BUFFER to
make further use of these areas. This means that, with the default #LOWBUFFER size
of 609 words:

• A FORTRAN program running as a NonStop process can have up to three EDIT
format files open at a time, because 3 * 169 = 507.

• A FORTRAN program that is not running as a NonStop process or has no EDIT
format files open can have one output file open with automatic level-3 spooling,
because each level-3 buffer is 512 words.

Storage Areas With ENV COMMON
If ENV COMMON is in effect, FORTRAN allocates three special data blocks named
#CRE_GLOBALS, #CRE_HEAP, and #MCB. #CRE_GLOBALS and #MCB contain
run-time information for programs that specify the common environment. The runtime
environment uses space from #CRE_HEAP for file buffers and so forth. The default
size of #CRE_HEAP is 1,024 bytes, but you can specify its size with the HIGHBUFFER
compiler directive. You should not specify a value that is less than 1,024 for
HIGHBUFFER.

FORTRAN allocates a data block for each unit you define in your program. Each data
block holds one file control block. The names of these data blocks are of the form
##FTnnn where nnn is the unit number.

If you specify a RECEIVE directive, FORTRAN allocates a data block called
#RECEIVE.

If you specify HIGHCONTROL, FORTRAN allocates the #MCB data block and all file
control blocks in upper memory.

#CRE_HEAP is always in upper memory.

#CRE_GLOBALS and #RECEIVE are always in low memory.

FORTRAN does not allocate #LOWBUF in the common environment.

Storage of Entities in Common Blocks
When a program unit transfers control to a subprogram, it can also transfer data
through the subprogram’s arguments. Similarly, the called subprogram can return data
to its caller through its arguments. Function subprograms also return data as the value
of the function. These are the only means of exchanging data between subprograms
without using common blocks.

When a subprogram returns control to the calling program unit, its local data is lost
because local data is allocated on the stack. The COMMON statement enables you to
FORTRAN Reference Manual—528615-001
12-9

Memory Organization Storage of Entities in Common Blocks
place entities in global storage; any program unit that makes reference to common
storage can use these entities. You can also use DATA and SAVE statements to place
specified entities in global storage and to store their addresses in the code area.

Three compiler directives affect the addressing and storage of entities in common:

• EXTENDCOMMON, which provides indexed indirect addressing. (Note that this
directive affects only word and doubleword variables; it has no effect on arrays.)

• LARGECOMMON, which allocates space for common blocks in extended memory.
(For more information, see the Extended Memory on page 12-11.)

• HIGHCOMMON, which allocates space for common blocks in upper memory.

Figure 12-3 shows the difference between using the default common addressing and
EXTENDCOMMON addressing for entities stored in common blocks by the following
statement:

COMMON i, j, k

By default, FORTRAN allocates a pointer in primary global storage for each entity in a
common block in secondary global storage. If you specify the EXTENDCOMMON
directive, FORTRAN allocates only one pointer for each array and one pointer for all
scalars in the common block. The latter pointer points to the first entity in the block; the

Figure 12-3. Normal and EXTENDCOMMON Addressing

I

J

K

Reserved

2000

2001

2002

G[2002]

G[2001]

G[2000]

G[5]

G[4]

G[3]

G[0]

Normal Common EXTENDCOMMON

I

J

K

2000

Reserved

G[2000]

G[0]

G[3]

VST1203.vsd
FORTRAN Reference Manual—528615-001
12-10

Memory Organization Extended Memory
entities that follow are located by indexing. Having one pointer for all scalars saves
space in primary global storage, at some expense for additional processing time.

Extended Memory
An object program executing on an HP NonStop system always has exactly one user
data segment of up to 65,536 words (addressable with 16-bit word addressing) and
can also have any number of extended data segments of up to 127.5MB (addressable
with 32-bit byte addressing). A FORTRAN program can directly access just one
extended data segment.

The LARGECOMMON directive specifies which common blocks to allocate in the
extended data segment. Common blocks are always statically allocated. Common
blocks that are in the extended data segment have no pointers in the global area of the
user data segment.

The LARGEDATA directive specifies which local data items to allocate in the extended
data segment. “Data items” means variables, arrays, and RECORDs. “Local data
items” means data items that are local to a program unit (they are not dummy
arguments, not in a common block, and not equivalenced to anything in a common
block).

Local data items are statically allocated (they have a fixed memory location throughout
program execution) if they are named in DATA or SAVE statements.

Otherwise, they are dynamically allocated on a run-time stack when their procedure is
entered and de-allocated when that procedure returns to its caller.

Statically Allocated Data
Statically allocated local data items are contained in OWN data blocks. Each program
unit can have zero, one, or two OWN data blocks. If a statically allocated local data
item is in extended memory because of a LARGEDATA directive, it is in an OWN data
block in the extended data segment; the block name is an ampersand (&) followed by
the program unit name. Other statically allocated local data items are in an OWN block
in the global area of the user data segment; the block name is a plus sign (+) followed
by the program unit name.

Dynamically Allocated Data
Dynamically allocated local data items are in one of two run-time stack areas. If a
dynamically allocated local data item is in extended memory because of a
LARGEDATA directive, it is in the extended stack data block whose name is
$EXTENDED#STACK. Other dynamically allocated local data items are in the local
area of the run-time stack in the user data segment.

The hardware L and S registers point to the beginning and end of the currently
executing procedure’s local area in the extended data segment run-time stack. Pointer
doublewords in the global area of the user data segment serve a similar purpose.
FORTRAN Reference Manual—528615-001
12-11

Memory Organization Extended Memory
These pointers are in the data blocks named EXTENDED#STACK#FRAME and
EXTENDED#STACK#POINTERS.

The user data segment run-time stack cannot grow past address G[32767]. If a
program exceeds this limit, it is interrupted with a stack overflow trap, and the system
calls Debug or Inspect unless the ARMTRAP procedure has been called.

Whether you specify ENV OLD or ENV COMMON, your program always traps if it
overflows the run-time stack. Your program retains control only if you have defined
your own trap handler. If your program specifies ENV OLD, TACL writes a trap 3 error
message to your terminal. If your program specifies ENV COMMON, the FORTRAN
run-time library writes a message to your terminal specifying trap error 5.

Similarly, the extended data segment run-time stack cannot grow past the size
specified for it when the object program file is created. The compiler estimates the
proper size for this area. You can use the LARGESTACK compiler directive or the
Binder SET LARGESTACK command to override the value computed by the compiler.
If the program attempts to exceed this size limit, the FORTRAN run-time system
displays a message on the home terminal and calls the Guardian procedure ABEND if
your program specifies ENV OLD or PROCESS_STOP_ with the ABORT option set if
your program specifies ENV COMMON.

Figure 12-4 shows the allocation of space in the extended data segment. The pointers
shown here as LX, SX, and MX are contained in the two special data blocks mentioned
above.
Figure 12-4. Extended Data Segment

Common Blocks
specified in LARGECOMMON directives or as

a result of a LARGECOMMON directive
without parameters

End of extended
memory area

Local variables named in
DATA or SAVE statements

Note: Blocks are not necessarily allocated in
 the physical order shown.

Dynamic Extended Stack Area

Beginning of extended
memory area

LX

SX

MX

VST1204.vsd
FORTRAN Reference Manual—528615-001
12-12

Memory Organization Debugging Programs That Use Extended Memory
Debugging Programs That Use Extended
Memory

You can use Inspect or Debug to debug programs that use extended memory.

If you use high-level Inspect commands to debug your programs, you won’t notice any
changes when you debug programs with extended memory. Because Inspect allows
you to refer to program entities by symbolic names (rather than memory addresses),
using extended memory does not affect the way you use Inspect.

If you use Debug or low-level Inspect commands to debug programs that use extended
memory, you must specify segment numbers as part of memory addresses.

See the Debug Manual to find out how to specify segment numbers in Debug
commands. See the Binder Manual to find out how to use Binder listings to determine
the segment numbers of entities in your program.

TNS Processor Memory Organization
Program memory on a TNS processor consists of:

• A code area, containing the program instruction codes and constants

• A data area—the user data segment

• An optional extended data area

• Four registers (P, L, S, and E)

• An eight-element register stack used for computation (three elements are available
for address indexing)

For more information about processor organization, see the system description manual
for your processors.
FORTRAN Reference Manual—528615-001
12-13

Memory Organization Accessing Data
Accessing Data
Data is accessed through memory reference instructions. Locations in the user data
segment can be addressed through:

• The address field in a memory reference instruction (direct addressing)

• An address pointer in memory (indirect addressing)

• An offset value to be added to a direct or indirect address (indexed addressing)

Figure 12-5. Program Memory Environment

Instruction
Codes and
Constraints

Eight-Element
Register

Stack

L Register

S Register

P Register

16 Bits

RP

C[0]

Code Segment

Sub-local Data

Local Data

Global Data

User Data
Segment

G[0]

Upper
Memory

Data Stack

16 Bits 16 Bits
End

Extended
Data Segment

%002000000

VST1205.vsd

Env Register

P Register: Program counter: address of current instruction plus one (relative to C[0])

Global Data: Data area accessible from any point in a program

Local Data: Data area accessible only from currently executing procedure and its subprocedures

Sub-Local Data: Data area accessible only from currently executing statement function

L Register: Local data pointer: G[0]-relative address of first element in the local data area; also
 indicates the location in the memory stack of the link (stack marker) back to the calling
 procedure

S Register: Top of stack: G[0]-relative address of the last active element in the memory stack

Register Stack: Eight-element register stack where arithmetic operations are performed.Three elements
 can also be used for indexing.

Register Stack: Points to—holds the address of—the current top of the register stack.

Pointer—RP: The stack is empty if RP = 7
FORTRAN Reference Manual—528615-001
12-14

13 Mixed-Language Programming
This section describes how you can combine procedures written in C, COBOL85,
FORTRAN, Pascal, and TAL into an executable object file.

Topics covered in this section include:

You might find mixed-language programming useful because each language offers
distinct advantages in writing certain kinds of routines or because you don’t want to
rewrite code written in another language that you want to use in a FORTRAN program.

For information about data type correspondence in C, COBOL85, FORTRAN, Pascal,
and TAL, see Appendix D, Data Type Correspondence and Return Value Sizes.

Prior to D-series software, object files written in one HP language could be bound with
object files from other HP languages but they were extremely limited in the resources
they could use. With few exceptions, all run-time libraries used the same memory
areas but each run-time library specified its own unique layout for the data in that area.

The Common Run-Time Environment—CRE
D-series software introduces the facilities of the Common Run-Time Environment
(CRE). The CRE provides services to programs written in C, COBOL85, FORTRAN,
Pascal, and TAL.

Using the CRE
In general, you do not need to do anything special to take advantage of the services of
the CRE. The FORTRAN run-time library accesses routines in the CRE when it is
appropriate to do so—you need to change few, if any, constructs in your program to
take advantage of the services of the CRE.

If you specify ENV COMMON when you compile your FORTRAN program, routines in
the FORTRAN run-time library call CRE routines for some of the services that are
handled by Guardian routines in C-series software. Programs that specify ENV OLD do
not call CRE routines.

The FORTRAN run-time library uses CRE services to:

Topic Page
The Common Run-Time Environment—CRE 13-1

Sharing Files When ENV COMMON Is in Effect 13-2

Module Compatibility 13-3

Referencing Separately-Compiled Procedures 13-4

Calling Other Language Procedures From FORTRAN 13-12

Calling FORTRAN Procedures From Other Languages 13-23

Using ENV COMMON 13-26
FORTRAN Reference Manual—528615-001
13-1

Mixed-Language Programming Sharing Files When ENV COMMON Is in Effect
• Manage shared access to unit 5 and unit 6

• Manage NonStop process pairs

• Write run-time diagnostic messages

• Manage hardware traps

• Manage $RECEIVE

• Support intrinsic functions

For more information about the CRE, see the CRE Programmer’s Guide.

Sharing Files When ENV COMMON Is in Effect
This subsection describes how your FORTRAN program shares access to the files
connected to unit 5 and unit 6 if you specify ENV COMMON.

If you specify ENV COMMON, your FORTRAN routines can share access to the files
connected to units 5 and 6 with other routines in your process, even if the other
routines are written in languages other than FORTRAN. The files associated with units
5 and 6 are referred to generically as standard input and standard output, respectively.
(The common environment of D-series software also supports shared access to a log
file—standard log—but you cannot establish a unit connection to the standard log file
from a FORTRAN routine. FORTRAN writes the message that you specify in PAUSE
and STOP statements and in the FORTRAN_COMPLETION_ utility to the standard log
file and also writes diagnostic messages to the standard log file.)

The D-series FORTRAN run-time routines treat all other unit connections just as C-
series run-time routines do. Routines written in C, COBOL85, FORTRAN, Pascal, and
TAL can share a single file open, but only for the standard files. In FORTRAN, the
standard files are unit 5 (standard input) and unit 6 (standard output). In COBOL85,
you access the standard files by executing ACCEPT (standard input) and DISPLAY
(standard output) verbs. Thus, for example, if a FORTRAN routine writes to unit 6 and
a COBOL85 routine executes a DISPLAY verb, both routines write to the same open of
a Guardian file.

In the following example, a COBOL85 routine and a FORTRAN routine are bound into
a single object file:

COBOL85 routine:

DISPLAY "Hello from COBOL".

FORTRAN routine:

OPEN (6, MODE = 'OUTPUT')

WRITE (6, 100)

100 FORMAT(1X, 'Hello from FORTRAN')
FORTRAN Reference Manual—528615-001
13-2

Mixed-Language Programming Module Compatibility
Both the COBOL85 DISPLAY verb and the FORTRAN WRITE statement write to the
same file open of the same Guardian file.

Shared access to units 5 and 6 enables you to coordinate FORTRAN I/O to unit 5 and
unit 6 with I/O statements executed in modules written in languages other than
FORTRAN. For example, if you run a program in which routines written in both C and
in FORTRAN connect unit 5 to a disk file, alternate reads of the disk file by routines
written in C and routines written in FORTRAN access successive records from the disk
file, although both the C routines and the FORTRAN routines open the file in their own
environment. Without file sharing, successive reads by routines written in C and in
FORTRAN would repeat records already read by a routine in the other language.
(Actually, without explicit support for file sharing, it is unlikely that routines written in C
and in FORTRAN could be bound into one object file and successfully execute I/O
statements.)

Note that only units 5 and 6 are shared with other routines and only if all routines
specify ENV COMMON or default to a mode that Binder treats in the same class as
ENV COMMON. Whether you specify ENV OLD or ENV COMMON, except for the files
associated with unit 5 and unit 6, routines in two or more languages can access the
same file with separate file opens. Each opener reads in succession, each record in
the file, independent of other openers. (If one of the openers has the file open with
protected access, the other opener, accessing the file with shared access, might be
affected by the records written by the opener with protected access.)

In addition, whether you specify ENV OLD or ENV COMMON, you can share a file
open between modules of a program by passing the Guardian file number.

For more information on how FORTRAN shares access to units 5 and 6—in particular,
the values of the file attributes required to share file opens—see the OPEN Statement
on page 7-70. For a detailed explanation of file sharing, see the CRE Programmer’s
Guide.

Module Compatibility
The Binder program defines three groups—or classes—of object files. The three
Binder groups are old, common, and neutral. FORTRAN modules created with ENV
OLD in effect are classified in the old Binder group. FORTRAN modules created with
ENV COMMON in effect are classified in the common Binder group. You cannot create
a FORTRAN module for the neutral Binder group. You can create neutral modules only
in TAL and in Pascal.

When you create a new object file using Binder, the input files must all be in the

• Old or neutral groups and the resultant object file uses the a C-series FORTRAN
run-time library.

• Common or neutral groups and the resultant object file uses the D-series
FORTRAN run-time library.

You cannot bind together modules from both the old and the common groups.
FORTRAN Reference Manual—528615-001
13-3

Mixed-Language Programming Referencing Separately-Compiled Procedures
For further information about Binder groups, see the Binder Manual.

Referencing Separately-Compiled Procedures
Your FORTRAN program can call routines that are compiled in separate compilations,
including the ‘main’ procedure. For example, you might write your own FORTRAN
subroutine to provide the parameters to a standard application.

Your FORTRAN routines can access the separately-compiled code using:

• The SEARCH directive to specify one or more disk-resident object files that contain
object code created by the C, COBOL85, FORTRAN, Pascal, or TAL compilers.

• Binder to link program units written in different languages.

• Program libraries that contain compiled program modules for use by any program.

See the SEARCH Compiler Directive on page 10-61. Section 9, Program Compilation,
includes an example of an independent compilation using the SEARCH directive.

Using Binder
You can enter Binder commands interactively or by placing the commands in a file that
Binder reads. Binder creates an object file that includes the code blocks and data
blocks you specify.

The following example shows an interactive Binder session in which code and data
blocks from the object files TALPROC (a TAL file), COBPROC (a COBOL85 file), and
FORTPROC (a FORTRAN file) are included in the object file TARGET (the @ is the
Binder prompt):

1> BIND

@ADD * FROM cobproc

@ADD * FROM talproc

@ADD * FROM fortproc

@BUILD target

The ADD * command adds all the code and data blocks from an object file to be
included in the object file created by Binder.

The BUILD command creates the new object file.

For additional information about Binder, see the Binder Manual.

Using Program Libraries
You can compile program modules and keep them in object module libraries for use by
any program. FORTRAN programs can invoke library routines, including those written
in languages other than FORTRAN.
FORTRAN Reference Manual—528615-001
13-4

Mixed-Language Programming Using Program Libraries
Data Areas in User Library Space
FORTRAN routines in user libraries cannot directly access data items declared in:

• COMMON statements

• DATA statements

• SAVE statements

• The extended data segment

Library routines can reference data in the preceding data areas only if the calling
routine passes the data item as an actual parameter to the library routine.

I/O Statements in User Library Space
Routines in library space can perform I/O operations but the units they access must be
defined in user code space. Units referenced by routines in FORTRAN libraries must
be defined in routines in user code space by one of the following:

• A UNIT compiler directive, such as:

?UNIT 8

• An executable I/O statement in user code space, not in user library space, that
specifies a constant unit number, such as:

OPEN(8, FN = 'FT008')

The expression you specify for a unit number in an I/O statement in library code space
must evaluate to a unit number defined in user code space. You must either pass the
unit number to the library routine as an actual parameter or establish a convention for
your application such that the library routine uses correct unit numbers.

Fault-Tolerant Statements in User Library Space
Routines in library space can execute START BACKUP and CHECKPOINT
statements.

However, unit numbers must be defined in a routine in user code space using the
same features as described in I/O Statements in User Library Space on page 13-5.

Data items named in START BACKUP and CHECKPOINT statements must conform to
the rules stated in Data Areas in User Library Space on page 13-5.

Creating a User Library Space
To create a user library object file, use the same Binder commands—ADD, BUILD, and
so forth—described in Using Binder on page 13-4.
FORTRAN Reference Manual—528615-001
13-5

Mixed-Language Programming Using Global Data in Mixed Language Programming
Using Global Data in Mixed Language Programming
FORTRAN does not have global data in the same sense as some other programming
languages such as C, Pascal, and TAL. Instead, FORTRAN programs share data by
placing specific data items in common blocks and declaring those common blocks in
each program unit that uses them.

FORTRAN follows the standard HP convention by adding a character at the beginning
of the name of each COMMON block when it creates the corresponding data block in
the object file. FORTRAN adds a period (.) if the block is in the user data segment, or a
dollar sign ($) if the block is in the extended data segment. Blank common is called
.BLANK^ if it is in the user data segment, $BLANK^ if it is in the extended data
segment.

FORTRAN does not create a pointer block in the global primary data area for each
COMMON data block. Instead, FORTRAN creates one “special” data block named
COMMON#POINTERS in the global primary data area, which contains pointers to
variables in all blocks in the user data segment. The contents of
COMMON#POINTERS can be affected by the EXTENDCOMMON compiler directive.
For more information, see Section 10, Compiler Directives. FORTRAN creates a
pointer in each program unit’s local data area to each variable in the extended memory
segment that is referenced in that program unit.

For example, if a FORTRAN source program declares:

? LARGECOMMON big

COMMON /big/ a (100, 100), b (100, 100)

COMMON /small/ c (10, 10), d, e

the FORTRAN object file contains:

• Common data block “$BIG” in the extended data segment

• Common data block “.SMALL” in the user data segment

• Special data block “COMMON#POINTERS” allocated in the primary data area and
containing pointers to the variables your program references in data block
“.SMALL”.

If a TAL source program declares:

BLOCK big;

REAL .EXT a [1:10000], .EXT b [1:10000];

END BLOCK;

BLOCK small;

REAL .c [1: 100], .d [0: 0], .e [0: 0];

END BLOCK;
FORTRAN Reference Manual—528615-001
13-6

Mixed-Language Programming The FORTRAN Calling Sequence
the TAL object file includes:

• Common data block “$BIG” in the extended data segment

• Common data block “BIG” in the global primary data area, containing doubleword
pointers to A and B

• Common data block “.SMALL” in the user data segment

• Common data block “SMALL” in the global primary data area, containing pointers
to C, D, and E

The layout of blocks “$BIG” and “.SMALL” will be the same as those of the FORTRAN
program.

When Binder combines these two object files, procedures in each object file can
reference the variables in the two common data blocks safely, because they have
equivalent declarations.

Note that each FORTRAN simple variable in a common block must be declared in TAL
as a one-element array, so that TAL creates a pointer in the pointer block and the
variable itself in the data block that corresponds to the FORTRAN common block, in
order to achieve the desired equivalency of declarations.

The FORTRAN Calling Sequence
This subsection explains how FORTRAN generates object code to invoke
subprograms that are not declared in GUARDIAN or CONSULT compiler directives
and, thus, are assumed to be written in FORTRAN. The caller of a FORTRAN
subprogram must set up the stack according to the conventions used by FORTRAN,
regardless of the language in which the caller is written.

If you do not specify a GUARDIAN or CONSULT directive, FORTRAN does not know
the calling sequence of the subprogram. It determines the calling sequence based on
the actual arguments you pass to the routine. That is, the FORTRAN compiler cannot
examine an object file containing the called procedure, or a source file containing its
declaration.

Passing Parameters
Suppose a FORTRAN program includes the type declarations:

INTEGER*2 holmes, watson

REAL doyle

CHARACTER*6 conan

CHARACTER*7 mycroft

CHARACTER*8 sherlock

CHARACTER*9 moriarity
FORTRAN Reference Manual—528615-001
13-7

Mixed-Language Programming The FORTRAN Calling Sequence
When FORTRAN translates the CALL statement

CALL bakerstreet (holmes, doyle)

it generates object code to call a procedure named BAKERSTREET which, if it were
written in FORTRAN, would be a subroutine subprogram having formal parameters
with types as shown. You could write the called routine in TAL as follows:

PROC bakerstreet (holmes, doyle);

INT .holmes;

REAL .doyle;

BEGIN

...

END;

If you specify the FORTRAN compiler directive EXTENDEDREF, you would code the
TAL routine as follows:

PROC bakerstreet (holmes, doyle);

INT .EXT holmes;

REAL .EXT doyle;

BEGIN

...

END;

The calling sequence of a FORTRAN subroutine is the same as that of a TAL
procedure with all parameters passed by reference. The data types of the caller’s
actual arguments must correspond to the data types of the called routine’s dummy
arguments. (For information on corresponding data types between different
programming languages, see Appendix D, Data Type Correspondence and Return
Value Sizes.) Reference parameters have word or doubleword addresses, depending
on the value you specify for the EXTENDEDREF directive.

Similarly, FORTRAN translates the function reference:

diary = watson (holmes, doyle)

by generating object code to call a function procedure named WATSON which, if it
were written in FORTRAN, would be a function subprogram having formal parameters
FORTRAN Reference Manual—528615-001
13-8

Mixed-Language Programming The FORTRAN Calling Sequence
with types as shown and return a type INTEGER*2 function value. If it were written in
TAL, it would be declared as follows:

INT PROC watson (holmes, doyle);

INT .holmes;

REAL .doyle;

BEGIN

INT value;

...

RETURN value;

END;

If you specify the FORTRAN compiler directive EXTENDEDREF, the TAL code would
be:

INT PROC watson (holmes, doyle);

INT .EXT holmes;

REAL .EXT doyle;

BEGIN

INT value;

...

RETURN value;

END;

Calling a FORTRAN function is the same as calling a typed TAL procedure with the
corresponding function value data type and with all parameters passed by reference.

Character Functions
FORTRAN treats a type CHARACTER function as a typeless procedure with an
additional parameter, in which the function value is returned, preceding the arguments
that appear in the FORTRAN source code. However, you must not declare this
pseudo-parameter as a formal parameter if the procedure is coded in TAL. Thus, for
example, given the function reference:

conan = mycroft (holmes, doyle)
FORTRAN Reference Manual—528615-001
13-9

Mixed-Language Programming The FORTRAN Calling Sequence
FORTRAN generates object code to call a procedure that could be declared in TAL as:

PROC mycroft (holmes, doyle);

INT .holmes;

REAL .doyle;

BEGIN

STRING .result = 'L' - 5;

result ':=' ... ;

END;

Note that you do not specify a type in the TAL procedure for the TAL return value.

If you specify the FORTRAN compiler directive EXTENDEDREF:

PROC mycroft (holmes, doyle);

INT .EXT holmes;

REAL .EXT doyle;

BEGIN

STRING .EXT result = 'L' - 8;

result ':=' ... ;

END;

For the statement:

conan = mycroft (holmes, doyle)

FORTRAN generates code equivalent to:

STACK @temp

CALL mycroft (holmes, doyle)

conan = temp

where TEMP is a CHARACTER*7 variable created by the compiler, so that the function
reference has the desired effect. This elicits a “return type mismatch” warning message
from Binder, because FORTRAN describes the procedure to Binder as a function that
returns a character string value, but the TAL code does not specify a return value.

Character Parameter Lengths
Whenever a subprogram has a type CHARACTER parameter, either as an explicit
parameter or as the function-value pseudo-parameter for a CHARACTER function,
FORTRAN stores a 16-bit word containing that parameter’s length on top of the stack,
just below the words containing the parameter list.

If the procedure is not EXTENSIBLE, the length words are stored in the same relative
order as the procedure’s type CHARACTER parameters, with no gaps for parameters
FORTRAN Reference Manual—528615-001
13-10

Mixed-Language Programming The FORTRAN Calling Sequence
of types other than CHARACTER. For an EXTENSIBLE procedure, the length words
are stored in the reverse order, so that you can add formal parameters of type
CHARACTER to existing procedures.

FORTRAN passes the length words so that the called procedure knows the lengths of
the actual arguments that correspond to the formal arguments, as well as the function
return value pseudo-parameter, as type CHARACTER*(*). For example, given the
FORTRAN statement:

conan = sherlock (holmes, moriarity, doyle)

the FORTRAN compiler generates object code equivalent to the following TAL source
code:

STACK 8; ! The length of SHERLOCK

STACK 9; ! The length of MORIARITY

STACK @temp; ! The function return address

CODE (PUSH %722); ! Push the lengths and address into mem

CALL sherlock (holmes, moriarity, doyle);

CODE (ADDS -3); ! Delete the non-parameter words

and follows this with object code for the FORTRAN statement:

conan = temp

where TEMP is a type CHARACTER*8 temporary variable created by the compiler for
the function value returned by SHERLOCK. If you write the called function in TAL, you
can reference the length words by declaring them equivalent to 'L' minus the
appropriate number of words. For example, assuming you use EXTENDEDREF, you
can code the function SHERLOCK in TAL as:

PROC sherlock (holmes, moriarity, doyle);

INT .EXT holmes;

STRING .EXT moriarity;

REAL .EXT doyle;

BEGIN

INT len_result = 'L' - 12;

INT len_moriarity = 'L' - 11;

STRING .EXT result = 'L' - 10;

...

result ':=' ... FOR len_result;

END;
FORTRAN Reference Manual—528615-001
13-11

Mixed-Language Programming Calling Other Language Procedures From
FORTRAN
because the top few words of the stack will be as follows:

'L' - 0 Caller's (L)

'L' - 1 Caller's (E)

'L' - 2 Caller's (P)

'L' - 3, 4 Extended address of DOYLE

'L' - 5, 6 Extended address of MORIARITY

'L' - 7, 8 Extended address of HOLMES

'L' - 9,10 Extended address of RESULT

'L' - 11 Length of MORIARITY

'L' - 12 Length of RESULT

Calling Other Language Procedures From
FORTRAN

If you write a FORTRAN program that calls subprograms written in other languages,
you can use:

• The GUARDIAN directive for Guardian procedures and utility routines

• The CONSULT directive for user-supplied procedures written in C, COBOL85,
FORTRAN, Pascal, and TAL

to give the FORTRAN compiler the information it needs so that you can invoke such
routines from your FORTRAN program in the same way that you would call a
FORTRAN subroutine or function subprogram. The compiler translates the argument
list into an appropriate calling sequence according to the declaration of the referenced
procedure, without special coding on your part.

To use the GUARDIAN and CONSULT directives you must have an object file from
which the FORTRAN compiler can get the information about the called procedures.

The procedures in the file can be stubs (with empty or incomplete executable portions),
because the FORTRAN compiler needs only the procedure’s name and attributes and
attributes of each of its parameters.

The files required for the GUARDIAN directive are provided by HP along with the
FORTRAN compiler, but you must create any files referenced by CONSULT directives.
This means that procedures must exist (at least as stubs) before you can compile a
FORTRAN program that refers to them with CONSULT directives.

You can also call subprograms written in another language from a FORTRAN program
without using GUARDIAN or CONSULT directives, but you must code the procedure
header to expect the default calling sequences that FORTRAN generates without
these directives, as described in the preceding subsection.
FORTRAN Reference Manual—528615-001
13-12

Mixed-Language Programming General Restrictions
General Restrictions
You cannot call a subprogram from FORTRAN if it:

• Has more than 63 formal parameters

• Has pass-by-value parameters larger than 64 bits

• Is a function that returns a value that is not a simple scalar value or is of a data
type that cannot be declared in FORTRAN (for example, pointers and structures
are not allowed)

You cannot call a function subprogram from FORTRAN with a CALL statement.

Using GUARDIAN and CONSULT Directives
To call a procedure declared in a GUARDIAN directive, find the description of the
procedure you want to call in the Guardian Procedure Calls Reference Manual or for
more information, see Section 15, Utility Routines. To call a procedure declared in a
CONSULT directive, find the procedure’s description in the documentation for the file
named in the CONSULT directive.

Use the description to determine:

• Whether to call the procedure as a subroutine or as a function

• The order of its parameters

• Which parameters are required

• The data type of each parameter that you use

• Whether each argument that you use is passed by value or by reference

If the procedure returns a value, you must call it as a function from FORTRAN.
Construct the call as a FORTRAN function reference. If you cannot call the procedure
as a function, construct the call as a FORTRAN subroutine call, with a CALL
statement. As in normal FORTRAN calls, arguments and parameters must match in
order and type. Each argument that you supply must be a FORTRAN data type that
corresponds to the dummy argument’s data type. Appendix D describes the
correspondence between data types in C, COBOL85, FORTRAN, Pascal, and TAL.

Unlike normal FORTRAN calls, you can omit optional arguments when calling
procedures declared by GUARDIAN and CONSULT directives. To omit arguments at
the end of the argument list, simply leave them off. To omit an argument from the
middle of the argument list, omit the argument itself, but include the comma that would
normally follow that argument.
FORTRAN Reference Manual—528615-001
13-13

Mixed-Language Programming Using GUARDIAN and CONSULT Directives
Examples of Guardian Calls
1. This example calls the FILEERROR procedure to obtain status information about a

file:

istatus = FILEERROR (ifilenum)

2. This example calls the FILEINFO procedure to determine the number of extents
allocated to a file:

CALL FILEINFO (ifilenum,,, ,,, ,,, ,,, ,,, ,inumexts)

The FILEINFO procedure actually has 26 parameters but only one required
parameter. In the example, IFILENUM is a required argument and INUMEXTS is
an optional argument.

The call skips 15 optional parameters by using commas to mark their positions in
the argument list. (There are 16 commas in the argument list, one to follow the
initial argument and 15 more to indicate the omitted arguments.)

Nine additional optional arguments are omitted from the end of the argument list.

Calls in Programs With Extended Data Space
If your FORTRAN program uses extended data space (that is, the program includes
EXTENDEDREF, LARGECOMMON, or LARGEDATA directives), you can use a data
item that is a formal parameter or resides in extended memory as an argument in a
procedure call if the dummy argument is passed by extended reference (doubleword
address), but not if it is passed by standard reference (word address).

Some C-series Guardian procedures expect pass-by-reference arguments to have
word addresses. Data items stored in extended data space and all formal parameters
in programs compiled with EXTENDEDREF, LARGECOMMON, or LARGEDATA
directives have doubleword addresses.

If you need to call a Guardian procedure that has a word, pass-by-reference argument,
but the argument you are passing is in extended memory, you can use a word
temporary variable when you call the Guardian procedure. Assign the value of the
extended-memory variable to the temporary variable. Use the temporary variable as an
argument to the procedure and then assign the value of the temporary variable to the
original variable after the call completes. The following example illustrates this:

?LARGEDATA error

?GUARDIAN fileinfo

integer error, error_temp

CALL fileinfo(5, error_temp)

error = error_temp

The ERROR parameter to the FILEINFO procedure is a word, pass-by-reference
parameter. Because the example specifies that ERROR is in extended memory
FORTRAN Reference Manual—528615-001
13-14

Mixed-Language Programming Calling Routines Without Using GUARDIAN and
CONSULT Directives
(LARGEDATA ERROR), you cannot pass its address to the FILEINFO procedure. The
example passes ERROR_TEMP, which is allocated in the user data segment, instead,
and then assigns the value returned in ERROR_TEMP to ERROR.

The Guardian Procedure Calls Reference Manual indicates which procedures expect
word addresses and which expect doubleword addresses. Parameters that specify
.EXT in their description expect doubleword addresses.

This restriction does not apply to arguments passed by value. You can use formal
parameters and data items stored in extended memory as pass-by-value arguments in
Guardian procedure calls.

Calling Routines Without Using GUARDIAN and CONSULT
Directives

You can call subprograms that are not written in FORTRAN from FORTRAN without
declaring them in GUARDIAN or CONSULT directives, but this requires a different
syntax that is more difficult to use and this method usually causes many “parameter
mismatch” and related warning messages from the Binder.

If you write a FORTRAN program that calls a procedure that are not written in
FORTRAN and you do not specify a GUARDIAN or CONSULT directive, you must
observe the following rules:

• A procedure that can be called as a function must be called as a function from
FORTRAN.

• All parameters are required, even if you call a VARIABLE or EXTENSIBLE
procedure. See below for more information on optional parameters.

• The order of all parameters must match.

• The number of parameter words passed by FORTRAN must match the number of
words expected by the called procedure.

In general, this means that the parameters must match in number and type, and
that you must supply parameters of a FORTRAN type that matches the type
expected by the called procedure. For example, if the called procedure is written in
TAL and expects a parameter that is declared INT(32), you must supply a
FORTRAN argument that is declared INTEGER*4.

Note. Calling routines that are not written in FORTRAN without specifying them in a
GUARDIAN or CONSULT directive was an HP FORTRAN feature before either the GUARDIAN
or the CONSULT directives was supported. New FORTRAN code—and existing code that you
modify—should specify external routines using either the GUARDIAN directive or the
CONSULT directive. Existing programs that use the old form for procedure calls that are not
written in FORTRAN will continue to compile and execute correctly unless you modify the
programs in certain ways. For details, see Compatibility With the Old Form of Procedure Calls
Not Written in FORTRAN on page 13-22.
FORTRAN Reference Manual—528615-001
13-15

Mixed-Language Programming Calling Routines Without Using GUARDIAN and
CONSULT Directives
• Arguments passed by reference must pass word or doubleword addresses,
according to the requirements of the called procedure. All parameters passed by
reference must have the same size address, either word or doubleword. If the
called procedure expects word addresses, the FORTRAN program must not be
compiled with any EXTENDEDREF, LARGECOMMON, or LARGEDATA compiler
directives. If the called procedure expects doubleword addresses, the FORTRAN
program must be compiled with at least one of these compiler directives.

For example, a TAL procedure that begins

PROC flipout (input, output);

INT .input;

INT .EXT output;

cannot be called from a FORTRAN program, because the first parameter, INPUT,
requires a word address and the second parameter, OUTPUT, requires a
doubleword address, but a single FORTRAN program cannot have both word and
doubleword addresses unless the procedure is declared with a GUARDIAN or
CONSULT directive.

• Parameters passed by value must be surrounded by backslash characters in the
argument list, as in the following example:

CALL procedurename (... , \X\, ...)

You cannot pass arrays nor can you pass type character values by value. Using
backslash characters around value parameters is an HP extension to the ANSI
FORTRAN language standard.

• If a procedure has an optional parameter that you want to omit in a particular call,
you must include a “dummy” value to serve as a placeholder in the argument list. If
the parameter is passed by value, you can supply a dummy argument like this:

CALL procedurename (... , \0\, ...)

If you want to omit a value for a multiple-word optional parameter that is passed by
value, you must supply multiple dummy values to serve as placeholders for each
word that corresponds to that parameter. For example, you can omit a doubleword,
optional, pass-by-value parameter like this:

CALL procedurename (... , \0\, \0\, ...)

In this case, you must violate the rule “parameters must match in number” in order
to fulfill the rule “parameters must match in type.”

• If a procedure has optional parameters, you must also supply a “mask” parameter
as an extra, final parameter, which does not appear in the formal parameter list in
the procedure’s declaration in its source language. The exact format of the mask
depends on whether the procedure is declared VARIABLE or EXTENSIBLE.

Masks for VARIABLE procedures:
FORTRAN Reference Manual—528615-001
13-16

Mixed-Language Programming Calling TAL Subprograms From FORTRAN
° The mask must be one word for procedures with up to 16 parameters and two
words for procedures with 17 to 29 parameters.

° The mask value must be right-justified in the word or words.

° The bits in the mask correspond to parameters: bit 15 of the last word in the
mask is the bit associated with the last parameter; other bits correspond to the
remaining parameters in order.

° Set the bit for each parameter whose value you supply in the call. Don’t set bits
for optional parameters that you omit, although you supply “dummy” values as
placeholders for them.

Masks for EXTENSIBLE procedures:

° The mask must be one word for each 16 words of parameters or portion
thereof. For example, if there are 23 parameters some of which are multi-word
parameters (extended reference parameters or 32-bit or 64-bit value
parameters) so that there are a total of 37 words of parameters, you must have
three words of mask bits.

° The mask value must be left-justified in the word or words.

° The bits correspond to words of parameters: bit 0 of the first word in the mask
is the bit associated with the first word of the first parameter; other bits
correspond to the remaining parameter words in order.

° Set the bit for each word of each parameter whose value you supply in the call.
Don’t set bits for words of optional parameters that you omit, although you
supply “dummy” values as placeholders for them.

° After the last mask word, you must include a single word that contains the
negative of the number of words of parameters passed (not counting the mask
words), as a 16-bit twos-complement binary integer.

If an EXTENSIBLE procedure is declared in TAL with a number in parentheses
after the word EXTENSIBLE, you can also call the procedure as a VARIABLE
procedure. If you do this, however, you can only use the first n parameters, where
n is the number in parentheses. Build the procedure call exactly as if the procedure
was declared VARIABLE and ignore all the additional parameters. In effect, you
are using an older version of the procedure that has fewer parameters.

Calling TAL Subprograms From FORTRAN
If you write a FORTRAN program that calls a TAL procedure, you must observe the
following rules:

• For programs that you compile with ENV OLD in effect, the main program must be
written in FORTRAN, so that it establishes the run-time environment required by
FORTRAN object code.

• You can do I/O in TAL and in FORTRAN within the same program.
FORTRAN Reference Manual—528615-001
13-17

Mixed-Language Programming Calling TAL Subprograms From FORTRAN
If you compile your FORTRAN modules with ENV OLD in effect and your TAL modules
with either ENV OLD or ENV NEUTRAL in effect, routines written in both languages
can open the same file but each open is independent of all other opens.

You can share access to the same file open by passing the file number between
routines that need to access the same file using the same file open.

If you compile your FORTRAN modules with ENV COMMON and your TAL modules
with either ENV COMMON or ENV NEUTRAL, your FORTRAN and TAL routines can
share access to the same Guardian file open for standard input and for standard
output—the files associated with unit 5 and unit 6, respectively. To share standard input
or standard output, a routine in each language must explicitly open the file.

The TAL procedures can use the Guardian file system, the Sequential Input/Output
(SIO) package of GPLIB, or embedded NonStop SQL statements without interfering
with FORTRAN I/O statements in the same program.

For more information about shared files, see the OPEN Statement on page 7-70.

• If the FORTRAN program does not declare the TAL procedure with a GUARDIAN
or CONSULT directive:

° If the FORTRAN program is compiled with any EXTENDEDREF,
LARGECOMMON, or LARGEDATA directives, the called TAL procedure must
declare all reference parameters (if any) with .EXT, so the TAL procedure will
expect the doubleword argument addresses that FORTRAN provides.

° Otherwise, the called TAL procedure must declare all reference parameters (if
any) without .EXT, so the TAL procedure will expect the word-address
arguments that FORTRAN provides in this case.

• For a TAL type UNSIGNED(8) formal parameter passed by value, FORTRAN
allows a CHARACTER*1 expression or an integer constant with value in the range
0 through 255 as the argument.

• For a TAL type UNSIGNED(16) formal parameter passed by value, FORTRAN
allows an integer constant with value in the range 0 through 65,535 as the
argument.

• For a TAL type UNSIGNED(31) formal parameter passed by value, FORTRAN
allows an integer constant with value in the range 0 through 3,147,483,647 as the
argument.

• If a called TAL procedure has parameter-pair formal parameters, FORTRAN
generates an address-length pair actual parameter on the stack according to the
FORTRAN Reference Manual—528615-001
13-18

Mixed-Language Programming Calling COBOL85 Subprograms From FORTRAN
TAL convention, and does not stack length words for character parameters. For
example, if the TAL procedure is declared by:

PROC p (s: l);

STRING .EXT s;

INT l;

EXTERNAL;

the colon between S and L causes the TAL compiler to declare (to the Binder) that
L is a parameter pair. The corresponding references to this procedure P in the
following FORTRAN and TAL subprograms are equivalent:

 PROC tal;

SUBROUTINE fortran BEGIN

CHARACTER * 20 c STRING .c[0: 19];

CALL p(c) CALL p(c:20);

CALL p(c (6: 12)) CALL p(c[5]:7);

END END;

In each subprogram the first CALL statement passes all of C with a length of
twenty characters, and the second CALL statement passes a substring consisting
of the sixth through twelfth characters of C with a length of seven characters. Note
that each CALL statement in the FORTRAN routine has only one argument. The
length value argument is implicit.

Calling COBOL85 Subprograms From FORTRAN
If you write a FORTRAN subprogram that calls a subprogram written in COBOL85, you
must observe the following rules:

• If your COBOL85 and FORTRAN programs are compiled with ENV OLD in effect,
the main program must be written in COBOL85, so that it establishes the run-time
environment required by COBOL85 object code. FORTRAN’s requirements are a
subset of COBOL85’s. This restriction does not apply if you specify ENV
COMMON.

• Regardless of whether you compile with ENV OLD or ENV COMMON, you can do
I/O in COBOL85 and FORTRAN in the same program but not, in general, on the
same file.

If you specify ENV COMMON, your FORTRAN and COBOL85 routines can share the
same file open to the standard input and standard output files—unit 5 and unit 6 in
FORTRAN. In COBOL85 you reference the standard input file when you execute an
ACCEPT verb; you reference standard output when you execute a DISPLAY verb. See
Using Shared Files on page 13-27.

• If the FORTRAN program does not declare the COBOL85 subprogram with a
CONSULT directive:
FORTRAN Reference Manual—528615-001
13-19

Mixed-Language Programming Calling C Subprograms From FORTRAN
° If the FORTRAN subprogram is compiled with any EXTENDEDREF,
LARGECOMMON, or LARGEDATA directives, the ACCESS MODE IS
EXTENDED-STORAGE clause must be included in each level 01 or 77 data
item in the Linkage Section of the Data Division of the called COBOL85
subprogram, so that the called COBOL85 subprogram will expect the
doubleword argument addresses that FORTRAN will provide.

° Otherwise, the ACCESS MODE IS STANDARD clause must be specified or
assumed for each item in the Linkage Section, so that the called COBOL85
subprogram will expect the word-address arguments that FORTRAN generates
in this case.

• The called COBOL85 subprogram’s Procedure Division must begin with a header
that includes the USING phrase if you want to pass parameters to the COBOL85
routine.

• Your FORTRAN program can call a COBOL85 subprogram that has no
parameters. The COBOL85 program’s Data Division must not have a Linkage
Section, its Procedure Division header must not have a USING phrase, and the
compilation unit must specify a COBOL85 MAIN directive. The name specified on
the MAIN directive must be different than the name of the COBOL85 subprogram
that you call. Here is an example:

?MAIN NotFortranProgram

IDENTIFICATION DIVISION.

PROGRAM-ID. FortranProgram.

DATA DIVISION.

...

PROCEDURE DIVISION.

...

• FORTRAN can call COBOL85 subprograms only as subroutines not as functions.

Calling C Subprograms From FORTRAN
If you write a FORTRAN program that calls a C subprogram (that is, a C function), you
must observe the following rules:

• You cannot bind FORTRAN routines compiled with ENV OLD in effect with C
subprograms.

• The name of the C subprogram must not contain any lower case letters, because
FORTRAN always upshifts all names.

• The C subprogram must not be compiled with the OLDCALLS pragma.

• The prototype of the C subprogram must not specify a variable number of
parameters.
FORTRAN Reference Manual—528615-001
13-20

Mixed-Language Programming Calling Pascal Subprograms From FORTRAN
• If the FORTRAN program does not declare the C subprogram with a GUARDIAN
or CONSULT directive:

° If the FORTRAN program is compiled with any EXTENDEDREF,
LARGECOMMON, or LARGEDATA directives, the called C subprogram must
be compiled with the XMEM directive, so that the C subprogram will expect the
doubleword-address arguments that FORTRAN passes.

° Otherwise, the called C subprogram must be compiled with the NOXMEM
directive, so that the C subprogram will expect the word-address arguments
that FORTRAN generates in this case.

• If the C subprogram’s function type is “void,” it must be invoked by a CALL
statement in FORTRAN; otherwise, it must be invoked by a function reference.

• If the C subprogram’s function type is “char” or “unsigned char,” FORTRAN
considers the function to be a CHARACTER*1 function.

• For a C type “char” or “unsigned char” formal parameter passed by value,
FORTRAN allows a CHARACTER*1 expression or an integer constant with value
in the range 0 through 255 as the actual argument.

• For a C type “unsigned int” formal parameter passed by value, FORTRAN allows
an integer constant with value in the range 0 through 65,535 as the argument.

• For a C type “unsigned long int” formal parameter passed by value, FORTRAN
allows an integer constant with value in the range 0 through 4,294,967,295 as the
argument.

Calling Pascal Subprograms From FORTRAN
If you write a FORTRAN program that calls a Pascal subprogram (that is, a Pascal
function or procedure), you must observe the following rules:

• You cannot bind FORTRAN routines compiled with ENV OLD in effect with Pascal
subprograms.

• If the FORTRAN program does not declare the Pascal subprogram with a
GUARDIAN or CONSULT directive:

° If the FORTRAN program is compiled with any EXTENDEDREF,
LARGECOMMON, or LARGEDATA directives, the called Pascal subprogram
must be compiled with the XMEM directive, so the Pascal subprogram will
expect the doubleword argument addresses that FORTRAN passes.

° Otherwise, the called Pascal subprogram must be compiled with the NOXMEM
directive, so the Pascal procedure will expect the word-address arguments that
FORTRAN passes in this case.

• If you call a Pascal subprogram that is EXTENSIBLE, FORTRAN cannot tell which
parameters are declared OPTIONAL, and assumes that all arguments are optional.
FORTRAN Reference Manual—528615-001
13-21

Mixed-Language Programming The COBOLEXT Files
The COBOLEXT Files
Every NonStop system in which the FORTRAN compiler is installed, also includes files
named COBOLEX0, COBOLEX1, and COBOLEXT in the same subvolume as the
FORTRAN compiler (usually this is the $SYSTEM.SYSTEM subvolume). These files
are also used by the COBOL85 compiler.

The compilers use these files when translating references to Guardian procedures.
They are object files and contain, in effect, compiled versions of the source files
EXTDECS0, EXTDECS1, and EXTDECS, respectively, that are also available in the
$SYSTEM.SYSTEM subvolume of every NonStop system.

If the FORTRAN compiler encounters a CALL statement or function reference to a
procedure that was named in a GUARDIAN directive, the compiler consults the file
named COBOLEXT in the same subvolume as the compiler for information about the
procedure and its parameters, so that the compiler can generate the correct object
code for invoking the procedure. The file named COBOLEXT corresponds to the
EXTDECS file, which contains declarations of Guardian procedures as of two major
releases preceding the current release. If you want to use a more recent version such
as COBOLEX1 or COBOLEX0 (such as using a Guardian procedure that was added in
the latest or previous major release), you must use the CONSULT directive, rather than
the GUARDIAN directive, to reference one of those files by name.

Compatibility With the Old Form of Procedure Calls Not Written
in FORTRAN

Existing programs that use the old form for procedure calls that are not written in
FORTRAN will continue to compile and execute correctly unless you modify the
programs to use extended data space (that is, to use EXTENDEDREF,
LARGECOMMON, or LARGEDATA directives), or unless you declare the procedures
that are not written in FORTRAN using GUARDIAN and CONSULT directives.

