
Guardian Procedure
Calls Reference Manual

Abstract

This manual describes the syntax for most Guardian procedure calls. This manual is
for programmers who need to call Guardian procedures from their programs.

Product Version

N.A.

Supported Release Version Updates (RVUs)

This publication supports J06.03 and all subsequent J-series RVUs, H06.03 and all
subsequent H-series RVUs, and G06.27 and all subsequent G-series RVUs, until
otherwise indicated by its replacement publications. Additionally, all considerations for
H-series throughout this manual will hold true for J-series also, unless mentioned
otherwise.

Part Number Published

522629-030 August 2010

Document History
Part Number Product Version Published

522629-025 N.A. February 2009

522629-026 N.A. May 2009

522629-027 N.A August 2009

522629-028 N.A. February 2010

522629-029 N.A May 2010

522629-030 N.A August 2010

 Hewlett-Packard Company—522629-030
i

Guardian Procedure Calls
Reference Manual

Glossary Index Examples Figures Tables

What’s New in This Manual xix
Manual Information xix
New and Changed Information xix

About This Manual xxiii
Notation Conventions xxiv

1. Introduction to Guardian Procedure Calls
Types of Guardian Procedure Calls 1-2
H-Series Guardian Procedures 1-3
G-Series Guardian Procedures 1-4
External Declarations Files for Guardian Procedures 1-4
Parameter Declarations Files for Guardian Procedures 1-5
TAL Syntax for a Guardian Procedure Call 1-6

String Output Variables 1-9
Reference Parameter Overlap 1-9
Bounds Checking of Reference Parameters for Guardian Procedures 1-9
C Syntax for a Guardian Procedure Call 1-10

C Header Files 1-10
CEXTDECS in H-Series Systems 1-11

How to find the (writable) global data in an TNS/E native process 1-11
Examples 1-12

2. Guardian Procedure Calls (A-B)
ABEND Procedure (Superseded by PROCESS_STOP_ Procedure) 2-2
ACTIVATEPROCESS Procedure (Superseded by PROCESS_ACTIVATE_ Procedure)

2-8
ADDDSTTRANSITION Procedure (Superseded by DST_GETINFO_ Procedure) 2-10
ADDRESS_DELIMIT_ Procedure 2-12
ADDRTOPROCNAME Procedure 2-16
ALLOCATESEGMENT Procedure (Superseded by SEGMENT_ALLOCATE_

Procedure) 2-20
ALTER Procedure (Superseded by FILE_ALTERLIST_ Procedure) 2-27

Contents

Guardian Procedure Calls Reference Manual—522629-030
ii

3. Guardian Procedure Calls (C)

ALTERPRIORITY Procedure (Superseded by PROCESS_SETINFO_ Procedure)
2-31

ARMTRAP Procedure (Superseded by SIGACTION_INIT_ Procedure) 2-32
AWAITIO[X|XL] Procedures 2-40
BACKSPACEEDIT Procedure 2-51
BINSEM_CLOSE_ Procedure 2-52
BINSEM_CREATE_ Procedure 2-54
BINSEM_FORCELOCK_ Procedure 2-58
BINSEM_ISMINE_Procedure 2-60
BINSEM_LOCK_ Procedure 2-61
BINSEM_OPEN_ Procedure 2-64
BINSEM_UNLOCK_ Procedure 2-66
BREAKMESSAGE_SEND_ Procedure 2-67

3. Guardian Procedure Calls (C)
CANCEL Procedure 3-3
CANCELPROCESSTIMEOUT Procedure 3-4
CANCELREQ[L] Procedure 3-6
CANCELTIMEOUT Procedure 3-8
CHANGELIST Procedure 3-9
CHECK^BREAK Procedure 3-11
CHECK^FILE Procedure 3-13
CHECKALLOCATESEGMENT Procedure (Superseded by

SEGMENT_ALLOCATE_CHKPT_ Procedure) 3-21
CHECKCLOSE Procedure (Superseded by FILE_CLOSE_CHKPT_

Procedure) 3-26
CHECKDEALLOCATESEGMENT Procedure (Superseded by

SEGMENT_DEALLOCATE_CHKPT_ Procedure) 3-28
CHECKDEFINE Procedure 3-30
CHECKMONITOR Procedure 3-32
CHECKOPEN Procedure (Superseded by FILE_OPEN_CHKPT_ Procedure) 3-34
CHECKPOINT Procedure (Superseded by CHECKPOINTX Procedure) 3-36
CHECKPOINTMANY Procedure (Superseded by CHECKPOINTMANYX

Procedure) 3-39
CHECKPOINTMANYX Procedure 3-44
CHECKPOINTX Procedure 3-51
CHECKRESIZESEGMENT Procedure 3-58
CHECKSETMODE Procedure 3-59
CHECKSWITCH Procedure 3-61
CHILD_LOST_ Procedure 3-62

Contents

Guardian Procedure Calls Reference Manual—522629-030
iii

4. Guardian Procedure Calls (D-E)

CLOSE Procedure (Superseded by FILE_CLOSE_ Procedure) 3-65
CLOSE^FILE Procedure 3-67
CLOSEALLEDIT Procedure 3-70
CLOSEEDIT Procedure (Superseded by CLOSEEDIT_ Procedure) 3-71
CLOSEEDIT_ Procedure 3-72
COMPLETEIOEDIT Procedure 3-73
COMPRESSEDIT Procedure 3-75
COMPUTEJULIANDAYNO Procedure 3-76
COMPUTETIMESTAMP Procedure 3-78
 CONFIG_GETINFO_BYLDEV_ Procedure

(G-Series and H-Series RVUs Only) 3-81
CONFIG_GETINFO_BYNAME_ Procedure

(G-Series and H-Series RVUs Only) 3-81
CONFIG_GETINFO_BYLDEV2_ Procedure

(G-Series and H-Series RVUs Only) 3-96
CONFIG_GETINFO_BYNAME2_ Procedure

(G-Series and H-Series RVUs Only) 3-96
CONTIME Procedure 3-105
CONTROL Procedure 3-107
CONTROLBUF Procedure 3-117
CONTROLMESSAGESYSTEM Procedure 3-120
CONVERTASCIIEBCDIC Procedure 3-123
CONVERTPROCESSNAME Procedure (Superseded by FILENAME_RESOLVE_

Procedure) 3-124
CONVERTPROCESSTIME Procedure 3-125
CONVERTTIMESTAMP Procedure 3-127
CPU_GETINFOLIST_ Procedure 3-132
CPUTIMES Procedure 3-132
CREATE Procedure (Superseded by FILE_CREATELIST_ Procedure) 3-134
CREATEPROCESSNAME Procedure (Superseded by PROCESSNAME_CREATE_

Procedure) 3-146
CREATEREMOTENAME Procedure (Superseded by PROCESSNAME_CREATE_

Procedure) 3-148
CREATORACCESSID Procedure (Superseded by PROCESS_GETINFOLIST_

Procedure) 3-150
CRTPID_TO_PROCESSHANDLE_ Procedure 3-152
CURRENTSPACE Procedure (Superseded) 3-154

4. Guardian Procedure Calls (D-E)
DAYOFWEEK Procedure 4-2

Contents

Guardian Procedure Calls Reference Manual—522629-030
iv

4. Guardian Procedure Calls (D-E)

DEALLOCATESEGMENT Procedure (Superseded by SEGMENT_DEALLOCATE_
Procedure) 4-3

DEBUG Procedure 4-6
DEBUGPROCESS Procedure (Superseded by PROCESS_DEBUG_

Procedure) 4-8
DEFINEADD Procedure 4-11
DEFINEDELETE Procedure 4-13
DEFINEDELETEALL Procedure 4-15
DEFINEINFO Procedure 4-16
DEFINELIST Procedure 4-18
DEFINEMODE Procedure 4-21
DEFINENEXTNAME Procedure 4-23
DEFINEPOOL Procedure (Superseded by POOL_* Procedures) 4-24
DEFINEREADATTR Procedure 4-28
DEFINERESTORE Procedure 4-32
DEFINERESTOREWORK[2] Procedures 4-35
DEFINESAVE Procedure 4-36
DEFINESAVEWORK[2] Procedure 4-38
DEFINESETATTR Procedure 4-39
DEFINESETLIKE Procedure 4-42
DEFINEVALIDATEWORK Procedure 4-44
DELAY Procedure (Superseded by PROCESS_DELAY_ Procedure (H-Series RVUs

Only)) 4-45
DELETEEDIT Procedure 4-47
DEVICE_GETINFOBYLDEV_ Procedure (Superseded on G-series RVUs) 4-48
DEVICE_GETINFOBYNAME_ Procedure (Superseded on G-Series RVUs) 4-59
DEVICEINFO Procedure (Superseded by FILE_GETINFOBYNAME_ Procedure or

FILE_GETINFOLISTBYNAME_ Procedure) 4-65
DEVICEINFO2 Procedure (Superseded by FILE_GETINFOBYNAME_ Procedure or

FILE_GETINFOLISTBYNAME_ Procedure) 4-67
DISK_REFRESH_ Procedure 4-70
DISKINFO Procedure (Superseded by FILE_GETINFOLISTBYNAME_

Procedure) 4-72
DNUMIN Procedure 4-75
DNUMOUT Procedure 4-78
DST_GETINFO_ Procedure 4-80
DST_TRANSITION_ADD_ Procedure 4-82
DST_TRANSITION_DELETE_ Procedure 4-86
DST_TRANSITION_MODIFY_ Procedure 4-87
EDITREAD Procedure 4-89

Contents

Guardian Procedure Calls Reference Manual—522629-030
v

5. Guardian Procedure Calls (F)

EDITREADINIT Procedure 4-92
ERRNO_GET_ Procedure 4-93
EXTENDEDIT Procedure 4-94

5. Guardian Procedure Calls (F)
FILE_ALTERLIST_ Procedure 5-3
FILE_CLOSE_ Procedure 5-13
FILE_CLOSE_CHKPT_ Procedure 5-15
FILE_COMPLETE[L]_ Procedure 5-16
FILE_COMPLETE_GETINFO_ Procedure 5-25
FILE_COMPLETE_SET_ Procedure 5-26
FILE_CREATE_ Procedure 5-31
FILE_CREATELIST_ Procedure 5-37
FILE_GETINFO_ Procedure 5-54
FILE_GETINFOBYNAME_ Procedure 5-57
FILE_GETINFOLIST_ Procedure 5-62
FILE_GETINFOLISTBYNAME_ Procedure 5-90

FILE_GETLOCKINFO_ Procedure 5-94
FILE_GETOPENINFO_ Procedure 5-100
FILE_GETRECEIVEINFO[L]_ Procedure 5-104
FILE_GETSYNCINFO_ Procedure 5-109
FILE_OPEN_ Procedure 5-111
FILE_OPEN_CHKPT_ Procedure 5-130
FILE_PURGE_ Procedure 5-132
FILE_RENAME_ Procedure 5-134
FILE_RESTOREPOSITION_ Procedure 5-136
FILE_SAVEPOSITION_ Procedure 5-137
FILE_SETKEY_ Procedure 5-139
FILE_SETLASTERROR_ Procedure 5-142
FILE_SETPOSITION_ Procedure 5-144
FILE_SETSYNCINFO_ Procedure 5-147
FILE_WRITEREAD_ Procedure 5-148
FILEERROR Procedure 5-152
FILEINFO Procedure (Superseded by

FILE_GETINFOLIST_ Procedure) 5-154
FILEINQUIRE Procedure (Superseded by

FILE_GETINFOLISTBYNAME_ Procedure) 5-166
FILENAME_COMPARE_ Procedure 5-171
FILENAME_DECOMPOSE_ Procedure 5-174
FILENAME_EDIT_ Procedure 5-177

Contents

Guardian Procedure Calls Reference Manual—522629-030
vi

6. Guardian Procedure Calls (G)

FILENAME_FINDFINISH_ Procedure 5-181
FILENAME_FINDNEXT_ Procedure 5-182
FILENAME_FINDSTART_ Procedure 5-185
FILENAME_MATCH_ Procedure 5-192
FILENAME_RESOLVE_ Procedure 5-194
FILENAME_SCAN_ Procedure 5-200
FILENAME_TO_OLDFILENAME_ Procedure 5-203
FILENAME_TO_PATHNAME_ Procedure 5-204
FILENAME_TO_PROCESSHANDLE_ Procedure 5-208
FILENAME_UNRESOLVE_ Procedure 5-210
FILERECINFO Procedure (Superseded by

FILE_GETINFOLISTBYNAME_ Procedure) 5-213
FIXSTRING Procedure 5-218
FNAME32COLLAPSE Procedure (Superseded) 5-221
FNAME32EXPAND Procedure (Superseded by FILENAME_SCAN_

Procedure) 5-223
FNAME32TOFNAME Procedure (Superseded) 5-225
FNAMECOLLAPSE Procedure (Superseded by OLDFILENAME_TO_FILENAME_

Procedure) 5-226
FNAMECOMPARE Procedure (Superseded by FILENAME_COMPARE_

Procedure) 5-228
FNAMEEXPAND Procedure (Superseded by FILENAME_SCAN_ Procedure and

FILENAME_RESOLVE_ Procedure) 5-231
FNAMETOFNAME32 Procedure (Superseded) 5-234
FORMATCONVERT[X] Procedure 5-236
FORMATDATA[X] Procedure 5-239
FP_IEEE_DENORM_GET_ Procedure 5-245
FP_IEEE_DENORM_SET_ Procedure 5-246
FP_IEEE_ENABLES_GET_ Procedure 5-247
FP_IEEE_ENABLES_SET_ Procedure 5-249
FP_IEEE_ENV_CLEAR_ Procedure 5-250
FP_IEEE_ENV_RESUME_ Procedure 5-252
FP_IEEE_EXCEPTIONS_GET_ Procedure 5-253
FP_IEEE_EXCEPTIONS_SET_ Procedure 5-255
FP_IEEE_ROUND_GET_ Procedure 5-256
FP_IEEE_ROUND_SET_ Procedure 5-257

6. Guardian Procedure Calls (G)
GETCPCBINFO Procedure 6-2

Contents

Guardian Procedure Calls Reference Manual—522629-030
vii

7. Guardian Procedure Calls (H-K)

GETCRTPID Procedure (Superseded by PROCESS_GETINFOLIST_
Procedure) 6-4

GETDEVNAME Procedure (Superseded by DEVICE_GETINFOBYLDEV_ Procedure
(Superseded on G-series RVUs) or FILENAME_FINDNEXT_ Procedure) 6-6

GETINCREMENTEDIT Procedure 6-9
GETPOOL Procedure (Superseded by POOL_* Procedures) 6-10
GETPOOL_PAGE_ Procedure (H-Series RVUs Only) 6-12
GETPOSITIONEDIT Procedure 6-14
GETPPDENTRY Procedure (Superseded by PROCESS_GETPAIRINFO_

Procedure) 6-15
GETREMOTECRTPID Procedure (Superseded by PROCESS_GETINFOLIST_

Procedure) 6-18
GETSYNCINFO Procedure (Superseded by FILE_GETSYNCINFO_ Procedure) 6-20
GETSYSTEMNAME Procedure (Superseded by

NODENUMBER_TO_NODENAME_ Procedure) 6-22
GETSYSTEMSERIALNUMBER Procedure 6-24
GIVE^BREAK Procedure 6-25
GROUP_GETINFO_ Procedure 6-27
GROUP_GETNEXT_ Procedure 6-31
GROUPIDTOGROUPNAME Procedure (Superseded by GROUP_GETINFO_

Procedure) 6-33
GROUPMEMBER_GETNEXT_ Procedure 6-34
GROUPNAMETOGROUPID Procedure (Superseded by GROUP_GETINFO_

Procedure) 6-37

7. Guardian Procedure Calls (H-K)
HALTPOLL Procedure 7-2
HEADROOM_ENSURE_ Procedure 7-3
HEAPSORT Procedure 7-5
HEAPSORTX_ Procedure 7-7
HIST_FORMAT_ Procedure 7-9
HIST_GETPRIOR_ Procedure 7-24
HIST_INIT_ Procedure 7-26
INCREMENTEDIT Procedure 7-31
INITIALIZEEDIT Procedure 7-33
INITIALIZER Procedure 7-36
INTERPRETINTERVAL Procedure 7-41
INTERPRETJULIANDAYNO Procedure 7-43
INTERPRETTIMESTAMP Procedure 7-45
JULIANTIMESTAMP Procedure 7-46
KEYPOSITION[X] Procedures (Superseded by FILE_SETKEY_ Procedure) 7-50

Contents

Guardian Procedure Calls Reference Manual—522629-030
viii

8. Guardian Procedure Calls (L)

8. Guardian Procedure Calls (L)
LABELEDTAPESUPPORT Procedure 8-2
LASTADDR Procedure (Superseded by ADDRESS_DELIMIT_ Procedure) 8-3
LASTADDRX Procedure (Superseded by ADDRESS_DELIMIT_ Procedure) 8-4
LASTRECEIVE Procedure (Superseded by FILE_GETRECEIVEINFO[L]_

Procedure) 8-5
LOCATESYSTEM Procedure (Superseded by

NODENAME_TO_NODENUMBER_ Procedure) 8-8
LOCKFILE Procedure 8-10
LOCKINFO Procedure (Superseded by FILE_GETLOCKINFO_ Procedure) 8-13
LOCKREC Procedure 8-18
LONGJMP_ Procedure 8-22
LOOKUPPROCESSNAME Procedure (Superseded by PROCESS_GETPAIRINFO_

Procedure) 8-24

9. Guardian Procedure Calls (M)
MBCS_ANY_KATAKANA_ Procedure 9-2
MBCS_CHAR_ Procedure 9-3
MBCS_CHARSIZE_ Procedure 9-7
MBCS_CHARSTRING_ Procedure 9-8
MBCS_CODESETS_SUPPORTED_ Procedure 9-10
MBCS_DEFAULTCHARSET_ Procedure 9-12
MBCS_EXTERNAL_TO_TANDEM_ Procedure 9-13
MBCS_FORMAT_CRT_FIELD_ Procedure 9-19
MBCS_FORMAT_ITI_BUFFER_ Procedure 9-23
MBCS_MB_TO_SB_ Procedure 9-27
MBCS_REPLACEBLANK_ Procedure 9-29
MBCS_SB_TO_MB_ Procedure 9-32
MBCS_SHIFTSTRING_ Procedure 9-34
MBCS_TANDEM_TO_EXTERNAL_ Procedure 9-36
MBCS_TESTBYTE_ Procedure 9-43
MBCS_TRIMFRAGMENT_ Procedure 9-46
MESSAGESTATUS Procedure 9-48
MESSAGESYSTEMINFO Procedure 9-49
MOM Procedure (Superseded by PROCESS_GETINFOLIST_ Procedure) 9-51
MONITORCPUS Procedure 9-53
MONITORNET Procedure 9-55
MONITORNEW Procedure 9-56
MOVEX Procedure 9-57

Contents

Guardian Procedure Calls Reference Manual—522629-030
ix

10. Guardian Procedure Calls (N)

MYGMOM Procedure (Superseded by PROCESS_GETINFOLIST_ Procedure) 9-59
MYPID Procedure

(Superseded by PROCESSHANDLE_GETMINE_ Procedure and
PROCESSHANDLE_DECOMPOSE_ Procedure) 9-61

MYPROCESSTIME Procedure 9-62
MYSYSTEMNUMBER Procedure (Superseded by

NODENAME_TO_NODENUMBER_ Procedure or
PROCESSHANDLE_GETMINE_ Procedure and
PROCESSHANDLE_DECOMPOSE_ Procedure) 9-63

MYTERM Procedure (Superseded by PROCESS_GETINFOLIST_ Procedure) 9-64

10. Guardian Procedure Calls (N)
NEWPROCESS Procedure (Superseded by PROCESS_LAUNCH_ Procedure) 10-2
NEWPROCESSNOWAIT Procedure (Superseded by PROCESS_LAUNCH_

Procedure) 10-23
NEXTFILENAME Procedure (Superseded by FILENAME_FINDNEXT_

Procedure) 10-31
NO^ERROR Procedure 10-33
NODE_GETCOLDLOADINFO_ Procedure 10-35
NODENAME_TO_NODENUMBER_ Procedure 10-37
NODENUMBER_TO_NODENAME_ Procedure 10-38
NSK_FLOAT_IEEE TO TNS Procedures 10-40

NSK_FLOAT_IEEE32_TO_TNS32_ Procedure
NSK_FLOAT_IEEE64_TO_TNS32_ Procedure
NSK_FLOAT_IEEE64_TO_TNS64_ Procedure 10-40

NSK_FLOAT_TNS TO IEEE Procedures 10-45
NSK_FLOAT_TNS32_TO_IEEE32_ Procedure

NSK_FLOAT_TNS32_TO_IEEE64_ Procedure
NSK_FLOAT_TNS64_TO_IEEE64_ Procedure 10-45

NUMBEREDIT Procedure 10-49
NUMIN Procedure 10-51
NUMOUT Procedure 10-53

11. Guardian Procedure Calls (O)
OBJFILE_GETINFOLIST_ Procedure 11-2
OLDFILENAME_TO_FILENAME_ Procedure 11-8
OLDSYSMSG_TO_NEWSYSMSG_ Procedure 11-10
OPEN Procedure (Superseded by FILE_OPEN_ Procedure) 11-13
OPEN^FILE Procedure 11-29
OPENEDIT Procedure (Superseded by OPENEDIT_ Procedure) 11-38
OPENEDIT_ Procedure 11-41
OPENER_LOST_ Procedure 11-46

Contents

Guardian Procedure Calls Reference Manual—522629-030
x

12. Guardian Procedure Calls (P)

OPENINFO Procedure (Superseded by FILE_GETOPENINFO_ Procedure) 11-50
OSS_PID_NULL_ Procedure 11-54

12. Guardian Procedure Calls (P)
PACKEDIT Procedure 12-3
PATHNAME_TO_FILENAME_ Procedure 12-5
POOL_CHECK_ Procedure 12-8
POOL_DEFINE_ Procedure 12-11
POOL_GETINFO_ Procedure 12-14
POOL_GETSPACE_ Procedure 12-18
POOL_GETSPACE_PAGE_ Procedure (H-Series RVUs Only) 12-19
POOL_PUTSPACE_ Procedure 12-21
POOL_RESIZE_ Procedure 12-22
POSITION Procedure (Superseded by FILE_SETPOSITION_ Procedure) 12-24
POSITIONEDIT Procedure 12-28
PRIORITY Procedure (Superseded by PROCESS_SETINFO_ Procedure or

PROCESS_GETINFOLIST_ Procedure) 12-30
PROCESS_ACTIVATE_ Procedure 12-31
 PROCESS_CREATE_ Procedure (Superseded by PROCESS_LAUNCH_

Procedure) 12-34
PROCESS_DEBUG_ Procedure 12-49
PROCESS_DELAY_ Procedure (H-Series RVUs Only) 12-54
PROCESS_GETINFO_ Procedure 12-55
PROCESS_GETINFOLIST_ Procedure 12-65
PROCESS_GETPAIRINFO_ Procedure 12-101
PROCESS_LAUNCH_ Procedure 12-109
PROCESS_SETINFO_ Procedure 12-145
PROCESS_SETSTRINGINFO_ Procedure 12-153
PROCESS_SPAWN_ Procedure 12-156
PROCESS_STOP_ Procedure 12-186
PROCESS_SUSPEND_ Procedure 12-195
PROCESS_WAIT_ 12-197
PROCESSACCESSID Procedure (Superseded by PROCESS_GETINFOLIST_

Procedure) 12-198
PROCESSFILESECURITY Procedure (Superseded by PROCESS_SETINFO_

Procedure or PROCESS_GETINFOLIST_ Procedure) 12-199
PROCESSHANDLE_COMPARE_ Procedure 12-200
PROCESSHANDLE_DECOMPOSE_ Procedure 12-202
PROCESSHANDLE_GETMINE_ Procedure 12-205
PROCESSHANDLE_NULLIT_ Procedure 12-206

Contents

Guardian Procedure Calls Reference Manual—522629-030
xi

13. Guardian Procedure Calls (R)

PROCESSHANDLE_TO_CRTPID_ Procedure 12-207
PROCESSHANDLE_TO_FILENAME_ Procedure 12-209
PROCESSHANDLE_TO_STRING_ Procedure 12-211
PROCESSINFO Procedure (Superseded by PROCESS_GETINFOLIST_

Procedure) 12-213
PROCESSNAME_CREATE_ Procedure 12-220
PROCESSOR_GETINFOLIST_ Procedure 12-223
PROCESSOR_GETNAME_ Procedure 12-241
PROCESSORSTATUS Procedure 12-246
PROCESSORTYPE Procedure 12-247
PROCESSSTRING_SCAN_ Procedure 12-249
PROCESSTIME Procedure (Superseded by PROCESS_GETINFOLIST_

Procedure) 12-252
PROGRAMFILENAME Procedure (Superseded by PROCESS_GETINFOLIST_

Procedure) 12-254
PURGE Procedure (Superseded by FILE_PURGE_ Procedure) 12-255
PUTPOOL Procedure (Superseded by POOL_* Procedures) 12-258

13. Guardian Procedure Calls (R)
RAISE_ Procedure 13-2
READ[X] Procedures 13-2
READ^FILE Procedure 13-11
READEDIT Procedure 13-13
READEDITP Procedure 13-16
READLOCK[X] Procedures 13-19
READUPDATE[X|XL] Procedures 13-23
READUPDATELOCK[X] Procedures 13-32
RECEIVEINFO Procedure (Superseded by FILE_GETRECEIVEINFO[L]_

Procedure) 13-37
REFPARAM_BOUNDSCHECK_ Procedure 13-41
REFRESH Procedure (Superseded by DISK_REFRESH_ Procedure) 13-46
REMOTEPROCESSORSTATUS Procedure 13-48
REMOTETOSVERSION Procedure 13-50
RENAME Procedure (Superseded by FILE_RENAME_ Procedure) 13-51
REPLY[X|XL] Procedures 13-53
REPOSITION Procedure (Superseded by FILE_RESTOREPOSITION_

Procedure) 13-58
RESETSYNC Procedure 13-59
RESIZEPOOL Procedure (Superseded by POOL_* Procedures) 13-61
RESIZESEGMENT Procedure 13-63

Contents

Guardian Procedure Calls Reference Manual—522629-030
xii

14. Guardian Procedure Calls (S)

14. Guardian Procedure Calls (S)
SAVEPOSITION Procedure (Superseded by FILE_SAVEPOSITION_

Procedure) 14-3
SEGMENT_ALLOCATE_ Procedure 14-5
SEGMENT_ALLOCATE_CHKPT_ Procedure 14-17
SEGMENT_DEALLOCATE_ Procedure 14-21
SEGMENT_DEALLOCATE_CHKPT_ Procedure 14-24
SEGMENT_GETBACKUPINFO_ Procedure 14-26
SEGMENT_GETINFO_ Procedure 14-29
SEGMENT_USE_ Procedure 14-32
SEGMENTSIZE Procedure (Superseded by

SEGMENT_GETBACKUPINFO_ Procedure) 14-35
SENDBREAKMESSAGE Procedure (Superseded by BREAKMESSAGE_SEND_

Procedure) 14-36
SET^FILE Procedure 14-38
SETJMP_ Procedure 14-56
SETLOOPTIMER Procedure 14-58
SETMODE Procedure 14-60
SETMODENOWAIT Procedure 14-101
SETMYTERM Procedure (Superseded by PROCESS_SETSTRINGINFO_

Procedure) 14-104
SETPARAM Procedure 14-105
SETSTOP Procedure 14-111
SETSYNCINFO Procedure (Superseded by FILE_SETSYNCINFO_

Procedure) 14-113
SETSYSTEMCLOCK Procedure 14-115
SHIFTSTRING Procedure (Superseded by STRING_UPSHIFT_ Procedure) 14-119
SIGACTION_ Procedure 14-121
SIGACTION_INIT_ Procedure 14-121
SIGACTION_RESTORE_ Procedure 14-125
SIGACTION_SUPPLANT_ Procedure 14-127
SIGADDSET_ Procedure 14-132
SIGDELSET_ Procedure 14-132
SIGEMPTYSET_ Procedure 14-132
SIGFILLSET_ Procedure 14-132
SIGISMEMBER_ Procedure 14-132
SIGJMP_MASKSET_ Procedure 14-133
SIGLONGJMP_ Procedure 14-135
SIGNAL_ Procedure 14-137
SIGNALPROCESSTIMEOUT Procedure 14-138

Contents

Guardian Procedure Calls Reference Manual—522629-030
xiii

15. Guardian Procedure Calls (T-V)

SIGNALTIMEOUT Procedure 14-141
SIGPENDING_ Procedure 14-144
SIGPROCMASK_ Procedure 14-144
SIGSETJMP_ Procedure 14-144
SIGSUSPEND_ Procedure 14-147
SSIDTOTEXT Procedure 14-147
STACK_ALLOCATE_ Procedure 14-150
STACK_DEALLOCATE_ Procedure 14-154
STEPMOM Procedure (Superseded by PROCESS_SETINFO_ Procedure) 14-155
STOP Procedure (Superseded by PROCESS_STOP_ Procedure) 14-159
STRING_UPSHIFT_ Procedure 14-166
SUSPENDPROCESS Procedure (Superseded by PROCESS_SUSPEND_

Procedure) 14-168
SYSTEMENTRYPOINT_RISC_ Procedure 14-170
SYSTEMENTRYPOINTLABEL Procedure 14-171

15. Guardian Procedure Calls (T-V)
TAKE^BREAK Procedure 15-2
TEXTTOSSID Procedure 15-3
TIME Procedure 15-6
TIMER_START_ Procedure (H-Series RVUs Only) 15-7
TIMER_STOP_ Procedure (H-Series RVUs Only) 15-8
TIMESTAMP Procedure 15-10
TOSVERSION Procedure 15-12
TS_NANOSECS_ Procedure (H-Series RVUs Only) 15-13
TS_UNIQUE_COMPARE_ Procedure (H-Series RVUs Only) 15-13
TS_UNIQUE_CONVERT_TO_JULIAN_ Procedure (H-Series RVUs Only) 15-16
TS_UNIQUE_CREATE_ Procedure (H-Series RVUs Only) 15-16
UNLOCKFILE Procedure 15-18
UNLOCKREC Procedure 15-20
UNPACKEDIT Procedure 15-23
USER_AUTHENTICATE_ Procedure 15-25
USER_GETINFO_ Procedure 15-40
USER_GETNEXT_ Procedure 15-47
USERDEFAULTS Procedure (Superseded by USER_GETINFO_ Procedure) 15-50
USERIDTOUSERNAME Procedure (Superseded by USER_GETINFO_

Procedure) 15-53
USERIOBUFFER_ALLOW_ Procedure 15-54
USERNAMETOUSERID Procedure (Superseded by USER_GETINFO_

Procedure) 15-55

Contents

Guardian Procedure Calls Reference Manual—522629-030
xiv

16. Guardian Procedure Calls (W-Z)

USESEGMENT Procedure (Superseded by SEGMENT_USE_ Procedure) 15-57
VRO_SET_ Procedure (H-Series RVUs Only) 15-59
VERIFYUSER Procedure (Superseded by USER_AUTHENTICATE_ Procedure and

USER_GETINFO_ Procedure) 15-60

16. Guardian Procedure Calls (W-Z)
WAIT^FILE Procedure 16-2
WRITE[X] Procedures 16-4
WRITE^FILE Procedure 16-12
WRITEEDIT Procedure 16-15
WRITEEDITP Procedure 16-17
WRITEREAD[X] Procedures 16-19
WRITEUPDATE[X] Procedures 16-24
WRITEUPDATEUNLOCK[X] Procedures 16-31
XBNDSTEST Procedure (Superseded by REFPARAM_BOUNDSCHECK_

Procedure) 16-37
XSTACKTEST Procedure (Superseded by HEADROOM_ENSURE_

Procedure) 16-39

A. Device Types and Subtypes

B. Reserved Process Names

C. Completion Codes

D. File Names and Process Identifiers
Reserved File Names D-1
Syntax D-1

Disk File Names D-2
Nondisk Device Names D-3
Process File Names for Unnamed Processes D-4
Process File Names for Named Processes D-5
Process Descriptors D-6
File-Name Patterns D-6
Process Handles D-7

C-Series Syntax D-8
External File Names D-8
Internal File Names D-10
Process File Names D-11
Process IDs D-12

OSS Pathname Syntax D-12

Contents

Guardian Procedure Calls Reference Manual—522629-030
xv

E. DEFINEs

Examples D-13

E. DEFINEs
What Is a DEFINE? E-1

DEFINE Names E-1
DEFINE Attributes E-2

Available DEFINE Classes E-3
CLASS CATALOG DEFINEs E-3
CLASS DEFAULTS DEFINEs E-3
CLASS MAP DEFINEs E-3
CLASS SEARCH DEFINEs E-4
CLASS SORT DEFINEs E-4
CLASS SUBSORT DEFINEs E-4
CLASS SPOOL DEFINEs E-5
CLASS TAPE DEFINEs E-5
CLASS TAPECATALOG DEFINEs E-5

F. Formatter Edit Descriptors
Summary of Edit Descriptors F-1

Summary of Nonrepeatable Edit Descriptors F-1
Summary of Repeatable Edit Descriptors F-2
Summary of Modifiers F-2
Summary of Decorations F-2

Nonrepeatable Edit Descriptors F-3
Tabulation Descriptors F-3
Literal Descriptors F-4
Scale-Factor Descriptor (P) F-5
Optional Plus Descriptors (S, SP, SS) F-6
Blank Interpretation Descriptors (BN, BZ) F-6
Buffer Control Descriptors (/, :) F-6

Repeatable Edit Descriptors F-8
The A Edit Descriptor F-8
The B Edit Descriptor F-9
The D Edit Descriptor F-10
The E Edit Descriptor F-10
The F Edit Descriptor F-12
The G Edit Descriptor F-13
The I Edit Descriptor F-14
The L Edit Descriptor F-16
The M Edit Descriptor F-17

Contents

Guardian Procedure Calls Reference Manual—522629-030
xvi

G. Superseded Guardian Procedure Calls and
Their Replacements

The O Edit Descriptor F-19
The Z Edit Descriptor F-20

Modifiers F-21
Field-Blanking Modifiers (BN, BZ) F-21
Fill-Character Modifier (FL) F-21
Overflow-Character Modifier (OC) F-22
Justification Modifiers (LJ, RJ) F-22
Symbol-Substitution Modifier (SS) F-22

Decorations F-24
Conditions F-24
Locations F-25
Processing F-25

List-Directed Formatting F-27
List-Directed Input F-27
List-Directed Output F-28

G. Superseded Guardian Procedure Calls and Their
Replacements

H. Documented Guardian Procedures

I. Using the DIVER and DELAY Programs
Running the DIVER Program I-1
Running the DELAY Program I-2
Example Using DIVER and DELAY I-3

J. System Limits

K. Character Set Translation

Index

Examples

Figures
Figure 1-1. Sample TAL Syntax for a Procedure Call 1-6
Figure 1-2. Syntax With String Output Variable 1-9
Figure 1-3. Sample C Syntax for a Procedure Call 1-10
Figure 2-1. AWAITIO[X|XL] Operation 2-50
Figure 3-1. Invalid Parameter Location 3-43
Figure 12-1. Effect of Adopting a Process 12-153

Contents

Guardian Procedure Calls Reference Manual—522629-030
xvii

Tables

Figure 14-1. Effect of STEPMOM 14-159

Tables
Table 1-1. Types of Guardian Procedure Calls 1-2
Table 2-1. Procedures Beginning With the Letters A Through B 2-1
Table 2-2. ALTER Function Codes 2-29
Table 2-3. AWAITIO[X|XL] Action 2-49
Table 3-1. Procedures Beginning With the Letter C 3-1
Table 3-2. CHECK^FILE Operations That Return Values 3-16
Table 3-3. CHECK^FILE Operations That Return Addresses 3-20
Table 3-4. CONTROL Operation 1 3-109
Table 3-5. CONTROL Operations 2 Through 27 3-113
Table 4-1. Procedures Beginning With the Letters D Through E 4-1
Table 4-2. Error Summary for DST_* Procedures 4-83
Table 5-1. Procedures Beginning With the Letter F 5-1
Table 5-2. FILE_ALTERLIST_ Item Codes 5-5
Table 5-3. FILE_CREATELIST_ Item Codes 5-40
Table 5-4. FILE_GETINFOLIST_ Item Codes 5-66
Table 5-5. Levels of Security 5-122
Table 5-6. Allowed File Accesses 5-122
Table 5-7. Exclusion and Access Mode Checking 5-124
Table 5-8. FILEINFO filenum and file-name Parameters 5-164
Table 5-9. FILEINQUIRE Item Codes 5-169
Table 6-1. Procedures Beginning With the Letter G 6-1
Table 7-1. Procedures Beginning With the Letters H Through K 7-1
Table 8-1. Procedures Beginning With the Letter L 8-1
Table 9-1. Procedures Beginning With the Letter M 9-1
Table 10-1. Procedures Beginning With the Letter N 10-1
Table 10-2. Summary of NEWPROCESS Error Codes 10-7
Table 11-1. Procedures Beginning With the Letter O 11-1
Table 11-2. OPEN flags Parameter 11-18
Table 11-3. Levels of Security 11-22
Table 11-4. Allowed File Accesses 11-22
Table 11-5. Exclusion and Access Mode Checking 11-24
Table 12-1. Procedures Beginning With the Letter P 12-1
Table 12-2. PROCESS_GETINFOLIST_ Attribute Codes and Value

Representations 12-75
Table 12-3. Summary of Process Creation Errors 12-111
Table 12-4. error-detail Codes for PROCESS_LAUNCH_ and PROCESS_SPAWN_

Errors 2 and 3 12-120

Contents

Guardian Procedure Calls Reference Manual—522629-030
xviii

Table 12-5. Error Subcodes for Process Creation Errors 12, 13, 70, 76, 84, and
3xx 12-122

Table 12-6. Summary of Processor Types and Models 12-237
Table 13-1. Procedures Beginning With the Letter R 13-1
Table 14-1. Procedures Beginning With the Letter S 14-1
Table 14-2. SET^FILE Operations That Set Values 14-41
Table 14-3. SET^FILE Operations That Set Addresses 14-51
Table 14-4. SETMODE Functions 14-63
Table 15-1. Procedures Beginning With the Letters T Through V 15-1
Table 16-1. Procedures Beginning With the Letters W Through Z 16-1
Table A-1. Device Types and Subtypes A-1
Table G-1. Superseded Guardian Procedures and Their Replacements

(H06.03) G-1
Table G-2. Superseded Guardian Procedures and Their Replacements (G00) G-1
Table G-3. Superseded Guardian Procedures and Their Replacements (D40) G-2
Table G-4. Superseded Guardian Procedures and Their Replacements

(D30) G-2
Table G-5. Superseded C-Series Guardian Procedures and Their Replacements

(D-Series) G-3
Table J-1. System-Level Limits J-1
Table J-2. Per-Process Limits J-2
Table J-3. Per-Processor Limits J-3
Table J-4. TNS vs. Native limits J-5
Table J-5. Enscribe File System Limits J-7
Table J-6. DP2 Limits J-9
Table J-7. Other Published Limits J-10
Table K-1. Character Set Translation K-1

What’s New in This Manual

Manual Information
Guardian Procedure Calls Reference Manual

Abstract

This manual describes the syntax for most Guardian procedure calls. This manual is
for programmers who need to call Guardian procedures from their programs.

Product Version

N.A.

Supported Release Version Updates (RVUs)

This publication supports J06.03 and all subsequent J-series RVUs, H06.03 and all
subsequent H-series RVUs, and G06.27 and all subsequent G-series RVUs, until
otherwise indicated by its replacement publications. Additionally, all considerations for
H-series throughout this manual will hold true for J-series also, unless mentioned
otherwise.

Document History

New and Changed Information
Changes to the H06.21/J06.10 manual:

• Updated description of keyspecifier parameter of FILE_SETKEY_ procedure
on page 5-138.

• Added the following procedures:

° STACK_ALLOCATE_ Procedure on page 14-150.

° STACK_DEALLOCATE_ Procedure on page 14-154.

Part Number Published

522629-030 August 2010

Part Number Product Version Published

522629-025 N.A. February 2009

522629-026 N.A. May 2009

522629-027 N.A August 2009

522629-028 N.A. February 2010

522629-029 N.A May 2010

522629-030 N.A August 2010
Guardian Procedure Calls Reference Manual—522629-030
xix

What’s New in This Manual Changes to the 522629-029 manual:
• Updated information about Running the DIVER Program on page I-1 and Example
Using DIVER and DELAY on page I-3.

Changes to the 522629-029 manual:

• Added two warning notes about modifying buffers on page 2-48.

• Updated the sync-or-receive-depth parameter on page 5-114.

• Added a consideration to the FILE_OPEN procedure on page 5-124.

• Updated the sync-or-receive-depth parameter on page 11-15.

• Added a consideration to the FILE_OPEN procedure on page 11-24.

• Updated Attribute 82 for Table 12-2, PROCESS_GETINFOLIST_ Attribute Codes
and Value Representations, on page 12-75.

• Added a warning note about on modifying buffers for the nowait file on page 13-5,
13-21, 13-27, 13-35, 16-8, 16-22, 16-27, and 16-34.

• Updated Table 14-4, SETMODE Functions with the SETMODE 266 function on
page 14-99.

• Added a disk subtype on page A-2.

• Added a caution note about running the DIVER program after RELOAD on page
I-1.

• Updated the DELAY timings in the example on page I-3.

• Updated Table J-3, Per-Processor Limits on page J-5.

• Updated Table J-5, Enscribe File System Limits on page J-7.

Changes to the H06.20/J06.09 Manual

• Added Attribute 79 for Processor_GETINFOLIST on 12-229 and its description on
12-235.

• Updated the syntax for short *finished-length in the following procedures:

° MBCS_EXTERNAL_TO_TANDEM_ Procedure on page 9-14.

° MBCS_TANDEM_TO_EXTERNAL_ Procedure on page 9-36.

• Updated information about maximum-length on page 9-15 and page 9-38.

• Updated the Considerations section for the following procedures:

° MBCS_EXTERNAL_TO_TANDEM_ Procedure on page 9-18.

° MBCS_TANDEM_TO_EXTERNAL_ Procedure on page 9-41.

° PROCESS_STOP_ Procedure on page 12-190.
Guardian Procedure Calls Reference Manual—522629-030
xx

What’s New in This Manual Changes to the H06.19/J06.08 Manual
• Removed a note from ADDDSTTRANSITION Procedure
(Superseded by DST_GETINFO_ Procedure) on page 2-10.

Changes to the H06.19/J06.08 Manual

• Updated the attribute of Code 60 of PROCESSOR_GETINFOLIST_ Procedure on
page 12-228.

• Updated general considerations of USER_AUTHENTICATE_ Procedure on pages
15-38 and 15-39.

Changes to the H06.18/J06.07 Manual

• Updated AWAITIO[X] procedure to AWAITIO[X|XL] procedure on page 2-40.

• Updated CANCELREQ procedure to CANCELREQ[L] procedure on page 3-6.

• Updated FILE_COMPLETE_ procedure to FILE_COMPLETE[L]_ procedure on
page 5-16.

• Updated FILE_GETRECEIVEINFO_ procedure to FILE_GETRECEIVEINFO[L]_
procedure on page 5-104.

• Updated general considerations of FILE_OPEN procedure on page 5-120.

• Updated general considerations of OPEN procedure on page 11-21.

• Updated READUPDATE[X] procedure to READUPDATE[X|XL] procedure on page
13-23.

• Updated REPLY[X] procedure to REPLY[X|XL] procedures on page 13-53.

• Updated description of SETMODE function 72 on page 14-80.

• Updated considerations for SETMODENOWAIT Procedure on page 14-104.

• Updated description of USERIOBUFFER_ALLOW_ procedure on page 15-54.

• Added a new entry, files per volume, in the DP2 Limits table on page J-9.

• Updated H-series version in the DP2 Limits table on page J-9.

Changes to the H06.17/J06.06 Manual

• Added error return code 4002 and its description for BINSEM_CREATE_Procedure
on page 2-55.

• Updated the description of error return code 4024 for
BINSEM_CREATE_Procedure on page 2-55.

• Added description of BINSEM_ISMINE_ under Binary Semaphore Operations on
page 2-57.

• Updated the description of Binary semaphore resource requirements on page 2-57.
Guardian Procedure Calls Reference Manual—522629-030
xxi

What’s New in This Manual Changes to the H06.17/J06.06 Manual
• Added information on BINSEM_ISMINE_Procedure on page 2-60.

• Added a note in the considerations section of the BINSEM_LOCK_Procedure on
page 2-63.

• Updated the description of error return code 4002 for BINSEM_OPEN_Procedure
on page 2-65.

• Updated the description of error return code 4024 for BINSEM_OPEN_Procedure
on page 2-65.

• Added a new processor type and model under Table 12-6, Summary of Processor
Types and Models, on page 12-240.

• Updated Table 12-6, Summary of Processor Types and Models, on pages 12-237
and 12-238.

• Added the maximum value of Open user semaphore under Per-Process Limits
table on page J-3.

• Added the maximum value of Open user semaphore under Per-Processor Limits
table on page J-4.
Guardian Procedure Calls Reference Manual—522629-030
xxii

About This Manual
This reference manual describes the syntax of most of the Guardian procedure calls.

Readership of This Manual
This manual is for programmers who need to call Guardian procedures from their
programs. Familiarity with TAL or some other programming language is recommended.

Organization of This Manual

Section Description

Section 1, Introduction to
Guardian Procedure Calls

Gives an overview of the procedure calls and describes
the format of a procedure call description

Sections 2 through 16 Describes the Guardian procedure calls in alphabetic
order

Appendix A, Device Types and
Subtypes

Lists the device types and subtypes (such as disks,
printers, terminals, and so on) that are referred to by
Guardian procedure calls

Section B, Reserved Process
Names

Lists the process names reserved for use by HP

Appendix C, Completion
Codes

Lists the completion codes returned after execution of a
process that indicate, in a standard manner, its degree of
success

Appendix D, File Names and
Process Identifiers

Describes reserved file names, C-series and D-series
syntax for file names and process identifiers, and the
syntax for OSS pathnames

Appendix E, DEFINEs Describes DEFINEs and lists the attributes of all classes
of DEFINEs

Appendix F, Formatter Edit
Descriptors

Describes the edit descriptors that are used by the
formatter

Appendix G, Superseded
Guardian Procedure Calls and
Their Replacements

Lists the superseded Guardian procedure calls

Appendix H, Documented
Guardian Procedures

Lists all documented Guardian procedures and the
manuals in which they are documented

Appendix I, Using the DIVER
and DELAY Programs

Describes the DIVER and DELAY programs

Appendix J, System Limits Summarizes the architectural and programmatic limits that
apply on HP NonStop™ servers

Appendix K, Character Set
Translation

Lists an ASCII-EBCDIC translation
Guardian Procedure Calls Reference Manual—522629-030
xxiii

About This Manual Related Manuals
Related Manuals
While using this manual, you will find these manuals helpful:

• Guardian Programmer’s Guide

• Open System Services Programmer’s Guide

• pTAL Reference Manual

• pTAL Conversion Guide

• TAL Reference Manual

• C/C++ Programmer’s Guide

• Common Run-Time Environment (CRE) Programmer’s Guide

Before converting your applications to TNS/R native applications, you should read:

• TNS/R Native Application Migration Guide

Before converting your applications to TNS/E native applications, you should read:

• H-Series Application Migration Guide

For a summary of procedure calls, interprocess messages, error codes, and other
material presented in a quick reference format, obtain a copy of:

• Guardian Programming Reference Summary

“TNS” refers to the series of computers based on complex instruction-set computing
(CISC) technology.

“TNS/R” refers to the series of computers based on reduced instruction-set computing
(RISC) technology.

“TNS/E” refers to the series of computers based on the Itanium Processor (IPF)
computing technology.

“Word” is used throughout this manual to refer to a 2-byte unit of memory.

Notation Conventions

Hypertext Links
Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

This requirement is described under Backup DAM Volumes and Physical Disk
Drives on page 3-2.
Guardian Procedure Calls Reference Manual—522629-030
xxiv

About This Manual General Syntax Notation
General Syntax Notation
This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words. Type
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words. Type these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
 [-num]
 [text]

K [X | D] address

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list can be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }
Guardian Procedure Calls Reference Manual—522629-030
xxv

About This Manual General Syntax Notation
| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…

[-] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be typed as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must type as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no
spaces are permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…

!i and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o
Guardian Procedure Calls Reference Manual—522629-030
xxvi

About This Manual Notation for Messages
!i,o. In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; !i,o

!i:i. In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

Notation for Messages
This list summarizes the notation conventions for the presentation of displayed
messages in this manual.

Bold Text. Bold text in an example indicates user input typed at the terminal. For example:

ENTER RUN CODE

?123

CODE RECEIVED: 123.00

The user must press the Return key after typing the input.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.

lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-register

process-name

[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be
displayed, of which one or none might actually be displayed. The items in the list can
be arranged either vertically, with aligned brackets on each side of the list, or
Guardian Procedure Calls Reference Manual—522629-030
xxvii

About This Manual Notation for Management Programming Interfaces
horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

proc-name trapped [in SQL | in SQL file system]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list can be arranged
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

obj-type obj-name state changed to state, caused by
{ Object | Operator | Service }

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { OK | Failed }

% Percent Sign. A percent sign precedes a number that is not in decimal notation. The
% notation precedes an octal number. The %B notation precedes a binary number.
The %H notation precedes a hexadecimal number. For example:

%005400

%B101111

%H2F

P=%p-register E=%e-register

Notation for Management Programming Interfaces
This list summarizes the notation conventions used in the boxed descriptions of
programmatic commands, event messages, and error lists in this manual.

UPPERCASE LETTERS. Uppercase letters indicate names from definition files. Type these
names exactly as shown. For example:

ZCOM-TKN-SUBJ-SERV

lowercase letters. Words in lowercase letters are words that are part of the notation,
including Data Definition Language (DDL) keywords. For example:

token-type

!r. The !r notation following a token or field name indicates that the token or field is
required. For example:

ZCOM-TKN-OBJNAME token-type ZSPI-TYP-STRING. !r
Guardian Procedure Calls Reference Manual—522629-030
xxviii

About This Manual Change Bar Notation
!o. The !o notation following a token or field name indicates that the token or field is
optional. For example:

ZSPI-TKN-MANAGER token-type ZSPI-TYP-FNAME32. !o

Change Bar Notation
Change bars are used to indicate substantive differences between this manual and its
preceding version. Change bars are vertical rules placed in the right margin of changed
portions of text, figures, tables, examples, and so on. Change bars highlight new or
revised information. For example:

The message types specified in the REPORT clause are different in the COBOL
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for
old message types. In the CRE, the message type SYSTEM includes all messages
except LOGICAL-CLOSE and LOGICAL-OPEN.

HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to
providing documentation that meets your needs. Send any errors found, suggestions
for improvement, or compliments to docsfeedback@hp.com.

Include the document title, part number, and any comment, error found, or suggestion
for improvement that you have concerning this document.
Guardian Procedure Calls Reference Manual—522629-030
xxix

About This Manual HP Encourages Your Comments
Guardian Procedure Calls Reference Manual—522629-030
xxx

Guardian Procedure Calls Reference Manual—522629-030
1-1

1
Introduction to Guardian
Procedure Calls

System services are tasks such as retrieving a record from a disk, writing a file to a
tape, sending messages to other processes, or alerting your process to some kind of
system error that the operating system or a subsystem performs on behalf of a
program.

Your programs can make use of these services by calling appropriate Guardian
procedures. For example, using the Guardian READ procedure allows a program to
read data from a file.

To help you understand how to use the Guardian procedure-call descriptions in this
manual, this section describes:

• The different types of Guardian procedure calls

• Reference parameter overlap

• H-series and G-series Guardian procedures and superseded Guardian procedures

• External declaration files for Guardian procedures

• Parameter declaration files for Guardian procedures

• An example of a Guardian procedure call

• Calling Guardian procedures from a Transaction Application Language (TAL)
application

• Calling Guardian procedures from a C application

This manual describes most of the Guardian procedures and shows the syntax for
calling these procedures from a TAL or C program.

Introduction to Guardian Procedure Calls

Guardian Procedure Calls Reference Manual—522629-030
1-2

Types of Guardian Procedure Calls

You can also call Guardian procedures from programs written in FORTRAN, BASIC,
COBOL, or C++. How a Guardian procedure is called depends on the programming
language. Some languages provide extensions for calling Guardian procedures. Some
languages (other than TAL) allow your code to contain TAL code that calls Guardian
procedures using TAL syntax. For information on calling the Guardian procedures
described in this manual from other languages, see the appropriate manual:

For applications written in programming languages other than TAL, be cautious about
using TAL to call Guardian procedures. This method of invoking the services provided
by Guardian procedures can interfere with the run-time environment established for the
programming language. If possible, use an extension of your programming language
instead of embedded TAL code to invoke a Guardian service (such as reading from or
writing to a file).

Types of Guardian Procedure Calls
Table 1-1 shows the types of Guardian procedures that are described in this manual. It
also shows the manuals where you can find programming information about these
procedures. For a complete list of all documented Guardian procedures and the
manuals in which they are described, see Appendix H, Documented Guardian
Procedures.

For information on translating calls in this
manual to: See:

FORTRAN FORTRAN Reference Manual

BASIC EXTENDED BASIC Programmer’s Guide

COBOL COBOL85 for NonStop Systems Manual
COBOL Manual for TNS/E Programs

C C/C++ Programmer’s Guide

C++ C/C++ Programmer’s Guide

Table 1-1. Types of Guardian Procedure Calls (page 1 of 2)

Procedure Type Action Programming Manuals

DEFINEs Specify DEFINEs by class and
attribute values.

Guardian Programmer’s Guide

File system Perform operations, such as
input and output, on files (this
set of procedures includes
Enscribe procedures).

Guardian Programmer’s Guide
Enscribe Programmer’s
Guide

Formatter Format output data and
convert input data.

Guardian Programmer’s Guide

Memory
management

Allocate extended memory
segments and pools; provide
exclusive access to data.

Guardian Programmer’s Guide

Introduction to Guardian Procedure Calls

Guardian Procedure Calls Reference Manual—522629-030
1-3

H-Series Guardian Procedures

The Guardian Programmer’s Guide describes how to use many of these Guardian
procedures according to their function and type (the file system, formatter, memory
management, process control, security, SIO, signal manipulation, trap and trap
handling, and utility procedures). However, the Guardian Procedure Calls Reference
Manual presents Guardian procedure descriptions in alphabetical order.

This manual provides this information for each Guardian procedure:

• Syntax

• Parameter descriptions

• Condition codes

• Considerations

• Examples

• Manual references

H-Series Guardian Procedures
The H-series Guardian procedures support many of the G-series operating system
features and provide further process control functionality. For details about how to
convert applications to use the H-series Guardian procedures, see the H-Series

Process control Run, suspend, activate, and
stop programs.

Guardian Programmer’s Guide

Security Control access to processes
and disk files.

Guardian Programmer’s Guide
Safeguard Reference Manual

Sequential I/O
(SIO)

Perform sequential input and
output operations to files.

Guardian Programmer’s Guide

Signal
manipulation

Detect critical error conditions
in a native process.

Guardian Programmer’s
Guide
Open System Services
Programmer’s Guide

Trap and trap
handling

Detect critical error conditions
in a TNS process.

Guardian Programmer’s Guide

Utility Perform miscellaneous
operations such as translating
a number from displayed
(string) form to integer form
and vice versa or getting a
timestamp.

Guardian Programmer’s Guide

Table 1-1. Types of Guardian Procedure Calls (page 2 of 2)

Procedure Type Action Programming Manuals

Introduction to Guardian Procedure Calls

Guardian Procedure Calls Reference Manual—522629-030
1-4

G-Series Guardian Procedures

Application Migration Guide. For further information about how to use the operating
system features, see the Guardian Programmer’s Guide.

Superseded Guardian procedures continue to be supported for compatibility and are
still documented in this manual. They are marked as “superseded” and are listed in
Appendix G, Superseded Guardian Procedure Calls and Their Replacements.

G-Series Guardian Procedures
The G-series Guardian procedures include the features of the D-series operating
system. Some features on the G-series RVUs are not available on D-series RVUs.
For details on how to convert applications to use G-series Guardian procedures, see
the G-Series System Migration Planning Guide. For details on how to use the features
of the operating system, see the Guardian Programmer’s Guide.

Superseded Guardian procedures continue to be supported for compatibility and are
still documented in this manual. They are marked as “superseded” and are listed in
Appendix G, Superseded Guardian Procedure Calls and Their Replacements.

For G-series and later Guardian applications, the variable supplied as an output
parameter in a call to a Guardian procedure cannot be the same as, nor overlap, any
of the other reference parameters to the routine.

Interprocess communication is not supported when G-series nodes and C-series
nodes both exist in a network.

External Declarations Files for Guardian
Procedures

Like all procedures in an application program, Guardian procedures must be declared
before they can be called. Guardian procedures are declared as external procedures.
A $SYSTEM.SYSTEM file contains many of the Guardian procedure declarations for
each programming language. For example:

• pTAL declarations are in $SYSTEM.SYSTEM.EXTDECS0.

• C declarations are in $SYSTEM.SYSTEM.CEXTDECS (usually referred to as the
cextdecs file).

Other header files in $SYSTEM.SYSTEM also contain Guardian procedure
declarations. For example:

• $SYSTEM.ZGUARD.HSETJMP contains declarations for procedures that perform
nonlocal goto operations.

• $SYSTEM.SYSTEM.HTDMSIG contains declarations for the signal-handling
procedures.

The setjmp.h and tdmsig.h header files contain the equivalent C language
declarations.

Introduction to Guardian Procedure Calls

Guardian Procedure Calls Reference Manual—522629-030
1-5

Parameter Declarations Files for Guardian
Procedures

Your application should include the appropriate compiler instructions specifying the
names of the appropriate external declarations files and the Guardian procedures that
your application calls. The compiler instruction must precede the first invocation of a
Guardian procedure. For information about compiler instructions, see your
programming language reference manual. For example:

• See the pTAL Reference Manual for details on using the SOURCE compiler
command with the TAL and pTAL programming languages.

• See the C/C++ Programmer’s Guide for details on using the #include compiler
command with the C programming language.

The procedure syntax descriptions for TAL and pTAL throughout this manual assume
that an external declarations file (EXTDECS0, EXTDECS1, or EXTDECS) on
$SYSTEM.SYSTEM is declared. Where a different header file is needed, the
appropriate SOURCE compiler command is shown with the syntax.

Multiple versions of the external declarations file are provided for compiling your
program to run on previous versions of the operating system as well as on the current
version; older versions, however, do not support pTAL. Procedures that require
EXTDECS0 are noted. For further information, see the Guardian Programmer’s Guide.

Parameter Declarations Files for Guardian
Procedures

HP provides a set of declarations, consisting mainly of named constants (literals) and
structure definitions, that can be used for parameters to Guardian procedures. Data
Definition Language (DDL) is used to generate files containing the parameter
declarations for TAL, COBOL, Pascal, and C.

These files are located on the subvolume $SYSTEM.ZSYSDEFS. The files ZSYSTAL,
ZSYSCOB, ZSYSPAS, and ZSYSC contain declarations for TAL, COBOL, Pascal, and
C, respectively. The DDL declarations that are used to generate the ZSYS files are in
the file ZSYSDDL.

Your application should include the appropriate compiler instruction specifying the
name of the parameter declarations file you want to use in your application. For
information about compiler instructions, see your programming language reference
manual.

For example, to use the TAL parameter declarations in a TAL program, you would
include a SOURCE compiler command specifying the file
$SYSTEM.ZSYSDEFS.ZSYSTAL. The SOURCE command should follow the global
declarations and precede the first use of an item from ZSYSTAL in your source
program. For details on using the SOURCE command in a TAL program, see the TAL
Reference Manual.

Introduction to Guardian Procedure Calls

Guardian Procedure Calls Reference Manual—522629-030
1-6

TAL Syntax for a Guardian Procedure Call

TAL Syntax for a Guardian Procedure Call
An example of the TAL syntax description used in this manual is shown in Figure 1-1.

The numbered items in the diagram are described below:

Figure 1-1. Sample TAL Syntax for a Procedure Call

{ error := } NODENAME_TO_NODENUMBER_ (nodename:length ! i:i
{ CALL } ,nodenumber); ! o

error returned value

 INT

 is a file-system error number indicating the outcome of the operation.

nodename:length input:input

 STRING .EXT:ref:*, INT:value

 specifies the name of the node whose number is to be returned. ...

5

6

7

1 2 3 4

VST001.VSD

Introduction to Guardian Procedure Calls

Guardian Procedure Calls Reference Manual—522629-030
1-7

TAL Syntax for a Guardian Procedure Call

1 This indicates that the procedure is a function procedure; it
returns a value of the indicated type (in this case INT) when
referenced in an expression. You can specify the variable as
retval, status, error^code, or some other appropriate
name in other function procedure calls.

For function procedures that set the condition code, you must
declare the return variable as a simple variable. If you declare it
as a subscripted variable or a structure element, assigning a
value to it can alter the condition code.

“CALL” is a TAL CALL statement. Any procedure that does not
return a value must be invoked by a TAL CALL statement. In
addition, you can use a CALL statement to invoke a function
procedure if you do not need the returned value.

2 This is the name of the procedure that is called. The name is not
case-sensitive but otherwise must appear in the program exactly
as shown.

3 You must enclose the list of parameters in parentheses. Use
commas to separate parameters when there is more than one. If
you omit optional parameters, a placeholder comma (,) must be
present for each omitted parameter unless you omit it from the
end of the list. An optional parameter is indicated in a syntax
diagram by a parameter name enclosed in square brackets.

Two parameters separated by a colon are treated as a unit. If
they are optional parameters, both members of the pair must be
either present or absent. If you omit the pair within a list of
parameters, use only a single placeholder comma. In references
to the ordinal numbers of parameters, the pair is considered one
parameter.

4 The exclamation point indicates that a comment follows. The
comment can be an “i”, an “o”, or “i,o”, indicating that the
parameter is either an input (i) parameter, an output (o)
parameter, or both. In the example shown, “i:i” indicates that
nodename and length are both input parameters.

5 This line also indicates whether the parameter is an input
parameter, an output parameter, or both. In the example shown,
“input:input” indicates that nodename and length are both
input parameters.

6 This line indicates the parameter type. In the example shown,
the types for nodename and length are both given, separated
by a comma. The possible parameter types include:

Introduction to Guardian Procedure Calls

Guardian Procedure Calls Reference Manual—522629-030
1-8

TAL Syntax for a Guardian Procedure Call

INT 16-bit integer

INT(32) 32-bit integer

STRING character string (8-bit character)

FIXED 64-bit fixed-point number

REAL 32-bit floating-point number

EXTADDR 32-bit address

For a complete discussion of formal parameter specifications,
see the pTAL Reference Manual.

The parameter type is followed by a colon. Additional
information after the colon includes:

value means the actual value or contents of a
parameter are passed.

ref:x means that this is a reference parameter, that
is, the address of the parameter is passed.
(The statements within the program must
access the actual parameter contents indirectly
through the parameter location.) x indicates
the number of elements the parameter
contains. In this example, * indicates that the
number of elements in the nodename
parameter depends on another variable (in this
case, length).

.EXT means the parameter is a reference parameter
accessed by an extended pointer.

If a parameter is defined as “STRING:ref,” or “STRING
.EXT:ref,” an integer variable can be passed for “STRING:ref”
parameter in TAL, the compiler produces instructions to convert
address of the integer variable to the address (as a number of 8-
bit characters) of the first character (byte) of that integer
variable; this conversion is erroneous if the original address is
greater than 32767.

For “STRING:ref,” parameters in TAL or for pTAL, no address
conversion is necessary and the limit does not apply.

7 This describes the information that is passed or returned in the
parameter.

Introduction to Guardian Procedure Calls

Guardian Procedure Calls Reference Manual—522629-030
1-9

String Output Variables

String Output Variables
The syntax for some Guardian procedures contains one or more sets of three
parameters that are grouped together, where each set describes a string output
variable. Figure 1-2 shows an example of this use.

Note that the first two parameters are separated by a colon. (See Figure 1-1 on
page 1-6 for a general description of the use of two parameters separated by a colon.)
The filename parameter is an output parameter that contains a character string on
return; maxlen is an input parameter that specifies the maximum number of
characters that can be returned in filename; filename-length is an output
parameter that returns the actual number of characters returned in filename.

When three parameters are grouped in this fashion, all of them must be either present
or absent. If only one or two of them are present, an error is returned.

Reference Parameter Overlap
No variable that you supply as an output parameter in a call to a Guardian procedure
should have the same address as, or overlap, any other reference parameter to the
procedure. The only exceptions to this occur where the procedure description explicitly
allows such use.

Bounds Checking of Reference Parameters for
Guardian Procedures

Starting in the D20 RVU, bounds checking of reference parameters to Guardian
procedures is different. The change does not affect programs that call procedures with
correct parameters that are within bounds; these programs will continue to work
correctly.

In some cases where reference parameters to Guardian procedures point to areas that
were formerly considered out of bounds, the procedure might not detect the error. If the
out-of-bounds parameter would either breach security or compromise system integrity,
however, it will continue to be detected.

As an example, many Guardian procedures now use a local data stack that is separate
from the user’s local data stack. Before D20, it was an error to specify a reference to
an array that extended beyond the end of the user’s local data area into the data area
of the called Guardian procedure. Starting in D20, you cannot rely on a Guardian
procedure to return an error when you specify a reference parameter in this manner.

Figure 1-2. Syntax With String Output Variable

error := PROCESSHANDLE_TO_FILENAME_ (processhandle ! i
 ,filename:maxlen ! o:i
 ,filename-length ! o
 . . .

Introduction to Guardian Procedure Calls

Guardian Procedure Calls Reference Manual—522629-030
1-10

C Syntax for a Guardian Procedure Call

Those Guardian procedures that use a different local data stack copy the caller’s
parameters to that stack before proceeding. Because the reference parameter does
not then intrude into the Guardian procedure’s local data stack, it does not cause a
bounds violation error. It is possible, however, that the process will abnormally
terminate on return from the called Guardian procedure, because it might have written
over the return address that was stored in the local stack.

Which Guardian procedures actually switch stack might change from RVU to RVU and
will differ by processor type.

C Syntax for a Guardian Procedure Call
C syntax is presented in this manual in addition to TAL syntax. Where necessary,
considerations for C programmers are also presented. For further information on
calling Guardian procedures from a C program, see the C/C++ Programmer’s Guide.

Figure 1-3 shows an example of C syntax. As in TAL syntax, square brackets ([])
indicate optional parameters. Detailed descriptions of parameters are not included with
the C syntax; such descriptions accompany the TAL syntax.

Because TAL does not have a string terminator like C, it often requires that you supply
both a string and its length (not counting the null-byte terminator) in two parameters, or
that you supply a string buffer with the maximum string length along with a third
parameter for returning the actual string length (see String Output Variables on
page 1-9).

When calling TAL procedures that use strings in this manner from a C program, you
must also pass the complete set of parameters for handling the string. The TAL
convention of pairing certain string parameters together, joined by colons, is not
supported in C; parameters are always separated by commas.

C Header Files
To support portability from the UNIX environment, the name of a C header file can
contain an internal period (.). The HP C for NonStop Systems compiler accepts both of
these statements as equivalent:

#include <stdio.h>
#include <stdioh>

Actual C header files are stored on the same subvolume as the C compiler with no
internal periods in their names. If the C compiler on your system is

Figure 1-3. Sample C Syntax for a Procedure Call

#include <cextdecs(BREAKMESSAGE_SEND_)>

short BREAKMESSAGE_SEND_ (short *processhandle
 ,short receiver-filenum
 ,[short *breaktag]);

Introduction to Guardian Procedure Calls

Guardian Procedure Calls Reference Manual—522629-030
1-11

CEXTDECS in H-Series Systems

$SYSTEM.SYSTEM.C, then your system should have the header file
$SYSTEM.SYSTEM.STDIOH.

CEXTDECS in H-Series Systems
In H-series systems, CEXTDECS (through the included file TNSINTH) defines 32-bit
values as the typedef __int32_t which for TNS and TNS/R compiles is defined as long
and for TNS/E compiles is defined as int.

How to find the (writable) global data in an
TNS/E native process

The global, writable data in a native TNS/E process can be found in up to four distinct
sections per loadfile1: data, data1, sdata, sdata1, sbss, and bss. The first two are for
initialized data and the last two are for uninitialized data (which is always set to zero by
NSK). Some (or even all) of them could be zero length. They may not be contiguous.

The base addresses and lengths of each section can be determined from linker-
defined reserved symbols.

The simplest way to get this information is by coding a small C function that accesses
the symbols and returns the addresses and lengths. That function can be compiled in
C and the resulting object file linked into an otherwise completely pTAL program,
without requiring the use of additional runtime support (no CRTL and CRE DLLs are
required). Note that to report about the program, the function must be linked into the
program loadfile; if it were in a separate DLL it would report about the instance data
sections of that DLL, since these special symbols are local to the each loadfile.

1. Normally programs that use passive checkpointing (that is, use the file system CHECKPOINT functions) consist
of a single loadfile: the program file with no DLLs. If there is a DLL (perhaps a UL), a similar function with another
name can be linked into it to report the DLL’s instance data segments.

Introduction to Guardian Procedure Calls

Guardian Procedure Calls Reference Manual—522629-030
1-12

Examples

Examples

• This example is of a function that returns the addresses and their lengths. Note
that if the length is 0, the address is not significant.

typedef struct {

 void * baseAddress;

 intlength;

} globalLocation[4];

extern char _data_start;

extern char _data_end;

extern char _sdata_start;

extern char _sdata_end;

extern char _sbss_start;

extern char _sbss_end;

extern char _bss_start;

extern char _bss_end;

void GETGLOB (globalLocation g) {

 g[0].baseAddress = &_data_start;

 g[0].length = &_data_end-&_data_start;

 g[1].baseAddress = &_sdata_start;

 g[1].length = &_sdata_end-&_sdata_start;

 g[2].baseAddress = &_bss_start;

 g[2].length = &_bss_end-&_bss_start;

 g[3].baseAddress = &_sbss_start;

 g[3].length = &_sbss_end-&_sbss_start;

}

Introduction to Guardian Procedure Calls

Guardian Procedure Calls Reference Manual—522629-030
1-13

Examples

• This is an example of an EPTAL program skeleton that uses the previous function:

struct globalLocation[0:3];

begin

 extaddr baseAddress;

 int(32) length;

end;

proc GETGLOB(g);

 int .ext g(globalLocation);

 external;

?source $system.system.extdecs(DEBUG)

proc m main;

begin

 GETGLOB(globalLocation);

 DEBUG;

end;

Introduction to Guardian Procedure Calls

Guardian Procedure Calls Reference Manual—522629-030
1-14

Examples

• This is an example of the contents of the global Location from eInspect at that
DEBUG call:

(eInspect 1,455):p GLOBALLOCATION

$1 = {{

 BASEADDRESS = 0x8000000,

 LENGTH = 0

 }, {

 BASEADDRESS = 0x8000090,

 LENGTH = 0

 }, {

 BASEADDRESS = 0x8000090,

 LENGTH = 0

 }, {

 BASEADDRESS = 0x8000090,

 LENGTH = 48

 }}

Guardian Procedure Calls Reference Manual—522629-030
2-1

2
Guardian Procedure Calls (A-B)

This section contains detailed reference information for all user-accessible Guardian
procedure calls beginning with the letters A through B. Table 2-1 lists all the
procedures in this section.

Table 2-1. Procedures Beginning With the Letters A Through B

ABEND Procedure (Superseded by PROCESS_STOP_ Procedure)

ACTIVATEPROCESS Procedure (Superseded by PROCESS_ACTIVATE_ Procedure)

ADDDSTTRANSITION Procedure (Superseded by DST_GETINFO_ Procedure)

ADDRESS_DELIMIT_ Procedure

ADDRTOPROCNAME Procedure

ALLOCATESEGMENT Procedure (Superseded by SEGMENT_ALLOCATE_ Procedure)

ALTER Procedure (Superseded by FILE_ALTERLIST_ Procedure)

ALTERPRIORITY Procedure (Superseded by PROCESS_SETINFO_ Procedure)

ARMTRAP Procedure (Superseded by SIGACTION_INIT_ Procedure)

AWAITIO[X|XL] Procedures

BACKSPACEEDIT Procedure

BINSEM_CLOSE_ Procedure

BINSEM_CREATE_ Procedure

BINSEM_FORCELOCK_ Procedure

BINSEM_LOCK_ Procedure

BINSEM_OPEN_ Procedure

BINSEM_UNLOCK_ Procedure

BREAKMESSAGE_SEND_ Procedure

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-2

ABEND Procedure
(Superseded by PROCESS_STOP_ Procedure)

ABEND Procedure
(Superseded by PROCESS_STOP_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
NetBatch Considerations
Messages
OSS Considerations
Examples
Related Programming Manual

Summary

The ABEND procedure deletes a process or process pair and signals that the deletion
was caused by an abnormal condition. When this procedure is used to delete a
Guardian process or an Open System Services (OSS) process, an ABEND system
message is sent to the deleted process’s creator. When this procedure is used to
delete an OSS process, a SIGCHLD signal and the OSS process termination status are
sent to the OSS parent process.

A process can use ABEND to:

• Delete itself
• Delete its own backup
• Delete another process

When the ABEND procedure is used to delete a Guardian process, the caller must
either have the same process access ID as the process it is attempting to abend, be
the group manager of the process access ID (255,255), or be the super ID. For the
PROCESSACCESSID procedure, see Considerations on page 2-5 and for a
description of the process access ID, see Guardian Programmer’s Guide.

When ABEND is used on an OSS process, the same security rules apply as for the
OSS kill() function.

When ABEND executes, all open files associated with the deleted process are
automatically closed. If a process had BREAK enabled, BREAK is disabled.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-3

ABEND Procedure
(Superseded by PROCESS_STOP_ Procedure)

previous software.

Syntax for TAL Programmers

Parameters

process-id input

INT:ref:4

indicates the process that is to be stopped. At this point, you have two options.

The value you enter can be either:

• Omitted (or zero), meaning “stop myself”, or

• The 4-word array containing the process ID of the process to be stopped,
where:

[0:2] Process name or creation timestamp
[3] .<0:3> Reserved

.<4:7> Processor number where the process is executing

.<8:15> PIN assigned by the operating system to identify the
process in the processor

If process-id[0:2] references a process pair and process-id[3] is specified as
-1, then both members of the process pair are stopped.

stop-backup input

INT:value

if specified as 1, the current process’s backup is stopped and ABEND is returned
to the caller. The process-id parameter is not used.

If zero, this parameter is ignored and the process-id parameter is used as
described.

error output

INT:ref:1

returns a file-system error number. ABEND returns a nonzero value for this
parameter only when it cannot successfully make the request to stop the

CALL ABEND ([process-id] ! i
 ,[stop-backup] ! i
 ,[error] ! o
 ,[compl-code] ! i
 ,[termination-info] ! i
 ,[spi-ssid] ! i
 ,[length] ! i
 ,[text]); ! i

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-4

ABEND Procedure
(Superseded by PROCESS_STOP_ Procedure)

designated process. If it makes the request successfully (error is 0), the
designated process might or might not be stopped depending on the stopmode of
the process and the authority of the caller. (The stop mode of the process can be
changed; hence, a stop request that has inadequate authority to stop the process
is saved by the system and might succeed at a later time.) See Considerations on
page 2-5.

These parameters supply completion-code information, which consists of four items:
the completion code, a numeric field for additional termination information, a
subsystem identifier in SPI format, and an ASCII text string. These items have
meaning in the call to ABEND only when a process is stopping itself.

compl-code input

INT:value

is the completion code to be returned to the creator process in the ABEND system
message and, for a terminating OSS process, in the OSS termination status.
Specify this parameter only if the calling process is terminating itself and you want
to return a completion code value other than the default value of 5. For a list of
completion codes, see Appendix C, Completion Codes.

termination-info input

INT:value

can be provided as an option by the calling process if it is a subsystem process
that defines Subsystem Programmatic Interface (SPI) error numbers. If supplied,
this parameter should be the SPI error number that identifies the error that caused
the process to stop itself. For more information on the SPI error numbers and
subsystem IDs, see the SPI Programming Manual. If termination-info is not
specified, this field is zero.

spi-ssid input

INT .EXT:ref:6

is a subsystem ID (SSID) that identifies the subsystem defining termination-
info. The format and use of the SSID is described in the SPI Programming
Manual.

length input

INT:value

is the length in bytes of text. The maximum length is 80 bytes.

text input

STRING .EXT:ref:*

is an optional string of ASCII text to be sent in the ABEND system message.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-5

ABEND Procedure
(Superseded by PROCESS_STOP_ Procedure)

Condition Code Settings
A condition code value is returned only when a process is calling ABEND on another
process and that other process could not be terminated.

< (CCL) indicates that either the process-id parameter is invalid or an error
occurred during termination of the process.

= (CCE) indicates that ABEND was successful.

> (CCG) is not returned from ABEND.

Considerations

• Differences between ABEND and STOP procedures

When used to stop the calling process, the ABEND and STOP procedures operate
almost identically; they differ in the system messages that are sent and the default
completion codes that are reported. In addition, ABEND, but not STOP, causes a
saveabend file to be created if the process’s SAVEABEND attribute is set to ON.
See the Inspect Manual for information about saveabend files.

• Creator of the process and the caller of ABEND

If the caller of ABEND is also the creator of the process being deleted, the caller
receives the ABEND system message.

• Rules for stopping a Guardian process: process access IDs and creator access
IDs

If the process is a local process and the request to stop it is also from a local
process, these user IDs or associated processes may stop the process:

• Local super ID (255, 255)

• The process’s creator access ID (CAID) or the group manager of the CAID

• The process’s process access ID (PAID) or the group manager of the PAID

If the process is a local process, a remote process cannot stop it.

If the process is a remote process running on this node and the request to stop it is
from a local process on this node, these user IDs or associated processes may
stop the process:

• Local super ID

• The process’s creator access ID (CAID) or the group manager of the CAID

• The process’s process access ID (PAID) or the group manager of the PAID

If the process is a remote process on this node and the request to stop it is from a
remote process, these user IDs or associated processes can stop the process:

• A network super ID

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-6

ABEND Procedure
(Superseded by PROCESS_STOP_ Procedure)

• The process’s network process access ID

• The process’s network process access ID group manager

• The process’s network creator access ID

• The process’s network creator access ID group manager

where network ID implies that the user IDs or associated process creators have
matching remote passwords.

Being local on a system means that the process has logged on by successfully
calling USER_AUTHENTICATE_ or VERIFYUSER on the system or that the
process was created by a process that had done so. A process is also considered
local if it is run from a program file that has the PROGID attribute set.

• Rules for stopping an OSS process

The same rules apply when stopping an OSS process with the ABEND procedure
as apply for the OSS kill() function. See the kill(2) function reference page
either online or in the Open System Services System Calls Reference Manual.

• Rules for stopping any process: stopmode

When one process attempts to stop another process, another item checked is the
“stopmode” of the process. Stopmode is a value associated with every process that
determines which other processes can stop the process. The stopmode, set by the
SETSTOP procedure, is defined below:

0 ANY other process can stop the process;
1 ONLY the process qualified by the above rules can stop the process;
2 NO other process can stop the process.

• Returning control to the caller before the process is stopped

When error is 0, ABEND returns control to the caller before the specified process
is actually stopped. Although the process does not execute any more user code,
you should make sure that it has terminated before you attempt to access a file
that it had open with exclusive access or before you try to create a new process
with the same name. The best way to be sure that a process has terminated is to
wait for the process deletion message.

• Stopping a process that has the Inspect or saveabend attribute set

If the process being stopped has either the Inspect attribute or the saveabend
attribute set, and if DMON exists, ABEND returns error 0 but deletion of the
process is delayed until DMON approves it. If the saveabend attribute is set,
DMON creates a saveabend file.

• In response to the ABEND procedure, the operating system supplies a completion
code in the system message and, for OSS processes, in the OSS process
termination status as follows:

• If a process calls ABEND on another process, the system supplies a
completion code value of 6.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-7

ABEND Procedure
(Superseded by PROCESS_STOP_ Procedure)

• If a process calls ABEND on itself but does not supply a completion code, the
system supplies a completion code value of 5.

For a list of the completion codes, see Appendix C, Completion Codes.

• Deleting high-PIN processes

ABEND cannot be used to delete a high-PIN unnamed process, but it can use it to
delete a high-PIN named process or process pair.

A high-PIN caller (named or unnamed) can delete itself by omitting process-id.

NetBatch Considerations

• The ABEND procedure supports NetBatch by:

• Returning the completion code information in the ABEND system message.

• Returning the process processor time in the ABEND system message

• Sending an ABEND system message to the ancestor of a job (the GMOM) as
well as the ancestor of a process

Messages

• Process deletion (ABEND) message

The creator of the stopped process is sent a system message -6 (process deletion:
ABEND) indicating that the deletion occurred. For the format of the interprocess
system messages, see the Guardian Procedure Errors and Messages Manual.

OSS Considerations

• When an OSS process is stopped by the ABEND procedure, either by calling the
procedure to stop itself or when some other process calls the procedure, the OSS
parent process receives a SIGCHLD signal and the OSS process termination
status. For details on the OSS process termination status, see the wait(2)
function reference page either online or in the Open System Services System Calls
Reference Manual.

In addition, an ABEND system message is sent to the MOM, GMOM, or ancestor
process according to the usual Guardian rules.

• When the ABEND procedure is used to terminate an OSS process other than the
caller, the Guardian process ID must be specified in the call. The effect is the same
as if the OSS kill() function was called with the input parameters as follows:

• The signal parameter set to SIGABEND

• The pid parameter set to the OSS process ID of the process identified by
processhandle in the PROCESS_STOP_ call

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-8

ACTIVATEPROCESS Procedure
(Superseded by PROCESS_ACTIVATE_

• The security rules that apply to terminating an OSS process using ABEND are the
same as those that apply to the OSS kill() function. For details, see the
kill(2) function reference pages either online or in the Open System Services
System Calls Reference Manual.

Examples
CALL ABEND; ! cause this process to abend.
CALL ABEND (ProcID); ! cause the process that has
 ! this process ID to abend.

Related Programming Manual
For information on batch processing, see the NetBatch User’s Guide.

ACTIVATEPROCESS Procedure
(Superseded by PROCESS_ACTIVATE_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
OSS Considerations

Summary

The ACTIVATEPROCESS procedure returns a process or process pair from the
suspended state to the ready state. (A process is put in the suspended state if it is the
object of a call to the SUSPENDPROCESS procedure, or if it is suspended as the
result of a SUSPEND command issued from the command interpreter.)

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-9

ACTIVATEPROCESS Procedure
(Superseded by PROCESS_ACTIVATE_

Syntax for TAL Programmers

Parameters

process-id input

INT:ref:4

is a 4-word array containing the process ID of the process to be activated, where:

[0:2] Process name or creation timestamp

[3].<0:3> Reserved

 .<4:7> Processor number where the process is executing

 .<8:15> PIN assigned by the operating system to identify the process in the
processor

If process-id [0:2] references a process pair and process-id [3] is specified as
-1, then both members of the process pair are activated.

Condition Code Settings

< (CCL) indicates that either ACTIVATEPROCESS failed or no process designated
as process-id exists.

= (CCE) indicates that the process is activated.

> (CCG) is not returned from ACTIVATEPROCESS.

Considerations

• When ACTIVATEPROCESS is called on a Guardian process, the caller must be
the super ID (255,255), the group manager ((n,255) of the process access ID, or a
process with the same process access ID as the process or process pair being
activated. For the PROCESSACCESSID procedure, see Considerations on
page 2-5 and for information about the process access ID, see the Guardian
User’s Guide.

• When ACTIVATEPROCESS is called on an OSS process, the security rules that
apply are the same as those that apply when calling the OSS kill() function. For
details, see the kill(2) function reference page either online or in the Open
System Services System Calls Reference Manual.

• ACTIVATEPROCESS cannot be used on a high-PIN unnamed process. However,
it can be used on a high-PIN named process or process pair; process-id [3]
must contain either -1 or two blanks.

CALL ACTIVATEPROCESS (process-id); ! i

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-10

ADDDSTTRANSITION Procedure
(Superseded by DST_GETINFO_ Procedure)

To activate a high-PIN unnamed process, use the PROCESS_ACTIVATE_
procedure. See the Guardian Programmer’s Guide.

OSS Considerations
When used on an OSS process, ACTIVATEPROCESS has the same effect as calling
the OSS kill() function with the input parameters as follows:

• The signal parameter set to SIGCONT

• The pid parameter set to the OSS process ID of the process identified by
process-id in the ACTIVATEPROCESS call

The SIGCONT signal is delivered to the target process.

ADDDSTTRANSITION Procedure
(Superseded by DST_GETINFO_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations

Summary
The ADDDSTTRANSITION procedure allows a super-group user (255,n) to add an
entry to the daylight-saving-time (DST) transition table. This operation is allowed only
when the DAYLIGHT_SAVING_TIME option in the system is configured to the TABLE
option.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-11

ADDDSTTRANSITION Procedure
(Superseded by DST_GETINFO_ Procedure)

Syntax for C Programmers

• The function value returned by ADDDSTTRANSITION, which indicates the
condition code, can be interpreted by _status_lt(), _status_eq(), or
_status_gt() (defined in the file tal.h).

Syntax for TAL Programmers

Parameters

low-gmt input

FIXED:value

is the Greenwich mean time (GMT) when offset is first applicable. (This form is
the same as the form used for COMPUTETIMESTAMP.) Except for the first call,
the low-gmt parameter of each call must be the same as the high-gmt
parameter of the previous call. This implies that many calls have an offset
parameter of 0.

high-gmt input

FIXED:value

is the GMT when offset is no longer applicable.

offset input

INT:value

is this value in seconds:

local civil time (LCT) = local standard time (LST) + offset

Condition Code Settings
< (CCL) indicates that you:

• Are not a super-group user (255,n)

#include <cextdecs(ADDDSTTRANSITION)>

_cc_status ADDDSTTRANSITION (long long low-gmt
 ,long long high-gmt
 ,short offset);

CALL ADDDSTTRANSITION (low-gmt ! i
 ,high-gmt ! i
 ,offset); ! i

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-12

ADDRESS_DELIMIT_ Procedure

• Loaded the DST table inconsistently (that is, the DST table contains an
overlap of entries)

• Were loading the DST table at the same time someone else was
loading the DST table.

= (CCE) indicates that the DST table was loaded successfully.

> (CCG) is not returned from ADDDSTTRANSITION.

Considerations

• Application programs and utilities such as BACKUP cannot reference any date
prior to the first entry in the DST transition table.

ADDRESS_DELIMIT_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
General Considerations
Address-Descriptor Bit Fields
Reserved Segment ID Values
Example
Related Programming Manual

Summary
The ADDRESS_DELIMIT_ procedure obtains the addresses of the first and last bytes
of a particular area of the caller’s logical address space. It can also obtain a set of flags
that describe the area, and the logical segment ID of the area.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-13

ADDRESS_DELIMIT_ Procedure

 Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the operation. It returns one of these values:

0 No error; the requested values are returned.

2 Parameter error; address parameter was missing.

3 Bounds error; error-detail contains the number of the first parameter
found to be in error, where 1 designates the first parameter on the left. This
error is returned only to nonprivileged callers.

4 The address parameter is not mapped.

5 The address parameter is one of these:

• An invalid address (address.<0> = 1); an address in the priv stack will
have bit 0 = 1

• A relative segment address that is contained within either system data
space, current code space, or user code space (that is, within relative
segment 1, 2, or 3 respectively)

• On a TNS system, an address that is greater than the maximum extended
address (that is, greater than %777777777D)

address input

EXTADDR:value

#include <cextdecs(ADDRESS_DELIMIT_)>

short ADDRESS_DELIMIT_ (__int32_t address
 ,__int32_t *low-address
 ,__int32_t *high-address
 ,short *address-descriptor
 ,short *segment-id
 ,short error-detail);

error := ADDRESS_DELIMIT_ (address ! i
 ,[low-address] ! o
 ,[high-address] ! o
 ,[address-descriptor] ! o
 ,[segment-id] ! o
 ,[error-detail]); ! o

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-14

ADDRESS_DELIMIT_ Procedure

is a relative address contained within the address area about which information is
desired. Note that address is an address passed by value, not a pointer passed
as a reference parameter.

low-address output

EXTADDR .EXT:ref:1

if the value of error is either 0 (no error) or 4 (address is not mapped), returns
the address of the first byte in the area that contains address. If error is 4,
low-address returns the address of the first byte in the unmapped area.

high-address output

EXTADDR .EXT:ref:1

if the value of error is either 0 (no error) or 4 (address is not mapped), returns
the address of the last byte in the area that contains address. If error is 4,
high-address returns the address of the last byte in the unmapped area.

address-descriptor output

INT .EXT:ref:1

returns a value that contains a set of bit fields describing the address area that
contains address. For details, see Address-Descriptor Bit Fields on page 2-15. If
error is 4 (address is not mapped), address-descriptor returns 0.

segment-id output

INT .EXT:ref:1

returns the logical segment ID of the address area that contains address. Either
this is the segment ID assigned by the caller when the segment was allocated, or it
is a reserved segment ID. For details, see Reserved Segment ID Values on
page 2-15. If error is 4 (address is not mapped), segment-id returns -1.

error-detail output

INT .EXT:ref:1

returns additional error information when an error value of 3 (bounds error) is
returned. For details, see error.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-15

ADDRESS_DELIMIT_ Procedure

General Considerations
For any output parameter to this procedure, supplying the parameter with the pointer
address set to %37777000000D (null address) is equivalent to not supplying the
parameter.

Address-Descriptor Bit Fields
The meanings of the bit fields returned by the address-descriptor parameter are:

Reserved Segment ID Values
The reserved segment ID values that can be returned by the segment-id parameter
lie in the range -109 through -2 (65427 through 65534). These values are used
internally to identify various types of segments allocated by the operating system, such
as process stacks, global data, various kinds of code, and certain special segments.
For some kinds of segments (such as SRL or DLL code or instance data), multiple
segments in the process can have the same ID. Segment ID assignments are subject
to change from RVU to RVU; the individual values are not meaningful to typical callers
of ADDRESS_DELIMIT_. Current definitions can be found in these T9050 header files:

• DMEMH, beginning after identifier LAST_VALID_SSEDS_ID and ending before
identifier NULL_PST_SEGID.

• DMEM, beginning after identifier LAST^VALID^SSEDS^ID and ending before
identifier NULL^PST^SEGID.

These two header files are distributed and installed in the ZGUARD subvolume.

Bit field Indicates that the segment is

<0:4> Bits are reserved; 0 is returned.

<0:5> Bits are reserved; 0 is returned.

<5> Managed by the Kernel-Managed Swap Facility (KMSF).

<6> An OSS shared memory segment.

<7> An unaliased segment. An unaliased segment does not have a
corresponding absolute segment address.

<8> A flat segment.

<9> Currently in-use selectable segment for the process.

<10> Accessible only by privileged processes.

<11> Shared by another process.

<12> Cannot be deallocated.

<13> Read-only.

<14> Extensible.

<15> Resident.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-16

ADDRTOPROCNAME Procedure

Example
In this example, the address of a local variable contained in the user data area is
passed to ADDRESS_DELIMIT_. The procedure returns the addresses of the first and
last bytes of the user data area.

This example shows that the output addresses can be assigned either to a simple
variable (LOW^ADDR) or to a pointer variable (HIGH^ADDR). After a successful call to
ADDRESS_DELIMIT_ , HIGH^ADDR designates the last byte of the user data area.

INT LOCAL^VARIABLE;
INT(32) LOW^ADDR;
STRING .EXT HIGH^ADDR;
INT ERROR,
 ERROR^DETAIL;
 .
 .
 .
ERROR := ADDRESS_DELIMIT_ ($XADR(LOCAL^VARIABLE),
 LOW^ADDR,
 @HIGH^ADDR,
 ! address^descriptor ! ,
 ! segment^ID ! ,
 ERROR^DETAIL);

IF ERROR <> 0 THEN CALL ERROR^HANDLER;

Related Programming Manual
For programming information about the ADDRESS_DELIMIT_ procedure, see the
Guardian Programmer’s Guide.

ADDRTOPROCNAME Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-17

ADDRTOPROCNAME Procedure

Summary

ADDRTOPROCNAME accepts a P register value and stack marker ENV value and
returns the associated symbolic procedure name and various optional items that
describe the procedure in detail.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error code indicating the outcome of the call, as follows:

0 Successful call; the procedure name is deposited into proc-name for
proc-name-length bytes.

Note. This procedure can be used only with TNS code. A comparable service is provided for
accelerated code and native code using the HIST_INIT_ procedure with the HO_Init_Address
option.

#include <cextdecs(ADDRTOPROCNAME)>

short ADDRTOPROCNAME (short p-reg
 ,short stack-env
 ,char *proc-name
 ,short proc-name-size
 ,short *proc-name-length
 ,[short *base]
 ,[short *size]
 ,[short *entry]
 ,[short *attributes]
 ,[short pin]);

error := ADDRTOPROCNAME (p-reg ! i
 ,stack-env ! i
 ,proc-name ! o
 ,proc-name-size ! i
 ,proc-name-length ! o
 ,[base] ! o
 ,[size] ! o
 ,[entry] ! o
 ,[attributes] ! o
 ,[pin]); ! i

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-18

ADDRTOPROCNAME Procedure

11 A procedure name was not found. This value is returned if an I/O error
occurs during the read of the associated object file or if p-reg, stack-
env, and the optional pin are valid but do not indicate a code location
associated with a procedure (for example, a location in the PEP or XEP).

22 One of the parameters specifies an address that is out of bounds.

23 The p-reg, stack-env, and optional pin parameters do not indicate a
valid code location.

24 The pin parameter was supplied and the caller is not privileged.

29 A required parameter was not supplied.

122 The supplied value of proc-name-size is less than the length of the
procedure name that is to be returned into proc-name. The procedure
name (and any other requested output parameters) is returned in proc-
name, though it is truncated to the value of proc-name-size.

p-reg input

INT:value

is the target procedure’s P register setting.

stack-env input

INT:value

is the target procedure’s code space identifier in the stack marker ENV register
format. Only these fields in stack-env are significant:

<4> Library bit
<7> System code bit
<11:15> Space ID bits

proc-name output

STRING .EXT:ref

is an ASCII string into which is returned the symbolic procedure name
corresponding to the code location specified by p-reg, stack-env, and the
optional pin.

proc-name-size input

INT:value

is the size, in bytes, of the caller’s proc-name buffer.

proc-name-length output

INT .EXT:ref:1

is the length, in bytes, of the procedure name string returned into proc-name.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-19

ADDRTOPROCNAME Procedure

base output

INT .EXT:ref:1

is the base word address (first word) of the procedure indicated by proc-name.

size output

INT .EXT:ref:1

is the size, in words, of the procedure indicated by proc-name.

entry output

INT .EXT:ref:1

is the entry-point word address of the procedure indicated by proc-name.

attributes output

INT .EXT:ref:1

is a word describing attributes of the procedure indicated by proc-name. The
attributes word contains these fields:

<0> Privileged bit
<1> Callable bit
<2> Resident bit
<3> Interrupt bit
<4> Entry point bit
<5> Variable bit
<6> Extensible bit
<7:15> PEP number

pin input

INT:value

specifies that p-reg and stack-env see the process identified by pin rather
than the calling process. The pin parameter can be supplied only by privileged
callers.

Considerations

• The maximum value of proc-name-length, and hence the address space that
must be available at the location given by proc-name, depends on the language

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-20

ALLOCATESEGMENT Procedure
(Superseded by SEGMENT_ALLOCATE_

that was used to create the code to which p-reg, stack-env, and the optional
pin refer.

• Read access to the associated object file is not required in order to obtain the
requested output parameters associated with the given p-reg, stack-env, and
optional pin.

Example
INT STACK^ENV = 'L' - 1; ! calling procedure’s stack
 ENV
INT P^REG = 'L' - 2; ! calling procedure’s P
 register
LITERAL PROC^NAME^SIZE = 80;
STRING PROC^NAME ! returned ASCII procedure
 name
 [0:PROC^NAME^SIZE-1];
INT LENGTH; ! length of returned proc
 name
INT BASE; ! procedure base address
INT OFFSET; ! word offset within
 procedure

IF (ERROR := ADDRTOPROCNAME (P^REG, STACK^ENV, PROC^NAME,
 PROC^NAME^SIZE, LENGTH,
 BASE)) THEN
 ! an error occurred, ERROR has the error code
ELSE
 OFFSET := P^REG '-' BASE;

ALLOCATESEGMENT Procedure
(Superseded by SEGMENT_ALLOCATE_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Examples

Summary

The ALLOCATESEGMENT procedure allocates a selectable extended data segment
for use by the calling process. This procedure can create read/write segments or read-
only segments.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-21

ALLOCATESEGMENT Procedure
(Superseded by SEGMENT_ALLOCATE_

The ALLOCATESEGMENT procedure can also be used to share selectable extended
data segments or flat extended data segments allocated by other processes (subject to
the normal security requirements). Although it is possible to share flat segments using
the ALLOCATESEGMENT procedure, flat segments can be allocated only by using the
SEGMENT_ALLOCATE_ procedure. SEGMENT_ALLOCATE_ can also allocate
selectable segments.

For selectable extended data segments, the call to ALLOCATESEGMENT must be
followed by a call to USESEGMENT to make the segment accessible. Although you
can allocate multiple selectable extended data segments, you can access only one at a
time.

For shared flat segments, the call to ALLOCATESEGMENT can be followed by a call
to USESEGMENT, but calling USESEGMENT is unnecessary because all the flat
segments allocated by a process are always accessible to the process.

Flat segments and selectable segments are supported on native processors that use
D30 or later RVUs of the HP NonStop operating system. Selectable segments are
supported on all systems.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

status returned value

INT

indicates the outcome of the call:

0 No error

1-999 File-system error related to the creation or open of the swap file (see
file-name parameter).

-1 Invalid segment-id .

-2 Invalid segment-size.

-3 Bounds violation on file-name.

status := ALLOCATESEGMENT (segment-id ! i
 ,[segment-size] ! i
 ,[file-name] ! i,o
 ,[pin-and-flags]); ! i

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-22

ALLOCATESEGMENT Procedure
(Superseded by SEGMENT_ALLOCATE_

-4 Invalid combination of options.

-5 Unable to allocate segment space.

-6 Unable to allocate segment page table space.

-7 Security violation on attempt to share segment.

-8 The pin parameter does not exist.

-9 The pin parameter does not have the segment allocated.

-10 Trying to share segment with self.

-11 Requested segment is currently being resized (delay and try again), or the
requested segment is a shared selectable segment but the allocated
segment is a flat segment.

segment-id input

INT:value

is the number by which the process chooses to refer to the segment. Segment IDs
are in these ranges:

0-1023 Can be specified by user processes.
Other IDs Are reserved for HP software.

No nonprivileged process can supply a segment ID greater than 2047.

segment-size input

INT(32):value

specifies the size in bytes of the segment to be allocated.

Flat segment size:

• For G04.00 and earlier G-series RVUs the value must be in the range 1 byte
through 128 megabytes (134,217,728 bytes). A flat segment is allocated
beginning on a 32-megabyte region boundary and is allocated from a total
virtual space of 480 megabytes (15 regions * 32 megabytes/region).

• For G05.00 and later G-series RVUs, the flat segment size limit is 1120
megabytes. Also, the 32-megabyte region boundary does not apply for these
RVUs.

For a selectable segment, the value must be in the range 1 byte through 127.5
megabytes (133,693,440 bytes).

The system might round the size up to the next segment-size increment, where
the increment is both processor-dependent and subject to change. The only effect
this has on the program is that an address reference that falls outside the specified
segment size but within the actual size does not cause an invalid address
reference (trap 0 for a Guardian TNS process, a SIGSEGV signal for an OSS or
any native process), and a subsequent fetch might not retrieve the value previously
stored.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-23

ALLOCATESEGMENT Procedure
(Superseded by SEGMENT_ALLOCATE_

For methods of sharing segments, see the pin-and-flags parameter.

Upon initial allocation of the segment:

• The segment-size parameter is required if the swap file does not exist.

• The segment-size parameter is optional if the swap file already exists. If the
segment is a read-only segment, the default size is the end-of-file value of the
swap file (EOF). If the segment is a read-write segment, the default segment
size is the allocated size of the swap file.

• For a read-only segment, segment-size must not be greater than the end-of-
file value of the file; otherwise, an error occurs. For a read-write segment, if
segment-size is greater than the allocated size of the swap file, the system
attempts to allocate additional space.

If a segment is being shared by the PIN method (see pin-and-flags), this rule
applies to the sharers:

• The segment-size parameter must be omitted and the size of the segment is
the same as that from the initial ALLOCATESEGMENT call.

If a segment is being shared by the file name method (see pin-and-flags),
these rules apply to the sharers:

• The segment-size parameter is optional. If the segment is a read-only
segment, the default segment size is the length of the file (EOF). If the
segment is a read-write segment, the default segment size is the allocated size
of the file.

• For a read-only segment, segment-size must not be greater than the end-of-
file value of the file; otherwise, an error occurs. For a read-write segment,
segment-size must not be greater than the segment size specified by the
initial call to ALLOCATESEGMENT.

file-name input, output

INT:ref:12

if present, is the internal-format file name of a swap file to be associated with the
segment. If the file exists, all data in the file is used as initial data for the segment.
If the file does not exist, one is created. Remote file names and structured files are
not accepted. If the process terminates without deallocating the segment, any data
still in memory is written back out to the file. ALLOCATESEGMENT must be able
to allocate a sufficient number of file extents to contain all memory in the segment.

The parameter can be a volume name with a blank subvolume and file;
ALLOCATESEGMENT allocates a temporary swap file on the indicated volume.

If you do not specify file-name and if a segment is not being shared using the
PIN method, ALLOCATESEGMENT uses the Kernel-Managed Swap Facility
(KMSF) to allocate swap space. To share this segment, use the PIN method; you
cannot use the file-name method.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-24

ALLOCATESEGMENT Procedure
(Superseded by SEGMENT_ALLOCATE_

Performance is increased by using KMSF. However, if you want to save the data
in the segment after the process terminates, specify a permanent swap file name.
KMSF swap files have the clear-on-purge attribute, which provides a level of
security for swapped data.

For more information on KMSF, see the Kernel-Managed Swap Facility (KMSF)
Manual.

If a segment is being shared using the file-name method, file-name must be
supplied. If a segment is being shared using the PIN method, file-name must
be omitted.

pin-and-flags input

INT:value

Defaults to %040000. Its values are:

<8:15> Optional PIN for segment sharing.

Requests allocation of a shared segment that is shared by the PIN
method. This value specifies the process identification number (PIN)
of the process that has previously allocated the segment and with
which the caller wants to share the segment. This value is not used if
bit 1 is set to 1 (see bit <1> later). A shared segment is an extended
data segment that can be shared with other processes in the same
processor.

<5:7> Not used; must be zero (0).

<4> If 1, requests allocation of an “extensible segment.” An extensible
segment is an extended data segment for which the underlying swap
file disk space is not allocated until needed. In this case, segment-
size is taken as a maximum size and the underlying swap file is
expanded dynamically as the user accesses various addresses within
the extended data segment. When the user first accesses a portion of
an extensible segment for which the corresponding swap file extent
has not been allocated, the operating system allocates the extent. If
this extent cannot be allocated, the user process terminates: a TNS
Guardian process terminates with a “no memory available” trap (trap
12); an OSS or native process receives a SIGNOMEM signal.

<3> If 1, requests allocation of a “shared segment” that is shared by the file-
name method. A shared segment is an extended data segment that
can be shared with other processes in the same processor. The
file-name parameter must be supplied when this type of shared
segment is allocated. (It is with the pin-and-flags parameter that
sharing is specified.) Processes sharing a segment through the file-
name method can reference the address space by different
segment-ids and may supply different values of segment-size
to ALLOCATESEGMENT. The segment-size supplied by the first
allocator of a particular shared segment (as identified by the swap file
name) will limit the size of the segment for subsequent processes
attempting to share that segment. All processes that share segments

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-25

ALLOCATESEGMENT Procedure
(Superseded by SEGMENT_ALLOCATE_

with the file-name method must have bit 3 and bit 1 set to 1 (see
Examples on page 2-26).

<2> If 1, requests allocation of a “read-only segment.” A read-only segment
is an extended data segment that is initialized from a preexisting swap
file and used only for read access. A read-only segment can be
shared by either the PIN or file-name method. It can also be shared by
file name between processes in different processors. Note that the
file-name parameter must specify the name of an existing swap file
that is not empty. If this bit is 1, bit <4> of pin-and-flags must be
0 (writeback-inhibit extensible segments are not allowed) and bit 1
must be set to 1.

<1> If 1, bits <8:15> are ignored.

If 0, designates that segment sharing is to be done by the PIN method.
The process calling ALLOCATESEGMENT with bit 1 set to 1 shares
the segment specified with the currently running process specified by
the PIN in bits <8:15> of the pin-and-flags word. The segment
specified by segment-id must have been previously allocated by the
process specified in the pin-and-flags word. Processes sharing a
segment by this method reference the segment by the same
segment-id.

Examples of valid pin-and-flags word values are:

%000nnn Allocate a shared segment, to be shared using the PIN method
with the process identified by the PIN specified in nnn.

%040000 Standard call to allocate a segment (default values).

%044000 Allocate an extensible segment.

%050000 Allocate a segment to be shared by the file-name method.

%054000 Allocate an extensible segment to be shared by the file-name
method.

%060000 Allocate a read-only segment.

Considerations

• Preventing automatic temporary file purge

ALLOCATESEGMENT opens the swap file for read/write protected access. A
process can prevent the automatic file purge of a temporary swap file by opening
the file for read-only shared access before the segment is deallocated.

• Nonexisting temporary swap file

If a shared segment is being allocated (pin-and-flags bits <2:3> not equal to 0)
and only a volume name is supplied in the file-name parameter, then the
complete file name of the temporary file created by ALLOCATESEGMENT is
returned.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-26

ALLOCATESEGMENT Procedure
(Superseded by SEGMENT_ALLOCATE_

• Swap file extent allocation

If a shared extensible segment is being created, then only one extent of the swap
file is allocated when ALLOCATESEGMENT returns. If a nonsharable extensible
segment is being created, no extents are allocated until the user accesses the
segment.

Note that if ALLOCATESEGMENT creates the swap file, it configures the extent
sizes based on a maximum of 64 extents.

• Segment sharing

Subject to security requirements, a process can share a segment with another
process running on the same processor. For example, process $X can share a
segment with any of these processes on the same processor:

• Any process that has the same process access ID (PAID)

• Any process that has the same group ID, if $X is the group manager (that is, if
$X has a PAID of group-id,255)

• Any process, if $X has a PAID of the super ID (255,255)

If processes are running in different processors, they can share a segment only if
the security requirements are met and the segment is a read-only segment.

Callers of ALLOCATESEGMENT can share segments with callers of
SEGMENT_ALLOCATE_. High-PIN callers can share segments with low-PIN
callers.

• Sharing flat segments

A process cannot share a flat segment with a process that allocated a selectable
segment, because the segments reside in different parts of memory. (Similarly, a
process cannot share a selectable segment with a process that allocated a flat
segment.)

For shared flat segments, the call to ALLOCATESEGMENT can be followed by a
call to USESEGMENT, but calling USESEGMENT is unnecessary because all of
the flat segments allocated by a process are always accessible to the process.

For more information on flat segments, see the SEGMENT_ALLOCATE_
Procedure on page 14-5.

Examples
STATUS := ALLOCATESEGMENT (SEGMENT^ID, SEG^SIZE, SWAP^FILE);
 ! standard call to create a user segment;
 ! "swap^file" parameter can be omitted

STATUS := ALLOCATESEGMENT (SEGMENT^ID, , FILENAME, %60000);
 ! allocates a read-only segment whose
 ! segment size is taken from the size of the
 ! swap file

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-27

ALTER Procedure
(Superseded by FILE_ALTERLIST_ Procedure)

STATUS := ALLOCATESEGMENT (SEGMENT^ID, SEGMENT^SIZE,
 FILENAME, %44000);
 ! allocates an extensible segment whose swap file
 ! disk extents will be allocated as needed

STATUS := ALLOCATESEGMENT (SEGMENT^ID, , , PIN);
 ! allocates a shared segment, which is shared
 ! using the PIN method with the segment given by
 ! SEGMENT^ID in the process identified by PIN

STATUS := ALLOCATESEGMENT (SEGMENT^ID, , FILENAME, %50000);
 ! allocates a shared segment, shared using the
 ! file name method

ALTER Procedure
(Superseded by FILE_ALTERLIST_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
OSS Considerations
Example

Summary

The ALTER procedure changes certain attributes of a disk file that are normally set
when the file is created.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-28

ALTER Procedure
(Superseded by FILE_ALTERLIST_ Procedure)

Syntax for TAL Programmers

Parameters

file-name input

INT:ref:12

is an array containing the internal-format file name of the disk file to be altered.

function input

INT:value

is a value specifying what characteristic of the file is to be changed. See Table 2-2
on page 2-29.

newvalue input

INT:ref:*

is an integer array supplying the new value for the characteristic specified by
function. Its size is dependent on the operation. See Table 2-2 on page 2-29.

partonly input

INT:value

if present, specifies for partitioned files whether the function is to be performed for
all partitions of the file (if the value given is zero), or just for the named partition (if
the value is one). Nonpartitioned files should use zero.

If omitted, zero is assumed. A value of one cannot be specified for some
functions, as noted below. If a function would affect alternate key files, then a
value of one will prevent this.

CALL ALTER (file-name ! i
 ,function ! i
 ,newvalue ! i
 ,[partonly]); ! i

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-29

ALTER Procedure
(Superseded by FILE_ALTERLIST_ Procedure)

Condition Code Settings
< (CCL) indicates that an error occurred (call FILEINFO or FILE_GETINFO_).

= (CCE) indicates that the call to ALTER was successful.

> (CCG) indicates that an error occurred (call FILEINFO or FILE_GETINFO_).

Considerations

• The file cannot be opened when ALTER is called.

• The security on the file must allow the caller to have read and write access.

• If the characteristic already has the supplied value, no error is indicated.

• The ALTER procedure supports format 2 files, except for changing alternate key or
partition descriptions (functions 5 and 6 of Table 2-2).

• Except as noted in the table below, the alterations are not made to alternate key
files, but are made to secondary partitions of a partitioned file unless the value of
partonly is 1.

• A secondary partition can be changed only if the value of partonly is 1.

• If a partition (or alternate key file) is not accessible, error 3 (or 4) will result, but the
accessible partitions (or files) will still be updated.

• If the secondary partition of the file is audited differently from the primary (one is
audited and the other is not), error 80 is returned and you cannot alter the audit
flag.

Table 2-2. ALTER Function Codes (page 1 of 2)

Code Description

1 File-code: Change the application defined file code associated with the file.
File codes 100-999 are reserved for use by HP. The newvalue parameter
should be a one-word binary number.

2 Audited: Change the TMF audited characteristic of the file (file-type.<2>
from FILEINFO or item 66 from FILE_GETINFOLIST[BYNAME] _) . The
newvalue parameter should be a 1-word binary number with a value of 1 to
make the file audited or a value of 0 to make it unaudited. Unless the value
of partonly is 1, all alternate key files as well as all partitions will be
changed.

3 Refresh: Change the flag controlling whether the file’s EOF value is written
out each time it is changed (file-type.<10> from FILEINFO or item 70 from
FILE_GETINFOLIST[BYNAME] _) . The newvalue parameter should be a
1-word binary number with a value of 1 to cause writing or 0 to avoid writing.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-30

ALTER Procedure
(Superseded by FILE_ALTERLIST_ Procedure)

OSS Considerations

• This procedure operates only on Guardian objects. If an OSS file is specified,
error 1163 occurs.

Example
INT fname[0:11] := ["$data foo bar "];
INT change^filecode := 1;

4 Oddunstr: For an unstructured file, make the file allow odd byte positioning
and transfers (indicated by file-type.<12> from FILEINFO or item 65 from
FILE_GETINFOLIST[BYNAME] _) . The newvalue parameter must be a one-
word binary number with value of 1. Once set for a file, this characteristic
cannot be reset.

5 Alternate Keys: For a structured file, change the alternate key description.
The newvalue parameter should be an array in the same format as the
alternate-key-params array of the CREATE procedure. This function
changes only the description in the primary file; no alternate key files are
purged or created. The partonly parameter must be zero for this function.
This function is not supported for format 2 files.

6 Partitions: Change the partitioning description of the file. The newvalue
parameter should be an array in the same format as the partition-params
array of the CREATE procedure. The partition description can be changed
only in these ways:

a) The volume name of an existing partition may change.
b) For a key-sequenced file, the extent sizes of a partition may be changed.
c) For non-key-sequenced files, new partitions may be added.

This function changes the description only in the primary file; no secondary
partitions are moved, updated, or created. The partonly parameter must be
zero for this function.

This function is not supported for format 2 files.

7 Broken Flag: Resets the broken flag (which is shown in open-flags2.<6> of
FILEINFO or item 78 from FILE_GETINFOLIST[BYNAME] _) . The
newvalue parameter must be a one-word binary number with a value of 0.
For a partitioned file, the partonly parameter must have a value of 1 for this
function.

8 Expiration Date: Change the expiration date associated with the file to the
one given in newvalue. The newvalue parameter must be a 4-word GMT
timestamp.

The expiration date is not changed for associated alternate key files, but is
changed for the secondary partitions of a partitioned file (unless the value of
partonly is 1). The expiration date for a temporary file cannot be set with
ALTER, since temporary files must be purged when closed.

Table 2-2. ALTER Function Codes (page 2 of 2)

Code Description

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-31

ALTERPRIORITY Procedure
(Superseded by PROCESS_SETINFO_ Procedure)

INT newcode := 101;
 .
 .
CALL ALTER(fname, change^filecode, newcode);! see Table 2-2
IF <> THEN ...

ALTERPRIORITY Procedure
(Superseded by PROCESS_SETINFO_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations

Summary

The ALTERPRIORITY procedure is used to change the execution priority of a process
or process pair.

A process or process pair has two priority values: the initial priority value and the
current priority value. ALTERPRIORITY changes both priority values to the specified
value.

 Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

process-id input

INT:ref:4

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

CALL ALTERPRIORITY (process-id ! i
 ,priority); ! i

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-32

ARMTRAP Procedure
(Superseded by SIGACTION_INIT_ Procedure)

is a 4-word array containing the process ID of the process whose execution priority
is to be changed, where:

[0:2] Process name or creation timestamp
[3].<0:3> Reserved
 .<4:7> Processor number where the process is executing
 .<8:15> PIN assigned by the operating system to identify the process in the

processor

If process-id [0:2] references a process pair and process-id [3] is specified as
-1, then the call applies to both members of the process pair.

priority input

INT:value

is a new execution priority value in the range of {1:199} for process-id.

Condition Code Settings

< (CCL) indicates that ALTERPRIORITY failed, or no process designated as
process-id exists.

= (CCE) indicates that the priority of the process is altered.

> (CCG) does not return from ALTERPRIORITY.

Considerations
When ALTERPRIORITY is called on a Guardian process, the caller must be either the
super ID (255,255), the group manager (n,255) of the process access ID, or a process
with the same process access ID as the process or process pair whose priority is being
changed. For the PROCESSACCESSID procedure, see “Considerations” and for
further information about the process access ID, see the Guardian User’s Guide.

When ALTERPRIORTY is called on an OSS process, the security rules that apply are
the same as those that apply to calling the OSS kill() function. See the kill(2)
function reference pages either online or in the Open System Services System Calls
Reference Manual for details.

ARMTRAP Procedure
(Superseded by SIGACTION_INIT_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
ARMTRAP Functions
Trap Handler Activation and Termination
Considerations

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-33

ARMTRAP Procedure
(Superseded by SIGACTION_INIT_ Procedure)

Additional Considerations for Native Systems
OSS Considerations
Example
Related Programming Manual

Summary

The ARMTRAP procedure is used to specify a trap handler (that is, a location within
the application program where execution begins if a trap occurs) and also to return
from a trap handler.

Syntax for C Programmers

There are restrictions on calling the ARMTRAP procedure from a C program due to the
fact that all C programs run under the Common Run-Time Environment (CRE).

It is not possible to express a trap handler in C. The use of ARMTRAP in C programs
is limited to calling ARMTRAP(-1,-1) to turn off trap handling by overriding the trap
handler installed by the CRE in a TNS Guardian C program.

For details, see the Common Run-Time Environment (CRE) Programmer’s Guide.

Syntax for TAL Programmers

Parameters

traphandlr-addr input

INT:value

is a label (nonzero P register value) that identifies a statement in the program
where control is to transfer if a trap occurs.

You can specify 0 for traphandlr-addr only in a call from within a trap handler.
Such a call causes the process to resume. For details, see Considerations on
page 2-36.

Note. This procedure cannot be called by OSS or native processes; use the signal
procedures. TNS Guardian processes must continue to use this procedure.

#include <cextdecs(ARMTRAP)>

void ARMTRAP (short traphandlr-addr
 ,short trapstack-addr);

CALL ARMTRAP (traphandlr-addr ! i
 ,trapstack-addr); ! i

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-34

ARMTRAP Procedure
(Superseded by SIGACTION_INIT_ Procedure)

trapstack-addr input

INT:value

is an address specifying the local data area for the application process’s trap
handler. The trapstack-addr parameter also indicates where the trap number
and stack marker at the time of the trap are passed to the application process.

If trapstack-addr has a value < 0, then trap handling is disabled and any trap
results in the process being stopped with a process deletion (ABEND) message.

ARMTRAP Functions
Use the ARMTRAP procedure to perform one of these functions:

• Arm a trap handler (that is, specify a location in the application program where
execution begins if a trap occurs). To do this, set traphandlr-addr to a value
greater than 1 specifying the address of a label at which the trap handler starts and
set trapstack-addr to a nonnegative value specifying the stack address above
which its activation record will go.

• Set default handling (that is terminate, but enter the debugger if in a debug
session). To do this, set traphandlr-addr to one and set trapstack-addr to zero.

• Set traps to enter the debugger. To do this, set traphandlr-addr to one and
trapstack-addr to a value greater than zero. By convention, both parameters are
normally set to 1 in such as call.

• Disarm all trap handling (that is, specify that no part of the application program is to
execute if a trap occurs). To do this, set traphandlr-addr to a nonzero value
and set trapstack-addr to a negative value. By convention, both parameters
are normally set to -1 in such a call.

• Resume the process and rearm the trap handler. This must be done by a call to
ARMTRAP from within a trap handler with traphandlr-addr set to 0 and
trapstack-addr set to a nonnegative value specifying the stack address above
which its activation record will go. For details, see Considerations on page 2-36.

• Resume the process and disarm all trap handling. This must be done by a call to
ARMTRAP from within a trap handler with traphandlr-addr set to 0 and
trapstack-addr set to a negative value. For details, see Considerations on
page 2-36.

Trap Handler Activation and Termination
When a trap handler has been armed and a trap subsequently occurs, control passes
to the trap handler at the location specified by traphandlr-addr in the same code
segment as the original call to ARMTRAP. Trap handling is automatically disabled. ‘S’
and ‘L’ are set to trapstack-addr plus 6; the seven words starting at trapstack-
addr are (relative to the new ‘L’ setting):

'L'[-6] Reserved

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-35

ARMTRAP Procedure
(Superseded by SIGACTION_INIT_ Procedure)

'L'[-5] Space ID at the time of the trap

'L'[-4] Trap number:

0 Invalid address reference
1 Instruction failure
2 Arithmetic overflow
3 Stack overflow
4 Process loop timer timeout
5 Call from process with PIN > 255
11 Memory manager read error
12 No memory available
13 Uncorrectable memory error

'L'[-3] Value of ‘S’ at the time of the trap; it is -1 if the trap occurs in a
protected code area (see “Considerations”)

'L'[-2] Value of ‘P’ at the time of the trap; the ‘P’ value associated with the
space ID in ‘L’[-5] completely identifies the location of the trap

'L'[-1] Value of the hardware ENV register at the time of the trap

'L'[0] Value of ‘L’ at the time of the trap

The locations ‘L’[-5] through ‘L’[0] are referred to as trap variables: space ID, trap
number, S, P, ENV, and L, respectively.

The trap handler exits by a call to ARMTRAP with trapstack-addr = 0. The
process’s registers at the time that it resumes are set to the values indicated by these
‘L’ relative locations:

'L'[-6] Reserved

'L'[-5] New value for space index, in bits <11:15>; bits <0:10> are ignored
(see “Considerations”)

'L'[-4] Ignored

'L'[-3] New value for S register

'L'[-2] New value for P register

'L'[-1] New value for hardware ENV register

'L'[0] New value for L register

'L'[1] New value for R0

'L'[2] New value for R1

'L'[3] New value for R2

'L'[4] New value for R3

'L'[5] New value for R4

'L'[6] New value for R5

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-36

ARMTRAP Procedure
(Superseded by SIGACTION_INIT_ Procedure)

'L'[7] New value for R6

'L'[8] New value for R7

Note that parts of ‘L’[-5] and ‘L’[-1] are combined into the new space ID.

Considerations

• Space required for a trap handler

Typically the trapstack-addr value activates the trap handler near the high end
of the process stack. At least 350 words must be available between the trap
address value specified to ARMTRAP and either the last word in the application’s
data area or ‘G’[32767], whichever is less. Alternatively, stack space for the trap
handler can be allocated among the process global variables, below the stack.

• Saving the register stack and allocating local data

Upon entry to the application process’s trap handler, the stack registers (R0-R7)
contain the values they had at the time of the trap. To save these values, the first
statement of the trap handler must be:

CODE (PUSH %777)

This saves the register stack contents. Local storage can then be allocated by
adding the appropriate value to ‘S’ through a statement of the form:

CODE (ADDS num-locals)

where num-locals is a LITERAL defining the number of words of local storage
needed (see the next consideration).

• Base-address equivalencing and declaring local variables

Any local variables in the application program’s trap-handling procedure must be
declared relative to the L register by using base-address equivalencing. For
example:

INT I = 'L' + 9;
STRING .EXT X(X_TEMPLATE) = 'L' + 12;

Assuming that the trap handler begins with the statement CODE (PUSH %777),
the first local variable should be placed at ‘L’+9.

For details on base-address equivalencing, see the TAL Reference Manual.

The trap-handling procedure must contain a statement that explicitly allocates
storage for any locally declared variables (see the preceding consideration).

• Space ID, P register, and hardware ENV register

The space ID consists of a code space bit that signifies system or user space, a
library space bit that signifies code or library space, and a 5-bit index to indicate

Note. Variables declared in this form cannot be initialized.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-37

ARMTRAP Procedure
(Superseded by SIGACTION_INIT_ Procedure)

which of the 32 possible segments you are referring to. For more information
about space IDs, see the appropriate system description manual for your system.

At the time of a trap, the space ID of the calling procedure is placed in the stack at
‘L’[-5]; the stack marker ENV register at ‘L’[-1] also contains the system code and
library code bits but not the index. When exiting the trap handler, execution
resumes at the location identified by the P register at ‘L’[-2], the space index in the
stack at ‘L’[-5], and the library space and code space bits of ‘L’[-1].

• Value for the P register

The value for the P register at the time of the trap depends upon the trap condition.
In this table, I represents the address of the instruction being executed at the time
of the trap, and ? means undefined.

• Terminating a trap handler

A trap handler can terminate in these ways on either a TNS or native system:

• Clear the overflow (or trap) bit in the trap ENV variable and resume from a trap
2 (arithmetic overflow). See Resuming at the point of the trap on page 2-38.
(If the overflow and trap bits of ENV are both set upon exit from the trap
handler, then on TNS systems, another overflow trap immediately occurs and
on native systems, the process abends.)

• Resume with no modifications (modifying the overflow or trap bit of the trap
ENV variable is permitted) after a trap 4 (loop timer interrupt). See Resuming
at the point of the trap on page 2-38.

• Jump to a restart point by changing the trap variables P, L, ENV, space ID,
and S. See Resuming at the point of the trap on page 2-38.

• Terminate the process (for example, by a call to PROCESS_STOP_).

Attempting to exit from a trap handler in any other way is not recommended; the
results are likely to vary between TNS and native systems.

• Resuming from (exiting) a trap handler

Trap P Register

0 I

1 I

2 I + 1

3 ?

4 I

5 ?

11 I

12 I

13 ?

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-38

ARMTRAP Procedure
(Superseded by SIGACTION_INIT_ Procedure)

The only way to exit from a trap handler is by a call to ARMTRAP specifying
traphandlr-addr = 0; the value supplied for trapstack-addr determines
whether the trap handler is rearmed or disarmed when program execution
resumes. The trap handler must use ARMTRAP. (It cannot use an EXIT
instruction to exit through the stack marker at the current L register location; using
EXIT would result in an invalid S register setting following the exit and would leave
trap handling disabled.)

If a call to ARMTRAP is made from within a trap handler and if a value other than 0
is specified for traphandlr-addr, the trap handler continues to execute. The
result of such a call is:

• If the call specifies a new trap handler (by supplying a nonzero value for
trapstack-addr), the new trap handler is not armed until a call with
traphandlr-addr = 0 is made that explicitly arms it.

• If the call disables trap handling (by specifying trapstack-addr < 0), traps
remain disabled even after a call with traphandlr-addr = 0 that would
normally rearm them.

A call to ARMTRAP with traphandlr-addr = 0 is invalid if not made from within
a trap handler. Starting in D20, such a call disarms all trap handling.

• Resuming at the point of the trap

To resume execution at the point of the trap, the trap handler should not modify
any of the values passed to it except, under some circumstances, the overflow bit
or trap bit of the trap ENV variable at ‘L’[-1]. Such resumption is valid only for trap
2 (arithmetic overflow) or trap 4 (loop timeout). An attempt to resume at the point
of any other trap typically causes the same trap to occur again on a TNS system;
on a native system, such an attempt causes the process to abend.

• Resuming at another point in the program

To resume execution at some other point in the program, you need to change the P
register value at ‘L’[-2], the space index at ‘L’[-5], and, if necessary, the library
space bit in ENV at ‘L’[-1] to reflect the new location within your program. You also
need to set appropriate values for the S register at ‘L’[-3] and the L register at ‘L’[0]
and the appropriate environment state in ENV at ‘L’[-1]: The RP field
(ENV.<13:15>) should be set to 7 if the resumption point is the beginning of a
statement; ENV.<0> should be set to 0.

• Traps in protected code

If the trap occurs in system code or system library and the trap handler is in user
code or user library, or if the trap occurs in a licensed user library and the trap
handler is in user code, the reported program location and process state (space ID,
P, ENV, and L) indicate the point of the user call to one of these protected code
regions and S is reported as -1.

• How to avoid writing over the application’s data stack

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-39

ARMTRAP Procedure
(Superseded by SIGACTION_INIT_ Procedure)

If ‘L’[-3] (the value of ‘S’ at the time of the trap) is -1, the trap handler should not
resume from the trap handler without first changing ‘L’[-3] to a more appropriate
value. Otherwise, ‘G’[0] through ‘G’[10] of the application’s data stack are
overwritten.

• When the trap handler is not invoked

Under some circumstances (for example, if system resources that are necessary to
initiate trap handling are not available), the trap handler specified though
ARMTRAP might not execute. In such a case, the process abends.

Additional Considerations for Native Systems
Special restrictions apply to trap handlers that execute on native systems. These rules
should be observed:

• Trap P variable

The TNS trap P variable is only approximate for a process running in accelerated
mode. You should not use it to inspect the code area and determine the failing
instruction.

You should not increment the trap P variable and resume execution; doing so
causes undefined results. However, you can change the trap P variable to a valid
TNS restart point. The restart point would typically be a label in your program.
See Resuming at another point in the program on page 2-38

• Invalid trap ENV fields

For a process running in accelerated mode, the ENV field RP is not valid and the
fields N, Z, and K are not reliable.

• Register stack R[0:7]

The contents of the TNS register stack are not valid in accelerated mode and are
not dependable in TNS mode. You should never change the register stack when
attempting to resume at the point of the trap.

• Functions

A trap-handling procedure must not be a function returning a result value.

OSS Considerations
Do not use the ARMTRAP procedure in OSS processes.

Caution. Use of this procedure in an OSS process causes undefined results and might cause
severe side effects such as disabling signals completely or causing the calling process to
receive a fatal signal.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-40

AWAITIO[X|XL] Procedures

Example
PROC TRAPPROC;
 BEGIN
 CALL ARMTRAP (@TRAP, $LMIN (LASTADDR , %77777) - 500);
 ! setting the trap.
 RETURN;
TRAP:
 CODE (PUSH %777);
 .
 .
 .
 CALL ARMTRAP (0, $LMIN (LASTADDR , %77777) - 500);
 END;

PROC MAIN PROC;
 BEGIN
 CALL TRAPPROC;
 .
 .
 .
 END;

In the previous example, @TRAP is the label at the beginning of the Transaction
Application Language (TAL) trap-handling procedure where control is transferred if a
trap occurs. The $LMIN expression is the address of the local data area where the
trap handler runs (its data area). The second call to ARMTRAP is the return from the
trap handler.

Related Programming Manual
For programming information about the ARMTRAP trap-handling procedure, see the
Guardian Programmer’s Guide.

AWAITIO[X|XL] Procedures
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
OSS Considerations
Related Programming Manual

Summary
The AWAITIO, AWAITIOX, and AWAITIOXL procedures are used to complete a
previously initiated I/O operation. Use AWAITIOX[L] with the extended 32-bit (or ‘X’)
versions of the I/O procedures such as READX, WRITEREADX, and so forth. Use

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-41

AWAITIO[X|XL] Procedures

AWAITIO with the 16-bit versions such as READ, WRITEREAD, and so forth. Use
AWAITIO[X|XL] to:

• Wait for the operation to complete on:

• A particular file—Application process execution suspends until the completion
occurs. A timeout is considered to be a completion in this case.

• Any file or for a timeout to occur—A timeout is not considered a completion in
this case.

• Check for the operation to complete on:

• A particular file—The call to AWAITIO[X|XL] immediately returns to the
application process, regardless of whether there is a completion or not. (If
there is no completion, an error indication is returned.)

• Any file

If AWAITIO[X|XL] is used to wait for a completion, you can specify a time limit.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-42

AWAITIO[X|XL] Procedures

Syntax for C Programmers

• The function value returned by AWAITIO[X], which indicates the condition code,
can be interpreted by the _status_lt(), _status_eq(), or _status_gt()
macros (defined in the file tal.h)

#include <cextdecs(AWAITIO)>

_cc_status AWAITIO (short _near *filenum
 ,[short _near *buffer-addr]
 ,[unsigned short _near *count-transferred]
 ,[__int32_t _near *tag]
 ,[__int32_t timelimit]);

#include <cextdecs(AWAITIOX)>

_cc_status AWAITIOX (short _far *filenum
 ,[__int32_t _far *buffer-addr]
 ,[unsigned short _far *count-transferred]
 ,[__int32_t _far *tag]
 ,[__int32_t timelimit]
 ,[short _far *segment-id]);

#include <cextdecs(AWAITIOXL)>

short AWAITIOXL (short _far *filenum
 ,[__int32_t _far *buffer-addr]
 ,[__int32_t _far *count-transferred]
 ,[long long _far *tag]
 ,[__int32_t timelimit]
 ,[short _far *segment-id]);

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-43

AWAITIO[X|XL] Procedures

Syntax for TAL Programmers

Parameters

error returned value

INT (Use with AWAITIOXL)

is a file-system error number indicating the outcome of the operation.

0 (FEOK)

indicates a successful operation.

filenum input, output

INT:ref:1 (Use with AWAITIO)
INT .EXT:ref:1 (Use with AWAITIOX[L])

is the number of an open file. If a particular filenum is passed, AWAITIO[X|XL]
applies to that file.

If filenum is passed as -1, the call to AWAITIO[X|XL] applies to the oldest
incomplete operation pending on each file. The specific action depends on the
value of the timelimit parameter (see the timelimit parameter below).

AWAITIO[X|XL] returns into filenum the file number associated with the
completed operation.

buffer-addr output

WADDR:ref:1 (Use with AWAITIO)

returns the address of the buffer specified when the operation was initiated.

CALL AWAITIO[X] (filenum ! i,o
 ,[buffer-addr] ! o
 ,[count-transferred] ! o
 ,[tag] ! o
 ,[timelimit] ! i
 ,[segment-id]); ! o (AWAITIOX only)

error:= AWAITIOXL (filenum ! i,o
 ,[buffer-addr] ! o
 ,[count-transferred] ! o
 ,[tag] ! o
 ,[timelimit] ! i
 ,[segment-id]); ! o

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-44

AWAITIO[X|XL] Procedures

EXTADDR .EXT:ref:1 (Use with AWAITIOX and AWAITIOXL)

returns the relative extended address of the buffer specified when the operation
was initiated.

If the actual parameter is used as an address pointer to the returned data and is
declared in the form INT .EXT buffer-addr, it should be passed to
AWAITIO[X|XL] in the form @buffer-addr.

count-transferred output

INT:ref:1 (Use with AWAITIO)
INT .EXT:ref:1 (Use with AWAITIOX)
INT(32).EXT:ref:1 (Use with AWAITIOXL)

returns the count of the number of bytes transferred because of the associated
operation.

tag output

INT(32):ref:1 (Use with AWAITIO)
INT(32) .EXT:ref:1 (Use with AWAITIOX)
INT(64) .EXT:ref:1 (Use with AWAITIOXL)

returns the application-defined tag that was stored by the system when the I/O
operation associated with this completion was initiated. The value of tag is
undefined if no tag was supplied in the original I/O call. If the completed I/O
operation has a 32-bit tag, the 64-bit tag is in the sign-extended value of the 32-bit
tag.

timelimit input

INT(32):value (Use with AWAITIO, AWAITIOX, and AWAITIOXL)

indicates whether the process waits for completion instead of checking for
completion. If timelimit is passed as:

> 0D A wait-for-completion is specified. The timelimit parameter
specifies the maximum time (in .01-second units) from the time of
the AWAITIO[X|XL] call that the application process can wait (that
is, be on a wait list) for completion of a waited-for operation.

See “Considerations” for queue files.

= -1D An indefinite wait is indicated.

= 0D A check for completion is specified. AWAITIO[X|XL] immediately
returns to the caller, regardless of whether or not an I/O completion
occurs.

< -1D File-system error 590 occurs.

omitted An indefinite wait is indicated.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-45

AWAITIO[X|XL] Procedures

segment-id output

INT .EXT:ref:1 (Use with AWAITIOX and AWAITIOXL)

returns the segment ID of the extended data segment containing the buffer when
the operation was initiated. If the buffer is not in a selectable segment,
segment-id is -1.

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that an I/O operation completed.

> (CCG) indicates that an I/O operation completed but a warning occurred (call
FILE_GETINFO_ or FILEINFO).

Considerations

• Completing nowait calls

Each nowait operation initiated must be completed with a corresponding call to
AWAITIO[X|XL].

• If AWAITIO[X|XL] is used to wait for completion (timelimit <> 0D) and a
particular file is specified (filenum <> -1), completing AWAITIO[X|XL] for any
reason, except interruption by an OSS signal, is considered a completion: if
the I/O operation did not complete, error 40 is returned and the oldest I/O
operation against the file is canceled.

• Queue files

If a nowait READUPDATELOCK[X] operation is used in conjuction with the
AWAITIO[X|XL] timelimit > 0D, this occurs:

If the queue file timeout occurs before the time limit, the read request is
completed with error 162.

If the time limit expires before the queue file timeout, the
READUPDATELOCK[X] request is canceled. A canceled
READUPDATELOCK[X] can result in the loss of a record from the queue file.
If the time limit expires before the queue file timeout, the
READUPDATELOCK[X] request is canceled if it was a file-specific call (that is,
the file number is other than -1). With non file-specific calls,
READUPDATELOCK[X] is not canceled for the queue file. A canceled
READUPDATELOCK[X] can result in the loss of a record from the queue file.
For audited queue files, record loss can be avoided by performing an
ABORTTRANSACTION procedure, when detecting error 40, to ensure that any

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-46

AWAITIO[X|XL] Procedures

dequeued record is reinserted into the file. For nonaudited queue files, there is
no means of assuring recovery of a lost record. Thus, your application should
never call AWAITIO[X|XL] with a time limit greater than 0D if
READUPDATELOCK[X] is pending. The ABORTTRANSACTION recovery
procedure does not work on nonaudited queue files.

• If AWAITIO[X|XL] is used to check for completion (timelimit = 0D) or used
to wait on any file (filenum = - 1), completing AWAITIO[X|XL] does not
necessarily indicate a completion.

If you perform an operation using one of these procedure calls with a file opened
nowait, you must complete the operation with a call to the AWAITIO[X|XL]
procedure:

CONTROL SETMODENOWAIT
CONTROLBUF
 UNLOCKFILE
LOCKFILE UNLOCKREC
LOCKREC
 WRITE[X]
READ[X] WRITEREAD[X]
READLOCK[X] WRITEUPDATE[X]
READUPDATE[X|XL] WRITEUPDATEUNLOCK[X]
READUPDATELOCK[X]

• Completion tag values

A tag -30D returned by AWAITIO signals completion of a nowait open; a tag -29D
returned by AWAITIO signals completion of a nowait backup open. For more
information, see the FILE_OPEN_CHKPT_ Procedure on page 5-130.

• Using AWAITIO, AWAITIOX, and AWAITIOXL

Nowait calls to the extended I/O routines must call AWAITIOX or AWAITIOXL to
complete the operation. AWAITIOX and AWAITIOXL also completes calls made to
the 16-bit I/O routines. Thus, you can replace all current calls to AWAITIO and the
calls to AWAITIOX with call to AWAITIOXL.

If the operation was initiated with a call to READ, WRITEREAD, and so on (the 16-
bit I/O routines), and AWAITIOX or AWAITIOXL is called to complete the operation,
buffer-addr contains the extended address of that buffer and segment-id is
-1.

If you accidentally call AWAITIO and extended I/O operations are outstanding
against the file, AWAITIO does not complete the operation. If you call AWAITOX
while an "L" operation (for example, SERVERCLASS_SENDL_) is outstanding,
AWAITIOX does not complete the operation. If a specific file number is given,
error 2 is returned. You must then call AWAITIOX or AWAITIOXL to complete the

Note. Use AWAITIO only with the 16-bit I/O versions of the above procedures, such as READ,
WRITEREAD, and so forth. You can use AWAITIOX with any versions of the above
procedures, including READX, WRITEREADX, and so forth. You can use AWAITIOXL with
SERVERCLASS_SENDL_ , READUPDATE[X|XL], and any versions of the above procedures.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-47

AWAITIO[X|XL] Procedures

operation. If the file number was -1, the files with extended I/O operations
outstanding are skipped and AWAITIO will check the completion of any 16-bit I/O
operations still outstanding.

• Reference parameters for AWAITIOX and AWAITIOXL

The reference parameters for AWAITIOX and AWAITIOXL can be in the user’s
stack or in an extended data segment. The reference parameters cannot be in the
user’s code space.

The reference parameters for AWAITIOX and AWAITIOXL must be relative
extended addresses; they cannot be absolute extended addresses.

If the reference parameters for AWAITIOX and AWAITIOXL address an area in a
selectable extended data segment, the segment must be in use at the time of the
call to AWAITIOX and AWAITIOXL. (Flat segments allocated by a process are
always accessible to the process.)

• AWAITIOX or AWAITIOXL and buffer in extended data segment

If the buffer is in a flat extended data segment, the segment must be allocated at
the time of the call to AWAITIOX or AWAITIOXL.

If the buffer is in a selectable extended data segment, the segment need not be
in use at the time of the call to AWAITIOX or AWAITIOXL. However, the segment
must be allocated at the time of the call to AWAITIOX or AWAITIOXL.

• Normal order of I/O completion (without SETMODE 30)

If SETMODE 30 is not set, the oldest incomplete I/O operation always completes
first; therefore, AWAITIO[X|XL] completes I/O operations associated with the
particular open of a file in the same order as initiated.

• Order of I/O completion with SETMODE 30

Specifying SETMODE 30 allows nowait I/O operations to complete in any order.
However, I/O operations that complete at the same time return in the order issued
(unless SETMODE 30 is specified with param1 set to 3). An application process
that uses this option can use the tag parameter to keep track of multiple I/O
operations associated with a file open.

• Operation timed out

If an error indication is returned on a call where either timelimit = 0 or
filenum = -1 was specified, and a subsequent call to FILE_GETINFO_ or
FILEINFO shows that an error 40 occurred, the operation is considered incomplete
and AWAITIO[X|XL] must be called again.