• Because the new calling sequence is easier to code and read, you should add
GUARDIAN and CONSULT directives and update the calling sequences if you
modify existing programs. It is not essential that you do this, however, except in a
few specific cases:

• You must add GUARDIAN and CONSULT directives and update the calling
sequences if you modify the programs to use EXTENDEDREF, LARGECOMMON,
or LARGEDATA directives.

You must use the new calling sequence for any procedure not written in FORTRAN
that you declare in a GUARDIAN or CONSULT directive, even if the program does not
use EXTENDEDREF, LARGECOMMON, or LARGEDATA directives.

To convert existing procedure calls that are not written in FORTRAN to the new form
for procedure calls not written in FORTRAN, follow these steps:

1. Delete any variable or extensible mask word (or words) at the end of the argument
list.
FORTRAN Reference Manual—528615-001
13-22

Mixed-Language Programming Calling FORTRAN Procedures From Other
Languages
2. Delete dummy values used as placeholders for omitted arguments. If the omitted
arguments are at the end of the argument list, delete them completely; if the
omitted arguments precede other arguments that you supply in the list, use
successive commas to skip them.

3. Delete the backslashes (\) that surround pass-by-value arguments.

You must make the changes listed in steps 1 and 2, but you do not have to remove the
backslashes as indicated in step 3. FORTRAN generates warning messages if it finds
backslashes surrounding pass-by-value arguments in calls to routines declared in
procedures that are not written in FORTRAN, but it generates correct code in spite of
the warning.

Calling FORTRAN Procedures From Other
Languages

If you write a program in a language other than FORTRAN and this program calls a
FORTRAN subprogram, you must observe the following rules:

• Declare the FORTRAN subprogram in the manner that the calling program’s
language requires.

• Write calls to it in such a way that parameter passing will work as described in The
FORTRAN Calling Sequence on page 13-7, so that the FORTRAN subprogram
receives the calling sequence that it expects.

• Don’t call a FORTRAN type CHARACTER function from another language,
because FORTRAN expects a zero-th parameter through which to return the
function result value.

Calling FORTRAN Subprograms From TAL
If you write a TAL procedure that calls a FORTRAN subprogram, you must write TAL
text to declare the FORTRAN subprogram as a TAL external procedure.

If the FORTRAN subprogram is compiled with an EXTENDEDREF, LARGECOMMON,
or LARGEDATA directive, declare all the address parameters in the TAL external
declaration as extended reference parameters—that is, declared with .EXT, as in the
following example:

PROC fort_sub = "THE_SUB" (a, b, c) LANGUAGE FORTRAN;

INT .EXT a,

.EXT b,

.EXT c;

EXTERNAL;
FORTRAN Reference Manual—528615-001
13-23

Mixed-Language Programming Calling FORTRAN Subprograms From COBOL85
If the FORTRAN routine is not compiled with any of these directives, declare all the
address parameters in the TAL external declaration as standard (that is, word)
reference parameters (without .EXT) as in the following example:

PROC fort_sub = "THE_SUB" (a, b, c) LANGUAGE FORTRAN;

INT .a,

.b,

.c;

EXTERNAL;

Precede the CALL with STACK and PUSH statements to place CHARACTER
parameter lengths on the stack as expected by the FORTRAN subprogram, and follow
the CALL with an ADDS instruction to delete those length words.

You can omit the CHARACTER parameter length words if you know that the
FORTRAN subprogram does not declare them as assumed length dummy arguments
with CHARACTER * (*) declarations.

Calling FORTRAN Subprograms From COBOL85
If you write a COBOL85 program that calls a FORTRAN subprogram, you must
compile the FORTRAN subprogram first, because the COBOL85 compiler examines
the object file that contains the compiled subprogram, and generates object code that
sets up parameters in the way the called subprogram expects them.

The Procedure Division statement format is:

ENTER [FORTRAN] subprogram [IN object-file]

[USING parameter [, parameter] ...]

[GIVING return-value].

where object-file is a file-mnemonic defined in the SPECIAL-NAMES paragraph
of the Environment Division. If you omit the IN (or OF) object-file phrase, the COBOL85
compiler searches the object files named in SEARCH directives, LIBRARY directives,
and CONSULT directives, in that order.

The parameters listed in the USING phrase must agree in number, order, kind, data
type, and dimensions with those of the called subprogram. For data type
correspondence rules, see Appendix D, Data Type Correspondence and Return Value
Sizes. If the called subprogram is a FORTRAN procedure, COBOL85 ensures that the
FORTRAN run-time receives parameter addresses according to the declaration of your
FORTRAN routine and CHARACTER parameter lengths as it expects them.

The GIVING phrase must be present if and only if the called subprogram is a function,
and the data type of return-value must be compatible with that of the subprogram itself.

The called FORTRAN subprogram can be compiled with or without the
EXTENDEDREF compiler directive. COBOL85 generates the correct word or
FORTRAN Reference Manual—528615-001
13-24

Mixed-Language Programming Calling FORTRAN Subprograms From C
doubleword parameter addresses in either case, after examining the compiled
procedure in its object file.

For information about sharing files in programs that consist of COBOL85 and
FORTRAN routines, see Calling COBOL85 Subprograms From FORTRAN on
page 13-19.

Calling FORTRAN Subprograms From C
If you write a C program that calls a FORTRAN subprogram, you must write C
language text to declare (import) the FORTRAN subprogram as a C external function.
Its C type is “void” if it is a FORTRAN subroutine.

If the FORTRAN subprogram is compiled with the EXTENDEDREF, LARGECOMMON,
or LARGEDATA directive, declare all the C formal parameters as extended reference
parameters (with XMEM). Otherwise, declare all of its formal parameters as standard
reference parameters (with NOXMEM).

You cannot call a FORTRAN subprogram that has dummy arguments declared as
CHARACTER * (*) , because C does not stack the required length words.

If you specify ENV OLD in your FORTRAN modules, you must use a C-series C
compiler and you cannot do I/O in FORTRAN if the main routine is written in C.

Calling FORTRAN Subprograms From Pascal
If you write a Pascal program that calls a FORTRAN subprogram, you must write
Pascal language text to declare the FORTRAN subprogram as a Pascal external
function or procedure.

If the FORTRAN subprogram is compiled with the EXTENDEDREF, LARGECOMMON,
or LARGEDATA directive, declare all of its formal parameters as extended reference
parameters (with XMEM). Otherwise, declare all of its formal parameters as standard
reference parameters (with NOXMEM).

You cannot call a FORTRAN subprogram that has any formal parameters declared as
CHARACTER * (*) in FORTRAN, because Pascal does not stack the required length
words.

If you specify ENV OLD in your FORTRAN modules, you must use a C-series Pascal
compiler and you cannot do I/O in FORTRAN if the main routine is written in Pascal.

Intrinsic Function Declarations
NonStop systems on which the FORTRAN compiler is installed also include files
named FORTDECS and FORTLIB, in the same subvolume as the FORTRAN compiler
itself (usually this is the $SYSTEM.SYSTEM.* subvolume).

FORTDECS is an EDIT format file that contains TAL external procedure declarations
for all the procedures that implement the intrinsic functions of the FORTRAN language,
and FORTLIB is an object file that contains those procedures.
FORTRAN Reference Manual—528615-001
13-25

Mixed-Language Programming Using ENV COMMON
If you are writing a TAL program and you want to use any of the FORTRAN intrinsic
functions, you can use TAL compiler directives to SOURCE in the FORTDECS file and
SEARCH the FORTLIB file.

The FORTDECS file contains a SECTION for each procedure, so that you can use it in
much the same way as the $SYSTEM.SYSTEM.EXTDECS file. The name of each
procedure, and of its SECTION, is the FORTRAN intrinsic function name, with a
circumflex character (^) appended, for word addressing of parameters. There is also a
second version of each procedure, named by appending ^^EXT to the FORTRAN
intrinsic function name, for doubleword extended addressing of parameters. For
example, to use the SQRT function:

?SOURCE $SYSTEM.SYSTEM.FORTDECS (SQRT^)

?SEARCH $SYSTEM.SYSTEM.FORTLIB

Those intrinsic functions that perform validity checks on their arguments (see Intrinsic
Errors on page G-3) contain references to the LIB^ERROR procedure, which resides in
the same FORTLIB file.LIB^ERROR in turn calls proc FLIB^MESSAGE which normally
resides in the system library.

Since TAL lacks a COMPLEX data type, COMPLEX values are declared as REAL(64)
in the intrinsic function procedures. A COMPLEX data value is actually represented as
a pair of REAL(32) values: the real part followed by the imaginary part.

Using ENV COMMON
The ENV compiler directive enables you to specify whether you want your FORTRAN
program to use routines in the C-series or in the D-series FORTRAN run-time library.

If you specify ENV OLD or do not specify an ENV directive, your program uses
routines in the C-series FORTRAN run-time library and cannot share files or other
resources with other routines in your process. You do not need to read further in this
subsection.

If you specify an ENV COMMON compiler directive, your program uses the routines in
the D-series FORTRAN run-time library. The D-series FORTRAN run-time library
enhances your program’s ability to share resources by using routines in the Common
Run-Time Environment (CRE). The FORTRAN run-time library depends on CRE
routines to:

• Share access to the files standard input and standard output. Unit 5 references
standard input. Unit 6 references standard output. If opened for shared access, the
FORTRAN run-time library calls CRE routines whenever your program performs
I/O on unit 5 or unit 6. For more information about shared access to standard input
and standard output, see the OPEN Statement on page 7-70.

• Manage your process’s backup process if your program runs as a NonStop
process.

• Display diagnostic messages on the standard log file.
FORTRAN Reference Manual—528615-001
13-26

Mixed-Language Programming Using Shared Files
• Manage traps.

• Provide standard math routines that support FORTRAN intrinsic functions.

• Manage $RECEIVE.

• Ensure proper initialization and graceful termination of your program.

Using Shared Files
The CRE provides shared access to three files:

• Standard input

• Standard output

• Standard log

Sharing File Opens
A FORTRAN program accesses standard input if it reads from unit 5. It accesses
standard output if it writes to unit 6. A FORTRAN program cannot establish a unit
connection to standard log, although the FORTRAN run-time library can write
messages to standard log, typically if errors occur while a FORTRAN module is
executing. In addition, FORTRAN writes to standard log the message you specify on a
PAUSE or STOP statement and in a call to the FORTRAN_COMPLETION_ utility.

Except for units 5 and 6, all FORTRAN units have the same semantics when you
specify ENV COMMON as they do when you specify ENV OLD or you run a program
compiled with a C-series FORTRAN compiler.

Using Unit 5 and Unit 6
If you open unit 5 or unit 6, either implicitly or without specifying the MODE specifier,
your program accesses units 5 and 6 just as it does in C-series software. The default
access MODE for both units is I-O. If you open unit 5 or unit 6 with MODE = I-O,
FORTRAN establishes a connection between the specified unit and a Guardian file.
Your program does not share a file open—a path to the file—with routines written in
other languages and bound, along with your FORTRAN routines, into a single object
file.

If you change the access MODE for unit 5 to 'INPUT' or for unit 6 to 'OUTPUT', the
FORTRAN run-time library calls routines in the CRE to manage the standard input and
standard output files. (Additional parameters can affect whether the FORTRAN run-
time library calls CRE routines. For additional information, see the OPEN Statement on
page 7-70.) In this case, your FORTRAN routines share access to a single Guardian
open of standard input and a single Guardian open of standard output with routines in
your process that are written in other languages. The CRE manages the single file
open. Upon receiving its first request to open a shared file (that is, unit 5 or unit 6 for
FORTRAN), the CRE opens the specified Guardian file. However, subsequent
requests to open standard input or standard output from routines written in different
FORTRAN Reference Manual—528615-001
13-27

Mixed-Language Programming Using Shared Files
languages are managed by CRE routines. All such open requests to the same
standard file access not only the same Guardian file, but access the file using the
same file open.

For your program to share access to the standard files, it does not have to take any
action beyond ensuring that it opens the standard file with the proper access MODE.

For more detailed information, see the CRE Programmer’s Guide.
FORTRAN Reference Manual—528615-001
13-28

14 Interprocess Communication
Topics covered in this section include:

An application in an HP NonStop environment frequently consists of numerous
communicating processes. Each process is designed to perform a particular set of
tasks. Dividing an application into multiple processes enables you to more easily
maintain your application because you design each process to perform a series of
related functions. In addition, your application can take advantage of the
multiprocessor hardware of HP NonStop systems by running processes in different
CPUs, thereby achieving a high degree of parallelism. Finally, you can run identical
processes in different CPUs and distribute activities among them, further increasing
the amount of parallelism in your application.

For example, your application might have three separate databases. You might have a
process that accesses databases for your application, rather than having each process
in the application access the databases. In so doing, you further divide your application
by isolating in one process all the code that accesses databases. Figure 14-1
illustrates this.

You might further refine your application by having a separate process for each of the
databases in your application and isolate in each of these processes all the code
required to access a single database. In addition, you might run identical processes in
multiple CPUs. When a process in your application requires information from a
particular database, it can choose from all the processes that access that database the
process that is least busy. In Figure 14-2 on page 14-2, a process can access
database 1 by sending a request to any of servers A, B, or C.

Topic Page
Managing $RECEIVE 14-3

Using $RECEIVE 14-5

Message Queuing 14-11

Figure 14-1. A Process That Access Databases

VST1401.vsd

Server

Database I I IDatabase I IDatabase I
FORTRAN Reference Manual—528615-001
14-1

Interprocess Communication
The processes described in the preceding paragraphs are called server processes. A
server process accepts requests from other processes, carries out the requests
received, and sends replies to the requesting processes.

A process that issues requests to a server process is called a requester process. A
requester process is frequently referred to as a requester. A server process is
frequently referred to as a server.

A server process provides services to requester processes. In the preceding examples,
the server processes provide controlled access to databases. Servers can provide
controlled access to any device or might provide services such as a computation
without necessarily accessing any device.

Figure 14-3 on page 14-3 shows multiple requesters and multiple servers that access
three different databases. Requesters A and B access server processes A1 and A2
respectively. Server process A3 is not currently active. Requesters C and D are
accessing server B. Requester E is accessing server C2. Server C1 is not currently
active. When you design your application, you can specify whether you want a given
server to accept more than one request at a time, as is the case with server B.

Figure 14-2. Multiple Processes Accessing the Same Databases

VST1402.vsd

Server A
Process 1

Server A
Process 2

Server A
Process 3

Database
I

Database
I I

Server B Server C
Process 1

Server C
Process 2

Database
I I I
FORTRAN Reference Manual—528615-001
14-2

Interprocess Communication Managing $RECEIVE
Communication between processes takes place by means of a special file called
$RECEIVE. For a comprehensive description of $RECEIVE, see the Guardian
Programmer’s Guide.

Managing $RECEIVE
The FORTRAN run-time environment maintains tables that enable it to manage
$RECEIVE. It determines the size of the tables based on the values you give for the
option specifiers to the RECEIVE directive.

The RECEIVE directive includes the following option specifiers:

• OPEN open

open specifies the maximum number of opens from other processes that your
server process can manage simultaneously. The system returns error 12, “File in
Use,” if it receives an open request that would exceed the number you specify for
OPEN.

• SYNCDEPTH sync

sync specifies the maximum number of replies that your program can hold for
each requester in case the requester’s backup process becomes its primary
process and begins executing the statements that appear immediately after the
requester’s most recent CHECKPOINT statement. The value you specify for sync
is application dependent. In general, sync specifies the maximum number of
messages that any requester can send to your process before the requester
executes a FORTRAN CHECKPOINT statement or calls a checkpoint system
procedure such as CHECKPOINT, CHECKPOINTX, CHECKPOINTMANY,
CHECKPOINTMANYX, and so forth.

Figure 14-3. Requesters and Servers

VST1403.vsd

Server A
Process 1

Server A
Process 2

Server A
Process 3

Database
I

Database
I I

Server B Server C
Process 1

Server C
Process 2

Database
I I I

Requester CRequester A Requester B Requester D Requester E
FORTRAN Reference Manual—528615-001
14-3

Interprocess Communication Managing $RECEIVE
The FORTRAN run-time library checks each message it receives from a requester
process to determine if it has already received and replied to the message. If it
has, it locates the previously-sent reply and returns it again. Your FORTRAN
program is not aware of the retransmission.

• MAXREPLY reply

reply specifies the maximum number of bytes in each reply message that your
program must save.

• QDEPTH depth

depth specifies the maximum number of messages your program can read from
$RECEIVE without sending a reply to a unit that is connected to $RECEIVE.

• SYSMSG

If you specify SYSMSG, the FORTRAN run-time library delivers system messages
(OPEN, CLOSE, SETMODE, BREAK, and so forth) received from $RECEIVE to
your program. If you do not specify SYSMSG, the FORTRAN run-time library
processes system messages.

FORTRAN responds to SETMODE and CONTROL messages with file system
error 2 if you do not specify SYSMSG. The unit receiving system messages via
$RECEIVE must have a record length of at least 34 characters. For a description
of system message formats, see the Guardian Procedure Errors and Messages
Manual .

The following table explains how FORTRAN uses the structures shown in Figure 14-4
on page 14-5 based on each of the RECEIVE directive option specifiers:

Attribute Effect
OPEN The server can support three simultaneous NonStop requester

processes because it has allocated space for three sets of server
replies: Requester 1 Replies, Requester 2 Replies, and Requester 3
Replies. Therefore, the server can support all three requesters:
Requester A, Requester B, and Requester C. It cannot, however,
support a fourth requester.

MAXREPLY The server can store replies that are up to 24 bytes long, as shown in
each Reply table.

SYNCDEPTH The server can support requesters that issue up to four requests to the
server between calls to a CHECKPOINT statement or a checkpoint
system procedure such as CHECKPOINT, CHECKPOINTX,
CHECKPOINTMANYX, and so forth.

QDEPTH The server’s Received Message Table holds messages received from
$RECEIVE for which a corresponding WRITE statement has not been
executed.
FORTRAN Reference Manual—528615-001
14-4

Interprocess Communication Using $RECEIVE
Using $RECEIVE
You can use $RECEIVE for interprocess communication in one of three ways: as an
input file, as an input/output file, or as two separate files for independent input and
output.

Observe the following when using $RECEIVE files:

• You can assign any FORTRAN unit to $RECEIVE through a run-time file
assignment, a UNIT compiler directive, or an OPEN statement.

• You must access a unit connected to $RECEIVE as a sequential file.

• A write operation to a unit connected to $RECEIVE is valid only after a successful
read operation from a (possibly different) unit assigned to $RECEIVE.

Figure 14-4. Structure Allocation to Support NonStop Requester Processes

VST1404.vsd

Reply 1

Reply 2

Reply 3

Reply 4

Reply 1

Reply 2

Reply 3

Reply 4

Reply 1

Reply 2

Reply 3

Reply 4

1

2

3

4

1

2

3

4

1

2

3

4

24
bytes

24
bytes

24
bytes

MAXREPLY= 24
Requester 1

Replies

MAXREPLY= 24
Requester 2

Replies

MAXREPLY= 24
Requester 3

Replies

SYNCDEPTH
= 4

OPEN = 3

Received Message 1

Received Message 2

Received Message 3

Received Message 4

Received Message 5

Received Message 6

Received Message 7

Received Message 8

1
2

3
4
5
6

7
8

QDEPTH
= 8

Received Message Table

MAXREPLY = 24
QDEPTH = 8
SYNCDEPTH = 4
OPEN = 3

Server

 loop: . . .
WRITE to server

. . .
WRITE to server

. . .
WRITE to server

. . .
WRITE to server
CHECKPOINT

 GO TO loop

 loop: . . .
WRITE to server

. . .
WRITE to server

. . .
WRITE to server

. . .
WRITE to server
CHECKPOINT

 GO TO loop

 loop: . . .
WRITE to server

. . .
WRITE to server

. . .
WRITE to server

. . .
WRITE to server
CHECKPOINT

 GO TO loop

Requesters

Requester A Requester B Requester C
FORTRAN Reference Manual—528615-001
14-5

Interprocess Communication $RECEIVE as an Input File
$RECEIVE as an Input File
In the simplest case, the task-handling process uses $RECEIVE as an input file only. It
receives request messages from originating processes via $RECEIVE and acts upon
the requests. It does not generate a reply to each message, but an automatic reply is
sent when the next read operation is initiated. (Note that this default reply facility is
available only if QDEPTH is equal to 1.)

For example, a program might send print data to a spooler process instead of directly
to a printer. This program, the originator, might contain the following statements:

 ...

OPEN (UNIT=1,FILE='$spool')

 ...

WRITE (UNIT=1,FMT=11) a,b,c

11 FORMAT(1X,3F9.4)

 ...

The spooler process, the destination, receives the print lines by reading $RECEIVE:

?RECEIVE (OPEN 2)

CHARACTER*1 line(132)

OPEN (UNIT=1,FILE='$RECEIVE')

 ...

10 READ (UNIT=1,END=100) line

WRITE (UNIT=2) line

GO TO 10

 ...

100 STOP

END

The spooler process receives an end of file on $RECEIVE only when all processes that
opened the spooler process have closed it.

VST1405.vsd

ORIGINATOR request message DESTINATION
FORTRAN Reference Manual—528615-001
14-6

Interprocess Communication $RECEIVE as an Input/Output File
$RECEIVE as an Input/Output File
In this case, the server opens $RECEIVE in the I-O mode to receive requests and
reply to them through the same file. Each request is acted upon and paired with a
message sent back to the requester in response to the request message:

A requester might contain the following statements:

 ...

CHARACTER*80 request

CHARACTER*132 reply

 ...

OPEN (UNIT=1,FILE='$SERVE',SPACECONTROL='NO')

 ...

READ (UNIT=1,PROMPT=request) reply

 ...

Note that a READ from a process with a PROMPT causes a WRITEREAD to be
executed. The SPACECONTROL='NO' specifier in the OPEN statement ensures that
all the characters transmitted are treated as data, and prevents extraneous message
traffic.

VST1406.vsd

request messageRequester
Process

Server
Processreply message
FORTRAN Reference Manual—528615-001
14-7

Interprocess Communication $RECEIVE as Separate Input/Output Files
The server receives request messages from $RECEIVE, performs the requested tasks,
and replies to the message. The following code shows an example of a server:

 ...

?RECEIVE (OPEN 2, MAXREPLY 132)

 ...

CHARACTER*80 request

CHARACTER*132 reply

 ...

OPEN (UNIT=1,FILE='$RECEIVE')

 ...

10 READ (UNIT=1,END=100) request

IF (request(1:3) .EQ. 'ADD') THEN

 ... <-- Code to process

 ... <-- request and

 ... <-- construct reply

END IF

 ...

WRITE (UNIT=1) reply

GO TO 10

 ...

100 STOP

END

$RECEIVE as Separate Input/Output Files
A server can connect $RECEIVE to one unit for input and to more than one unit for
output.

VST1407.vsd

request message on file 1Requester
Process

Server
Processreply message on file 2
FORTRAN Reference Manual—528615-001
14-8

Interprocess Communication READ Statement With $RECEIVE
The requester is the same as in the prior example. The server code is also the same,
except that there is another OPEN statement and the responding WRITE statement is
changed:

?RECEIVE (OPEN 2, MAXREPLY 132)

 ...

CHARACTER*80 request

CHARACTER*132 reply

 ...

OPEN (UNIT=1,FILE='$RECEIVE',MODE='INPUT')

OPEN (UNIT=2,FILE='$RECEIVE',MODE='OUTPUT')

 ...

10 READ (UNIT=1,END=100) request

IF (request(1:3) .EQ. 'ADD') THEN

 ... <-- Code to

 ... <-- process request

END IF

 ...

WRITE (UNIT=2) reply

GO TO 10

 ...

100 STOP

END

During program testing, you might use this approach and assign the input and output
units to separate disk files to test program logic without the complications of
asynchronous processing. When testing is completed, you can reassign both the input
unit and all the output units to $RECEIVE.

READ Statement With $RECEIVE
The control list of the READ statement includes a SOURCE specifier that enables a
server to determine the identity of, and information about, a requester.

The source specifier has the form:

SOURCE = iarr

where iarr is an integer array of at least 16 elements.

The layout of iarr if you specify ENV COMMON differs from the layout of iarr if you
specify ENV OLD or you do not specify an ENV directive. Table 14-1 on page 14-10
FORTRAN Reference Manual—528615-001
14-9

Interprocess Communication Using the READ Statement PROMPT Specifier
shows the contents of iarr after a read operation that specifies SOURCE (declared as
SOURCE(16) for this example) completes successfully.

Using the READ Statement PROMPT Specifier
If the unit specified in a READ statement is a terminal or process, and the READ
statement includes a PROMPT specifier, FORTRAN calls the WRITEREAD system
procedure, rather than the READ system procedure. This enables a requester to send
a message (the prompt) to a terminal or another process and wait for a reply.

For a full description of the WRITEREAD system procedure, see the Guardian
Procedure Calls Reference Manual.

WRITE Statement With $RECEIVE
The WRITE statement can include either or both of the following specifiers for use with
$RECEIVE:

• MSGNUM = msg-exp

msg-exp is the value from SOURCE(3) of the SOURCE array returned to your
program when it read the message for which the current WRITE statement is the
reply. The requester process uses msg-exp to match your program’s reply with the
original message sent by the requester. This is particular important to a requester if
it has written more than one message to your process.

• REPLY = rep-exp

Table 14-1. Layout of Request Message From $RECEIVE Returned on READ
Statement
ENV OLD ENV COMMON Meaning
SOURCE(1) SOURCE(1) System flag: -1 if system message, 0 if user

message

SOURCE(2) SOURCE(2) Entry number of your process in the Guardian
requester table

SOURCE(3) SOURCE(3) Message number of your process in the Guardian
requester table

SOURCE(4) SOURCE(4) Opener's file number for this process

SOURCE(5:8) SOURCE(5:14) If ENV OLD is specified, contains the opener's
process identification (CRTPID) (character string)
If ENV COMMON is specified, contains the
opener’s process identification (process handle)

SOURCE(9) SOURCE(15) Number of bytes the requester expects to receive
in the reply to this message

SOURCE(10:16) SOURCE(16) Reserved for future use
FORTRAN Reference Manual—528615-001
14-10

Interprocess Communication Message Queuing
Your server process returns a Guardian file-system error code in rep-exp, or zero
if no error occurred. The value you store for rep-exp is the value returned to the
requester if it calls the FILEINFO or FILE_GETINFO_ system procedure.

Message Queuing
The preceding examples of the uses of $RECEIVE show server processes that
respond to each request as it is received. An advanced method of interprocess
communication involves message queuing. Figure 14-5 illustrates a server that can
accumulate requests and respond to them in a sequence of its own choosing, which
may or may not be the same as that in which they were received.

In the following example, the server distributes data records from a file to different
requesters. Each requester states in its request, via the PROMPT specifier of a READ
statement, the keys of the records in which it is interested. The server can
accommodate up to four requesters; each requester can ask for up to four distinct
record keys. Both of these limits are fixed by a PARAMETER statement in the server.
Example 14-1 on page 14-12 shows the two requesters. Example 14-2 on page 14-17
shows the server.

Figure 14-5. A Queued Server

VST1408.vsd

Server
Process

Requester
A

Requester
B

Requester
C

Request 1

Reply 3

Request 2

Reply 1

Request 3

Reply 2
FORTRAN Reference Manual—528615-001
14-11

Interprocess Communication Message Queuing
Example 14-1. Example Requesters R1 and R2 for Queued Server
1 ?PAGE "REQUESTER NUMBER 1 FOR QUEUED SERVER"

2 ?LOGICAL*2

3 PROGRAM requester1

4 IMPLICIT INTEGER*2 (a-z)

5 CHARACTER*8 prompt

6 DIMENSION records(4)

7 DIMENSION rec(2)

8 DATA records /1,3,5,7/

9

10 WRITE (prompt,11) records

11 11 FORMAT (4A2)

12 OPEN (UNIT=5,SPACECONTROL='NO')

13 OPEN (UNIT=6)

14 WRITE (6,22)

15 22 FORMAT ('1R1 ABOUT TO MAKE FIRST REQUEST.')

16

17 10 CONTINUE

18 READ (5,END=100,PROMPT=prompt) rec
FORTRAN Reference Manual—528615-001
14-12

Interprocess Communication Message Queuing
19 WRITE (6,33) records, rec

20 33 FORMAT (' R1',4I5, ' *',2I5)

21 GO TO 10

22

23 100 CONTINUE

24 CLOSE (UNIT=5)

25 CLOSE (UNIT=6)

26 STOP 'R1 STOPPING'

27 END

1 ?PAGE "REQUESTER NUMBER 2 FOR QUEUED SERVER"

2 ?LOGICAL*2

3 PROGRAM requester2

4 IMPLICIT INTEGER*2 (a-z)

5 CHARACTER*6 prompt

6 DIMENSION records(3)

7 DIMENSION rec(2)

8 DATA records /2,4,6/

9

10 WRITE (prompt,11) records

11 11 FORMAT (3A2)

12 OPEN (UNIT=5,SPACECONTROL='NO')

13 OPEN (UNIT=6)

14 WRITE (6,22)

15 22 FORMAT ('1R2 ABOUT TO MAKE FIRST REQUEST.')

16

17 10 CONTINUE

18 READ (5,END=100,PROMPT=prompt) rec

19 WRITE (6,33) records, rec

20 33 FORMAT (' R2',3I5, ' *',2I5)

21 GO TO 10

22

23 100 CONTINUE

24 CLOSE (UNIT=5)

25 CLOSE (UNIT=6)

26 STOP 'R2 STOPPING'

27 END 30

Example 14-1. Example Requesters R1 and R2 for Queued Server
FORTRAN Reference Manual—528615-001
14-13

Interprocess Communication Message Queuing
The server opens a disk file of two-word records (the first word is the key; the second,
the associated data) and reads sequentially from it. If a requester has expressed
interest in the current record, the server sends it to that requester. Since the order in
which requests arrive is unpredictable, the server must save requests for records that
have not yet been read, until those records become available.

The server, after initialization, repeatedly reads from its data file. For each record, it
determines if a request for that record has been received already. If one has, the
server updates its list of pending requests and sends that record to the appropriate
requester.

If not, it must read requests until one for the current record arrives; it stores other
requests in its list of pending requests for future use. When the data file is exhausted,
the server returns an end of file for each stored request, and continues to return end of
file to all new requests. As each requester receives end of file, it closes the server and
terminates with a message to the home terminal. When the last requester has closed
the server, the server also terminates.

Assuming that the object program for the server is named $DIST, that there are two
requesters, $R1 and $R2, and that requesters read the following records,

a sample execution of this requester/server application might appear on the home
terminal screen as follows:

VST1409.vsd

 1 1 2 2 2 3 7 4 6 5 5 6 4 7 3 8 2 9 1 10 3 11 4 12

 0 1 2 3 4 5 6 7 8 9 10 11

Record Numbers

Twelve Two-Word Records
FORTRAN Reference Manual—528615-001
14-14

Interprocess Communication Message Queuing
The source for the queued server is shown in Example 14-2 on page 14-17.

The UNIT directive at line 2 assigns unit 7 to the data file. When you run the server,
you must specify $RECEIVE for both the IN file and the OUT file.

The RECEIVE directive at line 3 defines the saved reply table as follows:

• OPEN 4: Not more than four processes are allowed to have the server process
open at any given time. Any additional OPEN attempts will be refused with file
management error 12.

• QDEPTH 4: The server may read up to four requests without responding to any. An
attempt to read another request while four requests are outstanding results in a file
management error 74.

• SYNCDEPTH 2: The FORTRAN run-time library routines save two replies per
requester to support NonStop requester processes. An attempt by a requester to
open the server using a SYNCDEPTH greater than two will be refused with a file
management error 28.

• MAXREPLY 200: The longest reply the server can issue is 200 characters.

• SYSMSG: The server will process system messages itself, rather than having the
run-time support system reply to them automatically.

At lines 32 through 34, the server initializes its list of pending requests. At lines 35
through 37, it opens its files.

Statement label 10 at line 38 is the beginning of the server’s main loop. At line 39, it
reads the next record from its data file. The MATCHOLD function, invoked at line 41,
determines whether a request for the current record has already been received. If so,
then:

1> RUN QSO /NAME $DIST, CPU 0, IN $RECEIVE, OUT $RECEIVE/
2> RUN R1O /NAME $R1, CPU 0, IN $DIST/
3> RUN R2O /NAME $R2, CPU 0, IN $DIST/
R1 ABOUT TO MAKE FIRST REQUEST.
4> PAUSE
R2 ABOUT TO MAKE FIRST REQUEST.
R1 1 3 5 7 * 1 1
R2 2 4 6 * 2 2
R2 2 4 6 * 2 3
R1 1 3 5 7 * 7 4
R2 2 4 6 * 6 5
R1 1 3 5 7 * 5 6
R2 2 4 6 * 4 7
R1 1 3 5 7 * 3 8
R2 2 4 6 * 2 9
R1 1 3 5 7 * 1 10
R2 2 4 6 * 4 12
R1 1 3 5 7 * 3 11
R2 STOPPING
R1 STOPPING

END OF QUEUEING SERVER RUN
5>
FORTRAN Reference Manual—528615-001
14-15

Interprocess Communication Message Queuing
1. The server updates its list of pending requests to show that the matching request
has been satisfied.

2. The server writes the record to $RECEIVE (line 45). The MSGNUM specifier
identifies the request for which this is the reply; it was obtained when the request
was read (line 49).

3. Processing returns to the beginning of the main loop.
FORTRAN Reference Manual—528615-001
14-16

Interprocess Communication Message Queuing
Example 14-2. Example Queued Server (Part 1 of 3)
1 ?PAGE "QUEUED SERVER -- DISTRIBUTOR"

2 ?UNIT (7, QSD)

3 ?RECEIVE (OPEN 4,QDEPTH 4,SYNCDEPTH 2,MAXREPLY 200,SYSMSG)

4 PROGRAM qserver

5 IMPLICIT INTEGER*2 (a-z)

6 LOGICAL matchnew

7 PARAMETER (norqr=4, destrqr=4)

8 DIMENSION messno(norqr), request(norqr), record(66)

9 DIMENSION dest(norqr,destrqr), dest this rqr(norqr)

10 COMMON /block/messno, request, record, dest, dest this rqr

11 DIMENSION source(16)

12 LOGICAL system

13 C -- Compile-time TOGGLE 1 is FALSE if ENV OLD, TRUE if ENV COMMON

14 ?IFNOT 1

15 INTEGER rqr, msgnum, fileno, procname(4), readcount

16 EQUIVALENCE (source(1), system),

17 1 (source(2), rqr),

18 2 (source(3), msgnum),

19 3 (source(4), fileno),

20 4 (source(5), procname),

21 5 (source(9), readcount)

22 ?ENDIF 1

23 ?IF 1

24 INTEGER rqr, msgnum, fileno, procname(10), readcount

25 EQUIVALENCE (source(1), system),

26 1 (source(2), rqr),

27 2 (source(3), msgnum),

28 3 (source(4), fileno),

29 4 (source(5), procname),

30 5 (source(15), readcount)

31 ?ENDIF 1

32 CALL set array (messno, norqr, -1)

33 CALL set array (dest this rqr, norqr, 0)

34 CALL set array (dest, norqr*destrqr, -1)

35 OPEN (UNIT=5)

36 OPEN (UNIT=6)

37 OPEN (UNIT=7)
FORTRAN Reference Manual—528615-001
14-17

Interprocess Communication Message Queuing
If a request for the current record has not been received, the server must continue to
read incoming requests until it finds one. This is done in an inner loop starting at
statement label 20 (line 48).

At line 49, the server reads a message from $RECEIVE. The LENGTH specifier
obtains the number of bytes actually read; the SOURCE specifier obtains information,
in the 16-word array SOURCE, that identifies the requester. Lines 15 through 21
specify the layout of the SOURCE array for programs compiled with ENV OLD in effect
or programs that do not specify an ENV directive. Lines 24 through 30 specify the
layout of the SOURCE array for programs compiled with ENV COMMON in effect. If
you specify ENV OLD for your program or you do not specify an ENV directive, you do
not need to specify toggle 1. FORTRAN compile-time toggles are FALSE by default. If
you specify ENV COMMON for a program unit, you must set compile-time toggle 1 with
a SETTOG directive in order to have the correct layout of the SOURCE array.

The server handles system messages read from $RECEIVE in lines 51 through 58. If
the server receives an OPEN message and the opener has specified a nowait depth
greater than 1, the server replies with file system error code 28; otherwise, it replies
with zero. The WRITE statement at line 56 sends a null reply to the message identified
by the MSGNUM specifier; the sender receives the value of the REPLY specifier as the
file system error code for the operation. Control then returns to the beginning of the
inner loop to read another message from $RECEIVE.

If the current message is not a system message, the server determines if it is a request
for the current data record. The MATCHNEW function invoked at line 60 accomplishes
this. If the message is a request for the current record, the server sends the record to
the requester. It then returns control to the beginning of the main loop to read another
data record.

If the current message is a request, but not for the current record, the server must save
the request in its list of pending requests until the specified record is read; this is
accomplished at lines 64 through 69. The server then returns control to the beginning
of the inner loop to read another incoming message.

38 10 CONTINUE

39 READ (UNIT=7,FMT=11,END=60) record(1), record(2)

40 11 FORMAT (2I5)

41 rqr = matchold (record, dest, dest this rqr, no rqr)

42 IF (rqr .NE. 0) THEN

43 messno(rqr) = -1

44 dest this rqr(rqr) = 0

45 WRITE (UNIT=6, msgnum=messno(rqr)) record

46 GO TO 10

47 END IF

Example 14-2. Example Queued Server (Part 1 of 3)
FORTRAN Reference Manual—528615-001
14-18

Interprocess Communication Message Queuing
When the end of the data file is reached, control passes to statement label 60 (line 72).
Here, in a loop from line 73 to line 77, the server sends an end-of-file indication (error
code 1) to each requester that has an outstanding request.

Example 14-3. Example Queued Server (Part 2 of 3)
48 20 CONTINUE

49 READ (UNIT=5, SOURCE=source, LENGTH=length) request

50 IF (system) THEN

51 IF (request(1) .EQ. -30 .AND.

52 + MOD(request(2),16) .GT. 1) THEN

53 replycod = 28

54 ELSE

55 replycod = 0

56 END IF

57 WRITE (UNIT=6, MSGNUM=msgnum, REPLY=replycod)

58 GO TO 20

59 END IF

60 IF (matchnew(request, length/2, record)) THEN

61 WRITE (UNIT=6, MSGNUM=msgnum) record

62 GO TO 10

63 ELSE

64 messno(rqr) = msgnum

65 limit = length/2

66 dest this rqr(rqr) = limit

67 DO 30 I = 1, limit

68 dest(rqr,I) = request(I)

69 30 CONTINUE

70 END IF

71 GO TO 20

72 60 CONTINUE

73 DO 70 I = 1,norqr

74 IF (messno(I) .GE. 0) THEN

75 WRITE (UNIT=6,REPLY=1, MSGNUM=messno(I))

76 END IF

77 70 CONTINUE

78 90 CONTINUE

79 READ (UNIT=5,END=100, SOURCE=source) request

80 IF (system) THEN
FORTRAN Reference Manual—528615-001
14-19

Interprocess Communication Message Queuing
Finally, control passes to the loop beginning at statement label 90 (lines 78 through
91), which reads and processes messages received via $RECEIVE. This loop treats
system messages as before (lines 51-58), but sends an end-of-file indication to all user
requests.

When the last opener has closed the server, the READ statement at line 79 receives
an end-of-file indication; control then passes to label 100 (line 92). After closing all of
its files, the server terminates its run with a stop message.

81 IF (request(1) .EQ. -30 .AND.

82 + MOD(request(2),16) .GT. 1) THEN

83 replycod = 28

84 ELSE

85 replycod = 0

86 END IF

87 ELSE

88 replycod = 1

89 END IF

90 WRITE (UNIT=6, MSGNUM=msgnum, REPLY=replycod)

91 GO TO 90

92 100 CONTINUE

93 CLOSE (UNIT=5)

94 CLOSE (UNIT=6)

95 CLOSE (UNIT=7)

96 STOP ' END OF QUEUEING SERVER RUN'

97 END

Example 14-4. Example Queued Server (Part 3 of 3)
98 ?PAGE "MATCHOLD FUNCTION"

99 FUNCTION matchold (record, dest, dest this rqr,no rqr)

100 INTEGER record(1), norqr, rqr

101 INTEGER dest(norqr,1), dest this rqr(1)

102 matchold = 0

103 DO 20 rqr = 1, no rqr

104 LIMIT = dest this rqr(rqr)

105 DO 10 I = 1, LIMIT

106 IF (record(1) .EQ. dest(rqr,I)) THEN

107 matchold = rqr

Example 14-3. Example Queued Server (Part 2 of 3)
FORTRAN Reference Manual—528615-001
14-20

Interprocess Communication Message Queuing
108 END IF

109 10 CONTINUE

110 20 CONTINUE

111 RETURN

112 END

113 ?PAGE "MATCHNEW FUNCTION"

114 LOGICAL FUNCTION matchnew(request, request words, record)

115 INTEGER request(1), request words, record(1)

116 LOGICAL answer

117 answer = .FALSE.

118 DO 10 I = 1, request words

119 IF (request(I) .EQ. record(1)) THEN

120 answer = .TRUE.

121 END IF

122 10 CONTINUE

123 matchnew = answer

124 RETURN

125 END

126 ?PAGE "SET ARRAY SUBROUTINE"

127 SUBROUTINE set array (array, array elements, value)

128 INTEGER array(1), array elements, value

129 DO 10 I = 1, array elements

130 array(I) = value

131 10 CONTINUE

132 RETURN

133 END

Example 14-4. Example Queued Server (Part 3 of 3)
FORTRAN Reference Manual—528615-001
14-21

Interprocess Communication Message Queuing
FORTRAN Reference Manual—528615-001
14-22

15 Utility Routines
The FORTRAN run-time library contains utility routines supplied by HP. These routines
enable FORTRAN applications to:

• Invoke system routines that are not available through standard FORTRAN
constructs.

• Fetch, alter, or delete the contents of PARAM, ASSIGN, and startup messages.

The latter routines comprise the Saved Message Utility (SMU).

Topics covered in this section include:

System-Related Routines
Table 15-1 lists routines that you can use to access various system-level functions.

Each routine is designed to be used either in modules in which you specify ENV OLD
or in modules in which you specify ENV COMMON but never both. For information
about the ENV directive, see Section 10, Compiler Directives.

Topic Page
System-Related Routines 15-1

Saved Message Utility 15-21

Using SMU Routines 15-23

Types of SMU Routines 15-24

Saved Messages 15-26

Checkpoint Considerations for Saved Message Utility Routines 15-28

Table 15-1. FORTRAN Run-Time Utility Routines (page 1 of 2)

Routine ENV Action
FORTRANCOMPLETION OLD Enables a FORTRAN program to specify

completion codes and related information
when it terminates.

FORTRAN_COMPLETION_ COMMON Enables a FORTRAN program to specify
completion codes and related information
when it terminates.

FORTRAN_CONTROL_ COMMON Calls the CONTROL system procedure unless
buffered spooling has been successfully
initiated for the file, in which case
FORTRAN_CONTROL_ calls the
SPOOLCONTROL spooler procedure.
FORTRAN Reference Manual—528615-001
15-1

Utility Routines FORTRANCOMPLETION Routine
FORTRANCOMPLETION Routine
FORTRANCOMPLETION allows a FORTRAN program to specify completion codes
and related information when it terminates.

FORTRANCOMPLETION performs the same activities (closing files, displaying a
message on the home terminal, and so forth) as the FORTRAN STOP statement. Use
FORTRANCOMPLETION instead of a FORTRAN STOP statement if you need to
specify one or more FORTRANCOMPLETION arguments to the STOP or ABEND
procedures.

abend-or-stop

is an integer expression that specifies whether to call the STOP or ABEND system
procedure to terminate execution. If abend-or-stop is zero, or if you omit
abend-or-stop, FORTRANCOMPLETION calls STOP. Otherwise, it calls
ABEND.

FORTRAN_SETMODE_ COMMON Calls the SETMODE system procedure
unless buffered spooling has been
successfully initiated for the file, in which case
FORTRAN_SETMODE_ calls the
SPOOLSETMODE spooler procedure.

FORTRAN_SPOOL_OPEN_ COMMON Provides level-1, level-2, or level-3 access to
the HP spooler. FORTRAN_SPOOL_OPEN_
combines the functionality of a FORTRAN
OPEN statement and a subsequent
FORTRANSPOOLSTART routine.

FORTRANSPOOLSTART OLD Provides level-2 and level-3 access to the HP
spooler. Your program must execute an
OPEN statement to open the spooler file
before it calls FORTRANSPOOLSTART.

SSWTCH COMMON Returns the value of a specified program
switch.

CALL FORTRANCOMPLETION [([abend-or-stop]
 [, [message-length]
 [, [message]
 [, [completion-code]
 [, [termination-info]
 [, [spi-ssid]
 [, [text-length]
 [, [text]]]]]]]])]

Table 15-1. FORTRAN Run-Time Utility Routines (page 2 of 2)

Routine ENV Action
FORTRAN Reference Manual—528615-001
15-2

Utility Routines FORTRANCOMPLETION Routine
message-length

is an integer expression that specifies the length of message. If you omit
message-length, the actual length of message is used.

message

is a character expression that the FORTRAN run-time library displays on your
process’s home terminal. message must be at least message-length characters
if you specify message-length. If you do not specify message-length, the
actual length of message is displayed. FORTRANCOMPLETION displays a
maximum of 80 characters.

completion-code

is an integer expression whose value is passed as the completion-code
parameter to STOP or ABEND.

termination-info

is an integer expression whose value is passed as the termination-info
parameter to STOP or ABEND.

spi-ssid

is a character expression whose length is at least 12 characters and whose value
is passed as the spi-ssid parameter to STOP or ABEND. spi-ssid is a
subsystem ID (SSID) that identifies the subsystem that defines termination-info.
For further information about subsystem IDs, see the SPI Programming Manual.

text-length

is an integer expression whose value is the number of characters in text. If you
omit this argument, the actual length of text is used.

text

is a character expression whose length is at least text-length characters and
whose value is passed as the text parameter to STOP or ABEND. If you do not
specify text-length, FORTRANCOMPLETION uses the actual length of text.

Considerations
• Use FORTRANCOMPLETION only in programs that specify an ENV OLD

directive. If you call FORTRANCOMPLETION in a program that specifies ENV
COMMON, the FORTRAN compiler does not report a warning or an error, but the
run-time library reports an error and terminates your program.

• All the arguments are optional. You can use or omit them in any combination.
FORTRAN Reference Manual—528615-001
15-3

Utility Routines FORTRANCOMPLETION Routine
• Executing a FORTRAN STOP statement is equivalent to calling
FORTRANCOMPLETION, with all its arguments omitted (except possibly
message). For example:

STOP is equivalent to CALL FORTRANCOMPLETION

STOP msg is equivalent to CALL FORTRANCOMPLETION(, , msg)

• Include the spi-ssid parameter if you use termination-info or text. spi-
ssid must be a RECORD data structure or a type CHARACTER*12 variable or
expression. (The corresponding parameter of STOP and ABEND must be a six-
element type INTEGER*2 array.)

• If spi-ssid is a RECORD data structure, and if the subsystem being identified is,
for example, the C10 version of NonStop subsystem number 123, spi-ssid must
be declared and defined as follows:

RECORD subsystem

CHARACTER * 8 organization

INTEGER * 2 number

CHARACTER * 2 version

END RECORD

subsystem^organization = 'TANDEM'

subsystem^number = 123

subsystem^version (1: 1) = 'C'

subsystem^version (2: 2) = CHAR (10)

• If spi-ssid is a CHARACTER variable, it must be declared and defined for the
previous example as follows:

CHARACTER * 12 ssid

ssid (1: 8) = 'TANDEM'

ssid (9: 10) = CHAR (0) // CHAR (123)

ssid (11: 12) = 'C' // CHAR (10)

The variable names used here are only examples. Your programs can use any
names you want, provided the layout of the data conforms to the record description
provided here.

• FORTRANCOMPLETION must be named in a GUARDIAN directive in every
compilation that refers to it.

• FORTRANCOMPLETION performs the same activities (closing files, displaying
message on the home terminal, and so forth) as the FORTRAN STOP statement.
FORTRAN Reference Manual—528615-001
15-4

Utility Routines FORTRAN_COMPLETION_ Routine
Then it calls the STOP or ABEND system procedure, as indicated by abend-or-
stop, passing its completion-code through text arguments to STOP or
ABEND.

• The message argument corresponds to the message option in the FORTRAN
STOP statement. If you specify message, FORTRANCOMPLETION displays
message on the home terminal. The text argument is intended for a different use.
FORTRANCOMPLETION passes text to STOP or ABEND, which in turn stores it
into the STOP or ABEND system message that the operating system sends to the
ancestor process of the terminating process.

• You must ensure that the combination of parameters and their values meet the
expectations of the STOP or ABEND procedure. Neither the FORTRAN compiler
nor the run-time library validate the arguments. For information about the STOP
and ABEND system procedures, see the Guardian Procedure Calls Reference
Manual.

FORTRAN_COMPLETION_ Routine
FORTRAN_COMPLETION_ allows a FORTRAN program to specify completion codes
and related information when it terminates.

FORTRAN_COMPLETION_ performs the same activities (closing files, displaying a
message on the home terminal, and so forth) as the FORTRAN STOP statement. Use
FORTRAN_COMPLETION_ instead of a FORTRAN STOP statement if you need to
specify one or more FORTRAN_COMPLETION_ arguments to the PROCESS_STOP_
procedure.

abend-or-stop

is an integer expression that specifies whether to call PROCESS_STOP_ with the
ABEND option or the STOP option. If abend-or-stop is zero, or if you omit
abend-or-stop, the run-time system calls PROCESS_STOP_ with the STOP
option. Otherwise, it calls PROCESS_STOP_ with the ABEND option.

message-length

is an integer expression whose value is the length of the value of message. If you
omit this argument, FORTRAN_COMPLETION_ uses the actual length of
message.