• Write buffers

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-48

AWAITIO[X|XL] Procedures

The contents of a buffer should not be altered between the initiation of a nowait I/O
operation (for example, a call to WRITE[X]) and the completion of that operation
(that is, a call to AWAITIO[X|XL]).

However, you can alter the contents of a buffer if set SETMODE 72,1 is called. For
more information, see Setmode 72 on page 14-80.

• Read buffers

If the file was opened by FILE_OPEN_ , or if it was opened by OPEN and
SETMODE 72 was called with param1 set to 0, the buffer used for a read
operation should not be used for any other purpose (including another read) until
the read operation has been completed with a call to AWAITIO[X|XL].

• No nowaited operations

You should not call AWAITIO[X|XL] unless you initiate a nowait operation before
the call. AWAITIOXL returns the error 26 code directly and does not return CCL.
Otherwise, a subsequent call to FILE_GETINFO_ or FILEINFO shows that an error
26 occurred.

• Error handling

AWAITIOXL returns the error code directly. For AWAITIO[X], pass the file number
returned by AWAITIO[X] to the FILE_GETINFO_ or FILEINFO procedure to
determine the cause of the error. If filenum = -1 (that is, any file) is passed to
AWAITIO[X|XL] and an error occurs on a particular file, AWAITIO[X|XL] returns the
file number associated with the error in filenum.

• AWAITIO[X|XL] and edit files

If AWAITIO[X|XL] returns after completion of an I/O operation against an EDIT file
that was accessed using the IOEdit procedures, you must call the
COMPLETEIOEDIT procedure to inform the IOEdit software that the operation has
finished.

• AWAITIO[X|XL] completion summary

How AWAITIO[X|XL] completes depends on whether the filenum parameter
specifies a particular file or any file and on what the value of timelimit is when
passed with the call. The action taken by AWAITIO[X|XL] for each combination of
filenum and timelimit is summarized in Table 2-3.

• AWAITIO[X|XL] operation

The operation of the AWAITIO[X|XL] procedure is shown in Figure 2-1.

WARNING. Modifying nowait WRITE buffers before the AWAITIOX that completes
WRITE can cause data corruption to or from the opened file.

WARNING. Modifying nowait READ buffers before the AWAITIOX that completes
READ can cause data corruption to or from the opened file.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-49

AWAITIO[X|XL] Procedures

Table 2-3. AWAITIO[X|XL] Action

timelimit = 0 timelimit <> 0

Particular File

filenum = a file
number

CHECK for any I/O completion
on filenum.

COMPLETION
File number is returned in
filenum.
Tag of completed call is returned
in tag.

NO COMPLETION
CCL (error 40) is returned.
File number returned is in
filenum.
No I/O operation is canceled.

WAIT for any I/O completion
on filenum.

COMPLETION
File number is returned in
filenum.
Tag of completed call is
returned in tag.

NO COMPLETION
CCL (error 40) is returned.
File number is returned in
filenum.
Oldest I/O operation on
filenum is canceled.
Tag of canceled call is
returned in tag.

Any File

filenum = –1

CHECK for any I/O completion
on any open file.

COMPLETION
File number of completed call is
returned in filenum.
Tag of completed call is returned
in tag.

NO COMPLETION
CCL (error 40) is returned.
The value –1 is returned in
filenum.
No I/O operation is canceled.

WAIT for any I/O completion
on any open file.

COMPLETION
File number of completed
call is returned in filenum.
Tag of completed call is
returned in tag.

NO COMPLETION
CCL (error 40) is returned.
The value –1 is returned in
filenum.
No I/O operation is canceled.

Note:

This table assumes that SETMODE 30 has been set.

AWAITIOXL returns the error code directly.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-50

AWAITIO[X|XL] Procedures

OSS Considerations
When an OSS process calls AWAITIO[X|XL] and an OSS signal occurs, the OSS
function completes with error 4004 (EINTR). Even if AWAITIO[X|XL] is used to wait for
completion (timelimit <> 0D) and a particular file is specified (filenum <> -1), this
is not considered a completion and the oldest I/O operation against the file is not
canceled. You should call AWAITIO[X|XL] again to complete the I/O operation.

Figure 2-1. AWAITIO[X|XL] Operation

Note. AWAITIOXL returns the error code directly.

Call
AWAITIO[X|XL]

Y

Y

Bad Parameter
Value

CCL <error> = 22

 < - 1

> - 1
Particular File

- 1
Any Filefilenu

m

N

N

Completion

0D
timeout
(Check)

?

Y

CCL <error> = 40

Completion?

Timeout

CCL <error> = 40

N

Any
Completion

?

N

CCL <error> = 40

Completion

Y
0D

timeout
(Check)

?

Timeout

CCL <error> = 40

Wait
timeou

t
fo
rCompletio

n

Wait timeout
for Any

Completion

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-51

BACKSPACEEDIT Procedure

Related Programming Manual
For programming information about the AWAITIO[X] file-system procedures, see the
Guardian Programmer’s Guide.

BACKSPACEEDIT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Related Programming Manual

Summary
The BACKSPACEEDIT procedure sets the current record number of an IOEdit file to
that of the line preceding what was the current record before the call. These rules
describe the operation of BACKSPACEEDIT:

• If the current record number is -1 (which occurs when the file is empty or when the
file is positioned at the beginning, as when it is just opened), BACKSPACEEDIT
does nothing.

• If the current record number is -2 (which occurs when the current record number
has been incremented beyond the last record in the file), the current record
number is set to the highest record number in the file. If the file is empty, the
current record number is set to -1.

• If the current record number is 0 or greater, the current record number is set to the
highest record number in the file that is less than the current record number before
the call; if there is no such record, the current record number is set to -1.

BACKSPACEEDIT is an IOEdit procedure and can only be used with files that have
been opened by OPENEDIT or OPENEDIT_.

Syntax for C Programmers

Syntax for TAL Programmers

Note. The AWAITIOXL procedure is supported on systems running J06.07 and later J-series
RVUs and H06.18 and later H-series RVUs.

#include <cextdecs(BACKSPACEEDIT)>

short BACKSPACEEDIT (short filenum);

error := BACKSPACEEDIT (filenum); ! i

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-52

BINSEM_CLOSE_ Procedure

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation.

filenum input

INT:value

is the number that identifies the open file on which the operation is to be
performed.

Related Programming Manual
For programming information about the BACKSPACEEDIT procedure, see the
Guardian Programmer’s Guide.

BINSEM_CLOSE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manuals

Summary
The BINSEM_CLOSE_ procedure closes access to a binary semaphore.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-53

BINSEM_CLOSE_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the call:

0 No error.

29 Required parameter missing. The semid parameter must be specified.

4022 Invalid parameter. The semid parameter does not identify a binary
semaphore that is opened by the calling process. The corresponding
errno value is ENOENT.

4045 Deadlock. The binary semaphore specified by semid cannot be closed
because it is locked by the calling process. The corresponding errno
value is EDEADLK.

semid input

INT (32):value

specifies a binary semaphore ID.

Considerations

• The close operation and the state of the binary semaphore

• If the binary semaphore is locked by the calling process, then the value of
error is 4045, the state of the binary semaphore remains unchanged, and
the specified binary semaphore ID can continue to provide access to the binary
semaphore.

• If the binary semaphore is either unlocked, forsaken, or locked by another
process, then the value of error is 0, the state of the binary semaphore
remains unchanged (provided that this is not the last close of the binary

#include <cextdecs(BINSEM_CLOSE_)>

short BINSEM_CLOSE_ (__int32_t semid);

error := BINSEM_CLOSE_ (semid); ! i

Note. There are additional considerations for privileged callers.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-54

BINSEM_CREATE_ Procedure

semaphore), and the specified binary semaphore ID can no longer provide
access to the binary semaphore.

• When there are no more concurrent opens of the binary semaphore, space used
by the binary semaphore is returned to the system main-memory pool.

• A closed binary semaphore ID can be reassigned on subsequent calls to the
BINSEM_CREATE_ and BINSEM_OPEN_ procedures.

• For information about binary semaphores for the BINSEM_CREATE_ procedure,
see General Considerations for Binary Semaphores on page 2-56.

Example
error := BINSEM_CLOSE_(semid);

Related Programming Manuals
For programming information about the BINSEM_CLOSE_ procedure, see the
Guardian Programmer’s Guide.

BINSEM_CREATE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
General Considerations for Binary Semaphores
Considerations
Example
Related Programming Manuals

Summary
The BINSEM_CREATE_ procedure creates, opens, and locks a binary semaphore.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-55

BINSEM_CREATE_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the call:

0 No error.

22 Bounds error. The semid parameter cannot be written to by the calling
process.

29 Required parameter missing. The semid and security parameters
must be specified.

4002 Either the process or the processor has reached the maximum number of
user semaphores it can open concurrently. The corresponding errno
value is ENOENT.

4022 Invalid parameter. The security parameter is not a valid value.
Specifying an invalid value for security could cause unpredictable
results in future RVUs. The corresponding errno value is EINVAL.

4024 Process cannot open the binary semaphore. The process has reached the
maximum number of binary semaphores it can open. The corresponding
errno value is EMFILE.

4028 No space. The processor has reached the maximum limit of space
available for binary semaphores. The corresponding errno value is
ENOSPC.

semid output

INT (32) .EXT:ref:1

#include <cextdecs(BINSEM_CREATE_)>

short BINSEM_CREATE_ (__int32_t *semid
 ,short security);

error := BINSEM_CREATE_ (semid ! o
 ,security); ! i

Note. The number of binary semaphores a processor can have open is 65536.
This information is supported only on systems running J06.06 and later J-series
RVUs and H06.17 and later H-series RVUs.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-56

BINSEM_CREATE_ Procedure

returns the binary semaphore ID.

security input

INT:value

specifies the binary semaphore security. The security determines which processes
on the same processor can open the binary semaphore. Values are:

0 Any. Any process.

1 Group. Any process with the same process access ID group as the binary
semaphore’s owner, or a process with the super ID (255,255).

2 Owner. Any process with the same process access ID (group and member) as
the binary semaphore’s owner, or a process with the super ID.

General Considerations for Binary Semaphores

• Binary semaphore attributes

• Owner. The owner of a binary semaphore is the process access ID of the
process that calls the BINSEM_CREATE_ procedure. The owner of a binary
semaphore is defined by a group number and a member number. The owner
is relevant only in the context of security; it is neither specified nor returned by
the binary semaphore procedures.

• Security. The security of a binary semaphore determines whether it can be
opened by any process, a process belonging to the owner’s group, or a
process belonging to the owner. Once a binary semaphore has been created,
its security cannot be altered.

• Identifying a binary semaphore

• Binary semaphore ID. A binary semaphore ID identifies each instance of an
open of a binary semaphore. A binary semaphore can have multiple openers.

• Process handle. A process handle is used in conjunction with a binary
semaphore ID to identify a binary semaphore opened by another process.

• Three binary semaphore states

• Locked. A binary semaphore can be locked by a process. Only one process
at a time can hold the lock on a binary semaphore.

• Unlocked. A binary semaphore can have no lock on it.

• Forsaken. A binary semaphore can be forsaken if it was locked by a process
that has terminated.

• Binary semaphore operations

Operations on a binary semaphores are atomic: they finish one at a time and never
finish concurrently. These procedures perform operations on binary semaphores:

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-57

BINSEM_CREATE_ Procedure

• BINSEM_CREATE_ which creates, opens, and locks a binary semaphore. A
binary semaphore ID is returned for use with other operations.

• BINSEM_OPEN_ which opens access to a binary semaphore. A binary
semaphore ID is returned for use with other operations.

• BINSEM_LOCK_ which locks a binary semaphore.

• BINSEM_UNLOCK_ which unlocks a binary semaphore.

• BINSEM_CLOSE_ which closes access to a binary semaphore.

• BINSEM_FORCELOCK_ which takes the lock from a process that has the
lock.

• BINSEM_ISMINE_ which returns whether or not the caller is the current owner
of the binary semaphore.

• Binary semaphore procedures synchronize processes in the same processor

The binary semaphore procedures cannot be used to synchronize processes on
different processors. To synchronize distributed processes, use interprocess
messages or file locks as described in the Guardian Programmer’s Guide.

• Binary semaphore resource requirements

On systems running H06.16/J06.05 and earlier RVUs, the maximum number of
binary semaphores a process can have is 64, and the maximum number of binary
semaphores a processor can have open is equal to the number of processes.

On systems running H06.17/J06.06 and later RVUs, the maximum number of
binary semaphores a process can have is 8192, and the maximum number of
binary semaphores a processor can have open is 65536.

In the D30.00 RVU, each open binary semaphore occupies 4 bytes of the process
file segment.

Considerations

• The create operation and the state of the binary semaphore

The binary semaphore is opened and locked by the calling process when the
binary semaphore is created.

Example
error := BINSEM_CREATE_(semid, security);

Note. The BINSEM_ISMINE_procedure is supported on systems running J06.03 and
later J-series RVUs and H06.13 and later H-series RVUs.

Note. There are additional considerations for privileged callers.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-58

BINSEM_FORCELOCK_ Procedure

Related Programming Manuals
For programming information about the BINSEM_CREATE_ procedure, see the
Guardian Programmer’s Guide.

BINSEM_FORCELOCK_ Procedure
Summary
Syntax for C Programmers
Parameters
Considerations
Example
Related Programming Manuals

Summary
The BINSEM_FORCELOCK_ procedure forces a lock on a binary semaphore. This
procedure is used when it is not possible to lock a binary semaphore with the
BINSEM_LOCK_ procedure.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

indicates the outcome of the call:

0 No error.

22 Bounds error. The processhandle parameter cannot be written to by
the calling process.

#include <cextdecs(BINSEM_FORCELOCK_)>

short BINSEM_FORCELOCK_ (__int32_t semid
 ,short *processhandle);

status := BINSEM_FORCELOCK_ (semid !
i
 ,processhandle); !
o

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-59

BINSEM_FORCELOCK_ Procedure

4022 Invalid parameter. The semid parameter does not identify a binary
semaphore that is opened by the calling process. The corresponding
errno value is EINVAL.

4045 Deadlock. The binary semaphore was forsaken before the procedure call,
and it is now locked. The corresponding errno value is EDEADLK.

4103 Already locked. The binary semaphore was locked by the calling process
before the procedure call, and it remains locked. The corresponding
errno value is EALREADY.

semid input

INT (32):value

specifies the binary semaphore ID.

processhandle output

INT .EXT:ref:10

returns the process handle of the process that previously held the lock on the
binary semaphore. A null process handle (-1 in each word) is returned if the binary
semaphore was previously unlocked. If status is 4045 or 4103,
processhandle is not updated.

Considerations

• The force-lock operation and the state of the binary semaphore

• If the binary semaphore is locked by another process, then the value of
status is 0, the state of the binary semaphore becomes locked by the calling
process, and processhandle contains the process handle of the process
that previously held the lock on the binary semaphore.

• If the binary semaphore is locked by the calling process, then the value of
status is 4103, the state of the binary semaphore becomes locked by the
calling process, and processhandle is not updated.

• If the binary semaphore is unlocked, then the value of status is 0, the state of
the binary semaphore becomes locked by the calling process, and
processhandle contains a null process handle.

• If the binary semaphore is forsaken, then the value of status is 4045, the
state of the binary semaphore becomes locked, and processhandle is not
updated.

• For information about binary semaphores for the BINSEM_CREATE_ procedure,
see General Considerations for Binary Semaphores on page 2-56.

Note. There are additional considerations for privileged callers.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-60

BINSEM_ISMINE_Procedure

Example
status := BINSEM_FORCELOCK_(semid, processhandle);

Related Programming Manuals
For programming information about the BINSEM_FORCELOCK_ procedure, see the
Guardian Programmer’s Guide.

BINSEM_ISMINE_Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The BINSEM_ISMINE_procedure allows an application to query whether it is the
current owner of any of the semaphores it has obtained access to via a call to either
the BINSEM_CREATE_procedure or the BINSEM_OPEN_procedure.

The BINSEM_ISMINE_ procedure passes the semaphore ID, returned by either the
BINSEM_CREATE_procedure or the BINSEM_OPEN_ procedure, to mysemid and
returns either true or false.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

mysemid

INT (32):value

Note. The BINSEM_ISMINE_ procedure returns information without altering the state of the
binary semaphore. The BINSEM_ISMINE_ procedure is supported only on systems running
H06.13 and later H-series RVUs and J06.03 and later J-series RVUs.

amlOwner = BINSEM_ISMINE_(mysemid);

AMIOWNER :=BINSEM_ISMINE_(MYSEMID);

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-61

BINSEM_LOCK_ Procedure

identifies the user semaphore from which the application prompts ownership
information.

Considerations

• The Ismine operation and the state of the binary semaphore

If the binary semaphore is locked by the calling process and the semid is valid,
the BINSEM_ISMINE_ procedure returns a nonzero value.

• For information about binary semaphores for the BINSEM_CREATE_ procedure,
see General Considerations for Binary Semaphores on page 2-56.

Example
AMIOWNER:=BINSEM_ISMINE_(MYSEMID);

BINSEM_LOCK_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The BINSEM_LOCK_ procedure locks a binary semaphore.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-62

BINSEM_LOCK_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

indicates the outcome of the call:

0 No error. The binary semaphore becomes locked.

4011 Operation timed out. The timeout value was reached before the binary
semaphore could be locked. The corresponding errno value is EAGAIN.

4022 Invalid parameter. The semid parameter does not identify a binary
semaphore that is opened by the calling process. The corresponding
errno value is EINVAL.

4045 Deadlock. The binary semaphore was forsaken before the procedure call,
and it is now locked. The corresponding errno value is EDEADLK.

semid input

INT (32):value

specifies the binary semaphore ID.

timeout input

INT (32):value

specifies how many hundredths of a second the procedure should wait for the
binary semaphore to become unlocked. The maximum value is 2,147,483,647. A
value of -1D causes the procedure to wait indefinitely. A value of 0D causes the
procedure to return immediately to the calling process, regardless of whether the
binary semaphore is locked.

Considerations

#include <cextdecs(BINSEM_LOCK_)>

short BINSEM_LOCK_ (__int32_t semid
 ,__int32_t timeout);

status := BINSEM_LOCK_ (semid ! i
 ,timeout); ! i

Note. There are additional considerations for privileged callers.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-63

BINSEM_LOCK_ Procedure

• The lock operation and the state of the binary semaphore

• If the binary semaphore is unlocked before the specified timeout has elapsed,
then the value of status is 0 and the state of the binary semaphore becomes
locked by the calling process.

• If the binary semaphore is forsaken before the timeout specified, then the value
of status is 4045 and the state of the binary semaphore becomes locked by
the calling process.

• If the binary semaphore is locked by another process or by the calling process
and the timeout expires, then the value of status is 4011 and the state of the
binary semaphore remains unchanged.

• Locking a binary semaphore

If the calling process terminates during the lock operation, the state of the binary
semaphore is not changed.

The same process that locks a binary semaphore should also unlock it.

A binary semaphore locked by a process that has terminated becomes forsaken.
Any process that waits on binary semaphores must account for the possibility of a
forsaken binary semaphore. The binary semaphore procedures allow for recovery
of a binary semaphore from the forsaken state to the locked state.

Applications should account for a deadlock condition. For example, a deadlock
can occur if two processes require the locks on two binary semaphores and each
process holds the lock on one of the binary semaphores. A method of avoiding
deadlock situations is to lock binary semaphores in a predetermined order.

The lock operation finishes in any order regardless of when a process requests the
lock or the process priority. So, a lower-priority process could get the lock and lock
out a higher-priority process even though the higher-priority process requests it
first.

• Searching for processes waiting for a lock

Call PROCESS_GETINFOLIST_ with the process list attribute (attribute code 15,
bit <7>) to determine whether a process is on the binary semaphore list waiting to
lock a binary semaphore.

• For information about binary semaphores for the BINSEM_CREATE_ procedure,
see General Considerations for Binary Semaphores on page 2-56.

Example
status := BINSEM_LOCK_(semid, timeout);

Note. This information is applicable only for G-series RVUs.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-64

BINSEM_OPEN_ Procedure

BINSEM_OPEN_ Procedure

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manuals

Summary
The BINSEM_OPEN_ procedure opens a binary semaphore.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the call:

0 No error.

22 Bounds error. The semid parameter cannot be written by the calling
process or processhandle cannot be read from the calling process.

29 Required parameter missing. The semid, processhandle, and
proc-semid parameters must be specified.

#include <cextdecs(BINSEM_OPEN_)>

short BINSEM_OPEN_ (__int32_t *semid
 ,short *processhandle
 ,__int32_t proc-semid);

error := BINSEM_OPEN_ (semid ! o
 ,processhandle ! i
 ,proc-semid); ! i

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-65

BINSEM_OPEN_ Procedure

4002 Either the process or the processor has reached the maximum number of
user semaphores it can open concurrently. The corresponding errno
value is ENOENT.

4013 Invalid access. The calling process does not have access to the binary
semaphore because of its security. The security for a binary semaphore is
set by the BINSEM_CREATE_ procedure. The corresponding errno
value is EACCES.

4022 Invalid parameter. The processhandle parameter does not specify a
process. A process that is being created or is terminating is treated as
though it does not exist. The corresponding errno value is EINVAL.

4024 Process cannot open the binary semaphore. The process has reached the
maximum limit of binary semaphores it can open. The corresponding
errno value is EMFILE.

semid output

INT (32) .EXT:ref:1

returns the binary semaphore ID of this instance of the open binary semaphore.
The semid parameter might have the same value as the proc-semid
parameter.

processhandle input

INT .EXT:ref:10

specifies the process handle of a process that has already opened the binary
semaphore. The processhandle and proc-semid pair can be obtained by a
previous call to the BINSEM_CREATE_ or BINSEM_OPEN_ procedure.

proc-semid input

INT (32):value

specifies the binary semaphore ID of an open binary semaphore. The
processhandle and proc-semid pair can be obtained by a previous call to the
BINSEM_CREATE_ or BINSEM_OPEN_ procedure.

Considerations

• The open operation and the state of the binary semaphore

The state of the binary semaphore remains unchanged from its original state.

Note. The number of binary semaphores a processor can have open is 65536.
This information is supported only on systems running J06.06 and later J-series
RVUs and H06.17 and later H-series RVUs.

Note. There are additional considerations for privileged callers.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-66

BINSEM_UNLOCK_ Procedure

• For information about binary semaphores for the BINSEM_CREATE_ procedure,
see General Considerations for Binary Semaphores on page 2-56.

Example
error := BINSEM_OPEN_(semid, processhandle, proc^semid);

Related Programming Manuals
For programming information about the BINSEM_OPEN_ procedure, see the Guardian
Programmer’s Guide.

BINSEM_UNLOCK_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manuals

Summary
The BINSEM_UNLOCK_ procedure unlocks a binary semaphore.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the call:

0 No error.

4001 Cannot unlock. The semid parameter is not locked by the calling
process. The corresponding errno value is EPERM.

#include <cextdecs(BINSEM_UNLOCK_)>

short BINSEM_UNLOCK_ (__int32_t semid);

error := BINSEM_UNLOCK_ (semid); ! i

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-67

BREAKMESSAGE_SEND_ Procedure

4022 Invalid parameter. The semid parameter does not identify a binary
semaphore that is opened by the calling process. The corresponding
errno value is EINVAL.

semid input

INT (32):value

specifies a binary semaphore ID.

Considerations

• The unlock operation and the state of the binary semaphore

• If the binary semaphore is locked by the calling process, then the value of
error is 0 and the state of the binary semaphore becomes unlocked.

• If the binary semaphore is either locked by another process, unlocked, or
forsaken, then the value of error is 4001 and the state of the binary
semaphore remains unchanged.

• For information about binary semaphores for the BINSEM_CREATE_ procedure,
see General Considerations for Binary Semaphores on page 2-56.

Example
error := BINSEM_UNLOCK_(semid);

Related Programming Manuals
For programming information about the BINSEM_UNLOCK_ procedure, see the
Guardian Programmer’s Guide.

BREAKMESSAGE_SEND_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The BREAKMESSAGE_SEND_ procedure sends a break-on-device message to a
specified process.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-68

BREAKMESSAGE_SEND_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation. A
successful indication implies only that the message has been sent, not that it has
been received.

processhandle input

INT .EXT:ref:10

specifies the process handle of the process that is to receive the break-on-device
message.

receiver-filenum input

INT:value

specifies the file number by which the receiving process identifies the open of the
process that is sending the break-on-device message.

breaktag input

INT .EXT:ref:2

if present, specifies a user-defined value to be delivered in the break-on-device
message. This value corresponds to the break tag value that can be supplied to
an access method with SETPARAM function 3.

If this parameter is omitted, 0 is used.

#include <cextdecs(BREAKMESSAGE_SEND_)>

short BREAKMESSAGE_SEND_ (short *processhandle
 ,short receiver-filenum
 ,[short *breaktag]);

error := BREAKMESSAGE_SEND_ (processhandle ! i
 ,receiver-filenum ! i
 ,[breaktag]); ! i

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-69

BREAKMESSAGE_SEND_ Procedure

Considerations
If processhandle designates a member of a named process pair, and if a failure or a
path switch occurs, delivery of the break-on-device message is automatically retried to
the backup process. For detailed information about system messages, see the
Guardian Procedure Errors and Messages Manual.

Example
error := BREAKMESSAGE_SEND_(proc-handle, file-number, tag);

Related Programming Manual
For programming information about the BREAKMESSAGE_SEND_ procedure, see the
Guardian Programmer’s Guide.

Guardian Procedure Calls (A-B)

Guardian Procedure Calls Reference Manual—522629-030
2-70

BREAKMESSAGE_SEND_ Procedure

Guardian Procedure Calls Reference Manual—522629-030
3-1

3 Guardian Procedure Calls (C)
This section contains detailed reference information for all user-accessible Guardian
procedure calls beginning with the letter C. Table 3-1 lists all the procedures in this
section.

Table 3-1. Procedures Beginning With the Letter C (page 1 of 2)

CANCEL Procedure

CANCELPROCESSTIMEOUT Procedure

CANCELREQ[L] Procedure

CANCELTIMEOUT Procedure

CHANGELIST Procedure

CHECK^BREAK Procedure

CHECK^FILE Procedure

CHECKALLOCATESEGMENT Procedure (Superseded by
SEGMENT_ALLOCATE_CHKPT_ Procedure)

CHECKCLOSE Procedure (Superseded by FILE_CLOSE_CHKPT_ Procedure)

CHECKDEALLOCATESEGMENT Procedure (Superseded by
SEGMENT_DEALLOCATE_CHKPT_ Procedure)

CHECKDEFINE Procedure

CHECKMONITOR Procedure

CHECKOPEN Procedure (Superseded by FILE_OPEN_CHKPT_ Procedure)

CHECKPOINT Procedure (Superseded by CHECKPOINTX Procedure)

CHECKPOINTMANY Procedure (Superseded by CHECKPOINTMANYX Procedure)

CHECKPOINTMANYX Procedure

CHECKPOINTX Procedure

CHECKRESIZESEGMENT Procedure

CHECKSETMODE Procedure

CHECKSWITCH Procedure

CHILD_LOST_ Procedure

CLOSE Procedure (Superseded by FILE_CLOSE_ Procedure)

CLOSE^FILE Procedure

CLOSEALLEDIT Procedure

CLOSEEDIT Procedure (Superseded by CLOSEEDIT_ Procedure)

CLOSEEDIT_ Procedure

COMPLETEIOEDIT Procedure

COMPRESSEDIT Procedure

COMPUTEJULIANDAYNO Procedure

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-2

COMPUTETIMESTAMP Procedure

CONFIG_GETINFO_BYLDEV_ Procedure (G-Series and H-Series RVUs Only)

CONFIG_GETINFO_BYNAME_ Procedure (G-Series and H-Series RVUs Only)

CONFIG_GETINFO_BYLDEV2_ Procedure (G-Series and H-Series RVUs Only)

CONFIG_GETINFO_BYNAME2_ Procedure (G-Series and H-Series RVUs Only)

CONTIME Procedure

CONTROL Procedure

CONTROLBUF Procedure

CONTROLMESSAGESYSTEM Procedure

CONVERTASCIIEBCDIC Procedure

CONVERTPROCESSNAME Procedure (Superseded by FILENAME_RESOLVE_
Procedure)

CONVERTPROCESSTIME Procedure

CONVERTTIMESTAMP Procedure

CPU_GETINFOLIST_ Procedure

CPUTIMES Procedure

CREATE Procedure (Superseded by FILE_CREATELIST_ Procedure)

CREATEPROCESSNAME Procedure (Superseded by PROCESSNAME_CREATE_
Procedure)

CREATEREMOTENAME Procedure (Superseded by PROCESSNAME_CREATE_
Procedure)

CREATORACCESSID Procedure (Superseded by PROCESS_GETINFOLIST_ Procedure)

CRTPID_TO_PROCESSHANDLE_ Procedure

CURRENTSPACE Procedure (Superseded)

Table 3-1. Procedures Beginning With the Letter C (page 2 of 2)

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-3

CANCEL Procedure

CANCEL Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Condition Code Settings
Messages
Related Programming Manual

Summary
The CANCEL procedure is used to cancel the oldest incomplete operation on a file
opened nowait. The canceled operation might or might not have had effects. For disk
files, the file position might or might not be changed.

Syntax for C Programmers

• The function value returned by CANCEL, which indicates the condition code, can
be interpreted by _status_lt(), _status_eq(), or _status_gt() (defined
in the file tal.h).

Syntax for TAL Programmers

Note. You can cancel a specific request, identified with a tag parameter, using a call to
CANCELREQ.

#include <cextdecs(CANCEL)>

_cc_status CANCEL (short filenum);

CALL CANCEL (filenum); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-4

CANCELPROCESSTIMEOUT Procedure

Parameters

filenum input

INT:value

is the number of an open file whose oldest incomplete operation you want to
cancel.

Considerations

• Queue files

If a READUPDATELOCK[X] operation is canceled using the CANCEL procedure,
the READUPDATELOCK[X] might already have deleted a record from the queue
file, which could result in a loss of a record from the queue file. For audited queue
files only, your application can recover from a timeout error by calling the
ABORTTRANSACTION procedure, when detecting error 40, to ensure that any
dequeued records are reinserted into the file. For nonaudited queue files, there is
no recovery of a lost record. Thus, your application should never call AWAITIO[X]
with a time limit greater than 0D if READUPDATELOCK[X] is pending. The
ABORTTRANSACTION recovery procedure does not work on nonaudited queue
files.

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that the operation was canceled.

> (CCG) does not return from CANCEL.

Messages
The server process (that is, a process that was opened and to which the I/O request
was sent) receives a system message -38 (queued message cancellation) that
identifies the canceled I/O request, if it has requested receipt of such messages. If the
server has already replied to the I/O request, message -38 is not delivered. For details
about system message-38, see the Guardian Procedure Errors and Messages Manual.

Related Programming Manual
For programming information about the CANCEL procedure, see the Guardian
Programmer’s Guide.

CANCELPROCESSTIMEOUT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-5

CANCELPROCESSTIMEOUT Procedure

Parameters
Condition Code Settings
Related Programming Manual

Summary
The CANCELPROCESSTIMEOUT procedure cancels a process-time timer previously
initiated by a call to the SIGNALPROCESSTIMEOUT procedure.

Syntax for C Programmers

• The function value returned by CANCELPROCESSTIMEOUT, which indicates the
condition code, can be interpreted by _status_lt(), _status_eq(), or
_status_gt() (defined in the file tal.h).

Syntax for TAL Programmers

Parameters

tag input

INT:value

is the identifier associated with the timer to be canceled or -1 if all timers set by
calls to SIGNALPROCESSTIMEOUT by that process are to be canceled.

Condition Code Settings
< (CCL) is not returned by CANCELPROCESSTIMEOUT.

= (CCE) indicates that CANCELPROCESSTIMEOUT was successful.

> (CCG) indicates that tag was invalid.

Related Programming Manual
For programming information about the CANCELPROCESSTIMEOUT procedure, see
the Guardian Programmer’s Guide.

#include <cextdecs(CANCELPROCESSTIMEOUT)>

_cc_status CANCELPROCESSTIMEOUT (short tag);

CALL CANCELPROCESSTIMEOUT (tag); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-6

CANCELREQ[L] Procedure

CANCELREQ[L] Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Messages
Related Programming Manual

Summary
The CANCELREQ[L] procedure is used to cancel an incomplete operation, identified
by a file number and tag, on a file opened for nowait I/O. Use the CANCELREQL
procedure to cancel an outstanding SERVERCLASS_SENDL_ request, which has a
64-bit tag. The canceled operation might or might not have had effects. For disk files,
the file position might or might not be changed.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

• The function value returned by CANCELREQ, which indicates the condition code,
can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

#include <cextdecs(CANCELREQ)>

_cc_status CANCELREQ (short filenum
 ,[__int32_t tag]);

#include <cextdecs(CANCELREQL)>

short CANCELREQL (short filenum
 ,[long long tag]);

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-7

CANCELREQ[L] Procedure

Syntax for TAL Programmers

Parameters

error returned value

INT:value (Use with CANCELREQL)

is a file-system error number indicating the outcome of the operation.

0 (FEOK)

indicates a successful operation.

filenum input

INT:value

is the number of an open file, identifying the file whose operation did not complete
and is to be canceled.

tag input

INT(32):value (Use with CANCELREQ)
INT(64):value (Use with CANCELREQL)

is the tag value passed to the procedure that initialized the I/O operation. It
identifies the operation to be canceled.

If the tag omitted or 0, the oldest incomplete request is canceled.

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that the operation was canceled.

> (CCG) does not return from CANCELREQ.

Considerations

• If you use the tag parameter, the system cancels the oldest incomplete operation
associated with that tag value. If you do not provide a tag, the system cancels the
oldest incomplete operation for filenum.

• If you omit the tag parameter, CANCELREQ[L] works exactly like CANCEL.

CALL CANCELREQ (filenum ! i
 ,[tag]); ! i

error:= CANCELREQL (filenum ! i
 ,[tag]); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-8

CANCELTIMEOUT Procedure

Messages
The server process receives a system message -38 (queued message cancellation)
that identifies the canceled I/O request, if it has requested receipt of such messages.

Related Programming Manual
For programming information about the CANCELREQ procedure, see the Guardian
Programmer’s Guide.

CANCELTIMEOUT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Related Programming Manual

Summary
The CANCELTIMEOUT procedure cancels an elapsed-time timer previously initiated
by a call to the SIGNALTIMEOUT procedure.

Syntax for C Programmers

• The function value returned by CANCELTIMEOUT, which indicates the condition
code, can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

Syntax for TAL Programmers

Parameters

tag input

INT:value

Note. The CANCELREQL procedure is supported on systems running J06.07 and later J-
series RVUs and H06.18 and later H-series RVUs.

#include <cextdecs(CANCELTIMEOUT)>

_cc_status CANCELTIMEOUT (short tag);

CALL CANCELTIMEOUT (tag); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-9

CHANGELIST Procedure

is the identifier associated with the timer to be canceled or -1 if all timers set by
calls to SIGNALTIMEOUT by that process are to be canceled.

Condition Code Settings
< (CCL) is not returned from CANCELTIMEOUT.

= (CCE) indicates that CANCELTIMEOUT completed successfully.

> (CCG) indicates that tag was invalid.

Related Programming Manual
For programming information about the CANCELTIMEOUT procedure, see the
Guardian Programmer’s Guide.

CHANGELIST Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Examples
Related Programming Manuals

Summary
The CHANGELIST procedure is used only when the application program acts as a
supervisor or tributary station in a centralized multipoint configuration.

Within a supervisor station, CHANGELIST performs one of these operations:

• Specifies continuous or noncontinuous polling

• Enables or disables polling of a particular station

• Resumes polling of partially disabled (that is, nonresponding) stations

• Performs the activation or deactivation of a tributary station by altering the setting
of the poll state bit for a particular entry

Note. If polling is in progress when you make the call to CHANGELIST, the specified changes
do not take effect until polling completes either on its own or as the result of a call to
HALTPOLL.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-10

CHANGELIST Procedure

Syntax for C Programmers

• The function value returned by CHANGELIST, which indicates the condition code,
can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is the one-word integer variable returned by the call to FILE_OPEN_ or OPEN that
opened the line.

function input

INT:value

is an integer value specifying what change is to be made:

>= 0 changes the poll state bit. In this case, function also specifies the
relative address of the particular station address within the address list (0
indicates the first entry, 1 the second entry, and so forth). The
parameter value, described below, specifies whether you want the bit to
be set or cleared.

-1 changes the polling type. The parameter value described below
specifies whether you want continuous polling or you want the polling list to
be traversed a finite number of times.

-2 restores all partially disabled stations.

parameter input

INT:value

is an integer value used with the function value to specify what change is to be
made.

#include <cextdecs(CHANGELIST)>

_cc_status CHANGELIST (short filenum
 ,short function
 ,short parameter);

CALL CHANGELIST (filenum ! i
 ,function ! i
 ,parameter); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-11

CHECK^BREAK Procedure

>= 0 The parameter value specifies whether you want the poll or select state
bit set or cleared as follows:

0 Cleared

1 Set

The meaning of this bit is somewhat different depending upon whether the
station list is that of a supervisor or a tributary station:

• Within a supervisor station, the poll state bit enables (clears) or
disables (sets) the polling of the particular tributary station.

• Within a tributary station, the poll state bit activates (clears) or
deactivates (sets) the tributary station with regard to its ability to
respond to a poll or select the designated station address.

= -1 The parameter value specifies the desired type of polling as follows:

0 Continuous polling

> 0 Noncontinuous polling (traverse the polling list the specified number of
times and then cease polling).

= -2 The parameter value has no meaning. The CHANGELIST procedure,
however, expects to be passed three values; you must therefore supply a
dummy parameter value.

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that the CHANGELIST procedure executed successfully.

> (CCG) does not return from CHANGELIST.

Examples
CALL CHANGELIST (FNUM , -1 , 10);

In this example, within a supervisor station, this call enables limited polling in which the
station list is traversed 10 times. Polling does not begin, however, until READ is
subsequently called. After the tenth pass through the polling list, polling ceases.

Related Programming Manuals
For programming information about the CHANGELIST procedure, see the data
communication manuals.

CHECK^BREAK Procedure
Summary
Syntax for C Programmers
Sytax for TAL Programmers

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-12

CHECK^BREAK Procedure

Parameters
Considerations
Example
Related Programming Manual

Summary
The CHECK^BREAK procedure tests whether the BREAK key has been typed since
the last CHECK^BREAK.

CHECK^BREAK is a sequential I/O (SIO) procedure and can be used only with files
that have been opened by OPEN^FILE.

Syntax for C Programmers

Sytax for TAL Programmers

Parameters

state returned value

INT

returns a value indicating whether or not the BREAK key has been typed. Values
are:

1 BREAK key typed; the process owns BREAK.

0 BREAK key not typed; this process does not own BREAK.

common-fcb input

INT:ref:*

identifies the file to be checked for BREAK. The common-Fcb parameter is
allowed for convenience.

file-fcb input

INT:ref:*

identifies the file to be checked for BREAK.

#include <cextdecs(CHECK_BREAK)>

short CHECK_BREAK (short { _near *common-fcb }
 { _near *file-fcb });

state := CHECK^BREAK ({ common-fcb } ! i
 { file-fcb }); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-13

CHECK^FILE Procedure

Considerations

• Default action

If a carriage return/line feed (CR/LF) on BREAK is enabled (that is, BREAK
ownership is taken by the process), the CR/LF default case sequence is executed
on the terminal where BREAK is typed.

• For information about terminals, see the Guardian Programmer’s Guide.

Example
BREAK := CHECK^BREAK (OUT^FILE);

Related Programming Manual
For programming information about the CHECK^BREAK procedure, see the Guardian
Programmer’s Guide.

CHECK^FILE Procedure
Summary
Syntax for Native C Programs
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The CHECK^FILE procedure checks the file characteristics of a specified file.

CHECK^FILE is a sequential I/O (SIO) procedure and can be used only with files that
have been opened by OPEN^FILE.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-14

CHECK^FILE Procedure

Syntax for Native C Programs

 Syntax for TNS C Programs

Syntax for TAL Programmers
 For pTAL callers, the procedure definition is:

For other callers, the procedure definition is:

Parameters

retval returned value

INT

returns a value for the requested operation. The operations and their associated
return values are listed in Table 3-2 and Table 3-3.

common-fcb or file-fcb input

INT:ref:*

identifies which file is checked. The common file control block (FCB) can be used
for certain types of operations; the common FCB must be used for the operations
FILE^BREAKHIT, FILE^ERRORFILE, and FILE^TRACEBACK. Specifying an
improper FCB causes an error indication.

#include <cextdecs(CHECK_FILE)>

short CHECK_FILE (short { _near *common-fcb }
 { _near *file-fcb }
 ,short operation
 ,[short _near *ret-addr]);

#include <cextdecs(CHECK_FILE)>

short CHECK_FILE (short { _near *common-fcb }
 { _near *file-fcb }
 ,short operation);

retval := CHECK^FILE ({ common-fcb } ! i
 { file-fcb } ! i
 ,operation ! i
 ,[ret-addr]); ! o

retval := CHECK^FILE ({ common-fcb } ! i
 { file-fcb } ! i
 ,operation); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-15

CHECK^FILE Procedure

operation input

INT:value

specifies which file characteristic is checked. The operations and their associated
return values are listed in Table 3-2 and Table 3-3.

ret-addr output

WADDR

for native callers only, returns an address for the requested operation.

Considerations

• During the execution of this procedure, the detection of any error causes the
display of an error message and the process is aborted.

• This procedure is used to get the primary extent or secondary extent size of a file
that is no greater than 65,535 pages. If the primary and secondary extent sizes
are greater than 65,535, error 538 is returned.

• Table 3-2 contains operations that return values returned in retval.

• Table 3-3 contains operations that return addresses. For native callers, addresses
are returned in the ret-addr parameter. For other callers, addresses are
returned in retval.

• In Table 3-2 and Table 3-3 the column labeled “State of File” can contain these:

Open The file must be open to obtain this characteristic.

Any The file can be either open or closed.

Table 3-2 describes operations that return values returned in retval.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-16

CHECK^FILE Procedure

Table 3-2. CHECK^FILE Operations That Return Values (page 1 of 4)

operation
State
of File retval

FILE^ABORT^XFERERR Open 0 if the process is not to abort upon
detection of a fatal error in the file.

1 if the process is to abort.

FILE^ASSIGNMASK1 Any Returns the high-order word of the
ASSIGN message field mask in the FCB.
This value generally has meaning only
after being set by the INITIALIZER
procedure.

FILE^ASSIGNMASK2 Any Returns the low-order word of the ASSIGN
message field mask in the FCB. This
value generally has meaning only after
being set by the INITIALIZER procedure.

FILE^BLOCKBUFLEN Any Returns a count of the number of bytes
used for blocking.

FILE^BREAKHIT Any 0 if the break hit bit is equal to 0 in the
FCB.

1 if the break hit bit is equal to 1 in the
FCB.

The break hit bit is an internal indicator
normally used only by the SIO procedures.

Note:
When using the break-handling
procedures, do not use FILE^BREAKHIT to
determine whether the BREAK key has
been pressed. Instead, the
CHECK^BREAK procedure must be called.

FILE^CHECKSUM Any Returns the value of the checksum word in
the FCB.

FILE^COUNTXFERRED Open Returns a count of the number of bytes
transferred in the latest physical I/O
operation.

FILE^CREATED Open 0 if a file was not created by OPEN^FILE.

1 if a file was created by OPEN^FILE.

FILE^CRLF^BREAK Open 0 if no CR/LF sequence is to be issued to
the terminal upon break detection.

1 if this sequence is to be issued.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-17

CHECK^FILE Procedure

FILE^EDITLINE^INCREMENT Open Returns the EDIT line increment to be
added to successive line numbers for lines
that are added to the file. The value is
1000 times the line number increment
value.

FILE^ERROR Any Returns the error number of the latest error
that occurred within the file.

FILE^FILEFORMAT Open Returns the file format type. Returns 1 for
format 1 files and 2 for format 2 files.

FILE^FILEINFO Open <file-info>, where

<file-info>.<0:3> = File type:

0 = Unstructured

1 = Relative

2 = Entry-sequenced

3 = Key-sequenced

4 = EDIT

8 = Odd unstructured

.<4:9> = Device type

.<10:15>= Device subtype

The device type and subtype are described
in Appendix A, Device Types and Subtypes.
File types 0-3 are described in the
Enscribe Programmer’s Guide.

FILE^FNUM Open Returns the file number. If the file is not
open, the file number is -1.

FILE^LEVEL3^SPOOLING Open 0 if level-3 spooling is disabled.

1 if level-3 spooling is enabled.

See OPEN^FILE for details.

FILE^LOGIOOUT Open 0 if there is no logical I/O outstanding.

1 if a logical read is outstanding.

2 if a logical write is outstanding.

FILE^OPENACCESS Any Returns the open access for the file. See
SET^FILE for the format.

FILE^OPENEXCLUSION Open Returns the open exclusion for the file.
See SET^FILE for format.

Table 3-2. CHECK^FILE Operations That Return Values (page 2 of 4)

operation
State
of File retval

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-18

CHECK^FILE Procedure

FILE^PHYSIOOUT Open 0 to indicate that there is no outstanding
physical I/O operation.

1 if a physical I/O operation is
outstanding.

FILE^PRIEXT Any Returns the file's primary extent size in
pages. The primary extent size cannot
be greater than 65,535 pages.
Otherwise, error 538 is returned.

FILE^PRINT^ERR^MSG Open 0 if no error message is to be printed
upon detection of a fatal error in the file.

1 if an error message is to be printed.

FILE^PROMPT Open Returns the interactive prompt character
for the file in <9:15>.

FILE^RCVEOF Open 0 if the user does not get an end-of-file
(EOF) indication when the process
[pair] having this process open closes
it.

1 if the user does get an EOF indication
when this process closes.

FILE^RCVOPENCNT Open Returns a count of current openers of this
process {0:2}. At any given moment,
openers are limited to a single process
[pair].

FILE^RCVUSEROPENREPL
Y

Open 0 if the SIO procedures are to reply to the
open messages ($RECEIVE file).

1 if the user is to reply to the open
messages.

FILE^READ^TRIM Open 0 if the trailing blanks are not trimmed off
the data read from this file.

1 if the trailing blanks are trimmed.

FILE^RECORDLEN Any Returns the logical record length.

FILE^SECEXT Any Returns the file's secondary extent size in
pages. The secondary extent size
cannot be greater than 65,535 pages.
Otherwise, error 538 is returned.

Table 3-2. CHECK^FILE Operations That Return Values (page 3 of 4)

operation
State
of File retval

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-19

CHECK^FILE Procedure

This table describes operations that return addresses. For native callers, addresses
are returned in the ret-addr parameter. For other callers, addresses are returned in
retval.

FILE^SYSTEMMESSAGES Open Returns a mask word indicating which
system messages the user handles
directly. See SET^FILE for the format. 0
indicates that the SIO procedures handle
all system messages. Note that this
operation cannot check some of the newer
system messages; for these, use operation
FILE^SYSTEMMESSAGESMANY.

FILE
^SYSTEMMESSAGESMANY

Open Returns the word address within the FCB
of a four-word mask indicating which
system messages the user handles
directly. See SET^FILE for the format. A
return of all zeros indicates that the SIO
procedures handle all system messages.

FILE^TRACEBACK Any 0 if the P-relative address should not be
appended to all SIO error messages.

1 if the P-relative address should be
appended to all SIO error messages.

FILE^USERFLAG Any Returns the user flag word. (See
SET^FLAG procedure, SET^USERFLAG
operation.)

FILE^WRITE^FOLD Open 0 if records longer than the logical record
length are truncated.

1 if long records are folded.

FILE^WRITE^PAD Open 0 if a record shorter than the logical
record length is not padded with trailing
blanks before it is written to the file.

1 if a short record is padded with trailing
blanks.

FILE^WRITE^TRIM Open 0 if trailing blanks are not trimmed from
data written to the file.

1 if trailing blanks are trimmed.

Table 3-2. CHECK^FILE Operations That Return Values (page 4 of 4)

operation
State
of File retval

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-20

CHECK^FILE Procedure

Table 3-3. CHECK^FILE Operations That Return Addresses (page 1 of 2)

operation State
of File

ret-addr (for native callers) retval (for other
callers)

FILE^BWDLINKFCB Any Returns the address of the FCB pointed to
by the backward link pointer within the
FCB. This indicates the linked-to FCBs that
need to be checkpointed after an
OPEN^FILE or CLOSE^FILE call.

FILE^DUPFILE Open Returns the word address of the duplicate
file FCB. 0 is returned if there is no
duplicate file.

FILE^ERROR^ADDR Any Returns the word address within the FCB
where the error code is stored.

FILE^ERRORFILE Any Returns the word address within the FCB
of the reporting error file. 0 is returned if
there is none.

FILE^FCB^ADDR Any Returns the address of the FCB.

FILE^FILENAME^ADDR Any Returns the word address within the FCB
of the physical file name.

FILE^FNUM^ADDR Any Returns the word address within the FCB
of the file number.

FILE^FWDLINKFCB Any Returns the address of the FCB pointed to
by the forward link pointer within the FCB.
This value indicates the linked-to FCBs
that need to be checkpointed after an
OPEN^FILE or CLOSE^FILE call.

FILE^LOGICALFILENAME^A
DDR

Any Returns the word address within the FCB
of the logical file name. The logical file
name is encoded as follows:

Byte Number Contents

[0] <len> is the
length of the
logical file name
in bytes {0:8}

[1] through [8] <logical file
name>

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-21

CHECKALLOCATESEGMENT Procedure
(Superseded by SEGMENT_ALLOCATE_CHKPT_

Example
 native caller:
CALL CHECK^FILE (IN^FILE , FILE^FILENAME^ADDR, INFILE^ADDR);

other callers:
@INFILE^NAME := CHECK^FILE (IN^FILE , FILE^FILENAME^ADDR);

Related Programming Manual
For programming information about the CHECK^FILE procedure, see the Guardian
Programmer’s Guide.

CHECKALLOCATESEGMENT Procedure
(Superseded by
SEGMENT_ALLOCATE_CHKPT_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations

FILE^OPENERSPID^ADDR Open Returns the word address within the FCB
of the file opener’s PID. Valid only for C-
series format FCBs.

FILE^SEQNUM^ADDR Any Returns the word address within the FCB
of an INT (32) sequence number. This is
the line number of the last record read of
an EDIT file. For other files, this is the
sequence number of the last record read
multiplied by 1000.

FILE^USERFLAG^ADDR Any Returns the word address within the FCB
of the user flag word.

Table 3-3. CHECK^FILE Operations That Return Addresses (page 2 of 2)

operation State
of File

ret-addr (for native callers) retval (for other
callers)

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-22

CHECKALLOCATESEGMENT Procedure
(Superseded by SEGMENT_ALLOCATE_CHKPT_

Summary

The CHECKALLOCATESEGMENT procedure allocates a selectable extended data
segment for use by the backup process in a process pair. It is called from the primary
process.

Although it is possible to share flat segments meant for use by the backup process in a
process pair using the CHECKALLOCATESEGMENT procedure, flat segments can be
allocated for this purpose only with the SEGMENT_ALLOCATE_CHKPT_ procedure.
SEGMENT_ALLOCATE_CHKPT_ can also allocate selectable segments for use by
the backup process in a process pair.

Syntax for C Programmers
This passive backup procedure is not supported in C programs. For a comparison of
active backup and passive backup, see the Guardian Programmer’s Guide.

Syntax for TAL Programmers

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

CALL CHECKALLOCATESEGMENT (segment-id ! i
 ,[file-name] ! i
 ,[pin-and-flags] ! i
 ,error); ! o

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-23

CHECKALLOCATESEGMENT Procedure
(Superseded by SEGMENT_ALLOCATE_CHKPT_

Parameters

segment-id input

INT:value

is the number by which the process chooses to refer to the extended data
segment. Segment IDs are in these ranges:

0-1023 can be specified by user processes.

Other IDs are reserved for HP software.

No process can supply a segment ID greater than 2047.

file-name input

INT .EXT:ref:12

if present, is the internal-format file name of a swap file to be associated with the
extended data segment. If the file exists, all data in the file is used as initial data
for the segment. If the file does not exist, one is created. Remote file names and
structured files are not accepted. If the process terminates without deallocating the
segment, any data still in memory is written back out to the file.
CHECKALLOCATESEGMENT must be able to allocate a sufficient number of file
extents to contain all memory in the segment.

The parameter can be a volume name with a blank subvolume and file;
CHECKALLOCATESEGMENT allocates a temporary swap file on the indicated
volume.

If you do not specify file-name (and if a segment is not being shared using the
PIN method), CHECKALLOCATESEGMENT uses the volume of the data stack
swap file to create a temporary swap file for the new segment.

pin-and-flags input

INT:value

Defaults to %040000. Its values are:

<8:15> Optional PIN for segment sharing.

Requests allocation of a shared segment that is shared by the PIN
method. This value specifies the process identification number (PIN)
of the process that has previously allocated the segment and with
which the caller wants to share the segment. This value is not used if
bit 1 is set to 1 (see bit 1 later).

<5:7> Not used; must be zero (0).

<4> If 1, requests allocation of an extensible segment. An extensible
segment is an extended data segment for which the underlying swap
file disk space is not allocated until needed. In this case, the value of
segment-size allocated by the primary process is taken as a

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-24

CHECKALLOCATESEGMENT Procedure
(Superseded by SEGMENT_ALLOCATE_CHKPT_

maximum size, and the underlying virtual memory is expanded
dynamically as the user accesses various addresses within the
extended data segment. When the user first accesses a portion of an
extensible data segment for which the corresponding swap file extent
hasn’t been allocated, the operating system allocates the extent. If this
extent cannot be allocated, the user process terminates: a TNS
Guardian process terminates with a “no memory available” trap (trap
12); an OSS or native process receives a SIGNOMEM signal.

pin-and-flags (continued)

<3> If 1, requests allocation of a “shared segment.” A shared segment is
an extended data segment that can be shared with other processes in
the processor. The file-name parameter must be supplied when a
shared segment is allocated. Processes sharing segments by this
mechanism can reference the address space by different segment IDs
and can supply different values of segment-size to
ALLOCATESEGMENT. The value of segment-size supplied by the
very first allocator of a particular shared segment (as identified by the
swap file name) limits the size of the segment for subsequent
processes attempting to share that segment.

<2> If 1, requests allocation of a read-only segment. A read-only segment
is an extended data segment that is initialized from a preexisting swap
file and used only for read access. A read-only segment can be
shared by either the PIN or file-name method. It can also be shared by
file name between processes in different processors. Note that the
file-name parameter must specify the name of an existing swap file
that is not empty. If this bit is 1, bit <4> of pin-and-flags must be
0 (writeback-inhibit extensible segments are not allowed) and bit 1
must be set to 1, indicating a shared segment.

<1> If 1, bits <8:15> are ignored.

If 0, designates that the extended data segment specified by
segment-id is to be shared with the process specified by the PIN in
bits <8:15> of pin-and-flags. For this sharing to occur, the
processes must execute in the same processor and one of these must
be true:

•The processes share the same process access ID (PAID).

•This process’s PAID must be the group manager for the PAID of
the other process.

•This process’s PAID must be the super ID (255,255).

Processes sharing a segment by the PIN method reference the
segment by the same value of segment-id.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-25

CHECKALLOCATESEGMENT Procedure
(Superseded by SEGMENT_ALLOCATE_CHKPT_

error output

INT .EXT:ref:1

indicates the outcome of the call. This procedure returns all values returned by
ALLOCATESEGMENT in the backup, plus these file-system errors:

2 Segment is not allocated by the primary, or segment ID is invalid

22 Bounds error on file name

29 The segment-id is missing

30 No message-system control blocks available

31 Cannot use the PFS, or there is no room in the PFS for a message buffer
in either the backup or the primary

201 Unable to LINK to the backup

Condition Code Settings

< (CCL) is set if the error parameter is missing, or there is a bounds error on the
error parameter.

= (CCE) is set by all other errors (see the error parameter).

> (CCG) is never returned from this procedure.

Considerations

• The segment-size parameter of ALLOCATESEGMENT is not supported
because the size of the primary process’s segment is used.

• An extended data segment with the same segment ID must be previously allocated
in the primary process; that is, before the call to CHECKALLOCATESEGMENT.

• If the file-name parameter is provided, that file name is used by
ALLOCATESEGMENT in the backup process; otherwise, no file-name parameter
is passed to ALLOCATESEGMENT in the backup process.

• If the pin-and-flags parameter is omitted, the default value is used (%040000).

• Be careful when using the pin-and-flags parameter. The flag settings should
be the same as the flag settings used when the extended data segment was
allocated by the primary process. CHECKALLOCATESEGMENT does not check
the flag settings; the information is no longer available.

If a PIN is specified, assign it carefully, because the PIN may not necessarily be
the same on the backup processor. You must determine the correct PIN for the
backup processor.

• If the extended data segment is not read-only, the swap file name must be different
on the backup and primary processors because swap files cannot be shared

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-26

CHECKCLOSE Procedure
(Superseded by FILE_CLOSE_CHKPT_ Procedure)

between processors. An error is returned from ALLOCATESEGMENT on the
backup.

• Nonexisting temporary swap file

If a shared segment is being allocated (pin-and-flags bits <3:2> not equal to
0), and a volume name only is supplied in the file-name parameter, then the
complete file name of the temporary file created by CHECKALLOCATESEGMENT
is returned.

• Swap file extent allocation

If an extensible segment is being created, then only one extent of the swap file is
allocated when CHECKALLOCATESEGMENT returns.

• Segment sharing

Subject to security requirements, a process can share a segment with another
process running on the same processor. For example, process $X can share a
segment with any of these processes on the same processor:

• Any process that has the same process access ID (PAID)

• Any process that has the same group ID, if $X is the group manager (n,255)

• Any process, if $X is the super ID (255,255)

If processes are running in different processors, they can share a segment only if
the security requirements are met and the segment is a read-only segment.

Callers of [CHECK]ALLOCATESEGMENT can share segments with callers of
SEGMENT_ALLOCATE_[CHKPT_]. High-PIN callers can share segments with
low-PIN callers.

• Sharing flat segments

A process cannot share a flat segment with a process that allocated a selectable
segment, because the segments reside in different parts of memory. (Similarly, a
process cannot share a selectable segment with a process that allocated a flat
segment.)

CHECKCLOSE Procedure
(Superseded by FILE_CLOSE_CHKPT_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-27

CHECKCLOSE Procedure
(Superseded by FILE_CLOSE_CHKPT_ Procedure)

Summary

The CHECKCLOSE procedure is called by a primary process to close a designated file
in its backup process.

The backup process must be in the monitor state (that is, in a call to
CHECKMONITOR) for the CHECKCLOSE to be successful. The call to
CHECKCLOSE causes the CHECKMONITOR procedure in the backup process to call
the file-system CLOSE procedure for the designated file.

Syntax for C Programmers
This passive backup procedure is not supported in C programs. For a comparison of
active backup and passive backup, see the Guardian Programmer’s Guide.

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is the file number of an open file to be closed in the backup process.

tape-disposition input

INT:value

if present, specifies magnetic tape disposition, as follows:

tape-disposition.<13:15>

0 Rewind and unload, do not wait for completion

1 Rewind, take offline, do not wait for completion

2 Rewind, leave online, do not wait for completion

3 Rewind, leave online, wait for completion

4 Do not rewind, leave online

If omitted, 0 is used.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

CALL CHECKCLOSE (filenum ! i
 ,[tape-disposition]); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-28

CHECKDEALLOCATESEGMENT Procedure
(Superseded by

Condition Code Settings
These settings are obtained from the CLOSE procedure in the backup process;
CHECKCLOSE establishes these settings in the primary process:

< (CCL) indicates that an invalid file number was supplied or that the backup
process does not exist.

= (CCE) indicates that the CLOSE was successful.

> (CCG) does not return from CHECKCLOSE.

Considerations

• Identification of the backup process

The system identifies the process to be affected by the CHECKCLOSE operation
from the process’s mom field in the process control block (PCB). For named
process pairs, this field is automatically set up during the creation of a backup
process.

• The condition code returned from CHECKCLOSE indicates the outcome of the
CLOSE in the backup process.

• See Considerations on page 3-69.

CHECKDEALLOCATESEGMENT Procedure
(Superseded by
SEGMENT_DEALLOCATE_CHKPT_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations

Summary

The CHECKDEALLOCATESEGMENT procedure deallocates an extended data
segment from use by the backup process in a process pair. It is called by the primary
process when it is no longer needed by the backup process.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-29

CHECKDEALLOCATESEGMENT Procedure
(Superseded by

Syntax for C Programmers
This passive backup procedure is not supported in C programs. For a comparison of
active backup and passive backup, see the Guardian Programmer’s Guide.

Syntax for TAL Programmers

Parameters

segment-id input

INT:value

is the segment number of the segment, as specified in the call to
ALLOCATESEGMENT that created it.

flags input

INT:value

if present, has the form:

<0:14>
Must be 0.

<15> 1 Indicates that dirty pages in memory are not to be copied to the swap
file (see ALLOCATESEGMENT Procedure
(Superseded by SEGMENT_ALLOCATE_ Procedure) on page 2-20).

0 Indicates that dirty pages in memory are to be copied to the swap file.

If omitted, this parameter defaults to 0.

error output

INT .EXT:ref:1

indicates the outcome of the call. This procedure returns all values returned by
DEALLOCATESEGMENT in the backup process, plus these file-system errors:

2 The segment ID is invalid or the backup process could not deallocate the
segment.

29 The segment-id is missing.

30 No control blocks are available for linking.

31 Cannot use the process file segment (PFS), or the PFS has no room for a
message buffer in either the backup process or the primary process.

201 Unable to link to the backup process.

CALL CHECKDEALLOCATESEGMENT (segment-id ! i
 ,[flags] ! i
 ,error); ! o

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-30

CHECKDEFINE Procedure

Condition Code Settings

< (CCL) is set if the error parameter is missing, or a bounds error occurs on the
error parameter.

= (CCE) is set by all other errors (see error parameter).

> (CCG) is never returned from this procedure.

Considerations

• Allocation by the primary process

The segment need not be allocated by the primary process at the time of the call to
CHECKDEALLOCATESEGMENT.

• flags parameter

The flags.<15> = 1 option is used to improve performance when the swap file is
a permanent file or a temporary file that is opened concurrently by an application.
Following the call to CHECKDEALLOCATESEGMENT, the contents of the swap
file are unpredictable. If the CHECKDEALLOCATESEGMENT call causes a purge
of a temporary file, the system does not write the dirty pages (that is, pages that
are being used) out to the file. If the flags parameter is missing, the default value
of 0 is used.

• Segment deallocation

When a segment is deallocated, the swap file end of file (EOF) is set to the larger
of (1) the EOF when the file is opened by ALLOCATESEGMENT or (2) the end of
the highest numbered page that is written to the swap file. All file extents beyond
the EOF that did not exist when the file was opened are deallocated.

Before deallocating a segment, this procedure removes all memory access
breakpoints set in that segment.

• Shared segments

A shared segment remains in existence until it has been deallocated by all the
processes that allocated it.

CHECKDEFINE Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-31

CHECKDEFINE Procedure

Summary
This procedure is used to update a backup process with a DEFINE that was changed
in the primary process.

Syntax for C Programmers
This passive backup procedure is not supported in C programs. For a comparison of
active backup and passive backup, see the Guardian Programmer’s Guide.

Syntax for TAL Programmers

Parameters

status returned value

INT

returns a status word encoded as follows:

<0:7> = 0 Operation successful

<0:7> = 1 Could not communicate with backup process, then <8:15> = file-
system error number

define-name input

STRING .EXT:ref:24

is the 24-byte array that contains the name of the DEFINE to be sent to the backup
process. The name is left-justified and padded on the right with blanks. Trailing
blanks are ignored.

Considerations

• If the define-name parameter is omitted, the working attribute set of the backup
is updated to match that of the primary process.

• If the named DEFINE does not exist in the primary at the time of the call, then
CHECKDEFINE will cause deletion of the DEFINE of the given name in the backup
process if one exists. Otherwise, the named DEFINE will be copied to the backup,
replacing the backup’s version of the DEFINE if it has one.

• If the define-name parameter is supplied, but the first two bytes have the value
255 (-1 when treated as a word), then all DEFINEs in the backup process will be
deleted.

status := CHECKDEFINE [(define-name)]; ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-32

CHECKMONITOR Procedure

• Note that since all DEFINEs are propagated to the backup process when it is
created, use of CHECKDEFINE is not necessary unless one or more DEFINEs are
changed.

• If a call to CHECKDEFINE causes a DEFINE in the backup to be altered, deleted,
or added, then the context-change count for the backup process is incremented.

Example
STRING .EXT define^name[0:23];
LITERAL success = 0;
 .
 .
define^name ':=' ["=mydefine "];
status := CHECKDEFINE (define^name);
IF status <> success THEN ... ;

CHECKMONITOR Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Messages

Summary
The CHECKMONITOR procedure is called by a backup process to monitor the state of
the primary process and to return control to the appropriate point (in the backup
process) in the event of a failure of the primary process.

Syntax for C Programmers
This passive backup procedure is not supported in C programs. For a comparison of
active backup and passive backup, see the Guardian Programmer’s Guide.

Syntax for TAL Programmers

Parameters

status returned value

INT

returns a status word of this form:

status := CHECKMONITOR;

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-33

CHECKMONITOR Procedure

<0:7> = 2

<8:15> = 0 Primary process stopped
1 Primary process abnormally ended
2 Primarys porcess processor failed
3 Primary process called CHECKSWITCH

Considerations

• Takeovers and selectable data segments in use

If the stack has never been checkpointed, then at a takeover, the selectable
segment in use at the time of the call to the CHECKMONITOR or CHECKSWITCH
procedure is put into use. No segment is put into use if the segment is not
available; that is, the SEGMENT_ALLOCATE_CHKPT_ or
CHECKALLOCATESEGMENT procedure was not called to allocate the segment to
the backup process, or the SEGMENT_DEALLOCATE_CHKPT_ or
CHECKDEALLOCATESEGMENT procedure was called to deallocate the segment
from the backup process.

Messages
If CHECKMONITOR (or another checkpointing procedure) returns a value indicating
that a takeover has occurred due to a processor failure, the system subsequently
delivers a system message -2 (processor down) to the $RECEIVE file of the new
primary process. This might not be the first message delivered to the new primary
process if other system messages have arrived since the last checkpoint operation of
the old primary.

If CHECKMONITOR returns a value indicating that a takeover has occurred due to the
primary process stopping, the new primary process receives a system message -101
(Process Deletion) on its $RECEIVE file.

For the format of system message -2 (processor down) or -101 (Process Deletion), see
the Guardian Procedure Errors and Messages Manual.

Note. The normal return from a call to CHECKMONITOR is to the statement following a call to
the CHECKPOINT[MANY][X] procedure. The return corresponds to the latest call to
CHECKPOINT[MANY][X] by the primary process in which its stack was checkpointed.

The backup process executes the statement following the call to CHECKMONITOR only if the
primary process has not checkpointed its stack through a call to the CHECKPOINT[MANY][X]
procedure.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-34

CHECKOPEN Procedure
(Superseded by FILE_OPEN_CHKPT_ Procedure)

CHECKOPEN Procedure
(Superseded by FILE_OPEN_CHKPT_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Messages

Summary

The CHECKOPEN procedure is called by a primary process to open a designated file
for its backup process. These two conditions must apply before the call to
CHECKOPEN:

• The primary process must first open the file.

• The backup process must be in the “monitor” state (that is, in a call to
CHECKMONITOR) for the CHECKOPEN to be successful.

The call to CHECKOPEN causes the CHECKMONITOR procedure in the backup
process to call the file-system FILE_OPEN_ procedure for the designated file.

Syntax for C Programmers
This passive backup procedure is not supported in C programs. For a comparison of
active backup and passive backup, see the Guardian Programmer’s Guide.

Syntax for TAL Programmers

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

CALL CHECKOPEN ([file-name] ! i
 ,filenum ! i
 ,[flags] ! i
 ,[sync-or-receive-depth] ! i
 ,[sequential-block-buffer-id] ! i
 ,[buffer-length] ! i
 ,backerror); ! o

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-35

CHECKOPEN Procedure
(Superseded by FILE_OPEN_CHKPT_ Procedure)

Parameters
With the exception of filenum, all of the input parameters to this procedure are
ignored; the values that were specified when the primary process called OPEN or
FILE_OPEN_ are used instead. The ignored parameters are described under the
OPEN procedure.

filenum output

INT:ref:1

is the number that identifies the file that was opened by the primary process and
that is now to be opened by the backup process.

backerror output

INT:ref:1

returns one of these values:

Š0 is the file-system error number reflecting the call to FILE_OPEN_ in the
backup process.

-1 indicates that the backup process is not running or that the checkpoint
facility could not communicate with the backup process.

Condition Code Settings
These settings are obtained from the FILE_OPEN_ procedure in the backup process:

< (CCL) indicates that the open failed. The file-system error number returns in
backerror.

= (CCE) indicates that the open was successful.

> (CCG) indicates that the open was successful, but an exceptional condition was
detected. The file-system error number returns in backerror.

Considerations

• Identification of the backup process

The system identifies the process to be affected by CHECKOPEN from the
process’s mom field in the process control block (PCB). For named process pairs,
this field is automatically set up during the creation of a backup process.

• Nowait opens with CHECKOPEN

If a process file is opened nowait (flag.<8> = 1 with OPEN, options.<1> = 1
with FILE_OPEN_), that file is CHECKOPEN nowait. CHECKOPEN returns errors
detected in parameter specification and system data-space allocation in
backerror and the operation is considered complete.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-36

CHECKPOINT Procedure
(Superseded by CHECKPOINTX Procedure)

If no error is returned in backerror, the operation must be completed by a call to
AWAITIO in the primary process. If you specify the tag parameter, the value
returned by AWAITIO is -29D; the returned count and buffer address are
undefined. If the condition code CCL is returned by AWAITIO, the file is
automatically checkclosed by the checkpointing facility. For a nonprocess file or a
process file that is opened in a waited manner, bit <8> of the flag parameter is
reset internally to zero and ignored.

• Primary process open

A backerror value of 17 is returned if a device or process being opened is not, in
its own view, currently open by the primary process. This can occur, for example,
after a device has been rought UP or DOWN.

• See “Considerations” for the OPEN procedure.

• Opening a Licensed object file with write or read-write access turns off the License
attribute, even if opened by the Superid.

Messages

• Unable to communicate with backup

If an “unable to communicate with backup” error occurs (that is, backerror = -1),
it normally indicates either that the backup process does not exist or that a system
resource problem exists.

CHECKPOINT Procedure
(Superseded by CHECKPOINTX Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary

The CHECKPOINT procedure is called by a primary process to send information about
its current executing state to its backup process. The checkpoint information enables
the backup process to recover from a failure of the primary process in an orderly
manner. The backup process must be in the “monitor” state (that is, in a call to the
CHECKMONITOR procedure) for the checkpoint to be successful.

Note. This procedure cannot be called by native processes. Although this procedure is
supported for TNS processes, it should not be used for new development.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-37

CHECKPOINT Procedure
(Superseded by CHECKPOINTX Procedure)

Syntax for C Programmers
This passive backup procedure is not supported in C programs. For a comparison of
active backup and passive backup, see the Guardian Programmer’s Guide.

Syntax for TAL Programmers

Parameters

status returned value

INT

returns a status word of this form:

<0:7> = 0 No error

<0:7> = 1 No backup process or unable to communicate with backup
process; then <8:15> = file-system error number

<0:7> = 2 Takeover from primary process; then <8:15> =
0 Primary process stopped
1 Primary process abnormally ended
2 Primarys process processor failed
3 Primary process called CHECKSWITCH

<0:7> = 3 Invalid parameter; then <8:15> = number of parameter in error
(leftmost position = 1)

stack-origin input

INT:ref:*

checkpoints the process’s data stack from stack-origin through the current tip-
of-stack location (‘S’). A checkpoint of the data stack defines a restart point for the
backup process.

buffer-n input

INT:ref:*

checkpoints a block of the process’s data area (usually a file buffer) from buffer-
n for the number of words specified by the corresponding count-n parameter. If

status := CHECKPOINT

 ([stack-origin], [buffer-1], [count-1] ! i,i,i
 , [buffer-2], [count-2] ! i,i
 . .
 . .
 . .
 , [buffer-13], [count-13]); ! i,i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-38

CHECKPOINT Procedure
(Superseded by CHECKPOINTX Procedure)

you omit buffer-n, count-n is treated as filenum and that file’s file
synchronization block is checkpointed.

count-n input

INT:value

The use of this parameter depends on the presence or absence of the
corresponding buffer-n parameter:

• If buffer-n is present, then count-n specifies the number of words to be
checkpointed.

• If buffer-n is absent, then count-n is the filenum of a file whose file
synchronization block is to be checkpointed.

Considerations

• Checkpointing the process’s data stack

The CHECKPOINT procedure provides for checkpointing the process’s data stack
and any combination of up to 13 separate data blocks and file synchronization
blocks. A data block can be from any location in the data area. (Data blocks are
usually file buffers that are not checkpointed as part of the stack, and they cannot
be in an extended data area.)

• Maximum checkpoint size

The largest stack area or data item that can be checkpointed is 32,500 bytes.
Additionally, the sum total of the sizes of the stack area and each checkpoint item,
plus an allowance of 20 bytes for each item, should not exceed 32,500 bytes. An
item in this context means either a data item (user-declared size) or a file
synchronization block with varying sizes.

• Identification of the backup process

The system identifies the process to be affected by the CHECKPOINT operation
from the process’s mom field in the process control block (PCB). For named
process pairs, this field is automatically set up during the creation of a backup
process.

• Checkpointing a file’s synchronization (sync) block

If a file’s sync block is checkpointed, the call to CHECKPOINT contains an implicit
call to the GETSYNCINFO procedure for the file. Therefore, checkpointing of a
file’s sync block should not be performed between an I/O completion and a call to
the FILE_GETINFO_ (or FILEINFO) procedure for that file. If file sync block

Note. If the message is too large (that is, the total of the stack size and the counts of all
buffers and the size of all file synchronization blocks is too big), status.<0:7> is set to 3 and the
parameter number is set to 26.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-39

CHECKPOINTMANY Procedure
(Superseded by CHECKPOINTMANYX Procedure)

checkpointing is performed, FILE_GETINFO_ returns (in its last-error
parameter) the status of the call to GETSYNCINFO (usually, last-error = 0).

• Unable to communicate with backup

If an “unable to communicate with backup” error (that is, status.<0:7> = 1)
occurs, this normally indicates either that the backup process does not exist or that
a system resource problem exists. If a system resource problem exists, the
checkpoint message to the backup is probably too large.

• Invalid parameter

If you attempt to checkpoint the data area in the region used by the
CHECKMONITOR procedure in the backup process, then CHECKPOINT returns
an “invalid parameter” error (that is, status.<0:7> = 3). See the recovery
procedure in Considerations on page 3-33.

• Takeovers and selectable segments

The selectable segment put into use following takeover depends on several
factors:

• The segment in use at the time of the last checkpoint is put into use if it is
available; that is, the segment was allocated to the backup using the
SEGMENT_ALLOCATE_CHKPT_ or CHECKALLOCATESEGMENT procedure
and has not since been deallocated by the
SEGMENT_DEALLOCATE_CHKPT_ or CHECKDEALLOCATESEGMENT
procedure.

• The segment in use when the CHECKMONITOR or CHECKSWITCH
procedure was called is used if the segment in use at the time of the last
checkpoint is no longer available.

• No segment is used if the segment in use at the time of the last checkpoint and
the segment in use when the CHECKMONITOR or CHECKSWITCH procedure
was called are both unavailable.

CHECKPOINTMANY Procedure
(Superseded by CHECKPOINTMANYX
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-40

CHECKPOINTMANY Procedure
(Superseded by CHECKPOINTMANYX Procedure)

Summary

The CHECKPOINTMANY procedure (like the CHECKPOINT procedure) is called by a
primary process to send information about its current executing state to its backup
process.

The CHECKPOINTMANY procedure is used in place of CHECKPOINT when there are
more than 13 pieces of information to be sent.

Syntax for C Programmers
This passive backup procedure is not supported in C programs. For a comparison of
active backup and passive backup, see the Guardian Programmer’s Guide.

Syntax for TAL Programmers

Parameters

status returned value

INT

returns a status word of this form:

<0:7> = 0 No error

<0:7> = 1 No backup process or unable to communicate with backup
process; then <8:15> = file-system error number.

Note. This procedure cannot be called by native processes. Although this procedure is
supported for TNS processes, it should not be used for new development.

status := CHECKPOINTMANY ([stack-origin] ! i
 ,[descriptors]); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-41

CHECKPOINTMANY Procedure
(Superseded by CHECKPOINTMANYX Procedure)

<0:7> = 2 Takeover from primary; then <8:15> =

0 Primary process stopped
1 Primary process abnormally ended
2 Primarys process processor failed
3 Primary process called CHECKSWITCH

<0:7> = 3 Invalid parameter, then <8:15> =

1 Error in stack-origin parameter

n > 1 Error in word [n-2] (see “Considerations”)

stack-origin input

INT:ref:*

contains an address. CHECKPOINTMANY checkpoints the process’s data stack
from stack-origin through the current tip-of-stack location (‘S’). A checkpoint
of the data stack defines a restart point for the backup process.

descriptors input

INT:ref:*

is an array that describes the items (data blocks or file synchronization blocks) to
be checkpointed. The first word of the array, descriptors[0], is a count of the
number of items to be checkpointed. The rest of the array consists of pairs of
words, each pair describing one of the items. (See “Considerations.”)

Considerations

• descriptors array form:

Following word zero, descriptors consists of pairs of words.

 +--+
 descriptors[0] | number of items to be checkpointed |
 |--|
 [n] | |
 |-------- descriptors pairs -----------|
 [n+1] | |
 |--|
 . .
 . .

If the first word of the pair contains -1, the pair describes a file synchronization
block item for the file whose file number is in the second word of the pair.

 |--|
 descriptors[n] | -1 = file sync block item for file |
 |--|
 [n+1] | file's filenum |
 |--|
 . .

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-42

CHECKPOINTMANY Procedure
(Superseded by CHECKPOINTMANYX Procedure)

 . .

Otherwise, the pair of words describes a data block to be checkpointed: the first
word contains the word address of the data block, and the second word contains the
length, in words, of the data block:

 |--|
 descriptors[n] | word address of the data block |
 |--|
 [n+1] | length in words of the data block |
 |--|
 . .
 . .

The size, in words, of the descriptors array must be at least

 1 + 2 * descriptors[0]

• Invalid parameter location

If status.<0:7> = 3, then status.<8:15> has this meaning:

status.<8:15> = 1error in stack-origin parameter
 = n, n > 1error in word [n-2]

If the descriptors pair describes a file synchronization block (first word of pair =
-1, second word of pair = file number), then:

° If the filesync block makes the checkpoint exceed 32,500 bytes, then
descriptors [n-2] is the first word of the pair.

° If any other error occurs (such as GETSYNCINFO fails or bad file number),
then descriptors [n-2] is the second word of the pair.

If the pair describes a buffer (first word = address, second word = length), then:

° If the address, or the address plus the length, results in a bounds violation,
then descriptors[n-2] is the first word of the pair.

° If this buffer makes the total amount of data to be checkpointed (data + sync
blocks + stack) exceed 32,500 bytes, then descriptors [n-2] is the first word of
the pair.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-43

CHECKPOINTMANY Procedure
(Superseded by CHECKPOINTMANYX Procedure)

For example:

• Maximum checkpoint size

The largest stack area or data item that can be checkpointed is 32,500 bytes.
Additionally, the sum total of the sizes of the stack area and each checkpoint item,
plus an allowance of 20 bytes for each item, should not exceed 32,500 bytes. An
item in this context means either a data item (of user declared size) or a file
synchronization block of varying sizes.

• The CHECKPOINTMANY procedure allows checkpointing of both the process’s
data stack and any number of blocks.

• Identification of the backup process

The system identifies the process to be affected by the CHECKPOINTMANY
operation from the process’s mom field in the process control block (PCB). For
named process pairs, this field is automatically set up during the creation of a
backup process.

• Invalid parameter

If an attempt is made to checkpoint the data area used by CHECKPOINTMANY for
system-oriented stack maintenance, it returns an “invalid parameter” error (that is,
status.<0:7> = 3).

Figure 3-1. Invalid Parameter Location

If status.<0:7> = 3 then status.<8:15>:

Error is in:

This descriptors pair is a
file sync block item

This descriptors pair is a
data block

Stack base

Count

- 1

filenum

block address

block length
VST005.VSD

Error is (for example):

Invalid address

Bounds of list in error

Checkpoint too large

GETSYNCINFO failed or bad
file number

Bounds error, checkpoint too large

Does not occur

[1]

[2]

[3]

[4]

[5]

[6]

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-44

CHECKPOINTMANYX Procedure

• Takeovers and selectable segments

The selectable segment put into use following takeover depends on several
factors:

• The segment in use at the time of the last checkpoint is put into use if it is
available; that is, the segment was allocated to the backup using the
SEGMENT_ALLOCATE_CHKPT_ or CHECKALLOCATESEGMENT procedure
and has not since been deallocated by the
SEGMENT_DEALLOCATE_CHKPT_ or CHECKDEALLOCATESEGMENT
procedure.

• The segment in use when the CHECKMONITOR or CHECKSWITCH
procedure was called is used if the segment in use at the time of the last
checkpoint is no longer available.

• No segment is used if the segment in use at the time of the last checkpoint and
the segment in use when the CHECKMONITOR or CHECKSWITCH procedure
was called are both unavailable.

• See also Considerations on page 3-38 for the CHECKPOINT procedure.

Example
DESCRIPTORS[0] := 2; ! count of items.
DESCRIPTORS[1] := -1; ! sync item.
DESCRIPTORS[2] := FNUM^A; ! file number.
DESCRIPTORS[3] := @BUFFER; ! data item: word address.
DESCRIPTORS[4] := 512; ! number of words.
 STAT:= CHECKPOINTMANY(STK^ORIGIN , DESCRIPTOR);
 ! this is equivalent to:
 ! STAT := CHECKPOINT(STK^ORIGIN, , FNUM^A, BUFFER, 512);

CHECKPOINTMANYX Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The CHECKPOINTMANYX procedure (like the CHECKPOINTX procedure) is called by
a primary process to send information about its current executing state to its backup
process. The checkpoint information enables the backup process to recover from a
failure of the primary process in an orderly way. The backup process must be in the
“monitor” state (that is, in a call to the CHECKMONITOR procedure) for the
CHECKPOINTMANYX call to be successful.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-45

CHECKPOINTMANYX Procedure

This procedure can be used to checkpoint:

• Stack data from a specified stack marker to the tip of the stack

• Multiple data areas

• File synchronization blocks

The CHECKPOINTMANYX procedure can be used by both TNS processes and native
processes. It allows checkpointing of data in extended data segments (flat or
selectable) in addition to the user data segment.

You must use CHECKPOINTMANYX if you need to checkpoint more than five data
areas. You can use the CHECKPOINTX procedure instead if you need to checkpoint
five or fewer data areas.

Syntax for C Programmers
This passive backup procedure is not supported in C programs. For a comparison of
active backup and passive backup, see the Guardian Programmer’s Guide.

Syntax for TAL Programmers

Parameters

status returned value

INT

returns a status word of this form:

<0:7> = 0 No error

<0:7> = 1 No backup process or unable to communicate with backup process;
then <8:15> = file-system error number

<0:7> = 2 Takeover from primary process; then <8:15> =

0 Primary process stopped
1 Primary process abnormally ended
2 Primarys process processor failed
3 Primary process called CHECKSWITCH

<0:7> = 3 Invalid parameter; then <8:15> =

1 Error in stack-origin parameter
2 Bounds error on descriptors
>2 Error in specified descriptor. If bits <8:15> = 3 then the first

descriptor is in error. If <8:15> = 4 then the second descriptor
is in error, and so on.

status := CHECKPOINTMANYX ([stack-origin] ! i
 ,[descriptors]); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-46

CHECKPOINTMANYX Procedure

stack-origin input

INT:ref:*

contains an address. CHECKPOINTMANYX checkpoints the process’s data stack
from the address in stack-origin through the current tip-of-stack location (‘S’).
A checkpoint of the data stack defines a restart point for the backup process.

See “Considerations” for details.

descriptors input

INT .EXT:ref:*

is an array that describes the items (data blocks or file synchronization blocks) to
be checkpointed. The first word of the array, descriptors[0], contains the
number of items to be checkpointed. The rest of the array consists of sets of
words, with each set containing five words and describing one item. (See
“Considerations.”)

Its format is as follows:

[0] Contains the number of items to be checkpointed. Each item consists
of a set of five words.

If the item is a file:

[0:1] Equals -1D.

[2] Is the file number.

[3] (Is reserved.)

[4] (Is reserved.)

If the item is a data area:

[0:1] Is the length in bytes.

[2] Is the segment ID. (If it is -1, the address is in the stack or current
segment.)

[3:4] Is the extended address.

Considerations

• Checkpointing the stack

Checkpointing the entire data stack has the effect of providing a restart point for
the backup process. The stack-origin parameter gives you the option of
specifying how far into the stack to start checkpointing. Although native stacks
grow downward while TNS stacks grow upward, the effect is the same—all data
from stack-origin to the growing tip of the stack is checkpointed.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-47

CHECKPOINTMANYX Procedure

The rules for specifying the stack-origin address, however, are different for
TNS processes and native processes. In a TNS process, you can include global
variables to be checkpointed with the stack data, because the global variables
immediately precede the stack; thus you can checkpoint all global variables with
the stack by specifying a stack-origin address of zero (0).

In a native process, you cannot checkpoint global data with the stack, because
global variables are not adjacent to the stack. If the stack-origin parameter is
specified for a native process, it must point to a location within the data stack itself.
To checkpoint global data, you must do so explicitly by providing a descriptor for
each area of global data you want to checkpoint. Note that this approach works for
TNS processes as well as for native processes; therefore a program written this
way can be compiled for either architecture.

Establishing the stack-origin address can be done in several ways. These
approaches work for both TNS and native processes:

• To checkpoint the entire stack, set the stack-origin address to -3. In a
TNS process this value is the equivalent of the initial -L value in the TNS stack
area. In a native process this value indicates the start of the main stack.

• To checkpoint starting from the origin of an arbitrary procedure, introduce a
lower procedure to obtain its stack address. For example, assume a
procedure MYPROC is to be the base procedure for a stack checkpoint; you
can obtain its stack address in a global pointer STACKBASE as follows:

INT .STACKBASE;

PROC SET_MYPROC_BASE;
BEGIN
 INT .DUMMY;
 @STACKBASE := @DUMMY;
 CALL MYPROC;
END;

The stack-origin address (if you do not specify the value -3) designates
the boundary between what is to be checkpointed with the stack and what is
not. In native processes, which use descending stacks, the address is that of
the first byte not to be checkpointed. In a TNS process, it is the address of the
first byte included in the checkpointed data.

Other methods of establishing the stack-origin address work only with TNS
processes. These methods include:

• Refer to the L register.

• Pick up the address of a local variable other than as described above for a
procedure call. This approach does not work for native processes because the
location of local variables in the enclosing stack frame is not defined by the
compiler other than by inclusion.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-48

CHECKPOINTMANYX Procedure

If the stack-origin parameter is omitted, the stack is not checkpointed. You
can, however, include the stack-origin parameter without checkpointing the
stack by setting stack-origin to -1.

• Checkpointing data areas

Checkpointing specific variables involves using the descriptors parameter to
specify the addresses of data areas and the number of bytes to be checkpointed.
Differences in data layout between a TNS stack and a native main stack cause
some restrictions in the way native processes address these buffers. These rules
apply to native processes. Code that follows these rules can be compiled to run as
either a TNS process or as a native process:

• To checkpoint global variables, refer to the variables themselves. Do not use
constant addresses.

• If your program depends on two global variables being adjacent, you must
ensure that they are in a data block together. In pTAL, this is done
automatically if blocks are not explicit and if the BLOCKGLOBALS compiler
directive is not used.

• Do not assume adjacency or order of local variables; use structures or arrays

• Use $LEN or an equivalent language function to determine the length of data
items. The lengths of some data items differ between a TNS process and a
native process.

When checkpointing a set of global variables, if the set is small enough, you can
obtain their address and size using the PROCESS_GETINFOLIST_ procedure,
items 108 and 109.

Code that will only be run as a TNS process can use constants for addressing
global variables and assume adjacency of variables.

• Do not checkpoint heap or pool storage

Native processes can use a standard heap area for dynamic memory allocation;
programs using the Common Run-Time Environment (CRE) make this heap
available, for example, by using the C malloc() function. A TNS process can
achieve a similar effect with a flat segment that has space structured as a standard
memory pool.

Process pairs should not checkpoint data residing in the heap or memory pool.
Control information is needed to maintain structure, and this control information
can be neither obtained nor checkpointed. If the backup process were to take over
using checkpointed heap or pool data, its heap or pool would be corrupt and
allocations and deallocations would not work. Not only would the space control
information be corrupt, but the backup typically would not even have underlying
memory allocated at the needed address to receive the data at the time of the
checkpoint.

• Checkpoint message size limit

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-49

CHECKPOINTMANYX Procedure

The largest stack area or data item that can be checkpointed is 32,500 bytes.
Additionally, the sum total of the sizes of the stack area and each checkpoint item,
plus an allowance of 20 bytes for each item, should not exceed 32,500 bytes. An
item in this context means either a data item (user-declared size) or a file
synchronization block with varying sizes.

For native processes, the size of the checkpoint message sent to the backup
process is limited to 50,000 bytes. This additional message capacity is necessary
because of increased data memory requirements.

The extra space in a checkpoint message for a native process enables TNS
process pairs to be converted to native processes and allows a program to be
compiled for either environment.

• If the address is in an extended data segment, the backup must also have that
extended data segment allocated. The backup must have the same segment ID,
and the segment should be the same size. If the backup has a smaller size, any
data in the primary that is outside of the addressable area of the segment in the
backup is not checkpointed. If the backup does not have a segment with that
segment ID, an error is returned and no data or file information is checkpointed.

• Extended addresses must be relative; they cannot be absolute. Extended
addresses cannot be in the user code space.

• Takeovers and selectable segments

The selectable segment put into use following takeover depends on several
factors:

• The segment in use at the time of the last checkpoint is put into use if it is
available; that is, the segment was allocated to the backup process using the
SEGMENT_ALLOCATE_CHKPT_ or CHECKALLOCATESEGMENT procedure
and has not since been deallocated by the
SEGMENT_DEALLOCATE_CHKPT_ or CHECKDEALLOCATESEGMENT
procedure.

• The segment in use when the CHECKMONITOR or CHECKSWITCH
procedure was called is used if the segment in use at the time of the last
checkpoint is no longer available.

• No segment is used if the segment in use at the time of the last checkpoint and
the segment in use when the CHECKMONITOR or CHECKSWITCH procedure
was called are both unavailable.

• Do not try to checkpoint data in a read-only segment.

• You can checkpoint data in shared extended data segments, but you must ensure
consistency of the data among all processes that might be sharing the segment,
both in the primary processor and the backup processor.

• Stack allocation for native processes

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-50

CHECKPOINTMANYX Procedure

The backup process can abnormally terminate if not enough disk or memory
resources are available to increase the size of the main stack in the backup
process. This situation is possible in a native process, because the main stack is
allocated dynamically or on request. By contrast, TNS stacks are statically
allocated.

Use the space guarantee attribute of the object file or process creation procedure
(PROCESS_LAUNCH_ or PROCESS_SPAWN_) to ensure that enough resources
are available when the native process is created.

• Errors returned by CHECKPOINTMANYX

CHECKPOINTMANYX returns these errors:

• The checkpoint message contains a buffer in an extended data segment, and
the backup does not have that segment allocated (file-system error 22).

• The backup process does not exist.

• Parameter errors (status.<0:7> = 3):

• A bounds error occurred on the descriptor array.

• The file number is not open.

• The extended address is absolute.

• The extended address is in logical segment 1, 2, or 3 (code or library
spaces); that is, not in a data segment or the stack.

• The segment ID was equal to -1 and the address was in an extended data
segment, but no selectable segment was in use at the time of the call to
CHECKPOINTMANYX.

• The address was in the stack, but either the count was too large, the area
was above the highest stack address, the area was beyond the end of the
stack, or the area overlapped the area used by the CHECKMONITOR
procedure.

• The address was invalid; for example, the address was in an extended
data segment, but either the segment ID was not allocated, the segment ID
was an invalid segment number, or there was a bounds error on the area.

• The total message size was too large (over 32 KB).

Example
INT status;
INT stack^origin;
INT junk;
STRING .EXT buffer[0:511];
INT .EXT descr[0:10];

descr[0] := 2; ! count of items

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-51

CHECKPOINTX Procedure

! note the following is improper syntax;
! used for illustration only

descr[1:2] := -1D; ! always this for file items
descr[3] := fnum^a; ! file number
descr[4:5] := junk; ! unused words for file items

descr[6:7] := 512D; ! length in bytes
descr[8] := -1; ! indicates stack
descr[9:10] := @buffer; ! data item -- extended address

status := CHECKPOINTMANYX(stk^origin , descr);

CHECKPOINTX Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
The CHECKPOINTX procedure (like the CHECKPOINTMANYX procedure) is called by
a primary process to send information about its current executing state to its backup
process. The checkpoint information enables the backup process to recover from a
failure of the primary process in an orderly manner. The backup process must be in
the “monitor” state (that is, in a call to the CHECKMONITOR procedure) for the
CHECKPOINTX call to be successful.

This procedure can be used to checkpoint:

• Stack data from a specified stack address to the tip of the stack

• Up to five data areas

• File synchronization blocks

The CHECKPOINTX procedure can be used by both TNS processes and native
processes. It allows checkpointing of data in extended data segments (flat or
selectable) in addition to the user data segment.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-52

CHECKPOINTX Procedure

Use the CHECKPOINTMANYX procedure if you need to checkpoint more than five
data areas.

Syntax for C Programmers
This passive backup procedure is not supported in C programs. For a comparison of
active backup and passive backup, see the Guardian Programmer’s Guide.

Syntax for TAL Programmers

Parameters

status returned value

INT

returns a status word of this form:

<0:7> = 0 No error

<0:7> = 1 No backup or unable to communicate with backup; then <8:15> =
file-system error number

<0:7> = 2 Takeover from primary process; then <8:15> =

0 Primary process stopped
1 Primary process abnormally ended
2 Primarys process processor failed
3 Primary process called CHECKSWITCH

<0:7> = 3 Invalid parameter; then <8:15> = number of parameter in error:

1 stack-origin parameter
2 Parameter set 1
3 Parameter set 2
4 Parameter set 3
5 Parameter set 4

status := CHECKPOINTX ([stack-origin] ! i

 ,[segment-id1], [bufferx-1], [count-1] ! i,i,i
 ,[segment-id2], [bufferx-2], [count-2] ! i,i,i
 . .
 . .
 . .
 ,[segment-id5], [bufferx-5], [count-5]); ! i,i,i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-53

CHECKPOINTX Procedure

6 Parameter set 5
7 Total message too large

stack-origin input

INT:ref:*

contains an address. CHECKPOINTX checkpoints the process’s data stack from
the address in stack-origin through the current tip-of-stack location (‘S’). A
checkpoint of the data stack defines a restart point for the backup process.

See “Considerations” for details.

segment-idn input

INT:value

contains the segment ID of the extended data segment if the bufferx-n
parameter is provided and the data block to be checkpointed is in an extended
data segment. If segment-idn is omitted or equal to -1, the data block is
assumed to be either in the flat segment, in the selectable segment currently in
use, or on the stack, depending on the address provided.

If bufferx-n is omitted, segment-id contains the file number of a file whose file
synchronization block is to be checkpointed. The count-n parameter is ignored in
this case.

bufferx-n input

STRING .EXT:ref:*

is the address of the data area to be checkpointed. See “Considerations” for
details.

If bufferx-n is omitted, a file synchronization block is to be checkpointed and the
file number is specified in the segment-idn parameter.

count-n input

INT(32):value

contains the number of bytes to be checkpointed if bufferx-n is provided.

If bufferx-n is omitted, this parameter is ignored.

Considerations

• Checkpointing the stack

Checkpointing the entire data stack has the effect of providing a restart point for
the backup process. The stack-origin parameter gives you the option of
specifying how far into the stack to start checkpointing. Although native stacks
grow downward while TNS stacks grow upward, the effect is the same—all data
from stack-origin to the tip of the stack is checkpointed.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-54

CHECKPOINTX Procedure

The rules for specifying the stack-origin address, however, are different for
TNS processes and native processes. In a TNS process, you can include global
variables to be checkpointed with the stack data, because the global variables
immediately precede the stack; thus you can checkpoint all global variables with
the stack by specifying a stack-origin address of zero (0).

In a native process, you cannot checkpoint global data with the stack, because
global variables are not adjacent to the stack. If the stack-origin parameter is
specified for a native process, it must point to a location within the data stack itself.
To checkpoint global data, you must do so explicitly using the bufferx-n and
count-n parameters. Note that this approach works for TNS processes as well
as for native processes; therefore a program written this way can be compiled for
either architecture.

Establishing the stack-origin address can be done in several ways. These
approaches work for both TNS and native processes:

• To checkpoint the entire stack, set the stack-origin address to -3. In a
TNS process this value is the equivalent of the initial -L value in the TNS stack
area. In a native process this value indicates the start of the main stack.

• To checkpoint starting from the origin of an arbitrary procedure, introduce a
lower procedure to obtain its stack address. For example, assume a
procedure MYPROC is to be the base procedure for a stack checkpoint; you
can obtain its stack address in a global pointer STACKBASE as follows:

INT .STACKBASE;

PROC SET_MYPROC_BASE;
BEGIN
 INT .DUMMY;
 @STACKBASE := @DUMMY;
 CALL MYPROC;
END;

The stack-origin address (if you do not specify the value -3) designates
the boundary between what is to be checkpointed with the stack and what is
not. In native processes, which use descending stacks, the address is that of
the first byte not to be checkpointed. In a TNS process, it is the address of the
first byte included in the checkpointed data.

Other methods of establishing the stack-origin address work only with TNS
processes. These methods include:

• Refer to the L register.

• Pick up the address of a local variable other than as described above for a
procedure call. This approach does not work for native processes because the
location of local variables in the enclosing stack frame is not defined by the
compiler.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-55

CHECKPOINTX Procedure

If the stack-origin parameter is omitted, the stack is not checkpointed. You
can, however, include the stack-origin parameter without checkpointing the
stack by setting stack-origin to -1.

• Checkpointing data areas

Checkpointing specific variables involves specifying the address of a data area in
the bufferx-n parameter and a byte count in count-n. Differences in data
layout between a TNS stack and a native main stack cause some restrictions in the
way native processes address these buffers. These rules apply to native
processes. Code that follows these rules can be compiled to run as either a TNS
process or a native process:

• To checkpoint global variables, refer to the variables themselves. Do not use
constant addresses.

• If your program depends on two global variables being adjacent, you must
ensure that they are in a data block together. In pTAL, this is done
automatically if blocks are not explicit and if the BLOCKGLOBALS compiler
directive is not used.

• Do not assume adjacency or order of local variables; use structures or arrays.

• Use $LEN or an equivalent language function to determine the length of data
items, and use this value in the count-n parameter. The lengths of some
data items differ between a native process and a TNS process.

When checkpointing a set of global variables, if the set is small enough, you can
obtain their address and size using the PROCESS_GETINFOLIST_ procedure,
items 108 and 109.

Code that will only be run as a TNS process can use constants for addressing
global variables and assume adjacency of global and local variables.

• Do not checkpoint heap or pool storage

Native processes can use a standard heap area for dynamic memory allocation;
programs using the Common Run-Time Environment (CRE) make this heap
available, for example, by using the C malloc() function. A TNS process can
achieve a similar effect with a flat segment that has space structured as a standard
memory pool.

Process pairs should not checkpoint data residing in the heap or memory pool.
Control information is needed to maintain structure, and this control information
can be neither obtained nor checkpointed. If the backup process were to take over
using checkpointed heap or pool data, its heap or pool would be corrupt and
allocations and deallocations would not work. Not only would the space control
information be corrupt, but the backup typically would not even have underlying
memory allocated at the needed address to receive the data at the time of the
checkpoint.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-56

CHECKPOINTX Procedure

• Checkpoint message size limit

The largest stack area or data item that can be checkpointed is 32,500 bytes.
Additionally, the sum total of the sizes of the stack area and each checkpoint item,
plus an allowance of 20 bytes for each item, should not exceed 32,500 bytes. An
item in this context means either a data item (user-declared size) or a file
synchronization block with varying sizes.

For native processes, the size of the checkpoint message sent to the backup
process is limited to 50,000 bytes. This additional message capacity is necessary
because of increased data memory requirements.

The extra space in a checkpoint message for a native process enables TNS
process pairs to be converted to native processes and allows a program to be
compiled for either environment.

• If the address is in an extended data segment, the backup must also have that
extended data segment allocated. The backup must have the same segment ID,
and the segment should be the same size. If the backup has a smaller size, any
data in the primary process that is outside of the addressable area of the segment
in the backup process is not checkpointed. If the backup process does not have a
segment with that segment ID, an error is returned and no data or file information
is checkpointed.

• Extended addresses must be relative; they cannot be absolute. Extended
addresses cannot be in the user code space.

• Takeovers and selectable segments

The selectable segment put into use following takeover depends on several
factors:

• The segment in use at the time of the last checkpoint is put into use if it is
available; that is, the segment was allocated to the backup using the
SEGMENT_ALLOCATE_CHKPT_ or CHECKALLOCATESEGMENT procedure
and has not since been deallocated by the
SEGMENT_DEALLOCATE_CHKPT_ or CHECKDEALLOCATESEGMENT
procedure.

• The segment in use when the CHECKMONITOR or CHECKSWITCH
procedure was called is used if the segment in use at the time of the last
checkpoint is no longer available.

• No segment is used if the segment in use at the time of the last checkpoint and
the segment in use when the CHECKMONITOR or CHECKSWITCH procedure
was called are both unavailable.

• The CHECKPOINT procedure allows 13 items to be checkpointed at once and
uses word counts, while CHECKPOINTX allows 5 items to be checkpointed at
once and uses byte counts. The CHECKPOINT procedure cannot be called from a
native process.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-57

CHECKPOINTX Procedure

• Do not try to checkpoint data in a read-only segment.

• You can checkpoint data in shared extended data segments, but you must ensure
consistency of the data among all processes that might be sharing the segment,
both in the primary processor and in the backup processor.

• Stack allocation for native processes

The backup process can abnormally terminate if not enough disk or memory
resources are available to increase the size of the main stack in the backup
process. This situation is possible in a native process, because the main stack is
allocated dynamically or on request. By contrast, TNS stacks are statically
allocated.

Use the SPACE_GUARANTEE attribute of the object file or process creation
procedure to ensure that enough resources are available when the native process
is created.

• Errors returned by CHECKPOINTX

CHECKPOINTX returns these errors:

• The checkpoint message contains a buffer in an extended data segment, and
the backup does not have that segment allocated (file-system error 22).

• The backup process does not exist.

• Parameter errors (status.<0:7> = 3):

• The file number is not open.

• The extended address is absolute.

• The extended address is in logical segment 1, 2, or 3 (code or library
spaces); that is, not in a data segment or the stack.

• The segment ID was omitted or was equal to -1 and the address was in a
selectable extended data segment, but no selectable segment was in use
at the time of the call to CHECKPOINTX.

• The address was in the stack, but either count-n was too large, the area
was above the highest stack address, the area was beyond the end of
stack, or the area overlapped with the area used by the CHECKMONITOR
procedure.

• The address was in an extended data segment, but either the segment ID
was not allocated, the segment ID was an invalid segment number, or
there was a bounds error on the area.

• The total message size was too large (over 32.5 kilobytes for a TNS
process or 50 kilobytes for a native process).

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-58

CHECKRESIZESEGMENT Procedure

• An invalid combination of parameters occurred:

There was a count, but no buffer; or
there was a buffer, but no count; or
there was a buffer and a segment ID, but no count.

CHECKRESIZESEGMENT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings

Summary
This procedure complements the RESIZESEGMENT procedure.

Syntax for C Programmers
This passive backup procedure is not supported in C programs. For a comparison of
active backup and passive backup, see the Guardian Programmer’s Guide.

Syntax for TAL Programmers

Parameters

segment-id input

INT:value

is the identifier for the extended data segment to be resized in the backup process.
The size is taken from the current size of segment-id in the primary process and
segment-id must have been previously allocated in the primary process and the
backup process.

error output

INT .EXT:ref:1

returns a file-system error code indicating the outcome of the call, one of:

2 Segment not allocated by the primary process or segment ID is invalid.

29 The segment-id is missing.

30 No control blocks available for linking.

CALL CHECKRESIZESEGMENT (segment-id, ! i
 error); ! o

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-59

CHECKSETMODE Procedure

31 Cannot use the process file segment (PFS), or the PFS has no room for a
message buffer in either the backup process or the primary process.

201 Unable to link to the backup.

Other errors are returned from RESIZESEGMENT in the backup.

Condition Code Settings

< (CCL) is returned if the error parameter is missing or there is a bounds error on
the error parameter.

= (CCE) indicates any condition not set by CCL.

> (CCG) is not returned from this procedure.

CHECKSETMODE Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations

Summary
CHECKSETMODE allows a primary process of a process pair to propagate SETMODE
operations to the backup process of the pair.

Syntax for C Programmers
This passive backup procedure is not supported in C programs. For a comparison of
active backup and passive backup, see the Guardian Programmer’s Guide.

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is the number of an open file that identifies the file to receive the SETMODE
function.

CALL CHECKSETMODE (filenum ! i
 ,function ! i
 ,error); ! o

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-60

CHECKSETMODE Procedure

function input

INT:value

is one of these SETMODE functions:

12 Set terminal access mode. (The value specified in parm2.<15> of the
primary process’s SETMODE request is passed to the backup process.)

30 Allow nowait I/O operations to complete in any order.

36 Allow requests to be queued on $RECEIVE based on process priority.

71 Set transmission priority.

72 Force system buffering for nowait files.

80 Set system message modes.

117 Set TRANSID forwarding.

141 Enable/disable large transfers.

149 Set alternate key insertion locking.

error output

INT .EXT:ref:1

the error that occurred on the operation. These file-system errors are returned
from CHECKSETMODE:

2 The function parameter is not one of the allowed values.

29 The filenum or function parameter is missing.

30 No message control blocks are available.

31 Cannot use the process file segment (PFS), or the PFS has no room for a
message buffer in either the backup process or the primary process.

201 Unable to link to the backup process.

Condition Code Settings
If the error parameter is missing, or there is a bounds error on the error parameter,
the condition code is set to CCL. All other errors set the condition code to CCE. CCG
is never returned from this procedure.

Considerations

• CHECKSETMODE supports SETMODE functions that set flags in either the ACB
of a file or the PCB of a process. The values of the flags set in the primary
process’s ACB or PCB set the backup process’s flags.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-61

CHECKSWITCH Procedure

• The caller of CHECKSETMODE is suspended until the operation is complete (even
if the file is opened in nowait mode).

CHECKSWITCH Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
The CHECKSWITCH procedure is called by a primary process to cause the duties of
the primary and backup processes to be interchanged.

The call to CHECKSWITCH contains an implicit call to the CHECKMONITOR
procedure, so that the caller becomes the backup and monitors the execution state of
the new primary process. The backup process must be in the monitor state (that is, in
a call to CHECKMONITOR) for the CHECKSWITCH call to be successful.

Syntax for C Programmers
This passive backup procedure is not supported in C programs. For a comparison of
active backup and passive backup, see the Guardian Programmer’s Guide.

Syntax for TAL Programmers

Parameters

status returned value

INT

returns a status word of this form:

<0:7> = 1 Could not communicate with backup process, then <8:15> = file-
system error number

<0:7> = 2 then <8:15> =

0 Primary process stopped
1 Primary process abnormally ended

status := CHECKSWITCH;

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-62

CHILD_LOST_ Procedure

2 Primarys process processor failed
3 Primary process called CHECKSWITCH

Considerations

• When to use CHECKSWITCH

Use CHECKSWITCH following the reload of a processor module. The purpose is
to switch the process pair’s work back to the original primary processor module.
CHECKSWITCH causes the current backup to become the primary process and to
begin processing from the latest call to the CHECKPOINT[MANY][X] procedure.

• Identification of the backup process

The system identifies the process to be affected by the CHECKSWITCH operation
from the process’s mom field in the process control block (PCB). For named
process pairs, this field is automatically set up during the creation of a backup
process.

CHILD_LOST_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The CHILD_LOST_ procedure examines a system message to determine whether it
indicates that a specified process or process pair has been lost.

When a process receives a system message on $RECEIVE, it can call CHILD_LOST_
to determine whether the message contains information indicating that a particular
process has been deleted or has been lost due to a processor or system failure.
CHILD_LOST_ reports a loss if any of these are true:

• The connection to a remote system has been lost and the specified process was
running in that system.

Note. The normal return from a call to CHECKSWITCH is to the statement following a call to
the CHECKPOINT[MANY][X] procedure. The return corresponds to the latest call to
CHECKPOINT[MANY][X] by the primary process in which its stack was checkpointed.

The backup process executes the statement following the call to CHECKSWITCH only if the
primary process has not checkpointed its stack through a call to CHECKPOINT[MANY][X].

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-63

CHILD_LOST_ Procedure

• A local or remote processor has failed and the specified process was running in
that processor.

• A process deletion message has been received for the specified unnamed
process, for the specified single named process, or for the entire named process
pair of which the specified process is a member.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

indicates the result of the check. Valid values are:

0 Process or process pair is not lost

1 (reserved)

2 Parameter error

3 Bounds error

4 Process or process pair is lost

5 System message is not relevant (see message parameter, below)

message:length input:input

STRING .EXT:ref:*, INT:value

is the status-change message that was received. The message process must be
exactly length bytes long. Relevant messages are:

-2 Local processor down

-5 Process deletion (stop)

-6 Process deletion (abend)

-8 Network status change

#include <cextdecs(CHILD_LOST_)>

short CHILD_LOST_ (char *message
 ,short length
 ,short *processhandle);

status := CHILD_LOST_ (message:length ! i:i
 ,processhandle); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-64

CHILD_LOST_ Procedure

-100 Remote processor down

-101 Process deletion

-110 Connection to remote system lost

If any other system message is supplied, a status value of 5 is returned.

processhandle input

INT .EXT:ref:10

is the process handle of the process to be checked.

For a check involving a named process pair, it is the process handle of any present
or former member of that pair.

Considerations

• CHILD_LOST_ accepts both C-series and D-series format messages. For details
about the formats of system messages, see the Guardian Procedure Errors and
Messages Manual.

• CHILD_LOST_ determines whether a process has been lost by comparing the
process or process pair designated in the system message with the process that is
specified in the processhandle parameter. These tables show the comparison
that is made for each system message for each type of process specified by
processhandle. If the comparison shown in the table is true, the process has
been lost.

Message

Local Unnamed
Process
or Caller’s Backup Local Named Process

-2 Local processor
down
(unnamed
process)

Same processor N/A

-2 Local processor
down
(named process)

N/A Same name

-5 Process deletion
(stop)

Same process Same name and sequence
number

-6 Process deletion
(abend)

Same process Same name and sequence
number

-101 Process deletion Same process Same name and sequence
number

Message
Remote Unnamed
Process Remote Named Process

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-65

CLOSE Procedure (Superseded by FILE_CLOSE_
Procedure)

Example
status := CHILD_LOST_ (sys^message:length, proc^handle);

Related Programming Manual
For programming information about the CHILD_LOST_ procedure, see the Guardian
Programmer’s Guide.

CLOSE Procedure
(Superseded by FILE_CLOSE_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Messages
Related Programming Manuals

Summary

The CLOSE procedure closes an open file. Closing a file terminates access to the file.

-5 Process deletion
(stop)

Same process Same name and sequence
number

-6 Process deletion
(abend)

Same process Same name and sequence
number

-8 Network status
change

Same node and
processor

Same node and all processors
down

-100 Remote
processor down

Same node and
processor

N/A

-101 Process deletion Same process Same name and sequence
number

-110 Connection to
remote node lost

Same node Same node

Note. This procedure is supported for compatibility with previous software and should not be
used for new development

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-66

CLOSE Procedure (Superseded by FILE_CLOSE_
Procedure)

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is the number of the open file to be closed.

tape-disposition input

INT:value

is one of these values, indicating what tape control action to take:

tape-disposition.<13:15>

0 Rewind and unload; do not wait for completion

1 Rewind and unload; do not wait for completion

2 Rewind, leave online, do not wait for completion

3 Rewind, leave online, wait for completion

4 Do not rewind, leave online

Condition Code Settings
< (CCL) indicates that the file was not open or, for $RECEIVE or the TFILE, there is

an outstanding operation using an active transaction.

= (CCE) indicates that the CLOSE was successful.

> (CCG) does not return from CLOSE.

Considerations

• Returning space allocation after closing a file

Closing a disk file causes the space that is used by the resident file control block to
be returned to the system main-memory pool if the disk file is not open
concurrently.

CALL CLOSE (filenum ! i
 ,[tape-disposition]); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-67

CLOSE^FILE Procedure

A temporary disk file is purged if the file was not open concurrently. Any space that
is allocated to that file is made available for other files.

With any file closure, the space allocated to the access control block (ACB) is
returned to the system.

• Closing a nowait file

If a CLOSE is issued for a nowait file that has pending operations, any incomplete
operations are canceled. There is no indication as to whether the operation
completed or not.

• Labeled tape processing

If your system has labeled tape processing enabled, all tape actions (as specified
by tape-disposition) wait for completion.

Messages

• Process close message

A process can receive a process close system message when it is closed by
another process. You can obtain the process ID of the closer in a subsequent call
to LASTRECEIVE or RECEIVEINFO. For detailed information of system
messages sent to processes, see the Guardian Procedure Errors and Messages
Manual.

Related Programming Manuals
For programming information about the CLOSE file-system procedure, see the
Enscribe Programmer’s Guide.

CLOSE^FILE Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The CLOSE^FILE procedure closes a specified file.

Note. This message is also received if the close is made by the backup process of a process
pair. Therefore, a process can expect two of these messages when being closed by a process
pair.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-68

CLOSE^FILE Procedure

CLOSE^FILE is a sequential I/O (SIO) procedure and should be used only with files
that have been opened by OPEN^FILE.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns either a file-system or a sequential I/O (SIO) procedure error number
indicating the outcome of the close. In any case, the file is closed.

If the abort-on-error mode (the default) is in effect, the only possible value for
error is 0.

common-fcb input

INT:ref:*

indicates that all open files are to be closed if the common file control block (FCB)
is passed. If BREAK is owned for any file being closed, it is returned to its previous
owner. Note that the first parameter to CLOSE^FILE is either common-fcb or
file-fcb; one or the other can be passed.

file-fcb input

INT:ref:*

identifies the file to be closed if the FCB is passed. If BREAK is owned for the file
being closed, it is returned to its previous owner. Note that the first parameter to
CLOSE^FILE is either common-fcb or file-fcb; one or the other can be
passed.

tape-disposition input

INT:value

#include <cextdecs(CLOSE_FILE)>

short CLOSE_FILE ({ short _near *common-fcb }
 { short _near *file-fcb }
 ,[short tape-disposition]);

error := CLOSE^FILE ({ common-fcb } ! i
 { file-fcb } ! i
 ,[tape-disposition]); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-69

CLOSE^FILE Procedure

specifies magnetic tape disposition.

tape-disposition.<13:15> denotes:

0 Rewind, unload, do not wait for completion.
1 Rewind, unload, do not wait for completion.
2 Rewind, leave online, do not wait for completion.
3 Rewind, leave online, wait for completion.
4 Do not rewind, leave online.

Other input values result in no error if the file is a tape device; the control action
might be unpredictable.

Considerations

• When to use CLOSE^FILE

Data can be lost if a WRITE^FILE with a count of -1 is not specified or a
CLOSE^FILE is not performed against EDIT files or files that are opened with write
access and blocking capability before the process is deleted.

• If BREAK is taken, CLOSE^FILE gives BREAK (if owned) to its previous owner.

• For tapes with write access, SIO writes two end-of-file marks (control 2).

• CLOSE^FILE completes all outstanding nowait I/O operations on files that are to
be closed.

• If errors occur on more than one file when closing the common FCB, the last
encountered error is reported.

• $RECEIVE and CLOSE^FILE

If the file is $RECEIVE and the user is not handling close messages, SIO waits for
a message from each opener. It then replies with either error 45, if read-only
access, or error 1, if read/write access, until there are no more openers.

• Errors with CLOSE^FILE

If you call CLOSE^FILE on the common FCB and if an error is encountered when
closing one of the files, the resulting action depends on the setting of
ABORT^XFERERR for that file. (ABORT^XFERERR is set by OPEN^FILE or
SET^FILE.) If ABORT^XFERERR is true, the process abends. If
ABORT^XFERERR is false, a file-system error is returned. In either case, the file
in question and all remaining SIO files are closed. If more than one file encounters
an error and if they all have ABORT^XFERERR set false, the error returned is that
of the last file closed with an error. In all cases where an error is returned by
CLOSE^FILE on the common FCB, the program can call CHECK^FILE with the
FILE^ERROR operation. This operation can be performed on each file FCB in turn
to determine which files encountered an error.

If CLOSE^FILE returns an error 45 (file is full) for an EDIT file to which data was
written, the file will be corrupted because SIO will have been unable to write the
appropriate data structures to the end of the file.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-70

CLOSEALLEDIT Procedure

Example
CALL CLOSE^FILE (COMMON^FCB); ! closes all files.

Related Programming Manual
For programming information about the CLOSE^FILE procedure, see the Guardian
Programmer’s Guide.

CLOSEALLEDIT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Considerations
Related Programming Manual

Summary
The CLOSEALLEDIT procedure closes all open IOEdit files. Calling CLOSEALLEDIT
is equivalent to calling the CLOSEEDIT or CLOSEEDIT_ procedure (without the
keep-filenum parameter) for each file that has been opened by the OPENEDIT or
OPENEDIT_ procedure and that has not been closed.

Syntax for C Programmers

Syntax for TAL Programmers

Considerations
The CLOSEALLEDIT procedure does not act on any file that has been closed using
CLOSEEDIT or CLOSEEDIT_ , even if the keep-filenum parameter was specified
with a nonzero value. In such a case, IOEdit considers the file to be closed even
though the file system considers the file to be open and the file number associated with
the file is still valid.

Related Programming Manual
For programming information about the CLOSEALLEDIT procedure, see the Guardian
Programmer’s Guide.

#include <cextdecs(CLOSEALLEDIT)>

void CLOSEALLEDIT ();

CALL CLOSEALLEDIT;

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-71

CLOSEEDIT Procedure
(Superseded by CLOSEEDIT_ Procedure)

CLOSEEDIT Procedure
(Superseded by CLOSEEDIT_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Related Programming Manual

Summary

The CLOSEEDIT procedure closes a specified file that was opened by the OPENEDIT
or OPENEDIT_ procedure. The procedure writes to disk any file updates that are still
buffered, optionally closes the file through the file system, and finally deallocates all
data blocks in the EDIT file segment (EFS) that are associated with the file.

CLOSEEDIT is an IOEdit procedure and can be used only with files that have been
opened by OPENEDIT or OPENEDIT_.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is the number that identifies the open file to be closed.

keep-filenum input

INT:value

if supplied and not equal to 0, causes CLOSEEDIT to not close the file through the
file system, but to perform the rest of its normal operation. This makes it possible
to keep the open file number for use in later processing.

Note. The CLOSEEDIT procedure is supported for compatibility with previous software. For
new development, the CLOSEEDIT_ procedure should be used instead.

CALL CLOSEEDIT (filenum ! i
 ,[keep-filenum]); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-72

CLOSEEDIT_ Procedure

Related Programming Manual
For programming information about the IOEdit procedures, see the Guardian
Programmer’s Guide.

CLOSEEDIT_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Related Programming Manual

Summary
The CLOSEEDIT_ procedure closes a specified file that was opened by the
OPENEDIT or OPENEDIT_ procedure. The procedure writes to disk any file updates
that are still buffered, optionally closes the file through the file system, and finally
deallocates all data blocks in the EDIT file segment (EFS) that are associated with the
file.

CLOSEEDIT_ is an IOEdit procedure and can be used only with files that have been
opened by OPENEDIT or OPENEDIT_.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation.

filenum input

INT:value

#include <cextdecs(CLOSEEDIT_)>

short CLOSEEDIT_ (short filenum
 ,[short keep-filenum]);

error := CLOSEEDIT_ (filenum ! i
 ,[keep-filenum]); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-73

COMPLETEIOEDIT Procedure

is the number that identifies the open file to be closed.

keep-filenum input

INT:value

if supplied and not equal to 0, causes CLOSEEDIT_ to not close the file through
the file system, but to perform the rest of its normal operation. This makes it
possible to keep the open file number for use in later processing.

Related Programming Manual
For programming information about the CLOSEEDIT_ procedure, see the Guardian
Programmer’s Guide.

COMPLETEIOEDIT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Related Programming Manual

Summary
The COMPLETEIOEDIT procedure informs IOEdit that an outstanding I/O request has
finished. Whenever AWAITIO[X] reports the completion of an I/O request on a file that
is (or could be) an IOEdit file, you should call COMPLETEIOEDIT. You must supply
the output values returned by AWAITIO[X] as the input to COMPLETEIOEDIT.

COMPLETEIOEDIT is an IOEdit procedure and can be used only with files that have
been opened by OPENEDIT or OPENEDIT_.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

#include <cextdecs(COMPLETEIOEDIT)>

short COMPLETEIOEDIT (short filenum
 ,short count-transferred
 ,__int32_t tag);

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-74

COMPLETEIOEDIT Procedure

Syntax for TAL Programmers

Parameters

status returned value

INT

returns -1 if filenum designates a file being managed by IOEdit; returns 0
otherwise.

filenum input

INT:value

is the number that identifies the open file of interest.

count-transferred input

INT:value

supplies the value of count-transferred returned by AWAITIO[X], which gives
the count of the number of bytes transferred in the I/O operation.

tag input

INT(32):value

supplies the value of tag returned by AWAITIO[X], which gives the application-
defined tag that was stored by the system when the I/O operation was initiated.

Related Programming Manual
For programming information about the COMPLETEIOEDIT procedure, see the
Guardian Programmer’s Guide.

status := COMPLETEIOEDIT (filenum ! i
 ,count-transferred ! i
 ,tag); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-75

COMPRESSEDIT Procedure

COMPRESSEDIT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example
Related Programming Manual

Summary
The COMPRESSEDIT procedure copies a specified EDIT file to a new EDIT file that it
creates. It fills each block in the new file as much as possible to minimize the number
of disk pages used. It then purges the old file and renames the new file to have the
name of the old file. The lines in the new file are renumbered if so requested. Upon
completion, the new file is open and the current record number is set to -1 (beginning
of file). The file number of the new file is returned to the caller.

COMPRESSEDIT is an IOEdit procedure and can only be used with files that have
been opened by OPENEDIT or OPENEDIT_.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of operation.

#include <cextdecs(COMPRESSEDIT)>

short COMPRESSEDIT (short *filenum
 ,short count-transferred
 ,__int32_t tag);

error := COMPRESSEDIT (filenum ! i,o
 ,[start] ! i
 ,[increment]); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-76

COMPUTEJULIANDAYNO Procedure

filenum input, output

INT .EXT:ref:1

specifies the file number of the open file to be copied into compressed form. It
returns the file number of the new file.

start input

INT(32):value

specifies 1000 times the line number of the first line of the new file. You supply this
parameter when you want the lines in the new file to be renumbered. If you omit
start, renumbering still occurs if increment is present, in which case the value
of increment is used for start. The possible EDIT line numbers are 0, 0.001,
0.002, ... 99999.999.

increment input

INT(32):value

if present and greater than 0, causes COMPRESSEDIT to renumber the lines in
the new file using the incremental value specified. The possible EDIT line
numbers are 0, 0.001, 0.002, ... 99999.999. The value of increment is 1000
times the value to be added to each successive line number.

If increment is not supplied, the line numbers from the original file are used in the
new file.

Example
In this example, COMPRESSEDIT copies the specified EDIT file into a new,
compressed file in which the line number of the first line is 1 and the line number
increment is 1.

INT(32) start := 1000D;
INT(32) increment := 1000D;
 .
 .
err := COMPRESSEDIT (filenumber, start, increment);

Related Programming Manual
For programming information about the COMPRESSEDIT procedure, see the
Guardian Programmer’s Guide.

COMPUTEJULIANDAYNO Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-77

COMPUTEJULIANDAYNO Procedure

Parameters
Related Programming Manual

Summary
The COMPUTEJULIANDAYNO procedure converts a Gregorian calendar date on or
after January 1, 0001, to a Julian day number.

The Julian calendar is the integral number of days since January 1, 4713 B.C. The
formal definition of the Julian day states that it starts at 12:00 (noon), Greenwich mean
time (GMT).

The Gregorian calendar is the common civil calendar that we use today.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

Syntax for TAL Programmers

Parameters

julian-day-num returned value

INT(32)

returns the Julian day number or -1 if any input parameter is not within the valid
range

year input

INT:value

is the Gregorian year (for example, 1984, 1985, ...). The range for year is
restricted from 1 through 10000.

#include <cextdecs(COMPUTEJULIANDAYNO)>

__int32_t COMPUTEJULIANDAYNO (short year
 ,short month
 ,short day
 ,[short _near *error-mask]);

julian-day-num := COMPUTEJULIANDAYNO (year ! i
 ,month ! i
 ,day ! i
 ,[error-mask]); ! o

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-78

COMPUTETIMESTAMP Procedure

month input

INT:value

is the Gregorian month (1-12).

day input

INT:value

is the Gregorian day of the month (1-31).

error-mask output

INT:ref:1

is a bit array in which the first three bits correspond (bit by bit) to year, month, and
day, as follows:

<0> year
<1> month
<2> day

If any one of these bits contains a 1, there is an error. If more than one bit is set,
then the combination of elements is bad; which element is actually in error is
unknown. For example, 01100000 00000000 is returned for April 31, in which case
it is unknown whether April is in error or 31.

Related Programming Manual
For programming information about the COMPUTEJULIANDAYNO procedure, see the
Guardian Programmer’s Guide.

COMPUTETIMESTAMP Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary
The COMPUTETIMESTAMP procedure converts a Gregorian (common civil calendar)
date and time into a 64-bit Julian timestamp.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-79

COMPUTETIMESTAMP Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

ret-timestamp returned value

FIXED

returns a 64-bit Julian timestamp, computed from date-n-time.

date-n-time input

INT:ref:8

is an array containing a date and time of day. The date-n-time array has this
form:

[0] the Gregorian year (for example, 1984, 1985, ...)
[1] the Gregorian month (1-12)
[2] the Gregorian day of the month (1-31)
[3] the hour of the day (0-23)
[4] the minute of the hour (0-59)
[5] the second of the minute (0-59)
[6] the millisecond of the second (0-999)
[7] the microsecond of the millisecond (0-999)

The range of the year is restricted from 1 through 10000.

errormask output

INT:ref:1

is a bit array that indicates any error in the date-n-time parameter. The
errormask parameter checks each element of date-n-time for validity. If
errormask is omitted, date-n-time is not checked.

An error is indicated if any of these bits contains a 1. The errormask bits are:

<0> year
<1> month
<2> day

#include <cextdecs(COMPUTETIMESTAMP)>

long long COMPUTETIMESTAMP (short _near *date-n-time
 ,[short _near *errormask]);

ret-timestamp := COMPUTETIMESTAMP (date-n-time ! i
 ,[errormask]); ! o

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-80

COMPUTETIMESTAMP Procedure

<3> hour of day
<4> minute of hour
<5> second of minute
<6> millisecond of second
<7> microsecond of millisecond

If more than one bit is set, the combination of elements is bad; which element is
actually in error is unknown. For example, 01100000 00000000 is returned for
April 31, in which case it is unknown whether April is in error or 31.

Considerations

• A 64-bit Julian timestamp is based on the Julian Date. It is a quantity equal to the
number of microseconds since January 1, 4713 B.C., 12:00 (noon) Greenwich
mean time (Julian proleptic calendar). This timestamp can represent either
Greenwich mean time, local standard time, or local civil time. There is no way to
examine a Julian timestamp and determine which of the three times it represents.

• Procedures that work with the 64-bit Julian timestamp are COMPUTETIMESTAMP,
CONVERTTIMESTAMP, INTERPRETTIMESTAMP, JULIANTIMESTAMP, and
SETSYSTEMCLOCK.

• For a more complete description of 48-bit and 64-bit timestamps, see the
TIMESTAMP or JULIANTIMESTAMP procedure.

Related Programming Manual
For programming information about the COMPUTETIMESTAMP procedure, see the
Guardian Programmer’s Guide.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-81

CONFIG_GETINFO_BYLDEV_ Procedure (G-Series
and H-Series RVUs Only)

 CONFIG_GETINFO_BYLDEV_ Procedure
(G-Series and H-Series RVUs Only)

CONFIG_GETINFO_BYNAME_ Procedure
(G-Series and H-Series RVUs Only)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Structure Definition for common-info
Considerations

Summary
The CONFIG_GETINFO_BYLDEV_ and CONFIG_GETINFO_BYNAME_ procedures
obtain the logical and physical attributes of a device on a G-series RVU. To specify the
device by logical device number, use the CONFIG_GETINFO_BYLDEV_ procedure.
To specify the device by name, use the CONFIG_GETINFO_BYNAME_ procedure.

The CONFIG_GETINFO_BYLDEV_ procedure is provided to simplify migration from
earlier hardware. This procedure does not return information from subtype 30
processes. For new development, use the CONFIG_GETINFO_BYNAME_ procedure.

Syntax for C Programmers

Note. In the TNS/E environment, the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(CONFIG_GETINFO_BYLDEV_)>

__int32_t CONFIG_GETINFO_BYLDEV2_ (__int32_t ldevnum
 , short common-info-maxlen
 , short *common-info-len
 , char *specific-info
 , short specific-info-maxlen
 , short *specific-info-len
 , __int32_t timeout
 , __int32_t *error-detail);

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-82

CONFIG_GETINFO_BYNAME_ Procedure
(G-Series and H-Series RVUs Only)

Syntax for TAL Programmers

Parameters

error returned value

INT(32)

indicates the outcome of the operation. It returns one of these values:

0D Information was successfully returned.

1D Either the device or the process simulating a device detected a file-system
error; error-detail contains a file-system error number. If error-
detail is 14D, the device was not found. If error-detail is 40D,
the I/O subsystem did not respond within the timeout specified.

#include <cextdecs(CONFIG_GETINFO_BYNAME_)>

__int32_t CONFIG_GETINFO_BYNAME_ (char *devname
 , short length
 , short *common-info
 , short common-info-maxlen
 , short *common-info-len
 , char *specific-info
 , short specific-info-maxlen
 , short *specific-info-len
 , __int_32_t timeout
 , __int32_t *error-detail);

error := CONFIG_GETINFO_BYLDEV_ (
 ldevnum ! i
 ,common-info ! o
 ,common-info-maxlen ! i
 ,common-info-len ! o
 ,specific-info:specific-info-maxlen ! o:i
 ,specific-info-len ! o
 ,timeout ! i
 ,error-detail); ! o

error := CONFIG_GETINFO_BYNAME_ (
 devname:length ! i
 ,common-info ! o
 ,common-info-maxlen ! i
 ,common-info-len ! o
 ,specific-info:specific-info-maxlen ! o:i
 ,specific-info-len ! o
 ,timeout ! i
 ,error-detail); ! o

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-83

CONFIG_GETINFO_BYNAME_ Procedure
(G-Series and H-Series RVUs Only)

2D Parameter error; error-detail contains the number of the first
parameter found to be in error, where 1D designates the first parameter on
the left.

3D Bounds error; error-detail contains the number of the first parameter
found to be in error, where 1D designates the first parameter on the left.

4D Either the device or the process simulating a device detected an error;
error-detail contains the error number returned by the device. If
error-detail is -1D, the returned information is invalid.

ldevnum (CONFIG_GETINFO_BYLDEV_ only) input

INT(32):value

specifies the logical device number of the device for which information is
requested. The logical device number of a device can change whenever a device
is configured or the system is loaded. Some I/O subsystems do not have a logical
device number.

devname:length (CONFIG_GETINFO_BYNAME_ only) input: input

STRING .EXT:ref:*, INT:value

specifies the name of the device for which information is requested. The value of
devname must be a local name (that is, it must not include a system name) and
can have qualifiers.

The devname parameter must be exactly length bytes long.

common-info output

INT .EXT:ref:(ZSYS^DDL^CONFIG^GETINFO)

if error is 0D and if common-info-maxlen is not 0, points to a buffer that
returns a set of logical attributes for the specified device. For information on the
values in the buffer, see “Structure Definition for common-info.”

common-info-maxlen input

INT:value

specifies the length in bytes of the buffer pointed to by common-info. If the buffer
length is too short for the full set of device attributes, the procedure sets error to
2D, sets error-detail to 3D, and does not return any information on the
specified device.

common-info-len output

INT .EXT:ref:1

returns the actual length in bytes of the buffer pointed to by common-info.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-84

CONFIG_GETINFO_BYNAME_ Procedure
(G-Series and H-Series RVUs Only)

specific-info:specific-info-maxlen output:input

STRING .EXT:ref:*, INT:value

if present and if specific-info-maxlen is not 0, points to a buffer that returns a
set of physical device attributes obtained from the I/O subsystem that supports the
specified device. The attribute values are returned in a structure that is defined by
the I/O subsystem. See I/O Subsystems That Use the specific_info Parameter on
page 3-89 for a detailed description of the structure of this buffer.

specific-info-maxlen specifies the length in bytes of the buffer pointed to by
specific-info. If the buffer length is too short for the full set of device
attributes, the procedure returns as many values as will fit in the buffer.

If this parameter pair is present, specific-info-len must also be present.

specific-info-len output

INT .EXT:ref:1

returns the actual length in bytes of the buffer pointed to by specific-info. If
specific-info-len is greater than specific-info-maxlen, then
specific-info does not contain all the available data from the I/O subsystem.

This parameter must be present if specific-info is present.

timeout input

INT(32):value

specifies how many hundredths of a second the procedure should wait for a
response from the I/O subsystem. The maximum value is 2147483647. The
default value is 6000D (one minute). A value of -1D causes the procedure to wait
indefinitely.

error-detail output

INT(32) .EXT:ref:1

for some returned errors, contains additional information. See error, earlier in
this subsection.

Structure Definition for common-info
The common-info parameter points to a buffer that returns a set of logical attributes
for a specified device.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-85

CONFIG_GETINFO_BYNAME_ Procedure
(G-Series and H-Series RVUs Only)

In the TAL ZSYSTAL file, the structure of the buffer that the common-info parameter
points to is defined below.

STRUCT ZSYS^DDL^CONFIG^GETINFO^DEF (*)
?IF PTAL
FIELDALIGN (SHARED2)
?ENDIF PTAL;
 BEGIN
 INT Z^EYECATCHER;
 INT Z^VERSION;
 STRUCT Z^NSK^NODENAME;
 BEGIN STRING BYTE [0:7]; END;
 STRUCT Z^NSK^DEVICENAME;
 BEGIN STRING BYTE [0:7]; END;
 STRUCT Z^QUALIFIER1;
 BEGIN STRING BYTE [0:7]; END;
 STRUCT Z^QUALIFIER2;
 BEGIN STRING BYTE [0:7]; END;
 INT(32) Z^LDEV^NUMBER;
 INT Z^DEVICE^RECORD^SIZE;
 INT Z^DEVICE^TYPE;
 INT Z^DEVICE^SUBTYPE;
 INT Z^LOGICAL^STATUS;
 INT Z^CONFIG^NAME^LEN;
 STRUCT Z^CONFIG^NAME;
 BEGIN STRING BYTE [0:63]; END;
 INT Z^SUBSYS^MANAGER^LEN;
 STRUCT Z^SUBSYS^MANAGER;
 BEGIN STRING BYTE [0:47]; END;
 STRUCT Z^PRIMARY^PHANDLE;
 BEGIN
 STRUCT Z^DATA;
 BEGIN
 STRING ZTYPE;
 FILLER 19;
 END;
 INT Z^WORD[0:9] = Z^DATA;
 STRUCT Z^BYTE = Z^DATA;
 BEGIN STRING BYTE [0:19]; END;
 END;
 STRUCT Z^BACKUP^PHANDLE;
 BEGIN
 STRUCT Z^DATA;
 BEGIN
 STRING ZTYPE;
 FILLER 19;
 END;
 INT Z^WORD[0:9] = Z^DATA;
 STRUCT Z^BYTE = Z^DATA;
 BEGIN STRING BYTE [0:19]; END;
 END;
 STRUCT Z^RESERVED^1;
 BEGIN STRING BYTE [0:19]; END;
 END;

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-86

CONFIG_GETINFO_BYNAME_ Procedure
(G-Series and H-Series RVUs Only)

In the C zsysc file, the structure of the buffer that the common-info parameter points
to is defined below.

Z^EYECATCHER

identifies the structure and is helpful in debugging.

This TAL literal is defined in the ZSYSTAL file. Literals in the zsysc file, for C
programs, are the same as those for TAL except that they contain the underscore
(_) character instead of the circumflex (^) character.

#pragma fieldalign shared2 __zsys_ddl_config_getinfo
typedef struct __zsys_ddl_config_getinfo
{
 short z_eyecatcher;
 short z_version;
 char z_nsk_nodename[8];
 char z_nsk_devicename[8];
 char z_qualifier1[8];
 char z_qualifier2[8];
 long z_ldev_number;
 short z_device_record_size;
 short z_device_type;
 short z_device_subtype;
 short z_logical_status;
 short z_config_name_len;
 char z_config_name[64];
 short z_subsys_manager_len;
 char z_subsys_manager[48];
 zsys_ddl_phandle_def z_primary_phandle;
 zsys_ddl_phandle_def z_backup_phandle;
 char z_reserved_1[20];
} zsys_ddl_config_getinfo_def;

#pragma section zsys_ddl_phandle
#pragma fieldalign shared2 __zsys_ddl_phandle
typedef struct __zsys_ddl_phandle
{
 union
 {
 struct
 {
 signed char ztype;
 char filler_0[19];
 } z_data;
 short z_word[10];
 char z_byte[20];
 } u_z_data;
} zsys_ddl_phandle_def;

Name (ZSYS^VAL^) Value ASCII Value Description

CONFIG^GT^EYCATCHER 17225 “CI” Flag for debugging

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-87

CONFIG_GETINFO_BYNAME_ Procedure
(G-Series and H-Series RVUs Only)

Z^VERSION

identifies the version of the ZSYS^DDL^CONFIG^GETINFO structure.

This TAL literal is defined in the ZSYSTAL file. Literals in the zsysc file, for C
programs, are the same as those for TAL except that they contain the underscore
(_) character instead of the circumflex (^) character.

Z^NSK^NODENAME

is the node of the device name returned in Z^NSK^DEVICENAME.

Z^NSK^DEVICENAME

is the local name (that is, a name that does not include a node name) of the device
whose attributes are being returned. This name has no qualifiers.
Z^NSK^NODENAME returns the node name, and Z^QUALIFIER1 and
Z^QUALIFIER2 return any qualifiers.

Z^QUALIFIER1

is the first qualifier name subordinate to the device name returned in
Z^NSK^DEVICENAME. For example, #Q1 is the first qualifier of the terminal
process named $TERM.#Q1.Q2.

Z^QUALIFIER2

is the second qualifier name subordinate to the device name returned in
Z^NSK^DEVICENAME. For example, Q2 is the second qualifier of the terminal
process named $TERM.#Q1.Q2.

Z^LDEV^NUMBER

is the logical device number of the device whose attributes are being returned.
The logical device number of a device can change whenever a device is
configured or the system is loaded. Some I/O subsystems do not have a logical
device number.

Z^DEVICE^RECORD^SIZE

is the record size of the device.

Z^DEVICE^TYPE

is the device type of the device. See Appendix A, Device Types and Subtypes for
a list of device types.

Name (ZSYS^VAL^) Value Description

CONFIG^GI^VERSION 1 The current version of the structure

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-88

CONFIG_GETINFO_BYNAME_ Procedure
(G-Series and H-Series RVUs Only)

Z^DEVICE^SUBTYPE

is the device subtype of the device. See Appendix A, Device Types and Subtypes
for a list of device subtypes.

Z^LOGICAL^STATUS

is the logical status of the device. This TAL literals are defined in the ZCOMTAL
file. Literals in the zcomc file, for C programs, are the same as those for TAL
except that they contain the underscore (_) character instead of the circumflex (^)
character.

Z^CONFIG^NAME^LEN

is the length of the configured name of the device, which is in Z^CONFIG^NAME.

Z^CONFIG^NAME

is the configured name of the device.