CALL FORTRAN_COMPLETION_ [([abend-or-stop]
 [, [message-length]
 [, [message]
 [, [completion-code]
 [, [termination-info]
 [, [spi-ssid]
 [, [text-length]
 [, [text]]]]]]]])]
FORTRAN Reference Manual—528615-001
15-5

Utility Routines FORTRAN_COMPLETION_ Routine
message

is a character expression that the FORTRAN run-time library writes to the standard
log file. message must be at least message-length characters if you specify
message-length. If you do not specify message-length, the actual length of
message is displayed. FORTRAN_COMPLETION_ displays a maximum of 80
characters.

completion-code

is an integer expression whose value is passed as the completion-code
parameter to PROCESS_STOP_.

termination-info

is an integer expression whose value is passed as the termination-info
parameter to PROCESS_STOP_.

spi-ssid

is a character expression whose length is at least 12 characters and whose value
is passed as the spi-ssid parameter to PROCESS_STOP_. spi-ssid is a
subsystem ID (SSID) that identifies the subsystem that defines termination-info.
For further information about subsystem IDs, see the SPI Programming Manual.

text-length

is an integer expression whose value is the length of the value of text. If you omit
this argument, the actual length of text is used.

text

is a character expression whose length is at least text-length characters and
whose value is passed as the text parameter to PROCESS_STOP_. If you do not
specify text-length, FORTRAN_COMPLETION_ uses the actual length of
text.

Considerations
• Use FORTRAN_COMPLETION_ only in programs that specify an ENV

• COMMON directive. If you call FORTRAN_COMPLETION_ in a program that
specifies ENV OLD, the FORTRAN compiler does not report a warning or an error,
but the run-time library reports an error and terminates your program.

• All the arguments are optional. You can use or omit them in any combination.

• Executing a FORTRAN STOP statement is equivalent to calling
FORTRAN_COMPLETION_, with all its arguments omitted (except possibly
message). For example:

STOP is equivalent to CALL FORTRAN_COMPLETION_
FORTRAN Reference Manual—528615-001
15-6

Utility Routines FORTRAN_COMPLETION_ Routine
STOP msg is equivalent to CALL FORTRAN_COMPLETION_(, , msg)

• Include spi-ssid if you use termination-info or text. spi-ssid must be a
RECORD data structure or a type CHARACTER*12 variable or expression. (The
corresponding parameter of PROCESS_STOP_ must be a six-element type
INTEGER*2 array.)

• If spi-ssid is a RECORD data structure, and if the subsystem being identified is,
for example, the C10 version of NonStop subsystem number 123, spi-ssid must
be declared and defined as follows:

RECORD subsystem

CHARACTER * 8 organization

INTEGER * 2 number

CHARACTER * 2 version

END RECORD

subsystem^organization = 'TANDEM '

subsystem^number = 123

subsystem^version (1: 1) = 'C'

subsystem^version (2: 2) = CHAR (10)

• If spi-ssid is a CHARACTER variable, it must be declared and defined for the
previous example as follows:

CHARACTER * 12 ssid

ssid (1: 8) = 'TANDEM '

ssid (9: 10) = CHAR (0) // CHAR (123)

ssid (11: 12) = 'C' // CHAR (10)

The variable names used here are only examples. Your programs can use any
names you want, provided the layout of the data conforms to the record description
provided here.

• FORTRAN_COMPLETION_ must be named in a GUARDIAN directive in every
compilation that refers to it.

• FORTRAN_COMPLETION_ performs the same activities (closing files, displaying
message on the home terminal, and so forth) as the FORTRAN STOP statement.
Then it calls the PROCESS_STOP_ procedure specifying the STOP or ABEND
option, as indicated by abend-or-stop and passing its completion-code
through text arguments to PROCESS_STOP_.

• The message argument corresponds to the message option in the FORTRAN
STOP statement. If you specify message, FORTRAN_COMPLETION_ writes
FORTRAN Reference Manual—528615-001
15-7

Utility Routines FORTRAN_CONTROL_ Routine
message to the standard log file. The text argument is intended for a different
use. FORTRAN_COMPLETION_ passes text PROCESS_STOP_, which in turn
stores it into the STOP or ABEND system message that is sent to the ancestor
process of the terminating process.

• You must ensure that the combination of parameters and their values meet the
expectations of the PROCESS_STOP_ system procedure. Neither the FORTRAN
compiler nor the run-time library validates the arguments. For information about the
SPROCESS_STOP_ system procedure, see the Guardian Procedure Calls
Reference Manual.

FORTRAN_CONTROL_ Routine
FORTRAN_CONTROL_ calls the CONTROL system procedure unless buffered
spooling has been successfully initiated for the file, in which case
FORTRAN_CONTROL_ calls the SPOOLCONTROL spooler procedure.

FORTRAN_CONTROL_ enables you to issue control operations to spooler collectors
with a minimum of programming effort.

unit-number

is an INTEGER*2 expression whose value is the FORTRAN unit number to which
to send the CONTROL operation.

error-return

is an INTEGER*2 variable in which FORTRAN_CONTROL_ returns an error code.

If error-return is zero, FORTRAN_CONTROL_ successfully issued a
CONTROL or SPOOLCONTROL operation.

If error-return is less than 10000, its value is a file system error code. For
information about file system errors, see the Guardian Procedure Errors and
Messages Manual . For information about errors returned by the
SPOOLCONTROL spooler procedure, see the Spooler Programmer’s Guide.

If error-return is greater than 10000, its value is a FORTRAN run-time error
code to which the FORTRAN run-time library has added 10000. To determine the
actual error code, subtract 10000 from the value returned in error-return and
see Appendix G, Run-Time Diagnostic Messages.

For example, if error-return is 250, the error is a file system error—the file
referenced by unit-number is on a node that is no longer accessible. If error-
return is 10064, you must subtract 10000 from error-return to produce error
64: the unit-number that you specified is not associated with a currently open file.

CALL FORTRAN_CONTROL_ (unit-number
 , [error-return]
 , operation
 [, [param]])
FORTRAN Reference Manual—528615-001
15-8

Utility Routines FORTRAN_SETMODE_ Routine
operation

is the code to send to the device referenced by unit-number. For specific
operation codes, see the CONTROL procedure in the Guardian Procedure Calls
Reference Manual.

param

specifies the value of the parameter to the CONTROL operation you specify. For
specific param values for each CONTROL operation, see the CONTROL
procedure in the Guardian Procedure Calls Reference Manual.

FORTRAN_CONTROL_ calls the CONTROL system procedure unless unit-number is
a spooler collector doing level-3 spooling, in which case FORTRAN_CONTROL_ calls
the SPOOLCONTROL spooler procedure.

Considerations
• If an error occurs and you do not specify error-return, the FORTRAN run-time

library terminates your program.

• Use FORTRAN_CONTROL_ only in programs that specify an ENV COMMON
directive. The FORTRAN compiler does not report an error if you use
FORTRAN_CONTROL_ with ENV OLD, but the FORTRAN run-time library reports
an error if your program executes FORTRAN_CONTROL_ in a module that
specifies ENV OLD.

FORTRAN_SETMODE_ Routine
FORTRAN_SETMODE_ calls the SETMODE system procedure unless buffered
spooling has been successfully initiated for the file, in which case
FORTRAN_SETMODE_ calls the SPOOLSETMODE spooler procedure.
FORTRAN_SETMODE_ enables you to issue setmode operations to spooler collectors
with a minimum of programming effort.

unit-number

is an INTEGER*2 expression whose value is the FORTRAN unit number to which
to send the SETMODE command.

error-return

is an INTEGER*2 variable in which FORTRAN_SETMODE_ returns an error code.

CALL FORTRAN_SETMODE_ (unit-number
 , [error-return]
 , function
 [, [param1]
 [, [param2]]])
FORTRAN Reference Manual—528615-001
15-9

Utility Routines FORTRAN_SETMODE_ Routine
If error-return is zero, FORTRAN_SETMODE_ successfully issued a
SETMODE or SPOOLSETMODE operation.

If error-return is less than 10000, its value is a file system error code. For
information about file system errors, see the Guardian Procedure Errors and
Messages Manual . For information about errors returned by the
SPOOLSETMODE spooler procedure, see the Spooler Programmer’s Guide.

If error-return is greater than 10000, its value is a FORTRAN run-time error
code to which the FORTRAN run-time library has added 10000. To determine the
actual error code, subtract 10000 from the value returned in error-return and
see Appendix G, Run-Time Diagnostic Messages.

For example, if error-return is 250, the error is a file system error—the file
referenced by unit-number is on a node that is no longer accessible. If error-
return is 10064, you must subtract 10000 from error-return to produce error
64: the unit-number that you specified is not associated with a currently open
file.

function

specifies the SETMODE function to execute. For specific commands, see the
SETMODE procedure in the Guardian Procedure Calls Reference Manual.

param1

specifies the value of the first parameter to the specific SETMODE function you are
executing. For specific param values for each SETMODE function, see the
SETMODE procedure in the Guardian Procedure Calls Reference Manual.

param2

specifies the value of the second parameter to the specific SETMODE function you
are executing. For specific param2 values for each SETMODE function, see the
SETMODE procedure in the Guardian Procedure Calls Reference Manual.

FORTRAN_SETMODE_ calls the SETMODE system procedure unless unit-number
is a spooler collector doing level-3 spooling in which case FORTRAN_SETMODE_
calls the SPOOLSETMODE spooler procedure.

Considerations
Use FORTRAN_SETMODE_ only in programs that specify an ENV COMMON
directive. The FORTRAN compiler does not report an error if you use
FORTRAN_SETMODE_ with ENV OLD but the FORTRAN run-time library reports an
error if your program executes FORTRAN_SETMODE_ in a module that specifies ENV
OLD.
FORTRAN Reference Manual—528615-001
15-10

Utility Routines FORTRAN_SPOOL_OPEN_ Routine
FORTRAN_SPOOL_OPEN_ Routine
FORTRAN_SPOOL_OPEN_ provides level-1, level-2, and level-3 access to the HP
spooler from a FORTRAN program. You can use FORTRAN_SPOOL_OPEN_ only in
programs that specify ENV COMMON.

FORTRAN attempts to use level-3 spooling for any file that opens a spooler collector if
PARAM BUFFERED-SPOOLING OFF is not in effect. Calling
FORTRAN_SPOOL_OPEN_ enables you to use any spooling level and also to set
specific spooler attributes for the file.

unit-number

is an integer expression whose value is the FORTRAN unit number of the file to
spool.

error-return

is an INTEGER*2 variable in which FORTRAN_SPOOL_OPEN_ returns an error
code.

If error-return is zero, FORTRAN_SPOOL_OPEN_ successfully opened the
file with the spooler attributes you specified.

If error-return is less than 10000, its value is a file system error code. For
information about file system errors, see the Guardian Procedure Errors and
Messages Manual . For information about errors returned by spooler procedures,
see the Spooler Programmer’s Guide.

If error-return is greater than 10000, its value is a FORTRAN run-time error
code to which the FORTRAN run-time library has added 10000. To determine the
actual error code, subtract 10000 from the value returned in error-return and
see Appendix G, Run-Time Diagnostic Messages.

CALL FORTRAN_SPOOL_OPEN_ (unit-number
 [, [error-return]
 [, [filename]
 [, [filename-size]
 [, [protect]
 [, [mode]
 [, [stackspec]
 [, [spacecontrol]
 [, [spooling-level]
 [, [location]
 [, [form-name]
 [, [report-name]
 [, [number-of-copies]
 [, [page-size]
 [, [flags]
 [, [owner]
 [, [max-lines]
 [, [max-pages]]]]]]]]]]]]]]]]]])
FORTRAN Reference Manual—528615-001
15-11

Utility Routines FORTRAN_SPOOL_OPEN_ Routine
For example, if error-return is 201, the error is a file system error—the file
referenced by unit-number is on a node that is no longer accessible. If error-
return is 10250, you must subtract 10000 from error-return to produce error
250: the node associated with unit-number that you specified is not currently
accessible over the HP network.

filename

specifies the name of the spooler collector or spooler job file to open for the
spooling session.

filename-size

specifies how many characters at the beginning of filename identify the
destination spooler file.

protect

is a character expression with the value 'SHARED', 'PROTECTED', or
'EXCLUSIVE' that specifies how the file is to be shared.

mode

is a character expression with the value 'INPUT', 'OUTPUT', or 'I-O' that specifies
whether to open the file for read access, write access, or read and write access.
The default value (in the absence of a UNIT directive or ASSIGN command
specifying otherwise) is 'I-O'.

stackspec

is a character expression with the value 'YES' or 'NO'. For additional information,
see Considerations on page 15-15.

If you run your program as a NonStop process, each time you execute
FORTRAN_SPOOL_OPEN_, the FORTRAN run-time library checkpoints your
program environment to your backup process unless stackspec specifies 'NO'.

spacecontrol

spacecontrol is a character expression with the value 'YES', 'NO', or 'DEVICE'
and specifies whether the first character of each output record is a control
character that controls vertical spacing for an output device, or is a character of
data. See “Considerations” in the description of the OPEN Statement on
page 7-70.
FORTRAN Reference Manual—528615-001
15-12

Utility Routines FORTRAN_SPOOL_OPEN_ Routine
spooling-level

specifies the spooling level to use for the file. You can specify the following values:

location

is a character expression whose value specifies the location for the spooler job.
location overrides the location components of filename. location requires 16
characters. If location is more than 16 characters, only the first 16 characters
are passed to the spooler. If location is less than 16 characters, the FORTRAN
run-time library adds blanks on the right side of location when it calls
SPOOLSTART. The spooler expects a two-part location name in the following
format:

LOCATION (1: 1) must be "#"

LOCATION (2: 8) group name

LOCATION (9: 16) destination name

The group and destination names can be any combination of letters, digits, and
blanks.

form-name

is a character expression whose value specifies the form name for the spooler job.
form-name requires 16 characters. If form-name is more than 16 characters,
only the first 16 characters are passed to the spooler. If form-name is less than 16
characters, the FORTRAN run-time library adds blanks on the right side of location
when it calls SPOOLSTART. The spooler accepts any combination of letters, digits,
and blanks.

report-name

is a character expression whose value specifies the report name for the spooler
job. report-name requires 16 characters. If report-name is more than 16

Spooling Level Effect
< -1 FORTRAN_SPOOL_OPEN_ returns error 10056

(error 56), invalid parameter.

-1 The file uses level-3 spooling if the FORTRAN
run-time library can obtain a buffer and PARAM
BUFFERED-SPOOLING OFF is not specified.
Otherwise, the file uses level-1 or level-2 spooling.
Specifying -1 has the same effect as omitting the
spooling-level parameter.

0 The file uses level-1 or level-2 spooling. The run-
time library does not allocate a buffer.

> 0 The file uses level-3—buffered—spooling. Your
program terminates or returns an error if the file
cannot use level-3 spooling—for example, if the
runtime library cannot allocate a buffer.
FORTRAN Reference Manual—528615-001
15-13

Utility Routines FORTRAN_SPOOL_OPEN_ Routine
characters, only the first 16 characters are passed to the spooler. If report-name
is less than 16 characters, the FORTRAN run-time library adds blanks on the right
side of report-name when it calls SPOOLSTART. The spooler accepts any
combination of letters, digits, and blanks.

number-of-copies

is an integer expression whose value specifies the number of copies to print.
number-of-copies must be in the range 1 through 32,767. The default is 1.

page-size

is an integer expression whose value specifies the number of lines per page the
HP NonStop PERUSE utility uses for its PAGE and LIST commands. page-size
must be in the range 1 through 32,767. The default is 60 lines.

flags

is an integer expression whose value specifies certain attributes for the spooler
job. The value of flags is the sum of the values associated with the defined
options, which are:

HOLD 0 = off, 64 = on

HOLDAFTER 0 = off, 32 = on

PRIORITY 0, 1, 2, 3, 4, 5, 6, or 7

The default is 4 (HOLD=off, HOLDAFTER=off, PRIORITY=4).

owner

is a character expression whose value specifies the owner of the spooler job in the
format:

OWNER (1: 8) group name

OWNER (9: 16) user name

The value of the group name is a file-security system group name, and the user
name is a file-security system user name. Each name must be eight characters
long, with trailing blanks inserted if a name is shorter than eight characters. The
item does not include a period between the names. If you specify an invalid
combination of names for owner, error code 102 is returned in error-return. If
owner is omitted, the spooler uses the owner ID of the executing process.

max-lines

is an integer expression whose value specifies the maximum number of lines
allowed for the spooler job. max-lines must be in the range 1 through 65,534. If
max-lines is zero or omitted, the spooler does not impose a limit on the number
of lines it writes.
FORTRAN Reference Manual—528615-001
15-14

Utility Routines FORTRAN_SPOOL_OPEN_ Routine
max-pages

is an integer expression whose value specifies the maximum number of pages for
the spooler job. max-pages must be in the range 1 through 65,534. If max-pages
is zero or omitted, the spooler does not impose a limit on the number of pages it
writes.

Considerations
• Use FORTRAN_SPOOL_OPEN_ only in programs that specify an ENV COMMON

directive. The FORTRAN compiler does not report an error if you use
FORTRAN_SPOOL_OPEN_ with ENV OLD but the FORTRAN run-time library
reports an error if your program executes FORTRAN_SPOOL_OPEN_ in a module
that specifies ENV OLD.

• All the arguments except unit-number are optional. You can use or omit them in
any combination.

• The FORTRAN_SPOOL_OPEN_ routine must be named in a GUARDIAN directive
in every compilation that refers to it.

• You can invoke the FORTRAN_SETMODE_ and FORTRAN_CONTROL_ utility
routines if you specify buffered spooling and you need to invoke operations defined
by the SPOOLSETMODE or SPOOLCONTROL system routines.

• The following rules show the values to specify for spooling-level if unit-
number is 6 and the spooler collector associated with unit 6 might be opened by a
routine in your process that is written in a language other than FORTRAN:

° If the original open of the file resulted in buffered spooling, a call to
FORTRAN_SPOOL_OPEN_ for the same file must specify spooling-level
> 0 or spooling-level = -1.

° If the original open of the file resulted in level-1 or level-2 spooling, a call to
FORTRAN_SPOOL_OPEN_ for the same file must specify spooling-level
= 0 or spooling-level = -1.

° If the original open of the file did not establish a spooling level (run-time
routines determine the spooling level) then if no routine has written records to
the file, you can specify any spooling level. If any routine in your process has
written at least one record to the file, then all subsequent opens should specify
spooling-level = -1. Specifying spooling-level = 0 or spooling-
level > 0 might not succeed, depending on whether the run-time routines are
using level-1 or level-3 spooling.
FORTRAN Reference Manual—528615-001
15-15

Utility Routines FORTRANSPOOLSTART Routine
FORTRANSPOOLSTART Routine
FORTRANSPOOLSTART provides level-2 and level-3 access to the HP spooler from a
FORTRAN program.

FORTRAN automatically provides level-3 spooling for a file directed to the spooler
when FORTRANSPOOLSTART is not used and PARAM SPOOLOUT 0 is not in effect.

unit-number

is an integer expression whose value is the FORTRAN unit number of the file to
spool. If the spool file is opened before FORTRANSPOOLSTART, your program
must not write to it until it calls FORTRANSPOOLSTART. If the file is not opened
before calling FORTRANSPOOLSTART, FORTRANSPOOLSTART will open it.

error-return

is an INTEGER*2 variable in which FORTRANSPOOLSTART returns zero if it
successfully opens the spooler, or a file system or SPOOLSTART error code if it
cannot open the spooler. For explanations of spooler errors, see the Guardian
Procedure Errors and Messages Manual and for explanations of file system
errors, see the Spooler Programmer’s Guide.

If you do not specify error-return and the error code is nonzero, your program
stops and an error message is sent to the home terminal.

options

is an integer expression whose value specifies which level of spooling you want. If
options is 0, level-1 or level-2 spooling is used for the spool file. If options is a
nonzero value, level-3 spooling is used for the spool file. The FORTRAN run-time
library allocates the buffer space for level-3 spooling unless you specify level-3-
buffer.

CALL FORTRANSPOOLSTART (unit-number
 [, [error-return]
 [, [options]
 [, [level-3-buffer]
 [, [location]
 [, [form-name]
 [, [report-name]
 [, [number-of-copies]
 [, [page-size]
 [, [flags]
 [, [owner]
 [, [max-lines]
 [, [max-pages]]]]]]]]]]]]])
FORTRAN Reference Manual—528615-001
15-16

Utility Routines FORTRANSPOOLSTART Routine
level-3-buffer

is an INTEGER*2 array that contains at least 512 elements. This array is the buffer
in which to store spool file records before sending them to the spooler. It must be
allocated statically (in a common block or named in a DATA or SAVE statement)
and must not be allocated in the extended data segment.

location

is a character expression whose value specifies the location for the spooler job.
location overrides the location components of the file name you specify in an
OPEN statement. location requires 16 characters. If location is more than 16
characters, only the first 16 characters are passed to the spooler. If location is
less than 16 characters, the FORTRAN run-time library adds blanks on the right
side of location when it calls SPOOLSTART. The spooler expects a two-part
location name in the following format:

LOCATION (1: 1) must be "#"

LOCATION (2: 8) group name

LOCATION (9: 16) destination name

The group and destination names can by any combination of letters, digits, and
blanks.

form-name

is a character expression whose value specifies the form name for the spooler job.
form-name requires 16 characters. If form-name is more than 16 characters,
only the first 16 characters are passed to the spooler. If form-name is less than 16
characters, the FORTRAN run-time library adds blanks on the right side of location
when it calls SPOOLSTART. The spooler accepts any combination of letters, digits,
and blanks.

report-name

is a character expression whose value specifies the report name for the spooler
job. report-name requires 16 characters. If report-name is more than 16
characters, only the first 16 characters are passed to the spooler. If report-name
is less than 16 characters, the FORTRAN run-time library adds blanks on the right
side of report-name when it calls SPOOLSTART. The spooler accepts any
combination of letters, digits, and blanks.

number-of-copies

is an integer expression whose value specifies the number of copies to print.
number-of-copies must be in the range 1 through 32,767. The default is 1.
FORTRAN Reference Manual—528615-001
15-17

Utility Routines FORTRANSPOOLSTART Routine
page-size

is an integer expression whose value specifies the number of lines per page the
NonStop PERUSE utility uses for its PAGE and LIST commands. page-size
must be in the range 1 through 32,767. The default is 60 lines.

flags

is an integer expression whose value specifies certain attributes for the spooler
job. flags is the sum of the values associated with the defined options, which are:

HOLD 0 = off, 64 = on

HOLDAFTER 0 = off, 32 = on

PRIORITY 0, 1, 2, 3, 4, 5, 6, or 7

The default is 4 (HOLD=off, HOLDAFTER=off, PRIORITY=4).

owner

is a character expression whose value specifies the owner of the spooler job in the
format:

OWNER (1: 8) group name

OWNER (9: 16) user name

The value of the group name is a file-security system group name, and the user
name is a file-security system user name. Each name must be eight characters
long, with trailing blanks inserted if a name is shorter than eight characters. The
item does not include a period between the names. If you specify an invalid
combination of names for owner, error code 102 is returned in error-return. If
owner is omitted, the spooler uses the owner ID of the executing process.

max-lines

is an integer expression whose value specifies the maximum number of lines
allowed for the spooler job. max-lines must be in the range 1 through 65,534. If
max-lines is zero or omitted, the spooler does not impose a limit on the number
of lines it writes.

max-pages

is an integer expression whose value specifies the maximum number of pages for
the spooler job. max-pages must be in the range 1 through 65,534. If max-pages
is zero or omitted, the spooler does not impose a limit on the number of pages it
writes.
FORTRAN Reference Manual—528615-001
15-18

Utility Routines Choosing a Spooling Level
Choosing a Spooling Level
The following list describes the three levels of spooling that you can specify.

• Level-1 spooling

FORTRANSPOOLSTART uses level-1 spooling if options is zero and you omit
all other parameters. If you want all spooled files to use level-1 spooling, you can
specify PARAM SPOOLOUT 0 when you run your program, rather than using
FORTRANSPOOLSTART at all.

Level-1 spooling is desirable when your program contains direct calls to Guardian
procedures for the file, such as CONTROL and SETMODE, that do not work with
level-3 spooling.

• Level-2 spooling

FORTRANSPOOLSTART uses level-2 spooling if options is zero, you specify at
least one other parameter, and you do not specify level-3-buffer.

Level-2 spooling is desirable when your program contains direct calls to Guardian
procedures for the file, such as CONTROL and SETMODE, that do not work with
level-3 spooling but you want to establish initial spooling parameters.

• Level-3 spooling

FORTRANSPOOLSTART uses level-3 spooling if options is nonzero. Your
program can allocate a buffer by specifying level-3-buffer or you can omit
level-3-buffer, in which case FORTRAN allocates the buffer space at runtime.

If you want all spooled files to use level-3 spooling, you need not call
FORTRANSPOOLSTART at all. FORTRAN assumes level-3 spooling by default
and automatically allocates the required buffer space at run-time. However, you
must use FORTRANSPOOLSTART if you want to specify spool file attributes.

Considerations
• Use FORTRANSPOOLSTART only in programs compiled with ENV OLD. The

FORTRAN compiler does not report an error if you use FORTRANSPOOLSTART
with ENV COMMON but the FORTRAN run-time library reports an error if your
program executes FORTRANSPOOLSTART in a module that specifies ENV
COMMON.

• All FORTRANSPOOLSTART arguments are optional except unit-number. You
can use or omit them in any combination.

• The FORTRANSPOOLSTART routine must be named in a GUARDIAN directive in
every compilation that refers to it.

• If the OPEN statement in which you open unit-number specifies the TIMED
option, your program uses level-1 spooling regardless of the value you specify for
options when you call FORTRANSPOOLSTART.
FORTRAN Reference Manual—528615-001
15-19

Utility Routines SSWTCH Routine
SSWTCH Routine
SSWTCH returns the current value of a program switch.

switch-number

is a type INTEGER*2 variable that specifies which switch’s value to return.

result

is a type INTEGER*2 variable in which SSWTCH stores the current value of switch
switch-number.

Considerations
• Use SSWTCH only in programs compiled with ENV COMMON. The FORTRAN

compiler does not report an error if you use SSWTCH with ENV OLD but the
FORTRAN run-time library returns a switch value of two if your program executes
SSWTCH in a module that specifies ENV OLD. See the following table for
additional meanings of a switch value of two.

• You set switch values using a TACL PARAM command.

PARAM SWITCH- nn

• SSWTCH returns:

CALL SSWTCH (switch-number, result)

Switch Value Meaning
1 Switch is ON

2 Any of the following:

• Switch is OFF

• switch-number is less than 1 or greater than 15

• The program was not compiled with ENV COMMON

ON
OFF

FORTRAN Reference Manual—528615-001
15-20

Utility Routines Saved Message Utility
Saved Message Utility
The Saved Message Utility (SMU) is a collection of routines that are extensions to the
HP FORTRAN product. Table 15-2 lists the SMU routines. You use these routines to
save and modify the messages sent to your process by the operating system. The
Guardian Procedure Calls Reference Manual contains a complete description of these
messages.

The first part of this subsection describes how you use the SMU routines. The second
part lists all the SMU routines in alphabetical order, and includes the syntax and usage
considerations for each routine.

When TACL starts a process, it sends a series of messages to the process that
describe the following:

• The IN file

• The OUT file

• The default volume and subvolume

• Current ASSIGN values

• Current PARAM values

• Additional text specified with the RUN command

If you want to save these messages, you can use the SAVE directive to specify which
messages to save, and then use SMU routines to retrieve them. If your program
initiates other processes, you can use the SAVE directive to save the messages that
describe the startup environment of the parent process, and then use SMU routines to
customize the startup environment for the new processes.

Table 15-2. Saved Message Utility Routines (page 1 of 2)

Name Action
ALTERPARAMTEXT Creates or replaces the value for a specific parameter name, in

the PARAM message, with the option of trailing blanks in the new
value.

CHECKLOGICALNAME Checks whether an ASSIGN message with a given logical file
name exists.

CHECKMESSAGE Checks whether a specific message exists.

CREATEPROCESS Creates a new process and sends the initial ASSIGN, PARAM,
and startup messages.

DELETEASSIGN Deletes a portion or all of an ASSIGN message.

DELETEPARAM Deletes a portion or all the PARAM message.

DELETESTARTUP Deletes the entire startup message.

GETASSIGNTEXT Retrieves a portion of an ASSIGN message as text and assigns it
to a string variable.
FORTRAN Reference Manual—528615-001
15-21

Utility Routines Saved Message Utility
Figure 15-1 on page 15-23 illustrates how process messages are manipulated by the
SMU.

GETASSIGNVALUE Retrieves a portion of an ASSIGN message as an integer and
assigns it to an integer variable.

GETBACKUPCPU Retrieves a backup CPU number from the PARAM message.

GETPARAMTEXT Retrieves a portion of the PARAM message as text and assigns it
to a string variable.

GETSTARTUPTEXT Retrieves a portion of the startup message as text and assigns it
to a string variable.

PUTASSIGNTEXT Creates or replaces a portion of an ASSIGN message with text
from a string variable.

PUTASSIGNVALUE Creates or replaces a portion of an ASSIGN message with a
value from an integer variable.

PUTPARAMTEXT Creates or replaces a portion of a PARAM message with text
from a string variable.

PUTSTARTUPTEXT Creates or replaces a portion of the startup message with text
from a string variable.

Table 15-2. Saved Message Utility Routines (page 2 of 2)

Name Action
FORTRAN Reference Manual—528615-001
15-22

Utility Routines Using SMU Routines
Using SMU Routines
To reference an SMU routine in a program unit, you must declare it in a GUARDIAN
directive. (The GUARDIAN directive is described in Section 10, Compiler Directives.)
The following example shows how to declare the SMU routine GETPARAMTEXT as a
Guardian procedure:

?GUARDIAN GETPARAMTEXT

You must declare the routine before the first FORTRAN statement that calls that
procedure.

SMU routines operate on copies of the process creation messages that establish the
execution environment for a program. Copies of these messages are not saved
automatically; you must request them using the SAVE compiler directive. During
process creation the messages selected by a SAVE directive are saved in an area
inaccessible to the FORTRAN program.

Figure 15-1. Process Messages Manipulated by the SMU

Saved
Messages

"Parent"
FORTRAN

Process

Names and associated values from PARAM commands

Logical file names and associated actual file names from ASSIGN commands

STARTUP message with the names of the IN file and the OUT file,
the default volume and subvolume, and the text string that follows
the closing "/" of the RUN command parameter list.

Descendant
Process

The parent process:

! Saves the messages
! Modifies the messages

! Calls CREATEPROCESS to launch
a new process, passing to it the
modified ASSIGN, PARAM, and
STARTUP messages

VST1501.vsd
FORTRAN Reference Manual—528615-001
15-23

Utility Routines Types of SMU Routines
Each saved ASSIGN message is given a unique, serially assigned message number.
This number is a positive integer from one to the greatest number of saved ASSIGN
messages. It is used to specifically identify each saved ASSIGN message.

SMU routines operate on specific portions of saved messages. Each portion is
identified by a special string value. You must pass the string value as the portion
parameter to the appropriate routine. Case is not significant in specifying string values,
but you must observe the following restrictions:

• The string cannot be preceded by blanks.

• The string must be followed by a blank when the portion parameter length exceeds
the string value length.

• The string value must be enclosed in single quotes.

For the content of message portions, see Saved Messages on page 15-26.

Types of SMU Routines
There are three types of SMU routines: those that obtain environment information for a
process, those that change environment values, and those that delete stored
environment values.

Getting Environment Information
To obtain environment information, you must use the SMU routines whose names
begin with GET. Table 15-3 on page 15-25 describes these routines.
FORTRAN Reference Manual—528615-001
15-24

Utility Routines Changing Environment Information
The following example uses GETASSIGNTEXT to obtain a file name:

?GUARDIAN GETASSIGNTEXT

CHARACTER*63 filename

INTEGER error

error = GETASSIGNTEXT ('TANDEMNAME', filename, 1)

Changing Environment Information
The group of SMU routines that begin with PUT and the ALTERPARAMTEXT routine
allow you to change environment information. The PUT routines are the exact
counterparts of the GET routines. Each PUT routine enables you to insert a new value
into a PARAM, ASSIGN, or startup message.

The difference between PUTPARAMTEXT and ALTERPARAMTEXT is that
ALTERPARAMTEXT enables you to insert trailing blanks in the new parameter value.

Table 15-3. SMU Routines for Obtaining Environment Information
Routine Portion Returns
GETASSIGNTEXT LOGICALNAME

TANDEMNAME

File description name

GETASSIGNVALUE ACCESS

BLKSIZE

EXCLUSION

FILECODE

PRIEXT

RECSIZE

SECEXT

Access mode

Block size

Exclusion code

File code

Primary disk extent

Record size

Secondary extent

GETPARAMTEXT Name of the parameter whose
text is to be returned

Value of parameter

GETSTARTUPTEXT IN

OUT

STRING

VOLUME

Name of IN file

Name of OUT file

Text following run option-option
list on the

command line

Names of default volume and
subvolume
FORTRAN Reference Manual—528615-001
15-25

Utility Routines Deleting Environment Information
The following example uses the ALTERPARAMTEXT routine to change a parameter
value:

?GUARDIAN ALTERPARAMTEXT

INTEGER error

CHARACTER*20 oldparam, newparam

READ (9,*) oldparam

READ (*,*) newparam

error = ALTERPARAMTEXT (oldparam, newparam, 0, 5)

Deleting Environment Information
You can delete stored values and text by using the SMU routines that begin with
DELETE. The following example uses the DELETESTARTUP routine to delete the
entire startup message:

?GUARDIAN DELETESTARTUP

INTEGER error

error = DELETESTARTUP ('*ALL*', 0)

Saved Messages
The internal data structures of the saved process-creation messages can differ slightly
from the standard FORTRAN data structures. The routines operate mainly on
components, or “portions,” of these saved messages. If a message component is not
suitable, the routine formats it either to or from a specific external representation.

The following sections identify the different portions of saved messages.

The PARAM Message
The PARAM message contains all parameter names and the values associated with
the names. The PARAM message includes:

• A count of the number of named parameters

• A list of the named parameters in the following form:

° Length of name

° Name

° Length of value

° Value

You can use SMU routines to request, modify, or delete parameter names and values.
You cannot determine the number of parameters or the names of the parameters in the
PARAM message.
FORTRAN Reference Manual—528615-001
15-26

Utility Routines The ASSIGN Messages
The following SMU routines operate on the PARAM message:

GETPARAMTEXT DELETEPARAM

GETBACKUPCPU PUTPARAMTEXT

ALTERPARAMTEXT

The ASSIGN Messages
The ASSIGN messages contain file names and attributes that you specify using a
TACL ASSIGN command. For additional information about the ASSIGN command, see
Section 5, Introduction to File I/O in the HP NonStop Environment.

The following SMU routines operate upon ASSIGN messages:

CHECKLOGICALNAME PUTASSIGNTEXT

CHECKMESSAGE PUTASSIGNVALUE

GETASSIGNTEXT DELETEASSIGN

GETASSIGNVALUE

The Startup Message
The following SMU routines operate on the startup message:

GETSTARTUPTEXT

PUTSTARTUPTEXT

DELETESTARTUPTEXT

Table 15-4. The Portions of the ASSIGN Message
Portion Name Type Identifies
LOGICALNAME Text Logical unit name

TANDEMNAME Text File name

PRIEXT Integer Primary extent size

SECEXT Integer Secondary extent size

FILECODE Integer File code

ACCESS Integer Access mode

EXCLUSION Integer Exclusion mode

RECSIZE Integer Record size

BLKSIZE Integer Block size
FORTRAN Reference Manual—528615-001
15-27

Utility Routines Checkpoint Considerations for Saved Message
Utility Routines
Checkpoint Considerations for Saved Message
Utility Routines

In an HP FORTRAN program the storage space for saved messages is not directly
accessible. When a NonStop process needs to change or delete any saved messages,
a checkpoint list is required. The checkpoint list is a programmer-declared FORTRAN
array where the saved message changes are recorded.

You must transmit the information contained in a checkpoint list to the backup of a
process pair just as you would transmit the value of any critical variable by using the
FORTRAN CHECKPOINT statement. The control list specifier, CPLIST, is recognized
in the CHECKPOINT statement as the optional checkpoint list item.

You can provide any number of CPLIST specifiers in a single CHECKPOINT
statement. The checkpoint list can include other control list items that are legal for the
FORTRAN CHECKPOINT statement; for example:

CHECKPOINT (CPLIST = cplist1, UNIT = 3) item1, item2

FORTRAN interprets CPLIST1 as a checkpoint list and checkpoints the information it
contains as well as the values of item1 and item2. FORTRAN adds checkpoint
information to the list whenever a routine modifies a saved message. After a
checkpoint, the information in CPLIST1 is “emptied”. Its storage space is then available
to record further message changes.

If you want changes to saved messages to be checkpointed, you must furnish a
complete checkpoint list array. The list is an INTEGER*4 array. For information about
how to declare CPLIST, see the CHECKPOINT Statement on page 7-15.

The required number of INTEGER*4 array elements depends on the number of
operations the list must record prior to a checkpoint. This number varies depending on
the routine. The description of the cplist parameter for each SMU routine specifies
the maximum number of elements required for this array.

The first value in the DATA list must be one less than the length of the checkpoint list
array. The second value must be zero. There are 101 elements in the above array. The
first value is 100.

Table 15-5. The Portions of the Startup Message
Portion Name Type Identifies
VOLUME Text Default volume and subvolume names

IN Text Input file name

OUT Text Output file name

STRING Text The startup message’s parameter string (the text
that follows the RUN option list)
FORTRAN Reference Manual—528615-001
15-28

Utility Routines ALTERPARAMTEXT Routine
You need to supply a complete checkpoint list only if a program has a backup that
must be kept current. When a record of the changes to saved messages is not
required, the cplist parameter is 0. For example:

INTEGER*2 noncplist

DATA noncplist / 0 /

You can avoid saturating the checkpoint list and causing a routine failure by declaring
large list arrays and checkpointing the information regularly.

Your program must not modify directly the contents of a checkpoint list. The SMU
routines and the logic that supports the FORTRAN CHECKPOINT statement maintain
checkpoint lists without the need for program action.

The checkpoint list should not be allocated memory space in such a way that it can be
de-allocated between the time you save information in it and the time you send it to the
backup process. That is, your program should allocate the checkpoint list statically
rather than dynamically. The easiest way to do this is to put the checkpoint list array in
a common block or name it in a DATA or SAVE statement. The preceding examples
use DATA statements.

ALTERPARAMTEXT Routine
The ALTERPARAMTEXT routine creates or replaces a parameter value for the
specified PARAM, with text from a string variable. Unlike the PUTPARAMTEXT routine,
ALTERPARAMTEXT provides for parameter values with trailing spaces.

result

is an integer variable in which ALTERPARAMTEXT returns the result of the
operation. See Considerations on page 15-30.

portion

is a character expression that specifies the name of the PARAM whose text is
altered. The string value must be a legal PARAM name.

In the value of portion, the first unused character position, if any, must be a
blank. Any characters including and following a blank are ignored.

text

is a character expression whose value is stored in the specified PARAM.

cplist

is a checkpoint list in which ALTERPARAMTEXT records the changes made to the
message storage data space. ALTERPARAMTEXT uses a maximum of six

result = ALTERPARAMTEXT (portion, text, cplist, size)
FORTRAN Reference Manual—528615-001
15-29

Utility Routines ALTERPARAMTEXT Routine
elements in cplist. For additional detail, see the Checkpoint Considerations for
Saved Message Utility Routines on page 15-28.

size

is an integer expression whose value is the number of characters in text to use as
the new PARAM parameter value. size must be a non-negative integer that is
less than or equal to 255.

Considerations
ALTERPARAMTEXT returns the following values:

Example
?GUARDIAN ALTERPARAMTEXT

INTEGER error

CHARACTER*20 oldparam, newparam

READ (9,*) oldparam

READ (*,*) newparam

error = ALTERPARAMTEXT (oldparam, newparam, 0, 5)

Return Value Meaning
≥0 size characters of text were assigned as the new parameter

value.

-1 A failure due to a logic problem. The message is unchanged.
Possible logic errors are:

• The portion value is not correct.

• The size value is negative or exceeds 255.

• The total length of the new PARAM message exceeds the
maximum.

• The contents of the checkpoint list parameter are inconsistent.

-2 Insufficient checkpoint list space to complete the operation. The
message is unchanged.

-3 Insufficient message storage space to complete the operation. The
message is unchanged.
FORTRAN Reference Manual—528615-001
15-30

Utility Routines CHECKLOGICALNAME Routine
CHECKLOGICALNAME Routine
The CHECKLOGICALNAME routine checks whether a saved ASSIGN message with a
given logical file name exists. It also returns the message serial number associated
with the saved ASSIGN message.

result

is an integer variable in which CHECKLOGICALNAME returns the result of the
operation. See Considerations.

logicalname

is a character expression of up to 63 characters that specifies the program unit
name and the logical file name in one of the following two forms:

programunit.filename

*.filename

If the logical file name does not include the program unit name component, specify
only the file name. In either case logicalname cannot have leading spaces. Any
character including and following a blank is ignored.

Considerations
Values returned by CHECKLOGICALNAME:

result = CHECKLOGICALNAME (logicalname)

Return Value Meaning
<0 The negated message number of a previously saved ASSIGN

message with a logical file name that conflicts with the one
supplied. The logical file names conflict if only one is qualified or
if one is qualified by “*” and the other is qualified by a program
name. If there are more than one conflicting saved ASSIGN
messages, the negative of the message number of the first
ASSIGN message located is returned.

0 An ASSIGN message containing the specified logical file name
does not exist.

>0 Is the message number of the saved ASSIGN message with the
logical file name that matches the one supplied.
FORTRAN Reference Manual—528615-001
15-31

Utility Routines CHECKMESSAGE Routine
Example
?GUARDIAN CHECKLOGICALNAME

INTEGER error

error = CHECKLOGICALNAME ('*.programs')

CHECKMESSAGE Routine
The CHECKMESSAGE routine determines whether a specific message exists or
reports the number of the highest-numbered saved ASSIGN message.

result

is an integer variable in which CHECKMESSAGE stores its result. See
Considerations.

messagenumber

is an integer expression that identifies the specific ASSIGN message to check. The
value for messagenumber must be a positive integer, 0, -1 or -3.

Considerations
• Saved ASSIGN messages

Each saved ASSIGN message is identified by a positive integer. messagenumber
refers to the integer value given to the specific message when it was saved. The
set of numbers associated with the ASSIGN messages are integers from 1 to n,
where n is normally the greatest number of ASSIGN messages saved during the
initial process creation. You can specify the following values for the
CHECKMESSAGE routine:

• Values returned by CHECKMESSAGE

If messagenumber is zero, result is zero if there are no saved ASSIGN
messages. Otherwise, result is the number of the highest-numbered saved
ASSIGN message.

result = CHECKMESSAGE (messagenumber)

Value Meaning
-3 Checks for the presence of a saved PARAM message

-1 Checks for the presence of a saved startup message

0 Returns the highest message number in the set of saved ASSIGN
messages

>0 Checks for the presence of a saved ASSIGN message with the
same number as the message supplied
FORTRAN Reference Manual—528615-001
15-32

Utility Routines CREATEPROCESS Routine
If messagenumber is nonzero, result is zero if the specified message number
does not exist, or is the value associated with messagenumber if the message
does exist.

Example
?GUARDIAN CHECKMESSAGE

INTEGER result

result = CHECKMESSAGE (15)

CREATEPROCESS Routine
The CREATEPROCESS routine starts a new process according to user-specified
parameters. It can also send process creation messages to the new process according
to the option parameter specifications.

result

is an integer variable in which CREATEPROCESS returns the result of the
operation. See Considerations on page 15-34.

programfile

is a character expression whose value is the program file name for the new
process.

processname

is a character expression whose value is the name of the new process. Normally,
the first six characters are significant and must be a standard Guardian process
name: the first character must be a dollar sign ($), the second character must be
alphabetic and any remaining characters must be alphanumeric. The minimum
number of characters allowed is two, including the dollar sign. The value can be all
blanks to indicate that no name is supplied.

option

is an integer expression that indicates which process creation messages are
required by the new process. Its value must be 0, 1, 2, 3 or 8, 9, 10, 11. See
Considerations on page 15-34.

priority

is an integer expression that specifies the priority of the new process. If its value is
zero, the new process has the same priority as the creator process.

result = CREATEPROCESS (programfile, processname,

 option, priority, processor, memory, processid)
FORTRAN Reference Manual—528615-001
15-33

Utility Routines CREATEPROCESS Routine
processor

is an integer expression that specifies the processor (0 to 15) in which to run the
new process. If processor is negative, the new process executes in the same
processor as the creator process.

memory

is an integer expression that specifies how many memory pages to allocate for the
new process. If memory is zero, the number of memory pages in the new process
is the value specified in the program file from which the new process is created.

processid

is an INTEGER*2 array with at least four elements that contains the process
identification of the new process.

Considerations
• Values returned by CREATEPROCESS

• Option values for CREATEPROCESS

Normally, if a class one error (undefined externals) occurs while FORTRAN
attempts to create the new process, the new process is stopped. An application
can force creation of the new process by adding 8 to the normal option value (8

Return Value Meaning
0 Successful creation.

1 Required parameter is missing or illegal.

2 Illegal program file name.

3 Input file name, output file name, or default volume name
cannot be converted to network form.

10–255 Guardian file-system error.

256– NEWPROCESS error.

Option Value Meaning
0 Sends copies of all saved ASSIGN, PARAM, and startup messages

from the creator process. If no saved startup message exists, a
standard message is sent which specifies that the volume and
subvolume, IN-file, and OUT-file are those of the creator process
and the message parameter string is a null string.

1 Sends a copy of the saved startup message from the creator
process. If no saved startup message exists, a standard message is
sent as described above.

2 Sends a standard startup message.

3 Sends no messages; the new process is not opened by the creator
process.
FORTRAN Reference Manual—528615-001
15-34

Utility Routines DELETEASSIGN Routine
instead of 0, 9 instead of 1, ... 11 instead of 3). CREATEPROCESS returns the
class one error result although the new process is created. The value 8 indicates
that undefined externals are not considered an error.

• Opening an unnamed process

If you omit the processname parameter or if it is all blanks, the system creates a
process identification in timestamp format, and CREATEPROCESS returns this in
its processid parameter if present. However, this is an integer array, not a
character string, and therefore cannot be used in the FILE specifier of a FORTRAN
OPEN statement. It can be used as the file name argument to a Guardian
procedure that opens files, but if you want to use FORTRAN I/O statements to
send messages to the new process via its $RECEIVE file, you must supply a
processname parameter when you call CREATEPROCESS and then use the
same character value in a FILE specifier in the OPEN statement for the new
process.

Example
?GUARDIAN CREATEPROCESS

INTEGER created

INTEGER*2 newid(4)

CHARACTER*6 newprocess

newprocess = '$newpr'

created = CREATEPROCESS (games, newprocess, 1, 0,

 & -5, 0, newid)

DELETEASSIGN Routine
The DELETEASSIGN routine deletes a part or all of an ASSIGN message.

result

is an integer variable in which DELETEASSIGN returns the result of the operation.
See Considerations.

portion

is a character expression that identifies the particular part of the message to
delete. The string value must be a legal parameter value defined for the ASSIGN
message. The first unused character position of portion, if any, must be a blank.
Any characters including and following a blank are ignored.

result = DELETEASSIGN
′ *ALL* ′
portion

, cplist, messagenumber

FORTRAN Reference Manual—528615-001
15-35

Utility Routines DELETEASSIGN Routine
You cannot delete the message portion value associated with LOGICALNAME.

'*ALL*'

specifies that FORTRAN delete the entire ASSIGN message.

cplist

is a checkpoint list in which DELETEASSIGN records the changes to the message
storage data space. DELETEASSIGN uses a maximum of three elements in
cplist. For additional detail, see the Checkpoint Considerations for Saved
Message Utility Routines on page 15-28.

messagenumber

is an integer expression that identifies a specific ASSIGN message to delete.
messagenumber must be a positive integer, 0, -1, or -3.

Considerations
Values returned by DELETEASSIGN

Example
?GUARDIAN DELETEASSIGN

INTEGER error

error = DELETEASSIGN ('RECSIZE', 0, j)

Return Value Meaning
0 The specified ASSIGN message or message portion is deleted.

-1 A failure occurred due to a logic error. Nothing is deleted. Possible
logic errors are:

• portion is not correct or does not identify a part of the
ASSIGN message that can be deleted.

• messagenumber is not a positive integer.

• The contents of the checkpoint list parameter are inconsistent.

-2 Insufficient checkpoint list space is available to complete deletion;
the message is unchanged.
FORTRAN Reference Manual—528615-001
15-36

Utility Routines DELETEPARAM Routine
DELETEPARAM Routine
The DELETEPARAM routine deletes specific parts of or an entire PARAM message.

result

is an integer variable in which DELETEPARAM returns the result of the operation.
See Considerations.

portion

is a character expression that identifies the particular part of the message to
delete. The string value must be a legal parameter name defined for the PARAM
message. The first unused character position, if any, in portion must be a blank.
Any characters including and following a blank are ignored.

'*ALL*'

specifies that FORTRAN delete the entire PARAM message.

cplist

is a checkpoint list in which DELETEPARAM records the changes to the message
storage data space. DELETEPARAM uses a maximum of three elements in
cplist. For additional detail, see the Checkpoint Considerations for Saved
Message Utility Routines on page 15-28.