Z^SUBSYS^MANAGER^LEN

is the length of the name of the Guardian subsystem manager process, which is in
Z^SUBSYS^MANAGER.

Z^SUBSYS^MANAGER

is the name of the Guardian subsystem manager process.

Z^PRIMARY^PHANDLE

is the process handle of the primary I/O subsystem that owns the device.

Name (ZCOM^VAL^) Value Indicates the I/O subsystem is

SUMSTATE^ABORTING 0 aborting

SUMSTATE^DEF 1 defined

SUMSTATE^DIAG 2 running diagnostics

SUMSTATE^STARTED 3 started

SUMSTATE^STARTING 4 starting

SUMSTATE^STOPPED 5 stopped

SUMSTATE^STOPPING 6 stopping

SUMSTATE^SUSP 7 suspended

SUMSTATE^UNKWN 8 in an unknown state

SUMSTATE^SUSPENDING 9 suspending

SUMSTATE^SERVICE 10 being serviced

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-89

CONFIG_GETINFO_BYNAME_ Procedure
(G-Series and H-Series RVUs Only)

Z^BACKUP^PHANDLE

is the process handle of the backup I/O subsystem that owns the device.

Z^RESERVED^1

is reserved.

Considerations

• It is possible for CONFIG_GETINFO_BYLDEV_ to return an error value of 0D
(information successfully returned) while the I/O subsystem reports an error in the
Z^LOGICAL^STATUS field of the returned buffer. In that case, the error value of
0D indicates that communication with the I/O subsystem was successful, while the
I/O subsystem logical status value reflects the status of the I/O subsystem.

• Searching logical devices

To perform a search of logical devices, call the file-name inquiry procedures
FILENAME_FINDSTART_, FILENAME_FINDNEXT_, and
FILENAME_FINDFINISH_.

I/O Subsystems That Use the specific_info Parameter
The specific_info parameter contains information passed back from the
subsystem called by CONFIG_GETINFO_BYNAME (and the other
CONFIG_GETINFO procedures). The structure of this parameter is different
depending on which subsystem is called. The CONFIG_GETINFO_BYNAME
procedure supports these subsystems:

• Storage subsystem

• ServerNet Lan Subsystem Access (SLSA) Subsystem

• ServerNet Wide Area Network (SWAN)

Storage Subsystem

The structure returned by the storage subsystem in the specific_info parameter of
the reply consists of a header field followed by a number of path info fields.

The structure is specific to the type of device being described; for example, the
information for a magnetic disk or SCSI-IOP device contains SCSI-specific information,
and the path for a tape device contains tape-specific information, and so on.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-90

CONFIG_GETINFO_BYNAME_ Procedure
(G-Series and H-Series RVUs Only)

The structure for magnetic disk and SCSI-IOP devices is defined in TAL as follows:

STRUCT SCSI^DEVICE^INFO^DEF (*) FIELDALIGN (SHARED2);
 BEGIN
 STRUCT SPECIFIC^HDR;
 BEGIN
 INT VERSION;
 INT MAX^NUM^PATHS;
 INT PRIMARY^SUBTYPE;
 INT MIRROR^SUBTYPE;
 END;
 INT AUDITED;
 INT DEMOUNTABLE;
 INT RESERVE1;
 INT FLAGS;
 STRUCT PATH^INFO[0:3];
 BEGIN
 STRUCT STANDARD;
 BEGIN
 INT CONFIGURED;
 INT INUSE;
 INT STATE;
 INT RESERVED;
 INT(32) GROUP;
 INT(32) MODULE;
 INT(32) SLOT;
 INT(32) SUBDEVNUM;
 INT(32) FABRIC;
 FILLER 4;
 STRUCT SACNAME;
 BEGIN STRING BYTE [0:63]; END;
 INT(32) PRIMARYCPU;
 INT(32) BACKUPCPU;
 END;
 FIXED SCSILUN;
 FIXED SCSITARGET;
 END;
 FIXED PORT^NAME[0:3]; /*New field*/
 END;

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-91

CONFIG_GETINFO_BYNAME_ Procedure
(G-Series and H-Series RVUs Only)

The structure for tape devices is defined in TAL as follows:

These parameter descriptions apply to both structures above, with the exception of 5
parameters that are used for magnetic disk and SCSI-IOP devices only.

version

Structure version

max_num_paths

The maximum number of paths for the device type.

primary_subtype

Subtype of the magnetic disk located on the primary volume. For more information
about device subtypes, see Appendix A, Device Types and Subtypes.

STRUCT SCSI^TAPE^DEVICE^INFO^DEF (*) FIELDALIGN (SHARED2);
 BEGIN
 STRUCT SPECIFIC^HDR;
 BEGIN
 INT VERSION;
 INT MAX^NUM^PATHS;
 INT PRIMARY^SUBTYPE;
 INT MIRROR^SUBTYPE;
 END;
 STRUCT PATH^INFO;
 BEGIN
 STRUCT STANDARD;
 BEGIN
 INT CONFIGURED;
 INT INUSE;
 INT STATE;
 INT RESERVED;
 INT(32) GROUP;
 INT(32) MODULE;
 INT(32) SLOT;
 INT(32) SUBDEVNUM;
 INT(32) FABRIC;
 FILLER 4;
 STRUCT SACNAME;
 BEGIN STRING BYTE [0:63]; END;
 INT(32) PRIMARYCPU;
 INT(32) BACKUPCPU;
 END;
 FIXED SCSILUN;
 FIXED SCSITARGET;
 END;
 FIXED PORT^NAME[0:3]; /*New field*/
 END;

Device Type max_num_paths

disk 4

tape 1

open-scsi 2

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-92

CONFIG_GETINFO_BYNAME_ Procedure
(G-Series and H-Series RVUs Only)

mirror_subtype

Subtype of the magnetic disk located on the mirror volume. For more information
about device subtypes, see Appendix A, Device Types and Subtypes.

audited

(For magnetic disk and SCSI-IOP devices only.) This volume is currently audited
for TMF

demountable

(For magnetic disk and SCSI-IOP devices only.) Always 1 - the volume can be
always be removed

reserve1

(For magnetic disk and SCSI-IOP devices only.) (not used)

flags

(For magnetic disk and SCSI-IOP devices only.)

<15> = 1 Volume is in SOFTDOWN state
<14> = 1 Backup DP2 is in SOFTDOWN state

path^info

(For magnetic disk and SCSI-IOP devices only.) Array of STRUCT
STORAGE_PATH_INFO_HEADER_DEF(*), one for each path

configured

Equal to -1 if the path is configured, equal to 0 if the path is not configured. Devices
such as terminals and tape drives have only one path configured; disks can have
two or four paths configured.

inuse

Equal to -1 if the path is currently in use by the IOP that owns the device, equal to
0 if it is not.

state

The current state of the path. If the device has only one path, then the state of the
device is the state of the path. Valid state values are:

Value Description

0 UP

1 DOWN

2 SPECIAL

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-93

CONFIG_GETINFO_BYNAME_ Procedure
(G-Series and H-Series RVUs Only)

group

All objects accessible to a pair of service processors in a system enclosure. In a
NonStop S-series server, a group includes all components in a system enclosure.
The valid range is from 1 through 999.

module

A set of components that shares a hardware interconnection. A module is a subset
of a group. It is contained in a system enclosure, and contains one or more slots.
In a NonStop S-series server, there is exactly one module in a group. The valid
range is from 1 through 99.

slot

A physical, labeled space in a module in which a CRU can be installed. The valid
range is from 1 through 999.

subDevNum

The subtype of the device. For more information about device subtypes see
Appendix A, Device Types and Subtypes.

fabric

X, Y, or both. These codes correspond to the possible fabric types:

sacName

The name of the ServerNet addressable controller (SAC) located in the PMF CRU
or IOMF CRU.

scsiLun

The logical unit number (LUN) of the Open SCSI device.

3 MOUNT

4 REVIVE

5 (reserved)

6 EXERCISE

7 EXCLUSIVE

8 HARD DOWN

9 UNKNOWN

Value Fabric

0 X

1 Y

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-94

CONFIG_GETINFO_BYNAME_ Procedure
(G-Series and H-Series RVUs Only)

scsiTargetId

The SCSI ID of the Open SCSI device. This is the address used by the Open SCSI
I/O process to access the device.

More information about the definition of the specific_info field for the Storage
subsystem can be found in the Guardian file $SYSTEM.ZSPIDEF.ZSTOTAL.

ServerNet Wide Area Network (SWAN)

Below is the structure definition for the specific_info parameter when returned by
a device that uses ServerNet wide area network (SWAN) connectivity. The structure is
defined by the wide area network (WAN) subsystem. Devices for many HP
communication subsystems, including AM3270, ATP, CP6100, Envoy and Envoy
ACP/XF, Expand, SNAX/XF and SNAX/APN, TR3271, and X25AM support SWAN
connectivity in NonStop S-series servers. (The structure definition below applies only
to the subsystems identified here.) Note that if an Expand or a SNAX device does not
use SWAN, null values are returned in this structure.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-95

CONFIG_GETINFO_BYNAME_ Procedure
(G-Series and H-Series RVUs Only)

This structure definition can be found in the TAL ZWANTAL file.

Z^PATYPE

is the physical adapter type. For SWAN support, Z^PATYPE has a value of 4.

Z^CHNL

is reserved.

Z^CTLR

is reserved. It is redefined by Z^CLIPNUM.

STRUCT ZWAN^DDL^EXIOADDR^DEF (*)
 ?IF PTAL
 FIELDALIGN (SHARED2)
 ?ENDIF PTAL
 ;
 BEGIN
 INT Z^PATYPE;
 INT Z^CHNL;
 INT Z^CTLR;
 INT Z^CLIPNUM = Z^CTLR;
 INT Z^UNIT;
 INT Z^LINENUM = Z^UNIT;
 INT Z^CPU;
 STRUCT Z^TRACKID;
 BEGIN
 STRUCT Z^C;
 BEGIN STRING BYTE [0:5]; END;
 STRUCT Z^S = Z^C;
 BEGIN
 INT Z^I[0:2];
 END;
 STRING Z^B[0:5] = Z^C;
 END;
 INT(32) Z^IPADDRESS;
 STRUCT Z^IPADDRSTG = Z^IPADDRESS;
 BEGIN
 STRUCT Z^C;
 BEGIN STRING BYTE [0:3]; END;
 STRUCT Z^S = Z^C;
 BEGIN
 INT Z^I[0:1];
 END;
 STRING Z^B[0:3] = Z^C;
 END;
 END;

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-96

CONFIG_GETINFO_BYLDEV2_ Procedure
(G-Series and H-Series RVUs Only)

Z^CLIPNUM

is the clip number that identifies which clip number is being used. The valid range
for the clip number is 1 through 3.

Z^UNIT

is reserved. It is redefined by Z^LINENUM.

Z^LINENUM

identifies the line number (0 or 1) on a clip that is being used.

Z^CPU

is the processor that is currently being used to run the LINE. The LINE is a
Subsystem Programmatic Interface (SPI) object in a subsystem.

Z^TRACKID

is a six-character string number that identifies the SWAN box.

Z^IPADDRESS

is the IP address that is currently being used to access the SWAN.

CONFIG_GETINFO_BYLDEV2_ Procedure
(G-Series and H-Series RVUs Only)

CONFIG_GETINFO_BYNAME2_ Procedure
(G-Series and H-Series RVUs Only)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Structure Definition for common-info
Considerations

Summary
The CONFIG_GETINFO_BYLDEV2_ and CONFIG_GETINFO_BYNAME2_
procedures obtain the logical and physical attributes of a device on a G-series RVU.
To specify the device by logical device number, use the
CONFIG_GETINFO_BYLDEV2_ procedure. To specify the device by name, use the
CONFIG_GETINFO_BYNAME2_ procedure.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-97

CONFIG_GETINFO_BYNAME2_ Procedure
(G-Series and H-Series RVUs Only)

The CONFIG_GETINFO_BYLDEV2_ and CONFIG_GETINFO_BYNAME2_
procedures are variants of CONFIG_GETINFO_BYLDEV_ and
CONFIG_GETINFO_BYNAME_. The CONFIG_GETINFO_BYLDEV2_ and
CONFIG_GETINFO_BYNAME2_ procedures allow the caller to specify device names
that do not conform to Guardian file-name formats as required by some communication
devices.

Syntax for C Programmers

Note. In the TNS/E environment, the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(CONFIG_GETINFO_BYLDEV2_)>

__int32_t CONFIG_GETINFO_BYLDEV2_ (__int32_t ldevnum
 , short *common-info
 , short common-maxlen
 , short *common-len
 , char *specific-info]
 , short specific-maxlen]
 , short *specific-len]
 , __int32_t timeout]
 , __int32_t *error-detail]);

#include <cextdecs(CONFIG_GETINFO_BYNAME2_)>

__int32_t CONFIG_GETINFO_BYNAME2_ (char *devname
 , short length
 , short *common-info
 , short common-maxlen
 , short *common-len
 , char *specific-info
 , short specific-maxlen
 , short *specific-len
 , __int32_t timeout
 , __int32_t *error-detail);

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-98

CONFIG_GETINFO_BYNAME2_ Procedure
(G-Series and H-Series RVUs Only)

Syntax for TAL Programmers

Parameters

error returned value

INT(32)

indicates the outcome of the operation. It returns one of these values:

0D Device found and data is returned. The value of error-detail is set to
zero. Only if error is returned as zero will there be any meaningful data in
common-info or specific-info.

1D Device or subtype 30 process returned an error. The error is reported in
error-detail. An error-detail value of 40 indicates that the I/O
process did not respond within the timeout interval. An error-detail
value of 14 indicates that the device was not found.

2D Required parameter is invalid. The value of error-detail is set to the
ordinal number of the invalid parameter.

3D Bounds error; a reference parameter contained an invalid address. The
value of error-detail is set to the ordinal number of the invalid
parameter.

4D Device returned error or invalid data to the inquiry. If Error-detail is -
1, then the device returned zero and the response is invalid. Otherwise,
error-detail is the value of the error returned to the inquiry by the
device.

error := CONFIG_GETINFO_BYLDEV2_ (
 ldevnum ! i
 ,common-info ! o
 ,common-maxlen ! i
 ,common-len ! o
 ,specific-info:specific-maxlen ! o:i
 ,specific-len ! o
 ,timeout ! i
 ,error-detail); ! o

error := CONFIG_GETINFO_BYNAME2_ (
 devname:length ! i
 ,common-info ! o
 ,common-maxlen ! i
 ,common-len ! o
 ,specific-info:specific-maxlen ! o:i
 ,specific-len ! o
 ,timeout ! i
 ,error-detail); ! o

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-99

CONFIG_GETINFO_BYNAME2_ Procedure
(G-Series and H-Series RVUs Only)

ldevnum (CONFIG_GETINFO_BYLDEV2_ only) input

INT(32):value

specifies the logical device number of the device for which information is
requested.

devname:length (CONFIG_GETINFO_BYNAME2_ only) input: input

STRING .EXT:ref:*, INT:value

specifies the name of the device to look up. The devname parameter and the
length parameter are required. The length parameter is the length of the string
in bytes.

common-info output

INT .EXT:ref:(ZSYS^DDL^CONFIG^GETINFO2)

specifies a pointer to a buffer that will hold the result of the call. The structure is
always returned, if error has zero value.

common-maxlen input

INT:value

specifies the length in bytes of the buffer pointed to by common-info. This value
must be greater than or equal to the size of common-info; otherwise, error is
set to 2 and error-detail is set to 3.

common-len output

INT .EXT:ref:1

number of bytes returned by common-info. If the value returned by this
procedure is nonzero, this parameter will be returned as zero.

specific-info:specific-maxlen output:input

STRING .EXT:ref:1, INT:value

specifies an area where the device-specific information will be returned. If
specific-info is zero or if specific-maxlen is zero, then no device-specific
data is returned. Each device type or subtype might return a different set of data.
See I/O Subsystems That Use the specific_info Parameter on page 3-89 for a
detailed description of the structure of this buffer.

If the returned device-specific information is too large to fit into the buffer, the
actual data is truncated to fit; however, specific-len is set to reflect the number
of bytes that would have been returned if the buffer had been large enough.

specific-len output

INT .EXT:ref:1

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-100

CONFIG_GETINFO_BYNAME2_ Procedure
(G-Series and H-Series RVUs Only)

if specific-info is not 0 and specific-maxlen is greater than zero, this
parameter is returned if its value is not 0. The value returned reflects the full size
of the device-specific information, even if it is larger than the specific-maxlen
value. The actual number of bytes copied into specific-info is the smaller of
specific-maxlen and specific-len bytes. If the value returned by this
procedure is nonzero, this parameter is returned as zero.

timeout input

INT(32):value

specifies how many hundredths of a second the procedure should wait for a
response from the device. If zero is passed, the timeout value is set to its default
(6000D or 1 minute). If -1D is passed, the procedure does not time out.

error-detail output

INT(32) .EXT:ref:1

If error-detail is not 0, then an error-dependent value is returned.

Structure Definition for common-info
The common-info parameter points to a buffer that returns a set of logical attributes
for a specified device.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-101

CONFIG_GETINFO_BYNAME2_ Procedure
(G-Series and H-Series RVUs Only)

In the TAL ZSYSTAL file, the structure of the buffer that the common-info parameter
points to is defined as follows.

STRUCT ZSYS^DDL^CONFIG^GETINFO2^DEF (*) FIELDALIGN
(SHARED2);
 BEGIN
 INT Z^EYECATCHER;
 INT Z^VERSION;
 STRUCT Z^NSK^NODENAME;
 BEGIN STRING BYTE [0:7]; END;
 INT(32) Z^LDEV^NUMBER;
 INT Z^DEVICE^RECORD^SIZE;
 INT Z^DEVICE^TYPE;
 INT Z^DEVICE^SUBTYPE;
 INT Z^LOGICAL^STATUS;
 INT Z^CONFIG^NAME^LEN;
 STRUCT Z^CONFIG^NAME;
 BEGIN STRING BYTE [0:63]; END;
 INT Z^SUBSYS^MANAGER^LEN;
 STRUCT Z^SUBSYS^MANAGER;
 BEGIN STRING BYTE [0:47]; END;
 STRUCT Z^PRIMARY^PHANDLE;
 BEGIN
 STRUCT Z^DATA;
 BEGIN
 STRING ZTYPE;
 FILLER 19;
 END;
 INT Z^WORD[0:9] = Z^DATA;
 STRUCT Z^BYTE = Z^DATA;
 BEGIN STRING BYTE [0:19]; END;
 END;
 STRUCT Z^BACKUP^PHANDLE;
 BEGIN
 STRUCT Z^DATA;
 BEGIN
 STRING ZTYPE;
 FILLER 19;
 END;
 INT Z^WORD[0:9] = Z^DATA;
 STRUCT Z^BYTE = Z^DATA;
 BEGIN STRING BYTE [0:19]; END;
 END;
 STRUCT Z^RESERVED^1;
 BEGIN STRING BYTE [0:19]; END;
 INT Z^DEVNAME^OFF;
 INT Z^DEVNAME^LEN;
 STRUCT Z^DEVNAME^DATA;
 BEGIN STRING BYTE [0:63]; END;
 END;

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-102

CONFIG_GETINFO_BYNAME2_ Procedure
(G-Series and H-Series RVUs Only)

In the C zsysc file, the structure of the buffer that the common-info parameter points
to is defined as follows.

Z^EYECATCHER

identifies the structure and is helpful in debugging.

This TAL literal is defined in the ZSYSTAL file. Literals in the zsysc file, for C
programs, are the same as those for TAL except that they contain the underscore
(_) character instead of the circumflex (^) character.

#pragma fieldalign shared2 __zsys_ddl_config_getinfo2
typedef struct __zsys_ddl_config_getinfo2
{
 short z_eyecatcher;
 short z_version;
 char z_nsk_nodename[8];
 long z_ldev_number;
 short z_device_record_size;
 short z_device_type;
 short z_ldev_subtype;
 short z_logical_status;
 short z_config_name_len;
 char z_config_name[64];
 short z_subsys_manager_len;
 char z_subsys_manager[48];
 zsys_ddl_phandle_def z_primary_phandle;
 zsys_ddl_phandle_def z_backup_phandle;
 char z_reserved_1[20];
 short z_devname_off;
 short z_devname_len;
 char z_devname_data[64];
} zsys_ddl_config_getinfo2_def;

#pragma section zsys_ddl_phandle
#pragma fieldalign shared2 __zsys_ddl_phandle
typedef struct __zsys_ddl_phandle
{
 union
 {
 struct
 {
 signed char ztype;
 char filler_0[19];
 } z_data;
 short z_word[10];
 char z_byte[20];
 } u_z_data;
} zsys_ddl_phandle_def;

Name (ZSYS^VAL^) Value ASCII Value Description

CONFIG^GT^EYCATCHER 17225 “DI” Flag for debugging

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-103

CONFIG_GETINFO_BYNAME2_ Procedure
(G-Series and H-Series RVUs Only)

Z^VERSION

identifies the version of the ZSYS^DDL^CONFIG^GETINFO structure.

This TAL literal is defined in the ZSYSTAL file. Literals in the zsysc file, for C
programs, are the same as those for TAL except that they contain the underscore
(_) character instead of the circumflex (^) character.

Z^NSK^NODENAME

is the node of the device name returned in Z^DEVNAME^DATA.

Z^LDEV^NUMBER

is the logical device number of the device whose attributes are being returned.
The logical device number could be set to -1. The logical device number of a
device can change whenever a device is configured or the system is loaded.
Some I/O subsystems do not have a logical device number.

Z^DEVICE^RECORD^SIZE

is the record size of the device.

Z^DEVICE^TYPE

is the type of the device. See Appendix A, Device Types and Subtypes for a list of
device types.

Z^DEVICE^SUBTYPE

is the subtype of the device. See Appendix A, Device Types and Subtypes for a
list of device subtypes.

Z^LOGICAL^STATUS

is the logical status of the device. These TAL literals are defined in the ZCOMTAL
file. Literals in the zcomc file, for C programs, are the same as those for TAL
except that they contain the underscore (_) character instead of the circumflex (^)
character.

Name (ZSYS^VAL^) Value Description

CONFIG^GI^VERSION 2 The current version of the structure

Name (ZCOM^VAL^) Value Indicates the I/O subsystem is

SUMSTATE^ABORTING 0 Terminating abnormally

SUMSTATE^DEF 1 Defined

SUMSTATE^DIAG 2 Running diagnostics

SUMSTATE^STARTED 3 Started

SUMSTATE^STARTING 4 Starting

SUMSTATE^STOPPED 5 Stopped

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-104

CONFIG_GETINFO_BYNAME2_ Procedure
(G-Series and H-Series RVUs Only)

Z^CONFIG^NAME^LEN

is the length of the configured name of the device, which is in Z^CONFIG^NAME.

Z^CONFIG^NAME

is the configured name of the device.

Z^SUBSYS^MANAGER^LEN

is the length of the name of the Guardian subsystem manager process, which is in
Z^SUBSYS^MANAGER.

Z^SUBSYS^MANAGER

is the name of the Guardian subsystem manager process.

Z^PRIMARY^PHANDLE

is the process handle of the primary I/O subsystem that owns the device.

Z^BACKUP^PHANDLE

is the process handle of the backup I/O subsystem that owns the device.

Z^RESERVED^1

is reserved.

Z^DEVNAME^OFF

is the offset of Z^DEVNAME^DATA from beginning of the common-info
parameter.

Z^DEVNAME^LEN

is the length of the device name in bytes. The maximum length is 64.

Z^DEVNAME^DATA

is the full device name.

SUMSTATE^STOPPING 6 Stopping

SUMSTATE^SUSP 7 Suspended

SUMSTATE^UNKWN 8 In an unknown state

SUMSTATE^SUSPENDING 9 Suspending

SUMSTATE^SERVICE 10 Being serviced

Name (ZCOM^VAL^) Value Indicates the I/O subsystem is

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-105

CONTIME Procedure

Considerations

• It is possible for CONFIG_GETINFO_BYLDEV2_ to return an error value of 0D
(information successfully returned) while the I/O subsystem reports an error in the
Z^LOGICAL^STATUS field of the returned buffer. In that case, the error value of
0D indicates that communication with the I/O subsystem was successful, while the
I/O subsystem logical status value reflects the status of the I/O subsystem.

• Searching logical devices

To perform a search of logical devices, call the file-name inquiry procedures
FILENAME_FINDSTART_, FILENAME_FINDNEXT_, and
FILENAME_FINDFINISH_.

CONTIME Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The CONTIME procedure converts a 48-bit timestamp to a date and time in integer
form.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-106

CONTIME Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

date-and-time output

INT:ref:7

is an array where CONTIME returns a date and time in this form:

[0] year (1975, 1976, ...)

[1] month (1-12)

[2] day (1-31)

[3] hour (0-23)

[4] minute (0-59)

[5] second (0-59)

[6] 0.01 second (0-99)

#include <cextdecs(CONTIME)>

void CONTIME (short _near *date-and-time
 ,short t0
 ,short t1
 ,short t2);

CALL CONTIME (date-and-time ! o
 ,t0 ! i
 ,t1 ! i
 ,t2); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-107

CONTROL Procedure

t0, t1, t2 input

INT:value:3

is an array that must correspond to the 48 bits of a timestamp for the results of
CONTIME to have any meaning (t0 is the most significant word; t2 is the least
significant).

Considerations

• A 48-bit timestamp is a quantity equal to the number of 10 millisecond units since
00:00, 31 December 1974. The 48-bit timestamp always represents local civil
time.

• Procedures that work with the 48-bit timestamp are CONTIME, TIME, and
TIMESTAMP.

• For a more complete description of 48-bit and 64-bit timestamps, see TIMESTAMP
Procedure or JULIANTIMESTAMP Procedure.

Example
CALL CONTIME(DATE^TIME , LAST^T , LAST^T[1] , LAST^T[2]);
 !conversion to date and time

CONTIME is used to convert the three words in LAST^T to a date and time.
DATE^TIME returns seven words of date and time.

Related Programming Manual
For programming information about the CONTIME utility procedure, see the Guardian
Programmer’s Guide.

CONTROL Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Control Operations
Considerations
Related Programming Manuals

t0 most significant word, interval
clock

t1 interval clock

t2 least significant word, interval
clock

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-108

CONTROL Procedure

Summary
CONTROL is used to perform device-dependent I/O operations.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

• The function value returned by CONTROL, which indicates the condition code, can
be interpreted by _status_lt(), _status_eq(), or _status_gt() (defined
in the file tal.h).

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is a number of an open file, identifying the file to which the CONTROL procedure
performs an I/O operation.

operation input

INT:value

is a value that defines an operation to be performed (see Table 3-4 on page 3-109
and Table 3-5 on page 3-113 for a list of operation numbers).

param input

INT:value

is the value of an operation being performed (see Table 3-4 on page 3-109 and
Table 3-5 on page 3-113).

#include <cextdecs(CONTROL)>

_cc_status CONTROL (short filenum
 ,short operation
 ,[short param]
 ,[__int32_t tag]);

CALL CONTROL (filenum ! i
 ,operation ! i
 ,[param] ! i
 ,[tag]); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-109

CONTROL Procedure

tag input

INT(32):value

applies to nowait I/O only. The tag parameter is a value you define uniquely
identifying the operation associated with this CONTROL call.

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that the CONTROL was successful.

> (CCG) for magnetic tape, indicates that the end of file (EOF) was encountered
while spacing records; for a process file, this setting indicates that the
process is not accepting process CONTROL messages. When device
handlers do not allow the operation, file-system error 2 returns.

Control Operations
Table 3-4 and Table 3-5 on page 3-113 list the CONTROL operations that can be used
with the I/O devices discussed in this manual for NonStop servers. Table 3-4
describes CONTROL operation 1 only; Table 3-5 on page 3-113 describes the
remaining CONTROL operations.

Note. The system stores the tag value until the I/O operation completes. It then returns the
tag information to the program in the tag parameter of the call to AWAITIO, thus indicating
that the operation finished.

Table 3-4. CONTROL Operation 1 (page 1 of 4)

Description Subtype Description of <param>

Terminal or
Line Printer
Forms Control

0,2, or 3 0 form feed (send %014)

1–15 vertical tab (send %013)

16–79 skip <param> - 16 lines

Line Printer 6 or 32 0 form feed (send %014)

1–15 single space (send %6412)

16–79 skip <param> - 16 lines

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-110

CONTROL Procedure

Line Printer 1 or 5 0 skip to VFU channel 0 (top of form)

1 skip to VFU channel 1 (bottom of form)

2 skip to VFU channel 2 (single space, top-
of form eject)

3 skip to VFU channel 3 (next odd-
numbered line)

4 skip to VFU channel 5 (next one-half
page)

5 skip to VFU channel 5 (next one-half
page)

6 skip to VFU channel 6 (next one-fourth
page)

7 skip to VFU channel 7 (next one-sixth
page)

8 skip to VFU channel 8 (user-defined)

9 skip to VFU channel 9 (user-defined)

10 skip to VFU channel 10 (user-defined)

11 skip to VFU channel 11 (user-defined)

16–31 skip <param> - 16 lines

Table 3-4. CONTROL Operation 1 (page 2 of 4)

Description Subtype Description of <param>

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-111

CONTROL Procedure

Line Printer 7 0 select VFC channel 1 (top of form)

1 select VFC channel 2 (bottom of form)

2 select VFC channel 3 (single space)

3 select VFC channel 4 (skip to next double
space line)

4 select VFC channel 5 (skip to next triple
space line)

5 select VFC channel 6 (skip to next half
page)

6 select VFC channel 7 (skip to next one-
fourth page)

7 select VFC channel 8 (skip to next one-
sixth page)

8 select VFC channel 9 (bottom of form)

9 select VFC channel 10 (bottom of form -
1)

10 select VFC channel 11 (top of form - 1)

11 select VFC channel 12 (top of form)

16–31 skip <param> - 16 lines

Table 3-4. CONTROL Operation 1 (page 3 of 4)

Description Subtype Description of <param>

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-112

CONTROL Procedure

Line Printer
(default DAVFU)

4 0 skip to VFU channel 0 (top of form/line 1)

1 skip to VFU channel 1 (bottom of
form/line 60)

2 skip to VFU channel 2 (single space/line
1-60, top-of-form eject)

3 skip to VFU channel 3 (next odd-
numbered line)

4 skip to VFU channel 6 (next third line:
1,4,7,10, and so forth)

5 skip to VFU channel 5 (next one-half
page)

6 skip to VFU channel 6 (next one-fourth
page)

7 skip to VFU channel 7 (next one-sixth
page)

8 skip to VFU channel 8 (line 1)

9 skip to VFU channel 9 (line 1)

10 skip to VFU channel 10 (line 1)

11 skip to VFU channel 11(bottom of
paper/line 63)

16–31 skip <param> - 16 lines

Table 3-4. CONTROL Operation 1 (page 4 of 4)

Description Subtype Description of <param>

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-113

CONTROL Procedure

Table 3-5. CONTROL Operations 2 Through 27 (page 1 of 3)

Operation Description Description of <param>

2 Write end of file on unstructured disk or magnetic
tape (if disk, write access is required).

A write end of file (EOF) to an unstructured disk file
sets EOF to point to the relative byte address
indicated by the next-record pointer and writes the
new EOF setting in the file label on disk.

If this new EOF setting is out of bounds, EOF is set
to the last possible position.

Note: CONTROL 2 is valid only for unstructured
files or structured files opened for unstructured
access. For XP-based files, using CONTROL 2 to
move the EOF will involve more CPU cycles.
Writing the application data to the file and letting
the disk process move the EOF as the data is
written to the file, and removing the CONTROL 2
operations from the application code will improve
the performance.

None

3 Magnetic tape, rewind and unload, do not wait for
completion.

None

4 Magnetic tape, take off line, do not wait for
completion (treated as operation 3 for 5106 Tri-
Density Tape Drive).

Not supported for 5130, 5160, 5170, and 5180 tape
drives.

None

5 Magnetic tape, rewind leave on line, do not wait for
completion.

None

6 Magnetic tape, rewind, leave on line, wait for
completion.

None

7 Magnetic tape, space forward files. number of files {0:255}

8 Magnetic tape, space backward files. number of files {0:255}

9 Magnetic tape, space forward records. number of records
{0:255}

10 Magnetic tape, space backward records. number of records
{0:255}

11 Terminal or serial-connected line printer, wait for
modem connect.

None

12 Terminal or serial-connected line printer,
disconnect the modem (that is, hang up).

None

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-114

CONTROL Procedure

13 Issue an SNA CHASE request. SNAX exception
response mode must be enabled to use operation
13.

None

17 Terminal or serial-connected line printer, enable
connection and initiate call to remote DTE in X.25
network.

None

20 Disk, purge data (write access is required). None

21 Disk, allocate or deallocate extents (write access is
required).

0 deallocate all
extents past the
end-of-file extent

1:maximum-extents
number of extents to
allocate for a
nonpartitional file
(for DP2 disk files
only)

1:16*number of
partitions
number of extents to
allocate for a
partitioned file

22 Cancel an AM3270 I/O operation. None

24 Magnetic tape, force end-of-volume (EOV). Next
volume in set is requested and current volume is
unloaded.

Valid only for ANSI or IBM label tape.

None

Table 3-5. CONTROL Operations 2 Through 27 (page 2 of 3)

Operation Description Description of <param>

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-115

CONTROL Procedure

26 Requests immediate completion of all outstanding
I/O requests without loss of data by the recipient of
the CONTROL 26 request.

None

27 Wait for DP2 disk file write.

This operation is not supported for queue files.

This operation finishes when a WRITE, WRITEUPDATE, or
WRITEUPDATEUNLOCK occurs on a DP2 disk file designated by filenum.
Not valid for partitioned files.

Do not assume that the file contains any new data when a call to CONTROL
27 finishes; assume only that it is time to check the file for new data.

CONTROL 27 also finishes when a WRITE or WRITEUPDATE occurs as part
of a logical undo of a transaction by the backout process or when a volume
goes down.

If SETMODE 146 was specified, each write completes only one CONTROL
27; otherwise each write completes all pending CONTROL 27 operations.

To ensure that no updates are missed, you should issue a nowait CONTROL
27 call on one open to a file, then read data from the file on another open, and
finally wait for the CONTROL operation to finish. If CONTROL 27 were
executed after reading, a write by another process could occur between the
read and the CONTROL operations. The file open that is used for the
CONTROL operation should have a syncdepth of 0. Path errors and network
errors might indicate successful completion.

See the discussion of CONTROL operation 27 in the Guardian Programmer’s
Guide.

Table 3-5. CONTROL Operations 2 Through 27 (page 3 of 3)

Operation Description Description of <param>

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-116

CONTROL Procedure

Considerations

• Nowait and CONTROL

If the CONTROL procedure is used on a file that is opened nowait, it must be
completed with a call to the AWAITIO procedure.

• Disk files

• Writing EOF to an unstructured file

Writing EOF to an unstructured disk file sets the EOF pointer to the relative
byte address indicated by the setting of the next-record pointer and writes the
new EOF setting in the file label on disk. Specifically, write:

end-of-file pointer := next-record pointer;

(File pointer action for CONTROL operation 2, write EOF.)

Note: CONTROL 2 is valid only for unstructured files or structured files opened
for unstructured access. For XP-based files, using CONTROL 2 to move the
EOF will involve more CPU cycles. Writing the application data to the file and
letting the disk process move the EOF as the data is written to the file, and
removing the CONTROL 2 operations from the application code will improve
the performance.

• File is locked

If a CONTROL operation is attempted for a file locked through a filenum
other than that specified in the call to CONTROL, the call is rejected with a “file
is locked” error 73.

If any record is locked in a file, a call to CONTROL to write EOF (operation 2)
to that same file will be rejected with a “file is locked” error 73.

• Magnetic tapes

• When device is not ready

If a magnetic tape rewind is performed concurrently with application program
execution (that is, rewind operation <> 6), any attempt to perform a read, write,
or control operation to the rewinding tape unit while rewind is taking place
results in an error indication. A subsequent call to FILE_GETINFO_ or
FILEINFO shows that an error 100 occurred.

• Wait for rewind to complete

If a magnetic tape rewind operation = 6 (wait for completion) is performed as a
nowait operation, the application waits at the call to AWAITIO for the rewind to
complete.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-117

CONTROLBUF Procedure

• Interprocess communication

• Nonstandard operation and parameter values

Any value can be specified for the operation and parameter parameters.
An application-defined protocol should be established for interpreting
nonstandard parameter values.

• Process not accepting system messages

If the object of the control operation is not accepting process CONTROL
messages, the call to CONTROL completes with a condition code of CCG; a
subsequent call to FILE_GETINFO_ or FILEINFO shows that an error 7
occurred.

• Process control

You can obtain the process identifier of the caller to CONTROL in a
subsequent call to FILE_GETRECEIVEINFO_ (or LASTRECEIVE or
RECEIVEINFO).

Related Programming Manuals
For programming information about the CONTROL file-system procedure, see the
Guardian Programmer’s Guide, the Enscribe Programmer’s Guide, and the data
communications manuals.

CONTROLBUF Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Messages

Summary
The CONTROLBUF procedure is used to perform device-dependent I/O operations
requiring a data buffer.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-118

CONTROLBUF Procedure

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

• The function value returned by CONTROLBUF, which indicates the condition code,
can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is the number of an open file. It identifies the file on which the CONTROLBUF
procedure performs an I/O operation.

operation input

INT:value

is a value defined by the device, such as:

1 = Load DAVFU (printer subtype 4)

buffer input

INT:ref:*

is an array that contains the information to be used for the CONTROLBUF
operation.

#include <cextdecs(CONTROLBUF)>

_cc_status CONTROLBUF (short filenum
 ,short operation
 ,short _near *buffer
 ,short count
 ,[short _near *count-transferred]
 ,[__int32_t tag]);

CALL CONTROLBUF (filenum ! i
 ,operation ! i
 ,buffer ! i
 ,count ! i
 ,[count-transferred] ! o
 ,[tag]); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-119

CONTROLBUF Procedure

count input

INT:value

is the number of bytes contained in buffer.

count-transferred output

INT:ref:1

returns a count of the number of bytes transferred from buffer (for wait I/O only).

tag input

INT(32):value

is for nowait I/O only. The tag parameter is a value you define that uniquely
identifies the operation associated with this CONTROLBUF call.

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that the CONTROLBUF was successful.

> (CCG) for a process file, indicates that the process is not accepting process
CONTROLBUF messages.

Considerations

• Wait and count-transferred

If a waited CONTROLBUF is executed, the count-transferred parameter
indicates the number of bytes actually transferred.

• Nowait and count-transferred

If a nowait CONTROLBUF is executed, count-transferred has no meaning
and can be omitted. A count of the number of bytes transferred is obtained by the
count-transferred parameter of the AWAITIO procedure when the I/O
finishes.

The CONTROLBUF procedure must complete with a call to the AWAITIO
procedure when used with a file opened nowait.

• When object of CONTROLBUF is not accepting messages

If the object of the CONTROLBUF operation is not accepting process
CONTROLBUF messages, the call to CONTROLBUF completes with condition
code CCG. A subsequent call to FILE_GETINFO_ or FILEINFO shows that an

Note. The system stores the tag value until the I/O operation completes. The system then
returns the tag information in the tag parameter of the call to AWAITIO, thus indicating that
the operation finished.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-120

CONTROLMESSAGESYSTEM Procedure

error 7 (process not accepting process CONTROL, CONTROLBUF, or SETMODE
messages) occurred.

You can obtain the process identifier of the caller to CONTROLBUF in a call to
FILE_GETRECEIVEINFO_ (or LASTRECEIVE or RECEIVEINFO) after you have
read the process CONTROLBUF message.

• Nonstandard operation and buffer parameters

You can specify any value for the operation parameter, and you can include any
data in buffer. An application-defined protocol should be established for
interpreting nonstandard parameter values.

Messages

• Process CONTROLBUF message

Issuing a CONTROLBUF to a file that represents another process causes a
system message -35 (process CONTROLBUF) to be sent to that process. For
detailed information of system messages sent to processes, see the Guardian
Procedure Errors and Messages Manual.

CONTROLMESSAGESYSTEM Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
The CONTROLMESSAGESYSTEM procedure controls the maximum number of
receive and send messages used by a process.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-121

CONTROLMESSAGESYSTEM Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT:ref:1

returns error number:

0 Successful, no error
2 Bad actioncode
21 Bad value
29 Missing parameter

actioncode input

INT:value

specifies the action to be taken. See this list of action codes and values.

#include <cextdecs(CONTROLMESSAGESYSTEM)>

short CONTROLMESSAGESYSTEM (short actioncode
 ,short value);

error := CONTROLMESSAGESYSTEM (actioncode ! i
 ,value); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-122

CONTROLMESSAGESYSTEM Procedure

value input

INT:value

supplies a value to be used in taking an action. See this list of action codes and
values.

Considerations

• If a requester tries to send a message to a process that already has as many
incoming messages as allowed (as specified by action code 0), then the message
is not sent, and the requester receives an error 30. If a time limit set by a process
expires (such as a time limit set with SIGNALTIMEOUT), then a message notifying
the process of the expiration is sent to the process anyway, and is not counted as
part of that limit.

• If a process that already has as many outstanding outgoing messages as allowed
(as specified by action code 1) tries to send a message, the process receives an
error 30.

• CONTROLMESSAGESYSTEM is tied to the internal operation of the message
system—current functions might not be supported by future versions of the
message system. So, if a nonzero error is returned, the caller should log the
error, but otherwise ignore it.

• For information on measuring process message requirements, see the
MESSAGESYSTEMINFO Procedure.

action
code value Action Taken

0 1 through 4095 *

1 through 16383 **

1 through 4095 *

1 through 16383 **

This value (considered an unsigned number)
sets the limit on the number of outstanding
incoming messages to the process. The default
limit is 255; opening $RECEIVE with receive
depth can increase this limit. The elapsed-time
timeout messages and system status messages
are not affected by this limit.

1 This value (considered an unsigned number)
sets the limit on the number of outstanding
messages sent by the process. The default limit
is 1023. The elapsed-time timeout messages
and system status messages are not affected by
this limit.

2 N/A Beginning in the D-series RVU, this action code
of the operating system is obsolete.

3 N/A Beginning in the D-series RVU, this action code
of the operating system is obsolete.

* For systems running G06.29 and later G-series RVUs
** For systems running H06.06 and later H-series RVUs

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-123

CONVERTASCIIEBCDIC Procedure

• Before D-series RVUs of the operating system, the RESERVELCBS procedure
allowed you to reserve message-system control blocks. It also performed certain
secondary functions concerning limits. Beginning in the D-series RVU of the
operating system, reserving message-system control blocks is no longer
applicable, and the secondary functions of the procedure are accomplished by
calling CONTROLMESSAGESYSTEM. Although RESERVELCBS no longer
performs any function, it can still be called without error.

CONVERTASCIIEBCDIC Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters

Summary
This procedure translates the 256 EBCDIC encodings to and from the 256 8-bit ASCII
encodings. For more information, see Appendix K, Character Set Translation.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

buffer input

STRING .EXT:ref:*

points to the start of an array of characters to be translated.

count input

INT:value

specifies the number of characters to convert, in the range 0 through 65535.

#include <cextdecs(CONVERTASCIIEBCDIC)>

void CONVERTASCIIEBCDIC (const char* buffer
 ,const unsigned short count
 ,const short translation);

CALL CONVERTASCIIEBCDIC (buffer !i
 ,count ! i
 ,translation); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-124

CONVERTPROCESSNAME Procedure
(Superseded by FILENAME_RESOLVE_

translation input

INT:value

specifies these translations:

0: None
1: EBCDIC to ASCII
2: ASCII to EBCDIC

All other values have undefined effects.

CONVERTPROCESSNAME Procedure
(Superseded by FILENAME_RESOLVE_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary

The CONVERTPROCESSNAME procedure converts a process name from local to
network form.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

process-name input, output

INT:ref:3

is the process name beginning with “$” to be converted.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

CALL CONVERTPROCESSNAME (process-name); ! i,o

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-125

CONVERTPROCESSTIME Procedure

On return, process-name contains the internal network form of the process
name: “\” in the first byte and the calling process’s system number in the second
byte, followed by the process name.

If process-name does not begin with “$”, it is left unchanged.

Considerations
CONVERTPROCESSNAME truncates any process name that is longer than four
characters plus the “$”.

CONVERTPROCESSTIME Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Related Programming Manual

Summary
The CONVERTPROCESSTIME procedure is used to convert the quad microsecond
process time returned by the PROCESSTIME, MYPROCESSTIME, or
PROCESSINFO procedure into hours, minutes, seconds, milliseconds, and
microseconds. The maximum time that this procedure can convert is 3.7 years (the
amount of time that can be represented using the output parameters).

Syntax for C Programmers

• The function value returned by CONVERTPROCESSTIME, which indicates the
condition code, can be interpreted by _status_lt(), _status_eq(), or
_status_gt() (defined in the file tal.h).

#include <cextdecs(CONVERTPROCESSTIME)>

_cc_status CONVERTPROCESSTIME (long long process-time
 ,[short _near *hours]
 ,[short _near *minutes]
 ,[short _near *seconds]
 ,[short _near *milliseconds]
 ,[short _near *microseconds]);

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-126

CONVERTPROCESSTIME Procedure

Syntax for TAL Programmers

Parameters

process-time input

FIXED:value

specifies the time to be converted.

hours output

INT:ref:1

returns the hours portion of the value of process-time specified.

minutes output

INT:ref:1

is the minutes portion of the value of process-time specified.

seconds output

INT:ref:1

is the seconds portion of the value of process-time specified.

milliseconds output

INT:ref:1

is the milliseconds portion of the value of process-time specified.

microseconds output

INT:ref:1

is the microseconds portion of the value of process-time specified.

Condition Code Settings

< (CCL) returns if process-time represents a quantity greater than 3.7 years.

= (CCE) indicates that CONVERTPROCESSTIME is successful.

CALL CONVERTPROCESSTIME (process-time ! i
 ,[hours] ! o
 ,[minutes] ! o
 ,[seconds] ! o
 ,[milliseconds] ! o
 ,[microseconds]); ! o

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-127

CONVERTTIMESTAMP Procedure

> (CCG) returns if any of the supplied output parameters fails the bounds check on
the address.

Related Programming Manual
For programming information about the CONVERTPROCESSTIME procedure, see the
Guardian Programmer’s Guide.

CONVERTTIMESTAMP Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The CONVERTTIMESTAMP procedure converts a Greenwich mean time (GMT)
timestamp to or from a local-time-based timestamp within any accessible node in the
network.

A local timestamp can be in local standard time (LST), which does not include daylight
saving time (DST), or in local civil time (LCT), which does include DST.

DST is a system to extend the amount of daylight hours available in summer by putting
the clock forward by an hour. Before 2007, DST in the United States, begins at 2:00
a.m. on the first Sunday of April and ends at 2:00 a.m. DST (1:00 a.m. LST) on the last
Sunday of October. From 2007 onwards, DST will begin at 2:00 a.m. on the second
Sunday of March and end at 2:00 a.m. DST (1:00 a.m. LST) on the first Sunday of
November.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-128

CONVERTTIMESTAMP Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

ret-time returned value

FIXED

returns the converted Julian timestamp.

julian-timestamp input

FIXED:value

is a four-word Julian timestamp to be converted.

direction input

INT:value

indicates what time form or timestamp to return. You can specify one of these
values for direction.

0 GMT to LCT
1 GMT to LST
2 LCT to GMT
3 LST to GMT

If direction is omitted, 0 is used. If direction is out of range, a value of -3 is
returned in error.

#include <cextdecs(CONVERTTIMESTAMP)>

long long CONVERTTIMESTAMP(long long julian-timestamp
 ,[short direction]
 ,[short node]
 ,[short _near *error]);

ret-time := CONVERTTIMESTAMP (julian-timestamp ! i
 ,[direction] ! i
 ,[node] ! i
 ,[error]); ! o

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-129

CONVERTTIMESTAMP Procedure

node input

INT:value

is the number of the node at which the conversion is to take place. If the node
parameter is omitted or -1, the caller’s node is used. If the specified node does not
exist, the value of ret-time is not changed.

error output

INT:ref:1

returns one of these values:

-5 Value of node is out of range
-4 Timestamp not supplied or has invalid value
-3 Invalid value supplied for direction
-2 Impossible LCT
-1 Ambiguous LCT
0 No errors, successful
1 DST range error
2 DST table not loaded
>2 File-system error (attempting to reach node)

Considerations

• A local timestamp can be in either of two forms: LCT (with DST correction) or LST
(without DST correction).

• Network and local timestamp

Local timestamp (with LCT and LST) should be used with caution if any network
use is anticipated. The reason is that another node can be in another time zone or
in an area with different DST rules (LCT only).

• LCT timestamps

LCT timestamps should be used with caution because of the negative adjustment
that DST systems dictate. Timestamp base conversion (for example, LCT) is
provided by the operating system.

• A 64-bit Julian timestamp is based on the Julian Date. It is a quantity equal to the
number of microseconds since January 1, 4713 B.C., 12:00 (noon) Greenwich
mean time (Julian proleptic calendar). This timestamp can represent either
Greenwich mean time, local standard time, or local civil time. There is no way to
examine a Julian timestamp and determine which of the three times it represents.

Procedures that work with the 64-bit Julian timestamp are COMPUTETIMESTAMP,
CONVERTTIMESTAMP, INTERPRETTIMESTAMP, JULIANTIMESTAMP, and
SETSYSTEMCLOCK.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-130

CONVERTTIMESTAMP Procedure

For a more complete description of 48-bit and 64-bit timestamps, see
TIMESTAMP Procedure or JULIANTIMESTAMP Procedure.

• Before 1987, DST in the United States started on the last Sunday of April. Before
2007, DST in the United States begins on the first Sunday of April and ends on the
last Sunday of October. From 2007 onwards, DST will begin on the second Sunday
of March and will end on the first Sunday of November.

• Timestamps occurring before 1987 and 2007 are correctly converted in
accordance with the previous standards.

• Setting up a DST table

If your system is configured to use a DST table, add entries carefully to the DST
table to avoid problems in the conversion of timestamps by
CONVERTTIMESTAMP.

These problems can arise when your system uses a DST table:

° Inaccurate conversions because of wrong information in the DST table

° Programs abending or taking other extreme actions in response to errors
reported by CONVERTTIMESTAMP

It is important to set up the DST table to prevent CONVERTTIMESTAMP reporting
error 1 (DST range error) or error 2 (DST table not loaded) because many
programs take extreme actions in response to these errors. For example, BIND is
known to abend in response to error 1 or error 2, and SQLCOMP fails in response
to BIND abending. BACKUP and RESTORE have also been known to fail in
response to error 1 or error 2.

To allow CONVERTTIMESTAMP to perform accurate conversions from GMT to
LCT, it is important to provide accurate information for DST transitions for all
timestamps that CONVERTTIMESTAMP is likely to encounter. The accurate DST
table entries should go back at least several years, to handle such things as
timestamps for files that have been created in the past. You should also provide
the most accurate DST transition information available for several years into the
future. DST transition information should go at least one year farther back and one
year farther in the future than you expect to encounter timestamps.

It is vital to add at least one period of nonzero DST offset to the DST table, to avoid
CONVERTTIMESTAMP reporting error 2 (DST table not loaded).

In addition to the accurate table entries recommended above, it is good practice to
add fictitious entries to the DST table, to avoid CONVERTTIMESTAMP reporting
error 1 (DST range error) when it converts times earlier than expected or later than
expected. It is good practice to add a fictitious entry for a time far in the past and a
fictitious or speculative entry for a time far in the future. For example, you might
add DST table entries for the year 1000 and for the year 3999.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-131

CONVERTTIMESTAMP Procedure

To add entries to the DST table, use these procedures:

• Use (or Avoidance) of Local Civil Time

It is hard to avoid all problems with conversion between local civil time (which
includes the effect of Daylight Saving Time) and GMT or local standard time.

Because civil time is convenient for people to use for comparison with local clocks,
some use of civil time is expected. Accordingly, the best strategy might be to store
all timestamps in GMT, and then to convert the GMT timestamps to civil time, when
desired, before displaying them. It might also be helpful to display the GMT
timestamp. This would allow people to clarify cases such as timestamps near a
DST transition or timestamps that might have been generated on a different
system, possibly in a different time zone.

If a program restricts itself to converting from GMT to LCT at the local system, and
never converts in the opposite direction or at a remote node, then the errors that
might unexpectedly occur are error 1 (DST range error) or 2 (DST table not
loaded). In both of these cases, the conversion from GMT to LCT will assume a
DST offset of 0. If Daylight Saving Time is not in effect for the time in question then
the timestamp will be correct. Otherwise, it will be incorrect by the DST offset,
which is typically one hour.

When converting from GMT to LCT at the local system, it is best to use the value
returned from CONVERTTIMESTAMP without checking the error parameter. In
rare cases, such as when comparing timestamps to decide whether to rebuild a
file, it might be better to take some special action as a safety precaution, such as
adding or subtracting one hour from the timestamp.

• Error Handling

Whenever a program uses CONVERTTIMESTAMP to convert to or from civil time,
there is a possibility that CONVERTTIMESTAMP will report a nonzero value of
error. It is very undesirable for the program to take any extreme action such as
abending or failing a transaction because of a such a conversion error.

It is particularly important to avoid abending or other extreme actions when
responding to errors in time conversions that might be several years in the past or

D-series RVUs, or G04.00
and earlier G-series RVUs

ADDDSTTRANSITION procedure or the
ADDDSTTRANSITION TACL command

G05.00 and later G-series
RVUs

ADDDSTTRANSITION procedure,
ADDDSTTRANSITION TACL command, or
the DST_TRANSITION_ADD_ procedure

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-132

CPU_GETINFOLIST_ Procedure

the future. It is difficult for operators of a computer system to provide accurate
information about future and past Daylight Saving Time data.

Example
#include <cextdecs (CONVERTTIMESTAMP)>
#include <ktdmtyp.h> /* define long long etc. */

long long gmt_time; /* original (GMT) time stamp */
long long display_time; /* displayable (Local Civil Time) time stamp */

display_time = CONVERTTIMESTAMP(gmt_time, 0); /* GMT to LCT */

Related Programming Manual
For programming information about the CONVERTTIMESTAMP procedure, see the
Guardian Programmer’s Guide.

CPU_GETINFOLIST_ Procedure
Use the PROCESSOR_GETINFOLIST_ Procedure instead of CPU_GETINFOLIST_.
Calls to PROCESSOR_GETINFOLIST_ are identical in their format and values to
those for CPU_GETINFOLIST_.

CPUTIMES Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings

Summary
The CPUTIMES procedure returns the length of time, in microseconds, that a given
processor has spent in these states since it was loaded or reloaded:

• Process busy

• Interrupt busy

• Idle

These times reflect the amount of time spent by the processor (from the last system
load or reload) in a process environment, an interrupt environment, and the idle state.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-133

CPUTIMES Procedure

Syntax for C Programmers

• The function value returned by CPUTIMES, which indicates the condition code,
can be interpreted by the _status_lt(), _status_eq(), or _status_gt()
function (defined in the file tal.h).

Syntax for TAL Programmers

Parameters

cpu input

INT:value

specifies the processor number of a processor in the system. The default is the
local processor.

sysid input

INT:value

specifies the system number. The default is the local system.

total-time output

FIXED:ref:1

returns the elapsed time, in microseconds as measured by the processor clock,
since the processor was loaded or reloaded.

#include <cextdecs(CPUTIMES)>

_cc_status CPUTIMES([short cpu]
 ,[short sysid]
 ,[long long *total-time]
 ,[long long *cpu-process-busy]
 ,[long long *cpu-interrupt]
 ,[long long *cpu-idle]);

CALL CPUTIMES ([cpu] ! i
 ,[sysid] ! i
 ,[total-time] ! o
 ,[cpu-process-busy] ! o
 ,[cpu-interrupt] ! o
 ,[cpu-idle]); ! o

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-134

CREATE Procedure
(Superseded by FILE_CREATELIST_ Procedure)

cpu-process-busy output

FIXED:ref:1

returns the length of time, in microseconds as measured by the processor clock,
that the processor has been busy executing processes since it was loaded or
reloaded.

cpu-interrupt output

FIXED:ref:1

returns the length of time, in microseconds as measured by the processor clock,
that the processor has been busy processing interrupts since it was loaded or
reloaded.

cpu-idle output

FIXED:ref:1

returns the length of time, in microseconds as measured by the processor clock,
that the processor has been idle since it was loaded or reloaded.

Condition Code Settings
< (CCL) indicates that the system is in one of these states:

• Unavailable.

• Does not exist.

• The procedure could not get resources to execute.

= (CCE) indicates that CPUTIMES is successful.

> (CCG) indicates that supplied parameters failed the bounds check.

CREATE Procedure
(Superseded by FILE_CREATELIST_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Safeguard Considerations
OSS Considerations
Example
Related Programming Manual

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-135

CREATE Procedure
(Superseded by FILE_CREATELIST_ Procedure)

Summary

The CREATE procedure is used to define a new structured or unstructured disk file.
The file can be temporary (and therefore automatically deleted when closed) or
permanent. When a temporary file is created, CREATE returns its file name in a form
suitable for passing to the OPEN procedure.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

file-name input, output

INT:ref:12

is an array containing the internal-format file name of the disk file to be created.
The value of file-name, must be in one of these forms (to create a permanent
or temporary disk file):

Permanent Disk File

[0:3] $volname (blank-fill)

or

\sysnum volname (blank-fill)

[4:7] subvol-name (blank-fill)

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

CALL CREATE (file-name ! i,o
 ,[primary-extentsize] ! i
 ,[file-code] ! i
 ,[secondary-extentsize] ! i
 ,[file-type] ! i
 ,[recordlen] ! i
 ,[data-blocklen] ! i
 ,[key-sequenced-params] ! i
 ,[alternate-key-params] ! i
 ,[partition-params] ! i
 ,[maximum-extents] ! i
 ,[unstructured-buffer-size] ! i
 ,[open-defaults]); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-136

CREATE Procedure
(Superseded by FILE_CREATELIST_ Procedure)

[8:11] file-id (blank-fill)

Temporary Disk File

[0:3] $volname (blank-fill)

or

\sysnum volname (blank-fill)

[4:11] blank-fill

When CREATE finishes, a temporary file name is returned in file-name [4:7].
The temporary file can then be opened by passing file-name to OPEN.

primary-extentsize input

INT:value

is the size of the primary extent in pages (one page is 2048 bytes). The maximum
value of primary-extentsize is 65,535 (134,215,680 bytes). If omitted, a
primary extent size of 1 page is assigned.

file-code input

INT:value

is an application-defined file identification code (file codes 100-999 are reserved for
use by HP). If omitted, a file code of 0 is assigned. For a list of HP file codes, see
the Guardian Utilities Reference Manual.

secondary-extentsize input

INT:value

is the size of the secondary extents in pages (one page is 2048 bytes). (The
maximum number of secondary extents that a file can have allocated is maximum-
extents - 1. See maximum-extents, below.) The maximum value of
secondary-extentsize is 65535 (134,215,680 bytes). If omitted, the size of
the primary extent is used for the secondary extent size.

file-type input

INT:value

specifies the type of file to be created. If omitted, an unstructured file is created.

<0:1> Must be 0.

<2> In systems with the Transaction Management Facility (TMF),
specifies that this file is audited; for systems without TMF, this bit is
0.

<3:8> Must be 0.

<9> Specifies that this file is a queue file.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-137

CREATE Procedure
(Superseded by FILE_CREATELIST_ Procedure)

<10> specifies that the file label is written to disk each time the end of file
(EOF) is advanced.

<11> Specifies index compression for key-sequenced files (see the
Enscribe Programmer’s Guide).

<12> Specifies ODDUNSTR access to unstructured files. With the
default (file-type.<12> = 0), a relative byte address (RBA)
used for reading, writing, or positioning in the file, is rounded up to
the next even number (whole word boundary); thus, 3 rounds up
to 4, and so forth. ODDUNSTR prevents this rounding, so that
reading, writing, or positioning occurs at the exact RBA specified.
(See “Considerations.”)

<12> Specifies data compression for key-sequenced files. (For additional
information, see the Enscribe Programmer’s Guide.)

<13:15> Specifies the file structure:

0 Unstructured (default)
1 Relative
2 Entry-sequenced
3 Key-sequenced

recordlen input

INT:value

is the maximum length of the logical record in bytes. If omitted, 80 is used. This
parameter is ignored for unstructured files.

The formulas for computing the maximum record size (MRS) based on data-
blocklen are:

data-blocklen input

INT:value

for structured files, is the length in bytes of each block of records in the file. The
value of data-blocklen cannot be greater than 4096. The value of data-
blocklen must be at least recordlen + 24. For a key-sequenced file, the value
of data-blocklen must be at least recordlen + 34.

If omitted, 1024 is the default value used for data-blocklen. Regardless of the
specified record length and data-block size, the maximum number of records that
can be stored in a data block is 511.

For this type of file MRS equals

Relative and entry-sequenced
files

data-blocklen - 24

Key-sequenced files data-blocklen - 34

Unstructured files 4096

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-138

CREATE Procedure
(Superseded by FILE_CREATELIST_ Procedure)

Data-block sizes are rounded up to power-of-two multiples of the sector size; 512,
1024, 2048, and 4096. For example, if a 3K byte block were specified, the system
would use 4096.

key-sequenced-params input

INT:ref:3

is a three-word array containing parameters that describe this file. This parameter
is required for key-sequenced files, but you can omit the parameter for other file
types. See “Considerations” for the format of this array.

alternate-key-params input

INT:ref:*

is an array containing parameters describing any alternate keys for this file. This
parameter is required if the file has alternate keys; otherwise, you can omit this
parameter. If included, the first word must be 0 if you do not have alternate keys.
See “Considerations” for the format of this array.

partition-params input

INT:ref:*

is an array containing parameters that describe this file. It applies only if the file is
a multivolume file. If the file is to span multiple volumes, this parameter is required;
otherwise, you can omit it. If included, and you do not want partitions, the first
word must be 0. See “Considerations” for the format of this array.

maximum-extents input

INT:value

is the maximum number of extents to be allocated for the file. The minimum and
default value is 16. See “Considerations,” for the upper limit on this value.

unstructured-buffer-size input

INT:value

declares the internal buffer size to be used for an unstructured file. Must be 512,
1024, 2048, or 4096. The default is 4096 bytes.

open-defaults input

INT:value

specifies the file label default values for various open attributes.

<0> 0 Verify writes off (default)

1 Verify write on

<1> 0 System automatically selects serial or parallel writes

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-139

CREATE Procedure
(Superseded by FILE_CREATELIST_ Procedure)

1 Serial mirror writes only

<2> 0 Buffered writes enabled (default for audited files)

1 Write-thru (default for nonaudited files)

<3> 0 Audit compression off (default)

1 Audit compression on

Condition Code Settings
< (CCL) indicates that the CREATE failed (call FILEINFO or FILE_GETINFO_).

= (CCE) indicates that the file was created successfully.

> (CCG) indicates that the device is not a disk.

Considerations

• key-sequenced-params array format

key-len

(INT:value)

is the length, in bytes, of the record’s primary-key field. This length can be no
larger than 255 bytes.

key-offset

(INT:value)

is the number of bytes from the beginning of the record to where the primary-
key field starts. This attribute applies only to Enscribe files.

index-block-len

(INT:value)

was the length, in bytes, of each index block in the file on older systems. On
current systems, the value of data-blocklen is used as the value of index-
block-len.

• alternate-key-params array format

Word[0] key-len

Word[1] key-offset

Word[2] index-block-len

0 8

Word[0] nf-alt-files nk-alt-keys

Word[1] Key Description for
Alternate Key 0

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-140

CREATE Procedure
(Superseded by FILE_CREATELIST_ Procedure)

nf-alt-files

a 1-byte value, specifies the number of alternate-key files for this primary file.

nk-alt-keys

a 1-byte value, specifies the number of alternate-key fields in this primary file.

The key description for key k consists of four words, each of the form:

key-specifier

(INT:value)

is a 2-byte value that uniquely identifies this alternate-key field. It must be
nonzero. This value is passed to the KEYPOSITION procedure for references
to this key field.

key-attributes

(INT:value)

describes the key:

<0> 1 Means that a null value is specified. See null-value, below.

<1> 1 Means that the key is unique. If an attempt is made to insert a record
that duplicates an existing value in this field, the insertion is rejected
with a “duplicate record” error.

<2> 1 Means that Enscribe cannot perform automatic updating of this key.

<3> 0 Means that alternate key records with duplicate key values are ordered
by the value of the primary record key field. This attribute has meaning
only for alternate keys that allow duplicates.

1 Means that alternate key records with duplicate key values are ordered
by the sequence in which those records were inserted into the

Key Description for
Alternate Key nk - 1

[k * 4 + 1] File Name of Key File 0

File Name of Key File nf - 1

0 8

[k * 4 + 1] key-specifier

[k * 4 + 2] key-attributes

[k * 4 + 3] null-value key-len

[k * 4 + 4] key-filenum

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-141

CREATE Procedure
(Superseded by FILE_CREATELIST_ Procedure)

alternate key file. This attribute is allowed only for alternate keys that
allow duplicates.

<4:15>key-offset
Specifies the number of bytes from the beginning of the record where
this key field starts.

null-value

(BYTE:value)

a 1-byte value, is used to specify a null value if key-attributes.<0> is
equal to 1.

During a write operation, if a null value is specified for an alternate-key field
and if the null value is encountered in all bytes of this key field, the file system
does not enter the reference to the record in the alternate-key file. (If the file is
read using this alternate-key field, records containing a null value in this field
will not be found.)

During a WRITEUPDATE operation (write-count = 0), if a null value is
specified and if the null value is encountered in all bytes of this key field within
buffer, the file system deletes the record from the primary file but does not
delete the reference to the record in the alternate file.

key-len

(BYTE:value)

specifies the length, in bytes, of the alternate-key field. The maximum key
length of an alternate key that allows duplicates and is defined as insertion-
ordered (see key-attributes, above) is:

255 - (10 + primary key length)

key-filenum

(INT:value)

is the relative number in the alternate-key parameter array of this key's
alternate-key file. The first alternate-key file's key-filenum = 0.

The file name for file f consists of 12 words, beginning at:

[nk * 4 + 1 + f * 12]

This file name has this form:

[0:3] $volname (blank-fill)

or

\sysnum volname (blank-fill)

[4:7] subvol-name (blank-fill)

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-142

CREATE Procedure
(Superseded by FILE_CREATELIST_ Procedure)

[8:11] file-id (blank-fill)

• partition-params array format

This sequence must be included in the partition-parameters array for key-
sequenced files, but it can be omitted for other file types:

num-of-extra-partitions

(INT:value)

is the number of extra volumes (other than the one specified in the file-
name parameter) on which the file resides. The maximum value is 15.
Note that every other parameter in the partition array (except partial-
keylen) must be specified num-of-extra-partitions times.

$volname or \sysnumvolname

8 bytes blank-filled, is the name of the disk volume (including the dollar
sign ($) or backslash (\) where the particular partition is resides.

Number of Words [1] num-of-extra-partitions

[4] $volname or
\sysnumvolname

for partition 1

$volname or
\sysnumvolname

for partition 2

:

$volname or
\sysnumvolname

for partition n

[1] primary-extent-size part 1

:

primary-extent-size part n

[1] secondary-extent-size part 1

secondary-extent-size part n

[1] partial-keylen

partial-keyvalue
for partition 1

:

partial-keyvalue
for partition n

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-143

CREATE Procedure
(Superseded by FILE_CREATELIST_ Procedure)

primary-extent-size

(INT:value)

is the size of the primary extent for the particular partition.

secondary-extent-size

(INT:value)

is the size of the secondary extents for the particular partition. Specifying 0
results in the primary-extent-size value being used.

The remaining parameters are required for key-sequenced files but can be omitted
for all other file types:

partial-keylen

(INT:value)

is the number of bytes of the primary key of a key-sequenced file that are
used to determine which partition of the file contains a particular record.
The minimum value for partial-keylen is 1.

partial-keyvalue

(INT:value)

for partial-keylen bytes, specifies the lowest key value that is allowed
for a particular partition.

Each partial-keyvalue in partition-parameters must begin on a
word boundary.

For an alternate-key file, partial-keyvalue must begin with the key-
specifier for the alternate key. For example, if key-specifier = AB,
a partial-key value of 123 becomes a partial-keyvalue of AB123.

• File pointer action

The end-of-file pointer is set to zero after the file is created.

• Disk allocation with CREATE

Execution of the CREATE procedure does not allocate any disk area; it only
provides an entry into the volume’s directory, indicating that the file exists.

• CREATE failure

If the CREATE fails (that is, condition code other than CCE returns), the reason for
the failure can be determined by calling the FILEINFO or FILE_GETINFO_
procedure and passing -1 as the filenum parameter.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-144

CREATE Procedure
(Superseded by FILE_CREATELIST_ Procedure)

• Upper limit for maximum-extents

There is no guarantee that a file will be created successfully if you specify a value
greater than 500 for maximum-extents.

In addition, CREATE returns error 21 if the values for primary-extent-size,
secondary-extent-size, and maximum-extents yield a file size greater than
(2**32) - 4096 bytes (approximately four gigabytes), or a partition size greater than
2**31 bytes (two gigabytes).

• Altering file security

The file is created with the caller’s process file security that can be examined and
set with the PROCESSFILESECURITY procedure. Once a file has been created,
its file security can be altered by opening the file and issuing the appropriate
SETMODE and SETMODENOWAIT functions.

• Odd unstructured files

An odd unstructured file permits reading and writing of odd byte counts and
positioning to an odd byte address.

When creating unstructured files, the value passed for file-type.<12>
determines how all subsequent reading, writing, and positioning operations to the
file work.

If file-type.<12> is passed as 1 and file-type.<13:15> is all zeros, an odd
unstructured file is created.

If file-type.<12> is passed as 1, the values of record-specifier, read-
count, and write-count are all interpreted exactly; for example, a write-
count or read-count of 7 transfers exactly 7 bytes.

• Even unstructured files

If file-type.<13:15> is passed to CREATE and is all zeros (specifying an
unstructured file), and file-type.<12> is 0, then an even unstructured file is
created.

If file-type.<12> is passed as 0, the values of read-count and write-
count are each rounded up to an even number before the operation begins; for
example, a write-count or read-count of 7 is rounded up to 8, and 8 bytes
are transferred.

A file must be positioned to an even byte address; otherwise, FILEINFO or
FILE_GETINFO_ returns a file-system error (bad address).

If you use the FUP CREATE or the TACL CREATE command to create the file, it
creates an even unstructured file by default.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-145

CREATE Procedure
(Superseded by FILE_CREATELIST_ Procedure)

• Insertion-ordered alternate keys

All of the non-unique alternate keys of a file must have the same duplicate key
ordering attribute. That is, a file may not have both insertion-ordered alternate keys
and standard (duplicate ordering by primary key) non-unique alternate keys. An
insertion-ordered alternate key cannot share an alternate key file with other keys of
different lengths, or with other keys which are not insertion-ordered.

The CREATE procedure returns file error 46 if the rules of usage for insertion-
ordered alternate keys are violated.

When an alternate-key record is updated, the timestamp portion of the key is also
updated. Alternate-key records are updated only when the corresponding
alternate-key field of the primary record is changed.

The relative position of an alternate-key record within a set of duplicates may
change if a nonrecoverable error occurs during a WRITEUPDATE of the primary
record.

There is a performance penalty for using insertion-ordered duplicate alternate
keys. Updates and deletes of alternate-key fields force the disk process to
sequentially search the set of alternate-key records having the same
altkeyvalue until a match is found on the primarykey-value portion of the
key. (The value of the timestamp field in an alternate key record is not stored in
the primary record). The performance cost rises as the number of records having
duplicate alternate-key values increases.

If an insertion-ordered alternate-key file is partitioned, the length of each partition
key should be no greater than the total of altkeytaglen and altkeylen. If the
length of any partition key is greater than this sum, then the file system may fail to
advise the user of the duplicate key condition (indicated by the warning error code
551).

• Queue files

• Queue files are created by specifying file-type .<9> =1 and file-type
.<13:15> =3.

• The key-sequenced-params array must be specified. The minimum key-
len must be 8 bytes, and the key-offset must be 0.

• No alternate-key-params can be specified.

• No partition-key-params array can be specified.

Safeguard Considerations
For information on files protected by Safeguard, see the Safeguard Reference Manual.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-146

CREATEPROCESSNAME Procedure
(Superseded by PROCESSNAME_CREATE_

OSS Considerations

• This procedure operates only on Guardian objects. If an OSS file is specified,
error 1163 is returned.

Example
CALL CREATE (DISK^FNAME , PRI^EXT , FILE^CODE ,
 SEC^EXT , FILE^TYPE , REC^LEN ,
 DATA^BLK^LEN , KEY^PARAMS);

Related Programming Manual
For programming information about the CREATE file-system procedure, see the
Enscribe Programmer’s Guide.

CREATEPROCESSNAME Procedure
(Superseded by PROCESSNAME_CREATE_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations

Summary

The CREATEPROCESSNAME procedure returns a unique process name suitable for
passing to the NEWPROCESS and NEWPROCESSNOWAIT procedures. This type of
naming (as opposed to a predefined process name) is used when the name of a
process pair does not need to be known to other processes in the system (for example,
in an application run as several process pairs). This process name must be passed in
the name parameter, not the file-name parameter, of the NEWPROCESS procedure.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-147

CREATEPROCESSNAME Procedure
(Superseded by PROCESSNAME_CREATE_

Syntax for TAL Programmers

Parameters

process-name output

INT:ref:3

is an array where a system-generated process name returns. The process-name
parameter is of the form:

$zaaaa

where

“z” is the letter Z, Y, or X.
“a” represents an alphanumeric character except “o” and “i.”

CREATEPROCESSNAME ensures that the character position after the last “a” is a
blank.

Condition Code Settings

< (CCL) indicates that the address passed for process-name is out of bounds.

= (CCE) indicates the CREATEPROCESSNAME was successful.

> (CCG) indicates there were no unused names in the reserved name space
($Xname, $Yname, and $Zname, where name is 1 through 4
alphanumeric characters) for CREATEPROCESSNAME to use.

Considerations

• Process names and CREATEPROCESSNAME

You use names created by CREATEPROCESSNAME when the process must be
named, but the name of that process does not need to be predefined, that is,
known by any other process or process pair.

• HP reserved process names

The operating system reserved process name space includes these names:
$Xname, $Yname, and $Zname, where name is 1 through 4 alphanumeric
characters. Do not use names of this form in any applications.

• Creating pseudo-temporary disk file names

CALL CREATEPROCESSNAME (process-name); ! o

Note. Calling CREATEPROCESSNAME does not create a process or enter the process name
into the DCT.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-148

CREATEREMOTENAME Procedure
(Superseded by PROCESSNAME_CREATE_

The CREATEPROCESSNAME procedure is also useful for creating “pseudo-
temporary” disk file names. You might use this type of naming when two
processes want to use the same file, but each opens the file exclusively.

If a standard temporary file name is used, the file is purged when the first process
closes it because there are no other opens for the file. The second process is then
unable to access the file. An example of using CREATEPROCESSNAME:

INT .TEMP^FNAME[0:11] := ["$VOL1 ", 9 * [" "]];
 .
 .
CALL CREATEPROCESSNAME (TEMP^FNAME[4]); ! returns $zddd
TEMP^FNAME[4].<0:7> := "Z"; ! makezzdaa subvol
TEMP^FNAME[8] ':=' TEMP^FNAME[4] FOR 4; ! make file name
CALL CREATE (TEMP^FNAME);
IF < THEN ... ; ! error.
 .
 .

The name of the file in the TEMP^FNAME array is:

$VOL1 Zzdaa Zzdaa

CREATEREMOTENAME Procedure
(Superseded by PROCESSNAME_CREATE_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Example

Summary

The CREATEREMOTENAME procedure supplies a process name that is unique for
the specified system in a network. (This process name goes into the name parameter,
not the file-name parameter, of the NEWPROCESS[NOWAIT] procedure.)

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-149

CREATEREMOTENAME Procedure
(Superseded by PROCESSNAME_CREATE_

Syntax for TAL Programmers

Parameters

name output

INT:ref:3

is an array where CREATEREMOTENAME returns a system-generated process
name (in local form) that is unique for the designated system. The name
parameter is of the form:

$zaaaa

where

“z” is the letter Z, Y, or X.
“a” represents an alphanumeric character except “o” and “i.”

CREATEREMOTENAME ensures that the character position after the last “a” is a
blank.

sysnum input

INT:value

is a value that specifies the system number for which the process name is to be
created.

Condition Code Settings

< (CCL) indicates that the remote destination control table (DCT) could not be
accessed or the address passed for name is out of bounds.

= (CCE) indicates that CREATEREMOTENAME was successful.

> (CCG) indicates there were no unused names in the reserved name space
($Xname, $Yname, and $Zname, where name is 1 through 4
alphanumeric characters) for CREATEREMOTENAME to use.

Considerations

• Remote process name characteristics

CREATEREMOTENAME creates a process name in local form. This name can be
passed directly to the NEWPROCESS[NOWAIT] procedure as the name parameter
in order to create a remote process having that name. It is unnecessary to append
a system name to the process name since the physical location of the program file
specified in the NEWPROCESS file-name includes the system number.

CALL CREATEREMOTENAME (name ! o
 ,sysnum); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-150

CREATORACCESSID Procedure
(Superseded by PROCESS_GETINFOLIST_

• HP reserved process names

The operating system reserved process name space includes these names:
$Xname, $Yname, and $Zname, where name is 1 through 4 alphanumeric
characters. Do not use names of this form in any applications.

• Remote system DCT

The creation of a process name does not create a process or make an entry in the
remote system’s DCT.

Example
CALL CREATEREMOTENAME (NAME , SYS^NUM);

CREATORACCESSID Procedure
(Superseded by PROCESS_GETINFOLIST_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary

The CREATORACCESSID procedure is used to obtain the creator access ID (CAID) of
the process that created the calling process.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-151

CREATORACCESSID Procedure
(Superseded by PROCESS_GETINFOLIST_

Syntax for TAL Programmers

Parameters

creator-access-id returned value

INT

returns the creator access ID (CAID) of the caller’s creator in this form:

<0:7> group number {0:255}

<8:15> member number {0:255}

Considerations

• Process access ID (PAID) compared with creator access ID (CAID)

For a given process, an access ID is a word in the process control block (PCB) that
contains a group number in the left byte and a member number in the right byte.
There are two access IDs.

The creator access ID (CAID) is returned from the CREATORACCESSID
procedure and identifies the user who created the process. It is normally used,
often with the PAID, for security checks on interprocess operations such as
stopping a process or creating a backup for a process.

The process access ID (PAID) is returned from the PROCESSACCESSID
procedure and is used to determine whether the process can make requests to the
system, for example, to open a file or to stop a process.

The PAID and the CAID usually differ only when a process is run from a program
file that has the PROGID attribute set. This attribute is usually set with the File
Utility Program (FUP) SECURE command and PROGID option. In such a case,
the process access ID returned by PROCESSACCESSID is the same as the
NonStop operating system used ID of the program file’s owner.

Both the PAID and the CAID are returned from the PROCESS_GETINFO[LIST]_
procedures. See the Guardian Programmer’s Guide for information about process
access IDs.

Example
CREATOR^ID := CREATORACCESSID;

Related Programming Manual
For more information about the creator accessor ID (CAID), see the Guardian User’s
Guide.

creator-access-id := CREATORACCESSID;

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-152

CRTPID_TO_PROCESSHANDLE_ Procedure

CRTPID_TO_PROCESSHANDLE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary
The CRTPID_TO_PROCESSHANDLE_ procedure converts a process ID (CRTPID) to
the corresponding process handle. For information about process IDs and process
handles, see Appendix D, File Names and Process Identifiers.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation.

process-id input

INT .EXT:ref:4

specifies the process ID (CRTPID) to be converted. If process-id does not
include a node number, the caller’s node is assumed.

#include <cextdecs(CRTPID_TO_PROCESSHANDLE_)>

short CRTPID_TO_PROCESSHANDLE_ (short *process-id
 ,short *processhandle
 ,[short *pair-flag]
 ,[__int32_t node-number]);

error := CRTPID_TO_PROCESSHANDLE_ (process-id ! i
 ,processhandle ! o
 ,[pair-flag] ! o
 ,[node-number]); ! i

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-153

CRTPID_TO_PROCESSHANDLE_ Procedure

processhandle output

INT .EXT:ref:10

returns the process handle of the process designated by process-id.

pair-flag output

INT .EXT:ref:1

returns a value of 1 if

• cpu and pin value in process-id is set to -1

• cpu and pin value in process-id is set to blanks (“ “)

It returns a value of 0 otherwise.

node-number input

INT(32):value

if present and not equal to -1D, and if process-id is not in network form,
identifies the node on which the process identified by process-id resides. If
omitted or equal to -1D, the caller’s node is assumed.

Considerations

• When converting the process ID process, CRTPID_TO_PROCESSHANDLE_
looks up the process in a system table and it might send a system message. An
error 14 is returned if the process does not exist.

• This procedure does not return information on a named process that is reserved
for future use and is not started.

Related Programming Manual
For programming information about the CRTPID_TO_PROCESSHANDLE_ procedure,
see the Guardian Application Conversion Guide.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-154

CURRENTSPACE Procedure (Superseded)

CURRENTSPACE Procedure (Superseded)
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Related Programming Manual

Summary

The CURRENTSPACE procedure returns the ENV register (as saved in the stack
marker) and a string (in ASCII) containing the space ID of the caller.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

stack-env returned value

INT

is the calling procedure’s space ID in the stack-marker ENV register format.

ENV.<4> ! library bit
ENV.<7> ! system code bit
ENV.<11:15> ! space ID bits

For more information about space identifiers and the details of these bits, see the
System Description Manual appropriate for your system.

Note. This procedure cannot be called by native processes. Although this procedure is
supported for TNS processes, it should not be used for new development.

#include <cextdecs(CURRENTSPACE)>

short CURRENTSPACE ([char *ascii-space-id]);

stack-env := CURRENTSPACE [(ascii-space-id)]; ! o

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-155

CURRENTSPACE Procedure (Superseded)

ascii-space-id output

STRING:ref:5

is an ASCII string in the form:

map.<#>

where

map is one of these:

UC indicates user code

UL indicates user library

SC indicates system code

SL indicates system library

<#> is the octal space number in ASCII.

for example:

UC.01 or SL.33

Related Programming Manual
For information about the CURRENTSPACE procedure, see the appropriate System
Description Manual for your system.

Guardian Procedure Calls (C)

Guardian Procedure Calls Reference Manual—522629-030
3-156

CURRENTSPACE Procedure (Superseded)

Guardian Procedure Calls Reference Manual—522629-030
4-1

4 Guardian Procedure Calls (D-E)
This section contains detailed reference information for all user-accessible Guardian
procedure calls beginning with the letters D through E. Table 4-1 lists all the
procedures in this section.

Table 4-1. Procedures Beginning With the Letters D Through E (page 1 of 2)

DAYOFWEEK Procedure

DEALLOCATESEGMENT Procedure (Superseded by SEGMENT_DEALLOCATE_
Procedure)

DEBUG Procedure

DEBUGPROCESS Procedure (Superseded by PROCESS_DEBUG_ Procedure)

DEFINEADD Procedure

DEFINEDELETE Procedure

DEFINEDELETEALL Procedure

DEFINEINFO Procedure

DEFINELIST Procedure

DEFINEMODE Procedure

DEFINENEXTNAME Procedure

DEFINEPOOL Procedure (Superseded by POOL_* Procedures)

DEFINEREADATTR Procedure

DEFINERESTORE Procedure

DEFINERESTOREWORK[2] Procedures

DEFINESAVE Procedure

DEFINESAVEWORK[2] Procedure

DEFINESETATTR Procedure

DEFINESETLIKE Procedure

DEFINEVALIDATEWORK Procedure

DELAY Procedure (Superseded by PROCESS_DELAY_ Procedure (H-Series RVUs Only))

DELETEEDIT Procedure

DEVICE_GETINFOBYLDEV_ Procedure (Superseded on G-series RVUs)

DEVICE_GETINFOBYNAME_ Procedure (Superseded on G-Series RVUs)

DEVICEINFO Procedure (Superseded by FILE_GETINFOBYNAME_ Procedure or
FILE_GETINFOLISTBYNAME_ Procedure)

DEVICEINFO2 Procedure (Superseded by FILE_GETINFOBYNAME_ Procedure or
FILE_GETINFOLISTBYNAME_ Procedure)

DISK_REFRESH_ Procedure

DISKINFO Procedure (Superseded by FILE_GETINFOLISTBYNAME_ Procedure)

DNUMIN Procedure

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-2

DAYOFWEEK Procedure

DAYOFWEEK Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example

Summary
The DAYOFWEEK procedure takes a 32-bit Julian Day Number and returns the
corresponding day of the week.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

DNUMOUT Procedure

DST_GETINFO_ Procedure

DST_TRANSITION_ADD_ Procedure

DST_TRANSITION_DELETE_ Procedure

DST_TRANSITION_MODIFY_ Procedure

EDITREAD Procedure

EDITREADINIT Procedure

ERRNO_GET_ Procedure

EXTENDEDIT Procedure

#include <cextdecs(DAYOFWEEK)>

short DAYOFWEEK (__int32_t julian-day-num);

Table 4-1. Procedures Beginning With the Letters D Through E (page 2 of 2)

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-3

DEALLOCATESEGMENT Procedure
(Superseded by SEGMENT_DEALLOCATE_

Syntax for TAL Programmers

Parameters

day returned value

INT

is the code for the day of week, as follows: 0 = Sunday, 1 = Monday, ..., 6 =
Saturday. If day is -1, then the julian-day-num was negative.

julian-day-num input

INT(32):value

contains the Julian Day Number for which the day of the week is desired.

Example
INT day
INT(32) JDN := 2435012D;
 .
 .
day := DAYOFWEEK (JDN);
IF day < 0 THEN ...

DEALLOCATESEGMENT Procedure
(Superseded by SEGMENT_DEALLOCATE_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Example

day := DAYOFWEEK (julian-day-num); ! i

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-4

DEALLOCATESEGMENT Procedure
(Superseded by SEGMENT_DEALLOCATE_

Summary

The DEALLOCATESEGMENT procedure deallocates an extended data segment when
it is no longer needed by the calling process.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

segment-id input

INT:value

is the segment number of the segment, as specified in the call to
ALLOCATESEGMENT that created it.

flags input

INT:value

if present, has the form:

<0:14>
must be 0.

<15> 1 indicates that dirty pages in memory are not to be copied to the swap
file (see ALLOCATESEGMENT Procedure
(Superseded by SEGMENT_ALLOCATE_ Procedure)).

0 indicates that dirty pages in memory are to be copied to the swap file.

This parameter is ignored if the swap space was allocated using the Kernel-
Managed Swap Facility (KMSF).

The default is 0.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

CALL DEALLOCATESEGMENT (segment-id ! i
 ,[flags]); ! i

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-5

DEALLOCATESEGMENT Procedure
(Superseded by SEGMENT_DEALLOCATE_

Condition Code Settings
< (CCL) Segment not deallocated—an invalid segment ID was supplied or the

specified segment is currently in use by the operating system; for example,
an outstanding nowait I/O operation using a buffer in the segment has not
been completed by a call to AWAITIOX.

= (CCE) Segment deallocated.

> (CCG) Segment deallocated, but an I/O error occurred writing dirty pages to the
segment’s permanent swap file.

Considerations

• The flags parameter

The flags.<15> = 1 option is used to improve performance when the swap file is
either a permanent file or a temporary file that is opened concurrently by another
application. Following the DEALLOCATESEGMENT call, the contents of the swap
file are unpredictable.

If the DEALLOCATESEGMENT call causes a purge of a temporary file or the
DEALLOCATESEGMENT call deallocates swap space managed by the Kernel-
Managed Swap Facility (KMSF), the operating system does not write the dirty
pages (that is, pages that are being used) out to the file.

• Breakpoints

Before deallocating a segment, this procedure removes all memory access
breakpoints set in that segment.

• Segment deallocation

When a segment is deallocated, the swap file end of file (EOF) is set to the larger
of (1) the EOF when the file is opened by ALLOCATESEGMENT or (2) the end of
the highest numbered page that is written to the swap file. All file extents beyond
the EOF that did not exist when the file was opened are deallocated.

• Shared segments

A shared segment remains in existence until it has been deallocated by all the
processes that allocated it.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-6

DEBUG Procedure

Example
CALL DEALLOCATESEGMENT (SEGMENT^ID);
IF <> THEN ...

! SEGMENT^ID refers to the segment number specified
! in the call to ALLOCATESEGMENT.

DEBUG Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Considerations
OSS Considerations
Related Programming Manual

Summary
The DEBUG procedure invokes the debugging facility on the calling process.

The operating system provides a debugging facility that responds to debug events by
passing control to one of two debugging utilities: Debug or the Inspect debugger.
Debug is a low-level debugger. The Inspect debugger is an interactive symbolic
debugger that lets you control program execution, display values, and modify values in
terms of source-language symbols.

Syntax for C Programmers

Syntax for TAL Programmers

Considerations

• While a process is in the debug state, you can interactively display and modify the
contents of the process’s registers, the process’s data area, and set other
breakpoints. To debug a program, you must have EXECUTE access to run the
program and read access to the program object file.

• In addition to placing an explicit call to the DEBUG procedure in the source
program, you can force a process into the debug state by:

#include <cextdecs(DEBUG)>

void DEBUG ();

CALL DEBUG;

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-7

DEBUG Procedure

• Starting the process using the command interpreter’s RUND (RUN DEBUG)
command. The process enters the debug state before the first instruction of
the MAIN procedure executes.

• Starting the process with a call to PROCESS_CREATE_,
PROCESS_SPAWN_, NEWPROCESS, NEWPROCESSNOWAIT, OSS
tdm_fork(), OSS tdm_spawn() or one of the OSS tdm_exec set of
functions, and setting the appropriate debug option. The process enters the
debug state before the first instruction of the MAIN procedure executes.

• Starting the process from the command interpreter. While the process is
executing, press the BREAK key. The command interpreter returns to the
command input mode. Find the cpu,pin of the process, and type in DEBUG
cpu,pin.

• Specifying a breakpoint when a process is in the debug state. When that
breakpoint is hit, the process enters the debug state.

• You can use the Inspect debugger by setting the Inspect attribute associated with a
process. The value of a process’s Inspect attribute can be set with:

• The ?INSPECT or ?SAVEABEND TAL compiler directive

• The nld -SET INSPECT or -SET SAVEABEND commands during a linking
session

• The Binder SET INSPECT or SET SAVEABEND commands during a binding
session

• The TACL SET INSPECT command before the RUN command that starts the
process

• The INSPECT parameter of the RUN command that starts the process

• The appropriate option in the call to PROCESS_CREATE_,
PROCESS_SPAWN_, NEWPROCESS, NEWPROCESSNOWAIT, OSS
tdm_fork(), OSS tdm_spawn() or one of the OSS tdm_exec set of
functions, that starts the process.

• Processes inherit the Inspect attribute from their ancestor processes.

OSS Considerations
When used on an OSS process, DEBUG forces the process into the Inspect debugger.

To debug an OSS process, one of these must be true:

• The calling process must have appropriate privilege; that is, it must be locally
authenticated as the super ID on the system where the target process is executing.

• All these apply:

• The caller’s effective user ID is the same as the saved user ID of the target
process.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-8

DEBUGPROCESS Procedure
(Superseded by PROCESS_DEBUG_ Procedure)

• The caller has sufficient “nonremoteness”; that is, the caller is locally
authenticated, or the target process is remotely authenticated and the caller is
authenticated from the viewpoint of the system where the target process is
executing.

• The caller has read access to the program file and any library files.

• The program does not contain PRIV or CALLABLE routines.

• The target is not a system process.

Only program file owners and users with appropriate privileges are able to debug
programs that set the user ID.

Related Programming Manual
For information about the Debug facility, see the Debug Manual. For information about
the Inspect debugger, see the Inspect Manual.

DEBUGPROCESS Procedure
(Superseded by PROCESS_DEBUG_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
OSS Considerations

Summary

The DEBUGPROCESS procedure invokes the debugging facility on a process.

The operating system provides a debugging facility that responds to debug events by
passing control to one of two debugging utilities: Debug or the Inspect debugger.
Debug is a low-level debugger. The Inspect debugger is an interactive symbolic
debugger that lets you control program execution, display values, and modify values in
terms of source-language symbols.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-9

DEBUGPROCESS Procedure
(Superseded by PROCESS_DEBUG_ Procedure)

Syntax for TAL Programmers

Parameters

process-id input

INT:ref:4

is a 4-word array containing the process ID of the process to be debugged, where:

[0:2] Process name or creation timestamp

[3].<0:3> Reserved

[3].<4:7> processor number where the process is executing

[3].<8:15> PIN assigned by the operating system to identify the process in
the processor

Note that the process ID can be in a timestamp or a local or remote named
format.

error output

INT:ref:1

returns a file-system error number indicating the outcome of the process debug
attempt. Possible values include these:

0 No error.

11 The specified process does not exist.

13 Invalid name. This error can occur when the supplied process ID is
improperly formed.

14 The supplied process ID references an LDEV that does not exist.

18 The specified system is not known.

22 Parameter or buffer out of bounds.

29 Missing parameter.

48 Security violation. The caller does not have read and execute access
to the program file, or the caller specified now = 1 without having a
process access ID (PAID) equal to the super ID (255,255).

190 term (or the caller’s home terminal if term was not specified) is not
device type 6.

201 Unable to communicate over this path.

CALL DEBUGPROCESS (process-id ! i
 ,error ! o
 ,[term] ! i
 ,[now]); ! i

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-10

DEBUGPROCESS Procedure
(Superseded by PROCESS_DEBUG_ Procedure)

240-249 Network errors.

250 All paths to the specified system are down.

590 Bad parameter value. This error can occur when the supplied process
ID is improperly formed.

term input

INT:ref:12

is the name of the debug home terminal. If omitted, the caller’s home terminal is
used.

now input

INT:value

The caller’s process access ID (PAID) must be the super ID (255, 255) to use this
parameter.

If you supply 1, the process should be debugged immediately (even if it is currently
executing privileged code). If omitted, the normal debug sequence is executed.

Considerations
DEBUGPROCESS cannot be used on a high-PIN unnamed process. However, it can
be used on a high-PIN named process or process pair; process-id [3] must then
contain either -1 or two blanks.

To invoke the debug facility on a high-PIN unnamed process, use the
PROCESS_DEBUG_ procedure.

OSS Considerations
When used on an OSS process, DEBUGPROCESS forces the process into the Inspect
debugger. You can change the home terminal by specifying a valid value in the term
parameter procedure. Note that the home terminal is often the same device as the
controlling terminal.

To debug an OSS process, one of these must be true:

• The calling process must have appropriate privilege; that is, it must be locally
authenticated as the super ID on the system where the target process is executing.

• All these apply:

• The caller’s effective user ID is the same as the saved user ID of the target
process.

• The caller has sufficient “nonremoteness”; that is, the caller is locally
authenticated, or the target process is remotely authenticated and the caller is
authenticated from the viewpoint of the system where the target process is
executing.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-11

DEFINEADD Procedure

• The caller has read access to the program file and any library files.

• The program does not contain PRIV or CALLABLE routines.

• The target is not a system process.

• The now parameter is not specified.

Only program file owners and users with appropriate privileges are able to debug
programs that set the user ID.

DEFINEADD Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
This procedure adds a DEFINE to the calling process’s context using the attributes in
the working set. It can be used to replace an existing DEFINE with the attributes in the
working set.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the call:

#include <cextdecs(DEFINEADD)>

short DEFINEADD (constchar *define-name
 ,[short replace]
 ,[short _near *checknum]);

error := DEFINEADD (define-name ! i
 ,[replace] ! i
 ,[checknum]); ! o

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-12

DEFINEADD Procedure

0 Add was successful

2049 A syntax error occurred in name

2050 Define already exists

2051 Define does not exist

2052 Unable to obtain file-system buffer space

2053 Unable to obtain physical memory

2054 Bounds error in define-name

2057 Working set is incomplete, a required attribute is missing.

2058 Working set is inconsistent. Two or more attributes have conflicting values.
The checknum parameter identifies the consistency check that failed.

2059 Working set is invalid

2066 Missing parameter

2069 The DEFMODE of the process does not permit the addition of the DEFINE

For other error values associated with DEFINEs, see the Guardian Procedure
Errors and Messages Manual.

define-name input

STRING .EXT:ref:24

is the 24-byte array that contains the name of the DEFINE to be added or replaced
in the working set. The name is left-justified and padded on the right with blanks.
Trailing blanks are ignored.

replace input

INT:value

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-13

DEFINEDELETE Procedure

if present and has a value of 1, then the attributes of the DEFINE that is named by
define-name are replaced with the attributes in the working set.

checknum output

INT:ref:1

contains the number of the consistency check that failed when 2058 is returned in
error. For a list of DEFINE consistency check numbers, see the Guardian
Procedure Errors and Messages Manual.

Considerations

• If an error occurs, the DEFINE is not created or replaced.

• If the replace option is used, the named DEFINE must exist.

• The context-change count is incremented each time procedure DEFINEADD is
invoked and a consequent change to the process’s context occurs. If an error
occurs, the count is not incremented.

Example
STRING .EXT define^name[0:23];
 .
 .
define^name ':=' ["=mydefine "];
error := DEFINEADD(define^name, 1);
IF error <> DEOK THEN ... ;

Related Programming Manual
For programming information about the DEFINEADD procedure, see the Guardian
Programmer’s Guide.

DEFINEDELETE Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
This procedure allows the caller to delete a DEFINE from the calling process’s context.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-14

DEFINEDELETE Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the call:

0 Add was successful

2049 A syntax error occurred in name

2051 Define does not exist

2052 Unable to obtain file-system buffer space

2054 Bounds error in define-name

2066 Missing parameter

For other error values associated with DEFINEs, see the Guardian Procedure
Errors and Messages Manual.

define-name input

STRING .EXT:ref:24

is the 24-byte array that contains the name of the DEFINE to be deleted. The
name is left-justified and padded on the right with blanks. Trailing blanks are
ignored.

Considerations

• If an error occurs, the DEFINE is not deleted.

• The context-changes count is incremented each time DEFINEDELETE is invoked
and a consequent change to the process’s context occurs. The count is
incremented by one even if more than one DEFINE is deleted.

#include <cextdecs(DEFINEDELETE)>

short DEFINEDELETE (constchar *define-name);

error := DEFINEDELETE (define-name); ! i

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-15

DEFINEDELETEALL Procedure

Example
STRING .EXT define^name[0:23];
 .
 .
define^name ':=' ["=mytape "];
error := DEFINEDELETE (define^name);
IF error <> DEOK THEN ... ;

Related Programming Manual
For programming information about the DEFINEDELETE procedure, see the Guardian
Programmer’s Guide.

DEFINEDELETEALL Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Considerations
Related Programming Manual

Summary
This procedure allows the caller to delete all DEFINEs from the calling process’s
context.

Syntax for C Programmers

Syntax for TAL Programmers

Considerations

• If an error occurs, the DEFINE is not deleted.

• The context-changes count is incremented each time DEFINEDELETEALL is
invoked and a consequent change to the process’s context occurs. The count is
incremented by one even if more than one DEFINE is deleted.

• The =_DEFAULTS DEFINE cannot be deleted and is bypassed by this procedure.

#include <cextdecs(DEFINEDELETEALL)>

short DEFINEDELETEALL ();

CALL DEFINEDELETEALL;

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-16

DEFINEINFO Procedure

Related Programming Manual
For programming information about the DEFINEDELETEALL procedure, see the
Guardian Programmer’s Guide.

DEFINEINFO Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
This procedure returns selected information about a DEFINE.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the call:

0 Success

2049 A syntax error occurred in name

#include <cextdecs(DEFINEINFO)>

short DEFINEINFO (constchar *define-name
 ,char *class
 ,char *attribute-name
 ,char *value-buf
 ,short value-buf-len
 ,short _near *value-len);

error := DEFINEINFO (define-name ! i
 ,class ! o
 ,attribute-name ! o
 ,value-buf ! o
 ,value-buf-len ! i
 ,value-len); ! o

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-17

DEFINEINFO Procedure

2051 DEFINE not found

2052 Unable to obtain file-system buffer space

2054 Bounds error on parameter

2066 Parameter missing

For other error values associated with DEFINEs, see the Guardian Procedure
Errors and Messages Manual.

define-name input

STRING .EXT:ref:24

is the 24-byte array that contains the name of the DEFINE to be used by the
procedure. The name is left-justified and padded on the right with blanks. Trailing
blanks are ignored.

class output

STRING .EXT:ref:16

returns the character string that names the class of the DEFINE (that is, names the
value of the CLASS attribute of the DEFINE). The name is left-justified and blank-
filled. It is limited to 16 characters.

attribute-name output

STRING .EXT:ref:16

is the name of an attribute; the specific attribute that is returned depends on the
CLASS attribute of the DEFINE. The name is left-justified and blank-filled. These
attributes names are returned:

value-buf output

STRING .EXT:ref:*

is the data array provided by the calling program to return the value of an attribute.
This attribute depends upon the class of the DEFINE. The value will be in external
form, suitable for display. If the value is a file name, it is fully qualified.

This attribute… Is returned for this CLASS attribute of the DEFINE

FILE CLASS MAP

LOC CLASS SPOOL

SCRATCH CLASS SORT and CLASS SUBSORT

SUBVOL CLASS CATALOG

SUBVOL0 CLASS SEARCH

VOLUME CLASS TAPE, CLASS TAPECATALOG and
CLASS DEFAULTS

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-18

DEFINELIST Procedure

value-buf-len input

INT:value

is the length of the array value-buf in bytes.

value-len output

INT:ref:1

gives the actual size of the external representation for the value. If greater than
value-buf-len, then only value-buf-len bytes have been transferred and
truncation has occurred. An absent attribute is indicated by a length of -1.

Considerations
This procedure is designed to support the short form of the command interpreter INFO
command.

Example
STRING .EXT define^name[0:23];
STRING .EXT class^name[0:15];
STRING .EXT attr^name[0:15];
STRING .EXT value^buf[0:n];
INT value^buf^len;
INT value^len;
 .
 .
define^name ':=' ["=mytape "];
value^buf^len := n;
error := DEFINEINFO(define^name, class^name, attr^name,
 value^buf, value^buf^len, value^len);
IF error <> DEOK THEN ... ;

DEFINELIST Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Related Programming Manual

Summary
The DEFINELIST procedure is used only when the application process is acting as a
supervisor or tributary station in a centralized multipoint configuration.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-19

DEFINELIST Procedure

• Within a supervisor station, DEFINELIST specifies the station addresses of each
tributary station that the application process wishes to communicate with.

• Within a tributary station, DEFINELIST specifies the station addresses that the
particular line responds to.

The addresses are in the form of a “station list” array whose name passes to the
DEFINELIST procedure by way of the DEFINELIST calling sequence.

Syntax for C Programmers

• The function value returned by DEFINELIST, which indicates the condition code,
can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is the name of the one-word integer variable specified in the call to FILE_OPEN_
or OPEN that opened the line.

address-list input

INT:ref:*

is the name of an integer array containing either:

• Polling addresses and selection addresses (for a description of this array, see
the Envoy Byte-Oriented Protocols Reference Manual)

#include <cextdecs(DEFINELIST)>

_cc_status DEFINELIST (short filenum
 ,short _near *address-list
 ,short address-size
 ,short num-entries
 ,short polling-count
 ,short polling-type);

CALL DEFINELIST (filenum ! i
 ,address-list ! i
 ,address-size ! i
 ,num-entries ! i
 ,polling-count ! i
 ,polling-type); ! i

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-20

DEFINELIST Procedure

• one or more station addresses (for a description of this array, see the
EnvoyACP/XF Reference Manual)

address-size input

INT:value

specifies the size, in words, of an entry in the station-list array. Note that the
entry size varies somewhat from one protocol to another.

num-entries input

INT:value

specifies the total number of entries in the station-list array.

polling-count input

INT:value

specifies the number of polling addresses in the station-list array. This
parameter has no meaning when used for EnvoyACP bit-oriented protocols.

polling-type input

INT:value

For a supervisor station, specifies the number of times that the tributary stations
with polling addresses in the station-list array are to be polled when the line
is in the control state, and the supervisor station issues a call to READ:

0 Poll continuously

1-127 Number of polling cycles

For tributary stations, this parameter has no functional effect; a dummy argument
must still be supplied, however, for each station except Envoy’s multipoint tributary.
In this case, the polling-type can be:

0 RVI (reverse interrupt)

1 WACK (wait for acknowledgment)

2 NAK (negative acknowledge)

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that the DEFINELIST procedure was executed successfully.

> (CCG) does not return from DEFINELIST.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-21

DEFINEMODE Procedure

Considerations
Call DEFINELIST after the call to FILE_OPEN_ or OPEN but before the first call to
READ or WRITE.

Related Programming Manual
For programming information about the DEFINELIST procedure, see the data
communication manuals.

DEFINEMODE Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
This procedure allows the caller to control the use of DEFINEs (the DEFINE mode of
the process). See the Guardian Programmer’s Guide for details on the DEFINE mode
and its effects.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the call:

0 Success

#include <cextdecs(DEFINEMODE)>

short DEFINEMODE ([short new-value]
 ,[short _near *old-value]);

error := DEFINEMODE ([new-value] ! i
 ,[old-value]); ! o

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-22

DEFINEMODE Procedure

2067 The value supplied in new-value is invalid

new-value input

INT:value

is 0 to disable DEFINEs, and 1 to enable DEFINEs. Note that when setting this
value you should see that the desired DEFINEs are propagated and usable. For
further information, see the Guardian Programmer’s Guide.

old-value output

INT:ref:1

if present, returns the previous status of the DEFINE mode: 0 (OFF) or 1 (ON).

Considerations

• The new-value and old-value parameters correspond to the DEFMODE
attribute of a process:

DEFMODE OFF corresponds to value 0;
DEFMODE ON corresponds to value 1.

• If new-value is not supplied, the call to DEFINEMODE does not change the
current value of DEFINE mode.

• When a process is created, the DEFINE mode for the new process can be
supplied as an option to PROCESS_CREATE_, PROCESS_SPAWN_,
NEWPROCESS, NEWPROCESSNOWAIT, OSS tdm_fork(), OSS
tdm_spawn() or one of the OSS tdm_exec set of functions, or to the command
interpreter RUN command. The default is the DEFINE mode of the caller of the
procedure that creates the new process or that of the command interpreter.

• The DEFMODE of a primary process is checkpointed to the corresponding backup
process whenever the primary process calls CHECKPOINT or
CHECKPOINTMANY to checkpoint the data stack.

• For details on DEFINE mode and its effects, see the Guardian Programmer’s
Guide.

Example
INT previous^use;
LITERAL define^mode = 1;
 .
 .
 .
error := DEFINEMODE(define^mode, previous^use);
IF error <> DEOK THEN ...

! The above statements enable DEFINE use and return

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-23

DEFINENEXTNAME Procedure

! the previous DEFINE mode in the variable
! previous^use.

Related Programming Manual
For programming information about the DEFINEMODE procedure, see the Guardian
Programmer’s Guide.

DEFINENEXTNAME Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
This procedure returns the name of the DEFINE that follows the specified DEFINE (in
ASCII order).

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the call:

0 Successful
2049 A syntax error occurred in name
2051 DEFINE not found
2052 Unable to obtain file-system buffer space
2054 Parameter address is bad
2066 Missing parameter
2060 No more DEFINEs

#include <cextdecs(DEFINENEXTNAME)>

short DEFINENEXTNAME (char *define-name);

error := DEFINENEXTNAME (define-name); ! i,o

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-24

DEFINEPOOL Procedure
(Superseded by POOL_* Procedures)

For other error values associated with DEFINEs, see the Guardian Procedure
Errors and Messages Manual.

define-name input, output

STRING .EXT:ref:24

on input, is a DEFINE name. It need not name an existing DEFINE. The name
must be left-justified and padded on the right with blanks. Trailing blanks are
ignored.

on output, is the name of the DEFINE following the input DEFINE name in the
process context (in ASCII order); if define-name is blank on input, the name of
the first DEFINE is returned.

Considerations

• To obtain the name of the very first DEFINE in the process context, define-name
must be blanks.

• On output, define-name is either a valid existing DEFINE (on success) or is
unchanged (on failure).

Example
In this example, DEFINENEXTNAME returns “=my^output” which directly follows
“=my^input” in ASCII order. These DEFINEs were created previously.

STRING .file^name [0:36];

file^name ':=' ["=my^input"];
error := DEFINENEXTNAME(file^name);
IF error <> DEOK THEN ...

DEFINEPOOL Procedure
(Superseded by POOL_* Procedures)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-25

DEFINEPOOL Procedure
(Superseded by POOL_* Procedures)

Summary

The DEFINEPOOL procedure designates a portion of a user’s stack or an extended
data segment for use as a pool.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

status returned value

INT

returns a status word having one of these values:

0 No error
1 Bounds error on pool-head
2 Bounds error on pool
3 Invalid pool-size
4 pool-head and pool overlap.
5 pool-head is not word-aligned.
6 pool is not word-aligned.

pool-head output

INT .EXT:ref:19

is a 19-word array to be used as the pool header; GETPOOL and PUTPOOL use
this array to manage the pool. An even-byte address must be specified.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development. *POOL procedures are replaced by POOL_* procedures. There is
no one-for-one replacement.

#include <cextdecs(DEFINEPOOL)>

short DEFINEPOOL (short *pool-head
 ,short *pool
 ,__int32_t pool-size);

status := DEFINEPOOL (pool-head ! o
 ,pool ! i
 ,pool-size); ! i

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-26

DEFINEPOOL Procedure
(Superseded by POOL_* Procedures)

pool input

INT .EXT:ref:*

specifies the address of the first word of the memory space to be used as the pool.
An even-byte address must be specified. The address of the actual beginning of
the pool might be adjusted for alignment.

pool-size input

INT(32):value

specifies the size of the pool in bytes. This number must be a multiple of 4 bytes
and cannot be less than 32 bytes or greater than 127.5 megabytes (133,693,440
bytes). The address of the end of the pool is always equal to the address specified
for the pool parameter plus pool-size. Pool space overhead and adjustments
for alignment do not cause the pool to extend past this boundary.

Considerations

• Stack addresses converted to extended addresses

If pool-head or pool is in the user data stack, the TAL compiler automatically
converts data stack addresses to extended addresses.

• Read-only segments

If you specify pool-head or pool in an extended data segment that is allocated
as a read-only segment, DEFINEPOOL returns error 1 or 2 (bounds error on
pool-head or pool, respectively).

• Dynamic memory allocation

Several Guardian procedures support the creation of memory pools and dynamic
allocation of variable-sized blocks from the pool. The calling program provides the
memory area to be used as the pool and then calls the DEFINEPOOL procedure to
initialize a 19-word array, the pool-header, that is used to manage the pool. The
pool and the pool header can reside in the user data stack or in extended memory.
The pool routines accept and return extended addresses that apply to both the
stack and extended memory.

Once the pool is defined, the process can reserve blocks of various sizes from the
pool by calling the GETPOOL procedure and can release blocks by calling the
PUTPOOL procedure. The program must release one entire block using
PUTPOOL; it may not return part of a block or multiple blocks in one PUTPOOL
call.

Be careful to use only the currently reserved blocks of the pool, or the pool
structure is corrupted and unpredictable results occur. If multiple pools are

Caution. If a privileged process calls DEFINEPOOL and supplies an odd-byte address for the
pool or the pool-head parameter, a processor halt results.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-27

DEFINEPOOL Procedure
(Superseded by POOL_* Procedures)

defined, do not return reserved blocks to the wrong pool. For debugging purposes,
a special call to GETPOOL checks for pool consistency.

• Pool management methods

This information is supplied for use in evaluating the appropriateness of using the
Guardian pool routines in user application programs and determining the proper
size of a pool. Application programs should not depend on the pool data
structures, since they are subject to change. The program should use only the
procedural interfaces described on these pages.

The requested block size is rounded up to a multiple of 4 bytes, at a minimum of
28 bytes. This reduces pool fragmentation, but when the program is allocating
small blocks, it can waste memory space.

One extra word is allocated for a boundary tag at the beginning and end of each
block; thus, the minimum pool block size is 32 bytes. This tag serves three
purposes:

1. It contains the size of each block so that the program does not need to specify
the length of the block when releasing it.

2. It serves as a check to ensure that the program does not erroneously use more
memory than the block contains (although it does not stop the program from
overwriting).

3. It provides for efficient coalescing of adjacent free blocks.

In GETPOOL, the free block list is searched for the first block sufficiently large
enough to satisfy the request. If the free block is at least 32 bytes longer than the
required size, it is split into a reserved block and a new free block. Otherwise, the
entire free block is used for the request.

In summary, the pool space overhead on each block can be substantial if very
small blocks are allocated. An approximate formula is:

ALLOCATED := ($MAX (REQUEST + 7, 32) /4) * 4;

where REQUEST is the original request size in bytes; the allocated blocks are also
measured in bytes.

Although they can also be used to manage the allocation of a collection of equal-
sized blocks, these procedures are not recommended for that purpose, because
they can consume more processor time and pool memory than user-written
routines designed for that specific task.

Example
STATUS := DEFINEPOOL (POOL^HEAD , POOL , 2048D);

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-28

DEFINEREADATTR Procedure

Related Programming Manual
For programming information about the DEFINEPOOL memory-management
procedure, see the Guardian Programmer’s Guide.

DEFINEREADATTR Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
This procedure allows the caller to obtain the current value of an attribute in a DEFINE
in the calling process’s context or in the working set. The value of a specific attribute
can be read or all the attributes can be sequentially read. The value is returned in an
ASCII string form suitable for display.

Syntax for C Programmers

Syntax for TAL Programmers

#include <cextdecs(DEFINEREADATTR)>

short DEFINEREADATTR([constchar *define-name]
 ,char *attribute-name
 ,[short _near *cursor]
 ,char *value-buf
 ,short value-buf-len
 ,short _near *value-len
 ,[short read-mode]
 ,[short _near *info-word]);

error := DEFINEREADATTR ([define-name] ! i
 ,attribute-name ! i,o
 ,[cursor] ! i,o
 ,value-buf ! o
 ,value-buf-len ! i
 ,value-len ! o
 ,[read-mode] ! i
 ,[info-word]); ! o

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-29

DEFINEREADATTR Procedure

Parameters

error returned value

INT

indicates the outcome of the call:

0 Successful
2049 A syntax error occurred in name
2051 DEFINE not found
2052 An error occurred when placing PFS in use
2054 Bounds error on parameter
2055 Attribute not supported
2061 No more attributes (see “Considerations”)
2066 Missing parameter

For other error values associated with DEFINEs, see the Guardian Procedure
Errors and Messages Manual.

define-name input

STRING .EXT:ref:24

is the 24-byte array that contains the name of the DEFINE for the procedure to
use. The name is left-justified and padded on the right with blanks. Trailing blanks
are ignored.

Omit this parameter to refer to the working set.

attribute-name input, output

STRING .EXT:ref:16

If cursor is absent, then this parameter names the attribute whose value is to be
returned.

If cursor is present, then this is an output parameter. The name is left-justified
and blank-filled on output.

cursor input, output

INT:ref:1

is a pointer to the attribute on input. On output, cursor points to the sequentially
next attribute that is to be read. To read the first attribute, set the cursor to 0.

To sequentially read all attributes, do not modify this parameter.

If both attribute-name and cursor are present, then cursor is used to
identify the attribute.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-30

DEFINEREADATTR Procedure

value-buf output

STRING .EXT:ref:*

is the data array provided by the calling program to return the value of the attribute.
The value is in external form, suitable for display. If the value is a file name, it is
fully qualified.

value-buf-len input

INT:value

is the length of the array value-buf in bytes.

value-len output

INT:ref:1

gives the actual size of the external representation for the value. If greater than
value-buf-len, then only value-buf-len bytes have been transferred and
truncation has occurred. An absent attribute is indicated by a length of -1.

read-mode input

INT:value

is used with cursor. It indicates the search mode for the next parameter whose
cursor value is to be returned.

0 Search present attributes only.

1 Search present plus required attributes that are not present.

2 Search present plus required and optional attributes that are not present.

If read-mode is not supplied, 0 is used.

info-word output

INT:ref:1

info-word.<14:15> indicates the type of the attribute:

0 optional

1 defaulted

2 required

info-word.<13> is set if this attribute was involved in an inconsistency at the last
check. (For a list of DEFINE consistency check numbers, see DEFINEADD
parameter checknum.)

Considerations

• This procedure can be used to obtain the value of any attribute in the DEFINE
working set, including the CLASS attribute.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-31

DEFINEREADATTR Procedure

• If an error occurs, the contents of the data array are undefined.

• Both attribute-name and cursor can be present. If cursor is present, it is
used to “name” the attribute whose value is to be returned, and attribute-name
returns the name of the attribute.

• When the cursor parameter is used, parameter info-word is returned even
though the attribute can be absent from the DEFINE working set.

• To use the cursor mode, initialize cursor to 0 and repeatedly call this procedure
without changing cursor to sequentially read attributes. The caller should not, for
example, set cursor to 7 and then call this procedure.

• To implement a command similar to the TACL SHOW DEFINE command, a
process would typically call DEFINEREADATTR with define-name omitted and
with read-mode equal to 1; to implement the SHOW DEFINE * command, it would
call DEFINEREADATTR with define-name omitted and with read-mode equal to
2.

• To implement the detailed version of the INFO DEFINE command, command
interpreters would call DEFINEREADATTR passing it the define-name and with
read-mode of 0.

• When the cursor option is being used, and the last attribute is read, then cursor
returns the next attribute number consistent with the read-mode parameter.
When this attribute is read, 2061 (no more attributes) is returned instead of 0. The
2061 code should be interpreted as success; however, if a process (such as a
command interpreter) is calling DEFINEREADATTR in a loop using the cursor
option, then code 2061 should be used to terminate the loop.

• attribute-name should not be declared as a P-relative array. In general, a
reference parameter should not be declared as a P-relative array.

Example
LITERAL define^vol^len = 25; ! value buffer length
STRING .EXT define^name [0:23];
STRING .EXT volume [0:15]; ! attribute name
STRING .EXT volid [0:define^vol^len]; ! value buffer
INT len^read := 0; ! len of external rep.
 .
 .
define^name ':=' ["=mytape "];
volume ':=' ["volume "];
volid ':=' " " & volid[0] for define^vol^len;
error := DEFINEREADATTR (define^name, volume, , volid,
 define^vol^len, len^read);
IF error <> THEN ...

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-32

DEFINERESTORE Procedure

DEFINERESTORE Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary
DEFINERESTORE uses a saved version of a DEFINE in the user’s buffer to create an
active DEFINE. If an active DEFINE of the same name already exists, it can optionally
be replaced. The saved DEFINE can also be placed in the working set without its
name.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

is a number that indicates the outcome of the call.

0 Successful

2050 DEFINE already exists and options.<15> is 0 or options is omitted

2051 DEFINE does not exist and options.<15> is 1

2052 Unable to obtain file system buffer space

2053 Unable to obtain physical memory

#include <cextdecs(DEFINERESTORE)>

short DEFINERESTORE (short *buffer
 ,[short options]
 ,[char *define-name]
 ,[short _near *checknum]);

error := DEFINERESTORE (buffer ! i
 ,[options] ! i
 ,[define-name] ! o
 ,[checknum]); ! o

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-33

DEFINERESTORE Procedure

2054 Bounds error on buffer, define-name or checknum parameter

2055 Invalid attribute in saved DEFINE

2057 DEFINE or working set is incomplete. A required attribute is missing.

2058 DEFINE or working set is inconsistent. Two or more attributes have
conflicting values. The checknum parameter identifies the consistency
check that failed.

2059 DEFINE or working set is invalid

2066 Parameter missing

2067 Attribute contained an invalid value

2068 Saved DEFINE was of invalid CLASS

2069 Attempt to add a DEFINE that does not fall under the current DEFMODE
setting

2075 option.<0:13> is not 0

2077 buffer or define-name is in invalid segment

2078 buffer does not contain a valid saved DEFINE

For other error values associated with DEFINEs, see the Guardian Procedure
Errors and Messages Manual.

buffer input

INT .EXT:ref:*

contains the saved form of the DEFINE.

options input

INT:value

indicates whether the saved DEFINE should be restored to the working attribute
set or to the active set of DEFINEs. If the latter, it also indicates whether or not the
DEFINE replaces an existing DEFINE or is simply added to the active set.

<0:13> are reserved and must be 0

<14> 1 place the saved DEFINE in the working set. If options.<14> is 1,
then options.<15> is ignored.

0 make the saved DEFINE an active DEFINE

<15> 1 replace an existing DEFINE. If a DEFINE of the same name does not
exist, an error is returned.

0 add the DEFINE. If a DEFINE of the same name exists, return an
error.

If options is omitted, the default value of 0 is used; in other words, the saved
DEFINE is added to the set of active DEFINEs.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-34

DEFINERESTORE Procedure

define-name output

STRING .EXT:ref:24

if present, contains the name of the saved DEFINE added to the current context.
The name is either the name of the DEFINE when it was saved or the name given
the working set when it was saved.

checknum output

INT:ref:1

if present, and the DEFINE is inconsistent, contains the number of the consistency
check that failed. For a list of DEFINE consistency check numbers, see the
Guardian Procedure Errors and Messages Manual.

Considerations

• The buffer must contain a valid internal form of a DEFINE, as created by
DEFINESAVE. If the buffer does not appear to contain a valid saved DEFINE, an
error is returned and the DEFINE is not added to the current set or to the working
set.

• If DEFINERESTORE encounters any error condition while attempting to restore
the saved DEFINE to the active set, it does not perform the restore.

• DEFINEs saved by later RVUs of the operating system will be restorable only if the
class of the DEFINE is supported on the earlier RVU and the attributes and their
values are supported on the earlier RVU.

• If DEFINERESTORE encounters error 2057, 2058, or 2059 (DEFINE invalid,
incomplete, or inconsistent) while attempting to restore the saved DEFINE to the
working attribute set, it still performs the restore. If it encounters any other errors,
however, it leaves the working attribute set unchanged.

• An attempt to restore a saved DEFINE into the active set does not affect the
working attribute set or the background set under any circumstances.

• Since the DEFAULTS DEFINE always exists, it cannot be added. If the
DEFAULTS DEFINE is saved, the replace option must be used to restore it.

Related Programming Manual
For programming information about the DEFINERESTORE procedure, see the
Guardian Programmer’s Guide.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-35

DEFINERESTOREWORK[2] Procedures

DEFINERESTOREWORK[2] Procedures
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Related Programming Manual

Summary
DEFINERESTOREWORK restores the working set from the background set. The
working set is the current set of attributes and their values. A background set is a
scratchpad work area used when creating DEFINEs. DEFINERESTOREWORK2
allows a second background working set, saved by DEFINESAVEWORK2, to be
restored.

Restoring a background set to a working set does not change the content of the
background set.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the call:

0 Success

2052 Unable to obtain file-system buffer space

2053 Unable to obtain physical memory

For other error values associated with DEFINEs, see the Guardian Procedure
Errors and Messages Manual.

#include <cextdecs(DEFINERESTOREWORK)>

short DEFINERESTOREWORK ();

#include <cextdecs(DEFINERESTOREWORK2)>

short DEFINERESTOREWORK2 ();

error := DEFINERESTOREWORK[2];

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-36

DEFINESAVE Procedure

Related Programming Manual
For programming information about the DEFINERESTOREWORK[2] procedures, see
the Guardian Programmer’s Guide.

DEFINESAVE Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary
DEFINESAVE copies an active DEFINE or the current working attribute set into a user
buffer. The saved DEFINE can later be made an active DEFINE or be placed into the
working set by using DEFINERESTORE.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the call:

0 Successful

2049 Syntax error in name

#include <cextdecs(DEFINESAVE)>

short DEFINESAVE (constchar *define-name
 ,short *buffer]
 ,short buflen
 ,short *deflen
 ,[short option]);

error := DEFINESAVE (define-name ! i
 ,buffer ! o
 ,buflen ! i
 ,deflen ! o
 ,[option]); ! i

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-37

DEFINESAVE Procedure

2051 DEFINE not found

2052 Unable to obtain file-system buffer space

2053 Not enough physical memory

2054 Bounds error on buffer, deflen or define-name parameters

2057 DEFINE or working set is incomplete. A required attribute is missing.

2058 DEFINE or working set is inconsistent. Two or more attributes have
conflicting values. The checknum parameter of the DEFINEADD
procedure identifies the consistency check that failed.

2059 DEFINE or working set is invalid

2066 Parameter missing

2075 option.<0:14> is not 0

2076 User’s buffer is too small

2077 buffer or define-name is in invalid segment

2079 An attempt to save the working set, but define-name is =_DEFAULTS
and working set is not class DEFAULTS

For other error values associated with DEFINEs, see the Guardian Procedure
Errors and Messages Manual.

define-name input

STRING .EXT:ref:24

is a DEFINE name. The name is left-justified and padded on the right with blanks.
Trailing blanks are ignored. Depending on the value of option, define-name
contains the name of an existing DEFINE or the name to be given to the working
set.

buffer output

INT .EXT:ref:*

is the data array provided by the calling program to contain the saved DEFINE.

buflen input

INT:value

is the length of the array buffer in bytes.

deflen output

INT .EXT:ref:1

is the length of the saved DEFINE in bytes.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-38

DEFINESAVEWORK[2] Procedure

option input

INT:value

indicates whether the working set or an active DEFINE is to be saved:

<0:14> are reserved and must be 0

<15> 1 save the current working set and name it define-name

0 save the active DEFINE named by define-name

If option is omitted, then the active DEFINE named by define-name is saved.

Considerations

• The DEFINE saved in buffer is in internal form. You should not modify it. If you
change it in any way, DEFINE RESTORE might not be able to restore it.

• If you are saving the working set, define-name may contain the name of an
active DEFINE; however, the active DEFINE is not saved. Instead, the working set
is saved and is given define-name as its name in the internal form.

• The working set can be saved if it is inconsistent, invalid or incomplete. A warning
is returned in error.

• If the user’s buffer is too small, error will contain 2076 and deflen will contain
the buffer size required, in bytes. To reduce the possibility of getting error 2076,
allocate a buffer of 4096 bytes.

Related Programming Manual
For programming information about the DEFINESAVE procedure, see the Guardian
Programmer’s Guide.

DEFINESAVEWORK[2] Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Related Programming Manual

Summary
DEFINESAVEWORK saves the DEFINE working set in the background set.

DEFINESAVEWORK2 allows a second background working set to be saved.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-39

DEFINESETATTR Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the call:

0 Success

2052 Unable to obtain file-system buffer space

2053 Unable to obtain physical memory

For other error values associated with DEFINEs, see the Guardian Procedure
Errors and Messages Manual.

Related Programming Manual
For programming information about the DEFINESAVEWORK[2] procedures, see the
Guardian Programmer’s Guide.

DEFINESETATTR Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

#include <cextdecs(DEFINESAVEWORK)>

short DEFINESAVEWORK ();

#include <cextdecs(DEFINESAVEWORK2)>

short DEFINESAVEWORK2 ();

error := DEFINESAVEWORK[2];

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-40

DEFINESETATTR Procedure

Summary
This procedure allows the caller to modify the value of an attribute in the working set.
The value is supplied in ASCII string form. It is validated, converted into the internal
representation and established as the value for the attribute. If the value is a file name
or a subvolume name, the default volume information is used to convert the value into
the internal form.

This procedure can also be used to reset the value of an attribute to its default value, if
one exists, or to delete the attribute from the working set. The attributes of the different
DEFINE classes are described in Appendix E, DEFINEs.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the call:

0 Successful

2049 A syntax error occurred in name

2052 Unable to obtain file-system buffer space

2055 Attribute not supported

2062 Attribute name too long

2063 A syntax error occurred in default names

2064 The required attribute cannot be reset

2066 Missing parameter

2067 Invalid value

#include <cextdecs(DEFINESETATTR)>

short DEFINESETATTR (constchar *attribute-name
 ,[const char *value]
 ,[short value-len]
 ,[short _near *default-names]);

error := DEFINESETATTR (attribute-name ! i
 ,[value] ! i
 ,[value-len] ! i
 ,[default-names]); ! i

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-41

DEFINESETATTR Procedure

For other error values associated with DEFINEs, see the Guardian Procedure
Errors and Messages Manual.

attribute-name input

STRING .EXT:ref:16

uniquely identifies an attribute. The name should be left justified and blank-filled.

value input

STRING .EXT:ref:*

is the address of the array that contains the attribute value as an ASCII string (see
Appendix E, DEFINEs).

If this parameter is absent, the reset operation is assumed (the attribute is given a
default value, if one exists; else the attribute is deleted).

If this parameter is present, then the next parameter must be present.

value-len input

INT:value

is the length of the array value in bytes. If -1, the value of the attribute is reset;
the attribute is given a default value, if it has one, or the attribute is deleted.

default-names input

INT:ref:8

contains the default volume and subvolume names to be used to convert from the
external representation of the value to an internal representation.

[0:3] default volume name. First two bytes can be “\sysnum,” in which case
“$” is omitted from volume name. (blank-filled on right)

[4:7] default subvolume name (blank-filled on right)

Considerations

• To reset an attribute, either the value parameter can be omitted, or value-len
can be -1.

• “Required” attributes cannot be reset. (See the TACL Reference Manual.)

• If an error occurs, the contents of the working set are not modified.

• The form of value, with respect to quotes, depends on the attribute. The use of
quotes should be avoided.

Quotes can be used with the FILEID, MOUNTMSG, and OWNER attributes.
Quotes are discarded from the beginning and end of the string.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-42

DEFINESETLIKE Procedure

Text not enclosed in quotes requires only one quote for a quote mark; text
delimited by quotes needs two quotes for a quote mark. The leading and trailing
quotes do not count toward the length of the attribute.

• A list of values must have the values separated by commas and must be enclosed
in parentheses.

• When CLASS attribute is set (even if the value is not changed), the working set is
reinitialized with the attributes of the new class and their default values.

• attribute-name should not be declared as a P-relative array. In general, a
reference parameter should not be declared as a P-relative array.

• default-names should be supplied in certain cases. For more information, see
Setting Attributes Using the DEFINESETATTR Procedure in the Guardian
Programmer’s Guide.

Example
STRING .EXT labelprocessing [0:15]; ! attribute name
STRING .EXT value [0:15]; ! attribute value
INT .default^names [0:7];
LITERAL value^len = 6; ! attribute value length
 .
 .
default^names ':=' ["$VOL MYSUBVOL"];
labelprocessing ':=' ["labels "];
value ':=' ["bypass"];
error := DEFINESETATTR(labelprocessing, value,
 value^len, default^names);
IF error <> DEOK THEN ...

Related Programming Manual
For programming information about the DEFINESETATTR procedure, see the
Guardian Programmer’s Guide.

DEFINESETLIKE Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary
This procedure can be used to initialize the working set with the attributes in an
existing DEFINE.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-43

DEFINESETLIKE Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the call:

0 Successful
2049 A syntax error occurred in name
2051 DEFINE not found
2052 Unable to obtain file-system buffer space
2053 Unable to obtain physical memory
2054 Bounds error occurred on define-name
2066 DEFINE name is missing

For other error values associated with DEFINEs, see the Guardian Procedure
Errors and Messages Manual.

define-name input

STRING .EXT:ref:24

is the 24-byte array that contains the name of the DEFINE for the procedure to
use. The name is left-justified and padded on the right with blanks. Trailing blanks
are ignored.

Considerations
The existing attributes in the working set are deleted. They can be saved in the
background set by calling DEFINESAVEWORK before calling this procedure.

Related Programming Manual
For programming information about the DEFINESETLIKE procedure, see the Guardian
Programmer’s Guide.

#include <cextdecs(DEFINESETLIKE)>

short DEFINESETLIKE (constchar *define-name);

error := DEFINESETLIKE (define-name); ! i

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-44

DEFINEVALIDATEWORK Procedure

DEFINEVALIDATEWORK Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary
This procedure can be used to check the working set for consistency.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the call:

0 Successful
2057 Working set is incomplete. A required attribute is missing.
2058 Working set is inconsistent. Two or more attributes have conflicting values.

The checknum parameter identifies the consistency check that failed.
2059 Working set is invalid

For other error values associated with DEFINEs, see the Guardian Procedure
Errors and Messages Manual.

checknum output

INT:ref:1

contains the consistency check number that failed when 2058 is returned in
error. See the DEFINEADD parameter checknum for a list of DEFINE
consistency check numbers.

#include <cextdecs(DEFINEVALIDATEWORK)>

short DEFINEVALIDATEWORK (short _near *checknum);

error := DEFINEVALIDATEWORK (checknum); ! o

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-45

DELAY Procedure
(Superseded by PROCESS_DELAY_ Procedure (H-

Considerations

• Subsequent calls to DEFINEREADATTR will return info-word.<13> = 1 if the
attribute was involved in an inconsistency.

• If the last call to DEFINEREADATTR showed that info-word.<13> was set and
the DEFINE is currently valid, then a call to DEFINEVALIDATEWORK will clear the
flag.

• DEFINEADD invokes this procedure before creating a DEFINE or replacing an
existing DEFINE with the working set.

• The command interpreter SHOW command invokes this procedure before calling
DEFINEREADATTR.

• DEFINEREADATTR can be used to obtain more information about the attributes in
the working set that can be useful to determine why the working set is inconsistent,
incomplete or both (invalid).

Related Programming Manual
For programming information about the DEFINEVALIDATEWORK procedure, see the
Guardian Programmer’s Guide.

DELAY Procedure
(Superseded by PROCESS_DELAY_ Procedure
(H-Series RVUs Only))

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The DELAY procedure permits a process to suspend itself for a timed interval.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-46

DELAY Procedure
(Superseded by PROCESS_DELAY_ Procedure (H-

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

time-period input

INT(32):value

specifies the time period, in 0.01-second units, for which the caller of DELAY is to
be suspended.

Considerations

• time-period value <= 0D

A value of less than or equal to 0D results in no delay as such but returns this
process’s process control block (PCB) to the ready list to give other processes of
the same priority a chance to execute.

• Measuring time by the processor clock

The DELAY procedure measures time according to the internal clock of the
processor in which the calling process is executing. Typically, processor time (that
is, time as measured by a particular processor) is slightly different from system
time; it also varies slightly from processor to processor, because all the processor
clocks typically run at slightly different speeds. System time is determined by
taking the average of all the processor times in the system.

When measuring short intervals of time, the difference between processor time
and system time is negligible. However, when measuring long intervals of time
(such as several hours or more), the difference can be noticeable. For a
discussion about measuring long time intervals, see “Considerations” for the
SIGNALTIMEOUT procedure.

Example
CALL DELAY (1000D); ! suspend for 10 seconds.

#include <cextdecs(DELAY)>

void DELAY (__int32_t time-period);

CALL DELAY (time-period); ! i

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-47

DELETEEDIT Procedure

DELETEEDIT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example
Related Programming Manual

Summary
The DELETEEDIT procedure deletes from an EDIT file all lines that have line numbers
in a specified range. Upon completion, the current record number is set to the highest
line number in the file that is lower than the deleted range, or to -1 if there is no such
line.

DELETEEDIT is an IOEdit procedure and can be used only with files that have been
opened by OPENEDIT or OPENEDIT_.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation.

filenum input

INT:value

#include <cextdecs(DELETEEDIT)>

short DELETEEDIT (short filenum
 ,__int32_t first
 ,__int32_t last);

error := DELETEEDIT (filenum ! i
 ,first ! i
 ,last); ! i

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-48

DEVICE_GETINFOBYLDEV_ Procedure
(Superseded on G-series RVUs)

is the number that identifies the open file from which lines are to be deleted.

first input

INT(32):value

specifies 1000 times the line number of the first line in the range of lines to be
deleted. If a negative value is specified, the line number of the first line in the file is
used.

last input

INT(32):value

specifies 1000 times the line number of the last line in the range of lines to be
deleted. If a negative value is specified, the line number of the last line in the file is
used.

Example
In this example, DELETEEDIT deletes lines 50 through 100 from the specified file.

INT(32) first := 50000D;
INT(32) last := 100000D;
 .
 .
err := DELETEEDIT (filenumber, first, last);

Related Programming Manual
For programming information about the DELETEEDIT procedure, see the Guardian
Programmer’s Guide.

DEVICE_GETINFOBYLDEV_ Procedure
(Superseded on G-series RVUs)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Device Attributes and Value Representations
Example
Related Programming Manual

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-49

DEVICE_GETINFOBYLDEV_ Procedure
(Superseded on G-series RVUs)

Summary

The DEVICE_GETINFOBYLDEV_ procedure obtains the physical and logical attributes
of a device. The device is either specified by logical device number or determined by a
search.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

• The parameter maxlen specifies the maximum length in bytes of the character
string pointed to by devname. The actual length of the name returned in devname
is returned in devname-len. All three of these parameters must either be
supplied or be absent.

Note. On G-series RVUs, this procedure is supported for compatibility with previous software
and should not be used for new development. This procedure cannot obtain all of the physical
attributes of a device. For new development, use the CONFIG_GETINFO_BYLDEV_
procedure.

#include <cextdecs(DEVICE_GETINFOBYLDEV_)>

short DEVICE_GETINFOBYLDEV_ (__int32_t ldevnum
 ,[short *logical-info]
 ,[short logical-info-maxlen]
 ,[short *logical-info-len]
 ,[short *primary-info]
 ,[short primary-info-maxlen]
 ,[short *primary-info-len]
 ,[short *backup-info]
 ,[short backup-info-maxlen]
 ,[short *backup-info-len]
 ,[__int32_t timeout]
 ,[short options]
 ,[short match-type]
 ,[short match-subtype]
 ,[char *devname]
 ,[short maxlen]
 ,[short *devname-len]
 ,[short *error-detail]);

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-50

DEVICE_GETINFOBYLDEV_ Procedure
(Superseded on G-series RVUs)

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the operation. It returns one of these values:

0 Information was successfully returned.

1 (reserved)

2 Parameter error; error-detail contains the number of the first parameter
found to be in error, where 1 designates the first parameter on the left.

3 Bounds error; error-detail contains the number of the first parameter
found to be in error, where 1 designates the first parameter on the left.

4 Device not found; error-detail contains a file-system error number.

5 Buffer too small. This error applies only to the devname:maxlen parameter.

ldevnum input

INT(32):value

specifies a logical device number that is used in one of these ways:

• If options.<15> is equal to 0, ldevnum designates the device for which
information is requested.

• If options.<15> is equal to 1, the procedure begins a search of devices
starting with the logical device number immediately following ldevnum.

error := DEVICE_GETINFOBYLDEV_ (ldevnum ! i
 ,[logical-info] ! o
 ,[logical-info-maxlen] ! i
 ,[logical-info-len] ! o
 ,[primary-info] ! o
 ,[primary-info-maxlen] ! i
 ,[primary-info-len] ! o
 ,[backup-info] ! o
 ,[backup-info-maxlen] ! i
 ,[backup-info-len] ! o
 ,[timeout] ! i
 ,[options] ! i
 ,[match-type] ! i
 ,[match-subtype] ! i
 ,[devname:maxlen] !
o:i
 ,[devname-len] ! o
 ,[error-detail]); ! o

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-51

DEVICE_GETINFOBYLDEV_ Procedure
(Superseded on G-series RVUs)

See the options parameter on page 4-53.

On G-series RVUs, the logical device number of a device can change whenever a
device is configured or the system is loaded.

logical-info output

INT .EXT:ref:*

if present and if logical-info-maxlen is not 0, points to a buffer that returns a
set of logical attributes for the specified device. The attribute values are returned
in a contiguous array.

If this parameter is present, logical-info-maxlen and logical-info-len
must also be present.

For a description of the attributes returned in logical-info, see Device
Attributes and Value Representations on page 4-55.

logical-info-maxlen input

INT:value

specifies the length in bytes of the buffer pointed to by logical-info. If the
buffer length is too short for the full set of device attributes, the procedure returns
as many values as will fit in the buffer.

This parameter must be present if logical-info is present.

logical-info-len output

INT .EXT:ref:1

returns the actual length in bytes of the buffer pointed to by logical-info.

This parameter must be present if logical-info is present.

primary-info output

INT .EXT:ref:*

if present and if primary-info-maxlen is not 0, points to a buffer that returns a
set of physical device attributes obtained from the primary I/O process that
supports the specified device. The attribute values are returned in a contiguous
array.

If this parameter is present, primary-info-maxlen and primary-info-len
must also be present.

For a description of the attributes returned in primary-info, see Device
Attributes and Value Representations on page 4-55.

primary-info-maxlen input

INT:value

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-52

DEVICE_GETINFOBYLDEV_ Procedure
(Superseded on G-series RVUs)

specifies the length in bytes of the buffer pointed to by primary-info. If the
buffer length is too short for the full set of device attributes, the procedure returns
as many values as will fit in the buffer.

This parameter must be present if primary-info is present.

primary-info-len output

INT .EXT:ref:1

returns the actual length in bytes of the buffer pointed to by primary-info.