Considerations
Values returned by DELETEPARAM

result = DELETEPARAM

Return Value Meaning
0 The specified PARAM message or message portion is deleted.

-1 A failure occurred due to a logic error. The message is not deleted.
Possible logic errors are:

• The portion value is not correct.

• The contents of the checkpoint list parameter are inconsistent.

-2 Insufficient checkpoint list space is available to complete the deletion.
The message is unchanged.

′ *ALL* ′
portion

, cplist

FORTRAN Reference Manual—528615-001
15-37

Utility Routines DELETESTARTUP Routine
Example
?GUARDIAN DELETEPARAM

INTEGER error

error = DELETEPARAM ('*ALL*', 0)

DELETESTARTUP Routine
The DELETESTARTUP routine deletes an entire startup message.

result

is an integer variable in which DELETESTARTUP returns the result of the
operation. See Considerations.

'*ALL*'

specifies that the entire startup message is to be deleted.

cplist

is a checkpoint list in which DELETESTARTUP records the changes to the
message storage data space. DELETESTARTUP uses a maximum of three
elements in cplist. For additional detail, see the Checkpoint Considerations for
Saved Message Utility Routines on page 15-28.

Considerations
Values returned by DELETESTARTUP

Example
?GUARDIAN DELETESTARTUP

INTEGER error

error = DELETESTARTUP ('*ALL*' , 0)

result = DELETESTARTUP ('*ALL*' , cplist)

Return Value Meaning
0 The message is deleted.

-1 Indicates a failure due to a logic error. Nothing is deleted. Possible
logic errors are:

• The portion string value is not correct.

• The contents of the checkpoint list parameter are inconsistent.

-2 Insufficient checkpoint list space is available to complete the deletion.
The message is unchanged.
FORTRAN Reference Manual—528615-001
15-38

Utility Routines GETASSIGNTEXT Routine
GETASSIGNTEXT Routine
The GETASSIGNTEXT routine retrieves a specified part of an ASSIGN message as
text and assigns it to a string variable. The assignment is done according to the
FORTRAN rules for a CHARACTER variable assignment.

result

is an integer variable in which GETASSIGNTEXT returns the result of the
operation. See Considerations on page 15-40.

portion

is a character expression with a value of 'LOGICALNAME', 'TANDEMNAME' or
'*ALL*' that specifies the part of the ASSIGN message to retrieve. The first unused
character position of portion, if any, must be a blank. Any characters including
and following a blank are ignored.

You can specify '*ALL*' to retrieve the entire ASSIGN message.

text

is a character variable into which the retrieved message text is placed.

If the value of portion is 'LOGICALNAME', the text contains the program unit
name and the logical file name, formatted as “programunit.filename”, and can have
a maximum of 63 characters. If the logical name part does not include the program
unit name component, the text is just “filename”.

If the value of portion is 'TANDEMNAME', the text is the HP file name and can
have a maximum of 34 characters. The name can be all blanks.

If the value of portion is '*ALL*', the text contains the entire ASSIGN message.
The maximum length of text in this case is 108 characters. Note that text can
be a RECORD name, which FORTRAN treats as a character variable with a length
equal to the sum of the length of its components.

messagenumber

is an integer constant, variable, or expression that identifies the specific ASSIGN
message from which to retrieve text. messagenumber must be a positive integer.

result = GETASSIGNTEXT (portion, text, messagenumber)
FORTRAN Reference Manual—528615-001
15-39

Utility Routines GETASSIGNVALUE Routine
Considerations
• Values returned by GETASSIGNTEXT

• If you do not name GETASSIGNTEXT in a GUARDIAN directive, you must enclose
messagenumber in back slashes so that it will be passed by value.

Example
?GUARDIAN GETASSIGNTEXT

INTEGER error

CHARACTER *63 new name

error = GETASSIGNTEXT ('LOGICALNAME', new name, 2)

GETASSIGNVALUE Routine
The GETASSIGNVALUE routine retrieves a specified part of an ASSIGN message as
an integer and assigns it to a numeric variable.

result

is an integer variable in which GETASSIGNVALUE returns the result of the
operation. See Considerations on page 15-41.

portion

is a character expression that identifies the particular part of the message to
retrieve. The string value must be the name of an ASSIGN message portion that
has an integer value. The first unused character position in portion, if any, must
be a blank. Any characters including and following a blank are ignored.

Return Value Meaning
≥0 A non-negative value (zero or a positive integer) indicates a string of

that many characters, before truncation or padding, is returned to text.
GETASSIGNTEXT returns zero if the file name is all blanks and you
request TANDEMNAME.

-1 Indicates a failure due to a logic error. Nothing is returned in text.
Possible logic errors are:

• messagenumber is not a positive integer.

• The specified message does not exist.

• LOGICALNAME or TANDEMNAME does not identify the defined
text part of an ASSIGN message, or identifies a portion that does
not exist in the specified message.

result = GETASSIGNVALUE (portion, val, messagenumber)
FORTRAN Reference Manual—528615-001
15-40

Utility Routines GETBACKUPCPU Routine
'LOGICALNAME' and 'TANDEMNAME' are not acceptable portion values for
GETASSIGNVALUE.

val

is the integer variable into which the retrieved value is placed.

messagenumber

is an integer expression that identifies a specific ASSIGN message from which
GETASSIGNVALUE retrieves values. messagenumber must be a positive integer.

Considerations
Values returned by GETASSIGNVALUE

Example
?GUARDIAN GETASSIGNVALUE

INTEGER error, value

error = GETASSIGNVALUE ('RECSIZE', value, 12)

GETBACKUPCPU Routine
The GETBACKUPCPU routine retrieves a backup CPU number from the PARAM
message of a FORTRAN program. This routine’s operation depends on a saved
PARAM message with a parameter name BACKUPCPU having a digit string value.
GETBACKUPCPU is especially intended for PATHWAY users.

result

is an integer variable in which GETBACKUPCPU returns the result of the
operation. If a BACKUPCPU parameter exists and its value is an integer in the
range 0 through 98, expressed in decimal, that value is returned. Otherwise, the
integer value 99 is returned.

Return Value Meaning
0 The specified portion value is returned to val.

-1 Indicates a failure due to a logic error; nothing is returned to val.
Possible logic errors are:

• The message number is not a positive integer.

• The specified message does not exist.

• The portion parameter is not correct, does not identify a defined
integer part of the ASSIGN message, or identifies a part that does
not exist in the specified message.

result = GETBACKUPCPU ()
FORTRAN Reference Manual—528615-001
15-41

Utility Routines GETPARAMTEXT Routine
Example
?GUARDIAN GETBACKUPCPU

INTEGER existcpu

existcpu = GETBACKCPU ()

GETPARAMTEXT Routine
The GETPARAMTEXT routine obtains a specified part of the PARAM message as text
and assigns it to a string variable. The assignment is done according to the FORTRAN
rules for a CHARACTER variable assignment.

result

is an integer variable in which GETPARAMTEXT returns the result of the
operation. See Considerations.

portion

is a character expression that identifies the particular part of the message to
retrieve. The string value must be a legal parameter name for the PARAM
message. The first unused character position in portion, if any, must be a blank.
Any characters including and following a blank are ignored.

You can specify '*ALL*' for portion to obtain the entire PARAM message. See
Considerations.

text

is the character variable or RECORD into which the retrieved message text is
placed. The text returned from a specific PARAM message parameter is the value
associated with that parameter name.

Considerations
• Values returned by GETPARAMTEXT

result = GETPARAMTEXT (portion, text)

Return Value Meaning
≥0 Indicates a string of result characters, before truncation or

padding, is returned to text. If the parameter value is a null
string, a zero is returned.

-1 Indicates a failure due to a logic error, nothing is returned in
text. Possible logic errors are:

• The PARAM message does not exist.

• portion is not correct or identifies a parameter that
does not exist in the PARAM message.
FORTRAN Reference Manual—528615-001
15-42

Utility Routines GETSTARTUPTEXT Routine
• PARAM message length

The maximum size of the PARAM message is 1028 bytes, but a character variable
in FORTRAN cannot have more than 255 characters. If the PARAM message is
more than 255 characters, you can declare text as a RECORD, as shown in the
following example:

RECORD text

INTEGER*2 msgcode, numparams

RECORD param (0: 1023)

CHARACTER*1 byte

END RECORD

END RECORD

If the FORTRAN program allocates a text variable or RECORD that is smaller than
the PARAM message read, the PARAM message is truncated. If the program
allocates a text larger than the PARAM message, trailing blanks are provided.

Example
?GUARDIAN GETPARAMTEXT

INTEGER error

CHARACTER * 20 string, oldparam

READ (*,*) string

error = GETPARAMTEXT (string, oldparam)

GETSTARTUPTEXT Routine
The GETSTARTUPTEXT routine obtains a specified part of the startup message as
text and assigns it to a string variable. The assignment is done according to the
FORTRAN rules for CHARACTER assignment.

result

is an integer variable in which GETSTARTUPTEXT returns the result of the
operation. See Considerations on page 15-44.

portion

is a character expression with a value of 'VOLUME', 'IN', 'OUT', or 'STRING' that
identifies the particular part of the message to retrieve.

The first unused character position of portion, if any, must be a blank. Any
characters including and following a blank are ignored.

result = GETSTARTUPTEXT (portion , text)
FORTRAN Reference Manual—528615-001
15-43

Utility Routines GETSTARTUPTEXT Routine
text

is a character variable or RECORD into which the retrieved message text is
placed. See Considerations.

Considerations
• Values returned by GETSTARTUPTEXT

• Text values for GETSTARTUPTEXT

If you specify 'VOLUME', text contains the default node, volume, and subvolume
names, formatted as

\ node.$ volume. subvol

and can have a maximum of 25 characters. If the volume part does not include the
node name component, text contains $volume. subvol.

If you specify 'IN', text is the input file name and can have a maximum of 34
characters. The name can be all blanks.

If you specify 'OUT', text is the output file name and can have a maximum of 34
characters. The name can be all blanks.

If you specify 'STRING', text is the startup message’s parameter string, not
including trailing null characters. It can be a maximum of 526 characters. You can
use a RECORD name as text to circumvent the limit of 255 characters for a
character variable.

Example
?GUARDIAN GETSTARTUPTEXT

INTEGER error

CHARACTER * 25 old volume

error = GETSTARTUPTEXT ('VOLUME', old volume)

Return Value Meaning
≥0 A non-negative value (zero or positive integer) indicates a string of

that many characters, before truncation or padding, is returned to
text. For IN or OUT, if the file name is all blanks, a zero is
returned. For STRING, if the value is a null string, a zero is
returned.

-1 Indicates a failure due to a logic error; nothing is assigned to text.
Possible logic errors are:

• The startup message does not exist.

• The portion value is not correct or does not identify a defined
part of the startup message.
FORTRAN Reference Manual—528615-001
15-44

Utility Routines PUTASSIGNTEXT Routine
PUTASSIGNTEXT Routine
The PUTASSIGNTEXT routine creates or replaces a specified text part of an ASSIGN
message with text obtained from a string variable.

result

is an integer variable in which PUTASSIGNTEXT returns the result of the
operation. See Considerations.

portion

is a character expression with a value of 'LOGICALNAME' or 'TANDEMNAME' that
identifies the particular part of the message to replace. The first unused character
position of portion, if any, must be a blank. Any characters including and
following a blank are ignored.

text

is a character data item containing the replacement text for the ASSIGN message.
See Considerations.

cplist

is a checkpoint list in which PUTASSIGNTEXT records the changes to the
message storage data space. PUTASSIGNTEXT uses a maximum of six elements
in cplist. For additional detail, see the Checkpoint Considerations for Saved
Message Utility Routines on page 15-28.

messagenumber

is an integer expression that specifies the ASSIGN message into which the new
text is placed. messagenumber must be a positive integer.

Considerations
• Results returned by PUTASSIGNTEXT

PUTASSIGNTEXT returns an integer value that indicates the result of the
operation. If the specified ASSIGN message does not exist, PUTASSIGNTEXT
attempts to create one containing the supplied portion for text and default values
for all other message parts. PUTASSIGNTEXT returns -1, -2, or -3 if the operation
fails.

result = PUTASSIGNTEXT(portion, text, cplist, messagenumber)
FORTRAN Reference Manual—528615-001
15-45

Utility Routines PUTASSIGNTEXT Routine
The following table shows the meaning of the integer return values:

• The ASSIGN message creation succeeds if space is available for both text and
the checkpoint message, the requested portion is the logical name, and the
requested logical file name does not conflict with that of another saved ASSIGN
message. All other parts are marked “not present in this message”.

• Text values returned for PUTASSIGNTEXT

If you specify 'LOGICALNAME', text contains the program unit name and the
logical file name, formatted as “programunit.filename”, and can have a maximum of
63 characters. If the logical name part does not include the program unit name
component, the text is just “filename”.

If you specify 'TANDEMNAME', text contains the HP file name and can have a
maximum of 34 characters. The name can be all blanks. If it includes a node
name, it must be a node known to the node on which your program runs.

Return Value Meaning
≥0 A string of that many characters is assigned as the new message

part value. For TANDEMNAME, PUTASSIGNTEXT returns zero if
text is a null string.

-1 A failure due to a logic error. The message is unchanged. Possible
logic errors are:

• The portion value is not correct or does not identify a defined
text part of the ASSIGN message.

• The text string is not acceptable: either the logical file name or
the HP file name is incorrect.

• messagenumber is not a positive integer.

• The requested logical file name conflicts with the logical file
name of another saved ASSIGN message.

• The contents of the checkpoint list parameter are inconsistent.

• The specified ASSIGN message does not exist and the portion
parameter is not LOGICALNAME.

-2 Insufficient checkpoint list space to complete the operation. The
message is unchanged.

-3 Insufficient message storage space to complete the operation. The
message is unchanged.
FORTRAN Reference Manual—528615-001
15-46

Utility Routines PUTASSIGNVALUE Routine
Example
?GUARDIAN PUTASSIGNTEXT

INTEGER error

CHARACTER* 20 new name

READ (*,*) new name

error = PUTASSIGNTEXT ('TANDEMNAME', new name, 0, 10)

PUTASSIGNVALUE Routine
The PUTASSIGNVALUE routine creates or replaces a specified numeric part of an
ASSIGN message with the value obtained from an integer variable.

result

is an integer variable in which PUTASSIGNVALUE returns the result of the
operation. See Considerations on page 15-48.

portion

is a character expression that identifies the particular part of the message to
replace. The string value must be the name of an ASSIGN message portion that
has an integer value. The first unused character position of portion, if any, must
be a blank. Any characters including and following a blank are ignored.

'LOGICALNAME' and 'TANDEMNAME' are not acceptable portion values for
PUTASSIGNVALUE.

value

is an integer expression whose value PUTASSIGNVALUE stores in the ASSIGN
message.

cplist

is a checkpoint list in which PUTASSIGNVALUE records the changes to the
message storage data space. PUTASSIGNVALUE uses a maximum of six
elements in cplist.For additional detail, see the Checkpoint Considerations for
Saved Message Utility Routines on page 15-28.

messagenumber

is an integer expression that identifies a specific ASSIGN message into which the
new value is placed. messagenumber must be a positive integer.

result = PUTASSIGNVALUE(portion, value, cplist,
messagenumber)
FORTRAN Reference Manual—528615-001
15-47

Utility Routines PUTPARAMTEXT Routine
Considerations
Results returned by PUTASSIGNVALUE

Example
?GUARDIAN PUTASSIGNVALUE

INTEGER error, new value

READ (*,*) new value

error = PUTASSIGNVALUE ('SECEXT', new value , 0, 3)

PUTPARAMTEXT Routine
The PUTPARAMTEXT routine creates or replaces a specified part of the PARAM
message with text obtained from a string variable.

result

is an integer variable in which PUTPARAMTEXT returns the result of the operation.
See Considerations on page 15-49.

portion

is a character expression that identifies the particular part of the message to
replace. The string value must be a legal parameter name for the PARAM

Return Value Meaning
0 value is assigned as the new value of the requested message

portion.

-1 Indicates a failure due to a logic error. The message is unchanged.
Possible logic errors are:

• The portion value is not correct or does not identify a defined
integer part of the ASSIGN message.

• The integer value supplied is not acceptable for the specified part
of the ASSIGN message.

• The messagenumber is not a positive integer.

• The specified message does not exist. A non-existent message
must be created by the PUTASSIGNTEXT routine.

• The contents of cplist are inconsistent.

-2 Insufficient checkpoint list space to complete the operation. The
message is unchanged.

-3 Insufficient message storage space to complete the operation. The
message is unchanged.

result = PUTPARAMTEXT (portion , text , cplist)
FORTRAN Reference Manual—528615-001
15-48

Utility Routines PUTPARAMTEXT Routine
message. The first unused character position of portion, if any, must be a blank.
Any characters including and following a blank are ignored.

text

is a character variable or RECORD containing the replacement text for the PARAM
message.

cplist

is a checkpoint list in which PUTPARAMTEXT records the changes to the
message storage data space. PUTPARAMTEXT uses a maximum of six elements
in cplist. For additional detail, see the Checkpoint Considerations for Saved
Message Utility Routines on page 15-28.

Considerations
• If the PARAM message does not exist, PUTPARAMTEXT attempts to create one

containing the supplied parameter name and value. The PARAM message creation
is successful if both message space and cplist space are available. The new
message contains only the parameter name and value supplied to
PUTPARAMTEXT.

• Values returned by PUTPARAMTEXT

Return Value Meaning
≥0 Indicates a string of that many characters is replaced as the new

parameter value. A zero is returned if the parameter value supplied is
all blanks.

-1 A failure occurred due to a logic error. The message is unchanged.
Possible logic errors are:

• The portion value is not correct.

• he new parameter value string exceeds 255 characters.

• The total length of the new PARAM message exceeds the
maximum.

• The contents of cplist are inconsistent.

-2 Insufficient checkpoint list space to complete the operation. The
message is unchanged.

-3 Insufficient message storage space to complete the operation. The
message is unchanged.
FORTRAN Reference Manual—528615-001
15-49

Utility Routines PUTSTARTUPTEXT Routine
Example
?GUARDIAN PUTPARAMTEXT

INTEGER error

CHARACTER*100 new text, old text

READ (9,*) new text

error = PUTPARAMTEXT (old text, new text, 0)

PUTSTARTUPTEXT Routine
The PUTSTARTUPTEXT routine creates or replaces a specified part of the startup
message with text obtained from a string variable.

result

is an integer variable in which PUTSTARTUPTEXT returns the result of the
operation. See Considerations.

portion

is a character expression that identifies the particular part of the message to
replace. The string value must be a legal parameter name defined for the startup
message. The first unused character position of portion, if any, must be a blank.
Any character including and following a blank is ignored.

text

is a character variable or RECORD containing the replacement text for the startup
message. See Considerations.

cplist

is a checkpoint list in which PUTSTARTUPTEXT records the changes to the
message storage data space. PUTSTARTUPTEXT uses a maximum of six
elements in cplist. For additional detail, see the Checkpoint Considerations for
Saved Message Utility Routines on page 15-28.

result = PUTSTARTUPTEXT (portion , text , cplist)
FORTRAN Reference Manual—528615-001
15-50

Utility Routines PUTSTARTUPTEXT Routine
Considerations
• If the startup message does not exist, PUTSTARTUPTEXT attempts to create one

containing the requested text portion and default values for all other message
parts.

• Text values for PUTSTARTUPTEXT

If you specify 'VOLUME', text contains the default node, volume, and subvolume
names, formatted as:

\node.$volume.subvol

and contains a maximum of 25 characters. If the volume part does not include the
node name component, text is just $volume.subvol.

If you specify 'IN', text contains the input file name and can have a maximum of
34 characters. The file name can be all blanks.

If you specify 'OUT', text is the output file name and can have a maximum of 34
characters. The file name can be all blanks.

If you specify 'STRING', text contains the startup message’s parameter string, not
including trailing null characters, and can have a maximum of 526 characters. You
can use a RECORD name for text to circumvent the limit of 255 characters for
the length of a character variable.

• Results returned for PUTSTARTUPTEXT

Return Value Meaning
≥0 A non-negative value (zero or positive integer) indicates a string of

that many characters is replaced as the new message part value.

For IN or OUT, if the file name supplied is all blanks, a zero is
returned. For STRING, if the value supplied is all blanks, a zero is
returned.

-1 Indicates a failure due to a logic error. The message is unchanged.
Possible logic errors are:

• The portion value is not correct or does not identify a defined
part of the startup message.

• The text string value is not acceptable The node name, volume
name, subvolume name, or file name is illegal; or you specified
an unknown node name or a message parameter string exceeds
526 characters.

• The contents of cplist are inconsistent.

-2 Indicates insufficient checkpoint list space to complete the operation.
The message is unchanged.

-3 Indicates insufficient message storage space to complete the
operation. The message is unchanged.
FORTRAN Reference Manual—528615-001
15-51

Utility Routines PUTSTARTUPTEXT Routine
The startup message creation is successful if both message space and cplist
space are available. The new message contains the message part assigned. All
other message parts are set to their default values. The default values for
VOLUME, IN, and OUT are taken from those of the current program. The default
value for the message parameter string is a null string.

Example
?GUARDIAN PUTSTARTUPTEXT

INTEGER error

CHARACTER * 8 outfile

READ (*, *) outfile

error = PUTSTARTUPTEXT ('OUT', outfile, 0)
FORTRAN Reference Manual—528615-001
15-52

16 Fault-Tolerant Programming
Topics covered in this section include:

When you design an application, you must decide which processes in the application
need to be fault tolerant. A fault-tolerant process actually consists of two processes: a
primary process and a backup process.

If the primary process fails or the processor in which it is running fails, the backup
process takes over the tasks being performed by the primary process and continues
running your program.

Fault-tolerant processes are said to be either NonStop processes or persistent
processes. Both NonStop processes and persistent processes are implemented as
pairs of Guardian processes. FORTRAN treats all process pairs as NonStop
processes.

For each process pair, one process is designated as the primary process, the other as
the backup process. During normal processing, the primary process performs all the
tasks for your program. The backup process does not duplicate the work of the primary
process. System routines, however, transfer information specified by the primary
process to the data areas of the backup process.

A NonStop process is designed such that if its primary process fails, its backup
process has enough of the state of the primary process that the backup process can
continue running your program with minimal impact on a user at a terminal. Even data
at a terminal might be retained in the terminal itself.

A persistent process also runs as a process pair but the primary process sends the
backup process only enough information to enable the backup process to take over
processing if the primary process fails. The backup process, however, does not hold all
the state of the primary process. You might want to use persistent processes if:

• You are depending on TMF to protect your transactions and you do not need a
backup process to maintain the integrity of your application.

• You do not want any processor time given to managing a backup process, however
minimal the extra time might be.

• You want to ensure that the application is always available at a terminal. For
example, if you run a terminal without a command interpreter, a persistent process
ensures that you always have an application screen displayed on your terminal,

Topic Page
Assigning a Process Name 16-2

Processes 16-3

Process Pairs 16-3

Overview of Fault- Tolerant Programs 16-4

Checkpointing 16-6

Starting a New Backup Process 16-12
FORTRAN Reference Manual—528615-001
16-1

Fault-Tolerant Programming Assigning a Process Name
even if the primary process fails. You might, however, have to reenter data,
reinitialize your environment, and so forth.

To run a fault-tolerant process, your program must:

• Be a named process

• Execute a START BACKUP statement to create a backup process

• Execute CHECKPOINT statements to send data to the backup process

• Specify the NONSTOP directive if you specify the ENV COMMON directive

• Not specify the NONSTOP OFF TACL PARAM if you compiled your program with
ENV COMMON

The FORTRAN run-time library performs all other tasks needed to support
fault-tolerant operation for your process.

Assigning a Process Name
A fault-tolerant program consists of two separate processes (both created from the
same object program) running in two separate processors. Both the primary process
and the backup process have the same process name.

You can assign a process name to a process by:

• Specifying the run-time NAME option with a five-character name preceded by a
dollar ($) sign; for example:

1> RUN program/NAME $nsprc/

• Using a system-assigned name by specifying the NAME run-option without giving
a specific name; for example:

1> RUN program/IN file1, OUT file2, NAME/

• Specifying the RUNNAMED compiler directive:

?RUNNAMED

• Using the D-series Binder to set the RUNNAMED attribute in an object file:

SET RUNNAMED ON

For more information about the RUNNAMED compiler directive, see Section 10,
Compiler Directives.

For more information about Binder support for the RUNNAMED attribute, see the
Binder Manual.
FORTRAN Reference Manual—528615-001
16-2

Fault-Tolerant Programming Processes
Processes
A program is a static set of instruction codes and initialized data. It can be represented
as source statements, such as a FORTRAN program, or as an object program or a run
unit consisting of machine instructions and initialized data. A process is the constantly
changing states of a running program. You can run multiple copies of the same
program file concurrently. Each execution of the program constitutes a separate
process.

A process consists of:

• A code area that contains the instruction codes to execute; all processes that
execute the same program file in the same processor share the same code area.

• A data area that contains the program’s variables and temporary storage; each
process has its own data area.

• A process ID assigned by the operating system.

• A process control block (PCB), which is used by the operating system to control
execution; the PCB contains pointers to the code and data areas, information on
the current status of the process, and pointers to files opened by the process.

Process Pairs
A process can recover from any hardware failure except a failure of the processor in
which it is running. Therefore, a fault-tolerant process consists of a primary process
and a backup process—called a process pair.

A process pair consists of two executions of the same object program. The primary
process runs in one processor and the backup process runs in another.

Checkpoint messages, sent periodically from the primary process to the backup
process, keep the backup process informed of the status of the primary process and
the data with which it is operating. If the backup process receives a system message
notifying it of the failure of its primary process or the processor in which the primary
process was running, the backup process takes over the role of the primary process
and continues executing instructions, beginning with the FORTRAN statement that
follows the most recent checkpoint that established a takeover point. (All
CHECKPOINT statements do not establish a takeover point.)
FORTRAN Reference Manual—528615-001
16-3

Fault-Tolerant Programming Overview of Fault- Tolerant Programs
Overview of Fault- Tolerant Programs
The following actions occur when you run a fault-tolerant program:

• The primary process opens the initial set of files required for its operation.

• The primary process starts its backup process in another processor by executing a
START BACKUP statement. START BACKUP, in addition to starting the backup
process, sends the backup checkpoint information for files open in the primary
process. Process pairs open files in a way that permits both members of the pair to
access the file. For disk files opened in this way, a record lock or file lock specified
by the primary process is equivalent to a lock by the backup.

• The backup process, at the start of its execution, automatically begins monitoring
the primary process. The backup proceeds no further unless a failure occurs.

• The primary process begins executing its main processing loop. At critical points in
the loop (for example, just before write operations to disk files), the primary
process executes CHECKPOINT statements to send program state and file control
data to the backup process and establish takeover points for the backup. A
takeover point is established in the backup process by the most recently executed
CHECKPOINT statement that does not specify STACK='NO'. OPEN and CLOSE
statements also establish takeover points in the backup unless you specify STACK
= 'NO' for those statements.

A program can contain many CHECKPOINT statements. You usually code
CHECKPOINT statements so as to ensure that logical groupings of data are
preserved in the backup process.

For example, you frequently execute a CHECKPOINT statement immediately
before you execute a WRITE statement so that if the WRITE statement fails, or the
processor in which your primary runs fails, all the processing up to the point of the
WRITE statement is preserved in the backup process. If the backup process takes
over processing, the first statement it executes is the WRITE statement for which it
has all the information it needs. Here is an example:

Primary process:

...

CHECKPOINT

WRITE(6, 100) r, s

Primary’s processor fails, backup takes over:

CHECKPOINT <-- Backup does NOT re-execute

WRITE(6, 100) r, s <-- Backup begins HERE by re-

 executing the WRITE statement
FORTRAN Reference Manual—528615-001
16-4

Fault-Tolerant Programming Overview of Fault- Tolerant Programs
• The START BACKUP statement does not establish a takeover point. You must
execute a CHECKPOINT statement that does not specify STACK = 'NO' to
establish a takeover point.

• If the primary process, or the processor in which it runs, fails, the backup process
begins executing instructions at the most recent takeover point. (Takeover points
are described earlier within this subsection.) The backup process becomes the
new primary process.

• In some cases, FORTRAN starts a new backup process in the former primary’s
processor. Under some circumstances, however, FORTRAN either does not or
cannot start a new backup process. For example, if the processor in which the
primary process was running is down, FORTRAN cannot start a new backup
process in that processor and returns backup status 102. If the primary process
has failed more than ten times, FORTRAN does not start a new backup process.
Table 7-10 in Section 7, Statements lists the backup status codes.

If FORTRAN returns a backup status code that indicates that it has not started a
new backup process, your program must execute a START BACKUP statement if
you want to continue running as a NonStop process.

Figure 16-1 on page 16-6 illustrates a typical fault-tolerant application. The backup
process remains in the monitor state while the primary is operational. If the primary
fails, the backup leaves the monitor loop and begins executing instructions at the most
recently established takeover point.
FORTRAN Reference Manual—528615-001
16-5

Fault-Tolerant Programming Checkpointing
Checkpointing
In general, you need to checkpoint the following types of information:

• Individual data entities (usually file buffers, but can be any data items desired)

• File “sync blocks” (these contain control information about the current status of a
disk file—for example, the current values of the file pointers—or a process file)

• RECEIVE

When a CHECKPOINT statement executes in the primary process, FORTRAN formats
the information to checkpoint and sends it to the backup process in an interprocess
message. The backup process automatically receives and processes the message.

FORTRAN checkpoints information to the backup process when the backup process is
created, when an OPEN or CLOSE statement is executed, and when you access a file
without having explicitly opened the file. FORTRAN implicitly opens a file if you
reference the file in an I/O statement without having opened it. As part of the implicit
open, FORTRAN checkpoints information to your backup process. The checkpoint
specifies STACK = 'YES'. Therefore, an implicit open establishes a takeover point.

Figure 16-1. Fault-Tolerant Processing

VST1601.vsd

Primary Process

OPEN files

STARTBACKUP process

READ entry from terminal

READ record from disk

CHECKPOINT

update record in memory

WRITE updated record to disk

Backup Process

monitor primary

takeover by
backup

READ entry from terminal

READ record from disk

update record in memory

CHECKPOINT

WRITE updated record to disk

The backup process monitors the primary process while the primary runs. If
the primary cannot continue running—for example, it fails or the processor in
which it is running fails—the backup process leaves the monitor state and
takes over running your program by executing the instructions that
immediately follow the last CHECKPOINT executed by the primary process.
FORTRAN Reference Manual—528615-001
16-6

Fault-Tolerant Programming Checkpointing File Buffers
The location of checkpoint statements in your program depends on the requirements of
your application. As a general rule, you include a CHECKPOINT statement just before
a WRITE statement to a disk file or to $RECEIVE; a server process might execute a
checkpoint statement after reading from $RECEIVE. It is essential to checkpoint before
any nonretryable I/O operation, but which operations can be repeated and which
cannot depends on the application’s task and the program logic.

A retryable operation is one that can be repeated any number of times and yield the
same result each time; read operations generally fall into this category. A nonretryable
operation is one that cannot be trusted to yield the same result if it is repeated; write,
rewrite, and delete operations generally fall into this category.

Checkpointing File Buffers
The primary purpose of checkpointing file data buffers is to give the backup process all
the information it needs to reexecute an I/O request if the primary fails. Usually, data
buffer checkpointing occurs just before the data is written.

You can also use data buffer checkpointing to eliminate the need for the backup
process to reexecute an I/O request. Terminal input is an example of this: The data is
checkpointed on receipt to reduce the chance of the operator’s having to reenter it.

Checkpointing File Status Information
When a CHECKPOINT statement specifies a unit or file number, the system passes
the current status of the file to the file system that is running in the backup process’s
processor. If you specify a SYNCDEPTH greater than zero when you open the file, the
file’s status includes a system-assigned unique identification number for each I/O you
execute for the file. If your primary process fails and the backup process—which
begins executing instructions at the previous takeover point—re-executes an already
completed I/O operation, the receiving process of your I/O request does not reexecute
the request but, instead, returns the same reply that it has saved from the original I/O
request.

The following code is typical of a server process. The server reads a requester’s
message from $RECEIVE, executes one or more I/O operations to a file, and returns a
reply to the requester. The server might contain statements such as the following:
FORTRAN Reference Manual—528615-001
16-7

Fault-Tolerant Programming Checkpointing File Status Information
COMMON request_msg, db_record

CHARACTER*132 reply_msg

OPEN (UNIT=1,FILE='$RECEIVE')

OPEN (UNIT=2,FILE='employee',SYNCDEPTH=5)

START BACKUP (BACKUPSTATUS=ierr)

 ...

10 READ (UNIT=1) request_msg

CHECKPOINT(UNIT=1, UNIT=2,STACK='YES') request_msg,

 process request, generate a DB record and a reply

CHECKPOINT(UNIT=1, UNIT=2,STACK='YES') db_record

WRITE (UNIT=2) db_record

WRITE (UNIT=1) reply_msg

GO TO 10

Requesters and Servers
In the preceding code, there are two separate files to consider: $RECEIVE and the
disk file EMPLOYEE. The server opens both $RECEIVE and the EMPLOYEE file.
Because unit 2, the disk file, specifies SYNCDEPTH = 5, the system must remember
the completion status of up to five nonretryable requests for EMPLOYEE—for
example, any WRITE requests.

After opening units 1 and 2, the server reads $RECEIVE to obtain REQUEST_MSG,
which contains a request and any data needed by the server. Next, the server
checkpoints the file status information for the files associated with units 1 and 2, the
data stack from the initial stack marker to the top of the stack (STACK='YES'), and
REQUEST_MSG. The server must specifically name REQUEST_MSG in the
CHECKPOINT statement because REQUEST_MSG is in a common block and,
therefore, is not checkpointed as part of the stack. The server then processes the
request and executes a stack checkpoint that includes a disk record (DB_RECORD).
The reply to the requester (REPLY_MSG) is also checkpointed because it is in the
stack. Finally, the server writes the database record (DB_RECORD), writes the reply
(REPLY_MSG) to $RECEIVE, and branches to the top of its read loop to read the next
request.
FORTRAN Reference Manual—528615-001
16-8

Fault-Tolerant Programming Checkpointing File Status Information
The preceding code is easier to understand if you consider the following:

• A process, A, that opens a second process, B, and sends requests to B is, by
definition, a requester.

• A process, C, that receives requests for services from another process, B, is, by
definition, a server.

• A process is often both a requester and a server. In the text that follows, you will
see that the preceding code is a server, for example B, to requesters, A. As a
server, the preceding code receives requests from $RECEIVE. In addition, the
preceding code is, itself, a requester, B, to another server, C. As a requester, the
preceding code opens a disk file, EMPLOYEE, and sends requests to the disk
process, which, in this context, is a server.

There is no fundamental end to such a list. An application can have numerous
processes that each, in turn, act as both requester and server.

Server processes can support fault tolerance in two senses.

• A server can run as a NonStop process so that the server can continue running,
even if its primary process fails.

• A server can support NonStop requester processes, so that if the requester’s
primary process fails, the server correctly processes duplicate requests that it
receives from the requester’s backup process following the takeover by the
backup.

NonStop Server Processes
When a server’s primary process fails, its backup begins executing your program at the
FORTRAN instruction that immediately follows the last stack checkpoint. This could be
after a FORTRAN CHECKPOINT, OPEN, or CLOSE statement or after any I/O
statement that implicitly opens a unit.

Managing $RECEIVE
The FORTRAN run-time library in the former backup, now the primary, recognizes that
a takeover has occurred and discards each message that it has read from $RECEIVE
but to which it has not yet replied. If the old primary failed before it wrote its reply to
$RECEIVE, the request failed, and the file system automatically redirects the request
to the new primary (assuming the server was opened with SYNCDEPTH greater than
zero). If the old primary failed after it wrote its reply to $RECEIVE, that request was
complete and nothing more need be done. (The file system redirects a requester’s
messages only a limited number of times, typically less than three.)

The new primary then loops back to read a request from $RECEIVE: either the same
request that the old primary was processing when it failed or a new request.
FORTRAN Reference Manual—528615-001
16-9

Fault-Tolerant Programming Checkpointing $RECEIVE
Managing the Disk File
The new server primary might write to the disk up to five records that were already
written by the former primary. Because the server specified SYNCDEPTH=5 when it
opened the disk file, the disk process saves the replies to up to five write requests
since the last stack checkpoint. If the disk process receives a request to which it has
already responded, it returns the saved reply and does not do the actual I/O a second
time.

Supporting NonStop Requester Processes
If a fault-tolerant requester fails, its backup (now the new primary) can reissue the last
request. Because the server’s function (adding employee records) is not retryable, the
server must be prepared to recognize a duplicate request and resend the reply, rather
than redoing the operation. It accomplishes this by saving replies to messages it
receives from the requester. The server must save at least the number of reply
messages that the requester specified as its SYNCDEPTH parameter when it opened
the server. If a FORTRAN run-time library routine receives a duplicate request, it
returns the same reply message that it returned the first time it replied to the message.

If a server is running as a NonStop process, it must checkpoint the saved replies to its
backup process as well.

Checkpointing $RECEIVE
Because $RECEIVE is a dynamic file, naming $RECEIVE in a CHECKPOINT
statement signifies nothing in itself; it does, however, signal the FORTRAN run-time
support system that the next write operation via $RECEIVE will be a reply to a
nonretryable request, which must be saved for use in case of primary requester failure.

Checkpointing Large Amounts of Data
The maximum size of a checkpoint message is 32,500 bytes. The amount of user data
checkpointed in a checkpoint message is less than 32,500 bytes because the message
includes header and control information added by the system. If your application needs
to checkpoint more data than can fit in one checkpoint message, you must checkpoint
the data by executing multiple CHECKPOINT statements.

If you execute more than one CHECKPOINT statement to checkpoint your data to the
backup process, you must not establish a takeover point (by specifying STACK='YES')
until you have sent all the data to the backup process. Otherwise, the data in the
backup process might be inconsistent when a takeover occurs—that is, some of the
data in the backup might be from a previous takeover point, and other data might be
the data that you have just sent to the backup process.
FORTRAN Reference Manual—528615-001
16-10

Fault-Tolerant Programming Checkpointing Large Amounts of Data
For example, the following code shows how you might checkpoint a large array A
consisting of 100,000 bytes. A is allocated in extended memory:

DIMENSION A(100000)

10 CHECKPOINT (STACK='YES') global-data <-- Establish a

 takeover pt

15 CONTINUE

...

DO 20 I=1,4

20 CHECKPOINT (STACK='NO') part-of-array-A < -- Do not

 establish a

 takeover pt

30 CHECKPOINT (STACK='YES') global-data <-- Establish a

 takeover pt

Execution of the previous code proceeds as follows:

1. The CHECKPOINT statement at label 10 establishes a takeover point prior to
checkpointing the array A.

2. The CHECKPOINT statement at label 20—which is in a DO loop—transmits data
but does not establish a takeover point because it specifies STACK='NO'.

3. The CHECKPOINT statement labeled 30, following the DO-loop, establishes a new
takeover point because it specifies STACK = 'YES'.

If the primary fails at any point after executing the CHECKPOINT statement labeled 10
but before executing the CHECKPOINT statement labeled 30, the backup process
takes over at the CONTINUE statement labeled 15.

If the CHECKPOINT statement at label 20 had specified STACK = 'YES' and a failure
occurred before all of array A was transferred to the backup process, some of the
values in array A in the backup process would be left over from a previous checkpoint
of array A, but some of the values might be from the current transfer of array A.

For additional information on fault-tolerant processing, see the Guardian Programmer’s
Guide.
FORTRAN Reference Manual—528615-001
16-11

Fault-Tolerant Programming Starting a New Backup Process
Starting a New Backup Process
The following list describes the possible actions of the new primary process—formerly
the backup process—after a takeover from the former primary process as a result of
either a failure or a call to a Guardian routine to stop the process.

• If the former primary process called STOP or PROCESS_STOP_ and the START
BACKUP statement did not set bit 13 in its OPTION specifier, the backup process
also stops immediately.

• If there have been more than ten takeovers by the backup process, FORTRAN
does not start another backup process, and returns from the CHECKPOINT
statement with BACKUPSTATUS = 5000.

• If the START BACKUP statement had bit 11 set (recreate a backup process
immediately after a takeover) in its OPTION specifier, FORTRAN attempts to
create a new backup process in the former primary’s processor. If the takeover was
not caused by a processor failure and FORTRAN cannot start a new backup
process in the former primary processor, FORTRAN terminates your process.
Otherwise, it returns from the CHECKPOINT statement with BACKUPSTATUS =
100 or BACKUPSTATUS = 101.

• If the START BACKUP statement did not set bit 11 in its OPTION specifier,
FORTRAN allows the new primary process to run without a backup for a while, and
arranges for the next CHECKPOINT statement to attempt to create a new backup
process in the former primary’s processor. It then returns from the present
CHECKPOINT statement with BACKUPSTATUS = 100 or 101.

If the former primary’s processor failed, FORTRAN does not attempt to create a
new backup process, but only returns from the CHECKPOINT statement with
BACKUPSTATUS = 102.

When the FORTRAN run-time system cannot start a new backup process because the
former primary’s processor is down, the application program must implement one of
the following strategies:

• Run without a backup for the remainder of the program’s execution.

• Periodically execute a START BACKUP statement on the failed processor. This
could be done every time a CHECKPOINT statement returns BACKUPSTATUS =
1000 (backup CPU down).

• Execute a START BACKUP statement specifying a different processor.
FORTRAN Reference Manual—528615-001
16-12

A ASCII Character Set

Table A-1. ASCII Character Set (page 1 of 4)

Octal
Char Left Byte Right Byte Hex Dec Meaning
NUL 000000 000000 00 0 Null

SOH 000400 000001 01 1 Start of heading

STX 001000 000002 02 2 Start of text

ETX 001400 000003 03 3 End of text

EOT 002000 000004 04 4 End of transmission

ENQ 002400 000005 05 5 Enquiry

ACK 003000 000006 06 6 Acknowledge

BEL 003400 000007 07 7 Bell

BS 004000 000010 08 8 Backspace

HT 004400 000011 09 9 Horizontal tabulation

LF 005000 000012 0A 10 Line feed

VT 005400 000013 0B 11 Vertical tabulation

FF 006000 000014 0C 12 Form feed

CR 006400 000015 0D 13 Carriage return

SO 007000 000016 0E 14 Shift out

SI 007400 000017 0F 15 Shift in

DLE 010000 000020 10 16 Data link escape

DC1 010400 000021 11 17 Device control 1

DC2 011000 000022 12 18 Device control 2

DC3 011400 000023 13 19 Device control 3

DC4 012000 000024 14 20 Device control 4

NAK 012400 000025 15 21 Negative acknowledge

SYN 013000 000026 16 22 Synchronous idle

ETB 013400 000027 17 23 End of transmission
block

CAN 014000 000030 18 24 Cancel

EM 014400 000031 19 25 End of medium

SUB 015000 000032 1A 26 Substitute

ESC 015400 000033 1B 27 Escape

FS 016000 000034 1C 28 File separator

GS 016400 000035 1D 29 Group separator

RS 017000 000036 1E 30 Record separator
FORTRAN Reference Manual—528615-001
A-1

ASCII Character Set
US 017400 000037 1F 31 Unit separator

SP 020000 000040 20 32 Space

! 020400 000041 21 33 Exclamation point

" 021000 000042 22 34 Quotation mark

021400 000043 23 35 Number sign

$ 022000 000044 24 36 Dollar sign

% 022400 000045 25 37 Percent sign

& 023000 000046 26 38 Ampersand

' 023400 000047 27 39 Apostrophe

(024000 000050 28 40 Opening parenthesis

) 024400 000051 29 41 Closing parenthesis

* 025000 000052 2A 42 Asterisk

+ 025400 000053 2B 43 Plus

, 026000 000054 2C 44 Comma

- 026400 000055 2D 45 Hyphen (minus)

. 027000 000056 2E 46 Period (decimal point)

/ 027400 000057 2F 47 Right slash

0 030000 000060 30 48 Zero

1 030400 000061 31 49 One

2 031000 000062 32 50 Two

3 031400 000063 33 51 Three

4 032000 000064 34 52 Four

5 032400 000065 35 53 Five

6 033000 000066 36 54 Six

7 033400 000067 37 55 Seven

8 034000 000070 38 56 Eight

9 034400 000071 39 57 Nine

: 035000 000072 3A 58 Colon

; 035400 000073 3B 59 Semicolon

< 036000 000074 3C 60 Less than

= 036400 000075 3D 61 Equals

> 037000 000076 3E 62 Greater than

? 037400 000077 3F 63 Question mark

Table A-1. ASCII Character Set (page 2 of 4)

Octal
Char Left Byte Right Byte Hex Dec Meaning
FORTRAN Reference Manual—528615-001
A-2

ASCII Character Set
@ 040000 000100 40 64 Commercial at sign

A 040400 000101 41 65 Uppercase A

B 041000 000102 42 66 Uppercase B

C 041400 000103 43 67 Uppercase C

D 042000 000104 44 68 Uppercase D

E 042400 000105 45 69 Uppercase E

F 043000 000106 46 70 Uppercase F

G 043400 000107 47 71 Uppercase G

H 044000 000110 48 72 Uppercase H

I 044400 000111 49 73 Uppercase I

J 045000 000112 4A 74 Uppercase J

K 045400 000113 4B 75 Uppercase K

L 046000 000114 4C 76 Uppercase L

M 046400 000115 4D 77 Uppercase M

N 047000 000116 4E 78 Uppercase N

O 047400 000117 4F 79 Uppercase O

P 050000 000120 50 80 Uppercase P

Q 050400 000121 51 81 Uppercase Q

R 051000 000122 52 82 Uppercase R

S 051400 000123 53 83 Uppercase S

T 052000 000124 54 84 Uppercase T

U 052400 000125 55 85 Uppercase U

V 053000 000126 56 86 Uppercase V

W 053400 000127 57 87 Uppercase W

X 054000 000130 58 88 Uppercase X

Y 054400 000131 59 89 Uppercase Y

Z 055000 000132 5A 90 Uppercase Z

[055400 000133 5B 91 Opening bracket

\ 056000 000134 5C 92 Back slash

] 056400 000135 5D 93 Closing bracket

^ 057000 000136 5E 94 Circumflex

_ 057400 000137 5F 95 Underscore

` 060000 000140 60 96 Grave accent

Table A-1. ASCII Character Set (page 3 of 4)

Octal
Char Left Byte Right Byte Hex Dec Meaning
FORTRAN Reference Manual—528615-001
A-3

ASCII Character Set
a 060400 000141 61 97 Lowercase a

b 061000 000142 62 98 Lowercase b

c 061400 000143 63 99 Lowercase c

d 062000 000144 64 100 Lowercase d

e 062400 000145 65 101 Lowercase e

f 063000 000146 66 102 Lowercase f

g 063400 000147 67 103 Lowercase g

h 064000 000150 68 104 Lowercase h

i 064400 000151 69 105 Lowercase i

j 065000 000152 6A 106 Lowercase j

k 065400 000153 6B 107 Lowercase k

l 066000 000154 6C 108 Lowercase l

m 066400 000155 6D 109 Lowercase m

n 067000 000156 6E 110 Lowercase n

o 067400 000157 6F 111 Lowercase o

p 070000 000160 70 112 Lowercase p

q 070400 000161 71 113 Lowercase q

r 071000 000162 72 114 Lowercase r

s 071400 000163 73 115 Lowercase s

t 072000 000164 74 116 Lowercase t

u 072400 000165 75 117 Lowercase u

v 073000 000166 76 118 Lowercase v

w 073400 000167 77 119 Lowercase w

x 074000 000170 78 120 Lowercase x

y 074400 000171 79 121 Lowercase y

z 075000 000172 7A 122 Lowercase z

{ 075400 000173 7B 123 Opening brace

| 076000 000174 7C 124 Vertical line

} 076400 000175 7D 125 Closing brace

~ 077000 000176 7E 126 Tilde

DEL 077400 000177 7F 127 Delete

Table A-1. ASCII Character Set (page 4 of 4)

Octal
Char Left Byte Right Byte Hex Dec Meaning
FORTRAN Reference Manual—528615-001
A-4

B Syntax Summary
This appendix provides a syntax summary for FORTRAN Statements and Compiler
Directives on page B-12.

FORTRAN Statements
This subsection specifies the syntax of all FORTRAN statements.

Defines the value of an arithmetic, character, or logical entity.

Assigns the value of a statement label to an integer variable.

Backspaces one record in the file connected to the unit.

Designates the beginning of a block data subprogram.

Transfers control to the specified subroutine.

name =

ASSIGN label TO name

BACKSPACE

BLOCK DATA [subprog-name]

CALL subroutine-name [(arg [, arg]...)]

arithmetic rexp ession–

character ressionexp–

logical-expression

unit

unit
, IOSTAT=ios
, ERR=lbl

. . .

UNIT=unit
IOSTAT=ios
ERR=lbl

, UNIT=unit
, IOSTAT=ios
, ERR=lbl

 . . .

FORTRAN Reference Manual—528615-001
B-1

Syntax Summary FORTRAN Statements
dimension

is:

([lower:] upper [, [lower:] upper]...)

Defines a variable, array, symbolic constant, RECORD field, function, or dummy
procedure as character type.

cpt-spec

is one of the following:

BACKUPSTATUS = status

CPLIST = checkpoint-list

ERR = label

FILENUM = exp

STACK = stack

Establishes a takeover point for a backup process, or transfers the data and
environment information needed by a backup process or both.

close-spec

is one of the following:

[UNIT=] unit

ERR = label

IOSTAT = ios

STACK = stack

STATUS = status

Disconnects a file from a specified unit and specifies the status of the file after
disconnection.

CHARACTER [* len] name [dimension] [* len]
[, name [dimension] [* len]]...

CHECKPOINT

 [data [, data]...]

CLOSE (close-spec [, close-spec]...)

UNIT=[]unit , UNIT=unit°[] . . . , cpt spec–[] . . . ()

cpt spec , cpt spec–[] . . .–()
FORTRAN Reference Manual—528615-001
B-2

Syntax Summary FORTRAN Statements
Defines one or more areas of memory in which program units can share data.

dimension

is:

([lower:] upper [, [lower:] upper]...)

Specifies that the symbolic name of a constant, variable, array, RECORD field,
function, or dummy procedure is of type complex.

The execution of the CONTINUE statement has no effect. It is normally used as the
last statement of a DO loop.

Assigns initial values for variables, arrays, array elements, and substrings at compile
time.

dimension

is:

([lower:] upper [, [lower:] upper]...)

Declares an array and specifies the number of elements in each dimension of the
array.

Defines the beginning and end of a sequence of statements to execute repeatedly.

COMMON [/ [cb] /] list [[,] / [cb] / list]...

COMPLEX name [dimension] [, name [dimension]]...

CONTINUE

DATA list / data / [[,] list / data /]...

DIMENSION name dimension [, name dimension]...

DO label [,] var = iexp , fexp [, incr]
FORTRAN Reference Manual—528615-001
B-3

Syntax Summary FORTRAN Statements
dimension

is:

([lower:] upper [, [lower:] upper]...)

Specifies that the symbolic name of a constant, variable, array, RECORD field,
function, or dummy procedure is double precision type.

Identifies the end of a block of statements that was preceded by an IF or ELSE IF
statement, and the beginning of a block of statements to execute if all preceding IF and
ELSE IF tests were false. The block of statements introduced by the ELSE statement
must be followed by an END IF statement.

Identifies the end of a block of statements that was preceded by an IF or ELSE IF
statement, and the beginning of a block of statements to execute if all preceding IF and
ELSE IF tests were false. The block of statements introduced by the ELSE IF
statement can be followed by an another ELSE IF statement or by an END IF
statement.

Identifies the physical end of a program unit.

Identifies the end of a block of statements that was preceded by an IF, ELSE IF, or
ELSE statement. END IF terminates unconditionally a sequence of statements that
begins with an IF statement.

DOUBLE PRECISION name [dimension] [, name [dimension]
]...

ELSE

ELSE IF

END

END IF
FORTRAN Reference Manual—528615-001
B-4

Syntax Summary FORTRAN Statements
Writes an end of file as the next record of the file connected to the specified unit.

Provides an alternate entry point to a subroutine or function subprogram and allows
you to specify an alternate dummy argument list for the subprogram.

Specifies one or more sequences of variables (var-lists), each of which sequences
specifies two or more variables within a program unit that access the same area of
memory.

Identifies names of external procedures, thus enabling the names to be used as actual
arguments to subprograms.

Specifies a format for I/O operations.

Designates the beginning of a function subprogram.

Defines a statement function.

ENDFILE

ENTRY name [([dummy [, dummy]...])]

EQUIVALENCE (var-list) [, (var-list)]...

EXTERNAL proc-name [, proc-name]...

FORMAT ([format-list])

[type] FUNCTION func-name ([dummy [, dummy]...])

function-name ([dummy [, dummy]...]) = expression

unit

UNIT=[] unit , IOSTAT=ios[] , ERR=label°[]()

FORTRAN Reference Manual—528615-001
B-5

Syntax Summary FORTRAN Statements
Executes an unconditional transfer of control to the statement labeled label.

Executes a computed GO TO statement. Transfers control to the label whose position
in the list of labels corresponds to the value of exp.

Executes an assigned GO TO statement. Transfers control to the statement whose
label was assigned to ivar in a previously executed ASSIGN statement.

Executes an arithmetic IF statement. Transfers control to label1 if exp is less than
zero, to label2 if exp equals zero, to label3 if exp is greater than zero.

Executes a logical IF statement. If the logical expression exp is true, executes
statement. Otherwise, executes the next inline instruction.

Defines a block-IF statement. Defines one or more sequences of statements that are
conditionally executed based on the result of evaluating the exp expressions.

GO TO label

GO TO (label [, label]...) [,] exp

GO TO ivar [[,] (label [, label]...)]

IF (exp) label1, label2, label3

IF (exp) statement

IF (exp) THEN
 if-block
 [ELSE IF (exp) THEN
 if-block]...
 [ELSE
 if-block]
 END IF
FORTRAN Reference Manual—528615-001
B-6

Syntax Summary FORTRAN Statements
Specifies the default data type associated with the first character of a variable’s name.

inc-spec

is one of the following:

ACCESS = acc NAME = f

BLANK = blnk NAMED = nmd

DIRECT = dir NEXTREC = nr

ERR = label NUMBER = n

EXIST = ext OPENED = open

FORM = form RECL = reclen

FORMATTED = fmt SEQUENTIAL = seq

IOSTAT = ios UNFORMATTED = unf

Ascertains the properties of a file or the properties of the connection of a specified unit.

dimension

is:

([lower:] upper [, [lower:] upper]...)

Specifies the storage size and type of a symbolic constant, variable, array, RECORD
field, function, or dummy procedure name.

IMPLICIT type (char-list) [, type (char-list)]...

INQUIRE ([, inq-spec]...)

 name [dimension] [, name [dimension]]...

UNIT=[] unit
FILE=filename

INTEGER
INTEGER*2
INTEGER*4
INTEGER*8

FORTRAN Reference Manual—528615-001
B-7

Syntax Summary FORTRAN Statements
Identifies a name as representing an intrinsic function and enables the use of an
intrinsic function name as an actual argument.

dimension

is:

([lower:] upper [, [lower:] upper]...)

Defines a variable, array, symbolic constant, RECORD field, function, or dummy
procedure as logical type.

open-spec

is one of the following:

ACCESS = acc PROTECT = protect

BLANK = blnk RECL = recl

ERR = label SPACECONTROL = space

FILE = filename STACK = stack

FORM = form STATUS = stat

IOSTAT = ios SYNCDEPTH = sync

MODE = mode TIMED = time

Associates an existing file with a unit number, creates a new file and associates it with
a unit number, or changes certain attributes of an existing file.

Assigns a symbolic name to a constant value.

INTRINSIC function [, function]...

LOGICAL name [dimension] [, name [dimension]]...

OPEN ([UNIT=] unit [, open-spec]...)

PARAMETER (name = exp [, name = exp]...)
FORTRAN Reference Manual—528615-001
B-8

Syntax Summary FORTRAN Statements
Temporarily halts program execution and displays message if present.

position

is a position specifier in one of the following, mutually exclusive forms:

REC = recno

or

KEY = key, KEYLEN = exp, KEYID = kid, MODE = mode

[, COMPARELEN = clen] [, SKIPEXACT = skip]

Enables random access of structured files, either by record number or by specified
primary or alternate keys.

Writes data to the preconnected output unit, unit 6.

Assigns a symbolic name to the main program unit.

PAUSE [message]

POSITION ([UNIT=] unit [, IOSTAT = ios]
[, ERR = lbl], position)

PRINT format [, output-list]

PROGRAM program-name

READ
format , input list–[]
read spec , read spec–[]. . . –() input list–[]

FORTRAN Reference Manual—528615-001
B-9

Syntax Summary FORTRAN Statements
read-spec

is one of the following:

END = endlbl PROMPTLENGTH = plen

ERR = lbl REC = rec

[FMT=] format SOURCE = receive

IOSTAT = ios TIMEOUT = to

LENGTH = len [UNIT=] unit

LOCK = lock UPDATE = upd

PROMPT = message

Inputs data from a specified unit or file.

dimension

is:

([lower:] upper [, [lower:] upper]...)

Specifies that the symbolic name of a constant, variable, array, RECORD field,
function, or dummy procedure is of type real.

Defines a data structure that can include data of different types.

Terminates execution of a subprogram and returns control to the calling program unit.

REAL name [dimension] [, name [dimension]]...

RECORD record-name [([lower:] upper)]
[field-declaration]...
END RECORD

RETURN [iexp]
FORTRAN Reference Manual—528615-001
B-10

Syntax Summary FORTRAN Statements
Positions the file connected to the specified unit at its initial point.

Saves the status of specified entities after the termination of a subprogram.

start-spec

is one of the following:

BACKUPSTATUS = var

CPU = number

ERR = label

OPTION = int

Defines control options for fault-tolerant processing. Starts backup process, sends file
information to the backup process, checks file synchronization information, and
checkpoints all usable memory.

Terminates program execution and displays message if present.

REWIND

SAVE [name [, name]...]

START BACKUP [(start-spec [, start-spec]...)]

STOP [message]

unit

unit ,
IOSTAT=ios

ERR=lbl

. . .

UNIT=unit

IOSTAT=ios

ERR=lbl

 ,

UNIT=unit

IOSTAT=ios

ERR=lbl

 . . .

FORTRAN Reference Manual—528615-001
B-11

Syntax Summary Compiler Directives
Identifies the beginning of a subroutine subprogram.

write-spec

is one of the following:

ERR = lbl REC = recno

FMT= format REPLY = reply

IOSTAT = ios TIMEOUT = to

LENGTH = len UNLOCK = unlock

MSGNUM = msgno UPDATE = ipd

Outputs data to a specified unit.

Compiler Directives
This subsection specifies the syntax of all FORTRAN compiler directives.

Specifies compiler action if it cannot open a file referenced in a SOURCE or CONSULT
compiler directive.

Default is ABORT.

Specifies that the compiler ignore characters beyond position 72 of a source line.

Default is NOANSI.

SUBROUTINE name [(dummy [, dummy]...)]

WRITE ([UNIT=] unit [[, write-spec]...])
[output-item [, output-item]...]

[NO]ABORT

[NO]ANSI
FORTRAN Reference Manual—528615-001
B-12

Syntax Summary Compiler Directives
Verifies that the subscripts in each reference to an element of array are within the
bounds declared for the array.

Default is NOBOUNDSCHECK.

Lists the octal instruction codes generated for each program unit following the source
listing for that unit.

Default is NOCODE.

Specifies that FORTRAN treat all text beyond the specified column as comments in
each source line, beginning with the line that contains this directive.

Default is COLUMNS 132.

Specifies whether BINSERV should attempt to compact the code space of the target
file.

Default is NOCOMPACT.

consult-item

is

file-name [(proc-name [, proc-name]...)]

Declares procedures written in languages other than FORTRAN.

[NO]BOUNDSCHECK

[NO]CODE

COLUMNS number

[NO]COMPACT

CONSULT
consult item–

consult item , consult item–[] . . . –()

FORTRAN Reference Manual—528615-001
B-13

Syntax Summary Compiler Directives
identifier-class

is one of the following:

BLOCKS FUNCTIONS PROGLABELS

BLOCKDATAS GENERATE STMTFUNCSs

CONSTANTS INLINES UNREF

DUMMYPROCS LITERALS VARIABLES

FMTLABELS PROCEDURES

Generates cross-reference information for selected identifier classes.

Specifies the number of virtual memory pages to allocate for data storage.

Terminates the effect of a preceding IF or IFNOT directive that specifies the same
toggle number.

OLD specifies that the program use the C-series FORTRAN run-time library.

COMMON specifies that the program use the D-series FORTRAN run-time library. The
D-series run-time library uses features of the Common Run-Time Environment (CRE).

Saves compilation error messages in a disk file.

[NO]CROSSREF

DATAPAGES number

ENDIF toggle

ENV

ERRORFILE file-name

identifier class–

identifier class , identifier class–[] . . . –()

OLD

COMMON

FORTRAN Reference Manual—528615-001
B-14

Syntax Summary Compiler Directives
Sets the maximum number of errors for a compilation.

Default is ERRORS 100.

Instructs the compiler to use indexed indirect addressing to access simple variables in
common blocks.

Default is NOEXTENDCOMMON.

Generates code that uses doubleword addresses for parameters in CALL statements
and function references.

Default is NOEXTENDEDREF, unless you use the LARGECOMMON directive.

Instructs the compiler to omit some of the processing steps required to make an object
file runnable.

Default is FIXUP.

Includes a file map in the compiler’s listing.

Default is NOFMAP.

Declares procedures as Guardian procedures or as utility routines.

ERRORFILE number

[NO]EXTENDCOMMON

[NO]EXTENDEDREF

[NO]FIXUP

[NO]FMAP

GUARDIAN
procedure name–

procedure name , procedure name–[] . . . –()

FORTRAN Reference Manual—528615-001
B-15

Syntax Summary Compiler Directives
If ENV OLD is in effect, specifies the number of words to allocate for the run-time
buffer pool, #HIGHBUF, in upper data memory. If ENV COMMON is in effect, specifies
the size of the CRE internal buffer area, #CRE_HEAP. By default, #CRE_HEAP is
1,024 words.

Allocates common storage in upper data memory for specified common blocks.

Allocates I/O control blocks in upper data memory.

Default is NOHIGHCONTROL.

Specifies that this FORTRAN program unit can run at a PIN that is greater than 255.

Default is NOHIGHPIN.

Specifies that Guardian processes that run at high PINs can open this FORTRAN
program.

Default is NOHIGHREQ.

Lists the symbolic instruction codes generated for each program unit following the
source listing for that program unit.

Default is NOICODE.

HIGHBUFFER size

HIGHCOMMON

[NO]HIGHCONTROL

[NO]HIGHPIN

[NO]HIGHREQ

[NO]ICODE

block name–

block name , block name–
°[] . . . –()
FORTRAN Reference Manual—528615-001
B-16

Syntax Summary Compiler Directives
If the specified toggle is set, the IF directive processes the source lines that follow, up
to an ENDIF directive that specifies the same toggle number as the IF directive or to
the end of the source file.

If the specified toggle is reset, the IFNOT directive processes the following lines, up to
an ENDIF directive that specifies the same toggle number as the IFNOT directive or to
the end of the source file.

Establishes Inspect as the default debugger for the object file.

The Default is NOINSPECT.

Specifies the size of all subsequent entities in the source file declared explicitly or
implicitly as INTEGER (without an explicit size specification).

Allocates space for the specified common blocks in extended memory.

Allocates memory space in the object program’s extended data segment for local data.

IF toggle

IFNOT toggle

[NO]INSPECT

LARGECOMMON

LARGEDATA

INTEGER*2

INTEGER*4

INTEGER*8

block name–

block name , block name–[] . . . –()

item

item , item[] . . . ()
FORTRAN Reference Manual—528615-001
B-17

Syntax Summary Compiler Directives
Specifies the block size to reserve for dynamically-allocated variables specified in
LARGEDATA directives.

Establishes a default user library.

Specifies the number of lines the compiler writes to the listing file before issuing a page
skip.

Controls listing of source lines; enables the CODE, CROSSREF, ICODE, LMAP, MAP,
and PAGE directives.

Default is LIST.

Instructs BINSERV to pass load-map information to the compiler. The compiler lists the
load maps after its identifier map and cross-reference tables.

Default is LMAP ALPHA.

Specifies the size of all subsequent entities in the source file that are declared as type
logical.

LARGESTACK number

LIBRARY file-name

LINES number

[NO]LIST

[NO]LMAP
list option–

list option , list option–[] . . . –()

INTEGER*2

INTEGER*4

FORTRAN Reference Manual—528615-001
B-18

Syntax Summary Compiler Directives
Controls space allocated for the run-time buffer pool in lower data memory. If you
specify ENV COMMON, FORTRAN recognizes the LOWBUFFER directive but does
not allocate a #LOWBUFFER.

Lists, following each program unit’s source listing, a table of local identifiers for that
program unit. MAP also lists a table of entities in common storage following the last
program unit’s listing.

Default is MAP.

Specifies that you want your program to run as a NonStop process pair.

Default is NONONSTOP.

Ejects the current page of the list file, prints the specified character string at the top of
the next page, and skips two lines before resuming the listing.

Restores a directive to its original state from a push-down stack.

Includes or omits unreferenced identifiers in MAP listings.

Default is NOPRINTSYM.

LOWBUFFER size

[NO]MAP

[NO]NONSTOP

PAGE [" title"]

POP

[NO]PRINTSYM

directive

directive , directive[] . . . ()

FORTRAN Reference Manual—528615-001
B-19

Syntax Summary Compiler Directives
Saves the current state of a compiler directive in a push-down stack.

Specifies values for parameters that control the length of a reply, the number of
processes that can open this process, the number of messages that can be posted to
this process at any given time, the number of messages to be resent in the event of a
failure, and whether you want to receive system messages.

Resets one or more specified toggles. If you do not specify toggle, RESETTOG resets
all fifteen toggles. Toggles are specified by the numbers 1 through 15.

Specifies whether your program runs as a named process.

Default is NORUNNAMED.

save-spec

is one of the following:

STARTUP PARAM ASSIGNS ALL

Specifies which messages—start-up message, param messages, or assign
messages— you want FORTRAN to save so that your program can access them
dynamically.

PUSH

RECEIVE

RESETTOG [toggle [, toggle]...]

[NO]RUNNAMED

SAVE

directive

directive , directive[] . . . ()

receive spec–

receive spec , receive spec–[] . . . –()

save spec–

save spec , save spec–[] . . . –()

FORTRAN Reference Manual—528615-001
B-20

Syntax Summary Compiler Directives
Specifies whether Inspect should automatically create a save file if the program
terminates abnormally at run time.

Default is NOSAVEABEND.

Specifies a list of object files for BINSERV to search at compilation time for unsatisfied
external references.

Assigns a name to a section of a source file for use in a SOURCE directive in another
program.

Sets one or more specified toggles for use as conditional compilation controls. If no
toggle is specified, the compiler sets all fifteen toggles. Toggles are specified by the
numbers 1 through 15.

Directs the compiler to read source lines from the specified file, either from the
beginning of the file to the end of the file, or from the start of a specified section in the
file to the end of the section.

Specifies a process subtype for an object file.

Default is SUBTYPE 0.

[NO]SAVEABEND

SEARCH

SECTION section-name

SETTOG [toggle [, toggle]...]

SOURCE file-name [(section [, section]...)]

SUBTYPE number

file name–

file name , file name–[] . . . –()

FORTRAN Reference Manual—528615-001
B-21

Syntax Summary Compiler Directives
Overrides the effect of the LIST directive. If SUPPRESS is active, the compiler lists
only error messages and compilation statistics.

Default is NOSUPPRESS.

Specifies whether to include a symbol table in the object file for use by Inspect. You
must specify SYMBOLS to use source-level debugging.

Default is NOSYMBOLS.

Compiler scans source file for syntax errors but does not produce an object file.

Causes one or more units to exist and declares the properties of the file that will be
connected to the unit.

Lists compiler warning messages, regardless of the setting of the LIST directive.
NOWARN suppresses these messages.

Default is WARN.

[NO]SUPPRESS

[NO]SYMBOLS

SYNTAX

UNIT

[NO]WARN

u u–[]
 units , file[] , create spec–[] . . .()

FORTRAN Reference Manual—528615-001
B-22

C
Converting Programs to
HP FORTRAN

This appendix contains suggestions to help you convert a FORTRAN application
program that was not written for HP FORTRAN to the syntax and semantics of HP
FORTRAN.

• Comment lines

If the source program file has comments extending beyond column 72 of each line,
add the directive line

? ANSI

at the beginning of the file, so that HP FORTRAN will ignore all but the first 72
characters of each source line.

Some FORTRAN implementations permit comments on the same source line as
statements, but HP FORTRAN does not. Use an editor to move the comments to a
separate comment line. Begin each comment line with a “C” or an asterisk in
column 1.

• Storage allocation for integer, logical, and real data types

If the program follows the ANSI FORTRAN 77 rules for storage allocation (which
specify that variables of integer, logical, and real data types all occupy the same
amount of storage space), add the directive line

? INTEGER*4, LOGICAL*4

at the beginning of the source program file.

• Specifying variables for unit numbers

If the program uses variables for unit numbers in I/O statements, so that the unit
numbers do not “exist” as far as HP FORTRAN is concerned, add the directive line

? UNIT 1 - n

at the beginning of the source program file, where n is the highest unit number
used by the program. You might want to specify ranges of unit numbers, rather
than specifying the entire range of unit numbers, because FORTRAN allocates
space for a file control block for each unit that you specify in a unit directive.

• Mixing CHARACTER and other data types

Neither the ANSI FORTRAN 77 standard nor HP FORTRAN support mixing
variables of type CHARACTER with other data types in the same common block,
but some other FORTRAN systems allow such mixing as an extension to the
standard.
FORTRAN Reference Manual—528615-001
C-1

Converting Programs to HP FORTRAN
If you convert a program that uses a combination of CHARACTER and other data
types in the same common block, you can declare a RECORD in the common
block, and declare all the variables in the common block as components of the
RECORD. (HP FORTRAN allows mixing of CHARACTER and other data types
within a RECORD, since the entire RECORD feature is an HP extension.) If you do
this, you must also change all references to those variables so that they are
qualified by the RECORD name throughout all the executable statements of the
source program.

• User and extended data segments

In most computer systems, there is only one data area and all data addresses are
the same length. NonStop systems have two data areas, the user data segment
and the extended data segment, in which objects have 16-bit and 32-bit addresses,
respectively. You should allocate smaller and more frequently used data objects in
the user data segment for efficient access. Place larger and less frequently used
objects in the extended data segment where more executable instructions are
required to manipulate 32-bit addresses.

If a FORTRAN program’s data objects do not all fit into the user data segment
(where HP FORTRAN places them by default), you can add the directive line

? LARGECOMMON, LARGEDATA

at the beginning of the source program file. When the LARGECOMMON and
LARGEDATA directives are in effect, the FORTRAN compiler allocates all
COMMON blocks and all local data items larger than 256 bytes in the extended
data segment.

This is likely to make the recompiled object program much larger and somewhat
slower, but it should at least run. Following the general principle “First make it run
correctly, and then make it work better,” you can determine which common blocks
and local data items should be in which data area, based on their size and
frequency of usage. Then modify the LARGECOMMON and LARGEDATA
directives so the program makes optimal use of each data area.

• Allocation of local data objects

Most FORTRAN systems support only static allocation of local data objects. That
is, all variables and arrays are given run-time memory space when a program
begins execution, and remain allocated throughout execution of the program.

Because HP FORTRAN allows recursive procedure calls, local data objects are
normally allocated space on the run-time stack at the time their procedure is
entered, and their memory space is released when the procedure returns to its
caller. HP FORTRAN provides static allocation for all variables in common blocks
and for all local variables that are named in DATA statements or SAVE statements,
but it provides dynamic allocation for all other local variables to conserve run-time
memory space.
FORTRAN Reference Manual—528615-001
C-2

Converting Programs to HP FORTRAN
Dynamically allocated local variables do not retain their values between successive
invocations of their procedure. This can cause failure of some programs that
depend on such retention of local data values.

The ANSI FORTRAN 77 language includes a SAVE statement so that the
programmer can specify explicitly which variables must be allocated statically, but
many existing FORTRAN programs do not use the SAVE statement because it has
no effect on a system that allocates all variables statically anyway.

If you suspect that a program you are converting might have been written with the
assumption that all data is allocated statically, simply add a SAVE statement (with
no variable list) to every subprogram. A SAVE statement with no variable list
makes all variables in the subprogram static. You might want to be more selective
to avoid permanently allocating data space.

• Redefining LOGICAL*1 or BYTE data types

Some FORTRAN implementations include a LOGICAL*1 or BYTE data type, which
is treated as unsigned 8-bit integer data, as an extension to the ANSI FORTRAN
77 standard. HP FORTRAN does not support this feature. You can usually replace
references to LOGICAL*1 or BYTE data types with INTEGER*2, but you might
have to add references to the CHAR and ICHAR intrinsic functions when
combining data of types BYTE and CHARACTER.

• Redefining REAL*4 and REAL*8 data types

Some FORTRAN implementations include the data type designators REAL*4
(synonymous with REAL) and REAL*8 (synonymous with DOUBLE PRECISION)
as extensions to the ANSI FORTRAN 77 standard. To compile the program with
HP FORTRAN, use an editor to replace all occurrences of REAL*4 with REAL and
REAL*8 with DOUBLE PRECISION.

• Redefining COMPLEX*16 data types

Some FORTRAN implementations include the data type COMPLEX*16 (meaning
double-precision complex) as an extension to the ANSI FORTRAN 77 standard.
You can use an editor to replace COMPLEX*16 with COMPLEX to make the
program acceptable to HP FORTRAN, but of course this change will be
accompanied by loss of precision in the results computed by the program.

• Expressions that exceed 255 characters

The ANSI FORTRAN 77 standard does not specify the maximum length that a
standard-conforming processor must support for variables, array elements,
functions, constants, and expression values of type CHARACTER. Some
FORTRAN systems support up to 32,767 characters but HP FORTRAN supports a
maximum of 255 characters.

If this limitation is a problem, you can try declaring the variable as a RECORD with
components whose lengths total the required number of characters. HP FORTRAN
allows you to use a RECORD name without a following circumflex (^) and
FORTRAN Reference Manual—528615-001
C-3

Converting Programs to HP FORTRAN
component name, almost anywhere that you can use a type CHARACTER
variable.

• Special characters in symbolic names

Some FORTRAN implementations allow additional characters such as “$” in
symbolic names, as extensions to the ANSI FORTRAN 77 standard. You can
usually use an editor to replace all such characters with blanks or an underscore
character, to make the program acceptable to HP FORTRAN. Using an underscore
character might help avoid converting a variable whose name includes a “$” to an
already existing variable name that differs only in that it does not use a “$”.

• Record lengths

HP FORTRAN requires that all records in a file be the same length, or (for some
file types) be any length up to the maximum record length that is declared for the
file. Some FORTRAN implementations allow unformatted READ and WRITE
statements to have data lists of arbitrary length, with records of different lengths in
the same file, and possibly with some records exceeding the maximum physical
record length permitted by the host operating system. Programs that are
dependent on such a “segmented records” feature might be difficult to convert to
HP FORTRAN.

• Initializing data within a type declaration statement

Some FORTRAN implementations allow initialization of data within type declaration
statements. For example, the statement

REAL PI / 3.1415 9265 3589 7932 /

would be equivalent to the two ANSI FORTRAN 77 statements

REAL PI

DATA PI / 3.1415 9265 3589 7932 /

HP FORTRAN does not support this extension. You can use an editor to replace
such a statement with two statements, as illustrated above.

• Initializing variables in common blocks

The ANSI FORTRAN 77 standard and HP FORTRAN require that DATA
statements that initialize variables in common blocks appear only in BLOCK DATA
program units. Some FORTRAN implementations allow you to initialize data in
common blocks in any executable program unit as well. You must move all such
DATA statements into a separate BLOCK DATA program unit.

• Octal and hexadecimal constants in source code

The ANSI FORTRAN 77 standard makes no provision for octal or hexadecimal
constants in source code. HP FORTRAN supports octal constants written as
%nnnnnn as an extension to the standard. Other FORTRAN implementations also
allow octal and hexadecimal constants, but use a different notation from that of HP
FORTRAN Reference Manual—528615-001
C-4

Converting Programs to HP FORTRAN
FORTRAN. Use an editor to find all such occurrences and replace them with forms
that are acceptable to HP FORTRAN.

Some FORTRAN implementations also provide octal and hexadecimal conversions
in formatted I/O, again with a variety of syntaxes. HP FORTRAN provides octal and
hexadecimal conversions, but the HP-defined syntax might vary from the syntax
used in your program. Use an editor to find all such occurrences and replace them
with forms that are acceptable to HP FORTRAN.

• Converting ENCODE and DECODE statements

Some FORTRAN implementations support the ENCODE and DECODE statements
as extensions to the ANSI FORTRAN 66 standard. These were replaced in the
ANSI FORTRAN 77 standard by the “internal file” feature, that is, the use of a type
CHARACTER variable in place of the unit number in a READ or WRITE statement.
You can do likewise if you encounter any ENCODE or DECODE statements in
programs you are converting.

• Converting NAMELIST I/O

Some FORTRAN implementations support NAMELIST I/O as an extension to the
ANSI FORTRAN 66 standard. NAMELIST I/O was omitted from the ANSI
FORTRAN 77 standard because it was used so infrequently. NAMELIST I/O is not
included in HP FORTRAN. Programs that use this feature can be difficult to
convert to HP FORTRAN.

• Intrinsic functions and logical operators

Some FORTRAN implementations support the intrinsic functions AND, OR, XOR,
and COMPL, and/or the use of logical operators .AND., .OR., .XOR., and .NOT., to
perform bitwise masking operations on INTEGER or REAL values, as extensions
to the ANSI FORTRAN 66 standard. Neither ANSI FORTRAN 77 standard nor HP
FORTRAN support this capability. You can write TAL subprograms for the AND,
OR, XOR, and COMPL functions.

• Direct-access READ and WRITE statements

Some FORTRAN implementations support direct-access READ and WRITE
statements of the form

READ (u ' rn [, ERR = label]) datalist

WRITE (u ' rn [, ERR = label]) datalist

where u is an I/O unit number and

 rn is a record number,

as extensions to the ANSI FORTRAN 66 language. These were replaced in ANSI
FORTRAN 77 by the statement forms

READ (u, REC = rn [, ERR = label]) datalist

WRITE (u, REC = rn [, ERR = label]) datalist
FORTRAN Reference Manual—528615-001
C-5

Converting Programs to HP FORTRAN
HP FORTRAN supports the ANSI FORTRAN 77 form but not the obsolete
extension. If you encounter such statements in programs you are converting,
change them as shown above.

• Converting programs that read blocked tapes

If a program you are converting reads blocked tapes, you can either cause the
tapes to be copied to an unblocked file for use by a HP FORTRAN program, or
change the FORTRAN program to do its own unblocking of the tape records.

• Hollerith constant syntax

Some FORTRAN implementations allow Hollerith constants with single and double
quotation mark characters (' and ") as delimiters, as well as the nHcc...c notation
specified in an appendix to the ANSI FORTRAN 77 standard. HP FORTRAN
follows that appendix.

HP FORTRAN diagnoses all uses of the " character, but the ' character looks like a
character (not Hollerith) constant, so you will get an error message only if such a
constant is used in a way that is not allowed for character constants. Replace all
such Hollerith constants with the ANSI notation.

• Using Hollerith constants

Some FORTRAN implementations allow Hollerith constants anywhere that integer,
real, and double precision constants are allowed. HP FORTRAN follows the
appendix to the ANSI FORTRAN 77 standard that restricts Hollerith constants to
DATA and CALL statements.

Programs that use Hollerith constants outside of DATA and CALL statements might
be difficult to convert to HP FORTRAN. You must find all the Hollerith constants not
used in DATA and CALL statements, change them to character constants, and
change the declarations of all non-character variables used with them to type
character of the appropriate length. This change, however, might cause syntax
errors because other non-character variables are also used with those variables.
You might have to make many passes through the program, changing more
variables to type character, until you can compile your program without syntax
errors.
FORTRAN Reference Manual—528615-001
C-6

D
Data Type Correspondence and
Return Value Sizes

The following tables contain the return value size generated by HP language compilers
for each data type. Use this information when you need to specify values with the
Accelerator ReturnValSize option. These tables are also useful if your programs use
data from files created by programs in another language, or your programs pass
parameters to programs written in callable languages.

Refer to the appropriate NonStop SQL programmer’s guide for a complete list of SQL
data type correspondence. Also note that the return value sizes given in these tables
do not correspond to the storage size of SQL data types.

If you are using the Data Definition Language (DDL) utility to describe your files, you
might not need this table. For more information, refer to the Data Definition Language
(DDL) Reference Manual.

Note. COBOL includes COBOL 74, COBOL85, and SCREEN COBOL unless otherwise noted.

Table D-1. Integer Types, Part 1 (page 1 of 2)

8-Bit Integer 16-Bit Integer 32-Bit Integer
BASIC STRING INT

INT(16)
INT(32)

C char [1]
unsigned char
signed char

int
short
unsigned

long
unsigned long

COBOL Alphabetic
Numeric DISPLAY
Alphanumeric-Edited
Alphanumeric
Numeric-Edited

PIC S9(n) COMP or PIC
9(n) COMP without P or
V, 1≤ n≤ 4
Index Data Item [2]
NATIVE-2 [3]

PIC S9(n) COMP or PIC
9(n) COMP without P or
V, 5≤ n≤ 9
Index Data Item [2]
NATIVE-4 [3]

FORTRAN — INTEGER [4] INTEGER*2 INTEGER*4

Pascal BYTE
Enumeration,
unpacked,
≤ 256 members
Subrange, unpacked,
n…m, 0 ≤ n and m≤ 255

INTEGER
INT16
CARDINAL [1]
BYTE or CHAR value
parameter
Enumeration, unpacked,
> 256 members
Subrange, unpacked,
n…m, -32768 ≤n and m≤
32767, but at least n or m
outside 0…255 range

LONGINT
INT32
Subrange, unpacked
n…m, –2147483648 £ n
and m ≤ 2147483647,
but at least n or m
outside -32768…32767
range
FORTRAN Reference Manual—528615-001
D-1

Data Type Correspondence and Return Value Sizes
SQL CHAR NUMERIC(1)…NUMERI
C(4)
PIC 9(1) COMP…PIC
9(4) COMP
SMALLINT

NUMERIC(5)…NUMER
IC(9)
PIC 9(1) COMP…PIC
9(9) COMP
INTEGER

TAL STRING
UNSIGNED(8)

INT
UNSIGNED(16)

INT(32)

Return
Value Size
(Words)

1 1 2

[1] Unsigned Integer.
[2] Index Data Item is a 16-bit integer in COBOL 74 and a 32-bit integer in COBOL85.
[3] COBOL85 only.
[4] INTEGER is normally equivalent to INTEGER*2. The INTEGER*4 and INTEGER*8 compiler directives
redefine INTEGER.

Table D-2. Integer Types, Part 2

64-Bit Integer
Bit Integer of 1 to 31
Bits Decimal Integer

BASIC INT(64)
FIXED(0)

— —

C long long — —

COBOL PIC S9(n) COMP or PIC
9(n) COMP without P or V,
10 ≤ n ≤ 18
NATIVE-8 [1]

— Numeric DISPLAY

FORTRAN INTEGER*8 — —

Pascal INT64 UNSIGNED(n), 1 ≤ n ≤
16
INT(n), 1≤ n ≤ 16

DECIMAL

SQL NUMERIC(10)…NUMERI
C(18)
PIC 9(10) COMP…PIC
9(18) COMP
INTEGER

— DECIMAL (n,s)
PIC 9(n) DISPLAY

TAL FIXED(0) UNSIGNED(n), 1 ≤ n ≤
31

—

Return
Value Size
(Words)

4 1, 1 or 2 in TAL 1 or 2, depends on
declared pointer size

[1] COBOL85 only.

Table D-1. Integer Types, Part 1 (page 2 of 2)

8-Bit Integer 16-Bit Integer 32-Bit Integer
FORTRAN Reference Manual—528615-001
D-2

Data Type Correspondence and Return Value Sizes
Table D-3. Floating, Fixed, and Complex Types

32-Bit Floating 64-Bit Floating
64-Bit Fixed
Point 64-Bit Complex

BASIC REAL REAL(64) FIXED(s), 0 ≤s ≤18 —

C float double — —

COBOL — — PIC S9(n–s)v9(s)
COMP or
PIC 9(n–s)v9(s)
COMP, 10 ≤ n ≤18

—

FORTRAN REAL DOUBLE
PRECISION

— COMPLEX

Pascal REAL LONGREAL — —

SQL — — NUMERIC (n,s)
PIC 9(n-s)v9(s)
COMP

—

TAL REAL REAL(64) FIXED(s), -19 ≤s
≤1

—

Return
Value Size
(Words)

2 4 4 4

Table D-4. Character Types (page 1 of 2)

Character Character String
Varying Length
Character String

BASIC STRING STRING —

C signed char
unsigned char

pointer to char struct {
 int len;
 char val [n]
 };

COBOL Alphabetic
Numeric DISPLAY
Alphanumeric-Edited
Alphanumeric
Numeric-Edited

Alphabetic
Numeric DISPLAY
Alphanumeric-Edited
Alphanumeric
Numeric-Edited

01 name.
 03 len USAGE IS
NATIVE-2 [1]
 03 val PIC X(n).

FORTRAN CHARACTER CHARACTER array
CHARACTER*n

—

Pascal CHAR or BYTE value
parameter
Enumeration,
unpacked, ≤ 256
members
Subrange, unpacked
n…m, 0 ≤ n and m ≤ 255

PACKED ARRAY OF
CHAR
FSTRING(n)

STRING(n)
FORTRAN Reference Manual—528615-001
D-3

Data Type Correspondence and Return Value Sizes
SQL PIC X
CHAR

CHAR(n) PIC X(n) ARCHAR(n)

TAL STRING STRING array —

Return
Value Size
(Words)

1 1 or 2, depends on
declared pointer size

1 or 2, depends on
declared pointer size

[1] COBOL85 only.

Table D-5. Structured, Logical, Set, and File Types

Byte-
Addressed

Structure
Word-
Addressed
Structure

Logical
(true or
false) Boolean Set File

BASIC — MAP buffer — — — —

C — struct — — — —

COBOL — 01-level
RECORD

— — — —

FORTRAN RECORD — LOGICAL [1] — — —

Pascal RECORD,
byte-aligned

RECORD,
word-aligned

— BOOLEAN Set File

SQL — — — — — —

TAL Byte-
addressed
standard
STRUCT
pointer

Word-
addressed
standard
STRUCT
pointer

— — — —

Return
Value Size
(Words)

1 or 2,
depends on
declared
pointer size

1 or 2,
depends on
declared
pointer size

1 or 2,
depends on
compiler
directive

1 1 1

[1] LOGICAL is normally defined as 2 bytes. The LOGICAL*2 and LOGICAL*4 compiler directives redefine
LOGICAL.

Table D-4. Character Types (page 2 of 2)

Character Character String
Varying Length
Character String
FORTRAN Reference Manual—528615-001
D-4

Data Type Correspondence and Return Value Sizes
Table D-6. Pointer Types
Procedure
Pointer Byte Pointer Word Pointer

Extended
Pointer

BASIC — — — —

C function pointer byte pointer word pointer extended pointer

COBOL — — — —

FORTRAN — — — —

Pascal Procedure
pointer

Pointer, byte-
addressed
BYTEADDR

Pointer, byte-
addressed
WORDADDR

Pointer,
extended-
addressed
EXTADDR

SQL — — — —

TAL — 16-bit pointer,
byte-addressed

16-bit pointer,
word-addressed

32-bit pointer

Return Value
Size (Words)

1 or 2, depends
on declared
pointer size

1 or 2, depends
on declared
pointer size

1 or 2, depends
on declared
pointer size

1 or 2, depends
on declared
pointer size
FORTRAN Reference Manual—528615-001
D-5

Data Type Correspondence and Return Value Sizes
FORTRAN Reference Manual—528615-001
D-6

E Compiler Limits
This appendix summarizes the limits of the FORTRAN compiler.

• Symbolic names can be up to 31 characters long. FORTRAN discards characters
beyond the 31st. Therefore, the following two identifiers are the same:

abcdefghijklmnopqrstuvwxyz123456

abcdefghijklmnopqrstuvwxyz123457

• Executable programs

An executable program must have exactly one main program.

The object code for an executable program can have up to 16 memory segments
(65,536 words per segment) if you use a user library object file in addition to the
program file. If you do not use a user library, your program file can have up to 32
segments.

• Statements

A source statement can have one initial line and up to 19 continuation lines, or a
total of 20 lines per statement.

A source statement can be composed of up to 1,320 characters. (A statement
using columns 7 through 72 of each of 20 lines uses 1,320 characters.) A source
statement can contain more than 1,320 characters if you use columns beyond
column 72 to contain program text.

A computed GO TO statement can specify to 255 statement labels in its list.

• Subprograms

The object code for a single program unit can be up to 32,768 words, including all
executable instructions and read-only data such as constants and translated
FORMAT statements, but not including local variables and arrays.

A single program unit can contain up to 501 ASSIGN statements.

External subprograms can have up to 63 dummy arguments.

A subprogram that includes ENTRY statements can have up to 63 unique dummy
arguments; a dummy argument for more than one entry point in the same
subprogram is counted only once.

• Statement functions

A statement function can have any number of dummy arguments as long as the
dummy arguments do not require more than 31 words of storage. The space
required for each type of parameter is:
FORTRAN Reference Manual—528615-001
E-1

Compiler Limits
INTEGER*2 1 word

INTEGER*4 2 words

INTEGER*8 4 words

LOGICAL 1 word, or 2 words if LOGICAL*4
mode

REAL 2 words

DOUBLE PRECISION 4 words

COMPLEX 4 words

CHARACTER 1 word, or 2 words if EXTENDEDREF

 mode, regardless of the number of

 characters

• Data types

Character variables, array elements, functions, constants, and expression values
can be up to 255 characters in length.

The total size of a RECORD, or of each element of a RECORD array, can be up to
32,767 bytes.

RECORD declarations can be nested up to 15 deep, including the outermost
RECORD and the fields within the innermost RECORD.

A character expression that consists of a series of concatenated values can have
up to 64 such values.

• Arrays

A non-RECORD array can have up to seven dimensions. A RECORD, or an array
within a RECORD, can have at most one dimension.

The subscript bounds for each dimension of an array in the user data segment
must be in the range -32,768 through 32,767, and the total size of the array can be
up to 65,536 bytes. An array in the extended data segment can have subscript
bounds in the range -2,147,483,648 through 2,147,483,647, and a total size of up
to 133,693,140 bytes.

• Common blocks

A common block can contain either exactly one RECORD and no other variables,
or any number of non-RECORD variables and arrays.

The total number of common blocks an executable program can have is unlimited,
but no one program unit can declare more than 64 common blocks.

• Units and files
FORTRAN Reference Manual—528615-001
E-2

Compiler Limits
I/O unit numbers must be in the range 1 through 999. You can declare up to 128
different unit numbers in a compilation.

Data files can have record lengths up to 32,767 bytes, but for most file types the
limit is 4,096 bytes. Consult the ENSCRIBE Programmer’s Guide for details.

• Records in source files and listing files can be up to 132 characters long.

Source files referenced by a SOURCE compiler directive can include further
SOURCE compiler directives, up to a maximum nesting depth of six levels.

The compiler has other limits such as the symbol table size, the amount of data it
can store from DATA and FORMAT statements, and the number of external
procedures that you can define and reference in an entire compilation. These limits
cannot be expressed in a simple way because the internal table entries involved
are variable in length. For example, the size of a symbol table entry depends on
several factors including the length of the symbolic name and the number of
dimensions.

If the compiler issues an error message saying you have exceeded a compiler
table size limit, divide your source file into two or more smaller ones with fewer
program units in each, and then use separate compiler runs to compile the whole
program.
FORTRAN Reference Manual—528615-001
E-3

Compiler Limits
FORTRAN Reference Manual—528615-001
E-4

F
Compile-Time Diagnostic Messages

This appendix lists the FORTRAN 77 compiler diagnostic messages that FORTRAN
might report in the program listing. The compiler lists a diagnostic message
immediately after it detects the condition displayed; however, because an error might
be the result of an internal condition or an improper relationship between statements,
the message might not appear immediately following the statement that caused the
condition.

Compiler diagnostic messages are of two types: error messages, which indicate
conditions that are serious enough to prevent the creation of an object program, and
warning messages, which indicate conditions of less severity. The forms of the
compiler diagnostic messages are:

**** ERROR ***** message-text

and

**** WARNING ***** message text

FORTRAN tries to complete compilation after issuing a warning message but the
compiler must make assumptions about the situation that caused the warning in order
to continue. As a result, the compiled program might not be what you intended, even if
the compilation completes.

The entry for each warning message explains what FORTRAN does about the
situation that caused the warning. If you use a program from a compilation that
included a warning message, check the entry for the warning message to make sure
that the compiler’s action corresponded to what you intended. In most cases, you’ll
need to correct the program and recompile.

Topics covered in this section include:

The compiler’s error messages and warning messages are presented in alphabetical
order, with an explanation of the condition that caused FORTRAN to report each
message. For an error message, the recommended procedure to correct the error
condition is also given.

Topic Page
Error Messages F-2

Warning Messages F-34
FORTRAN Reference Manual—528615-001
F-1

Compile-Time Diagnostic Messages Error Messages
Error Messages

Cause. The PARAMETER statement requires a constant on the right of the
assignment operator.

Recovery. Correct the statement.

Cause. The upper or lower bound of an array that is not a dummy argument is a
variable.

Recovery. Change the adjustable dimension specification to a constant, or make the
array a dummy argument.

Cause. A type character variable or array that is not a dummy argument has a length
specification that is a variable.

Recovery. Change the adjustable length specification to a constant, or make the
character variable or array a dummy argument.

Cause. Evaluation of a constant expression at compilation time resulted in an
arithmetic overflow.

Recovery. Correct or rearrange the constant expression.

Cause. An EQUIVALENCE specification has forced an entity to precede the common
block in which it resides.

Recovery. Correct the EQUIVALENCE specification.

A CONSTANT IS EXPECTED HERE

ADJUSTABLE ARRAY MUST BE DUMMY ** array-name

ADJUSTABLE LENGTH MUST BE FORMAL ** name

ARITHMETIC OVERFLOW

ARRAY FORCED TO PRECEDE COMMON AREA ** array-name
FORTRAN Reference Manual—528615-001
F-2

Compile-Time Diagnostic Messages Error Messages
Cause. The EXTENDEDREF compiler directive is not specified or implied, and the
total number of elements in the indicated array is too large to be indexed by an
INTEGER*2 value.

Recovery. Reduce the array size or use a LARGECOMMON or LARGEDATA
compiler directive so that FORTRAN allocates the array in the extended data segment.

Cause. A DATA statement attempts to initialize a nonexistent element of an array.

Recovery. Correct the DATA statement.

Cause. An array is too large to fit into either half of the user data segment.

Recovery. Reduce the array size or use a LARGECOMMON or LARGEDATA
compiler directive so that FORTRAN allocates the array in the extended data segment.

Cause. An array that is not a dummy argument has an asterisk as the upper bound of
its last dimension.

Recovery. Change the assumable dimension specification to a constant or make the
array a dummy argument.

Cause. A DATA statement within a block data program unit initializes a variable or
array that is not in any common block.

Recovery. Correct the DATA statement (the variable name might be misspelled) or
use a COMMON or EQUIVALENCE statement to add the variable or array to a
common block.

ARRAY HAS MORE THAN 32767 ELEMENTS ** name

ARRAY INDEX OUT OF BOUNDS IN DATA STATEMENT ** name

ARRAY SIZE EXCEEDS 65535 BYTES ** name

ASSUMED-SIZE ARRAY MUST BE DUMMY ** array-name

BLOCK DATA CANNOT INITIALIZE NON-COMMON DATA ** name
FORTRAN Reference Manual—528615-001
F-3

Compile-Time Diagnostic Messages Error Messages
Cause. A character constant or Hollerith constant exceeds 255 characters in length.

Recovery. Shorten the constant.

Cause. A function subprogram includes one or more ENTRY statements and the
function name and the entry names are not all character type or are not all
noncharacter types.

Recovery. Declare all entries character type or all entries noncharacter types.

Cause. A HIGHCOMMON compiler directive has forced a common block that contains
character data into the upper half of the user data segment. The upper half of the user
data segment is not byte addressable.

Recovery. Correct the directive.

Cause. The indicated common block contains character type and noncharacter type
entities. You can mix character type data and noncharacter type data only in a
RECORD.

Recovery. Segregate entities of character and noncharacter data types into different
common blocks or make the entire common block a RECORD. If you choose the latter,
you must also change all references to those entities throughout the program, so that
they are qualified by the name of the RECORD.

Cause. An EQUIVALENCE statement names an entity of character type and an entity
of a noncharacter data type in the same equivalence class. This is permitted only when
the entities are within a RECORD.

Recovery. Correct the EQUIVALENCE statement.

CHARACTER CONSTANT TOO LARGE

CHARACTER ENTRY MIXED WITH OTHER TYPES

CHARACTER ITEM IN HIGH COMMON ** block-name

CHARACTER TYPE MIXING NOT ALLOWED IN COMMON ** name

CHARACTER TYPE MIXING NOT ALLOWED IN EQUIVALENCE
FORTRAN Reference Manual—528615-001
F-4

Compile-Time Diagnostic Messages Error Messages
Cause. The program unit requires more than 32,767 words for object code, including
executable instructions and read-only data such as constants and FORMAT
statements. The compiler stops immediately after issuing this error message.

Recovery. Reduce the size of the program unit.

Cause. The indicated common block is too large for either half of the user data
segment.

Recovery. Reduce the total size of the common block or use the LARGECOMMON
compiler directive to allocate the common block in the extended data segment.

Cause. One of the compiler’s internal tables is full. The compiler stops immediately
after issuing this error message.

Recovery. Notify the Global Customer Support Center (GCSC).

Cause. A HIGHCOMMON compiler directive and a LARGECOMMON directive were
specified without a common block name on either directive.

Recovery. Add block names to one of the directives or delete one of the directives.

Cause. The control expression of an arithmetic IF statement is not type INTEGER,
REAL, or DOUBLE PRECISION.

Recovery. Correct the expression.

CODE SPACE OVERFLOW

COMMON BLOCK SIZE EXCEEDS 65535 BYTES ** block-name

COMPILER TABLE OVERFLOW ** table-name

CONTRADICTORY DEFAULT COMMON ALLOCATION

CONTROL EXPRESSION MUST BE ARITHMETIC
FORTRAN Reference Manual—528615-001
F-5

Compile-Time Diagnostic Messages Error Messages
Cause. The control expression of a logical IF, block IF, or ELSE IF statement is not
type LOGICAL.