This parameter must be present if primary-info is present.

backup-info output

INT .EXT:ref:*

if present and if backup-info-maxlen is not 0, points to a buffer that returns a
set of physical device attributes obtained from the backup I/O process that
supports the specified device. The attribute values are returned in a contiguous
array.

If this parameter is present, backup-info-maxlen and backup-info-len
must also be present.

The set of attributes for which values are returned in backup-info is identical to
the set returned in primary-info. For a description of the attributes returned in
backup-info, see Device Attributes and Value Representations on page 4-55.

backup-info-maxlen input

INT:value

specifies the length in bytes of the buffer pointed to by backup-info. If the buffer
length is too short for the full set of device attributes, the procedure returns as
many values as will fit in the buffer.

This parameter must be present if backup-info is present.

backup-info-len output

INT .EXT:ref:1

returns the actual length in bytes of the buffer pointed to by backup-info.

This parameter must be present if backup-info is present.

timeout input

INT(32):value

specifies how many hundredths of a second the procedure should wait for a
response from the I/O process. The maximum value is 2147483647. The default

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-53

DEVICE_GETINFOBYLDEV_ Procedure
(Superseded on G-series RVUs)

value is 6000D (one minute). A value of -1D causes the procedure to wait
indefinitely.

options input

INT:value

specifies options. The bits, when set, indicate:

<0:12> Reserved (specify 0)

<13> Specifies that the procedure search for the next device that has a subtype
of match-subtype. options.<15> must be equal to 1 and match-
subtype must be specified when this option is used.

<14> Specifies that the procedure search for the next device that has a type of
match-type. options.<15> must be equal to 1 and match-type
must be specified when this option is used.

<15> Specifies that the procedure search for the next device that matches the
selection criteria. The search begins with the logical device number
immediately following the one specified by the ldevnum parameter. This
option can be used alone or in combination with options.<13> or
options.<14>. See “Considerations,” later in this subsection.

The default value of options is 0.

match-type input

INT:value

if present and if not -1, specifies a device type that is to be used as a search
criterion. Supplying match-type causes the procedure to return information for
the next device that has a device type of match-type and a logical device
number greater than ldevnum.

options.<14> and options.<15> must both be equal to 1 in order to use this
parameter.

match-type can also be used in combination with match-subtype. See
“Considerations,” later in this subsection.

match-subtype input

INT:value

if present and if not -1, specifies a device subtype that is to be used as a search
criterion. Supplying match-subtype causes the procedure to return information
for the next device that has a device subtype of match-subtype and a logical
device number greater than ldevnum.

options.<13> and options.<15> must both be equal to 1 in order to use this
parameter.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-54

DEVICE_GETINFOBYLDEV_ Procedure
(Superseded on G-series RVUs)

match-subtype can also be used in combination with match-type. See
“Considerations,” later in this subsection.

devname:maxlen output: input

STRING .EXT:ref:*, INT:value

if supplied and if maxlen is not 0, returns a local name (that is, a name that does
not include a node name) designating the device. The returned name has no
qualifiers.

If the device does not have a name, a devname-len of 0 is returned. A devname
in the form $logical-device-number is never returned.

maxlen specifies the length in bytes of the string variable devname.

devname-len output

INT .EXT:ref:1

returns the actual length in bytes of the name returned in devname. If the device
does not have a name, a devname-len of 0 is returned.

This parameter must be present if devname is present.

error-detail output

INT .EXT:ref:1

for some returned errors, contains additional information. See error, earlier in
this subsection.

Considerations

• I/O process status

The physical information that is returned in primary-info and backup-info
includes a status field (see Device Attributes and Value Representations on
page 4-55). This field contains a file-system error number that indicates the result
of the request for information from the I/O process.

It is possible for DEVICE_GETINFOBYLDEV_ to return an error value of 0
(information successfully returned) while the IOP reports an error in the status field.
In that case, the error value of 0 indicates that communication with the IOP was
successful, while the IOP status value reflects the validity of the returned
information.

• Searching logical devices

To perform a search of logical devices, you must specify options.<15> = 1.
DEVICE_GETINFOBYLDEV_ searches logical device numbers starting with the
number immediately following ldevnum. Information is returned for the next
device found.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-55

DEVICE_GETINFOBYLDEV_ Procedure
(Superseded on G-series RVUs)

To search all logical devices, set the initial value of ldevnum to -1; for each
iteration of the search, update ldevnum to the logical device number of the last
device for which information was returned. The logical device number of a device
is returned in logical-info (see Device Attributes and Value Representations).

When match-type is supplied (in combination with options.<14> equal to 1), or
when match-subtype is supplied (in combination with options.<13> equal to
1), the search returns information only for a device of the specified type or subtype.
match-type and match-subtype can be used together; in that case, a device
must match both the specified type and subtype to be selected by the search.

When a search can find no more devices, an error value of 4 is returned and
error-detail contains 19 (no more devices).

Device Attributes and Value Representations
These set of attributes is returned in logical-info if that parameter is present:

The attributes returned in logical-info are defined as follows:

• ldev

is the logical device number of the device for which information has been obtained.
On G-series RVUs, the logical device number of a device can change whenever a
device is configured or the system is loaded.

• primary-processor

is the number of the processor in which the primary IOP that owns the device is
running.

• primary-PIN

Attribute TAL Value Representation

ldev INT(32)

primary-processor INT

primary-PIN INT

backup-processor INT

backup-PIN INT

type INT

subtype INT

record-size INT

audited UNSIGNED(1)

dynamically-configured UNSIGNED(1)

demountable UNSIGNED(1)

has-subnames (12 bits of
filler)

UNSIGNED(1)

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-56

DEVICE_GETINFOBYLDEV_ Procedure
(Superseded on G-series RVUs)

is process identification number (PIN) of the primary IOP that owns the device.

• backup-processor

is the number of the processor in which the backup IOP that owns the device is
running.

• backup-PIN

is the process identification number (PIN) of the backup IOP that owns the device.

• type

is the device type of the device. See Appendix A, Device Types and Subtypes for
a list of device types.

• subtype

is the device subtype of the device. See Appendix A, Device Types and Subtypes
for a list of device subtypes.

• record-size

is the record size of the device.

• audited

if equal to 1, indicates that the device is TMF audited.

• dynamically-configured

if equal to 1, indicates that the device was configured dynamically instead of with
SYSGEN.

• demountable

if equal to 1, indicates that the device is logically demountable.

• has-subnames

if equal to 1, indicates that the device has subdevices that can be opened (for
example, $DEVICE.#SUBDEV).

These set of attributes is returned in primary-info and backup-info if those
parameters are present:

Attribute TAL Value Representation

status INT

primary-subtype INT

mirror-subtype INT

has-physical-devices UNSIGNED(1)

is-primary (14 bits of
filler)

UNSIGNED(1)

path 0 information:

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-57

DEVICE_GETINFOBYLDEV_ Procedure
(Superseded on G-series RVUs)

The attributes returned in primary-info and backup-info are defined as follows:

• status

configured UNSIGNED(1)

in-use (14 bits of
filler)

UNSIGNED(1)

channel INT

controller INT

unit INT

state INT

path 1 information:

configured UNSIGNED(1)

in-use (14 bits of
filler)

UNSIGNED(1)

channel INT

controller INT

unit INT

state INT

path 2 information:

configured UNSIGNED(1)

in-use (14 bits of
filler)

UNSIGNED(1)

channel INT

controller INT

unit INT

state INT

path 3 information:

configured UNSIGNED(1)

in-use (14 bits of
filler)

UNSIGNED(1)

channel INT

controller INT

unit INT

state INT

Attribute TAL Value Representation

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-58

DEVICE_GETINFOBYLDEV_ Procedure
(Superseded on G-series RVUs)

is a file-system error number returned by the IOP that owns the device. A value of
0 indicates that the returned information is valid; any other value indicates an error
condition.

• primary-subtype

is the device subtype of the primary disk of a logical volume. This field is set only
by the disk process.

• mirror-subtype

is the device subtype of the mirror disk of a logical volume. This field is set only by
the disk process.

• has-physical-devices

is equal to 1 unless the logical device does not own a channel address. $TMP, $0,
and $IPB are examples of logical devices that do not own channel addresses.

• is-primary

identifies the current primary process of the IOP pair. This bit should be set to 1 in
only one of the physical information sets.

• configured

is equal to 1 if the path is known to the device. Devices such as terminals and tape
drives have only one path configured; disks can have two or four paths configured.

• in-use

is equal to 1 if the path is currently in use by the IOP that owns the device.

• channel

is the channel number of the path. -1 is always returned on G-series RVUs,
indicating that this parameter value is not returned.

• controller

is the controller number of the path. -1 is always returned on G-series RVUs,
indicating that this parameter value is not returned.

• unit

is the unit number of the path. -1 is always returned on G-series RVUs, indicating
that this parameter value is not returned.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-59

DEVICE_GETINFOBYNAME_ Procedure
(Superseded on G-Series RVUs)

• state

is the current state of the path. If the device has only one path, then the state of
the device is the state of the path. Valid state values include:

Example
! obtain logical and physical attributes for
! logical device 10.

logical^device := 10;
error := DEVICE_GETINFOBYLDEV_ (
 logical^device,
 l^info, l^info^maxlen, l^info^len,
 p^info, p^info^maxlen, p^info^len,
 b^info, b^info^maxlen, b^info^len);

Related Programming Manual
For programming information about the DEVICE_GETINFOBYLDEV_ procedure, see
the Guardian Programmer’s Guide.

DEVICE_GETINFOBYNAME_ Procedure
(Superseded on G-Series RVUs)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Value Description

0 UP

1 DOWN

2 SPECIAL

3 MOUNT

4 REVIVE

5 (reserved)

6 EXERCISE

7 EXCLUSIVE

8 HARD DOWN

9 UNKNOWN

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-60

DEVICE_GETINFOBYNAME_ Procedure
(Superseded on G-Series RVUs)

Summary

The DEVICE_GETINFOBYNAME_ procedure obtains the physical and logical
attributes of a device. The device is specified by name.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Note. On G-series RVUs, this procedure is supported for compatibility with previous software
and should not be used for new development. This procedure cannot obtain all of the physical
attributes of a device. For new development, call the CONFIG_GETINFO_BYNAME_
procedure.

#include <cextdecs(DEVICE_GETINFOBYNAME_)>

short DEVICE_GETINFOBYNAME_ (char *devname
 ,short length
 ,[short *logical-info]
 ,[short logical-info-maxlen]
 ,[short *logical-info-len]
 ,[short *primary-info]
 ,[short primary-info-maxlen]
 ,[short *primary-info-len]
 ,[short *backup-info]
 ,[short backup-info-maxlen]
 ,[short *backup-info-len]
 ,[__int32_t timeout]
 ,[short *error-detail]);

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-61

DEVICE_GETINFOBYNAME_ Procedure
(Superseded on G-Series RVUs)

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the operation. It returns one of these values:

0 Information was successfully returned

1 (reserved)

2 Parameter error; error-detail contains the number of the first parameter
found to be in error, where 1 designates the first parameter on the left.

3 Bounds error; error-detail contains the number of the first parameter
found to be in error, where 1 designates the first parameter on the left.

4 Device not found; error-detail contains a file-system error number.

devname:length input:input

STRING .EXT:ref:*, INT:value

specifies the name of the device for which information is requested. devname
must be a local name (that is, it must not include a system name) and must have
no qualifiers.

A devname in the form $logical-device-number (for example, $23) is
acceptable.

devname must be exactly length bytes long.

error := DEVICE_GETINFOBYNAME_ (devname:length !
i:i
 ,[logical-info] ! o
 ,[logical-info-maxlen] ! i
 ,[logical-info-len] ! o
 ,[primary-info] ! o
 ,[primary-info-maxlen] ! i
 ,[primary-info-len] ! o
 ,[backup-info] ! o
 ,[backup-info-maxlen] ! i
 ,[backup-info-len] ! o
 ,[timeout] ! i
 ,[error-detail]); ! o

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-62

DEVICE_GETINFOBYNAME_ Procedure
(Superseded on G-Series RVUs)

logical-info output

INT .EXT:ref:*

if present and if logical-info-maxlen is not 0, returns a set of logical attributes
for the specified device. The attribute values are returned in a contiguous array.

If this parameter is present, logical-info-maxlen and logical-info-len
must also be present.

The set of attributes for which values are returned in logical-info is identical to
the set returned in the logical-info parameter of
DEVICE_GETINFOBYLDEV_. For a description of the attributes returned in
logical-info, see Device Attributes and Value Representations on page 4-55.

logical-info-maxlen input

INT:value

specifies the length in bytes of the buffer pointed to by logical-info. If the
buffer length is too short for the full set of device attributes, the procedure returns
as many values as will fit in the buffer.

This parameter must be present if logical-info is present.

logical-info-len output

INT .EXT:ref:1

returns the actual length in bytes of the buffer pointed to by logical-info.

This parameter must be present if logical-info is present.

primary-info output

INT .EXT:ref:*

if present and if primary-info-maxlen is not 0, points to a buffer that returns a
set of physical device attributes obtained from the primary I/O process that
supports the specified device. The attribute values are returned in a contiguous
array.

If this parameter is present, primary-info-maxlen and primary-info-len
must also be present.

The set of attributes for which values are returned in primary-info is identical to
the set returned in the primary-info parameter of
DEVICE_GETINFOBYLDEV_. For a description of the attributes returned in
primary-info, see Device Attributes and Value Representations on page 4-55.

primary-info-maxlen input

INT:value

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-63

DEVICE_GETINFOBYNAME_ Procedure
(Superseded on G-Series RVUs)

specifies the length in bytes of the buffer pointed to by primary-info. If the
buffer length is too short for the full set of device attributes, the procedure returns
as many values as will fit in the buffer.

This parameter must be present if primary-info is present.

primary-info-len output

INT .EXT:ref:1

returns the actual length in bytes of the buffer pointed to by primary-info.

This parameter must be present if primary-info is present.

backup-info output

INT .EXT:ref:*

if present and if backup-info-maxlen is not 0, points to a buffer that returns a
set of physical device attributes obtained from the backup I/O process that
supports the specified device. The attribute values are returned in a contiguous
array.

If this parameter is present, backup-info-maxlen and backup-info-len
must also be present.

The set of attributes for which values are returned in backup-info is identical to
the set returned in the primary-info parameter of this procedure and of the
DEVICE_GETINFOBYLDEV_ procedure. For a description of the attributes
returned in backup-info, see Device Attributes and Value Representations on
page 4-55

backup-info-maxlen input

INT:value

specifies the length in bytes of the buffer pointed to by backup-info. If the buffer
length is too short for the full set of device attributes, the procedure returns as
many values as will fit in the buffer.

This parameter must be present if backup-info is present.

backup-info-len output

INT .EXT:ref:1

returns the actual length in bytes of the buffer pointed to by backup-info.

This parameter must be present if backup-info is present.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-64

DEVICE_GETINFOBYNAME_ Procedure
(Superseded on G-Series RVUs)

timeout input

INT(32):value

specifies how many hundredths of a second the procedure should wait for a
response from the I/O process. The maximum value is 2147483647. The default
value is 6000D (one minute). A value of -1D causes the procedure to wait
indefinitely.

error-detail output

INT .EXT:ref:1

for some returned errors, contains additional information. See error, earlier in
this subsection.

Considerations

• I/O process status

The physical information that is returned in primary-info and backup-info
includes a status field (see Device Attributes and Value Representations on
page 4-55). This field contains a file-system error number that indicates the result
of the request for information from the I/O process.

It is possible for DEVICE_GETINFOBYNAME_ to return an error value of 0
(information successfully returned) while the IOP reports an error in the status field.
In that case, the error value of 0 indicates that communication with the IOP was
successful, while the IOP status value reflects the validity of the returned
information.

Example
! obtain logical and physical information for
! the device named "$TERM11".

device^name ':=' "$TERM11";
error := DEVICE_GETINFOBYNAME_ (
 device^name : 7,
 l^info, l^info^maxlen, l^info^len,
 p^info, p^info^maxlen, p^info^len,
 b^info, b^info^maxlen, b^info^len,
 8000D, error^detail);

Related Programming Manual
For programming information about the DEVICE_GETINFOBYNAME_ procedure, see
the Guardian Programmer’s Guide.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-65

DEVICEINFO Procedure
(Superseded by FILE_GETINFOBYNAME_

DEVICEINFO Procedure
(Superseded by FILE_GETINFOBYNAME_
Procedure or
FILE_GETINFOLISTBYNAME_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary

The DEVICEINFO procedure is used to obtain the device type and the physical record
length of a file. The file can be opened or closed.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

file-name input

INT:ref:12

is an array containing the name of the device whose characteristics are to be
returned. Any form of 12-word internal-format file name is permitted. For disk
files, only the first eight characters (that is, the volume name) are significant;
however, the remaining 16 characters still must be in a valid file name format. If a
logical device number is specified, the last 16 characters must be blanks.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development. DEVICEINFO cannot obtain information on devices that have a
device type greater than 63.

CALL DEVICEINFO (file-name ! i
 ,devtype ! o
 ,physical-recordlen); ! o

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-66

DEVICEINFO Procedure
(Superseded by FILE_GETINFOBYNAME_

devtype output

INT:ref:1

returns the device type of the associated file in this form:

<0> Demountable
<1> Audited disk, or the file name specified was a subdevice
<2:3> Undefined
<4:9> Device type
<10:15> Device subtype

If the device type is greater than 63, bits <4:9> are set to 44. To obtain information
on devices with a device type greater than 63, call either the
FILE_GETINFOBYNAME_ or FILE_GETINFOLISTBYNAME_ procedure. For a
list of the device types, see Appendix A, Device Types and Subtypes.

physical-recordlen output

INT:ref:1

returns the physical record length associated with the file. Physical record length
is determined as follows:

nondisk devices
physical-recordlen is the configured record length.

disk files
physical-recordlen is the maximum possible transfer length. The transfer
length is equal to the configured buffer size for the device (either 2048 or 4096
bytes). (For an Enscribe disk file, the logical record length can be obtained
through the FILE_GETINFO[BYNAME]_ , FILE_GETINFOLIST[BYNAME]_ , or
FILERECINFO procedure.)

processes and $RECEIVE file
a length of 132 is returned in physical-recordlen. This is the system
convention for interprocess files.

Considerations

• All parameters are required. If any are missing, or in error, DEVICEINFO returns
with no error indication.

• When DEVICEINFO is called with a file name that designates a subtype 30
process, it sends a device-type inquiry system message to the process to
determine the device type and subtype. The format of this completion message is
described in the Guardian Procedure Errors and Messages Manual.

• A deadlock occurs if a subtype 30 process calls DEVICEINFO on its own process
name.

• For interprocess messages directed to a process pair, file-system errors 200
(ownership) and 201 (path down) are retried automatically to the other member of
the pair.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-67

DEVICEINFO2 Procedure
(Superseded by FILE_GETINFOBYNAME_

DEVICEINFO2 Procedure
(Superseded by FILE_GETINFOBYNAME_
Procedure or
FILE_GETINFOLISTBYNAME_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary

The DEVICEINFO2 procedure is used to obtain the device type and the physical
record length of a file, which can be open or closed.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

file-name input

INT:ref:12

is an array containing the name of the device whose characteristics are to be
returned. Any form of 12-word internal format file name is permitted. For disk files,
only the first eight characters (that is, the volume name) are significant; however,

Note. This procedure is supported for compatibility with previous software and should not be
used for new development. DEVICEINFO2 cannot obtain information on devices that have a
device type greater than 63.

CALL DEVICEINFO2 (file-name ! i
 , [devtype] ! o
 , [physical-recordlen] ! o
 , [diskprocess-version] ! o
 , [error] ! o
 , [options] ! i
 , [tag-or-timeout]); ! i

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-68

DEVICEINFO2 Procedure
(Superseded by FILE_GETINFOBYNAME_

the remaining 16 characters still must be in a valid file name format. If a logical
device number is specified, the last 16 characters must be blanks.

devtype output

INT:ref:1

returns the device type of the associated file in this form:

<0> Demountable
<1> Audited disk, or file name specified was a subdevice
<2:3> Undefined
<4:9> Device type
<10:15> Device subtype

If the device type is greater than 63, bits <4:9> are set to 44. To obtain information
on devices with a device type greater than 63, call either the
FILE_GETINFOBYNAME_ or FILE_GETINFOLISTBYNAME_ procedure. For a
list of the device types, see Appendix A, Device Types and Subtypes.

physical-recordlen output

INT:ref:1

returns the physical record length associated with the file:

nondisk devices
physical-recordlen is the configured record length.

disk files
physical-recordlen is the maximum possible transfer length. Transfer
length is equal to the configured buffer size for the device (either 2048 or 4096
bytes). (For an Enscribe disk file, the logical record length can be obtained
through the FILE_GETINFO[BYNAME]_ , FILE_GETINFOLIST[BYNAME]_ , or
FILERECINFO procedure.)

processes and $RECEIVE file
a length of 132 is returned in physical-recordlen. This is the system
convention for interprocess files.

diskprocess-version output

INT:ref:1

returns the disk process version for disk devices.

(devtype.<4:9> = 3):

diskprocess-version 1 DP2 disk process.

error output

INT:ref:1

is a file-system error number indicating the success of the call or the reason for its
failure.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-69

DEVICEINFO2 Procedure
(Superseded by FILE_GETINFOBYNAME_

options input

INT:value

is a word indicating the options desired:

<0:12>
should be zero.

<13> if 1, indicates that this call is initiating a nowait inquiry and the information
will be returned in a system message. Do not set both options.<13>
and options.<14> to 1. See “Considerations” for more information.

<14> if 1, indicates that the sending of device-type inquiry messages to a
subtype 30 process should not be allowed to take longer than indicated by
the timeout value in tag-or-timeout. If the time is exceeded, error 40 is
returned.

<15> if 1, indicates that device-type inquiry messages are not to be sent to
subtype 30 processes.

If omitted, zero is used.

tag-or-timeout input

INT(32):value

is a parameter with two functions depending on the options you specify:

• If options.<13> = 1, it is a value you define that helps identify one of several
DEVICEINFO2 operations. The system stores this value until the operation
completes, then returns it to the program in words 1 and 2 of a system
message. See “Considerations” for more information.

• If options.<14> = 1, it is the maximum amount of time, in 0.01-second units,
to wait. The value -1D indicates an indefinite wait. If this parameter is omitted,
-1D is used.

Considerations

• When DEVICEINFO2 is called with a file name that designates a subtype 30
process, it sends a device-type inquiry system message to the process to
determine the device type and subtype (unless disabled by the options
parameter). The format of this completion message is described in the Guardian
Procedure Errors and Messages Manual.

A deadlock occurs if a subtype 30 process calls DEVICEINFO on its own process
name.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-70

DISK_REFRESH_ Procedure

• If you call this procedure in a nowait manner (options <13> is set to 1), the
results are returned in the nowait DEVICEINFO2 completion message (-41), not in
the output parameters of the procedure. The format of this completion message is
described in the Guardian Procedure Errors and Messages Manual. If error is
not 0, no completion message is sent to $RECEIVE. Errors can be reported either
on return from the procedure, in which case error might be meaningful, or
through the completion message sent to $RECEIVE.

The system reports a path error only after automatically making retries.

The nowait option allows any step of the inquiry process to execute
asynchronously to the caller. However, this option guarantees only that simulation
inquiries to subtype 30 processes will be asynchronous. Other parts of the function
may or may not be asynchronous.

Process pairs using the nowait option should handle the fact that a DEVICEINFO2
completion message is delivered only to the process that initiates it, not to the
other member of the pair. You might have the primary process keep the backup
process ignorant of outstanding inquiries, or you might have equivalent
DEVICEINFO2 calls at the point where a backup takes over from the primary
process.

For interprocess messages directed to a process pair, file-system errors 200
(ownership) and 201 (path down) are retried automatically to the other member of
the pair.

Switching ownership from the primary to the backup process can leave outstanding
inquiries. The CHECKSWITCH procedure automatically discards these as it
becomes the backup process. Programs using another method of switching
should tolerate the completions of these irrelevant inquiries.

Example
CALL DEVICEINFO2 (INFILE, DEVTYPE, RECLENGTH, D^VERSION);

DISK_REFRESH_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-71

DISK_REFRESH_ Procedure

Summary

The DISK_REFRESH_ procedure causes control information to be written to the
specified disk volume. DISK_REFRESH_ always writes out the control information
contained in file control blocks (FCBs), such as end-of-file (EOF) pointers. Only the
data and control information that is not already on disk is written.

The DISK_REFRESH_ procedure also writes all dirty (that is, modified) cache blocks
to disk. The writing of cache blocks takes priority over all other disk activity and can
severely affect response time on the disk volume. For this reason, the
DISK_REFRESH_ procedure should not be used when performance of other programs
is critical.

On RVUs preceding G00, The DISK_REFRESH_ procedure can be used when a
volume is brought down (for example, immediately before a system load or PUP
DOWN ! command) but should not be used at other times. On these RVUs, the
DISK_REFRESH_ procedure or the equivalent Peripheral Utility Program (PUP)
REFRESH command should be performed on all volumes before a total system
shutdown.

On G-series RVUs, the DISK_REFRESH_ procedure is not needed because the
system performs the equivalent operation automatically for each disk volume when it is
brought down and at system shutdown.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation.

name:length input:input

STRING .EXT:ref:*, INT:value

Note. On G-series RVUs, this procedure is supported for compatibility with previous software
and should not be used for new development; the function that it provides is no longer needed.

#include <cextdecs(DISK_REFRESH_)>

short DISK_REFRESH_ (char *name
 ,short length);

error := DISK_REFRESH_ (name:length); ! i:i

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-72

DISKINFO Procedure
(Superseded by FILE_GETINFOLISTBYNAME_

specifies the name of the disk volume (or a file on the disk volume) that is to have
control information written out. If a disk file is specified, the operation is performed
for the entire volume on which the file resides.

The value of name must be exactly length bytes long and must be a valid file (or
volume) name or DEFINE name. If the name is partially qualified, it is resolved
using the contents of the VOLUME attribute of the =_DEFAULTS DEFINE.

Considerations

• Because calling the DISK_REFRESH_ procedure can severely impact response
time on the specified disk volume, these actions might be considered as
alternatives:

• When creating a file using FILE_CREATE_ , FILE_CREATELIST_ , or
CREATE, select the option that causes the file label to be written immediately
to disk whenever the EOF value changes.

• Use SETMODE function 95 to cause the dirty cache buffers of a specified file
to be written to disk.

Example
error := DISK_REFRESH_ (volume^name:length);

DISKINFO Procedure
(Superseded by FILE_GETINFOLISTBYNAME_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Consideration
Example

Summary

This procedure obtains information about disk volumes.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-73

DISKINFO Procedure
(Superseded by FILE_GETINFOLISTBYNAME_

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the success of the call or the reason for its
failure.

name input

INT .EXT:ref:12

is the name of the disk volume being inquired about. The name can be that of a
disk volume (blank padded), or of a disk file, or of a DEFINE designating a disk
volume or file. The name can refer to a disk on a different network node.

capacity output

INT(32) .EXT:ref:1

is the information capacity of the volume as labeled, in pages (2048 byte units).
This value accounts for the space taken up for data protection (spare sectors, and
so on), but does not account for space used by the operating system for volume
management (such as directory space) or other uses.

avail output

INT(32) .EXT:ref:1

error := DISKINFO (name ! i
 ,[capacity] ! o
 ,[avail] ! o
 ,[numfrag] ! o
 ,[biggest] ! o
 ,[drivekinds] ! o
 ,[drivecaps]); ! o

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-74

DISKINFO Procedure
(Superseded by FILE_GETINFOLISTBYNAME_

is the total free space currently available, in pages (2048 byte units).

numfrag output

INT(32) .EXT:ref:1

is the number of individual free space fragments.

biggest output

INT(32) .EXT:ref:1

is the size, in pages, of the largest free space fragment.

drivekinds output

STRING .EXT:ref:16

identifies the kinds of drives on which the volume is mounted. The value contains
two fields of ASCII data:

[0:7] The product number of the primary drive

[8:15] The product number of the mirror drive

If information is unavailable for a drive (because it is inaccessible or not
configured), its corresponding field will be blank. Drive models 4110 and 4120,
which cannot be distinguished by software, are returned as “4110”. Similarly, drive
model 4106 is returned as “4105”, 4111 as “4110”, and 4115 as “4114”.

The last four characters of the product-number fields sometimes contain either
blanks or modifiers used to distinguish between different versions of a product.
Also, for the 4105 model, an “M” or “F” modifier refers to the moving-head part or
the fixed-head part of the drive.

drivecaps output

INT(32) .EXT:ref:2

are the formatted capacities of the primary and mirror drives, in pages. These
values account for the space taken up for data protection (such as spare sectors),
but not for other uses. If the information is unavailable for a drive (because it is
inaccessible or not configured), its corresponding value is zero. These values are
provided for cases in which different model drives are mirrored and thus must be
labeled with the smaller of the two formatted capacities.

Consideration
You should always supply at least one output parameter when calling DISKINFO. If
you supply no output parameters, the returned error value might vary with different
device types of name and with different versions of the operating system.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-75

DNUMIN Procedure

Example
NAME ':=' " " & NAME FOR 11;
NAME ':=' "$SYSTEM";
ERR := DISKINFO (NAME ,, FREE ,, BIG);
IF ERR <> 0 THEN ... !handle error

DNUMIN Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The DNUMIN procedure converts the ASCII characters used to represent a number
into the signed double word integer value for that number.

Syntax for C Programmers

Note. In the TNS/E environment the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(DNUMIN)>

__int32_t DNUMIN (char *ascii-num
 ,__int32_t *signed-result
 ,short base
 ,[short *status]
 ,[short flags]);

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-76

DNUMIN Procedure

Syntax for TAL Programmers

Parameters

next-addr returned value

EXTADDR

returns the ‘G’[0] relative byte address of the first character in ascii-num after the
number, or the last character examined in case of an error.

ascii-number input

STRING .EXT:ref:*

is an array containing the number to be converted to signed double word integer
form. ascii-number is of the form:

[+] [prefix] number nonnumeric
[-]

where any of these prefix values can be used to override the specified base:

% octal

decimal

%b or %B binary

%h or %H hexadecimal

The number cannot contain embedded commas.

signed-result output

INT(32) .EXT:ref:1

returns the signed double word integer result of the conversion.

next-addr := DNUMIN (ascii-num ! i
 ,signed-result ! o
 ,base ! i
 ,[status] ! o
 ,[flags]); ! i

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-77

DNUMIN Procedure

base input

INT:value

specifies the number base of ascii-number. Legitimate values are 2 through 36.
Note that supplying a prefix in ascii-number overrides this specification.

status output

INT .EXT:ref:1

returns a number that indicates the outcome of the conversion.

The values for status are:

1 Nonexistent number (string does not start with a valid sign, prefix, or numeric)

0 Valid conversion

-1 Invalid integer (number cannot be represented in 32 bits as a signed quantity)

flags input

INT:value

can be used to alter the number format accepted by DNUMIN as follows:

<0:12> Must be 0

<13> Disallow preceding sign (+/-)

<14> Disallow prefixes (%, #, and so on)

<15> Permit two-word number of the form integer1.integer2 where
each unsigned integer must fit in a 16-bit word.

If not supplied, flags defaults to zero.

Considerations

• Number conversion stops on the first ASCII character that either does not
represent any numeric value or that represents a numeric value greater than (base
-1). For bases greater than 10, where letters are used to represent the values 10
and above, both uppercase and lowercase letters are accepted. Embedded
commas are not allowed.

• Decimal numeric values must be in the range -2,147,483,648 to +2,147,483,647.

• Numeric values in other number bases must be in the range -%h80000000 to
+%hFFFFFFFF. DNUMIN accepts positive numbers in the 32-bit range and
negative numbers in the 31-bit range.

Example
STRING .number[0:15] := ["-2147483640 "];
INT(32) result;

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-78

DNUMOUT Procedure

INT base := 10;
INT status := 0;
 .
 .
CALL DNUMIN (number, result, base, status);
IF status <> 0 THEN ...

Related Programming Manual
For related programming information about the DNUMIN utility procedure, see the
Guardian Programmer’s Guide.

DNUMOUT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The DNUMOUT procedure converts unsigned double word integer values to their
ASCII equivalents. The result is returned right-justified in an array. If necessary,
leading zeros are zero-filled (the default) or blank-filled.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

#include <cextdecs(DNUMOUT)>

short DNUMOUT (char *ascii-result
 ,__int32_t unsigned-doubleword
 ,short base
 ,[short width]
 ,[short flags]);

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-79

DNUMOUT Procedure

Syntax for TAL Programmers

Parameters

width returned value

INT

returns the length in bytes of the ascii-result.

ascii-result output

STRING .EXT:ref:*

is an array where the converted value is returned in ASCII representation, right-
justified in ascii-result[width - 1], with zero-fill by default.

unsigned-doubleword input

INT(32):value

is the unsigned double-word integer to be converted.

base input

INT:value

is the number base for the resulting conversion. Any number in the range 2
through 36 is valid.

width input

INT:value

is the maximum number of characters permitted in ascii-result. The output
value will be right-justified to the specified width; characters may be truncated on
the left side. If width is negative or not supplied, DNUMOUT calculates and uses
the minimum width necessary to hold the entire value.

flags input

INT:value

may be used to alter the formatting used by DNUMOUT as follows:

<0:14>
Must be zero

width := DNUMOUT (ascii-result ! o
 ,unsigned-doubleword ! i
 ,base ! i
 ,[width] ! i
 ,[flags]); ! i

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-80

DST_GETINFO_ Procedure

<15> 1 Blank-fill on left

0 Zero-fill on left (the default)

If not supplied, flags defaults to zero.

Considerations
If width is too small to contain the number, the most significant digits are lost.

Example
STRING .buffer[0:10] := [" "];
INT(32) dnum := 2147483640D;
INT base := 10;
INT width := -1;
 .
 .
CALL DNUMOUT (buffer, dnum, base, width);
IF width < 0 THEN ...

Related Programming Manual
For related programming information about the DNUMOUT utility procedure, see the
Guardian Programmer’s Guide.

DST_GETINFO_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The DST_GETINFO_ procedure, for G05.00 and later G-series RVUs, provides the
information about the DST entry that is in effect at time keygmt.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-81

DST_GETINFO_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error

indicates the outcome of the operation. Table 4-2, Error Summary for DST_*
Procedures, summarizes the possible values for error. It is recommended that
the literal values be used instead of the numeric values when coding (for example,
ZSYS^VAL^DST^OK, not 0).

keygmt input

FIXED:value

 specifies time in GMT for required DST information. If keygmt is set to 0, it
returns the entry currently in effect. If keygmt is set to -1, it returns the first entry in
the table. If keygmt is set to 1, it returns the last entry in the table.

dstentry output

INT.EXT:ref:*

specifies the address of the ZSYS^DDL^DST^ENTRY^DEF structure that will be
filled in with the required information.

Considerations

• If the keygmt value is less the than the lowgmt value of the first entry in the table
with nonzero offset, ZSYS^VAL^DST^RANGE^LOW (error 9) is returned.

• If the keygmt value is greater than or equal to the highgmt value of the last entry
in the table with nonzero offset, ZSYS^VAL^DST^RANGE^HIGH (error 10) is
returned.

#include <cextdecs(DST_GETINFO_)>

short DST_GETINFO_ (long long keygmt
 ,short *dstentry);

error:= DST_GETINFO_ (keygmt ! i
 , dstentry); ! o

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-82

DST_TRANSITION_ADD_ Procedure

Example
#include <cextdecs (DST_GETINFO_)>

short error;

long long keyGMT;

zsys_ddl_dst_entry_def dstentry;

dstentry.z_version = ZSYS_VAL_DST_VERSION_SEP1997;

error = DST_GETINFO_ (keyGMT, (short*)&dstentry);

DST_TRANSITION_ADD_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Structure Definition for dstentry
Considerations
Example

Summary
The DST_TRANSITION_ADD_ procedure, for G05.00 and later G-series RVUs, allows
a super-group user (255,n) to add an entry to the daylight-saving-time (DST) transition
table. This operation is allowed only when the DAYLIGHT_SAVING_TIME option in
the system is configured to the TABLE option.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error

indicates the outcome of the operation. Table 4-2, Error Summary for DST_*
Procedures, summarizes the possible values for error. It is recommended that

#include <cextdecs(DST_TRANSITION_ADD_)>

short DST_TRANSITION_ADD_ (short *dstentry);

error:= DST_TRANSITION_ADD_ (dstentry); ! i

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-83

DST_TRANSITION_ADD_ Procedure

the literal values be used instead of the numeric values when coding (for example,
ZSYS^VAL^DST^OK, not 0).

dstentry input

INT.EXT:ref:*

specifies the address of the ZSYS^DDL^DST^ENTRY^DEF structure that contains
all of the input fields for this procedure. For more information on how to assign
field values to the structure, see Structure Definition for dstentry on page 4-84.

Table 4-2. Error Summary for DST_* Procedures

Error Literal Value Description

0 ZSYS^VAL^DST^OK The operation is successful.

1 ZSYS^VAL^DST^SECURITY^ERROR The caller is not a super-group
user (255,n).

2 ZSYS^VAL^DST^BAD^VERSION The version number passed in
ZSYS^DDL^DST^ENTRY^DEF
is not valid. The only valid
version is
ZSYS^VAL^DST^VERSION^SE
P1997.

3 ZSYS^VAL^DST^BAD^PARAMETER One of the specified parameters
is not valid.

4 ZSYS^VAL^DST^INTERVAL^ERROR Invalid interval operation. An
attempt was made to add,
delete, or modify a DST entry
that causes a collision with an
existing DST entry.

5 ZSYS^VAL^DST^DELETE^NOW^ERRO
R

An attempt was made to delete
a required DST entry. This
error is returned when the DST
entry that the user attempted to
delete is in effect at the time the
delete operation was attempted
and the offset of the entry is
nonzero.

6 ZSYS^VAL^DST^TYPE^ERROR The DAYLIGHT_SAVING_TIME
option in the system is not
configured to use the TABLE
option.

7 ZSYS^VAL^DST^TABLE^EMPTY The DST table has no entries.
This error is returned by the
DST_GETINFO_ procedure.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-84

DST_TRANSITION_ADD_ Procedure

Structure Definition for dstentry
The dstentry parameter specifies the attributes of the new process.

In the TAL ZSYSTAL file, the structure for the dstentry parameter is defined as:

Z^LOWGMT

identifies the lower limit of the interval in Greenwich Mean Time (GMT).

8 ZSYS^VAL^DST^BOUNDS^ERROR An attempt was made to use
time values outside the
supported range. The
supported range is
1/ 1/ 1 0:00:00.000000 through
10000/12/31 23:59:59.999999
GMT.

9 ZSYS^VAL^DST^RANGE^LOW The specified keygmt value was
less than the lowgmt value of
the first DST interval with
nonzero offset. This error is
returned by the
DST_GETINFO_ procedure.

10 ZSYS^VAL^DST^RANGE^HIGH The specified keygmt value is
greater than the highgmt of the
last DST interval with nonzero
offset. This error is returned by
the DST_GETINFO_
procedure.

11 ZSYS^VAL^DST^COUNT^OVERFLOW An attempt was made to add
too many entries to the table.
Delete some of the entries and
try again.

STRUCT ZSYS^DDL^DST^ENTRY^DEF (*)
?IF PTAL
FIELDALIGN (SHARED2)
?ENDIF PTAL

 BEGIN
 FIXED Z^LOWGMT;
 FIXED Z^HIGHGMT;
 INT Z^OFFSET;
 INT Z^VERSION;
 INT(32) Z^FILLER;
 END;

Table 4-2. Error Summary for DST_* Procedures

Error Literal Value Description

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-85

DST_TRANSITION_ADD_ Procedure

Z^HIGHGMT

identifies the higher limit of the interval in GMT.

Z^OFFSET

identifies the offset value of a transition.

Z^VERSION

identifies the version of the ZSYS^DDL^DST^ENTRY^DEF structure.

Z^FILLER

is provided for future use.

Considerations

• All time intervals that do not have explicit nonzero offset transition added are
assumed to have a zero offset. Furthermore, all intervals that have a zero offset
transition do not need to be explicitly added.

• All intervals that have nonzero offset transition must be explicitly added.

• Transitions can be added only if the interval that is to be added is completely
covered by a zero offset interval in the table.

Example
#include <cextdecs (DST_TRANSITION_ADD_)>

zsys_ddl_dst_entry_def dstentry;

short error;

long long timeStampLow, timeStampHigh;

dstentry.z_lowgmt = timeStampLow;

dstentry.z_highgmt = timeStampHigh;

dstentry.z_offset = 3600; /* seconds */

dstentry.z_version = ZSYS_VAL_DST_VERSION_SEP1997;

error = DST_TRANSITION_ADD_ ((short*)&dstentry);

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-86

DST_TRANSITION_DELETE_ Procedure

DST_TRANSITION_DELETE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The DST_TRANSITION_DELETE_ procedure, for G05.00 and later G-series RVUs,
allows a super-group user (255,n) to delete an existing entry from the daylight saving
time (DST) transition table. This operation is allowed only when the
DAYLIGHT_SAVING_TIME option in the system is configured to the TABLE option.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error

indicates the outcome of the operation. Table 4-2, Error Summary for DST_*
Procedures, summarizes the possible values for error. It is recommended that
the literal values be used instead of the numeric values when coding (for example,
ZSYS^VAL^DST^OK, not 0).

dstentry input

INT.EXT:ref:*

specifies the address of the ZSYS^DDL^DSTENTRY^DEF structure that contains
all of the input fields for this procedure. For more information on how to assign
field values to the structure, see Structure Definition for dstentry on page 4-84.

#include <cextdecs(DST_TRANSITION_DELETE_)>

short DST_TRANSITION_DELETE_ (short *dstentry);

error:= DST_TRANSITION_DELETE_ (dstentry); !
i

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-87

DST_TRANSITION_MODIFY_ Procedure

Considerations

• Only transition entries that already exist can be deleted. If an interval with nonzero
offset covers the time at which the delete operation is attempted,
ZSYS^VAL^DST^DELETE^NOW^ERROR (error 5) is returned.

Example
#include <cextdecs (DST_TRANSITION_DELETE_)>

zsys_ddl_dst_entry_def dstentry;

short error;

long long timeStampLow, timeStampHigh;

dstentry.z_lowgmt = timeStampLow;

dstentry.z_highgmt = timeStampHigh;

dstentry.z_offset = 3600; /* seconds */

dstentry.z_version = DST_VERSION_SEP1997;

error = DST_TRANSITION_DELETE_ ((short*)&dstentry);

DST_TRANSITION_MODIFY_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The DST_TRANSITION_MODIFY_ procedure, for G05.00 and later G-series RVUs,
allows a super-group user (255,n) to modify an entry in the daylight-saving-time (DST)
transition table. This operation is allowed only when the DAYLIGHT_SAVING_TIME
option in the system is configured to the TABLE option.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-88

DST_TRANSITION_MODIFY_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error

indicates the outcome of the operation. Table 4-2, Error Summary for DST_*
Procedures, summarizes the possible values for error. It is recommended that
the literal values be used instead of the numeric values when coding (for example,
ZSYS^VAL^DST^OK, not 0).

olddst input

INT.EXT

specifies the address of an existing entry with a nonzero offset.

newdst input

INT.EXT

specifies the address of a new entry that is to take the place of olddst.

Considerations

• Transitions with nonzero offsets that already exist can be modified if the new
values do not overlap other transitions with nonzero offsets that also exist.

• If you specify an offset value of zero for newdst, the olddst entry is deleted.

#include <cextdecs(DST_TRANSITION_MODIFY_)>

short DST_TRANSITION_MODIFY_ (short *olddst
 ,short *newdst);

error:= DST_TRANSITION_MODIFY_ (olddst ! i
 , newdst); ! i

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-89

EDITREAD Procedure

Example
#include <cextdecs (DST_TRANSITION_MODIFY_)>

zsys_ddl_dst_entry_def olddstentry, newdstentry;

short error;

long long oldTimeStampLow, oldTimeStampHigh;

long long newTimeStampLow, newTimeStampHigh;

olddstentry.z_lowgmt = oldTimeStampLow;

olddstentry.z_highgmt = oldTimeStampHigh;

olddstentry.z_offset = 3600; /* seconds */

olddstentry.z_version = ZSYS_VAL_DST_VERSION_SEP1997;

newdstentry.z_lowgmt = newTimeStampLow;

newdstentry.z_highgmt = newTimeStampHigh;

newdstentry.z_offset = 3600; /* seconds */

newdstentry.z_version = ZSYS_VAL_DST_VERSION_SEP1997;

error = DST_TRANSITION_MODIFY_ ((short*)&olddstentry,
(short*)&newdstentry);

EDITREAD Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example

Summary
The EDITREAD procedure reads text lines from an EDIT file (file code = 101).

Text lines are transferred, in ascending order, from the text file to a buffer in the
application program’s data area. One line is transferred by each call to EDITREAD.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-90

EDITREAD Procedure

EDITREAD also returns the sequence number associated with the text line and
performs checks to ensure that the text file is valid.

The EDIT file can be opened nowait. However, a call to EDITREAD completes before
returning to the application program; it is not completed with a call to AWAITIO.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

status returned value

INT

is a value indicating the outcome of EDITREAD. Values for status are:

>= 0 Indicates that the reading of the file was successful. This is the actual
number of characters in the text line. However, no more than bufferlen
bytes are transferred into buffer.

< 0 Indicates an unrecoverable error, where:

-1 End of file encountered

-2 Error occurred while reading

-3 Text file format error

-4 Sequence error. The sequence number of the line just read is less
than its predecessor.

Note. Before EDITREAD is called, a call to EDITREADINIT must complete successfully.

#include <cextdecs(EDITREAD)>

short EDITREAD (short _near *edit-controlblk
 ,char *buffer
 ,short bufferlen
 ,__int32_t *sequence-num);

status := EDITREAD (edit-controlblk ! i,o
 ,buffer ! o
 ,bufferlen ! i
 ,sequence-num); ! o

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-91

EDITREAD Procedure

-5 Checksum error. EDITREADINIT was not called or the user has
altered the edit control block. (This will not be returned if processing a
reposition.)

-6 Invalid buffer address. Edit control block was not within lower half of
user data stack.

edit-controlblk input, output

INT:ref:*

is an uninitialized array that is declared globally. The length in words of the edit
control block must be at least 40 plus (bufferlen / 2). This control block is
returned by EDITREADINIT and should be used in each call to EDITREAD. Do
not modify it between calls.

buffer output

STRING:ref:*

is an array where the text line is to be transferred.

bufferlen input

INT:value

is the length, in bytes, of the buffer array. This specifies the maximum number of
characters in the text line that is transferred into buffer.

sequence-num output

INT(32):ref:1

returns the sequence number multiplied by 1000, in double-word integer form, of
the text line just read.

Example
COUNT := EDITREAD (CONTROL^BLOCK , LINE , LENGTH , SEQ^NUM);

If reading the file is successful, a count of the number of bytes in the text line returns in
COUNT, the text line returns in the array LINE, and the sequence number returns in
SEQ^NUM.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-92

EDITREADINIT Procedure

EDITREADINIT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example

Summary
The EDITREADINIT procedure is called to prepare a buffer in the application
program’s data area for subsequent calls to EDITREAD.

The application program designates an array to be used as an edit control block. The
edit control block is used by the EDITREAD procedure for storing control information
and as an internal buffer area.

The EDIT file can be opened nowait. However, a subsequent call to EDITREADINIT
completes before returning to the application; it is not completed with a call to
AWAITIO.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

is a value indicating the outcome of EDITREADINIT. Values returned into status
are:

0 Successful (OK to read)

-1 End of file detected (empty file)

-2 I/O error

#include <cextdecs(EDITREADINIT)>

short EDITREADINIT (short _near *edit-controlblk
 ,short filenum
 ,short bufferlen);

status := EDITREADINIT (edit-controlblk ! o
 ,filenum ! i
 ,bufferlen); ! i

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-93

ERRNO_GET_ Procedure

-3 Format error (not EDIT file), or buffer length is incorrect

-6 Invalid buffer address. Edit control block was not within lower half of user data
stack.

edit-controlblk output

INT:ref:*

is an uninitialized array that is declared globally. Forty words of the edit control
block are used for control information. The remainder is used as an internal buffer
by EDITREAD. The length, in words, of the edit control block must be at least 40
plus bufferlen divided by 2. This is the same array as specified in the edit-
controlblk parameter to EDITREAD. You should not modify the contents of
edit-controlblk.

filenum input

INT:value

is the number of an open file that identifies the text file to be read.

bufferlen input

INT:value

is the size, in bytes, of the internal buffer area used by EDITREAD. This
parameter determines the amount of data that EDITREAD reads from the text file
on disk (not the amount of data transferred into the buffer specified as a parameter
to EDITREAD). The size of the internal buffer area must be a power of two, from
64 to 2048 bytes (that is, 64, 128, 256, ..., 2048).

Example
STAT := EDITREADINIT (CONT^BLOCK , FNUM , BUF^LEN);

ERRNO_GET_ Procedure
Summary
Considerations for C Programmers
Syntax for TAL Programmers
Parameters
Example
Considerations

Summary
The ERRNO_GET_ procedure obtains the value of the errno variable set by many
OSS, native C/C++, and some Guardian routines.

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-94

EXTENDEDIT Procedure

Considerations for C Programmers

C programmers using the C run-time libraries, CRE support libraries, or shared run-
time libraries (SRLs) can access the errno variable directly and do not use this
procedure.

Syntax for TAL Programmers

Parameters

error returned value

INT(32)

returns the value of the errno variable.

Example
err := ERRNO_GET_;

Considerations
This procedure must be used to examine the errno value set by the
SIGACTION_INIT_, SIGACTION_RESTORE_, SIGACTION_SUPPLANT_, and
SIGJMP_SETMASK_ procedures when an error is detected.

EXTENDEDIT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example
Related Programming Manual

Summary
The EXTENDEDIT procedure copies an EDIT file to a new file that it creates and that
has a larger extent size than the original file. It purges the old file and renames the
new file to have the name of the old file. The lines in the new file are renumbered if so
requested. Upon completion, the current record number is set to -1 (beginning of file)
and the file number of the new file is returned to the caller. This procedure is intended
to be used after a call to WRITEEDIT or WRITEEDITP returns an error 45 (file full).

?SOURCE $SYSTEM.SYSTEM.HERRNO

error := ERRNO_GET_;

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-95

EXTENDEDIT Procedure

EXTENDEDIT is an IOEdit procedure and can only be used with files that have been
opened by OPENEDIT or OPENEDIT_. The maximum edit file size is 128 megabytes.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation. The
most common cause of failure is error 48 (security violation), which occurs when
the caller is not authorized to rename or purge the existing file.

filenum input, output

INT .EXT:ref:1

specifies the file number of the open file to be copied into a new file. It returns the
file number of the new file.

start input

INT(32):value

specifies 1000 times the line number of the first line of the new file. You supply this
parameter when you want the lines in the new file to be renumbered. If you omit
start, renumbering still occurs if increment is present, in which case the value
of increment is used for start. The possible EDIT line numbers are 0, 0.001,
0.002, ... 99999.999.

#include <cextdecs(EXTENDEDIT)>

__int32_t EXTENDEDIT (short *filenum
 ,[__int32_t start]
 ,[__int32_t increment]);

error := EXTENDEDIT (filenum ! i,o
 ,[start] ! i
 ,[increment]); ! i

Guardian Procedure Calls (D-E)

Guardian Procedure Calls Reference Manual—522629-030
4-96

EXTENDEDIT Procedure

increment input

INT(32):value

if present and greater than 0, causes EXTENDEDIT to renumber the lines in the
new file using the incremental value specified. The possible EDIT line numbers
are 0, 0.001, 0.002, ... 99999.999. The value of increment indicates 1000 times
the value to be added to each successive line number.

If increment is not supplied, the line numbers from the original file are used in the
new file.

Example
In this example, EXTENDEDIT copies the specified EDIT file into a new file with a
larger extent size. In the new file, the line number of the first line will be 1 and the line
number increment will be 1.

INT(32) start := 1000D;
INT(32) increment := 1000D;
 .
 .
err := EXTENDEDIT (filenumber, start, increment);

Related Programming Manual
For programming information about the EXTENDEDIT procedure, see the Guardian
Programmer’s Guide.

Guardian Procedure Calls Reference Manual—522629-030
5-1

5 Guardian Procedure Calls (F)
This section contains detailed reference information for all user-accessible Guardian
procedure calls beginning with the letter F. Table 5-1 lists all the procedures in this
section.

Table 5-1. Procedures Beginning With the Letter F (page 1 of 2)

FILE_ALTERLIST_ Procedure

FILE_CLOSE_ Procedure

FILE_CLOSE_CHKPT_ Procedure

FILE_COMPLETE[L]_ Procedure

FILE_COMPLETE_GETINFO_ Procedure

FILE_COMPLETE_SET_ Procedure

FILE_CREATE_ Procedure

FILE_CREATELIST_ Procedure

FILE_GETINFO_ Procedure

FILE_GETINFOBYNAME_ Procedure

FILE_GETINFOLIST_ Procedure

FILE_GETINFOLISTBYNAME_ Procedure

FILE_GETLOCKINFO_ Procedure

FILE_GETOPENINFO_ Procedure

FILE_GETRECEIVEINFO[L]_ Procedure

FILE_GETSYNCINFO_ Procedure

FILE_OPEN_ Procedure

FILE_OPEN_CHKPT_ Procedure

FILE_PURGE_ Procedure

FILE_RENAME_ Procedure

FILE_RESTOREPOSITION_ Procedure

FILE_SAVEPOSITION_ Procedure

FILE_SETKEY_ Procedure

FILE_SETLASTERROR_ Procedure

FILE_SETPOSITION_ Procedure

FILE_SETSYNCINFO_ Procedure

FILE_WRITEREAD_ Procedure

FILEERROR Procedure

FILEINFO Procedure (Superseded by FILE_GETINFOLIST_ Procedure)

FILEINQUIRE Procedure (Superseded by FILE_GETINFOLISTBYNAME_ Procedure)

FILENAME_COMPARE_ Procedure

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-2

FILENAME_DECOMPOSE_ Procedure

FILENAME_EDIT_ Procedure

FILENAME_FINDFINISH_ Procedure

FILENAME_FINDNEXT_ Procedure

FILENAME_FINDSTART_ Procedure

FILENAME_MATCH_ Procedure

FILENAME_RESOLVE_ Procedure

FILENAME_SCAN_ Procedure

FILENAME_TO_OLDFILENAME_ Procedure

FILENAME_TO_PATHNAME_ Procedure

FILENAME_TO_PROCESSHANDLE_ Procedure

FILENAME_UNRESOLVE_ Procedure

FILERECINFO Procedure (Superseded by FILE_GETINFOLISTBYNAME_ Procedure)

FIXSTRING Procedure

FNAME32COLLAPSE Procedure (Superseded)

FNAME32EXPAND Procedure (Superseded by FILENAME_SCAN_ Procedure)

FNAME32TOFNAME Procedure (Superseded)

FNAMECOLLAPSE Procedure (Superseded by OLDFILENAME_TO_FILENAME_
Procedure)

FNAMECOMPARE Procedure (Superseded by FILENAME_COMPARE_ Procedure)

FNAMEEXPAND Procedure (Superseded by FILENAME_SCAN_ Procedure and
FILENAME_RESOLVE_ Procedure)

FNAMETOFNAME32 Procedure (Superseded)

FORMATCONVERT[X] Procedure

FORMATDATA[X] Procedure

FP_IEEE_DENORM_GET_ Procedure

FP_IEEE_DENORM_SET_ Procedure

FP_IEEE_ENABLES_GET_ Procedure

FP_IEEE_ENABLES_SET_ Procedure

FP_IEEE_ENV_CLEAR_ Procedure

FP_IEEE_ENV_RESUME_ Procedure

FP_IEEE_EXCEPTIONS_GET_ Procedure

FP_IEEE_EXCEPTIONS_SET_ Procedure

FP_IEEE_ROUND_GET_ Procedure

FP_IEEE_ROUND_SET_ Procedure

Table 5-1. Procedures Beginning With the Letter F (page 2 of 2)

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-3

FILE_ALTERLIST_ Procedure

FILE_ALTERLIST_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
OSS Considerations
Example
Related Programming Manual

Summary
The FILE_ALTERLIST_ procedure changes certain attributes of a disk file that are
normally set when the file is created.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation.

filename:length input:input

#include <cextdecs(FILE_ALTERLIST_)>

short FILE_ALTERLIST_ (const char *filename
 ,short length
 ,short *item-list
 ,short number-of-items
 ,short *values
 ,short values-length
 ,[short partonly]
 ,[short *error-item]);

error := FILE_ALTERLIST_ (filename:length ! i:i
 ,item-list ! i
 ,number-of-items ! i
 ,values ! i
 ,values-length ! i
 ,[partonly] ! i
 ,[error-item]); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-4

FILE_ALTERLIST_ Procedure

STRING .EXT:ref:*, INT:value

specifies the name of the file to be altered. The value of filename must be
exactly length bytes long. It must be a valid disk file name. If the name is
partially qualified, it is resolved using the contents of the VOLUME attribute of the
=_DEFAULTS DEFINE.

item-list input

INT .EXT:ref:*

is an array that specifies the file attributes for which new values are supplied in the
values parameter. Each element of the array must be of type INT and must
contain a code from Table 5-2 on page 5-5. Some items require the presence of
other items and must be supplied in a particular order, as noted in the table.

number-of-items input

INT:value

is the number of items supplied in item-list.

values input

INT .EXT:ref:*

is the array in which the values for the file attributes specified in item-list are
supplied. The values should be supplied in the order specified in item-list.
Each value begins on an INT boundary; if a value has a length that is an odd
number of bytes, then an unused byte should occur before this value begins. The
length of each fixed length value is given in Table 5-2 on page 5-5. Every variable
length item has an associated item that gives its length, as specified in the table.

values-length input

INT:value

is the size in bytes of values.

partonly input

INT:value

for partitioned files, specifies whether the attributes be altered for all partitions (if
the supplied value is 0), or just for the named partition (if the value is 1).
Nonpartitioned files should use 0. The default is 0.

A value of 1 cannot be specified for some alterations, as noted in Table 5-2. If an
alteration would affect alternate-key files, a value of 1 prevents this.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-5

FILE_ALTERLIST_ Procedure

error-item output

INT .EXT:ref:1

if present, returns the index of the item in item-list that was being processed
when an error was detected, or is one greater than the number of items if an error
was detected after the processing of individual items was completed. The index of
the first item in item-list is 0.

Considerations

• The specified file cannot be open when FILE_ALTERLIST_ is called.

• The caller of FILE_ALTERLIST_ must have read and write access to the specified
file.

• If a file attribute already has the value supplied to FILE_ALTERLIST_, no error is
returned.

• Except as noted in Table 5-2, the alterations are not made to alternate-key files,
but they are made to secondary partitions unless partonly is 1.

• If a partition or alternate-key file is not accessible, error 3 or 4 is returned. The
accessible partitions or alternate-key files are still altered.

Table 5-2. FILE_ALTERLIST_ Item Codes (page 1 of 8)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects.

Code
Size
(bytes) Description

42 2 File code. For disk objects other than SQL shorthand views, an
application-defined value associated with the file. File codes
100 to 999 are reserved for use by HP.

57 8 Expiration time. For disk objects other than SQL shorthand
views, the Julian GMT timestamp giving the time before which
the file cannot be purged.

65 2 Odd unstructured. For unstructured files, causes the file to
allow odd-byte positioning and transfers. The supplied value
must be 1. Once this attribute is set for a file, it cannot be
reset.

66 2 Audited file. A value of 1 if the file is to be a TMF-audited
object; 0 otherwise. Must be 0 for systems without the TMF
subsystem. Unless partonly is 1, all alternate-key files and all
partitions are changed.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-6

FILE_ALTERLIST_ Procedure

70 2 Refresh EOF. For disk objects other than SQL shorthand
views, a value of 1 if a change to the end-of-file value is to
cause the file label to be written immediately to disk; 0
otherwise.

78 2 Reset broken flag. Must be 0, indicating that the file is no
longer to be marked “broken”. For a partitioned file, partonly
must be 1 when changing this attribute.

80 2 Secondary partition. For disk objects, a value of 0 indicates a
primary partition and a value of 1 indicates a secondary
partition.

These four items are used for altering the partition description. You can alter the
partition description in these ways:

• You can change the volume names of existing partitions.

• For non-key-sequenced files, you can add new partitions.

• For key-sequenced files, you can change the extent sizes of partitions.

These items alter only the partition description in the primary file; no secondary
partitions are moved, updated, or created. The partonly parameter must be 0 to
use these items. You must specify the items in this order: item 90, then item 91 or
97, then item 92 or 98, and finally item 93 or 99.

90 2 Number of partitions. For disk objects, specifies the number
of extra (secondary) partitions the file is to have. The maximum
value is 15.

91 * Partition descriptors. An array of 4-byte values, one for each
secondary partition: Each entry has this structure:

INT primary-extent-size;
INT secondary-extent-size;

These values give the primary and secondary extent sizes in
pages (2048-byte units). The length of this item in bytes is four
times the value of item 90.

92 * Partition-volume name-length array. An array of byte counts,
each of type INT, giving the length of each partition volume
name supplied in item 93.

Table 5-2. FILE_ALTERLIST_ Item Codes (page 2 of 8)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects.

Code
Size
(bytes) Description

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-7

FILE_ALTERLIST_ Procedure

93 * Partition-volume names. A string containing the concatenated
names of all the secondary partition volumes, ordered by
partition number. You can add new names or change old
names; you cannot delete partition volume names. Each name
occupies exactly the number of characters specified in the
corresponding entry of item 92, hence the total length of this
item is the sum of the values in item 92. Partially qualified
volume names are resolved using the contents of the caller’s
=_DEFAULTS DEFINE. The volume name can be a full eight
characters (including the dollar sign) only if the system
(specified or implied) is the same as the system on which the
primary partition resides.

97 * Partition descriptors (32-bit). An array of 8-byte values, one for
each secondary partition. Each entry has this structure:

INT (32) priextentsize;
INT (32) secextentsize;

These values give the primary and secondary extent sizes in
pages. For Format 1 files, the size must be less than 65,535
pages. Format 2 is required for extent sizes over 65,535
pages. The length of this item in bytes is eight times item 90.

98 * Partition-volume relative names-length array. An array of INT
byte counts, each giving the length of the volume-relative name
(supplied in item 99) where the corresponding extra partition
resides. The length of this item is two times item 90.

99 * Partition-volume relative names. Concatenated names of the
extra partition volumes. Each name occupies the number of
characters specified in the corresponding entry of item 98; thus,
the total length of this parameter is the sum of the values in
item 98. This is an alternate form for item 93 and, if used, must
immediately follow item 98. The names can be partially
qualified (missing a system name), but the semantics of the
names are different from that of item 93. If the system name is
missing, the system of the primary file will be used. An implicit
system is not recorded explicitly with the file, and so, remains
relative to the primary file if copied to another system.

The volume name can be eight characters (including “$”) only if
the specified or implied system is the same as the system
where the primary partition is created.

Table 5-2. FILE_ALTERLIST_ Item Codes (page 3 of 8)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects.

Code
Size
(bytes) Description

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-8

FILE_ALTERLIST_ Procedure

These eight items alter only the alternate-key description of the primary file; no
alternate-key files are purged or created.The partonly parameter must be 0 to use
these items.You must specify exactly five items if you specify any, and you must
specify them consecutively in this order: item 100, item 101 or 106, item 102, item
103 or 108, and finally item 104 or 109.

100 2 Number of alternate keys. For unstructured files, must be 0.

101 * Alternate-key descriptors. An array of key-descriptor entries,
one for each alternate key. Each entry is 12 bytes long and
contains these elements in the order presented here:

key-specifier
(INT:1)

uniquely identifies the alternate-key field.
This value is passed to the
KEYPOSITION procedure for references
to this key field. Must be nonzero.

key-len
(INT:1)

specifies the length, in bytes, of the
alternate-key field. The maximum key
length of an alternate key that allows
duplicates and is defined as insertion-
ordered (see attributes, below) is:

255 - (10 + primary key length)

For unique keys, the maximum is 253.
For normal duplicates, the maximum is
(253 - primary-key length).

For further information, see the Enscribe
Programmer’s Guide.

key-offset
(INT:1)

is the number of bytes from the beginning
of the record to where the alternate-key
field starts.

key-filenum
(INT:1)

is the relative number in the alternate-key
parameter array of this key’s alternate-key
file. The first alternate-key file’s key-
filenum is 0.

null-value
(INT:1)

Specifies a null value if attributes.<0> =
1. Note that the character must reside in
the righthand byte.

Table 5-2. FILE_ALTERLIST_ Item Codes (page 4 of 8)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects.

Code
Size
(bytes) Description

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-9

FILE_ALTERLIST_ Procedure

During a write operation, if a null value is
specified for an alternate-key field, and the
null value is encountered in all bytes of
this key field, the file system does not
enter the reference to the record in the
alternate-key file. (If the file is read using
this alternate-key field, records containing
a null value in this field will not be found.)

During a writeupdate operation (write-
count = 0), if a null value is specified, and
the null value is encountered in all bytes of
this key field within buffer, the file system
deletes the record from the primary file but
does not delete the reference to the
record in the alternate file.

attributes
(INT:1)

Contains these fields:

<0> =
1

means a null value is specified.

<1> =
1

means the key is unique. If an attempt is
made to insert a record that duplicates an
existing value in this field, the insertion is
rejected with an error 10 (duplicate
record).

<2> =
1

means that automatic updating is not
performed on this key.

<3> =
0

means that alternate-key records with
duplicate key values are ordered by the
value of the primary-key field. This
attribute has meaning only for alternate
keys that allow duplicates.

=
1

means that alternate-key records with
duplicate key values are ordered by the
sequence in which those records were
inserted into the alternate-key file. This
attribute has meaning only for alternate
keys that allow duplicates.

<4:15> Reserved (must be 0)

Table 5-2. FILE_ALTERLIST_ Item Codes (page 5 of 8)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects.

Code
Size
(bytes) Description

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-10

FILE_ALTERLIST_ Procedure

The length in bytes of this item is 12 times the value of item
100.

102 2 Number of alternate-key files. Specifies the number of files that
are to hold alternate-key records. The maximum value is 100;
the default is 0. FILE_ALTERLIST_ does not automatically
create the alternate-key files.

103 * Alternate-file name-length array. An array of INT values, each
giving the length in bytes of the corresponding alternate-file
name found in item 104. The length in bytes of this item is 2
times the value of item 102.

104 * Alternate-file names. A string array containing the
concatenated names of the alternate-key files. Since each
name occupies exactly the number of characters specified in
the corresponding entry of item 103, the total length of this item
is the sum of the values in item 103. The names can be fully or
partially qualified. Partially qualified names are resolved using
the contents of the =_DEFAULTS DEFINE. The volume portion
of an alternate-file name can be a full eight characters,
including the dollar sign, only if the system (specified or
implied) is the same as the system on which the primary file is
being created.

Table 5-2. FILE_ALTERLIST_ Item Codes (page 6 of 8)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects.

Code
Size
(bytes) Description

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-11

FILE_ALTERLIST_ Procedure

106 * Alternate-key descriptors (32-bit). An array of 14-byte key
descriptor entries, one for each alternate key. Each entry
contains this structure:

INT key-specifier;
INT key-len;
INT (32) key-offset;
INT key-filenum;
INT null-value;
INT attributes;

The attributes parameter has these fields:

<0> Do not index when null.
<1> Unique.
<2> Do not update.
<3> Insertion order duplicates.
<4:15> Reserved. Must be zero.

These fields have the same semantics as the
corresponding fields of item 101.

The length of this item in bytes is 14 times item 100. This is an
alternate form for item 101, and if used, must immediately
follow item 100 in place of item 101.

Table 5-2. FILE_ALTERLIST_ Item Codes (page 7 of 8)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects.

Code
Size
(bytes) Description

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-12

FILE_ALTERLIST_ Procedure

OSS Considerations
This procedure operates on Guardian objects only. If an OSS file is specified, error
1163 is returned.

Example
itemlist := 42; ! change file code
numberitems := 1;
val := 55; ! new file code is 55
val^length := 2;
error := FILE_ALTERLIST_ (fname:length, itemlist,
 numberitems,
 val, val^length);

108 * Alternate-file relative name-length array. An array of INT byte
counts, each giving the length of the corresponding alternate-
file name in item 109. The length of this item is two times item
102. This is an alternate form for item 103, and if used, must
immediately follow item 102 in place of item 103.

109 * Alternate-file relative names. Concatenated names of the
alternate-key files. Each name occupies the number of
characters specified in the corresponding entry of item 108;
total length of this parameter is the sum of the values in item
108. The names must be fully qualified, except the system
name can be missing. If the system name is missing, the
system of the primary file will be used. Also, an implicit system
is not recorded explicitly with the file, and so it remains relative
to the primary file if copied to another system.

The volume portion of the name can be eight characters
(including the “$”) only if the specified or implied system is the
same as the system where the primary partition is created. This
is an alternate form for item 104 and, if used, must immediately
follow item 108.

140 8 Partition modification time. For disk objects other than SQL
shorthand views, the Julian GMT timestamp indicating the last
modification time of the partition named in the open operation
(when returned by FILE_GETINFOLIST_) or of the partition
named in this call (when returned by
FILE_GETINFOLISTBYNAME_).

Table 5-2. FILE_ALTERLIST_ Item Codes (page 8 of 8)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects.

Code
Size
(bytes) Description

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-13

FILE_CLOSE_ Procedure

Related Programming Manual
For programming information about the FILE_ALTERLIST_ procedure, see the
Guardian Programmer’s Guide.

FILE_CLOSE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Messages
Related Programming Manuals

Summary
The FILE_CLOSE_ procedure closes an open file. Closing a file terminates access to
the file. You can use FILE_CLOSE_ to close files that were opened by either
FILE_OPEN_ or OPEN.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation. No error is
retryable; most of the possible error conditions are the result of programming
errors.

filenum input

INT:value

#include <cextdecs(FILE_CLOSE_)>

short FILE_CLOSE_ (short filenum
 ,[short tape-disposition]);

error := FILE_CLOSE_ (filenum ! i
 ,[tape-disposition]); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-14

FILE_CLOSE_ Procedure

is the number identifying the open file to be closed. filenum was returned by
FILE_OPEN_ or OPEN when the file was originally opened.

tape-disposition input

INT:value

is one of these values, indicating the tape control action to take:

0 Rewind and unload; do not wait for completion.
1 Rewind and unload, do not wait for completion.
2 Rewind and leave online; do not wait for completion.
3 Rewind and leave online; wait for completion.
4 Do not rewind; leave online.
5 Reserved for parallel backup.