Recovery. Correct the expression.

Cause. A block IF statement sequence incorrectly overlaps a DO loop body or another
block IF statement sequence.

Recovery. Correct the statement sequence.

Cause. The directives specify that the object program is to be executable on NonStop
1+ systems and is to use extended addressing, which is not allowed on NonStop 1+
systems.

Recovery. Either remove the CPU TNS directive, or remove all EXTENDEDREF,
LARGECOMMON, and LARGEDATA directives.

Cause. Reference has been made to a nonexistent RECORD field of the form record-
name^ field-name.

Recovery. Correct the reference or the RECORD declaration.

Cause. A DATA statement, not within a block data program unit, is trying to initialize a
variable or array that is in a common block.

Recovery. Place the DATA statement in a block data subprogram.

CONTROL EXPRESSION MUST BE LOGICAL

CONTROL STATEMENT OUT OF ORDER

CPU TNS CONFLICTS WITH EXTENDEDREF

DATA ITEM IS NOT A RECORD ITEM

DATA STATEMENT WITH COMMON ALLOWED ONLY IN BLOCK DATA **
variable-or-array-name
FORTRAN Reference Manual—528615-001
F-6

Compile-Time Diagnostic Messages Error Messages
Cause. The dir compiler directive must precede the first FORTRAN language
statement in the compilation. FORTRAN ignores the directive.

Recovery. Move the directive.

Cause. The dir compiler directive must precede the first FORTRAN language
statement in a program unit. FORTRAN ignores the directive.

Recovery. Move the directive.

Cause. The dir compiler directive must be preceded by an EXTENDEDREF,
LARGECOMMON, or LARGEDATA directive and must appear before the first
FORTRAN statement in a program unit. The compiler ignores the directive.

Recovery. Move the directive.

Cause. The same name appears in both a dummy argument list and a COMMON
statement in the same subprogram.

Recovery. Eliminate one occurrence.

Cause. This dummy argument of an ENTRY has been referenced previously in an
executable statement or a statement function, but did not appear in a preceding
ENTRY, FUNCTION, or SUBROUTINE statement.

Recovery. Correct the ENTRY statement or the preceding code.

DIRECTIVE MUST APPEAR BEFORE FORTRAN STATEMENTS ** dir

DIRECTIVE MUST APPEAR BETWEEN PROGRAM UNITS ** dir

DIRECTIVE REQUIRES EXTENDEDREF BEFORE ANY STATEMENTS ** dir

DUMMY ARGUMENT IN COMMON ** name

DUMMY ARGUMENT PREVIOUSLY REFERENCED IN EXECUTABLE ** name
FORTRAN Reference Manual—528615-001
F-7

Compile-Time Diagnostic Messages Error Messages
Cause. This dummy argument name is the same as a procedure name appearing in a
FUNCTION, SUBROUTINE, or ENTRY statement in the same program unit.

Recovery. Change the dummy argument name.

Cause. This symbolic name appears more than once in a dummy argument list in the
same FUNCTION, SUBROUTINE, or ENTRY statement.

Recovery. Correct the list.

Cause. The same letter appears in two IMPLICIT statements.

Recovery. Change one of the statements.

Cause. Two statements within the same program unit have the same statement label.

Recovery. Make sure all statement labels are unique.

Cause. The source input file ended with no END statement to terminate the last (or
only) source program unit.

Recovery. Correct the source input file.

Cause. An ENTRY statement appears within the body of a DO loop or a block IF
statement sequence.

Recovery. Correct the statement sequence.

DUMMY NAME CONFLICT ** name

DUPLICATE DUMMY VARIABLE ** name

DUPLICATE IMPLICIT ENTRY

DUPLICATE STATEMENT LABEL

END STATEMENT MISSING

ENTRY NESTED IN CONTROL LOOP
FORTRAN Reference Manual—528615-001
F-8

Compile-Time Diagnostic Messages Error Messages
Cause. A FORMAT specification contains a syntax error.

Recovery. Correct the format specification.

Cause. A numeric constant contains a syntax error.

Recovery. Correct the constant.

Cause. The program attempts to equivalence RECORDs that are declared in different
common blocks.

Recovery. Either remove the EQUIVALENCE statement, or else delete one of the
RECORD names from the COMMON statement in which it is declared.

Cause. A FORMAT specification is expected in this context.

Recovery. Correct the statement.

Cause. A dummy argument is expected in this context.

Recovery. Correct the statement.

ERROR IN FORMAT SPECIFICATION

ERROR IN NUMERIC CONSTANT

ERROR IN RECORD EQUIVALENCE

EXPECTED A FORMAT

EXPECTS DUMMY VARIABLE
FORTRAN Reference Manual—528615-001
F-9

Compile-Time Diagnostic Messages Error Messages
Cause. You specified a data item with a doubleword address as a pass-by-reference
argument to a Guardian procedure that expects a word address. A variable or array
has a doubleword address if it is a formal parameter in a subprogram compiled with the
EXTENDEDREF compiler directive specified or implied, or if it is allocated in the
extended data segment as a result of a LARGECOMMON or LARGEDATA compiler
directive.

Recovery. Use the D-series version of the Guardian routine if one exists. Otherwise,
use a local variable or array as an argument in the procedure call. Assign the value of
the extended-address data item to the local data item before the procedure call, and
assign the value of the local data item to the extended-address variable or array after
the procedure call.

Cause. A constant contains unexpected characters.

Recovery. Correct the constant.

Cause. A FILLER specification occurs in a context other than a RECORD declaration.

Recovery. Correct the source.

Cause. A dummy argument appears in an EQUIVALENCE statement.

Recovery. Correct the statement.

Cause. A function name begins with a character other than a letter of the alphabet.

Recovery. Correct the function name.

EXTENDED DATA ADDRESSES INVALID FOR GUARDIAN CALLS **
variable-or-array-name

EXTRANEOUS CHARACTERS IN CONSTANT

FILLERS CAN ONLY BE WITHIN RECORDS

FORMAL PARAMETERS MAY NOT BE EQUIVALENCED ** name

FUNCTION MUST BE ALPHABETIC
FORTRAN Reference Manual—528615-001
F-10

Compile-Time Diagnostic Messages Error Messages
Cause. A function has been defined as one data type and referred to as another.

Recovery. Make the definition and references consistent.

Cause. A function name appears in an EQUIVALENCE statement. Possibly it was
intended to be an array name, but the array declaration is missing or in error.
FORTRAN assumes any name followed by “(“ is a function if the name has not been
declared as an array name.

Recovery. Correct the statement, or add the array declaration.

Cause. You referenced a generic intrinsic function with an argument whose data type
is not one of the types for which the generic function is defined. Example: ABS (X)
where X is a type character variable.

Recovery. Correct the source statement.

Cause. A symbolic name is illegally declared twice.

Recovery. Remove one declaration.

Cause. A symbolic name appears in more than one data type declaration statement.

Recovery. Remove one data type declaration.

FUNCTION TYPE INCONSISTENT

FUNCTIONS MAY NOT BE EQUIVALENCED ** name

GENERIC FUNCTION NOT DEFINED FOR ARGUMENT TYPE ** name

IDENTIFIER ALREADY DECLARED

IDENTIFIER ALREADY TYPED
FORTRAN Reference Manual—528615-001
F-11

Compile-Time Diagnostic Messages Error Messages
Cause. An operand of some other data type appears in a context that requires an
integer, real, double precision, or complex value.

Recovery. Correct the expression.

Cause. A logical or character operator appears in a context that requires an arithmetic
operator.

Recovery. Correct the expression.

Cause. The length of a CHARACTER datum is not in the range 1 through 255, or an
adjustable-length CHARACTER datum appears in a concatenation that is not in an
assignment statement.

Recovery. Correct the statement.

Cause. An operand of some other data type appears in a context that requires a type
character value.

Recovery. Correct the expression.

Cause. An arithmetic or logical operator appears in a context that requires a character
operator.

Recovery. Correct the expression.

ILLEGAL ARITHMETIC OPERAND

ILLEGAL ARITHMETIC OPERATOR

ILLEGAL CHARACTER LENGTH

ILLEGAL CHARACTER OPERAND

ILLEGAL CHARACTER OPERATOR
FORTRAN Reference Manual—528615-001
F-12

Compile-Time Diagnostic Messages Error Messages
Cause. The attributes specified for an identifier are incompatible with each other.

Recovery. Correct the specifications.

Cause. The control list of an INQUIRE statement includes both UNIT and FILE
specifiers. Or, the control list of a POSITION statement includes a REC specifier and
also any of KEY, KEYLEN, KEYID, MODE, COMPARELEN, and SKIPEXACT
specifiers.

Recovery. Correct the statement.

Cause. The body of a DO loop cannot end with this type of statement.

Recovery. Use a CONTINUE statement or otherwise correct the DO loop.

Cause. An operand of some other data type appears in a context that requires a type
logical value.

Recovery. Correct the expression.

Cause. An arithmetic or character operator appears in a context that requires a logical
operator.

Recovery. Correct the expression.

ILLEGAL COMBINATION OF ATTRIBUTES

ILLEGAL COMBINATION OF SPECIFIERS

ILLEGAL LAST STATEMENT FOR DO

ILLEGAL LOGICAL OPERAND

ILLEGAL LOGICAL OPERATOR
FORTRAN Reference Manual—528615-001
F-13

Compile-Time Diagnostic Messages Error Messages
Cause. The data type of a constant is not compatible with the data type required and
the necessary conversion is not possible.

Recovery. Correct the statement.

Cause. An expression contains incompatible operands.

Recovery. Correct the expression.

Cause. The name of a dummy array that was declared with an asterisk as the upper
bound of its last dimension, appears without subscripts as the unit, the format, or a
data list item in an I/O statement.

Recovery. Replace with another array or change the statement.

Cause. An external function name is used as a variable.

Recovery. Use the identifier as a function name or a variable name, but not both.

Cause. A FORMAT statement label appears where the label of an executable
statement is required.

Recovery. Supply the proper label.

Cause. An IMPLICIT statement entry must be a single letter or a range of single
letters.

Recovery. Correct the statement.

ILLEGAL TYPE CONVERSION

ILLEGAL TYPE MIXING

ILLEGAL USE OF ASSUMED SIZE ARRAY ** array-name

ILLEGAL USE OF EXTERNAL

ILLEGAL USE OF FORMAT

IMPLICIT ITEMS MUST BE ONE LETTER
FORTRAN Reference Manual—528615-001
F-14

Compile-Time Diagnostic Messages Error Messages
Cause. An IMPLICIT statement would change the data type of a symbolic constant
that was previously declared in a PARAMETER statement.

Recovery. Declare the symbolic constant’s data type explicitly.

Cause. An EQUIVALENCE statement within a RECORD declaration does not
equivalence components at its own level.

Recovery. Correct the statement.

Cause. An ELSE IF statement contains a syntax error.

Recovery. Correct the statement.

Cause. In an I/O statement that has a character array as an internal file (in place of
the unit designator), the LENGTH specifier (an HP extension) does not name an array
of at least the same number of elements.

Recovery. Change the array’s declaration or make the LENGTH specifier designate a
different array.

Cause. A constant list in a DATA statement has fewer items than the corresponding
name list.

Recovery. Supply the missing constants.

IMPLICIT STATEMENT RETYPES PARAMETER ** name

IMPROPER EQUIVALENCE IN A RECORD

INCORRECT FORM FOR ELSE IF STATEMENT

INSUFFICIENT ARRAY SIZE FOR LENGTH

INSUFFICIENT NUMBER OF DATA CONSTANTS
FORTRAN Reference Manual—528615-001
F-15

Compile-Time Diagnostic Messages Error Messages
Cause. A Hollerith character string contains fewer characters than were specified.

Recovery. Make the statement long enough to have the indicated number of
characters following the H.

Cause. An integer constant in a compiler directive that requires a value in the range -
32768 through +32767 is outside this range.

Recovery. Correct the constant.

Cause. The upper bound of a substring is less than its lower bound, or a bound is
outside the range 1 through 255, or the upper bound exceeds the length of the variable
or array element.

Recovery. Correct the substring specification.

Cause. The name list of a DATA statement includes something other than a variable
name, an array name, an array element, or a substring. In particular, RECORDs,
RECORD fields, and dummy arguments are not allowed.

Recovery. Correct the statement.

Cause. The file name in a UNIT compiler directive contains a syntax error.

Recovery. Correct the file name.

INSUFFICIENT TEXT FOR HOLLERITH CONSTANT

INTEGER OVERFLOW

INVALID BOUNDS FOR SUBSTRING

INVALID DATA ITEM ** name

INVALID FILE NAME
FORTRAN Reference Manual—528615-001
F-16

Compile-Time Diagnostic Messages Error Messages
Cause. A FILLER specification contains a syntax error.

Recovery. Correct the specification.

Cause. A character was found that is not in the FORTRAN character set.

Recovery. Remove or replace the character.

Cause. The indicated control specifier in an I/O statement contains a syntax error.

Recovery. Correct the statement.

Cause. A range specification in an IMPLICIT statement is not in alphabetical order.

Recovery. Reverse the range specification.

Cause. A IMPLICIT statement contains a syntax error.

Recovery. Correct the statement.

Cause. The beginning of a statement is not recognizable as a valid FORTRAN
statement.

Recovery. Correct the statement.

INVALID FORM FOR A FILLER

INVALID FORTRAN CHARACTER

INVALID I/O CONTROL ** keyword

INVALID IMPLICIT RANGE

INVALID IMPLICIT STATEMENT

INVALID KEY WORD
FORTRAN Reference Manual—528615-001
F-17

Compile-Time Diagnostic Messages Error Messages
Cause. The source statement references a statement label that is more than five
digits.

Recovery. Correct the source statement. This problem can arise when the source
program has line sequence numbers to the right of column 72, which are treated as
part of the statement (remember that FORTRAN ignores blanks). In this case, use the
ANSI compiler directive so that the compiler scans only columns 1 through 72.

Cause. A constant or expression of a non-integer data type appears in an array
declarator as a dimension’s upper or lower bound, or as a bound in a substring name,
or as a repetition count in the constant list of a DATA statement, or as a unit number in
an I/O statement. Or, a constant or expression of a non-character data type appears as
a format in an I/O statement.

Recovery. Correct the statement.

Cause. The indicated control specifier in an I/O statement designates an entity of an
unacceptable data type.

Recovery. Correct the statement.

Cause. The indicated variable or array is used as a format designator in an I/O
statement but its data type is not character.

Recovery. Correct the statement.

Cause. A data type statement contains a syntax error.

Recovery. Correct the statement.

INVALID STATEMENT NUMBER ** label

INVALID TYPE FOR THIS CONTEXT

INVALID TYPE FOR THIS CONTEXT ** keyword

INVALID TYPE FOR THIS CONTEXT ** name

INVALID TYPE STATEMENT
FORTRAN Reference Manual—528615-001
F-18

Compile-Time Diagnostic Messages Error Messages
Cause. An assignment statement or statement function definition begins with a phrase
that contains an asterisk such as INTEGER*2.

Recovery. Correct the statement.

Cause. An I/O statement control specifier in which a result is to be stored, is a
constant or expression other than a variable or an array element. Or an internal file (a
character entity appearing in place of an I/O unit number) is a constant, an expression
other than a variable, or an array or array element.

Recovery. Correct the statement.

Cause. This program unit declares more than 32,767 words of local variables, arrays,
and RECORDs in the standard data segment.

Recovery. Reduce the number or size of such local variables, by doing one or more of
the following:
• Make array dimensions smaller.
• Move some local variables, arrays, and RECORDs to one or more new common

blocks.
• Move some local variables, arrays, and RECORDs to the extended data segment

with the LARGEDATA compiler directive.

Cause. The compiler is in an inconsistent state as a result of an internal error. The
compiler stops immediately after issuing this error message.

Recovery. Report the error to the GCSC.

INVALID USE OF ASTERISK

ITEM MAY NOT BE BY VALUE ** keyword

LOCAL AREA OVERFLOW

LOGIC ERROR IN COMPILER
FORTRAN Reference Manual—528615-001
F-19

Compile-Time Diagnostic Messages Error Messages
Cause. Run-time objects allocated in the lower half of the user data segment exceed
32,768 words.

Recovery. One or more of the following:

• Use the HIGHCOMMON compiler directive to move some or all the program’s
common blocks to the upper half of the user data segment.

• Use the LOWBUFFER or HIGHBUFFER directives to move some or all the runtime
buffer pool to the upper half of the user data segment.

• Use the HIGHCONTROL directive to move the run-time control block to the upper
half of the user data segment.

• Reduce the size of the run-time control block (see RUN-TIME CONTROL BLOCK
OVERFLOW message).

• Use the LARGECOMMON compiler directive to move some or all the program’s
common blocks to the extended data segment.

• Use the LARGEDATA directive to move local arrays and RECORDs that are
named in DATA or SAVE statements, to the extended data segment.

Cause. An EQUIVALENCE specification attempts to force an entity to reside at two
locations simultaneously.

Recovery. Correct the EQUIVALENCE specification.

Cause. A FORTRAN statement continuation line was found where the initial line of a
statement was expected. This could be at the beginning of a program unit or after a
compiler directive line. The END statement cannot have continuation lines. Comment
lines can be interspersed among the continuation lines of a statement, but compiler
directives cannot.

Recovery. Correct the source program.

LOWER DATA SEGMENT OVERFLOW

MIS-ALIGNMENT FORCED BY EQUIVALENCE ** name

MISPLACED STATEMENT CONTINUATION LINE
FORTRAN Reference Manual—528615-001
F-20

Compile-Time Diagnostic Messages Error Messages
Cause. An I/O statement refers to a FORMAT statement label but no FORMAT
statement with that label exists in the program unit.

Recovery. Supply the missing FORMAT statement.

Cause. An array element reference has too few subscripts.

Recovery. Correct the reference.

Cause. Reference has been made to a statement label that does not appear in the
program unit.

Recovery. Supply the missing statement label.

Cause. name has been specified as two different kinds of entities, such as a variable
and a subroutine.

Recovery. Remove all but one specification.

Cause. An identifier appears in more than one COMMON statement.

Recovery. Remove it from all but one of the COMMON statements.

Cause. An identifier in an INTRINSIC statement is not the name of an intrinsic function
in HP FORTRAN.

Recovery. Correct the statement.

MISSING FORMAT ** label

MISSING INDEX FOR ARRAY

MISSING STATEMENT NUMBER ** label

MORE THAN ONE STRUCTURE FOR THIS ITEM ** name

MULTIPLE COMMON SPECIFICATION

MUST BE AN INTRINSIC FUNCTION
FORTRAN Reference Manual—528615-001
F-21

Compile-Time Diagnostic Messages Error Messages
Cause. A noncharacter entity specifies a length.

Recovery. Remove the length specification or change the data type to CHARACTER.

Cause. A statement begins with a nonalphabetic character.

Recovery. Correct the statement.

Cause. The indicated control specifier in an I/O statement is not one of the keywords
known to HP FORTRAN.

Recovery. Correct the statement.

Cause. A nonnumeric character appears in the label field (columns 1 through 5) of the
initial line of a statement.

Recovery. Remove or replace the character.

Cause. A statement appears to be an assignment statement but the left side of the
assignment is not a variable, an array element, a RECORD field, or a substring.

Recovery. Correct the statement.

Cause. The number of dimensions in an array is specified in two different, but
contradictory, declarations.

Recovery. Remove one declaration.

MUST BE TYPE CHARACTER TO HAVE SIZE

MUST START WITH ALPHABETIC CHARACTER

NON EXISTENT I/O CONTROL ** keyword

NON NUMERIC STATEMENT LABEL

NOT A SIMPLE VARIABLE

NUMBER OF DIMENSIONS INCOMPATIBLE ** array-name
FORTRAN Reference Manual—528615-001
F-22

Compile-Time Diagnostic Messages Error Messages
Cause. The array declarator has an asterisk for the upper bound of one of the array’s
dimensions other than the last (rightmost) dimension.

Recovery. Correct the array declarator.

Cause. A reference to a generic intrinsic function has an argument that is not one of
the data types allowed for that generic function.

Recovery. Pass the correct argument types to the intrinsic function.

Cause. One of the following:

• The argument in the indicated position is not the data type or kind of entity that is
expected by the intrinsic function or statement function being referenced.

• The argument in the indicated position has backslashes (indicating pass by value)
surrounding it, but the procedure being called expects this argument to be passed
by reference.

Recovery. Make the arguments consistent.

Cause. A name and its corresponding value in a PARAMETER statement have
incompatible data types.

Recovery. Correct the statement.

Cause. The number of actual arguments does not agree with the number of dummy
arguments.

Recovery. Make the numbers of arguments consistent.

ONLY THE LAST DIMENSION MAY HAVE AN ASTERISK UPPER BOUND **
array-name

PARAMETER MISMATCH

PARAMETER MISMATCH ** number

PARAMETER TYPE MISMATCH

PARAMETERS ARE INCOMPATIBLE
FORTRAN Reference Manual—528615-001
F-23

Compile-Time Diagnostic Messages Error Messages
Cause. The number of left parentheses in this statement is not equal to the number of
right parentheses.

Recovery. Make the parentheses balance.

Cause. The program has too many common blocks in the user data segment or refers
to too many entities in such common blocks.

Recovery. Use the EXTENDCOMMON compiler directive to reduce the number of
pointer words that must be allocated in the primary global data area (the first 256
words of the user data segment), or use the LARGECOMMON directive to move some
or all the program’s common blocks to the extended data segment, because they do
not need any pointers in the primary global area.

Cause. This program unit references too many local variables and arrays and
LARGECOMMON common blocks, so that the required pointers do not fit into the
primary local data area on the run-time stack.

Recovery. Simplify the program unit.

Cause. This program unit has been declared previously.

Recovery. Remove one declaration.

Cause. More than 32,767 words of object code (including executable instructions and
read-only data such as constants and FORMAT statements) were generated for this
program unit.

Recovery. Divide the program unit into smaller program units.

PARENTHESIS MISMATCH

PRIMARY GLOBAL AREA OVERFLOW

PRIMARY LOCAL AREA OVERFLOW

PROCEDURE ALREADY DECLARED

PROGRAM UNIT TOO LARGE ** name
FORTRAN Reference Manual—528615-001
F-24

Compile-Time Diagnostic Messages Error Messages
Cause. An attempt has been made to equivalence a RECORD, defined by RECORD
declaration statements, to an entity that is not a RECORD.

Recovery. Correct the EQUIVALENCE statement.

Cause. An attempt has been made to declare a RECORD, or an array within a
RECORD, with more than one dimension.

Recovery. Correct the statement.

Cause. The run-time control block exceeds 32,767 words.

Recovery. Reduce one or more of the following values:

• The highest I/O unit number defined

• The total number of I/O units defined

• The OPEN, SYNCDEPTH, QDEPTH, or MAXREPLY parameters in the RECEIVE
directive

• The STARTUP, ASSIGNS, or PARAM values in the SAVE directive

Cause. A source input file being read by a SOURCE compiler directive contains
another SOURCE directive, and the total nesting depth exceeds six levels. The
compiler stops immediately after issuing this error message.

Recovery. Reorganize the source files.

Cause. A SOURCE compiler directive specifies too many section names. The
compiler stops immediately after issuing this error message.

Recovery. Notify the GCSC.

RECORD MAY ONLY BE EQUIVALENCED TO A RECORD

RECORDS MAY ONLY HAVE ONE DIMENSION

RUN-TIME CONTROL BLOCK OVERFLOW

SOURCE DIRECTIVES NESTED TOO DEEPLY

SOURCE LIST OVERFLOW
FORTRAN Reference Manual—528615-001
F-25

Compile-Time Diagnostic Messages Error Messages
Cause. A statement function has the same name as another statement function or a
variable. Note that any statement of the form

name (anything) = anything

is taken as a statement function definition if the name has not been declared as an
array.

Recovery. Rename the statement function, or correct the statement if the name is a
misspelled array name.

Cause. A statement other than a declarative statement or a DATA statement appears
in a block data program unit. Note that RECORDs cannot be declared in block data
program units because they cannot be initialized with DATA statements.

Recovery. Delete the invalid statement.

Cause. The dependent statement of a logical IF statement is a DO statement, another
logical IF statement, or an END statement, none of which is allowed.

Recovery. Correct the statement.

Cause. A main program contains an ENTRY statement, which is not allowed.

Recovery. Correct the source program.

STATEMENT FUNCTION NAME NOT UNIQUE

STATEMENT NOT ALLOWED IN BLOCK DATA

STATEMENT NOT ALLOWED IN LOGICAL IF

STATEMENT NOT ALLOWED IN MAIN PROGRAM
FORTRAN Reference Manual—528615-001
F-26

Compile-Time Diagnostic Messages Error Messages
Cause. The FORTRAN rules for statement ordering within a program unit have been
violated. For example, a declarative statement or a statement function definition follows
an executable statement. Note that any statement of the form

name (anything) = anything

is taken as a statement function definition if the name has not been declared as an
array.

Recovery. Correct the statement sequence, or correct the statement if the name is a
misspelled array name.

Cause. This statement contains more than 1320 characters. This can happen
although you have not exceeded the limit of 19 continuation lines, if source lines are
longer than 72 characters and you do not select the ANSI option.

Recovery. Correct the source.

Cause. A dummy argument of a statement function is not a simple variable.

Recovery. Change the argument to a simple variable.

Cause. A zero-length character string was found.

Recovery. Correct the string.

Cause. The title string in a PAGE directive contains more than 128 characters.

Recovery. Shorten the title.

STATEMENT OUT OF ORDER

STATEMENT TOO LONG

STMT FN ARG MUST BE SIMPLE VARIABLE

STRING MAY NOT BE EMPTY

STRING OVERFLOW
FORTRAN Reference Manual—528615-001
F-27

Compile-Time Diagnostic Messages Error Messages
Cause. A dummy argument array in a subprogram is declared with an upper or lower
bound that is a variable but is neither another dummy argument nor an item in a
common block.

Recovery. Correct the source.

Cause. The upper or lower bound in an array declarator involves a constant or
variable of a non-integer data type or an integer constant having a value outside the
range -2,147,483,648 through 2,147,483,647. Or, an array element has a subscript
expression of a non-integer data type.

Recovery. Correct the declarator or subscript expression.

Cause. A dummy argument array is declared with an upper or lower bound that is not
a dummy argument variable, a variable in a common block, a constant, or an
expression involving only these.

Recovery. Correct the dimension bound expression.

Cause. The program attempts to use a substring of the value returned by a function.
FORTRAN does not allow substrings of function references.

Recovery. Correct the statement.

Cause. The program uses a substring of a variable or array element of a data type
other than character.

Recovery. Correct the statement.

SUBSCRIPT MUST BE FORMAL OR COMMON ** array-name

SUBSCRIPT MUST BE INTEGER VALUE

SUBSCRIPT MUST BE SIMPLE VARIABLE

SUBSTRING MUST BE A VARIABLE

SUBSTRING MUST BE TYPE CHARACTER
FORTRAN Reference Manual—528615-001
F-28

Compile-Time Diagnostic Messages Error Messages
Cause. A substring has been specified with a length greater than that of the variable
or array element.

Recovery. Correct the statement.

Cause. Compiler error.

Recovery. Notify the GCSC.

Cause. A source statement is syntactically incorrect.

Recovery. Correct the statement.

Cause. An attempt has been made to allocate more than one RECORD in the
indicated common block.

Recovery. Correct the source.

Cause. A function subprogram is used as a subroutine, or a subroutine is used as a
function.

Recovery. Make subprogram definition and use consistent.

Cause. The compiler’s scan buffer is full. A possible cause for this message is a DATA
statement that contains too many entries.

Recovery. Notify the GCSC.

SUBSTRING TOO LARGE FOR ITEM

SYMBOL TABLE LOOKUP ERROR

SYNTAX ERROR

THERE CAN BE ONLY ONE RECORD PER COMMON BLOCK ** name

THIS PROGRAM IS USED INCONSISTENTLY ** name

TOKEN OVERFLOW INTO UNSCANNED TEXT
FORTRAN Reference Manual—528615-001
F-29

Compile-Time Diagnostic Messages Error Messages
Cause. This program unit declares more than 64 different common blocks.

Recovery. Eliminate declarations of unused common blocks; combine common blocks
that cannot be eliminated.

Cause. A character expression exceeds the HP FORTRAN limit of 64 concatenated
operands.

Recovery. Concatenate in two steps, or simplify the expression.

Cause. This statement has more than 19 continuation lines.

Recovery. Correct the statement.

Cause. A constant list in a DATA statement has more items than the corresponding
name list.

Recovery. Correct the statement.

Cause. The total number of error messages issued exceeds the limit specified in the
ERRORS compiler directive, or 100 errors if an ERRORS directive is not specified. The
compiler stops all work after issuing this message.

Recovery. Either increase the limit in the ERRORS compiler directive, or correct the
errors already diagnosed.

TOO MANY COMMON BLOCKS IN THIS PROGRAM UNIT

TOO MANY CONCATENATED OPERANDS

TOO MANY CONTINUATION LINES

TOO MANY DATA CONSTANTS

TOO MANY ERRORS
FORTRAN Reference Manual—528615-001
F-30

Compile-Time Diagnostic Messages Error Messages
Cause. The total number of different I/O unit numbers specified in the compilation
exceeds the limit of 128, including units 4, 5, and 6 which are always defined.

Recovery. Reduce the number of I/O unit numbers that appear in UNIT compiler
directives and as constant unit numbers in I/O statements throughout the source
program.

Cause. A subprogram has more than 29 arguments.

Recovery. Reduce the number of arguments (by placing them in common, for
example).

Cause. An EQUIVALENCE statement attempts to place the indicated entity into two
different common blocks.

Recovery. Correct the EQUIVALENCE specification.

Cause. DO loop bodies partially overlap (neither is completely nested within the
other).

Recovery. Correct the source.

Cause. The source program contains two main program units.

Recovery. Remove one main program unit.

TOO MANY I/O UNIT NUMBERS

TOO MANY PARAMETERS

TWO COMMON AREAS EQUIVALENCED ** name

TWO DO RANGES OVERLAP

TWO MAIN PROGRAM UNITS
FORTRAN Reference Manual—528615-001
F-31

Compile-Time Diagnostic Messages Error Messages
Cause. An expression uses one of the comparison operators .LT., .LE., .GE., or .GT. to
compare two values, one or both of which is of the complex data type. Only .EQ. and
.NE. can be used for comparing such values.

Recovery. Correct the source program.

Cause. The data type of a variable item in a DATA statement is incompatible with that
of its corresponding constant item.

Recovery. Correct the statement.

Cause. FORTRAN was unable to compile your program because it could not obtain
an extended memory segment for its symbol table. This usually means that your
current default disk volume is nearly full. The compiler stops immediately after issuing
this error message.

Recovery. Make more space available on the default disk volume, or use the PARAM
SWAPVOL to make the compiler use a different disk volume that has more available
space.

Cause. A character string has no terminating apostrophe.

Recovery. Correct the string.

Cause. No terminal statement was found for a DO loop body or a block IF statement
sequence.

Recovery. Correct the source.

TYPE COMPLEX VALUES CAN ONLY BE COMPARED FOR (IN)EQUALITY

TYPE MISMATCH IN DATA STATEMENT ** name

UNABLE TO ALLOCATE EXTENDED SEGMENT FOR SYMBOL TABLE

UNDELIMITED STRING

UNRESOLVED DO OR BLOCK IF
FORTRAN Reference Manual—528615-001
F-32

Compile-Time Diagnostic Messages Error Messages
Cause. The upper bound of an array is less than its lower bound.

Recovery. Correct the array declaration.

Cause. Run-time objects allocated to the upper half of the user data segment have a
total size exceeding 32,768 words of memory space.

Recovery. One or more of the following:

• Modify the HIGHCOMMON compiler directive to assign fewer common blocks to
the upper half of the user data segment.

• Modify the LOWBUFFER or HIGHBUFFER directives to move some or all the run-
time buffer pool to the lower half of the user data segment.

• Omit the HIGHCONTROL directive, to move the run-time control block to the lower
half of the user data segment.

• Reduce the size of the run-time control block (see RUN-TIME CONTROL BLOCK
OVERFLOW message).

• Use the LARGECOMMON compiler directive to move some or all the program’s
common blocks to the extended data segment.

Cause. One of the following:

• A compiler directive contains a constant whose value is outside the allowed range.

• An I/O unit number is a constant whose value is outside the range 1 through 999.

• A substring bound is a constant whose value is outside the range 1 through 255.

Recovery. Correct the source.

Cause. The indicated variable is used in an executable statement, but is not defined in
the same program unit.

Recovery. Correct the source.

UPPER BOUND LESS THAN LOWER BOUND

UPPER DATA SEGMENT OVERFLOW

VALUE OUT OF RANGE

VARIABLE HAS NO VALUE STORED INTO IT ** name
FORTRAN Reference Manual—528615-001
F-33

Compile-Time Diagnostic Messages Warning Messages
Cause. A control specifier is not defined for the I/O statement in which it appears (for
example, FMT in an OPEN statement).

Recovery. Correct the statement.

Warning Messages

Cause. You used backslashes around a pass-by-value argument in a call to a
procedure that was declared in a GUARDIAN directive.

Recovery. Remove the backslashes.

Cause. You specified a pass-by-reference argument of type CHARACTER in a call to
a procedure that was declared in a GUARDIAN directive, but the procedure expects an
argument of a different type. The compiler converts the byte address of the
CHARACTER argument into the word address required by the procedure. If the
CHARACTER argument begins on a word boundary, the program passes the correct
address; otherwise, the program passes the address of the character that precedes the
first character in the CHARACTER argument.

Recovery. Replace the CHARACTER argument with a type INTEGER argument that
contains the same value. You could do this by declaring the CHARACTER and
INTEGER items, along with an appropriate EQUIVALENCE statement, within a
RECORD declaration.

WRONG I/O CONTROL FOR THIS STATEMENT

BACKSLASHES SUPERFLUOUS WITH GUARDIAN DIRECTIVE

BYTE ADDRESS CONVERTED TO WORD ADDRESS
FORTRAN Reference Manual—528615-001
F-34

Compile-Time Diagnostic Messages Warning Messages
Cause. You named a common block on either a HIGHCOMMON or a
LARGECOMMON directive, but FORTRAN has established a different allocation for
that common block when it was declared in a previous program unit in the same
compilation.

Recovery. Either remove the indicated common block name from the directive, or
move the directive nearer to the beginning of the source input file.

Cause. The CPU TNS compiler directive, which causes the compiler to create an
object program that can then be executed on a NonStop 1+ system, will no longer be
supported in the D00 release.

Recovery. Change the program so that it can be executed on a NonStop system.

Cause. The indicated compiler directive specifies a file system DEFINE name in a
context where only a Guardian file name is permitted. The compiler ignores the
directive.

Recovery. Replace the DEFINE name with a file name.

Cause. Either of the following:

• The same section name appears twice in a single SOURCE directive. The section
is included only once.

• Two SECTION directives with the same name appear in a single source file. The
compiler ignores the second section.

Recovery. Correct the source.

COMMON BLOCK ALREADY ALLOCATED DIFFERENTLY ** block-name

CPU TNS DIRECTIVE WILL NOT BE SUPPORTED IN THE D00 RELEASE

DEFINE NAME NOT PERMITTED IN DIRECTIVE ** directive

DUPLICATE SECTION NAME ** name
FORTRAN Reference Manual—528615-001
F-35

Compile-Time Diagnostic Messages Warning Messages
Cause. A compiler directive tries to re-specify something that has already been
specified by another directive that was processed earlier. The compiler ignores the
current directive.

Recovery. Remove the ignored directive.

Cause. The ERRORFILE compiler directive specifies a file name that could not be
used for this purpose, for the reason indicated. The possible reasons include: source
input file not EDIT format, missing file name, invalid file name, non-existent device
name, not a disk file name, existing file is not entry-sequenced, existing file’s filecode is
not 106, and unable to purge existing file. The compiler proceeds as if the ERRORFILE
directive were not present.

Recovery. Depending on the reason stated in the message, either delete the
ERRORFILE compiler directive, or change the directive to specify a different file name,
or purge the existing file named in the directive.

Cause. Characters beyond the 31st in a symbolic name are ignored.

Recovery. Change the name. This error is likely to cause additional errors if this
name’s first 31 characters are the same as another symbolic name’s first 31
characters.

Cause. A compiler directive contains a syntax error. The directive is ignored.

Recovery. Correct the directive.

EARLIER DIRECTIVE OVERRIDES ** name

ERRORFILE DIRECTIVE IGNORED ** reason

IDENTIFIER EXCEEDS 31 CHARACTERS

ILLEGAL OPTION SYNTAX
FORTRAN Reference Manual—528615-001
F-36

Compile-Time Diagnostic Messages Warning Messages
Cause. You named the same common block on both a HIGHCOMMON and a
LARGECOMMON directive. FORTRAN allocates storage for the common block based
on the first directive that named that block.

Recovery. Remove the common block name from one of the two directives.

Cause. The object program has so much data allocated in the lower half of the user
data segment that there is little space remaining for the run-time stack. The object
program might run correctly, or it might get a “stack overflow” trap.

Recovery. Make more room in the lower half of the user data segment by using the
same methods suggested for the LOWER DATA SEGMENT OVERFLOW error
message.

Cause. The file name in a SEARCH compiler directive has an incorrect form. The
directive is ignored.

Recovery. Correct the directive.

Cause. An octal constant contains an 8 or 9.

Recovery. Correct the constant.

Cause. The compilation does not include a main program unit. The object file is
therefore not executable.

Recovery. Correct the source program or combine this object file with a separately
compiled object file that does include a main program unit.

INCONSISTENT COMMON ALLOCATION ** block-name

INITIAL STACK MARKER AT OR NEAR OVERFLOW

INVALID FILE NAME

INVALID OCTAL DIGIT

MAIN PROCEDURE IS MISSING
FORTRAN Reference Manual—528615-001
F-37

Compile-Time Diagnostic Messages Warning Messages
Cause. The NONSTOP directive is only valid if ENV COMMON has been specified.
Programs that specify ENV OLD are always compiled for NonStop execution if any
program unit contains a CHECKPOINT or START BACKUP statement.

Recovery. Add the ENV COMMON directive or remove the NONSTOP directive, as
appropriate.

Cause. A reference to a procedure subprogram has an argument of a data type or
entity kind that is incompatible with the corresponding argument in the procedure’s
declaration or in a previous reference to it.

Recovery. Make the arguments consistent.

Cause. A previous reference to this procedure subprogram had an argument of a data
type or a kind of entity that is incompatible with the indicated dummy argument.

Recovery. Make the arguments consistent.

Cause. An ERRORFILE compiler directive appeared after one or more error or
warning messages had been issued. This message, which will be the first message in
the error file, indicates that earlier messages exist in the main listing output file but not
in the error file.

Recovery. Examine the earlier messages in the main listing output file, and either
eliminate the causes of those messages, or move the ERRORFILE compiler directive
nearer the beginning of the source input file.

NONSTOP DIRECTIVE IGNORED UNLESS ENV=COMMON IS SPECIFIED

PARAMETER MISMATCH ** number

PARAMETER MISMATCH ** name

PREVIOUS ERROR/WARNING MESSAGES NOT INCLUDED IN ERRORFILE
FORTRAN Reference Manual—528615-001
F-38

Compile-Time Diagnostic Messages Warning Messages
Cause. You used a GUARDIAN directive that named a procedure which is not a
Guardian procedure, a Saved Message Utility procedure, or a FORTRAN utility routine.
FORTRAN generates the normal FORTRAN calling sequence for calls to the named
procedure.

Recovery. Correct the procedure name or remove it from the GUARDIAN directive.

Cause. A CONSULT compiler directive specifies a procedure name that is not found in
the designated object file. The compiler skips the missing procedure and carries on
with the remainder of the directive.

Recovery. Remove the indicated procedure name from the CONSULT directive, or
change the file name to that of a file that contains the specified procedure.

Cause. A CONSULT directive references an object file which was compiled with a
different setting for the ENV directive or for the NONSTOP directive.

Recovery. Recompile the source of the target of the CONSULT directive with the
settings used in the current compilation or change the directives being used to match
those of the previous compilation.

Cause. Allocation of subrecords with non-character data changed from previous
releases.

Recovery. Compare the storage map for the record with that produced by the
previous version of FORTRAN used. If there are differences, add filler declarations to
make the new allocation conform to the old one. This warning is issued only if the
value of PARAM FORTRAN^RECORD^WARNING is nonzero.

PROCEDURE IS NOT A GUARDIAN ROUTINE ** proc-name

PROCEDURE NOT FOUND ** proc-name

PROCEDURE INCOMPATIBLE WITH RUN-TIME ENVIRONMENT ** proc-name

RECORD ALLOCATION POSSIBLY INCOMPATIBLE
FORTRAN Reference Manual—528615-001
F-39

Compile-Time Diagnostic Messages Warning Messages
Cause. A section name mentioned in a SOURCE directive was not found in the
source file.

Recovery. Check the source; check the spelling of section name.

Cause. A source line exceeded 132 characters in length. Characters beyond the
132nd are ignored.

Recovery. Correct the source.

Cause. The argument of a DATAPAGES directive is less than the compiler’s estimate
of the number of data pages required.

Recovery. Try a larger number.

Cause. A START BACKUP statement appears in a compilation in which ENV
COMMON is specified but NONSTOP is not specified. A program that specifies ENV
COMMON must also specify NONSTOP in order to be able to run as a NonStop
process.

Recovery. Add the NONSTOP directive to the beginning of the compilation.

Cause. An unrecognizable compiler directive was encountered. The directive is
ignored.

Recovery. Correct the source.

SECTION NOT FOUND ** section-name

SOURCE LINE TRUNCATED

SPECIFIED NUMBER OF DATA PAGES MAY BE INSUFFICIENT

START BACKUP STATEMENT ENCOUNTERED WITHOUT NONSTOP SPECIFIED

UNDEFINED OPTION
FORTRAN Reference Manual—528615-001
F-40

Compile-Time Diagnostic Messages Warning Messages
Cause. A value in a compiler directive is too great or too small. The directive is
ignored.

Recovery. Correct the source.

VALUE OUT OF RANGE
FORTRAN Reference Manual—528615-001
F-41

Compile-Time Diagnostic Messages Warning Messages
FORTRAN Reference Manual—528615-001
F-42

G
Run-Time Diagnostic Messages

FORTRAN displays run-time diagnostic messages for the following types of errors:

• I/O errors

• Intrinsic function errors

• Common run-time environment messages

 Topics covered in this section include:

The first part of this appendix describes the features of FORTRAN statements and
utility routines that enable FORTRAN programs to handle run-time errors.

The second part of this appendix describes the format and content of the diagnostic
messages that the FORTRAN run-time environment writes to your log file. It describes
the format of messages for programs compiled with ENV OLD in effect as well as for
programs compiled with ENV COMMON in effect.

I/O Errors
FORTRAN statements and utility routines that call Guardian system procedures might
report run-time errors.

Most of the statements during which an error can occur include the IOSTAT = ios and
ERR = label parameters that enable your program to detect the error and continue
running.

ios is an integer variable or integer array element in which FORTRAN returns an error
number if an error occurs while the statement or routine is executing. If an error does
not occur, the statement or routine sets ios to zero. For more information about the
error numbers returned in ios, see the Error Numbers on page 6-5.

label is the label of an executable statement in the current program unit to which
FORTRAN transfers control if an error occurs while the statement or routine is
executing.

If you specify ios but not label, your program continues executing with the
FORTRAN statement that follows the statement during which the error occurred. You

Topic Page
I/O Errors G-1

START BACKUP and CHECKPOINT Errors G-2

Intrinsic Errors G-3

Error Messages G-3

Diagnostic Messages With ENV OLD G-3

Diagnostic Messages With ENV COMMON G-6
FORTRAN Reference Manual—528615-001
G-1

Run-Time Diagnostic Messages START BACKUP and CHECKPOINT Errors
can determine if an error occurred and, if so, its error number, by analyzing the value in
ios.

If you specify label but not ios, your program continues executing with the
statement labeled label. Although your program can detect that an error occurred—
by the fact that it is now executing at a specified label—you cannot determine the
specific error that occurred.

If you specify both label and ios, FORTRAN transfers control to label and you can
determine the error that occurred by the error number in ios.

If you do not specify label or ios, FORTRAN terminates your program and writes an
error message to the log file.

FORTRAN utility routines include a positional parameter in which the routine stores an
error number. If an error occurs and you do not specify the error parameter, FORTRAN
terminates your program and writes an error message to the log file.

START BACKUP and CHECKPOINT Errors
Both the START BACKUP and CHECKPOINT statements include a
BACKUPSTATUS= specifier, as well as an ERR= specifier. These specifiers serve the
same purpose for START BACKUP and CHECKPOINT statements as IOSTAT and
ERR do for I/O statements.

If ENV OLD is in effect and an error occurs when your program executes a START
BACKUP or CHECKPOINT statement that does not include a BACKUPSTATUS=
specifier, the FORTRAN run-time library writes a message to your terminal. Your
program continues running either with the executable statement designated in the
ERR= specifier, or, if you do not specify ERR=, with the executable statement following
the START BACKUP or CHECKPOINT statement.

If ENV COMMON is in effect and an error occurs when your program executes a
START BACKUP or CHECKPOINT statement that does not include a
BACKUPSTATUS= specifier, the FORTRAN run-time library writes a message to the
standard log file. If the START BACKUP or CHECKPOINT statement includes an
ERR= specifier, your program continues running at the label specified in the ERR=
specifier. Otherwise, the run-time library terminates your program.
FORTRAN Reference Manual—528615-001
G-2

Run-Time Diagnostic Messages Intrinsic Errors
Intrinsic Errors
The following intrinsic functions can cause run-time errors:

• ACOS, DACOS, ASIN, and DASIN: argument value is less than -1.0 or greater
than 1.0.

• ALOG, DLOG, ALOG10, DLOG10: argument less than or equal to zero. \

• ATAN2 and DATAN2: both arguments are zero.

• CLOG: argument value is CMPLX (0, 0).

• SQRT and DSQRT: argument value is less than zero.

• DSQRT when called by CSQRT: if the argument to CSQRT is z = CMPLX (x, y),
the error can occur when x > CABS (z).

Error Messages
If an error occurs while your program is running, the FORTRAN run-time library writes
a diagnostic message to the log file. The format of the diagnostic message depends on
the nature of the error, and whether or not you specify ENV OLD or ENV COMMON
when you compile your program.

Diagnostic Messages With ENV OLD
If you compile your program with ENV OLD, the FORTRAN run-time library writes
messages in one of three different formats, depending on the statement or function
that causes the error. The three formats correspond to whether the error occurs while
executing:

• A READ or WRITE statement

• An I/O statement other than a READ or WRITE statement

• An intrinsic function

READ and WRITE Message Format
The formatter writes an error message to the log file in the following format if either the
formatter or the Guardian file system detects an error while executing a READ or
WRITE statement:

FORMATTER ERROR @ p-addr, space. segment
UNIT uuu, ERROR errno
FORTRAN Reference Manual—528615-001
G-3

Run-Time Diagnostic Messages System Error Message Format
p-addr

is the program location, in octal, where the error was detected, as shown by the
instruction address in the P-register.

space

is the two-letter code space identifier as follows:

UC User code SC System code

UL User library SL System library

segment

is the segment number, in octal, within space.

uuu

is the number of the unit specified in the READ or WRITE statement. Unit number
000 indicates an error on $RECEIVE; an all blank unit number refers to an internal
file.

errno

is a 5-digit number that identifies the I/O error.

Errors 00001 through 00255 are file-system error numbers. For more information about
file system error numbers, see the Guardian Procedure Errors and Messages Manual .
You can get a brief description of file system errors by entering the following TACL
command:

ERROR error-number

Errors 00256 through 00274 are unique to the formatter. See Formatter Run-Time
Messages on page G-8.

System Error Message Format
The FORTRAN run-time-library writes an error message to the log file in the following
format if either the run-time library or the Guardian file system detects an error while
executing an I/O statement, other than a READ or WRITE statement, or START
BACKUP or CHECKPOINT statement:

operation ERROR @ space. seg p-addr IN process-id
UNIT uuu, ERROR errno
FORTRAN Reference Manual—528615-001
G-4

Run-Time Diagnostic Messages System Error Message Format
operation

is one of:

BACKSPACE ENDFILE OPEN REWIND

CHECKPOINT FORTRANSPOOLSTART POSITION STARTBACKUP

CLOSE INQUIRE

space

is the two-letter code space identification as follows:

UC User code SC System code

UL User library SL System library

seg

is the segment number, in octal, within space.

p-addr

is the program location, in octal, where the error was detected, as shown by the
instruction address in the P-register.

process-id

is the identification of the process in which the error occurred. It has the form

[\ node .] [process-name] (cpu , pin)

\ node

is the node name, if the process is running on the same node as the home
terminal.

process-name

is the process name, if the process has a name.

cpu

is the processor number in which the process runs.

pin

is the process id number within the process’s processor.

uuu

is the number of the unit specified statement. Unit number is 000 for a START
BACKUP or CHECKPOINT statement, and for an INQUIRE statement if a unit
number is not specified.
FORTRAN Reference Manual—528615-001
G-5

Run-Time Diagnostic Messages Intrinsic Error Message Format
errno

is a 5-digit number that identifies the error condition.

Intrinsic Error Message Format
The FORTRAN run-time-library unconditionally terminates your program and writes an
error message to the log file in the following format if an intrinsic function detects an
error.

Run-time intrinsic function diagnostic messages have the general form:

name

is the name of the intrinsic function that detected the error.

Diagnostic Messages With ENV COMMON
If you compile your program with ENV COMMON, the FORTRAN run-time library
writes all diagnostic messages to the standard log file in the same format, regardless of
the cause of the error.

Message Format
This subsection describes the format of the messages that FORTRAN writes to the log
file. If you compile your program with ENV COMMON, the run-time library writes all
diagnostic messages in the same format, regardless of the type of error that occurred.

process_name

identifies the process in which the error occurred.

nnn

is the number of the diagnostic message.

message

is the text associated with message number nnn.

FORTRAN LIBRARY CALL ERROR: name

process_name - *** Run-time Error nnn ***
process_name - message [(additional_information)]
[process_name - optional_text]
process_name - From: top_of_stack
process_name - : : : :
process_name - bottom_of_stack
FORTRAN Reference Manual—528615-001
G-6

Run-Time Diagnostic Messages Message Format
additional_information

if present, gives more detail about message. For example, if an error occurs while
accessing a file, additional_information might be the file-system error
number.

optional_text

if present, provides additional information about the error. For example, it might
show the FORTRAN unit number. optional_text helps you identify the cause of
the error.

top_of_stack

shows the name of the procedure that invoked the run-time library routine in which
the error was detected, the offset within the procedure, and the number of the code
segment in which the procedure’s code is located.

bottom_of_stack

shows the name of the first procedure—the main procedure—of the process in
which the error occurred, the offset within the procedure, and the number of the
code segment in which the procedure’s code is located. The stack trace includes
all procedures between top_of_stack and bottom_of_stack.

The following examples show messages that FORTRAN might write to the standard
log file:

• If a program passes a negative value to a square root function, FORTRAN writes a
message such as the following to the standard log file:

\NODE.$Z012:3 - *** Run-time Error 049 ***

\NODE.$Z012:3 - Square root domain fault

\NODE.$Z012:3 - From: DRAWIT + %513, UC.00

\NODE.$Z012:3 - CIRCLE + %21, UC.00

\NODE.$Z012:3 - MYPROG + %7, UC.00

• If a program tries to open standard input but the file does not exist, FORTRAN
writes a message such as the following to the standard log file:

\NODE.$Z012:3 - *** Run-time Error 059 ***

\NODE.$Z012:3 - Standard input file error (11)

\NODE.$Z012:3 - From: READREC +%54, UC.00

\NODE.$Z012:3 NEXTREC + %15, UC.00

\NODE.$Z012:3 - COMPUTE + %214, UC.00

\NODE.$Z012:3 - MYPROG + %7, UC.00

Note that the error message includes the number of the file-system error number
(11).
FORTRAN Reference Manual—528615-001
G-7

Run-Time Diagnostic Messages Formatter Run-Time Messages
• If your FORTRAN program cannot create a new file, FORTRAN writes a message
such as the following to the standard log file. Note that the message includes an
informational line that shows the unit associated with the file and the external
Guardian file name:

\NODE.$TEST:8403781 - *** Run-time Error 082 ***

\NODE.$TEST:8403781 - GUARDIAN I/O error 14

\NODE.$TEST:8403781 - Unit 008 = $FOO.A.B

\NODE.$TEST:8403781 - From SUB2 + %111, UC.00

\NODE.$TEST:8403781 - SUB1 + %2, UC.00

\NODE.$TEST:8403781 - MAIN^ + %7, UC.00

Formatter Run-Time Messages
If an error occurs during the execution of a READ or a WRITE statement, the formatter
writes a message to the log file. Although the message numbers are the same,
whether your program specifies ENV OLD or ENV COMMON, the message text
depends on which ENV parameter you specify.

Formatter Messages with ENV COMMON
FORTRAN writes the following messages to the standard log file if you specify ENV
COMMON when you compile your program. (The next subsection shows the error text
that the formatter writes if your program specifies ENV OLD.)

255

Cause. A program called a C-series routine that was compiled without an ENV
directive or a D-series or later library routine that was either compiled without an ENV
directive or with the ENV OLD compiler directive, such as FORTRSNSPOOLSTART or
FORTRANCOMPLETION, while running with the CRE.

Effect. The run-time library terminates the program.

Recovery. Do one of the following:

• Compile your program with an ENV OLD compiler directive

• Remove the specification to an ENV directive

• Change the call to a routine appropriate for the COMMON environment.

OLD routine not executable in COMMON environment
FORTRAN Reference Manual—528615-001
G-8

Run-Time Diagnostic Messages Formatter Run-Time Messages
256

Cause. A routine referenced a unit that was not specified in a UNIT compiler directive
or as a constant expression in the unit specifier of an I/O statement.

Effect. If the program executed an I/O statement that includes an ERR clause or an
IOSTAT clause, the program retains control. Otherwise, the run-time library terminates
your program.

Recovery. Specify the unit number in a UNIT compiler directive or use a constant
expression in the unit specifier of the I/O statement, and recompile your program.

257

Cause. An I/O statement contains an illegal parameter or parameter combination. For
example, in a WRITE statement, UNLOCK=.TRUE. is invalid unless UPDATE is also
present with a true value.

Effect. If the program executed an I/O statement that includes an ERR clause or an
IOSTAT clause, the program retains control. Otherwise, the run-time library terminates
your program.

Recovery. Correct the parameter combination.

258

Cause. An OPEN statement specifies STATUS='SCRATCH' as well as a subvolume
name, a file name, or both.

Effect. File cannot be opened.

Recovery. A file opened with STATUS='SCRATCH' can either not specify a location
for the file, or can specify a volume name but neither a subvolume name nor a file
name.

Change the OPEN statement to either not specify a file name or to specify only a
volume name:

OPEN (60, STATUS='SCRATCH') <-- OK

OPEN (60, STATUS='SCRATCH', FILE= '$U1') <-- OK

OPEN (60, STATUS='SCRATCH', FILE= '$U1.VOL') <-- ERROR

OPEN (60, STATUS='SCRATCH', FILE= '$U1.VOL.SCR1') <-- ERROR

Unknown unit value nnn

Invalid parameter value

OPEN specifies SCRATCH status and file name
FORTRAN Reference Manual—528615-001
G-9

Run-Time Diagnostic Messages Formatter Run-Time Messages
259

Cause. The attributes specified in an OPEN statement that referenced an already-
open file were incompatible with the attributes in effect from the file’s original open. If a
routine opens a file connection for an already-open file, the attributes of the second
(and subsequent) opens must be the same as those of the original open except for the
BLANK parameter, which can be different.

Effect. The file remains open. The value of BLANK for the already-open file is not
changed. If the OPEN statement specified an ERR or an IOSTAT clause, the program
retrains control. Otherwise, the run-time library terminates the program.

Recovery. Modify the routine to ensure that multiple connections to the same file open
specify the same attributes—or do not specify attributes—except, possibly, the BLANK
parameter.

260

Cause. A routine invoked START BACKUP but the backup could not be started. nnn
specifies the reason the backup was not able to start. For more details, see Table 7-10
on page 7-102.

Effect. nnn gives the reason that the backup could not be created. nnn is a NonStop
process status code. See Table 7-10 on page 7-102.

Recovery. Control returns to the routine, which might either retry the START BACKUP
statement or run without a backup process.

261

Cause. A routine called CHECKPOINT but the checkpoint request could not be
completed. nnn specifies the reason the checkpoint was unsuccessful. For more
details, see Table 7-10 on page 7-102.

Effect. nnn gives the reason the checkpoint was unsuccessful. nnn is a NonStop
process status code. See Table 7-10 on page 7-102.

Recovery. Control returns to the routine, which might retry the CHECKPOINT
statement, run without checkpointing, or terminate.

OPEN for unit open with inconsistent attribute values

START BACKUP failed with status code nnn

CHECKPOINT failed with status code nnn
FORTRAN Reference Manual—528615-001
G-10

Run-Time Diagnostic Messages Formatter Run-Time Messages
267

Cause. A routine tried to transfer a record that is larger than the maximum record
length specified for the unit. The maximum record length is established at the time a
unit is connected to a file. For more details, see the OPEN Statement on page 7-70.

Effect. If the program executed an I/O statement that includes an ERR clause or an
IOSTAT clause, the program retains control. Otherwise, the run-time library terminates
your program.

Recovery. Specify a larger buffer size either in a UNIT directive or in a TACL ASSIGN
command.

270

Cause. The formatter encountered a right parenthesis with more data remaining to be
formatted. However, no data was written as a result of the formats within the current
set of parentheses. In the following example, the WRITE statement never completes
because there are two values to write, I and J. The value of I is output but the
formatter would repeatedly scan the 2X specification and the value of J would never be
written:

WRITE(6, 100) i, j

100 FORMAT(1X, I4, (2X))

Effect. If the program executed an I/O statement that includes an ERR clause or an
IOSTAT clause, the program retains control. Otherwise, the run-time library terminates
the program.

Recovery. Modify your FORMAT statement to account for all data specified in the
WRITE statement.

271

Cause. An item in the data list of an I/O statement is incompatible with its
corresponding actual value or format edit descriptor. For example, a data item is a
REAL value but the current item descriptor expects an integer:

WRITE(6, 100) r

100 FORMAT(1X, I4)

Buffer overflow for unit nnn

Format loopback for unit nnn

Edit item mismatch for unit nnn
FORTRAN Reference Manual—528615-001
G-11

Run-Time Diagnostic Messages Formatter Run-Time Messages
Effect. If the program executed an I/O statement that includes an ERR clause or an
IOSTAT clause, the program retains control. Otherwise, the run-time library terminates
the program.

Recovery. Modify your FORMAT statement to specify the correct type for each data
item specified in the WRITE statement.

272

Cause. A numeric field contains a character other than 0 through 9, a decimal point, a
comma, or a blank.

Effect. If the program executed an I/O statement that includes an ERR clause or an
IOSTAT clause, the program retains control. Otherwise, the run-time library terminates
the program.

Recovery. Correct the input data or change the program to describe correctly the data
the program is reading.

273

Cause. A format specification is syntactically correct but is used in a context in which it
is not valid. For example, the specification F5.5 is valid in a format for input but not for
output.

Effect. If the program executed an I/O statement that includes an ERR clause or an
IOSTAT clause, the program retains control. Otherwise, the run-time library terminates
the program.

Recovery. Change the format specification so that each element of the format is
correct for the context in which it is used.

274

Cause. An input value is too large for the variable in which it was to be stored.

Effect. If the program executed an I/O statement that includes an ERR clause or an
IOSTAT clause, the program retains control. Otherwise, the run-time library terminates
the program.

Recovery. Change the variable that receives the data to accept a larger value or
change the data the program reads to a value that does not exceed the size of the
variable into which it is being read.

Illegal input character for unit nnn

Illegal format for unit nnn

Numeric overflow for unit nnn
FORTRAN Reference Manual—528615-001
G-12

Run-Time Diagnostic Messages Formatter Run-Time Messages
Formatter Messages With ENV OLD
FORTRAN displays the following diagnostic messages if a run-time error occurs and
you specify ENV OLD when you compile your program. See the preceding subsection
for cause, effect, and recovery information.

256

257

258

259

260

261

267

270

BAD UNIT

BAD PARAMETER

not used with ENV OLD

not used with ENV OLD

not used with ENV OLD

not used with ENV OLD

BUFFER OVERFLOW

FORMAT LOOPBACK
FORTRAN Reference Manual—528615-001
G-13

Run-Time Diagnostic Messages System Messages
271

278

273

274

System Messages
The FORTRAN run-time library displays the messages in this and the following
subsections if an error occurs while executing a statement or intrinsic routine. The error
might be detected by the operating system, by routines in the FORTRAN run-time
environment, or by routines in common run-time environment.

System Messages With ENV OLD
If your program specifies ENV OLD and an error occurs while running your program,
the FORTRAN run-time library writes a message to your log file according to the format
described earlier in this section. However, the message specifies only the file system
error number that occurred—there is no message text.

System errors can occur in programs that specify ENV OLD on the following
statements and utility routines:

BACKSPACE FORTRANSPOOLSTART POSITION

CHECKPOINT INQUIRE REWIND

CLOSE OPEN STARTBACKUP

ENDFILE

System Messages With ENV COMMON
If your program specifies ENV COMMON and an error occurs while running your
program, the FORTRAN run-time library writes a message to the standard log file
according to the format described earlier in this section. The following subsections
show the text of the messages that FORTRAN writes.

EDIT ITEM MISMATCH

ILLEGAL INPUT CHARACTER

ILLEGAL FORMAT

NUMERIC OVERFLOW
FORTRAN Reference Manual—528615-001
G-14

Run-Time Diagnostic Messages Trap Messages
System errors can occur in programs that specify ENV COMMON on the following
statements and utility routines:

BACKSPACE FORTRAN_SETMODE_ READ

CHECKPOINT FORTRAN_SPOOL_OPEN_ REWIND

CLOSE INQUIRE START BACKUP

ENDFILE OPEN WRITE

FORTRAN_CONTROL_ POSITION

Trap Messages
The run-time library reports the messages in this subsection if a trap occurs. The
runtime library terminates your program.

The run-time treats trap 4, arithmetic fault, as a program logic error, not a trap.

1

The run-time trap processing function was called with an unknown trap number.

2

An address was specified that was not within either the virtual code area or the virtual
data area allocated to the process.

3

An attempt was made to:

• Execute a code word that is not an instruction.

• Execute a privileged instruction by a nonprivileged process.

• Reference an illegal extended address.

Unknown trap

Illegal address reference

Instruction failure
FORTRAN Reference Manual—528615-001
G-15

Run-Time Diagnostic Messages Trap Messages
4

The overflow bit in the environment-register, ENV.<10>, was set to 1 for one of the
following reasons:

• The result of a signed arithmetic operation could not be represented with the
number of bits available for the particular data type.

• An division operation was attempted with a zero divisor.

5

A stack overflow fault occurs if:

• An attempt was made to execute a procedure or subprocedure whose local or
sublocal data area extends into the upper 32K of the user data area.

• There was not enough remaining virtual data space for an operating system
procedure to execute.

The amount of virtual data space available is G[0] through G[32767].

Operating system procedures require approximately 350 words of user-data stack
space to execute.

6

The new time limit specified in the latest call to SETLOOPTIMER has expired.

7

An unrecoverable read error occurred while the program was trying to bring in a page
from virtual memory.

Arithmetic fault

Stack overflow

Process loop-timer timeout

Memory manager read error
FORTRAN Reference Manual—528615-001
G-16

Run-Time Diagnostic Messages Run-Time Core Messages
8

This fault occurs for one of the following reasons:

• A page fault occurred, but there were no physical memory pages available for
overlay.

• Disk space could not be allocated while the program is using extensible segments.

9

An uncorrectable memory error occurred.

Run-Time Core Messages
The CRE writes the messages in this subsection if an error occurs during its own
processing or if it receives a request from a run-time library to report a specific
message.

11

Cause. Run-time data is invalid.

Effect. The run-time environment invokes PROCESS_STOP_, specifying the ABEND
variant and the text “Corrupted environment.”

Recovery. The program might have written data in the upper 32K words of the user
data segment. The upper 32K words are reserved for run-time data. Check the
program’s logic. Use Inspect to help isolate the problem or consult your system
administrator.

12

Cause. The run-time library detected a logic error within its own domain. For example,
although each data item it is using is valid, the values of the data items are mutually
inconsistent.

Effect. The run-time environment invokes PROCESS_STOP_, specifying the ABEND
variant and the text “Logic error.”

Not enough physical memory

Uncorrectable memory error

Corrupted environment

Logic error
FORTRAN Reference Manual—528615-001
G-17

Run-Time Diagnostic Messages Run-Time Core Messages
Recovery. The program might have written data in the upper 32K words of the user
data segment. The upper 32K words are reserved for run-time library data. Check the
program’s logic. Use Inspect to help isolate the problem or consult your system
administrator.

13

Cause. The pointer at location G[0] of the program’s user data segment to its primary
data structure—the Master Control Block (MCB)—does not point to the MCB.

Effect. The run-time attempts to restore the pointer at G[0] and to write a message to
the standard log file. However, because its environment might be corrupted, the
runtime might not be able to log a message. In that case, it calls PROCESS_STOP_,
specifying the ABEND variant, and the text “Corrupted Environment”.

Recovery. Check the program’s logic to see if it overwrote the MCB pointer at G[0].
Use Inspect to help isolate the problem. For details of how to determine where the
program overwrites G[0], see Using Inspect on page 11-10.

14

Cause. The backup process received a Guardian message that it had become the
primary process but it had not yet received all of its initial checkpoint information from
its predecessor primary process.

Effect. The run-time invokes PROCESS_STOP_, specifying the ABEND variant and
the text “Premature takeover.”

Recovery. If the takeover occurred because of faulty program logic, correct the
program’s logic. If the takeover occurred for other reasons, such as a hardware failure,
you might want to rerun the program, provided that doing so will not duplicate
operations already performed, such as updating a database a second time.

15

Cause. A list of checkpoint item descriptors that the run-time maintains for NonStop
processes was invalid.

Effect. The run-time terminates the program.

Recovery. The list of items to checkpoint is maintained in the program’s address
space. Check the program’s logic. The program might have overwritten the checkpoint
list. Use Inspect to help isolate the problem.

MCB pointer corrupt

Premature takeover

Checkpoint list inconsistent
FORTRAN Reference Manual—528615-001
G-18

Run-Time Diagnostic Messages Run-Time Core Messages
16

Cause. The run-time did not have enough room to store all the checkpoint information
required by the program.

Effect. Program behavior is language and application dependent.

Recovery. Increase the checkpoint list object’s size. For the routine that allocates your
checkpoint list, see the language manual.

17

Cause. The run-time library could not obtain heap space for all of its data.

Effect. If the request came from the CRE, it terminates the program. Otherwise,
program behavior is language and application dependent.

Recovery. You might be able to increase the amount of control space available to your
program by reducing the number of files your program has open at the same time or by
decreasing the size of buffers allocated to open files.

18

Cause. A module could not obtain sufficient extended stack space for its local data.

Effect. Program behavior is language and application dependent.

Recovery. Increase the extended stack’s size. For the routine that caused the
extended stack overflow and for details on increasing the size of the extended stack,
see the language manual.

20

Cause. A string, expected to be a valid file name, could not be manipulated as a
Guardian external file name.

Effect. If the file name came from the CRE, the program is terminated. Otherwise,
program behavior is language and application dependent.

Recovery. Check that the file names in the program are valid Guardian file names.

Checkpoint list exhausted

Cannot obtain control space

Extended Stack Overflow

Cannot utilize filename
FORTRAN Reference Manual—528615-001
G-19

Run-Time Diagnostic Messages Run-Time Core Messages
21

Cause. During program initialization, the run-time could not read all the messages
(start-up message, PARAM message, ASSIGN messages, and so forth) it expected
from the file system. error is the file system error number the run-time received when
it couldn’t read an initialization message.

Effect. The run-time terminates the program.

Recovery. Consult your system administrator.

22

Cause. The run-time could not obtain the name of the program file from the operating
system.

Effect. The run-time terminates the program.

Recovery. Consult your system administrator.

23

Cause. The run-time could not determine the physical file name associated with
program_name.logical_name.

Effect. The run-time terminates the program.

Recovery. Correct the program_name.logical_name and rerun your program. For
general information on ASSIGN commands, see the TACL Reference Manual. For
more information on using ASSIGNs, see the reference manual for your program’s
‘main’ routine.

24

Cause. ASSIGN values in your TACL environment conflict with each other. For
example:

ASSIGN A, $B1.C.D

ASSIGN *.A, $B2.C.D

Cannot read initialization messages (error)

Cannot obtain program filename

Cannot determine filename (error)
program_name.logical_name

Conflict in application of ASSIGN
program_name.logical_name
FORTRAN Reference Manual—528615-001
G-20

Run-Time Diagnostic Messages Run-Time Core Messages
The first ASSIGN specifies that the logical name A can appear in no more than one
program file. The second assign specifies that the name A can appear in an arbitrary
number of program files. The run-time cannot determine whether to use the file C.D on
volume $B1 or on volume $B2.

Effect. The run-time terminates the program.

Recovery. Correct the ASSIGNs in your TACL environment. For more information on
using ASSIGNs, see the TACL Reference Manual.

25

Cause. Your TACL environment specifies an ASSIGN such as:

ASSIGN A, $B1.C.D

but the program contains more than one logical file named A.

Effect. The run-time terminates the program.

Recovery. Correct the ASSIGNs in your TACL environment. For more information on
using ASSIGNs, see the TACL Reference Manual.

26

Cause. A PARAM specifies a value that is not defined by the run-time. For example,
the value for a DEBUG PARAM must be either ON or OFF:

PARAM DEBUG

The run-time reports this error if a DEBUG PARAM has a value other than ON or OFF.
error, if present, is a file-system error.

Effect. The run-time terminates the program.

Recovery. Modify the PARAM text and rerun the program. For more information on
using PARAMs, see the TACL Reference Manual.

Ambiguity in application of ASSIGN
logical_name

Invalid PARAM value text (error)
PARAM name ' value'

ON

OFF
FORTRAN Reference Manual—528615-001
G-21

Run-Time Diagnostic Messages Intrinsic Error Messages
27

Cause. A PARAM specifies a value that is ambiguous in the current context. For
example, the PARAM specification:

PARAM PRINTER-CONTROL A

is ambiguous if the program contains more than one logical file named A.

Effect. The run-time terminates the program.

Recovery. Correct the PARAM in your TACL environment. For more information on
using PARAMs, see the TACL Reference Manual.

28

Cause. The run-time library for a module that is written in language is not available
to the program.

Effect. The run-time terminates the program.

Recovery. Consult your system administrator.

29

Cause. The language compiler used features that are not supported by the language
run-time library that the program used.

Effect. The run-time terminates the program.

Recovery. Use a compiler and run-time library that are compatible. You might need to
consult your system administrator.

Intrinsic Error Messages
Run-time libraries report the messages in this subsection if an error is detected in a
math function.

40

Cause. A function detected a problem with its parameters.

Ambiguity in application of PARAM
PARAM name ' value'

Missing language run-time library -- language

Program incompatible with run-time library -- language

Invalid function parameter
FORTRAN Reference Manual—528615-001
G-22

Run-Time Diagnostic Messages Intrinsic Error Messages
Effect. Program behavior is language and application dependent.

Recovery. Correct the parameter you are passing.

41

Cause. An arithmetic overflow or underflow occurred while evaluating an arithmetic
function.

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass values to the arithmetic functions that do not
cause overflow.

42

Cause. The parameter passed to the arccos function was not in the range:

-1.0 ≤ parameter ≤ 1.0

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass a valid value to the arccos function.

43

Cause. The parameter passed to the arcsin function was not in the range:

-1.0 ≤ parameter ≤ 1.0

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass a valid value to the arcsin function.

44

Cause. Both of the parameters to an arctan2 function were zero. At least one of the
parameters must be nonzero.

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass the correct value to the arctan2 function.

Range fault

Arccos domain fault

Arcsin domain fault

Arctan domain fault
FORTRAN Reference Manual—528615-001
G-23

Run-Time Diagnostic Messages Intrinsic Error Messages
46

Cause. The parameter passed to a logarithm function was less than or equal to zero.
The parameter to a logarithm function must be greater than zero.

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass a valid value to the logarithm function.

47

Cause. The value of the second parameter to a modulo function was zero. The
second parameter to a modulo function must be nonzero.

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass a nonzero value to the modulo function.

48

Cause. Parameters to a Power function were not acceptable. Given the expression

xy

the following parameter combinations produce this message:

x = 0 and y ≤ 0

x < 0 and y is not an integral value

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass values that do not violate the above
combinations.

49

Cause. The parameter to a square root function was a negative number. The
parameter must be greater than or equal to zero.

Effect. Program behavior is language and application dependent.

Logarithm function domain fault

Modulo function domain fault

Exponentiation domain fault

Square root domain fault
FORTRAN Reference Manual—528615-001
G-24

Run-Time Diagnostic Messages Input/Output Messages
Recovery. Modify the program to pass a nonnegative value to the square root
function.

55

Cause. A required parameter is missing or too many parameters were passed.

Effect. Program behavior depends on the function that was called and the language in
which it is written.

Recovery. Correct the program to pass a valid parameter.

56

Cause. The value passed as a procedure parameter was invalid.

Effect. Program behavior depends on the function that was called and the language in
which it is written.

Recovery. Correct the program to pass a valid parameter value.

57

Cause. The value passed as a procedure parameter is not acceptable in the context in
which it is passed. For example, the number of bytes in a write request is greater than
the number of bytes per record in the file.

Effect. Program behavior depends on the function that was called and the language in
which it is written.

Recovery. Correct the program to pass a valid parameter.

Input/Output Messages
The run-time reports the messages in this subsection if an error occurs when calling an
I/O function.

Missing or invalid parameter

Invalid parameter value

Parameter value not accepted
FORTRAN Reference Manual—528615-001
G-25

Run-Time Diagnostic Messages Input/Output Messages
59

Cause. The file system reported an error when a routine tried to access the standard
input file. error is a file-system error code.

Effect. The run-time can report this error when it closes your input file. All other
instances are language and application dependent.

Recovery. If the error was caused by a read request from your program, correct your
program. You might need to ensure that your program handles conditions that are
beyond your control such as losing a path to the device. Also refer to error handling in
this manual and in the language manual for the routine in your program that detected
the error.

If the error was caused by a read request from the run-time, consult your system
administrator.

60

Cause. The file system reported an error when the run-time called a system procedure
to access standard output. error is the file-system error.

Effect. The run-time can report this error when it closes your output file. All other
instances are language and application dependent.

Recovery. If the error was caused by a write request from your program, correct your
program. You might need to ensure that your program handles conditions that are
beyond your control such as losing a path to the device. Also refer to error handling in
this manual and in the language manual for the routine in your program that detected
the error.

If the error was caused by a write request from the run-time, consult your system
administrator.

61

Cause. The file system reported an error when the run-time called a file system
procedure to access the standard log file. error is the file-system error.

Effect. The run-time terminates your program.

Recovery. Consult your system administrator.

Standard input file error (error)

Standard output file error (error)

Standard log file error (error)
FORTRAN Reference Manual—528615-001
G-26

Run-Time Diagnostic Messages Input/Output Messages
62

Cause. A value that is expected to be a Guardian file number is not the number of an
open file.

Effect. Program behavior is language and application dependent.

Recovery. Consult your system administrator.

63

Cause. A parameter was not the number of a shared file where one was expected.

Effect. Program behavior is language and application dependent.

Recovery. Consult your system administrator.

64

Cause. A request to open a file failed because the file device is not supported.

Effect. Program behavior is language and application dependent.

Recovery. Consult your system administrator.

65

Cause. A parameter to an open operation was not a meaningful value.

Effect. Program behavior is application dependent.

Recovery. Consult your system administrator.

66

Cause. The run-time received a request to access a device that it does not support.

Effect. Program behavior is language and application dependent.

Recovery. Consult your system administrator.

Invalid GUARDIAN file number

Undefined shared file

File not open

Invalid attribute value

Unsupported file device
FORTRAN Reference Manual—528615-001
G-27

Run-Time Diagnostic Messages Input/Output Messages
67

Cause. The value of the access parameter to an open operation was not valid in the
context in which it was used. For example, it is invalid to open a spool file for input.

Effect. Program behavior is language and application dependent.

Recovery. Consult your system administrator.

68

Cause. The value of the no_wait parameter to an open operation was not valid in
the context in which it was used. For example, it is invalid to specify a nonzero value
for no_wait for a device that does not support nowait operations.

Effect. Program behavior is language and application dependent.

Recovery. Consult your system administrator.

69

Cause. The value of the sync_receive_depth parameter to an open operation was
not valid in the context in which it was used. For example, it is not valid to specify a
sync_receive_depth greater than one for a shared file.

Effect. Program behavior is language and application dependent.

Recovery. Consult your system administrator.

70

Cause. The value of an open operation options parameter was not valid in the
context in which it was used.

Effect. Program behavior is language and application dependent.

Recovery. Consult your system administrator.

Access mode not accepted

Nowait value not accepted

Syncdepth not accepted

Options not accepted
FORTRAN Reference Manual—528615-001
G-28

Run-Time Diagnostic Messages Input/Output Messages
71

Cause. A routine requested a connection to a shared file that was already open, and
the attributes of the new open request conflict with the attributes specified when the file
was first opened.

Effect. Program behavior is language and application dependent.

Recovery. If your program supplied the attribute values, correct and rerun your
program. Otherwise, consult your system administrator.

75

Cause. A routine was not able to obtain buffer space.

Effect. Program behavior is language and application dependent.

Recovery. None

76

Cause. A value that was expected to be a Guardian external file name is not in the
correct format.

Effect. Program behavior is language and application dependent.

Recovery. If you supplied an invalid file name, correct the file name and rerun your
program. Otherwise, consult your system administrator.

77

Cause. A call to EDITREADINIT failed. error, if present, gives the reason for the
failure. Possible values of error are:

Inconsistent attribute value

Cannot obtain buffer space

Invalid external filename (error)

EDITREADINIT failed (error)

Error Code Error Name
-1 END-OF-FILE encountered

-2 I/O error

-3 Text file format error

-6 Invalid buffer address
FORTRAN Reference Manual—528615-001
G-29

Run-Time Diagnostic Messages Input/Output Messages
Effect. Program behavior is language and application dependent. For more
information, see the Guardian Procedure Calls Reference Manual.

Recovery. Recovery is language and application dependent.

78

Cause. A call to EDITREAD failed. error, if present, gives the reason for the failure.
Possible values of error are:

Effect. Program behavior is language and application dependent.

Recovery. For more information, see the Guardian Procedure Calls Reference
Manual.

79

Cause. A call to OPENEDIT_ failed. error, if present, is the error returned by
OPENEDIT_. A negative number is a format error. A positive number is a file-system
error number.

Effect. Program behavior is language and application dependent.

Recovery. For more information, see the Guardian Procedure Calls Reference
Manual.

80

Cause. An initialization operation to a spooler collector failed. error, if present, is the
file system error code returned by the SPOOLSTART procedure.

Effect. Program behavior is language and application dependent.

Recovery. For more information, see the Spooler Programmer’s Guide.

EDITREAD failed (error)

Error Code Error Name
-1 END-OF-FILE encountered

-2 I/O error

-3 Text file format error

-4 Sequence number error

-5 Checksum error

-6 Invalid buffer address

OpenEdit failed (error)

Spooler initialization failed (error)
FORTRAN Reference Manual—528615-001
G-30

Run-Time Diagnostic Messages Input/Output Messages
81

Cause. A routine detected an end-of-file condition.

Effect. Program behavior is language and application dependent.

Recovery. Correct your program to allow for an end-of-file condition or ensure that
your program can determine when all the data has been read.

82

Cause. An operating system routine returned error nnn. This error is usually reported
as a result of an event that is beyond control of your program such as a path or system
is not available.

Effect. Program behavior is language and application dependent.

Recovery. Consult your system administrator.

90

Cause. Routines written in two different languages—for example, COBOL85 and
FORTRAN—attempted to open a connection to a file using the same logical name.
This error is reported only for nonshared files.

Effect. Program behavior is language and application dependent.

Recovery. Modify your program to use different logical names or coordinate logical
names between the two routines so that they do not open the same logical file at the
same time.

91

Spooler job already started

Cause. A FORTRAN routine attempted to open a spooler but the spooler was already
open with attributes that conflict with those in the current open. This error is reported
only for an open to standard output and only if one or more of the following are true:

• The spooling levels of the two opens are different.

• The new open specifies any level-2 arguments.

End of file

Guardian I/O error nnn

Open conflicts with open by other language
FORTRAN Reference Manual—528615-001
G-31

Run-Time Diagnostic Messages Input/Output Messages
Effect. If the rejected request was initiated from a FORTRAN I/O statement that
includes either an IOSTAT or ERR parameter, control is returned to the FORTRAN
routine. Otherwise, the FORTRAN run-time library terminates the program.

Recovery. Coordinate how routines in your program use standard output.
FORTRAN Reference Manual—528615-001
G-32

H
Hollerith Constants and Punch Card
Codes

 Topics covered in this section include:

A Hollerith string defines a constant character string. Hollerith data was widely used to
represent character strings prior to FORTRAN 77.

The form of a Hollerith constant is:

n

is an unsigned, nonzero integer constant that specifies the number of characters in
string.

string

is a string of n characters.

In HP FORTRAN, you can use Hollerith constants as:

• Actual parameters to subprograms

• Constant strings in FORMAT statements

• Input values that you read with a READ statement

• Initialization values in DATA statements

The following Hollerith constant specifies a string of four characters; the characters are
NEWS:

4HNEWS

The following Hollerith constant specifies a string of eight characters; the characters
are ++DATE++

8H++DATE++

Blank characters in a Hollerith constant are significant.

If you specify a Hollerith constant as an actual parameter in a CALL statement, the size
of the Hollerith constant must be appropriate to the data type of the subprogram’s

Topic Page
Editing Hollerith Data H-2

Hollerith Constants as Subprogram Arguments H-3

Hollerith Punch Card Codes H-3

nHstring
FORTRAN Reference Manual—528615-001
H-1

Hollerith Constants and Punch Card Codes Editing Hollerith Data
dummy argument. Table H-1 shows the relationship between the data type of a dummy
argument and the maximum number of characters in a Hollerith string.

The following example uses a DATA statement to initialize the quadrupleword integer K
to the string “JANUARY ”. Because January has only seven letters in it, a single blank
after the Y in January is included in the Hollerith constant:

INTEGER*8 k

DATA k/8HJANUARY /

The following example shows a CALL statement that specifies a Hollerith constant:

CALL sub(2HNO)

The following example uses a Hollerith constant in a FORMAT statement:

 WRITE (10, 100) balance

100 FORMAT(1x, 11HBalance is , F8.2)

If the length of string is less than the number of characters the entity can contain, the
characters are left justified in the entity and the remaining character positions are filled
with blanks.

Editing Hollerith Data
Use the A w edit descriptor with Hollerith data when an I/O list item is of type integer,
real, or logical; for example:

DATA j,a/54321,4H$$$$/

WRITE (*,33) j,a

33 FORMAT (I5,A4)

Table H-1. Hollerith Constant String Lengths
Entity Maximum Characters Example
INTEGER*2 2 DATA j /2H++/

LOGICAL 2 DATA c /2Hno/

INTEGER*4 4 DATA k /4Hplus/

REAL 4 DATA c /4Hwork/

LOGICAL*4 4 DATA a /4Htrue/

INTEGER*8 8 DATA m /8HPersonal/
FORTRAN Reference Manual—528615-001
H-2

Hollerith Constants and Punch Card Codes Hollerith Constants as Subprogram Arguments
Hollerith Constants as Subprogram Arguments
You can use a Hollerith constant as an actual argument in a subprogram reference.
The corresponding dummy argument must be of type integer, real, or logical:

SUBROUTINE example(cost,date)

INTEGER*8 date

.

END

PROGRAM Main

CALL example(price,8H4-21-85)

.

END

Hollerith Punch Card Codes
Table H-2 lists the Hollerith characters, their representations on a punch card (shown
as rows punched in a given column), and their ASCII internal (octal) equivalents.

Table H-2. Hollerith Characters (page 1 of 4)

Hollerith Character Hollerith Punch ASCII Octal Equivalent
space no punch %040

& 12 %046

- 11 %055

0 0 %060

{ 12,0 %173

| 12,11 %174

} 11,0 %175

1 1 %061

2 2 %062

3 3 %063

4 4 %064

5 5 %065

6 6 %066

7 7 %067

8 8 %068

9 9 %069

A 12,1 %101
FORTRAN Reference Manual—528615-001
H-3

Hollerith Constants and Punch Card Codes Hollerith Punch Card Codes
B 12,2 %102

C 12,3 %103

D 12,4 %104

E 12,5 %105

F 12,6 %106

G 12,7 %107

H 12,8 %110

I 12,9 %111

J 11,1 %112

K 11,2 %113

L 11,3 %114

M 11,4 %115

N 11,5 %116

O 11,6 %117

P 11,7 %120

Q 11,8 %121

R 11,9 %122

/ 0,1 %057

S 0,2 %123

T 0,3 %124

U 0,4 %125

V 0,5 %126

W 0,6 %127

X 0,7 %130

Y 0,8 %131

Z 0,9 %132

a 12,0,1 %141

b 12,0,2 %142

c 12,0,3 %143

d 12,0,4 %144

e 12,0,5 %145

f 12,0,6 %146

g 12,0,7 %147

h 12,0,8 %150

Table H-2. Hollerith Characters (page 2 of 4)

Hollerith Character Hollerith Punch ASCII Octal Equivalent
FORTRAN Reference Manual—528615-001
H-4

Hollerith Constants and Punch Card Codes Hollerith Punch Card Codes
i 12,0,9 %151

j 12,11,1 %152

k 12,11,2 %153

l 12,11,3 %154

m 12,11,4 %155

n 12,11,5 %156

o 12,11,6 %157

p 12,11,7 %160

q 12,11,8 %161

r 12,11,9 %162

~ 11,0,1 %176

s 11,0,2 %163

t 11,0,3 %164

u 11,0,4 %165

v 11,0,5 %166

w 11,0,6 %167

x 11,0,7 %170

y 11,0,8 %171

z 11,0,9 %172

o 8,1 %140

: 8,2 %072

8,3 %042

@ 8,4 %100

‘ 8,5 %047

= 8,6 %075

" 8,7 %042

[12,8,2 %133

. 12,8,3 %056

< 12,8,4 %074

(12,8,5 %050

+ 12,8,6 %053

! 12,8,7 %041

] 11,8,2 %135

$ 11,8,3 %044

Table H-2. Hollerith Characters (page 3 of 4)

Hollerith Character Hollerith Punch ASCII Octal Equivalent
FORTRAN Reference Manual—528615-001
H-5

Hollerith Constants and Punch Card Codes Hollerith Punch Card Codes
* 11,8,4 %052

) 11,8,5 %051

; 11,8,6 %073

^ 11,8,7 %136

\ 0,8,2 %134

, 0,8,3 %054

% 0,8,4 %045

_ 0,8,5 %137

> 0,8,6 %176

? 0,8,7 %077

Table H-2. Hollerith Characters (page 4 of 4)

Hollerith Character Hollerith Punch ASCII Octal Equivalent
FORTRAN Reference Manual—528615-001
H-6

Glossary
ASSIGN. An HP Tandem Advanced Command Language (TACL) command you can use to

associate a file name with a logical file of a program or to assign a physical device to
logical entities that an application uses.

BIND. A program invoked during system generation that creates TNS object (file code 100)
system code files and system library files.

binding. The operation of collecting, connecting, and relocating code and data blocks from
one or more separately compiled TNS object files to produce a target object file.

BINSERV. A version of the Binder program that is integrated with the C, COBOL85,
FORTRAN, and TAL compilers.

block. A grouping of one or more system enclosures that an HP NonStop™ S-series
system recognizes and supports as one unit. A block can consist of either one
processor enclosure, one I/O enclosure, or one processor enclosure with one or more
I/O enclosures attached.

checkpoint. The operation by which information in the primary process of a NonStop
process pair is sent from the primary process to the backup process. See also stack
checkpoint. and takeover point..

code block. The smallest independently relocatable piece of a program. Code blocks
contain executable machine instructions and possibly inline constant data. Compare
with data block.

collector. See spooler collector.

COMMON block. A data block whose contents can be referenced by all modules.

Common Run-Time Environment (CRE). A set of services, implemented by the CRE
library, that supports mixed-language programs on D-series systems. Contrast with
language-specific run-time environment.

Common Run-Time Environment (CRE) library. A collection of routines that supports
requests for services managed by the CRE, such as I/O and heap management, math
and string functions, exception handling, and error reporting. CRE library routines are
used by D-series C, COBOL85, FORTRAN, and Pascal run-time libraries.

compilation unit. The object code produced by a single run of a compiler.

compiler directive. A compiler option with which you control compilation, compiler listings,
and object code generation. For example, compiler directives enable you to compile
parts of a source file conditionally or to suppress parts of a compiler listing.

connection. With respect to the CRE, a connection is a path managed by the CRE from a
process to a Guardian file. Each connection is a unique path to the same Guardian file
FORTRAN Reference Manual—528615-001
Glossary-1

Glossary CRE.
and to the same open of that file. The CRE manages the connection. The CRE
provides connection services for shared files.

In FORTRAN, a connection is an association between a unit number and a file.

CRE. See Common Run-Time Environment (CRE).

Crossref. A stand-alone product that collects and prints cross-reference information for your
program.

C-series system. A system that is running a C-series version of the operating system.

data block. The smallest independently relocatable piece of a program. Data blocks contain
statically allocated variables or constants. Compare with code block.

data segment. A virtual memory segment holding data. Every process begins with its own
data segments for program global variables and runtime stacks (and for some libraries,
instance data). Additional data segments can be dynamically created.

DEFINE. An HP Tandem Advanced Command Language (TACL) command you can use to
specify a named set of attributes and values to pass to a process.

D-series system. A system that is running a D-series version of the operating system.

entry point. A location where a code block can be accessed.

extended data segment. A segment that provides up to 127.5 megabytes of data storage.
A process can have more than one extended data segment.

file ID. The last of the four parts of a file name; the first three parts are node name (system
name), volume name, and subvolume name.

file name. A sequence of four names, separated by periods, that specifies the location of a
file. A file name consists of a:

• Node name (system name)

• Volume name

• Subvolume name

• File ID

global data. The identifiers in a data block that is accessible to all procedures in a program.

high PIN. A process identification number (PIN) that is greater than 255. Contrast with low
PIN.

home terminal. Usually the terminal from which a process is started.
FORTRAN Reference Manual—528615-001
Glossary-2

Glossary level-1 spooling.
level-1 spooling. A method of spooling files in a HP NonStop environment. With level-1
spooling, a file uses default spooling parameters. The program writes records to a
spooler collector by calling standard file system procedures such as WRITE.

level-2 spooling. A method of spooling files in a HP NonStop environment. With level-2
spooling, the program specifies spooling parameters for the file and writes records to a
spooler collector by using standard file system procedures such as WRITE.

level-3 spooling. A method of spooling files in a HP NonStop environment. With level-3
spooling the program specifies spooling parameters, spooler data is buffered, and the
program writes records to a spooler collector by using spooler interface procedures.
For more information, see the Spooler Programmer’s Guide.

local data. Data that you declare within a procedure.

low PIN. A process identification number (PIN) in the range 0 through 254. Contrast with
high PIN.

lower 32K-word area. The lower half of the user data segment.

main routine. The first routine to execute when a program is run. The main routine
determines the run-time environment for a program. In FORTRAN, a routine that does
not begin with a SUBROUTINE or FUNCTION statement is a main routine. A main
routine can optionally begin with a PROGRAM statement. You can use a PROGRAM
statement to assign a name to the main program.

mixed-language program. A program that contains routines written in different HP-defined
programming languages.

node name. A D-series term that identifies the name of a set of processors on a network. A
node name always begins with a backslash character. A node name in a D-series
system serves the same purpose as a system name in a C-series system.

object file. A file generated by a compiler or binder that contains machine instructions and
other information needed to construct the executable code spaces and initial data for a
process. An object file might be a complete program that is ready for immediate
execution, or it might require binding with other object files before execution.

own data block. A data block that contains the data declared in a FORTRAN subprogram
that executes a SAVE statement.

PARAM command. A TACL command with which you associate an ASCII value with a
parameter name.

PIN. See process identification number (PIN).

primary data space. The area of the user data segment in which pointers and directly
addressed variables are located.
FORTRAN Reference Manual—528615-001
Glossary-3

Glossary process.
process. A program that has been submitted to the operating system for execution, or a
program that is currently running in the computer.

process identification number (PIN). A number that uniquely identifies a process running
in a processor. The same number can exist in other processors in the same system.
Internally, a PIN is used as an index into the process control block (PCB) table.

program file. An executable object file. It must contain an entry point with the MAIN
attribute.

run-time environment. The run-time services provided to a program by library routines.

run-time library. A collection of routines that supports requests for services such as I/O and
heap management, math and string functions, exception handling, and error reporting.

single-language program. A program in which all routines are written in the same
programming language.

spooler collector. A process to which applications write data that is to be written to a
printer device.

stack checkpoint. A checkpoint that sends a copy of all current local and sublocal data to a
backup process by including the clause STACK = 'YES' in a CHECKPOINT, OPEN, or
CLOSE statement. I/O statements such as READ and WRITE statements do stack
checkpoints if they implicitly open a unit.

standard file. A file that your program can use with minimal or no changes to the file’s
attributes. The CRE supports three standard files—standard input, standard output,
and standard log—that correspond to the files STDIN, STDOUT, and STDERR in a C
programming environment.

standard input. A file from which a program can read sequential records. Each program
defines how standard input is used according to the needs of the application. Standard
input is analogous to the file STDIN in C. If you run your program from a TACL
command line, standard input corresponds to the file you specify with the IN run-
option.

standard log. A file to which a program can write sequential records. The records written to
standard log are usually informational, warning, or error messages that describe
exceptional conditions in a program. Standard log is analogous to the file STDERR in
C.

standard output. A file to which a program can write sequential records. The program
defines how standard output is used according to the needs of the application.
Standard output is analogous to the file STDOUT in C. If you run your program from a
TACL command line, standard output corresponds to the file you specify with the OUT
run-option.

sublocal data. In FORTRAN, dummy arguments to statement functions.
FORTRAN Reference Manual—528615-001
Glossary-4

Glossary system.
system. All the processors, controllers, firmware, peripheral devices, software, and related
components that are directly connected together to form an entity that is managed by
one HP NonStop™ Kernel operating system image and operated as one computer.

system name. A C-series term that identifies a system on a network. A system name
always begins with a backslash character. A system name in a C-series system serves
the same purpose as a node name in a D-series system.

system procedure. A procedure supplied by the operating system.

takeover point. Location of the FORTRAN instruction that immediately follows the last
stack CHECKPOINT statement. The FORTRAN run-time library implicitly executes a
stack checkpoint when a program executes an OPEN or CLOSE statement that
specifies the STACK = 'YES' option specifier.

TNS. HP computers that support the HP NonStop™ Kernel operating system and that are
based on complex instruction-set computing (CISC) technology. TNS processors
implement the TNS instruction set. Contrast with TNS/R.

TNS/R. HP computers that support the HP NonStop™ Kernel operating system and that are
based on reduced instruction-set computing (RISC) technology. TNS/R processors
implement the RISC instruction set and are upwardly compatible with the TNS system-
level architecture. Systems with these processors include most of the HP NonStop™
servers. Contrast with TNS.

target file. The output object file produced by the Binder.

TNS object code. The TNS instructions that result from processing program source code
with a TNS language compiler. TNS object code executes on TNS and TNS/R
systems.

TNS object file. The object file created by a TNS compiler. The file contains TNS
instructions and other information needed to construct the code spaces and the initial
data for a TNS process.

upper 32K-word area. The upper half of the user data segment.

user data segment. A data segment in which your program stores global and local data
and a run-time stack; and in which the FORTRAN run-time library stores its data.

user library. A logically distinct part of the HP NonStop™ Kernel operating system that
consists of procedures that the operating system can link to a program file at run time.
FORTRAN Reference Manual—528615-001
Glossary-5

Glossary user library.
FORTRAN Reference Manual—528615-001
Glossary-6

Index
A
A edit descriptor 7-51
ABS function 8-4
Absolute value 8-4
access methods for HP-defined files 5-6
Accessing external files 5-3, 5-6
ACOS function 8-5
AIMAG function 8-6
AINT function 8-6
Allocating memory

in extended memory 12-2
in upper memory 12-2, 12-5
local variables C-2

ALOG function 8-21
ALOG10 8-22
ALOG10 function 8-22
Alphanumeric editing 7-51
Alternate keys file access 5-22
Alternate RETURN 7-95
ALTERPARAMTEXT routine 15-29
AMAX0 function 8-23
AMAX04 function 8-23
AMAX08 function 8-23
AMAX1 function 8-23
AMIN0 function 8-24
AMIN04 function 8-24
AMIN08 function 8-24
AMIN1 function 8-24
AMOD function 8-25
ANINT function 8-7
ANSI directive 2-2
ANSI FORTRAN

data storage C-1
data types C-1
hexadecimal constants C-4
internal file C-5
length of variables C-3
line length 2-2

ANSI FORTRAN (continued)
mixed data types C-2
octal constants C-4
SAVE statement C-2

ANSI FORTRAN 66 C-5
Apostrophe edit descriptor 7-51
Arccosine in radians 8-5
Arcsine in radians 8-8
Arctangent in radians 8-8, 8-9
Arguments

dummy E-1
for a subroutine 7-14
for non-FORTRAN procedures 4-2
largest value of list 8-23
pass-by-reference 13-14
pass-by-value 13-15
smallest number of 8-24
transferring data between
programs 12-9

Arithmetic
constants 2-11

Arrays
adjustable declarator 4-13
adjustable dimensions 4-11
assumed-size declarator 4-12
declaring a name 7-26
defining dimensions 7-26
description 2-14
dimensions 2-14
in non-RECORD E-2
in RECORDs E-2
referencing 2-16
size 2-17
storing 2-17

ASCII position of character 8-17
ASCII value of a character 8-10
ASIN function 8-8
ASSIGN command 5-11
FORTRAN Reference Manual—528615-001
Index-1

Index B
Assign data values at compile time 7-24
ASSIGN message

changing 15-45, 15-47
creating 15-45, 15-47
deleting 15-35
description 15-27
finding greatest message
number 15-32
message serial number 15-31
retrieving 15-40, 15-41

ASSIGN statement 7-9, E-1
Assigned GO TO 7-56
Assigning a process name 16-2
Assigning a unit 5-10, 5-11
Assignment statement 7-7
Assumed-size arrays 4-12
ATAN function 8-8
ATAN2 function 8-9

B
B edit descriptor 7-46
BACKSPACE statement

and shared files 7-11
description 7-10

Backup processing 7-15
Binary conversion 7-46
BIND 9-21
Binder

separate compilations 9-21
using interactively 9-30
with programs that use extended
memory 9-24

BINSERV 9-1, 9-6
Blank common block

name of 13-6
Blanks

in numeric fields 7-53
in program lines 2-2

BLOCK DATA statement 7-12

BLOCK DATA subprogram
description 4-15
restrictions 4-15

Blocked tapes C-6
Blocks

code 9-13
data 9-13

BUFFER storage areas 12-7
BUFFERED-SPOOLING PARAM 11-4,
11-5
BYTE data types C-3

C
C language

called from FORTRAN programs 13-20
calling FORTRAN subprograms 13-25

CABS function 8-4
CALL statement 7-13
Calling another FORTRAN program 4-4
Calling sequence 13-7
CEXP function 8-15
CHAR function 8-10
Character

constants 2-11
expression E-2

Character set symbols 1-2, 2-1
CHARACTER statement 7-2
CHECKLOGICALNAME routine 15-31
CHECKMESSAGE routine 15-32
CHECKPOINT statement 7-15, 15-28
CLOG function 8-21
CLOSE statement 7-18
CMPLX function 8-10
COBOL

source code 9-21
COBOL85

called from FORTRAN programs 13-19
calling FORTRAN subprograms 13-24
procedure interface 13-1
source code 9-21
FORTRAN Reference Manual—528615-001
Index-2

Index C
COBOLEXT files 13-22
Code

address in listing file 9-15
area in memory 12-1
blocks 9-21

CODE option 9-12, 9-14
COLUMNS directive 2-2
Comments 2-4, C-1
Common blocks

blank common, name 13-6
description 4-14
indexed addressing 12-10
initializing variables C-4
name in object files 13-6
total for a program E-2
with non-RECORD variables and
arrays E-2
with RECORDs E-2

COMMON statement 4-14, 7-20
Compilation unit 9-21
Compiler diagnostic messages

error, text of F-1/F-34
format of F-1
warning, text of F-34/F-41

Compiler directives
and spooler files 7-73, 11-5
CONSULT 13-12, 13-13, 13-22
designating 2-3
ENV

and COBOL85 programs 13-19
and PRINT statement 7-86
and READ statement 7-88
and shared files 13-18, 13-27
and standard input file 13-19
and standard output file 13-19
and STOP statement 7-105
and TAL programs 13-17
and unit 5 13-27
and unit 6 13-27
and WRITE statement 7-107

Compiler directives (continued)
ENV (continued)

description 13-26
EXTENDCOMMON 12-10
EXTENDEDREF 13-10, 13-14
Guardian 13-12, 13-13, 13-18, 15-19
HIGHBUFFER 12-8
HIGHCOMMON 12-10
LARGECOMMON 12-10, 12-11, 13-14,
13-18
LARGEDATA 12-11, 13-14, 13-18
LOWBUFFER 12-8
RECEIVE 12-8
SAVE 15-23
SAVEABEND 11-8
SEARCH 13-4
SYMBOLS 11-10
syntax summary B-12

Compiling a program
BINDER 9-20
BINSERV 9-1
code and data blocks 9-13
command line length 9-4
compilation unit 9-21
completion codes 9-19
description 9-1
error messages 9-12
EXTENDEDREF 9-24
external references 9-21
in same CPU 9-6
input files 9-1
interactive Binder 9-8
listing file

See Listing files
main program unit 9-17
MAP listing 9-13
not list file 9-13
output object file 9-21
process 9-7
FORTRAN Reference Manual—528615-001
Index-3

Index D
Compiling a program (continued)
RUN command 9-2
SEARCH directive 9-21
statistics 9-19
SYMSERV 9-1
temporary files 9-6
warning messages 9-12
with extended data space 9-23
with subroutines 9-25

Completion codes from a compilation 9-20
Complex constants 2-11
COMPLEX data type C-3
Complex values 8-10
Computed GO TO 7-55
Conditionally execute a statement 7-59
Confirming variable type 7-63
CONJG function 8-11
Conjugate of complex number 8-11
Connecting a unit 5-13
Constants

arithmetic
complex 2-13
description 2-11
integer 2-11
real 2-11

character 2-13
hexadecimal C-4
Hollerith H-1
Hollerith syntax C-6
logical 2-13
octal C-4
using Hollerith constants C-6

CONSULT directive 13-12, 13-13, 13-15
Continuation lines 2-2
CONTINUE statement 7-23
Continuing a command line 9-4
Continuing a source line E-1
Converting programs to HP systems C-1
COS function 8-12
COSH function 8-12

Cosine of an angle 8-12
CREATEPROCESS routine 15-33
Creating structured files 5-18
CROSSREF option 9-17
CSIN function 8-28
CSQRT function 8-29

D
D edit descriptor 7-46
DABS function 8-4
Data area in memory

addressing 12-5
data area

for user data 12-2
global area 12-2
local area 12-2
memory stack 12-2

Data blocks
description 9-21
locations of 12-2

Data files
maximum record length E-3

Data shared between programs 13-3
DATA statement 7-24, 13-5
Data storage

ANSI standard 2-10
CHARACTER type E-2
COMPLEX type E-2
DOUBLE PRECISION type E-2
INTEGER directive C-1
INTEGER type E-2
LOGICAL type E-2
REAL type E-2

Data transfer statements 5-1
Data types

BYTE C-3
COMPLEX C-3
description 2-7
LOGICAL*1 C-3
maximum character length E-2
FORTRAN Reference Manual—528615-001
Index-4

Index E
Data types (continued)
mixing different types 1-2
REAL*4 C-3
REAL*8 C-3
storing 2-10

DATAN function 8-8
DATAN2 function 8-9
DBLE function 8-13
DCOS function 8-12
Debugging

DEBUG
with extended memory 12-13

Debug
description 11-8

Decimal point position 7-42
Declaring

an array 7-26
array sizes 4-11
intrinsic functions 13-25

DECODE statement C-5
Defining

a data structure 7-94
file attributes 5-13
value of an entity 7-7
value of integer variable 7-9

DELETEASSIGN routine 15-35
DELETEPARAM routine 15-37
DELETESTARTUP routine 15-38
DEXP function 8-15
Diagnostic messages

See Compiler diagnostic messages
Diagnostic messages, and EXECUTION-
LOG PARAM 11-7
DIM function 8-14
DIMENSION statement 7-26
Dimensions of arrays 2-14
Direct file access 5-6
Direct-access READ statement C-5
Direct-access WRITE statement C-5
Disconnecting a unit 5-9

Disk files
creating 5-9

Disk files (continued)
existence of 5-9
naming 5-5

DLOG function 8-21
DLOG10 function 8-22
DMAX1 function 8-23
DMIN1 function 8-24
DMOD function 8-25
DNINT function 8-7
DO loops

ending 7-23
DO statement 7-27
Double precision

constants 2-12
converting numbers 7-45
DPROD function 8-14
values 8-13

DOUBLE PRECISION statement 7-5
DPROD function 8-14
DSIGN function 8-27
DSIN function 8-28
DSINH function 8-28
DSQRT function 8-29
DTAN function 8-30
DTANH function 8-30
Dummy arguments 4-3, E-1

E
E edit descriptor 7-46, 7-51
Edit descriptor

A 7-51
apostrophe 7-51
B 7-46
blank control 7-53
BN 7-53
BZ 7-53
description 7-40
F 7-45
FORTRAN Reference Manual—528615-001
Index-5

Index E
Edit descriptor (continued)
G 7-49
H 7-52
I 7-44
O 7-47
P 7-50
positional editing 7-52
S 7-53
sign control 7-53
SP 7-53
SS 7-53
TLn 7-52
Tn 7-52
TRn 7-52
Z 7-48
⁄ 7-53

EDIT format files
adding lines at the end of file 7-84
and BACKSPACE statement 7-10
and WRITE statement 7-107
buffer allocation 12-8
creating 5-16
deleting lines 7-32
description 5-17
ENDFILE statement 7-31
INQUIRE statement 7-64
OPEN statement 7-70
record number 5-7
REWIND statement 7-97

ELSE IF statement
See IF Statement-Block

ELSE statement
See IF Statement-Block

ENCODE statement C-5
END IF statement

See IF Statement-Block
END statement 7-30
ENDFILE records 5-1
ENDFILE statement

and EDIT format files 7-31

ENDFILE statement (continued)
and shared files 7-32
description 7-31

Ending a subprogram 7-99
ENTRY statement

dummy statements E-1
Entry-sequenced files 5-18
ENV 11-4
ENV COMMON

and error numbers 6-5
ENV directive

and memory allocation 12-2
and PRINT statement 7-86
and READ statement 7-88
and run-time error messages G-1
and spooler files 7-73, 11-5
and standard input file 13-2
and standard output file 13-2
and STOP statement 7-105
and unit 5 13-27
and unit 6 13-27
COBOL85 programs 13-19
shared files 13-18, 13-27
TAL programs 13-17

Environment information
changing 15-25
deleting 15-26
getting 15-24

EQUIVALENCE statement 7-36
Equivalencing RECORD fields 2-24
Equivalencing RECORDs 2-23
Error messages

CRE core G-17
intrinsic functions G-3, G-6
run-time core G-17
system G-3
trap messages G-15

Error messages, compile-time
format of F-1
text of F-1/F-34
FORTRAN Reference Manual—528615-001
Index-6

Index F
Error numbers 6-5
Executable statements

description 6-1
Executing group of statements 7-60
EXECUTION-LOG PARAM

and standard input 11-6
and standard log 11-7
and standard output 11-7
description 11-5

EXP function 8-15
Exponential numbers 8-15
Expressions

intrinsic functions 8-1
EXTENDCOMMON directive 12-10
Extended data space

binder 9-24
common blocks 12-9
compiling programs with 9-23
LARGECOMMON directive 9-23
local data 12-9
number of segments 12-11
run-time stack 12-11
stack overflow 12-12
using 12-1

EXTENDEDREF directive 9-24, 13-14,
13-24
Extensions to FORTRAN

CHECKPOINT statement 7-15
dynamic allocation of local
variables C-2
FORTRANCOMPLETION routine 15-2
FORTRANSPOOLSTART
routine 15-16
FORTRAN_COMPLETION_
routine 15-5
FORTRAN_CONTROL_ routine 15-8
FORTRAN_SETMODE_ routine 15-9
FORTRAN_SPOOL_OPEN_
routine 15-11
mixed data types C-2
octal constants C-4

Extensions to FORTRAN (continued)
RECORDs 2-20
recursive calls 4-10
Saved Message Utility 15-21
SSWTCH routine 15-20
START BACKUP statement 7-100
summary 1-1
using formatted and unformatted
files 5-6

External files
accessing

by alternate keys 5-6
by primary keys 5-6
direct 5-6
how to 5-3
keyed 5-6
sequential 5-6

connecting to units 5-8
default attributes 5-4
description 5-3
naming 5-5

External functions 4-1
External procedures E-3
External references 9-21
EXTERNAL statement 7-38

F
F edit descriptor 7-45
Fault-tolerant programming

assigning process name 16-2
checkpointing

CHECKPOINT statement 7-15
file buffers 16-6
large amounts of data 16-10
what to checkpoint 16-6
$RECEIVE 16-7

description 16-1
NONSTOP PARAM 11-11
primary and backup actions 16-3
FORTRAN Reference Manual—528615-001
Index-7

Index F
Fault-tolerant programming (continued)
process pair 16-3
START BACKUP 7-100

File buffers
EDIT format files 12-8
level-3 spooling 12-8

File sharing
description 13-2
See ENV directive

File sharing, standard
and OPEN statement 7-70
and READ statement 7-88
and WRITE statement 7-107

FILENUM function 8-16
Files

access methods 5-6, 5-7
ASSIGN command 5-11
assigning a unit 5-10
attributes 5-3
backing up a record 7-10
canceling automated level-3
spooling 11-4
closing 7-18
defining data 7-100
definition
endfile record 7-31
existence of 5-9
external files

accessing 5-3
description 5-3
direct access 5-6
keyed access 5-6

file attributes 5-13
file number 5-9
internal files

description 5-3
level-3 spooling 11-4
names on multisystem network 5-5
nondisk 5-9
opening 5-9, 7-76

Files (continued)
print data 7-86
protection 7-77
query properties 7-64
random access 7-81
read data 7-88
reading through file locks 5-31
record length 5-8
rewind 7-97
See Listing file
sequential access 5-6
sequential block buffering 5-31
structured

creating 5-18
definition 5-18
entry-sequence 5-19
key-sequenced 5-21
relative 5-20
using alternate keys 5-22

unit
connecting 5-13
disconnecting 5-9
number 5-9

unstructured 5-16
FLOAT function 8-26
Floating point conversion 7-45
FORMAT statement

description 7-39
edit descriptors 7-40
numeric data 7-43

Formatted I/O 5-28, C-5
Formatted records 5-2, 5-6
FORTDECS 13-25
FORTLIB 9-8, 13-25
FORTRAN

access methods 5-6
arrays 2-14
assigning a unit 5-10
BLOCK DATA 4-2
C subprograms 13-20
FORTRAN Reference Manual—528615-001
Index-8

Index F
FORTRAN (continued)
calling sequence 13-7
character set 1-2
character set symbols 2-1
COBOL85 subprograms 13-19
code and data blocks 9-21
command line length 9-4
comments C-1
communication between programs 4-3
compiling a program 9-1, 9-2
compiling in same CPU 9-6
compiling process 9-7
connecting a unit 5-13
converting programs to HP NonStop
system C-1
data types 2-7
debug program 11-8
disconnecting a unit 5-9
extended data space 9-23
external files 5-3
file attributes 5-3, 5-13
files 5-16, 5-17, 5-18, 5-19, 5-20, 5-21
identifier names 1-2
inspect program 11-8
internal files 5-3
intrinsic function error messages G-6
intrinsic functions

See Intrinsic Functions
I/O

See Input/output
language statements

Language Statements
limitations E-1
line format 2-2
Logical Unit Table 12-7
main programs 4-1
memory segment limit E-1
nondisk files 5-9
object file

FORTRAN (continued)
maximum words for code and
data E-1

opening a file 5-9
Pascal subprograms 13-21
procedure interface with other
languages 13-1
procedures 4-1
program example 2-5
RECORD declarations 2-20
record length for data files E-3
record types 5-2
Saved Message Utility 15-21
See Constants
See Listing file
source input E-3
source lines

continued E-1
total characters E-1

statement labels E-1
subprograms 4-1, 13-23, 13-24, 13-25
subroutines 4-7
substrings 2-19
symbol table size E-3
symbolic names 2-6, E-1
TAL subprograms 13-17
unit number 5-8
units 5-8

FORTRANCOMPLETION routine 15-2
FORTRANSPOOLSTART routine 15-16
FORTRAN_COMPLETION_ routine 15-5
FORTRAN_CONTROL_ routine 15-8
FORTRAN_SETMODE_ routine 15-9
FORTRAN_SPOOL_OPEN_ routine 15-11
FUNCTION statement 4-5, 7-54
Function subprograms 4-4
Functions

See Intrinsic functions
FORTRAN Reference Manual—528615-001
Index-9

Index G
G
G edit descriptor 7-49
GETASSIGNTEXT routine 15-39
GETASSIGNVALUE routine 15-40
GETBACKUPCPU routine 15-41
GETPARAMTEXT routine 15-42
GETSTARTUPTEXT routine 15-43
Global data 13-6
GO TO statement

assigned 7-56
computed 7-56
description 7-55
labels E-1
unconditional 7-56

GUARDIAN directive 15-23
Guardian directive 13-12, 13-13
Guardian procedures

arguments 13-14
calling 13-13
calling restrictions 13-14
old calling syntax 13-22

H
H edit descriptor 7-52
Hexadecimal constants C-4
Hexadecimal conversion 7-48
HIGHBUFFER directive 12-8
HIGHCOMMON directive 12-10
Hollerith data

constants in subroutine references H-2
editing H-2
syntax C-6
using C-6

HP extensions
See Extensions to FORTRAN

Hyperbolic cosine 8-12
Hyperbolic sine 8-28
Hyperbolic tangent 8-30

I
I edit descriptor 7-44
IABS function 8-4
IABS4 function 8-4
IABS8 function 8-4
ICHAR function 8-17
ICHAR4 function 8-17
ICHAR8 function 8-17
ICODE option 9-12, 9-15
IDINT function 8-19
IDINT4 function 8-19
IDINT8 function 8-19
IF statement 7-58
IFIX function 8-19
IFIX4 function 8-19
IFIX8 function 8-19
IF, block statement 7-60
IF, logical statement 7-59
Imaginary numbers 8-6
IMPLICIT statement 7-63
INDEX4 function 8-18
INDEX8 function 8-18
Indexed addressing 12-10
Initializing common blocks 4-15
Input/output

control specifiers 5-24
enhancing performance 5-31
for files 5-1
formatted 5-28, 7-39, C-5
FORTRAN statement 7-39
Interprocess communication

description 14-5
message queuing 14-11

lists 5-26
list-directed 5-28
NAMELIST C-5
reading through file locks 5-31
record length 5-8
unit numbers E-3
$RECEIVE 14-7
FORTRAN Reference Manual—528615-001
Index-10

Index I
Input/output messages G-25/G-32
INQUIRE statement 7-64
INSPECT directive 11-8
INSPECT PARAM 11-4, 11-9
Inspect program

description 11-8
high-level mode 11-10
low-level mode 11-10
using 11-10
with extended memory 12-11

INT function 8-19
INT4 function 8-19
INT8 function 8-19
Integer

constants 2-11
INT function 8-19
NINT function 8-26

INTEGER directive C-1
INTEGER statement 7-4
Interactive Binder 9-25
Interactive debugger 11-8
Internal files

description 5-3
Intrinsic functions

ABS 8-4
ACOS 8-5
AIMAG 8-6
AINT 8-6
ALOG 8-21
AMAX0 8-23
AMAX04 8-23
AMAX08 8-23
AMAX1 8-23
AMIN0 8-24
AMIN04 8-24
AMIN08 8-24
AMIN1 8-24
AMOD 8-25
ANINT 8-7
ASIN 8-8

Intrinsic functions (continued)
ATAN 8-8
ATAN2 8-9
CABS 8-4
CHAR 8-10
CLOG 8-21
CMPLX 8-10
CONJG 8-11
COS 8-12
COSH 8-12
DABS 8-4
DACOS 8-5
DASIN 8-8
DATAN 8-8
DATAN2 8-9
DBLE 8-13
declaring 8-1, 13-25
description 8-1
DEXP 8-15
DIM 8-14
DLOG 8-21
DLOG10 8-22
DMAX1 8-23
DMIN1 8-24
DMOD 8-25
DNINT 8-26
DPROD 8-14
DSIGN 8-27
DSIN 8-28
DSINH 8-28
DSQRT 8-29
DTAN 8-30
DTANH 8-30
EXP 8-15
FILENUM 8-16
FLOAT 8-26
generic names 8-3
IABS 8-4
IABS4 8-4
FORTRAN Reference Manual—528615-001
Index-11

Index K
Intrinsic functions (continued)
IABS8 8-4
ICHAR 8-17
ICHAR4 8-17
ICHAR8 8-17
IDINT 8-19
IDINT4 8-19
IDINT8 8-19
IDNINT 8-26
IDNINT4 8-26
IDNINT8 8-26
IFIX 8-19
IFIX4 8-19
IFIX8 8-19
INDEX4 8-18
INDEX8 8-18
INT 8-19
INT4 8-19
ISIGN 8-27
ISIGN4 8-27
ISIGN8 8-27
LEN 8-20
LEN4 8-20
LEN8 8-20
LOG 8-21
LOG10 8-22
MAX 8-23
MAX04 8-23
MAX08 8-23
MAX1 8-23
MAX14 8-23
MAX18 8-23
MIN 8-24
MIN0 8-24
MIN04 8-24
MIN08 8-24
MIN1 8-24
MIN14 8-24
MIN18 8-24

Intrinsic functions (continued)
MOD 8-25
MOD4 8-25
MOD8 8-25
NINT 8-26
NINT4 8-26
NINT8 8-26
REAL 8-26
referencing 8-1
SIGN 8-27
SIN 8-28
SINH 8-28
SNGL 8-26
SQRT 8-29
TAN 8-30
TANH 8-30
with logical operators C-5

INTRINSIC statement 7-69
ISIGN function 8-27
ISIGN4 function 8-27
ISIGN8 function 8-27

K
kept in library 13-5
Keyed file access

by alternate keys 5-6
by primary keys 5-6
description 5-6

Key-sequenced files 5-21

L
L edit descriptor 7-50
L (local) register 12-2
Labels

and actual arguments 7-13
and ASSIGN statement 7-9
description 6-5

Language statements
ASSIGN 7-9
FORTRAN Reference Manual—528615-001
Index-12

Index L
Language statements (continued)
assignment 7-7
BACKSPACE 7-10
BLOCK DATA 7-12
CALL 7-13
CHECKPOINT 7-15
CLOSE 7-18
COMMON 7-20
CONTINUE 7-23
DATA 7-24, 12-10
DIMENSION 7-26
DO 7-27
ELSE

See IF Statement— Block
ELSE IF

See IF Statement—Block 7-30
END 7-30
END IF

See IF Statement—Block
ENDFILE 7-31
ENTRY 7-33
EQUIVALENCE 7-36
executable 6-1
EXTERNAL 7-38
FORMAT

description 7-39
edit descriptors 7-40
numeric data 7-43

FUNCTION 7-54
GO TO 7-55
IF 7-58
IF, block 7-60
IF, logical 7-59
IMPLICIT 7-63
INQUIRE 7-64
INTRINSIC 7-69
introduction to 6-1
labels 6-5
labels for GO TO E-1

Language statements (continued)
nonexecutable 6-1
OPEN 7-70
order of 6-3
PARAMETER 7-79
PAUSE 7-81
POSITION 7-81
PRINT 7-86
PROGRAM 7-88
READ 7-88
RECORD 7-94
RETURN 7-95
REWIND 7-97
SAVE 7-99
START BACKUP 7-100
STOP 7-105
SUBROUTINE 7-106
type declaration

character 7-2
logical 7-3
using 7-1

types 6-3
WRITE 7-107

LARGECOMMON directive 9-23, 12-10,
12-11, 13-14, 13-22, C-2
LARGEDATA directive 12-11, 13-14, 13-22,
C-2
LEN function 8-20
LEN4 function 8-20
LEN8 function 8-20
Length of a character variable 8-20
Level-1 spooling 15-11
Level-2 spooling 15-11, 15-16
Level-3 spooling 12-8, 15-11, 15-16
Libraries

for utility subprograms 9-25
restrictions 13-5
using Binder 13-3

Listing file
CODE option 9-12, 9-14
FORTRAN Reference Manual—528615-001
Index-13

Index M
Listing file (continued)
compile statistics 9-19
CROSSREF option 9-17
defining line length 9-6
error messages 9-12
ICODE option 9-12, 9-15
interpreting 9-8
LMAP option 9-17
MAP option 9-12, 9-13
NOLIST option 9-12
options 9-8
page heading 9-9
source program 9-10
SUPPRESS directive 9-12
to tape or disk 9-4
warning messages 9-12

List-directed
input 5-29
output 5-30

LMAP option 9-17
Local data

dynamically allocated 12-11
statically allocated 12-11

Log file
and the EXECUTION-LOG
PARAM 11-7

LOG function 8-21
LOG10 function 8-22
Logarithm

base 10 8-22
base e 8-21
common 8-22
natural 8-21

Logical constants 2-11
Logical editing 7-50
Logical operators C-5
LOGICAL statement 7-3
LOGICAL*1 data type C-3
LOWBUFFER directive 12-7

M
Main programs 4-1
MAP option 9-12, 9-13
Math function messages G-22
MAX function 8-23
MAX0 function 8-23
MAX04 function 8-23
MAX08 function 8-23
MAX1 function 8-23
MAX14 function 8-23
MAX18 function 8-23
Maximum dummy arguments in
subprogram E-1
Maximum length of symbolic names E-1
Memory Management

addressing data area 12-13
buffer storage areas 12-7
code area

library space 12-1
of a process 12-1
user code space 12-1

control storage areas 12-7
data area

for user data 12-2
global area 12-2
local area 12-2
memory stack 12-2

Memory management
extended memory 12-2
segment limit for program E-1
summary 1-4
upper memory 12-2, 12-5

Message
format of

with ENV COMMON G-6
with ENV OLD G-3

input/output messages G-25
math function G-22

Message queuing 14-11
FORTRAN Reference Manual—528615-001
Index-14

Index N
Messages, compile-time
error, text of F-1/F-34
format of F-1
warning, text of F-34/F-41

MIN function 8-24
MIN0 function 8-24
MIN04 function 8-24
MIN08 function 8-24
MIN1 function 8-24
MIN14 function 8-24
MIN18 function 8-24
Mixed data types C-1
MOD function 8-25
MOD4 function 8-25
MOD8 function 8-25
Move to preceding record 7-10
Multiple entry points

for functions 4-10
for subroutines 4-10

N
NAMELIST I/O C-5
Names

a constant 7-79
a program unit 7-88
an intrinsic function 7-69
files 5-5, 5-6

Naming
an external procedure 7-38

Network file names 5-5
NINT function 8-26
NINT4 function 8-26
NINT8 function 8-26
NOLIST option 9-12
Nondisk files 5-9
Nonexecutable statement 6-1
NONSTOP PARAM 11-4, 11-11
Numeric data 7-43

O
O edit descriptor 7-47
Object file 13-5

COBOL 9-21
COBOL85 9-21
combining 9-21
compilation unit 9-21
examining 9-21
maximum words for code and data E-1
memory segment limit E-1
modifying 9-21
TAL 9-21
target file 9-21

Octal
constants C-4
conversions 7-47

OPEN statement 7-70
Opening a file 7-70
Operators

logical C-5
Order of language statements 6-3, 6-4
OUTWIDTH PARAM 9-6

P
P edit descriptor 7-50
P register 12-2
Page heading of listing file 9-9
PARAM BUFFERED-SPOOLING
command 11-4, 11-5
PARAM EXECUTION-LOG command 11-4,
11-5
PARAM INSPECT command 11-4, 11-9
PARAM message

changing 15-28
creating 15-29, 15-45
deleting 15-35
description 15-26
retrieving 15-39
retrieving backup CPU number 15-41
FORTRAN Reference Manual—528615-001
Index-15

Index R
PARAM NONSTOP command 11-4, 11-11
PARAM OUTWIDTH command 9-5
PARAM SAMECPU command 9-5
PARAM SPOOLOUT command 11-4
PARAM SWAPVOL command 9-5
PARAM SWITCH-nn command 11-4, 11-11
PARAMETER statement 7-79
Pascal

called from FORTRAN programs 13-21
calling FORTRAN subprograms 13-25
procedure interface 13-1

Passing arguments between programs 4-3
Passing information to
PROCESS_STOP_ 15-5
Passing information to STOP or
ABEND 15-2
Physical end of program 7-30
POSITION statement

description 7-81
Positional editing 7-52
PRINT statement

and ENV directive 7-87
description 7-86

procedure not written in FORTRAN
arguments 13-15
calling 13-15
old calling syntax 13-22
optional parameters 13-14

Procedures
description 4-1
EXTENSIBLE 13-15
map listing 9-13
not written in FORTRAN 13-15
optional parameters 13-14
returned value 13-13
unresolved references 9-8
VARIABLE 13-15

Process pairs 16-3
Processes 16-3

Program line format
blanks 2-4
comments 2-3
continuing a line 2-3
description 2-2
example 2-5
length 2-2

PROGRAM statement 7-88
Program switches 11-11, 15-20
Program unit

control unit 12-7
maximum ASSIGN statement E-1

Properties of file or unit 7-64
PUTASSIGNTEXT routine 15-45
PUTASSIGNVALUE routine 15-47
PUTPARAMTEXT routine 15-48
PUTSTARTUPTEXT routine 15-50

R
Random file access 7-81
READ Statement 7-88
READ statement

and ENV directive 7-92
and shared files 7-91
description 7-88
direct-access C-5
with $RECEIVE 14-9
WRITEREAD 14-10

Read-through locks 5-31
REAL function 8-26
REAL values 8-26
REAL*4 data type C-3
REAL*8 data type C-3
RECEIVE directive 12-7, 12-8
RECEIVE file

See RECEIVE directive
RECORD declarations

equivalencing fields 2-24
equivalencing RECORDs 2-23
for long variables C-3
FORTRAN Reference Manual—528615-001
Index-16

Index S
RECORD declarations (continued)
format 2-20
referring to 2-22
storing 2-23

RECORD fields
referring to 2-22

Record length
data files E-3
segmented records C-4
specifying 5-8

RECORD statement 7-94
Record types

end-of-file 5-2
formatted 5-2, 5-6
unformatted 5-2, 5-6

Records vs. RECORDS 5-2
Recursive calls 4-10
Redefining numeric variables 7-63
Referencing an array 2-16
Referencing intrinsic functions 8-2
Referring to a RECORD 2-22
Registers

L (local) register 12-2
P (program) 12-2
S (stack) register 12-3

Relative files 5-20
Remainder of division 8-25
Requester/server relationship 14-2
RETURN statement

alternate RETURN 7-95
description 7-95

REWIND statement
and shared files 7-97
description 7-97

RUN command 11-1
RUNNAMED 11-2
Running a program

RUN command 11-1
with Debug 11-8
with Inspect 11-8

Run-Time core messages G-17/G-22
Run-time diagnostics G-1
Run-time utility library

FORTRANSPOOLSTART 12-9
Run-unit control block 12-7

S
S edit descriptor 7-53
S (stack) register 12-3
SAMECPU PARAM 9-5
SAVE directive 12-8, 15-23
SAVE statement 7-99, 12-10
SAVEABEND directive 11-8
Saved Message Utility

calling 13-12
changing environment
information 15-25
checkpoint list 15-28
deleting environment information 15-26
description 15-21
getting environment information 15-24
message types

ASSIGN 15-27
PARAM 15-26
Startup 15-27

routines
ALTERPARAMTEXT 15-29
CHECKLOGICALNAME 15-31
CHECKMESSAGE 15-32
CREATEPROCESS 15-33
DELETEASSIGN 15-35
DELETEPARAM 15-37
DELETESTARTUP 15-38
GETASSIGNTEXT 15-39
GETASSIGNVALUE 15-40
GETBACKUPCPU 15-41
GETPARAMTEXT 15-42
GETSTARTUPTEXT 15-43
PUTASSIGNTEXT 15-45
FORTRAN Reference Manual—528615-001
Index-17

Index S
Saved Message Utility (continued)
routines (continued)

PUTASSIGNVALUE 15-47
PUTPARAMTEXT 15-48
PUTSTARTUPTEXT 15-50

saving messages 15-24
storage area in memory 12-8

Saving data from a subprogram 12-9
Saving process messages 15-23
SEARCH directive 9-21, 13-4
Sequential file access 5-6
Share data between programs 7-20
Sharing files 13-2
Sharing standard files

and OPEN statement 7-70
and READ statement 7-88
and WRITE statement 7-107

Sharing storage space 7-36
Sign control for numbers 7-53
SIGN function 8-27
Sine of angle in radians 8-28
SINH function 8-28
Size of arrays 2-17
SMU routines

See Saved Message Utility
SNGL function 8-26
SOURCE directive 9-12, E-3
Source file

comments C-1
compilation unit 9-21
input to compilation 9-1
maximum record length E-3

Source listing 9-10
Source statement

continuing E-1
total characters E-1

SP edit descriptor 7-53
Spooling

and BUFFERED-SPOOLING
PARAM 11-5

Spooling (continued)
and ENV COMMON 11-5
and ENV directive 7-73
and ENV OLD 11-4
and level-1 access 15-11
and level-2 access 15-11, 15-16
and level-3 access 11-4, 15-11, 15-16
and SPOOLOUT PARAM 11-4
disabling level-3 spooling 11-4
files, opening 15-11

SPOOLOUT PARAM 11-4
SQRT function 8-29
Square root of a number 8-29
SS edit descriptor 7-53
SSWTCH routine 15-20
Stack overflow

extended data segment 12-12
user data segment 12-12

Standard input 13-27
Standard log

and the EXECUTION-LOG
PARAM 11-6
description 13-27

Standard output 13-27
START BACKUP statement 7-100
Starting a new process 15-33
Startup message

changing 15-50
creating 15-50
deleting 15-35
retrieving 15-41
SMU routines 15-23

Statement function
description 7-5

Statements
executable 6-1
labels 6-5
nonexecutable 6-1
See Language statements
types of 6-3
FORTRAN Reference Manual—528615-001
Index-18

Index T
STOP statement
and ENV directive 7-105
description 7-105

Stopping
a program 7-105, 15-2, 15-5

Storage of a RECORD 2-23
Storing arrays 2-17
String variables

adjustable dimensions 4-11
Structured files

creating 5-18
description 5-18
entry-sequenced 5-19
key-sequenced 5-21
relative 5-20
using alternate keys 5-22

Subprograms
alternate entry point 7-33
beginning 7-54
description 4-1
saving values 7-99
stopping 7-95

SUBROUTINE statement 7-106
Subroutines

changing return point 4-8
description 4-1, 4-7
multiple entry points 4-10
recursion 4-10
saving values 4-9

Subscripts
limits E-2
referencing variables 2-16

Substrings 2-19
SUPPRESS directive 9-12
SWAPVOL PARAM 9-5
Switches 15-20
Switches, program 11-11
SWITCH-nn PARAM 11-4, 11-11
Symbol table 9-1
Symbol table size E-3

Symbolic constants 2-7
Symbolic names

description 2-6/2-7
maximum length E-1
$ C-4

SYMBOLS directive 11-10
SYMSERV 9-1
Syntax summary

compiler directives B-12
FORTRAN statements B-1

syntax summary B-1
System error messages G-4
system error messages G-3

T
TAL

called from FORTRAN programs 13-17
calling FORTRAN subprograms 13-23
procedures

EXTENSIBLE 13-15
interface 13-1
optional parameters 13-15
VARIABLE 13-15

source code 9-21
TAN function 8-30
Tangent of angle in radians 8-30
TANH function 8-30
Temporary files 9-6
TLn edit descriptor 7-52
Tn edit descriptor 7-52
Transfer control

conditionally within program 7-55
to a statement label 7-58
within program 7-55

Transferring data between programs 12-9
Trap

messages G-15/G-17
TRn edit descriptor 7-52
FORTRAN Reference Manual—528615-001
Index-19

Index U
U
Unconditional GO TO 7-56
Unformatted records 5-2, 5-6
Unit

and BACKSPACE statement 7-10
and ENDFILE statement 7-31
and OPEN statement 7-70
and POSITION statement 7-81
and READ statement 7-88
and REWIND statement 7-97
and WRITE statement 7-107
sharing access to 13-2

UNIT directive 5-8, C-1
Units

ASSIGN command 5-11
assigning 5-10
connecting 5-13
description 5-8
disconnecting 5-9
maximum amount for I/O E-3
number range for I/O E-3
unit 7-5, 7-6
variables for unit numbers C-1

Unresolved references 9-8
Unstructured files 5-16
User code space in memory 12-1
User data segment C-2
User libraries 9-25
Using Guardian procedures 1-3
Utility routines

calling 13-12
FORTRANCOMPLETION 15-2
FORTRANSPOOLSTART 15-16
FORTRAN_COMPLETION_ 15-5
FORTRAN_CONTROL_ 15-8
FORTRAN_SETMODE_ 15-9
FORTRAN_SPOOL_OPEN_ 15-11
SSWTCH 15-20

V
Variables

definition 2-14
in common blocks C-4
maximum length C-3
substring 2-19

W
Waiting for reply from a process 14-10
Warning messages

from compiler 9-12
Warning messages, compile-time

format of F-1
text of F-34/F-41

Whole numbers 8-7
Write endfile record 7-31
WRITE statement

and ENV directive 7-109
and shared files 7-109
description 7-107
direct-access C-5
with $RECEIVE 14-10

Z
Z edit descriptor 7-43

Special Characters
$

in process name 16-2
in symbolic names C-4

$RECEIVE
and MAXREPLY 14-4
and OPEN 14-3
and QDEPTH 14-4
and SYNCDEPTH 14-3
and SYSMSG 14-4
as input file 14-6
as input/output file 14-7
FORTRAN Reference Manual—528615-001
Index-20

Index Special Characters
$RECEIVE (continued)
as separate input/output files 14-8
file 14-3
managing 14-3
message queuing 14-11
READ Statement 14-9
using for interprocess
communication 14-5
WRITE statement 14-10

$RECEIVE (continued)
&

continuing a command line 9-4
*

for comment lines 2-3
?

with directive names 2-4
⁄

as edit descriptor 7-53
FORTRAN Reference Manual—528615-001
Index-21

Index Special Characters
FORTRAN Reference Manual—528615-001
Index-22

	What’s New in This Manual
	About This Manual
	1 Summary of HP Extensions
	Character Set and Identifier Names
	Data Types
	Procedures
	Input and Output Operations
	Files
	Access to Operating System Procedures
	Mixed-Language Programming
	Memory Management
	Fault-Tolerant Programming
	Interprocess Communication

	2 Language Elements
	The FORTRAN Character Set
	Program Line Format
	Initial Line
	Continuation Line
	Comment Line
	Compiler Directives
	Treatment of Blanks in a Program Line

	Symbolic Names
	Scope of Symbolic Names

	Data Types
	Implicit and Explicit Typing
	Data Storage—Standard Conformance

	Constants
	Arithmetic Constants
	Logical Constants
	Character Constants

	Variables
	Arrays
	Dimensioning an Array
	Array References
	Array Size
	Storage Order

	Substrings
	Records
	Writing a RECORD Declaration
	Referencing a RECORD Field
	RECORD Storage
	Equivalencing RECORDs
	Equivalencing RECORD Fields

	3 Expressions
	Arithmetic Expressions
	Evaluation of Arithmetic Expressions
	Determination of Result Type

	Character Expressions
	Relational Expressions
	Evaluation of Relational Expressions

	Logical Expressions
	Operator Precedence

	4 Program Units
	The Main Program and Subprograms
	Communication Between Program Units
	Function Subprograms
	Assigning a Value to the Function Name

	Subroutines
	Subroutines With Alternate Return Specifiers
	Saving Values Computed in Procedure Subprograms

	Recursion
	Using Multiple Entry Points in Functions and Subroutines
	Using Adjustable Dimensions for Arrays and String Variables
	Assumed-Size Array Declarator
	Adjustable Array Declarator
	Assumed-Size Length Declarator

	Using Common Blocks
	The Block Data Subprogram

	5 Introduction to File I/O in the HP�NonStop Environment
	FORTRAN I/O Statements
	Records
	FORTRAN Files
	External and Internal Files
	File Properties

	Units
	File Existence
	Opening a File
	Unit Existence
	Unit Assignment
	Unit Connection
	Specifying File Attributes

	File Characteristics
	Unstructured Files
	Structured Files
	Operations on HP-defined Files

	Control Specifiers in I/O Statements
	I/O Lists
	Using Implied DO Lists

	Unformatted I/O
	Formatted I/O
	List-Directed I/O

	I/O Performance
	Sequential Block Buffering
	Read-Through Locks

	6 Introduction to Statements
	Executable and Nonexecutable Statements
	Statement Types
	Statement Order
	Statement Labels
	Error Numbers

	7 Statements
	Type Declaration Statements
	Type Declaration Statements—CHARACTER
	Type Declaration Statements—LOGICAL
	Type Declaration Statements—NUMERIC
	Statement Function
	Assignment Statement
	ASSIGN Statement
	BACKSPACE Statement
	BLOCK DATA Statement
	CALL Statement
	CHECKPOINT Statement
	CLOSE Statement
	COMMON Statement
	CONTINUE Statement
	DATA Statement
	DIMENSION Statement
	DO Statement
	ELSE Statement
	ELSE IF Statement
	END Statement
	ENDFILE Statement
	END IF Statement
	ENTRY Statement
	EQUIVALENCE Statement
	Equivalence With Length Differences
	Equivalencing Items in Common Blocks

	EXTERNAL Statement
	FORMAT Statement
	Format Control
	Termination of Format Control
	Edit Descriptors
	Editing Numeric Data
	Logical Editing
	Alphanumeric Editing
	Positional Editing
	Slash Editing
	Sign Control
	Blank Control

	FUNCTION Statement
	GO TO Statement
	Unconditional GO TO
	Computed GO TO
	Assigned GO TO

	IF Statement—Arithmetic
	IF Statement—Logical
	IF Statement—Block
	IMPLICIT Statement
	INQUIRE Statement
	INTRINSIC Statement
	OPEN Statement
	PARAMETER Statement
	PAUSE Statement
	POSITION Statement
	PRINT Statement
	PROGRAM Statement
	READ Statement
	RECORD Statement
	RETURN Statement
	REWIND Statement
	SAVE Statement
	START BACKUP Statement
	STOP Statement
	SUBROUTINE Statement
	WRITE Statement

	8 Intrinsic Functions
	Declaring Intrinsic Functions
	Referencing an Intrinsic Function
	Using Generic and Specific Function Names
	ABS Function
	ACOS Function
	AIMAG Function
	AINT Function
	ANINT Function
	ASIN Function
	ATAN Function
	ATAN2 Function
	CHAR Function
	CMPLX Function
	CONJG Function
	COS Function
	COSH Function
	DBLE Function
	DIM Function
	DPROD Function
	EXP Function
	FILENUM Function
	ICHAR Function
	INDEX Function
	INT Function
	LEN Function
	LOG Function
	LOG10 Function
	MAX Function
	MIN Function
	MOD Function
	NINT Function
	REAL Function
	SIGN Function
	SIN Function
	SINH Function
	SQRT Function
	TAN Function
	TANH Function

	9 Program Compilation
	Compiling a Program
	Command Line Length
	Examples
	Using a Tape or Disk File for the Listing Output

	TACL PARAM Commands
	Compiling With FORTRAN and BINSERV in the Same CPU
	Specifying a Volume for the Compiler’s Temporary Files
	Specifying the Line Length for the Listing File

	Compiler Operation
	Interpreting Compilation Listings
	Page Heading
	Compiler Heading
	Source Listing
	Code and Data Blocks MAP Listing
	Symbolic Name MAP Listing
	CODE Listing
	ICODE Listing
	CROSSREF Listing
	LMAP Listing
	Completion Message
	Compiler Termination Codes

	Separate Compilation
	Compilation Unit
	Code Blocks and Data Blocks

	Compiling Programs That Use Extended Data Space
	Binding Programs That Use Extended Memory
	User Library Alternatives for Utility Subprograms
	Sample Programs Using the Search Directive
	Using the SEARCH Directive—Sample Program 1
	Using the SEARCH Directive—Sample Program 2

	10 Compiler Directives
	Using Compiler Directives
	ABORT Compiler Directive
	ANSI Compiler Directive
	BOUNDSCHECK Compiler Directive
	CODE Compiler Directive
	COLUMNS Compiler Directive
	COMPACT Compiler Directive
	CONSULT Compiler Directive
	CROSSREF Compiler Directive
	DATAPAGES Compiler Directive
	ENDIF Compiler Directive
	ENV Compiler Directive
	Using ENV COMMON

	ERRORFILE Compiler Directive
	ERRORS Compiler Directive
	EXTENDCOMMON Compiler Directive
	EXTENDEDREF Compiler Directive
	FIXUP Compiler Directive
	FMAP Compiler Directive
	GUARDIAN Compiler Directive
	HIGHBUFFER Compiler Directive
	HIGHCOMMON Compiler Directive
	HIGHCONTROL Compiler Directive
	HIGHPIN Compiler Directive
	HIGHREQ Compiler Directive
	ICODE Compiler Directive
	IF Compiler Directive
	IFNOT Compiler Directive
	INSPECT Compiler Directive
	INTEGER Compiler Directive
	LARGECOMMON Compiler Directive
	LARGEDATA Compiler Directive
	LARGESTACK Compiler Directive
	LIBRARY Compiler Directive
	LINES Compiler Directive
	LIST Compiler Directive
	LMAP Compiler Directive
	LOGICAL Compiler Directive
	LOWBUFFER Compiler Directive
	MAP Compiler Directive
	NONSTOP Compiler Directive
	PAGE Compiler Directive
	POP Compiler Directive
	PRINTSYM Compiler Directive
	PUSH Compiler Directive
	RECEIVE Compiler Directive
	RESETTOG Compiler Directive
	RUNNAMED Compiler Directive
	SAVE Compiler Directive
	SAVEABEND Compiler Directive
	SEARCH Compiler Directive
	SECTION Compiler Directive
	SETTOG Compiler Directive
	SOURCE Compiler Directive
	SUBTYPE Compiler Directive
	SUPPRESS Compiler Directive
	SYMBOLS Compiler Directive
	SYNTAX Compiler Directive
	UNIT Compiler Directive
	WARN Compiler Directive

	11 Running and Debugging Programs
	Running a FORTRAN Program
	Using TACL PARAM Commands
	Disabling Level-3 Spooling
	Disabling Level-3 Spooling With ENV OLD
	Disabling Level-3 Spooling With ENV COMMON

	Using the EXECUTION-LOG PARAM
	The EXECUTION-LOG PARAM and Standard Input
	The EXECUTION-LOG PARAM and Standard Output
	The EXECUTION-LOG PARAM and Standard Log

	Using Debug Facilities
	Using the INSPECT TACL PARAM

	Using Inspect
	High-Level Inspect
	Low-Level Inspect

	Using the NONSTOP PARAM
	Using SWITCH-nn PARAM

	12 Memory Organization
	Code Space
	Data Space
	Upper Memory
	Storage Areas
	Storage of Entities in Common Blocks
	Extended Memory

	Debugging Programs That Use Extended Memory
	TNS Processor Memory Organization
	Accessing Data

	13 Mixed-Language Programming
	The Common Run-Time Environment—CRE
	Using the CRE

	Sharing Files When ENV COMMON Is in Effect
	Module Compatibility
	Referencing Separately-Compiled Procedures
	Using Binder
	Using Program Libraries
	Using Global Data in Mixed Language Programming
	The FORTRAN Calling Sequence

	Calling Other Language Procedures From FORTRAN
	General Restrictions
	Using GUARDIAN and CONSULT Directives
	Calling Routines Without Using GUARDIAN and CONSULT Directives
	Calling TAL Subprograms From FORTRAN
	Calling COBOL85 Subprograms From FORTRAN
	Calling C Subprograms From FORTRAN
	Calling Pascal Subprograms From FORTRAN
	The COBOLEXT Files
	Compatibility With the Old Form of Procedure Calls Not Written in FORTRAN

	Calling FORTRAN Procedures From Other Languages
	Calling FORTRAN Subprograms From TAL
	Calling FORTRAN Subprograms From COBOL85
	Calling FORTRAN Subprograms From C
	Calling FORTRAN Subprograms From Pascal
	Intrinsic Function Declarations

	Using ENV COMMON
	Using Shared Files

	14 Interprocess Communication
	Managing $RECEIVE
	Using $RECEIVE
	$RECEIVE as an Input File
	$RECEIVE as an Input/Output File
	$RECEIVE as Separate Input/Output Files
	READ Statement With $RECEIVE
	Using the READ Statement PROMPT Specifier
	WRITE Statement With $RECEIVE

	Message Queuing

	15 Utility Routines
	System-Related Routines
	FORTRANCOMPLETION Routine
	FORTRAN_COMPLETION_ Routine
	FORTRAN_CONTROL_ Routine
	FORTRAN_SETMODE_ Routine
	FORTRAN_SPOOL_OPEN_ Routine
	FORTRANSPOOLSTART Routine
	Choosing a Spooling Level

	SSWTCH Routine
	Saved Message Utility
	Using SMU Routines
	Types of SMU Routines
	Getting Environment Information
	Changing Environment Information
	Deleting Environment Information

	Saved Messages
	The PARAM Message
	The ASSIGN Messages
	The Startup Message

	Checkpoint Considerations for Saved Message Utility Routines
	ALTERPARAMTEXT Routine
	CHECKLOGICALNAME Routine
	CHECKMESSAGE Routine
	CREATEPROCESS Routine
	DELETEASSIGN Routine
	DELETEPARAM Routine
	DELETESTARTUP Routine
	GETASSIGNTEXT Routine
	GETASSIGNVALUE Routine
	GETBACKUPCPU Routine
	GETPARAMTEXT Routine
	GETSTARTUPTEXT Routine
	PUTASSIGNTEXT Routine
	PUTASSIGNVALUE Routine
	PUTPARAMTEXT Routine
	PUTSTARTUPTEXT Routine

	16 Fault-Tolerant Programming
	Assigning a Process Name
	Processes
	Process Pairs
	Overview of Fault- Tolerant Programs
	Checkpointing
	Checkpointing File Buffers
	Checkpointing File Status Information
	Checkpointing $RECEIVE
	Checkpointing Large Amounts of Data

	Starting a New Backup Process

	A ASCII Character Set
	B Syntax Summary
	FORTRAN Statements
	Compiler Directives

	C Converting Programs to HP�FORTRAN
	D Data Type Correspondence and Return Value Sizes
	E Compiler Limits
	F Compile-Time Diagnostic Messages
	Error Messages
	Warning Messages

	G Run-Time Diagnostic Messages
	I/O Errors
	START BACKUP and CHECKPOINT Errors
	Intrinsic Errors
	Error Messages
	Diagnostic Messages With ENV OLD
	READ and WRITE Message Format
	System Error Message Format
	Intrinsic Error Message Format

	Diagnostic Messages With ENV COMMON
	Message Format
	Formatter Run-Time Messages
	System Messages
	Trap Messages
	Run-Time Core Messages
	Intrinsic Error Messages
	Input/Output Messages

	H Hollerith Constants and Punch Card Codes
	Editing Hollerith Data
	Hollerith Constants as Subprogram Arguments
	Hollerith Punch Card Codes

	Glossary
	Index