Other input values result in no error if the file is a tape device; the control action
might be unpredictable.

If omitted, 0 is used.

Considerations

• Returning space allocation after closing a file

Closing a disk file causes the space that is used by the resident file control block to
be returned to the system main-memory pool if the disk file is not open
concurrently.

A temporary disk file is purged if the file was not open concurrently. Any space that
is allocated to that file is made available for other files.

With any file closure, the space allocated to the access control block (ACB) is
returned to the system.

• Closing a nowait file

If FILE_CLOSE_ is executed for a nowait file that has pending operations, any
incomplete operations are canceled. There is no indication as to whether the
operation completed or not.

• Labeled tape processing

If your system has labeled tape processing enabled, all tape actions (as specified
by tape-disposition) wait for completion.

Messages

• Process close message

A process can receive a process close system message when it is closed by
another process. It can obtain the process handle of the closer by a subsequent

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-15

FILE_CLOSE_CHKPT_ Procedure

call to FILE_GETRECEIVEINFO_. For detailed information about system
messages, see the Guardian Procedure Errors and Messages Manual.

Related Programming Manuals
For programming information about the FILE_CLOSE_ procedure, see the Guardian
Programmer’s Guide.

FILE_CLOSE_CHKPT_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
The FILE_CLOSE_CHKPT_ procedure is called by a primary process to close a
designated file in its backup process.

The backup process must be in the monitor state (that is, in a call to
CHECKMONITOR) for FILE_CLOSE_CHKPT_ to be called successfully. The call to
FILE_CLOSE_CHKPT_ causes the CHECKMONITOR procedure in the backup
process to call the FILE_CLOSE_ procedure for the designated file.

Syntax for C Programmers
This passive backup procedure is not supported in C programs. For a comparison of
active backup and passive backup, see the Guardian Programmer’s Guide.

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the checkpoint operation.

Note. This message is also received if the close is made by the backup process of a process
pair. Therefore, a process can expect two of these messages when being closed by a process
pair.

error := FILE_CLOSE_CHKPT_ (filenum ! i
 ,[tape-disposition]); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-16

FILE_COMPLETE[L]_ Procedure

filenum input

INT:value

is the number identifying the open file to be closed in the backup process. This
value was returned by FILE_OPEN_ or OPEN when the file was originally opened.

tape-disposition input

INT:value

is one of these values, indicating the tape control action to take:

0 Rewind and unload; do not wait for completion
1 Rewind and take offline; do not wait for completion
2 Rewind and leave online; do not wait for completion
3 Rewind and leave online; wait for completion
4 Do not rewind; leave online

Other input values result in an error if the file is a tape device; otherwise they are
ignored.

If omitted, 0 is used.

Considerations

• Identification of the backup process

The system identifies the backup process to be affected by
FILE_CLOSE_CHKPT_ from the process’s mom field in the process control block
(PCB). For named process pairs, this field is automatically set up during the
creation of the backup process.

• FILE_CLOSE_CHCKPT_ cannot be called for an SQL/MX object.

• See Considerations on page 5-14.

FILE_COMPLETE[L]_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Structure Definition for completion-info
General Considerations
Considerations for Guardian Files
Considerations for OSS Files
Related Programming Manuals

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-17

FILE_COMPLETE[L]_ Procedure

Summary
The FILE_COMPLETE[L]_ procedure completes one previously initiated I/O operation
for a Guardian file or returns ready information for one Open System Services (OSS)
file. The Guardian or OSS file is from a set of files that was previously enabled for
completion by one or more calls to the FILE_COMPLETE_SET_ procedure. Use the
FILE_COMPLETEL_ procedure to complete the I/O operation initiated by the
SERVERCLASS_SENDL_ procedure. Use the FILE_COMPLETE[L]_ procedure to:

• Wait for the operation to complete on a particular file, on a particular set of files, or
on any Guardian file. Execution of the calling process suspends until the
completion, or a timeout, occurs. A timeout is not considered a completion.

• Check for the operation to complete on a particular file, on a particular set of files,
or on any Guardian file. The call to FILE_COMPLETE[L]_ immediately returns to
the calling process, regardless of whether there is a completion. If there is no
completion, an error indication is returned.

Only one file is completed with each call. If I/O on a Guardian file is completed or if an
OSS file is ready, a structure containing completion information is returned to the caller.

A related procedure, FILE_COMPLETE_GETINFO_, provides information about the
set of files that are enabled for completion.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

#include <cextdecs(FILE_COMPLETE_)>

short FILE_COMPLETE_ (short *completion-info
 ,[__int32_t timelimit]
 ,[short *complete-element-list
 ,[short num-complete-elements]
 ,[short *error-complete-element]);

#include <cextdecs(FILE_COMPLETEL_)>

short FILE_COMPLETEL_ (short _far *completion-info
 ,[__int32_t timelimit]
 ,[short _far *complete-element-list
 ,[short num-complete-elements]
 ,[short _far *error-complete-element
]);

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-18

FILE_COMPLETE[L]_ Procedure

Syntax for TAL Programmers

Parameters

status returned value

INT

is a file-system error number indicating the outcome of the call to the
FILE_COMPLETE_ procedure. Error 26 is returned if a timelimit value of -1D
(indefinite wait) is specified but no I/O operation has been initiated. Error 40 is
returned if a timelimit value other than -1D is specified and an I/O operation
times out; no operation is considered complete (error 40 does not cause an
outstanding I/O operation to be canceled).

For cases where there is an error indication on a particular file, see the description
of the Z^ERROR field in the structure returned by the completion-info
parameter. For a description of the fields of this structure, see Structure Definition
for completion-info.

0 (FEOK)

indicates a successful operation.

completion-info output

INT .EXT:ref:*(ZSYS^DDL^COMPLETION^INFO^DEF)
(Use with FILE_COMPLETE_)

INT .EXT:ref:*(ZSYS^DDL^COMPLETION^INFO2^DEF)
(Use with FILE_COMPLETEL_)

is a structure containing completion information for the Guardian file that was
completed or the OSS file that is ready. If an error is returned in the status
parameter, no information is returned in the completion-info parameter.
For a description of the fields of the structure, see Structure Definition for
completion-info.

status := FILE_COMPLETE_ (completion-info ! o
 ,[timelimit] ! i
 ,[complete-element-list] ! i
 ,[num-complete-elements] ! i
 ,[error-complete-element]); ! o

status := FILE_COMPLETEL_ (completion-info ! o
 ,[timelimit] ! i
 ,[complete-element-list] ! i
 ,[num-complete-elements] ! i
 ,[error-complete-element]); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-19

FILE_COMPLETE[L]_ Procedure

timelimit input

INT(32):value

specifies whether the FILE_COMPLETE[L]_ procedure is to wait for completion or
check for completion. These values of timelimit indicate:

>0D Wait for completion. timelimit specifies the maximum time (in
0.01-second units) from the time of the FILE_COMPLETE[L]_ call
that the caller can wait for completion.

= 0D Check for completion. FILE_COMPLETE[L]_ immediately returns to
the caller, regardless of whether completion has occurred.

= -1D Wait indefinitely.

< -1D An invalid value (file-system error 590 occurs).

omitted Wait indefinitely.

complete-element-list input

INT .EXT:ref:*(ZSYS^DDL^COMPLETE^ELEMENT^DEF)

is an array of COMPLETE^ELEMENT structures, each structure describing one
Guardian file or OSS file. The array explicitly specifies the set of files from which
the caller wants the FILE_COMPLETE[L]_ procedure to complete one file. For the
current call to FILE_COMPLETE[L]_, this set temporarily overrides the set of files
that were enabled for completion by previous calls to the FILE_COMPLETE_SET_
procedure.

Note that the FILE_COMPLETE[L]_ procedure does not perform as efficiently
when this temporary override set is used. For better performance, you should use
the “permanent” set of enabled files that is established by calling the
FILE_COMPLETE_SET_ procedure.

For information on how to set the field values of the COMPLETE^ELEMENT
structure, see Structure Definition for COMPLETE^ELEMENT on page 5-28.

num-complete-elements input

INT

is the total number of Guardian files and OSS files specified in the
complete-element-list parameter. If the complete-element-list
parameter is supplied, this parameter is required.

error-complete-element output

INT .EXT

returns the index to a COMPLETE^ELEMENT structure in the
complete-element-list parameter (the temporary override list) that is in error.
No file from the temporary override list is completed when there is an error.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-20

FILE_COMPLETE[L]_ Procedure

An error-complete-element value of -1 is returned if no error occurs or if the
error does not apply to a particular file in complete-element-list.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-21

FILE_COMPLETE[L]_ Procedure

Structure Definition for completion-info
The completion-info parameter is a structure that contains completion information
for the Guardian file that was completed or the OSS file that is ready.

The structure for the completion-info parameter is defined in the ZSYS* files. In
the TAL ZSYSTAL file, it is defined as:

For the FILE_COMPLETEL_ procedure, the structure for the completion-info2
parameter is defined as:

STRUCT ZSYS^DDL^COMPLETION^INFO^DEF (*);
 BEGIN
 INT Z^FILETYPE;
 INT(32) Z^ERROR;
 INT(32) Z^FNUM^FD;
 STRUCT Z^RETURN^VALUE;
 BEGIN
 BIT_FILLER 15;
 BIT_FILLER 1;
 BIT_FILLER 13;
 UNSIGNED(1) Z^READ^READY;
 UNSIGNED(1) Z^WRITE^READY;
 UNSIGNED(1) Z^EXCEPTION;
 END;
 INT(32) Z^COMPLETION^TYPE = Z^RETURN^VALUE;
 INT(32) Z^COUNT^TRANSFERRED = Z^RETURN^VALUE;
 INT(32) Z^TAG;
 END;

STRUCT ZSYS^DDL^COMPLETION^INFO2^DEF (*);
 BEGIN
 INT Z^FILETYPE;
 INT(32) Z^ERROR;
 INT(32) Z^FNUM^FD;
 STRUCT Z^RETURN^VALUE;
 BEGIN
 BIT_FILLER 16;
 BIT_FILLER 13;
 UNSIGNED(1) Z^READ^READY;
 UNSIGNED(1) Z^WRITE^READY;
 UNSIGNED(1) Z^EXCEPTION;
 END;
 INT(32) Z^COMPLETION^TYPE = Z^RETURN^VALUE;
 INT(32) Z^COUNT^TRANSFERRED = Z^RETURN^VALUE;
 INT(64) Z^TAG;
 END;

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-22

FILE_COMPLETE[L]_ Procedure

In the C ZSYSC file, the structure for the completion_info parameter is defined as:

Z^FILETYPE

returns the file type of the file that was completed by this call. This field can have
these values:

0 The file is a Guardian file.
1 The file is an OSS file.

Z^ERROR

returns a file-system error number for the completion on this file.

Z^FNUM^FD

returns the Guardian file number or OSS file descriptor of the file completed by this
call.

Z^COMPLETION^TYPE

returns the type of operation completed on an OSS file. More than one state can
be ready. (For Guardian files, this space is replaced by Z^COUNT^TRANSFERRED.)
Z^COMPLETION^TYPE contains these fields:

Z^READ^READY

can have these values:

0 Read is not ready for this file.
1 Read is ready for this file.

Z^WRITE^READY

can have these values:

typedef struct __zsys_ddl_completion_info {
 short z_filetype;
 long z_error;
 long z_fnum_fd;
 union {
 struct {
 short filler_0:15;
 unsigned short filler_1:1;
 short filler_2:13;
 unsigned short z_read_ready:1;
 unsigned short z_write_ready:1;
 unsigned short z_exception:1;
 } z_return_value;
 unsigned long z_completion_type;
 long z_count_transferred;
 } u_z_return_value;
 long z_tag;
} zsys_ddl_completion_info_def;

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-23

FILE_COMPLETE[L]_ Procedure

0 Write is not ready for this file.
1 Write is ready for this file.

Z^EXCEPTION

can have these values:

0 No exception occurred for this file.
1 An exception occurred for this file.

Z^COUNT^TRANSFERRED

returns the number of bytes transferred in the completed I/O operation on a
Guardian file. (For OSS files, this field is replaced by Z^COMPLETION^TYPE.)

Z^TAG

for Guardian files, returns the application-defined tag that was specified when the
completed I/O was initiated. This value is undefined if no tag was supplied for that
I/O operation. For OSS files, this field contains 0. For the FILE_COMPLETEL_
procedure, this field is 64 bits.

General Considerations

• Completion on a file by a call to the FILE_COMPLETE[L]_ procedure does not
remove it from the set of enabled files. Each file that is enabled for completion is
enabled for multiple completions until your program removes it from the enabled
set or closes it.

• Files specified in the complete-element-list parameter (the temporary
override list) must meet the same requirements to be enabled for completion as
files specified to the FILE_COMPLETE_SET_ procedure.

 Considerations for Guardian Files

• An application can use the FILE_COMPLETE[L]_ procedure in parallel with the
AWAITIOX procedure.

• The “Considerations” for the AWAITIOX procedure generally apply to the
FILE_COMPLETE[L]_ procedure. However, note these differences between the
FILE_COMPLETE[L]_ and AWAITIOX procedures:

• The FILE_COMPLETE[L]_ procedure allows you to specify either a particular
set of files or all Guardian files for completion (one to be completed by each
call).

Note. For better performance, use the set of files enabled by the FILE_COMPLETE_SET_
procedure rather than specifying a temporary override list to the FILE_COMPLETE[L]_
procedure.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-24

FILE_COMPLETE[L]_ Procedure

• The FILE_COMPLETE[L]_ procedure does not provide a way for you to obtain
the buffer address associated with an I/O operation or the segment ID of the
extended data segment containing the buffer.

• General error conditions are indicated in the return value of the
FILE_COMPLETE[L]_ procedure; an error on a particular file is returned in the
Z^ERROR field of the completion^info structure for that file.

• Error 26 is only returned by the FILE_COMPLETE[L]_ procedure if the caller
specified a timelimit value of -1D but no I/O operation has been initiated.

• Error 40, which is returned by the FILE_COMPLETE[L]_ procedure if a
timelimit value other than -1D is specified and an I/O operation times out,
does not cause any outstanding I/O operation to be canceled; the operation is
considered incomplete.

Considerations for OSS Files

• An application can use the FILE_COMPLETE[L]_ procedure in parallel with the
OSS select() function.

• Completion on an OSS file means checking for readiness. The file is ready if data
can be sent, if data can be received, or if an exception occurred. However, an
indication of readiness does not guarantee that a subsequent I/O operation to the
file will finish successfully, For example, the ready state of an OSS socket might
be changed by another process that shares the socket before your process can
initiate its I/O operation.

The operation of checking for readiness is equivalent to calling the OSS select()
function, except that the FILE_COMPLETE[L]_ procedure returns ready
information for only one file at a time. For additional information, see the
select(2) function reference page either online or in the Open System Services
System Calls Reference Manual.

• An OSS child process does not inherit possession of a set of enabled files from the
parent process. Membership in a set of enabled files is not propagated to an OSS
file that is created by the OSS dup() function.

• The FILE_COMPLETE_ operation can be interrupted by an OSS signal. If the
calling process receives an OSS signal during the FILE_COMPLETE_ operation,
standard signal handling is performed and error 4004 (EINTR) might be returned.

Related Programming Manuals
For a general discussion of nowait I/O, see the Guardian Programmer’s Guide.

Note. The FILE_COMPLETEL_ procedure is supported on systems running J06.07 and later
J-series RVUs and H06.18 and later H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-25

FILE_COMPLETE_GETINFO_ Procedure

FILE_COMPLETE_GETINFO_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters

Summary
The FILE_COMPLETE_GETINFO_ procedure provides information about the set of
files that are currently enabled for completion and thus can be completed by the
FILE_COMPLETE_ procedure. These files were enabled for completion by one or
more previous calls to the FILE_COMPLETE_SET_ procedure. The information
returned includes a list that can contain both Guardian files and Open System Services
(OSS) files.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

is a file-system error number indicating the outcome of the operation.

info-list ouput

INT .EXT:ref:*(ZSYS^DDL^COMPLETE^ELEMENT^DEF)

returns an array of COMPLETE^ELEMENT structures, each structure describing
one Guardian file or OSS file. The array represents the set of files that were
enabled for completion by previous calls to the FILE_COMPLETE_SET_
procedure. This array is compatible for passing directly to the FILE_COMPLETE_

#include <cextdecs(FILE_COMPLETE_GETINFO_)>

short FILE_COMPLETE_GETINFO_ (short *info-list
 ,short maxnum-info-elements
 ,[short *num-info-elements]
);

status := FILE_COMPLETE_GETINFO_ (
 info-list ! o
 ,maxnum-info-elements ! i
 ,[num-info-elements]); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-26

FILE_COMPLETE_SET_ Procedure

or FILE_COMPLETE_ SET_ procedure. For the definitions of the fields of the
COMPLETE^ELEMENT structure, see Structure Definition for
COMPLETE^ELEMENT on page 5-28.

maxnum-info-elements input

INT

specifies the maximum number of COMPLETE^ELEMENT structures that can be
returned in the info-list parameter.

num-info-elements output

INT .EXT

returns the number of COMPLETE^ELEMENT structures that are returned in the
info-list parameter. If this value is equal to the value specified for
maxnum-info-elements, there might be additional files that are currently
enabled for completion for which no information is being returned.

FILE_COMPLETE_SET_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Structure Definition for COMPLETE^ELEMENT
General Considerations
Considerations for Guardian Files
Considerations for OSS Files

Summary
The FILE_COMPLETE_SET_ procedure enables a set of Guardian and Open System
Services (OSS) files for completion by subsequent calls to the FILE_COMPLETE_
procedure. (The FILE_COMPLETE_ procedure completes I/O operations for Guardian
files and returns ready information for OSS files.)

The FILE_COMPLETE_SET_ procedure accepts a set of Guardian files and OSS files.
You can designate that files be added or removed from the set of files that are enabled

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-27

FILE_COMPLETE_SET_ Procedure

for completion. For OSS files, you can specify the type of operation to be completed
(read, write, or exceptions) or change the current specification.

A related procedure, FILE_COMPLETE_GETINFO_, provides information about the
set of files that are currently enabled for completion.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

is a file-system error number indicating the outcome of the operation.

complete-element-list input

INT .EXT:ref:*(ZSYS^DDL^COMPLETE^ELEMENT^DEF)

is an array of COMPLETE^ELEMENT structures. Each structure describes one
Guardian file or OSS file which the caller wants to add to or remove from the set of
files enabled for completion. For information on the fields of the structure, see
Structure Definition for COMPLETE^ELEMENT on page 5-28.

num-complete-elements input

INT

is the total number of Guardian files and OSS files specified in the
complete-element-list parameter.

error-complete-element output

INT .EXT

#include <cextdecs(FILE_COMPLETE_SET_)>

short FILE_COMPLETE_SET_ (
 short *complete-element-list
 ,short num-complete-elements
 ,[short *error-complete-element]);

status := FILE_COMPLETE_SET_ (
 complete-element-list ! i
 ,num-complete-elements ! i
 ,[error-complete-element]); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-28

FILE_COMPLETE_SET_ Procedure

returns the index to a COMPLETE^ELEMENT structure in the
complete-element-list parameter indicating the file that is in error. If an error
occurs, the call has no affect on the previously established set of files enabled for
completion. An error-complete-element value of -1 is returned if no error
occurs or if the error does not apply to a particular file in
complete-element-list.

Structure Definition for COMPLETE^ELEMENT
The complete-element-list parameter to the FILE_COMPLETE_SET_ and
FILE_COMPLETE_ procedures and the info-list parameter to the
FILE_COMPLETE_GETINFO_ procedure contain arrays of COMPLETE^ELEMENT
structures. Each structure describes a Guardian file or OSS file that the caller wants to
add to or remove from the set of files enabled for completion.

The COMPLETE^ELEMENT structure is defined in the ZSYS* files. In the TAL
ZSYSTAL file, it is defined as:

In the C ZSYSC file, the complete_element structure is defined as:

STRUCT ZSYS^DDL^COMPLETE^ELEMENT^DEF (*);
 BEGIN
 INT(32) Z^FNUM^FD;
 STRUCT Z^OPTIONS;
 BEGIN
 UNSIGNED(1) Z^SET^FILE;
 UNSIGNED(1) Z^FILETYPE;
 BIT_FILLER 14;
 BIT_FILLER 13;
 UNSIGNED(1) Z^READ^READY;
 UNSIGNED(1) Z^WRITE^READY;
 UNSIGNED(1) Z^EXCEPTION;
 END;
 INT(32) Z^COMPLETION^TYPE = Z^OPTIONS;
 END;

typedef struct __zsys_ddl_complete_element {
 long z_fnum_fd;
 union {
 struct {
 unsigned short z_set_file:1;
 unsigned short z_filetype:1;
 short filler_0:14;
 short filler_1:13;
 unsigned short z_read_ready:1;
 unsigned short z_write_ready:1;
 unsigned short z_exception:1;
 } z_options;
 unsigned long z_completion_type;
 } u_z_options;
} zsys_ddl_complete_element_def;

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-29

FILE_COMPLETE_SET_ Procedure

Z^FNUM^FD

is a Guardian file number or OSS file descriptor. Specifying a Guardian file number
of -1D for completion indicates that completion of any Guardian file is requested;
other specifically enabled Guardian file numbers are ignored. If you have specified
a Guardian file number of -1D for completion, you cannot specify any single
Guardian file for removal from the set of enabled files; you can only specify
Guardian file number -1D. Specifying Guardian file number -1D for removal means
that all Guardian files are removed from the set of enabled files.

For OSS file descriptors, the value -1D can be specified only for removal;
specifying file descriptor -1D for removal means that all OSS files are removed
from the set of enabled files.

For G06.27 and later G-series RVUs, when an OSS terminal file descriptor is
passed to this procedure and the terminal process supports the select operation,
the procedure adds the OSS terminal file descriptor to the specified read fdset,
write fdset, or exception fdset. If the terminal process version does not support the
select operation, or when the terminal process supports the select operation but is
not set to use the select operation, you get a file-system error. When the terminal
process does not support the select operation the system returns error 4216.
When the terminal process supports the select operation, but is not set to use the
select operation, the system returns error 4219. See the Guardian Procedure
Errors and Messages Manual for further information on these error numbers.

Z^OPTIONS

specifies attributes for the OSS file or Guardian file. It contains these fields:

Z^SET^FILE

can have these values:

0 Add this file to the set of files that are enabled for completion.
1 Remove this file from the set of files that are enabled for completion.

Z^FILETYPE

can have these values:

0 This file is a Guardian file.
1 This file is an OSS file.

Z^COMPLETION^TYPE

specifies the type of completion desired for an OSS file. (Z^COMPLETION^TYPE is
ignored for Guardian files.) It contains these fields:

Z^READ^READY

can have these values:

0 Do not return read ready for this file.
1 Return read ready for this file.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-30

FILE_COMPLETE_SET_ Procedure

Z^WRITE^READY

can have these values:

0 Do not return write ready for this file.
1 Return write ready for this file.

Z^EXCEPTION

can have these values:

0 Do not return exception occurred for this file.
1 Return exception occurred for this file.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-31

FILE_CREATE_ Procedure

General Considerations

• Each file that is enabled for completion is enabled for multiple completions until
your program removes it from the enabled set or closes it. Completion on a file
does not remove it from the set of enabled files.

• If the FILE_COMPLETE_SET_ procedure returns an error indication, the request
(adding or removing the file from the enabled set) is not performed. Adding a file
that is already in the enabled set does not result in an error; the call finishes
successfully. Removing a file that is not in the enabled set does not result in an
error; the request is ignored and the call finishes successfully.

Considerations for Guardian Files

• A Guardian file specified to the FILE_COMPLETE_SET_ procedure is rejected if it
has not been opened in a nowait manner.

Considerations for OSS Files

• An OSS file specified to the FILE_COMPLETE_SET_ procedure is rejected if it is
not one of the supported file types. The supported OSS file types are the same as
those supported by the OSS select() function. For additional information, see
the select(2) function reference page either online or in the Open System
Services System Calls Reference Manual.

• OSS files can be opened blocking or nonblocking.

• An OSS child process does not inherit possession of a set of enabled files from the
parent process. Membership in a set of enabled files is not propagated to an OSS
file that is created by the OSS dup() function.

FILE_CREATE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Safeguard Considerations
OSS Considerations
Example
Related Programming Manuals

Summary
The FILE_CREATE_ procedure is used to define a new structured or unstructured disk
file. The file can be temporary (and therefore automatically deleted when closed) or

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-32

FILE_CREATE_ Procedure

permanent. When a temporary file is created, FILE_CREATE_ returns the file name in
a form suitable for passing to the FILE_OPEN_ procedure.

Some file characteristics, such as alternate keys and partition information, cannot be
specified through this procedure; you must use the FILE_CREATELIST_ procedure to
specify them.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation.

filename:maxlen input, output:input

STRING .EXT:ref:*, INT:value

#include <cextdecs(FILE_CREATE_)>

short FILE_CREATE_ (char *filename
 ,short maxlen
 ,short *filenamelen
 ,[short file-code]
 ,[short primary-extent-size]
 ,[short secondary-extent-size]
 ,[short maximum-extents]
 ,[short file-type]
 ,[short options]
 ,[short recordlen]
 ,[short blocklen]
 ,[short keylen]
 ,[short key-offset]);

error := FILE_CREATE_ (filename:maxlen ! i,o:i
 ,filenamelen ! i,o
 ,[file-code] ! i
 ,[primary-extent-size] ! i
 ,[secondary-extent-size] ! i
 ,[maximum-extents] ! i
 ,[file-type] ! i
 ,[options] ! i
 ,[recordlen] ! i
 ,[blocklen] ! i
 ,[keylen] ! i
 ,[key-offset]); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-33

FILE_CREATE_ Procedure

if a permanent file is to be created, is the name of the new file; if a temporary file is
to be created, it is the name of the disk volume on which the file is to be created. If
the name is partially qualified, it is resolved using the contents of the caller’s
=_DEFAULTS DEFINE. If a temporary file is created, the name assigned to the file
is returned in filename.

maxlen is the length in bytes of the string variable filename.

filenamelen input, output

INT .EXT:ref:1

on input, gives the length in bytes of the value supplied in filename. On return, it
contains the length of the assigned value in filename for a temporary file or it is
unchanged for a permanent file.

file-code input

INT:value

is an application-defined value to be assigned to the new file. The definition of
codes 100 through 999 is reserved for use by HP. The default value is 0.

primary-extent-size input

INT:value

specifies the size of the primary extent in pages (2048-byte units). The value is
considered to be unsigned. The system might round the value up to an even
number during file creation. The maximum primary extent size is 65,535
(134,215,680 bytes). If this parameter is omitted or equal to 0, 1 is used.

secondary-extent-size input

INT:value

specifies the size of the secondary extents in pages (2048-bytes units). The value
is considered to be unsigned. The system might round the value up to an even
number during file creation. The maximum secondary extent size is 65,535
(134,215,680 bytes). (The maximum number of secondary extents that a file can
have allocated is maximum-extents - 1. See maximum-extents, following.) If
this parameter is omitted or equal to 0, the size of the primary extent is used.

maximum-extents input

INT:value

specifies the maximum number of extents that can be allocated to the new file.
The minimum and default value is 16. See “Considerations” for the upper limit on
this value.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-34

FILE_CREATE_ Procedure

file-type input

INT:value

specifies the type of structure given the new file. If this parameter is omitted or
equal to 0, an unstructured file is created. Valid values are:

0 unstructured
1 relative
2 entry-sequenced
3 key-sequenced

options input

INT:value

specifies optional file attributes. If omitted, the default value of options is 0. The
bits, when set, indicate:

<0:8> Reserved (must be 0).

<9> Queue file. The file will be a queue file.

<10> Refresh EOF. A change to the end-of-file value is to cause the file
label to be written immediately to disk.

<11> Index compression. For key-sequenced files, the entries in the index
blocks are to be compressed. Must be 0 for other file types.

<12> Data compression. For key-sequenced files, the keys of entries in the
data blocks are to be compressed. Must be 0 for other file types.

<13> Audit compression. For audited files, the audit data is to be
compressed.

<14> Audited. The file is to be audited under the Transaction Management
Facility (TMF) subsystem. Must be 0 for systems without the TMF
subsystem.

<15> Odd unstructured. For unstructured files, I/O transfers are to occur
with the exact counts specified. If this option is not set, transfers are
rounded up to an even byte boundary. Must be 0 for other file types.
See “Considerations.”

recordlen input

INT:value

for structured files, specifies the maximum number of bytes in a logical record. If
omitted, 80 is used. This parameter is ignored for unstructured files. For queue
files, this parameter must include 8 bytes for a timestamp.

The formulas for computing the maximum record length (MRL) based on
blocklen are:

• For relative and entry-sequenced files:

MRL = blocklen - 24

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-35

FILE_CREATE_ Procedure

• For key-sequenced files:

MRL = blocklen - 34

blocklen input

INT:value

for structured files, specifies the length in bytes of each block of records in the file.
For unstructured files, it controls the buffer size used internally but does not limit
user transfer sizes (though data transfers are more efficient when they do not
exceed blocklen).

For structured files, blocklen must be at least recordlen + 24. For key-
sequenced files, blocklen must be at least recordlen + 34.

The system rounds up the specified value to 512, 1024, 2048, or 4096. If omitted,
the default size is 4096. Regardless of the specified record length and data-block
size, the maximum number of records that can be stored in a data block is 511.

keylen input

INT:value

for key-sequenced files, specifies the length in bytes of the primary-key field. The
maximum length is 255. This parameter is required for key-sequenced files. For
queue files, this parameter must include 8 bytes for a timestamp.

key-offset input

INT:value

for key-sequenced files, specifies the offset from the beginning of the record to the
beginning of the primary-key field. This parameter is required for key-sequenced
files. For queue files, the value of this parameter must be 0.

Considerations

• File pointer action

The end-of-file pointer is set to 0 after the file is created.

• Disk allocation with FILE_CREATE_

Execution of the FILE_CREATE_ procedure does not allocate any disk area; it only
provides an entry in the volume’s directory, indicating that the file exists.

• Altering file security

The file is created with the caller’s process file security, which can be examined
and set with the PROCESS_SETINFO_ procedure. Once a file has been created,
its file security can be altered by opening the file and issuing the appropriate
SETMODE and SETMODENOWAIT procedure calls.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-36

FILE_CREATE_ Procedure

• Odd unstructured files

An odd unstructured file permits reading and writing of odd byte counts and
positioning to odd byte addresses.

If options.<15> is 1 and file-type is 0, an odd unstructured file is created. In
that case, the values of record-specifier, read-count, and write-count
are all interpreted exactly; for example, a write-count or read-count of 7
transfers exactly 7 bytes.

• Even unstructured files

If file-type is 0 and options.<15> is 0, an even unstructured file is created. In
that case, the values of read-count and write-count are each rounded up to
an even number; for example, a write-count or read-count of 7 is rounded up
to 8, and 8 bytes are transferred.

An even unstructured file must be positioned to an even byte address; otherwise,
the FILE_GETINFO_ procedure returns error 23 (bad address).

If you use the File Utility Program (FUP) CREATE or HP Tandem Advanced
Command Language (TACL) CREATE command to create a file, it creates an even
unstructured file by default.

• Upper limit for maximum-extents

There is no guarantee that a file will be created successfully if you specify a value
greater than 500 for maximum-extents. In addition, FILE_CREATE_ returns
error 21 if the values for primary-extent-size, secondary-extent-size,
and maximum-extents yield a file size greater than (2**32) - 4096 bytes
(approximately four gigabytes) or a partition size greater than 2**31 bytes (two
gigabytes).

In addition, it is not always possible to allocate all of the extents specified by
maximum-extents. The actual number of extents that can be allocated depends
on the amount of space in the file label. If there are alternate keys or partitions, the
maximum number of extents allowed is less than 978. If you specify
MAXEXTENTS, you must also consider the primary and secondary extent sizes to
avoid exceeding the maximum file size.

For unstructured files on a disk drive in a disk drive enclosure, both primary-
extent-size and secondary-extent-size must be divisible by 14. If you
specify file extents that are not divisible by 14 in a FILE_CREATE_ call, the extents
are automatically rounded up to the next multiple of 14, and the specified
MAXEXTENTS is lowered to compensate. FILE_CREATE_ does not return an
error code to indicate this change. You will be aware of the change only if you call
FILE_GETINFOLIST_ to verify the extent size and the MAXEXTENTS attributes.

• Disk accesses and the refresh EOF option

If a disk file has the refresh EOF option set (options.<10> = 1), the file label is
immediately written to disk each time the end-of-file (EOF) pointer is changed.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-37

FILE_CREATELIST_ Procedure

(For a description of the refresh EOF option, see the information on unstructured
disk files in the Enscribe Programmer’s Guide.) Depending on the particular
application, there can be a significant decrease in processing throughput due to
the increased number of disk writes when the refresh EOF option is set.

• Creating a HP NonStop Storage Management Foundation (SMF) file

When creating a file on a SMF virtual volume, the system chooses the physical
volume on which the file will reside. If you want to specify the physical volume, you
must create the file using the FILE_CREATELIST_ procedure.

Safeguard Considerations
For information on files protected by Safeguard, see the Safeguard Reference Manual.

OSS Considerations

• This procedure operates only on Guardian objects. If an OSS file is specified,
error 1163 is returned.

• The OSS open() function always opens Guardian files with shared exclusion
mode.

Example
file^type := 0;
options.<15> := 1; ! create an odd unstructured file
error := FILE_CREATE_ (name:buflen, namelen, file^code,
 pri^ext,,, file^type, options);

Related Programming Manuals
For programming information about the FILE_CREATE_ procedure, see the Enscribe
Programmer’s Guide and the Guardian Programmer’s Guide.

FILE_CREATELIST_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Item Codes
Considerations
OSS Considerations
Related Programming Manuals

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-38

FILE_CREATELIST_ Procedure

Summary
The FILE_CREATELIST_ procedure is used to define a new structured or unstructured
disk file. The file can be temporary (and therefore automatically deleted when closed)
or permanent. When a temporary file is created, FILE_CREATELIST_ returns the file
name in a form suitable for passing to the FILE_OPEN_ procedure.

FILE_CREATELIST_ allows you to specify certain file characteristics, such as alternate
keys and partition information, that cannot be specified through the FILE_CREATE_
procedure.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation.

filename:maxlen input, output:input

STRING .EXT:ref:*, INT:value

if a permanent file is to be created, is the name of the new file; if a temporary file is
to be created, it is the name of the disk volume on which the file is to be created. If
the name is partially qualified, it is resolved using the contents of the caller’s

#include <cextdecs(FILE_CREATELIST_)>

short FILE_CREATELIST_ (char *filename
 ,short maxlen
 ,short *filenamelen
 ,short *item-list
 ,short number-of-items
 ,short *values
 ,short values-length
 ,[short *error-item]);

error := FILE_CREATELIST_ (filename:maxlen ! i,o:i
 ,filenamelen ! i,o
 ,item-list ! i
 ,number-of-items ! i
 ,values ! i
 ,values-length ! i
 ,[error-item]); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-39

FILE_CREATELIST_ Procedure

=_DEFAULTS DEFINE. If a temporary file is created, the name assigned to the file
is returned in filename.

maxlen is the length in bytes of the string variable filename.

filenamelen input, output

INT .EXT:ref:1

on input, gives the length in bytes of the value supplied in filename. On return, it
contains the length of the assigned value in filename for a temporary file or it is
unchanged for a permanent file.

item-list input

INT .EXT:ref:*

is an array that specifies the file-creation attributes for which values are supplied in
the values parameter. Each element of the array must be of type INT and contain
an item code from Table 5-3 on page 5-40. Some items require the presence of
other items and must be supplied in a particular order, as noted in the table.

number-of-items input

INT:value

is the number of items supplied in item-list.

values input

INT .EXT:ref:*

is the array in which the values for the file attributes specified in item-list are
supplied. The values should be supplied in the order specified in item-list.
Each value begins on an INT boundary; if a value has a length that is an odd
number of bytes, an unused byte should be appendend before this value begins.
The length of each fixed-length value is given in Table 5-3 on page 5-40. Every
variable-length item has an associated value that gives its length, as specified in
the table.

values-length input

INT:value

is the size in bytes of values.

error-item output

INT .EXT:ref:1

if present, returns the index of the item in item-list that was being processed
when an error was detected, or is one greater than the number of items in item-list
if an error was detected after the processing of individual items was completed.
The index of the first item in item-list is 0.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-40

FILE_CREATELIST_ Procedure

Item Codes
Table 5-3 shows the item codes that can be specified when calling
FILE_CREATELIST_.

Table 5-3. FILE_CREATELIST_ Item Codes (page 1 of 12)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects.

Item
Code

 Size
(Bytes) Description

41 2 File type. For disk objects other than SQL shorthand views,
specifies the type of structure the file is to have. This item must
occur in the item list before other items whose meanings
depend on the file type. Valid values are:
0 unstructured
1 relative
2 entry-sequenced
3 key-sequenced

The default value is 0.

42 2 File code. For disk objects other than SQL shorthand views, an
application-defined value associated with the file. File codes
100 through 999 are reserved for use by HP. The default value
is 0.

43 2 Logical record length. For structured disk objects, the
maximum number of bytes in a logical record. The default value
is 80. For details, see the recordlen parameter of
FILE_CREATE_. Item 196 is an alternate form for this item.

44 2 Block length. For structured disk objects, the size of a block of
records; for unstructured disk files, controls the internal buffer
size. The supplied value is rounded up to 512, 1024, 2048, or
4096. The default value is 4096. For details, see the blocklen
parameter of FILE_CREATE_. Item 197 is an alternate form for
this item.

45 2 Key offset. For key-sequenced disk files, the byte offset from
the beginning of the record to the primary-key field. Either this
item or item 198 is required for key-sequenced files.

46 2 Key length. For key-sequenced disk files, the maximum
number of bytes in the file’s primary-key field. The maximum
value is 255. Required for key-sequenced files.

47 2 Lock-key length. For key-sequenced files, specifies the generic
lock-key length. The length must be between 1 and the key
length of the file, or can be 0 to automatically use the key length
of the file. The length must be 0 for non-key-sequenced files.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-41

FILE_CREATELIST_ Procedure

50 2 Primary extent size. For disk objects other than SQL shorthand
views, an unsigned integer specifying the size of the first extent,
in pages (2048-byte units). The maximum extent size is 65,535
pages (134,215,680 bytes). If this item is omitted or is equal to
0, a size of 1 is used. The value might be rounded up to an
even number during file creation. Item 199 is an alternate form
for this item.

51 2 Secondary extent size. For disk objects other than SQL
shorthand views, an unsigned integer specifying the size of
extents after the first one, in pages (2048-byte units). The
maximum extent size is 65,535 (134,215,680 bytes). (A file can
have up to 15 secondary extents allocated.) If this item is
omitted or equal to 0, the primary extent size is used. The
supplied value might be rounded up to an even number during
file creation.

52 2 Maximum extents. For disk objects other than SQL shorthand
views, the maximum number of extents allowed for the file. The
minimum and default value is 16. See Considerations on
page 5-35. (For partitioned files that are not key-sequenced,
the only value permitted is 16.)

57 8 Expiration time. For disk objects other than SQL shorthand
views, the Julian GMT timestamp giving the time before which
the file cannot be purged.

65 2 Odd unstructured. For unstructured files, a value of 1 specifies
that I/O transfers are to occur with the exact counts specified; a
value of 0 specifies that transfers are to be rounded up to an
even byte boundary. Must be equal to 0 for other file types. The
default value is 0. See Considerations on page 5-52.

66 2 Audited file. A value of 1 specifies that the file is to be audited
by the Transaction Management Facility (TMF) subsystem; 0
otherwise. Must be 0 for systems without the TMF subsystem.
The default value is 0.

67 2 Audit compression. For audited disk objects other than SQL
shorthand views, a value of 1 specifies that the audit data is to
be compressed; 0 specifies otherwise. The default value is 0.

Table 5-3. FILE_CREATELIST_ Item Codes (page 2 of 12)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects.

Item
Code

 Size
(Bytes) Description

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-42

FILE_CREATELIST_ Procedure

68 2 Data compression. For key-sequenced disk objects, a value of
1 specifies that the primary keys of data records are to be
compressed; 0 specifies otherwise. Must be 0 for other file
types. Can be 1 only if key offset (item 45) is 0. The default is
0.

69 2 Index compression. For key-sequenced disk objects, a value of
1 specifies that index block entries are to be compressed; 0
otherwise. Must be 0 for other file types. The default value is 0.

70 2 Refresh EOF. For disk objects other than SQL shorthand
views, a value of 1 specifies that a change to the end-of-file
value is to cause the file label to be written immediately to disk;
0 specifies otherwise. The default value is 0.

71 2 Create options. For disk objects, specifies miscellaneous file
attributes in the form that FILE_CREATE_ accepts and is an
alternative to using items 65 to 70. To use this item, specify
attributes as described under the options parameter of
FILE_CREATE_. If you specify any of items 65 to 70, and if you
also specify item 71, the last item to appear takes precedence.
The default value is 0. See “Considerations” for queue files.

72 2 Write through. For disk objects, a value of 1 specifies write-
through caching; a value of 0 specifies that writes to the file are
to be buffered. If omitted, 1 is used for unaudited files and 0 is
used for audited files.

CAUTION: If writes to an unaudited file are buffered, one or
more changes to the file can be lost if a failure occurs that
affects the disk or disk process.

73 2 Verify writes. For disk objects other than SQL shorthand views,
a value of 1 indicates that the file label is to specify that writes
to the file should be read back and the data verified; 0 indicates
otherwise. If omitted, 0 is used.

74 2 Serial writes. For disk objects other than SQL shorthand views,
a value of 1 indicates that the file label is to specify that writes
are to be made serially to the mirror when a file resides on a
mirrored volume; 0 indicates otherwise. When this is not equal
to 1, the system can choose to do either serial or parallel writes.
The default value is 0.

Table 5-3. FILE_CREATELIST_ Item Codes (page 3 of 12)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects.

Item
Code

 Size
(Bytes) Description

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-43

FILE_CREATELIST_ Procedure

80 2 Secondary partition. For disk objects, a value of 0 indicates a
primary partition and a value of 1 indicates a secondary
partition.

When item 90 is supplied, it must be immediately followed by item 91 or item 97,
then by item 92 or item 98, then finally by item 93 or item 99.

90 2 Number of partitions. For disk files, the number of extra
(secondary) partitions the file is to have. The maximum value is
15. The default value is 0. The FILE_CREATELIST_ call
creates the secondary partitions as well as the primary partition.

91 * Partition descriptors. For disk files, an array of 4-byte partition
descriptors, one for each secondary partition. Each entry has
this structure:

INT primary-extent-size;
INT secondary-extent-size;

These values give the primary and secondary extent sizes in
pages (2048-byte units). The length in bytes of this item is 4
times the value of item 90.

92 * Partition-volume name-length array. For disk files, an array of
INT values, each giving the length in bytes of the volume name
(supplied in item 93) on which the corresponding secondary
partition is to reside. The length in bytes of this item is 2 times
the value of item 90.

93 * Partition-volume names. For disk files, contains the
concatenated names of the secondary partition volumes.
Because each name occupies exactly the number of characters
specified in the corresponding entry of item 92, the total length
in bytes of this item is the sum of the values in item 92. A name
can be partially qualified, in which case the missing system
name is taken from the =_DEFAULTS DEFINE. The volume
name can be a full eight characters, including the dollar sign,
only if the system (specified or implied) is the same as the
system on which the primary partition is being created. Item 99
is an alternate form for this item.

When item 90 is supplied and the file to be created is key-sequenced, items 94 and
95 must also be supplied following item 93 or item 99, and they must be supplied as
consecutive items in the order presented here:

Table 5-3. FILE_CREATELIST_ Item Codes (page 4 of 12)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects.

Item
Code

 Size
(Bytes) Description

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-44

FILE_CREATELIST_ Procedure

94 2 Partition partial-key length. For partitioned key-sequenced disk
files, the number of bytes of the primary key that are used to
determine which partition of the file contains a particular record.
The minimum value is 1.

95 * Partition partial-key values. For partitioned key-sequenced disk
files, the concatenated partial-key values. Because the number
of entries is given by item 90 and the size of each entry is given
by item 94, the size of item 95 is the product of those two
values.

97 * Partition descriptors (32-bit). An array of 8-byte values, one for
each secondary partition. Each entry has this structure:

INT (32) priextentsize;
INT (32) secextentsize;

These values give the primary and secondary extent sizes in
pages. For Format 1 files, the size must be less than 65,536.
The length of this item in bytes is eight times item 90. Item 91
is an alternate form for this item.

98 * Partition-volume relative names-length array. An array of INT
byte counts, each giving the length of volume-relative name
(supplied in item 99) where the corresponding extra partition
resides. The length of this item is two times item 90.

99 * Partition-volume relative names. Concatenated names of the
extra partition volumes. Each name occupies the number of
characters specified in the corresponding entry of item 98; thus,
the total length of this parameter is the sum of the values in
item 98. This is an alternate form for item 93 and, if used, must
immediately follow item 98. The names can be partially qualified
(missing a system name) but the semantics of the names are
different from that of item 93. A missing system name causes
the use of the system where the primary file is created. An
implicit system is not recorded explicitly with the file, it remains
relative to the primary file if copied to another system.

The volume name can be eight characters (including “$”) only if
the specified or implied system is the same as the system
where the primary partition is created.

Table 5-3. FILE_CREATELIST_ Item Codes (page 5 of 12)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects.

Item
Code

 Size
(Bytes) Description

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-45

FILE_CREATELIST_ Procedure

When item 100 is supplied, it must be immediately followed by a descriptor item
(which can be either item 101 or item 106), then by item 102, then by a pair of file-
name items (which can be either items 103 and 104, or items 108 and 109).

100 2 Number of alternate keys in a disk file. For unstructured files,
must be 0. The default value is 0.

101 * Alternate-key descriptors. For disk files, an array of key-de-
scriptor entries, one for each alternate key. Each entry is 12
bytes long and contains these elements in the order presented
here:

key-
specifier
(INT:1)

uniquely identifies the alternate-key field. This
value is passed to the KEYPOSITION
procedure for references to this key field.
Must be nonzero.

101 (continued) key-len
(INT:1)

specifies the length in bytes of the alternate-
key field. The maximum key length of an
alternate key that allows duplicates and is
defined as insertion-ordered (see
attributes, later) is:

255 - (10 + primary-key length)

For unique keys, the maximum length is 253.
For normal duplicates, the maximum length is
(253 - primary-key length).

For further information about maximum key
length, see the Enscribe Programmer’s Guide.

key-offset
(INT:1)

is the number of bytes from the beginning of
the record to where the alternate-key field
starts.

key-filenum
(INT:1)

is the relative number in the alternate-key
parameter array of this key’s alternate-key file.
The first alternate-key file’s key-filenum is 0.

Table 5-3. FILE_CREATELIST_ Item Codes (page 6 of 12)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects.

Item
Code

 Size
(Bytes) Description

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-46

FILE_CREATELIST_ Procedure

null-value
(INT:1)

specifies a null value if attributes.<0> = 1.
Note that the character must reside in the
right-hand byte.

During a write operation, if a null value is
specified for an alternate-key field, and if the
null value is encountered in all bytes of this
key field, the file system does not enter the
reference to the record in the alternate-key
file. (If the file is read using this alternate-key
field, records containing a null value in this
field will not be found.)

During a writeupdate operation (write-count
= 0), if a null value is specified, and if the null
value is encountered in all bytes of this key
field within buffer, the file system deletes the
record from the primary file but does not
delete the reference to the record in the
alternate file.

attributes
(INT:1)

contains these fields:

<0> =
1

means a null value is specified.

<1> =
1

means the key is unique. If an attempt is
made to insert a record that duplicates
an existing value in this field, the
insertion is rejected with an error 10
(duplicate record).

101 (continued) <2> =
1

means that automatic updating cannot
be performed on this key.

<3> =
0

means that alternate-key records with
duplicate key values are ordered by the
value of the primary-key field. This
attribute has meaning only for alternate
keys that allow duplicates.

Table 5-3. FILE_CREATELIST_ Item Codes (page 7 of 12)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects.

Item
Code

 Size
(Bytes) Description

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-47

FILE_CREATELIST_ Procedure

=
1

means that alternate-key records with
duplicate key values are ordered by the
sequence in which those records were
inserted into the alternate-key file. This
attribute has meaning only for alternate
keys that allow duplicates.

<4:15> Reserved (specify 0)

The length in bytes of this item is 12 times the value of item
100.

102 2 Number of alternate-key files. For disk files, specifies the
number of files that are to hold alternate-key records. The
maximum value is 100; the default value is 0.
FILE_CREATELIST_ does not automatically create the
alternate-key files.

103 * Alternate-file name-length array. For disk files, an array of INT
values, each giving the length in bytes of the corresponding
alternate-file name found in item 104. The length in bytes of
this item is 2 times the value of item 102.

104 * Alternate-file names. For disk files, a string array containing the
concatenated names of the alternate-key files. Because each
name occupies exactly the number of characters specified in
the corresponding entry of item 103, the total length of this item
is the sum of the values in item 103. The names can be fully or
partially qualified. Partially qualified names are resolved using
the contents of the =_DEFAULTS DEFINE. The volume portion
of an alternate-file name can be a full eight characters,
including the dollar sign, only if the system (specified or implied)
is the same as the system on which the primary file is being
created. Item 109 is an alternate form for this item.

Table 5-3. FILE_CREATELIST_ Item Codes (page 8 of 12)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects.

Item
Code

 Size
(Bytes) Description

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-48

FILE_CREATELIST_ Procedure

106 * Alternate-key descriptors (32-bit). An array of 14-byte key
descriptor entries, one for each alternate key. Each entry has
this structure:

INT key-specifier;
INT key-len;
INT (32) key-offset;
INT key-filenum;
INT null-value;
INT attributes;

attributes has these fields:

<0> Do not index when null.
<1> Unique.
<2> Do not update.
<3> Insertion order duplicates.
<4:15> Reserved. Must be zero.

These fields have the same semantics as the
corresponding fields of item 101.

The length of this item in bytes is 14 times item 100. This is an
alternate form for item 101, and if used, must immediately
follow item 100 in place of item 101.

108 * Alternate-file relative name-length array. An array of INT byte
counts, each giving the length of the corresponding alternate-
file name in item 109. The length of this item is two times item
102. This is an alternate form for item 103, and if used, must
immediately follow item 102 in place of item 103.

Table 5-3. FILE_CREATELIST_ Item Codes (page 9 of 12)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects.

Item
Code

 Size
(Bytes) Description

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-49

FILE_CREATELIST_ Procedure

109 * Alternate-file relative names. Concatenated names of the
alternate-key files. Each name occupies the number of
characters specified in the corresponding entry of item 108;
total length of this parameter is the sum of the values in item
108. The names must be fully qualified, except the system
name can be missing. If the system name is missing, the
system of the primary file is used. Also, an implicit system is not
recorded explicitly with the file, and so it remains relative to the
primary file if copied to another system.

The volume portion of the name can be eight characters
(including the “$”) only if the specified or implied system is the
same as the system where the primary partition is created.
This is an alternate form for item 104 and, if used, must
immediately follow item 108.

The items 178-179 must both be supplied if either is supplied, and they must be
supplied as consecutive items in the order presented here:

178 2 Physical volume name length. The length in bytes of the name
given by item 179.

179 * Physical volume name. When creating a file on a SMF virtual
volume, this item specifies the physical volume on which the file
is to reside. The name is in external form and optionally
includes the node name; if the node name is unspecified, it is
taken from the =_DEFAULTS DEFINE. The physical volume
must be a member of the pool associated with the virtual
volume. If this item is not supplied, the SMF subsystem
chooses a physical volume from the pool.

180 2 Suggested primary processor. If not -1 (null), and if there is a
choice of suitable physical volumes, this value specifies the
processor number of the processor desired to contain the
primary process of the disk process providing the physical
storage for the file. This value is advisory only and does not
have any effect if the file is not being created on a SMF virtual
volume, if a physical volume is specified by using item 179, or if
no suitable physical volume is available on which a virtual disk
process in the specified processor could place a file.

Table 5-3. FILE_CREATELIST_ Item Codes (page 10 of 12)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects.

Item
Code

 Size
(Bytes) Description

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-50

FILE_CREATELIST_ Procedure

The items 187 and188 are optional when creating a partitioned SMF file. These
items must both be supplied if either is supplied; they must be supplied at some point
after item 90 (number of partitions) and must be supplied as consecutive items in the
order presented here:

187 * Partition physical volume name-length array. For SMF files, an
array of INT values that give, for each extra (secondary)
partition, a length for the physical volume name, which is
supplied in item 188. If a length is 0, the corresponding extra
partition has its physical volume selected by the SMF
subsystem. A length must be 0 if the corresponding partition
volume (in item 93) is not a SMF virtual volume. The length of
this item is 2 times the number of partitions (item 90).

188 * Partition physical volume names. For SMF files, contains the
concatenated names of the secondary partition physical
volumes. Each name occupies the number of characters
specified in the corresponding entry of item 187; the total
length of this item equals the sum of the values in item 187.
The names can be partially qualified, in which case the missing
node name is taken from the =_DEFAULTS DEFINE. Each
physical volume must be a member of the pool associated with
the corresponding partition volume given in item 93.

195 2 File format. File format can be 0, 1, or 2. Format 1 files allow
only as many as 4 KB blocks and as many as 2 GB partitions.
Format 2 files allow larger blocks and partitions. The value 0
(the default) specifies that the system select the format based
on the values of other parameters.

196 4 Logical record length (32-bit). For structured disk files, the
maximum number of bytes in a logical record. If omitted, 80 is
used. This is an alternate form for item 43.

197 4 Block length (32-bit). For structured files, the size of a block of
records. For unstructured files, the unstructured buffer size.
Currently, the maximum supported value, which is also the
default value, is 4096. This is an alternate form for item 44.

Table 5-3. FILE_CREATELIST_ Item Codes (page 11 of 12)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects.

Item
Code

 Size
(Bytes) Description

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-51

FILE_CREATELIST_ Procedure

198 4 Key offset (32-bit). For key-sequenced disk files, the byte offset
from the beginning of the record to the primary key field. This
an alternate form for item 45; one of the two items is required
for key-sequenced files.

199 4 Primary extent size (32-bit). The size in pages (2048-byte
units) of the first extent. If omitted or 0, a size of 1 is used. The
value can be rounded during creation to a multiple of the block
size. For Format 1 files, the size must be less than 65,536.
This is an alternate form for item 50.

200 4 Secondary extent size (32-bit). The size in pages (2048-byte
units) of extents after the first extent. If 0 or omitted, the size of
the primary extent is used. The value can be rounded during
creation to a multiple of the block size. For Format 1 files, the
size must be less than 65,536. This is an alternate form for
item 51.

212 2 Block checksumming option. For Format 2 structured files,
specifies whether data protection needs to be used through
checksum calculation and comparison (1 specified if needed
and 0 if not needed). If omitted or -1 is specified, the default
value 1 is used. This item is ignored for files that do not support
a checksum option.

221 * Partition maximum extents array. This item is an array of INT
values that specify the maximum extents for each secondary
partition. This item is optional and can only be specified for key-
sequenced files. If present, it must be supplied at some point
after item 90 (number of partitions) and item 41 (file type). If this
item is not present, FILE_CREATELIST_ will use the maximum
extents value for the file (item 52) and apply it to each
secondary partition. The length of the item is 2 times the
number of partitions (item 90).

Table 5-3. FILE_CREATELIST_ Item Codes (page 12 of 12)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects.

Item
Code

 Size
(Bytes) Description

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-52

FILE_CREATELIST_ Procedure

Considerations

• Using item-list

In general, if you supply an item in item-list that is not applicable (for example,
if you supply a logical record length for an unstructured file), FILE_CREATELIST_
ignores the item as long as it passes syntax and value range checks. Exceptions
to this are noted in Table 5-3 on page 5-40.

• File pointer action

The end-of-file pointer is set to 0 after the file is created.

• Disk allocation with FILE_CREATELIST_

Execution of the FILE_CREATELIST_ procedure does not allocate any disk area; it
only provides an entry in the volume’s directory, indicating that the file exists.

• Altering file security

The file is created with the caller’s process file security which can be examined and
set with the PROCESSFILESECURITY procedure. Once a file has been created,
its file security can be altered by opening the file and issuing the appropriate
SETMODE and SETMODENOWAIT procedure calls.

• Odd unstructured files

An odd unstructured file permits reading and writing of odd byte counts and
positioning to odd byte addresses.

If item 65 is set to 1 and item 42 is set to 0 in item-list, an odd unstructured file
is created. In that case, the values of record-specifier, read-count, and
write-count are all interpreted exactly; for example, a write-count or read-
count of 7 transfers exactly 7 bytes.

• Even unstructured files

If items 65 and 42 are both set to 0 in item-list, an even unstructured file is
created. In that case, the values of read-count and write-count are each
rounded up to an even number; for example, a write-count or read-count of
7 is rounded up to 8, and 8 bytes are transferred.

An even unstructured file must be positioned to an even byte address; otherwise,
the FILE_GETINFO_ procedure returns error 23 (bad address).

If you use the File Utlity Program (FUP) CREATE or HP Tandem Advanced
Command Language (TACL) CREATE command to create a file, it creates an even
unstructured file by default.

• Upper limit for maximum-extents

If you specify a value greater than 500 for maximum-extents (item 52 in item-
list), there is no guarantee that a file will be created successfully. In addition,
FILE_CREATELIST_ returns error 21 if the values for primary and secondary

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-53

FILE_CREATELIST_ Procedure

extent sizes (items 50, 51, and 91 in item-list) and maximum-extents (item
52) yield a file size greater than (2**32) - 4096 bytes (approximately four
gigabytes) or a partition size greater than 2**31 bytes (two gigabytes).

For unstructured files on a disk drive in a disk drive enclosure, both primary-
extent-size and secondary-extent-size must be divisible by 14. If you
specify file extents that are not divisible by 14 in a FILE_CREATE_ call, the extents
are automatically rounded up to the next multiple of 14, and the specified
MAXEXTENTS is lowered to compensate. FILE_CREATE_ does not return an
error code to indicate this change. You will be aware of the change only if you call
FILE_GETINFOLIST_ to verify the extent size and the MAXEXTENTS attributes.

• Insertion-ordered alternate keys

All the nonunique alternate keys of a file must have the same duplicate-key-
ordering attribute. That is, a file cannot have both insertion-ordered alternate keys
and standard (duplicate ordering by primary key) nonunique alternate keys. An
insertion-ordered alternate key cannot share an alternate key file with other keys of
different lengths or with other keys that are not insertion-ordered.

The FILE_CREATELIST_ procedure returns error 46 if the rules of usage for
insertion-ordered alternate keys are violated.

When an alternate-key record is updated, the timestamp portion of the key is also
updated. Alternate-key records are updated only when the corresponding
alternate-key field of the primary record is changed.

The relative position of an alternate-key record within a set of duplicates might
change if an unrecoverable error occurs during a writeupdate of the primary
record.

There is a performance penalty for using insertion-ordered duplicate alternate
keys. Updates and deletes of alternate-key fields force the disk process to
sequentially search the set of alternate-key records having the same alternate key
value until a match is found on the primary-key-value portion of the key. (The
value of the timestamp field in an alternate key record is not stored in the primary
record.) The performance cost rises as the number of records having duplicate
alternate-key values increases.

If an insertion-ordered alternate-key file is partitioned, the length of each partition
key should be no greater than the total of the alternate-key tag length and the
alternate-key length. If the length of any partition key is greater than this sum, then
the file system might fail to advise the user of the duplicate-key condition (indicated
by the warning error code 551).

• Queue files

To create a queue file, specify item 71 as described under the “FILE_CREATE_
Procedure.” For more information, see FILE_CREATE_ Procedure. Some item
codes are incompatible with queue files; no partitions or alternate keys can be
defined for queue files.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-54

FILE_GETINFO_ Procedure

OSS Considerations
This procedure operates only on Guardian objects. If an OSS file is specified, error
1163 is returned.

Related Programming Manuals
For programming information about the FILE_CREATELIST_ procedure, see the
Enscribe Programmer’s Guide and the Guardian Programmer’s Guide.

FILE_GETINFO_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
OSS Considerations
Example
Related Programming Manuals

Summary
The FILE_GETINFO_ procedure obtains a limited set of information about a file
identified by file number.

A related procedure, FILE_GETINFOLIST_, obtains detailed information about a file
identified by file number.

Syntax for C Programmers

• The parameter maxlen specifies the maximum length in bytes of the character
string pointed to by filename, the actual length of which is returned by

#include <cextdecs(FILE_GETINFO_)>

short FILE_GETINFO_ (short filenum
 ,[short *last-error]
 ,[char *filename]
 ,[short maxlen]
 ,[short *filename-length]
 ,[short *type-info]
 ,[short *flags]);

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-55

FILE_GETINFO_ Procedure

filename-length. All three of these parameters must either be supplied or be
absent.

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the call to
FILE_GETINFO_.

filenum input

INT:value

is a number that identifies the open file of interest. filenum was returned by
FILE_OPEN_ or OPEN when the file was originally opened.

You can also specify -1 for filenum to obtain the last-error value resulting
from a file operation that is not associated with a file number. See
“Considerations” below.

last-error output

INT .EXT:ref:1

returns the file-system error number resulting from the last operation performed on
the specified file.

filename:maxlen output:input

STRING .EXT:ref:*, INT:value

returns the fully-qualified name under which the specified file was opened. If a
DEFINE name was supplied when opening the file, filename is the file name, not
the DEFINE name. maxlen gives the length in bytes of the string variable
filename.

error := FILE_GETINFO_ (filenum ! i
 ,[last-error] ! o
 ,[filename:maxlen] ! o:i
 ,[filename-length] ! o
 ,[type-info] ! o
 ,[flags]); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-56

FILE_GETINFO_ Procedure

filename-length output

INT .EXT:ref:1

is the length in bytes of the name returned in filename.

type-info output

INT .EXT:ref:5

returns an array of INT values that contain information about the file. The
meanings of these words are:

[0] Device type

[1] Device subtype

[2:4] The meanings of these words depend on the device type. When the
device type is 3 (disk) the meanings are:

[2] Object type. For disk files, a value greater than 0 indicates an SQL
object; 0 indicates a nonSQL file. -1 is returned for nondisk files.

[3] File type. For disk files, indicates the file type:

0 unstructured
1 relative
2 entry-sequenced
3 key-sequenced
-1 is returned for nondisk files.

[4] File code. For disk files, gives the application-defined file code (file
codes 100-999 are reserved for use by HP). -1 is returned for
nondisk files.

flags output

INT .EXT:ref:1

returns additional information about the file. The bits, when set to 1, indicate:

<0:14> Reserved and undefined.

<15> File is an OSS file.

Considerations

• You can obtain the last-error value resulting from a file operation that is not
associated with a file number by specifying a filenum value of -1 to
FILE_GETINFO_. An error number can be obtained in this manner for such
operations as a purge, waited open, or failed create operation. The result of a
preceding awaitio[x] or alter operation can also be obtained in this manner.

• When -1 is supplied for filenum, only last-error returns useful information. A
filename-length of 0 is returned.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-57

FILE_GETINFOBYNAME_ Procedure

• If FILE_GETINFO_ is called subsequent to a file close, an error value of 16 (file
not open) is returned.

OSS Considerations

• Use the flags parameter of FILE_GETINFO_ or FILE_GETINFOBYNAME_ or
use item code 161 of FILE_GETINFOLIST_ or FILE_GETINFOLISTBYNAME_ to
determine whether the file is an OSS file.

• Use the item-list parameter of FILE_GETINFOLIST_ or
FILE_GETINFOLISTBYNAME_ to specify which OSS file attribute values are to be
returned.

Example
error := FILE_GETINFO_ (filenum, lasterror); ! obtain
 ! error from
 ! last file
 ! operation

Related Programming Manuals
For programming information about the FILE_GETINFO_ procedure, see the Guardian
Programmer’s Guide. For information on the SQL objects and programs, see the HP
NonStop SQL/MP Programming Manual for C and the HP NonStop SQL/MP
Programming Manual for COBOL.

FILE_GETINFOBYNAME_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
OSS Considerations
Example
Related Programming Manuals

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-58

FILE_GETINFOBYNAME_ Procedure

Summary
The FILE_GETINFOBYNAME_ procedure obtains a limited set of information about a
file identified by file name.

A related procedure, FILE_GETINFOLISTBYNAME_, obtains detailed information
about a file identified by file name.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

#include <cextdecs(FILE_GETINFOBYNAME_)>

short FILE_GETINFOBYNAME_ (const char *filename
 ,short length
 ,[short *type-info]
 ,[short *physical-recordlen]
 ,[short options]
 ,[__int32_t tag-or-timeout])
 ,[short *flags]);

error := FILE_GETINFOBYNAME_ (filename:length ! i:i
 ,[type-info] ! o
 ,[physical-recordlen] ! o
 ,[options] ! i
 ,[tag-or-timeout] ! i
 ,[flags]); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-59

FILE_GETINFOBYNAME_ Procedure

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation.

filename:length input:input

STRING .EXT:ref:*, INT:value

specifies the name of the file of interest. The value of filename must be exactly
length bytes long and must be a valid file name or DEFINE name. If the name is
partially qualified, it is resolved using the contents of the =_DEFAULTS DEFINE.

type-info output

INT .EXT:ref:5

returns an array of INT values that contain information about the file. The
meanings of these words are:

[0] Device type

[1] Device subtype

[2:4] The meanings of these words depend on the device type. When the
device type is 3 (disk) the meanings are:

[2] Object type. For disk files, a value greater than 0 indicates an SQL
object; 0 indicates a nonSQL file. -1 is returned for nondisk files.

[3] File type. For disk files, indicates the file type:

0 unstructured
1 relative
2 entry-sequenced
3 key-sequenced
-1 is returned for nondisk files.

[4] File code. For disk files, gives the application-defined file code (file
codes 100-999 are reserved for use by HP). -1 is returned for
nondisk files.

If an error value of 11 (file not found) is returned, the device type and subtype
values correctly reflect the device portion of the supplied file name, but the other
fields in type-info do not contain valid information.

physical-recordlen output

INT .EXT:ref:1

returns the physical record length associated with the file:

nondisk physical-recordlen is the configured devices record length.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-60

FILE_GETINFOBYNAME_ Procedure

disk files physical-recordlen is the maximum possible transfer length.
Transfer length is equal to the configured buffer size for the device
(either 2048 or 4096 bytes). (For an Enscribe disk file, the logical
record length can be obtained by a call to
FILE_GETINFOLIST[BYNAME]_.)

processes and $RECEIVE file
A length of 132 is returned in physical-recordlen. This is the
system convention for interprocess files.

options input

INT:value

specifies the options desired. The bits, when set to 1, indicate:

<0:12> Reserved (specify 0)

<13> specifies that this call is only initiating a nowait inquiry and the
information will be returned in a system message. Do not set both
options.<13> and options.<14>. See “Considerations.”

<14> specifies that the sending of a device type inquiry message to a
subtype 30 process should not be allowed to take longer than indicated
by tag-or-timeout. If the time is exceeded, error 40 is returned.

<15> specifies that device type inquiry messages are not to be sent to
subtype 30 processes.

If omitted, 0 is used.

tag-or-timeout input

INT(32):value

is a parameter with two functions depending on the value of options that is
specified:

• When options.<13> is 1, it is a value you supply to help identify one of
several FILE_GETINFOBYNAME_ operations. The system stores this value
until the operation completes, then returns it to the program in words 1 and 2 of
a system message. See “Considerations” below.

• When options.<14> is 1, it is the maximum amount of time to wait,
expressed in 0.01-second units. The value -1D means wait forever. If the
parameter is omitted, -1D is used.

flags output

INT .EXT:ref:1

returns additional information about the file. The bits, when set to 1, indicate:

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-61

FILE_GETINFOBYNAME_ Procedure

<0:14> Reserved and undefined.

<15> File is an OSS file.

Considerations

• Specifying a subtype 30 process

When FILE_GETINFOBYNAME_ is called with a file name that designates a
subtype 30 process, the procedure sends a device type inquiry system message to
the process to determine the device type and subtype (unless disabled by
options.<15>). The message sent by FILE_GETINFOBYNAME_ is either in D-
series-format (message -106) or C-series-format (message -40) depending on the
options used when the subtype 30 process opened $RECEIVE. The formats of
these completion messages are described in the Guardian Procedure Errors and
Messages Manual.

The subtype 30 process replies with the requested information in system message
-106 or -40, corresponding to the message used in the inquiry. The returned
device type value should be one of those listed in Appendix A, Device Types and
Subtypes. If the message response is incorrectly formatted, the
FILE_GETINFOBYNAME_ caller receives device type and subtype values of 0.
The REPLY caller (the subtype 30 process) receives an error 2.

A deadlock occurs if a subtype 30 process calls FILE_GETINFOBYNAME_ on its
own process name.

• Using the nowait option

If you call FILE_INFOBYNAME_ procedure in a nowait manner, the results are
returned in the nowait FILE_GETINFOBYNAME_ completion message (-108), not
in the output parameters of the procedure. The format of this completion message
is described in the Guardian Procedure Errors and Messages Manual. If error is
not 0, no completion message is sent to $RECEIVE. Errors can be reported either
on return from the procedure, in which case error might be meaningful, or
through the completion message sent to $RECEIVE.

The system reports a path error only after automatically making retries.

When the nowait option is used, any step of the inquiry operation might be
asynchronous to the caller. However, only simulation inquiries to subtype 30
processes are guaranteed to be asynchronous.

When a process pair uses the nowait option, the nowait FILE_GETINFOBYNAME_
completion message is sent only to the process that made the call, not to the other
member of the pair.

Switching ownership from the primary to the backup process can leave outstanding
inquiries. The CHECKSWITCH procedure automatically discards these as it
becomes the backup process.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-62

FILE_GETINFOLIST_ Procedure

OSS Considerations

• Use the flags parameter of FILE_GETINFO_ or FILE_GETINFOBYNAME_ or
use item code 161 of FILE_GETINFOLIST_ or FILE_GETINFOLISTBYNAME_ to
determine whether the file is an OSS file.

• Use the item-list parameter of FILE_GETINFOLIST_ or
FILE_GETINFOLISTBYNAME_ to specify which OSS file attribute values are to be
returned.

Example
error := FILE_GETINFOBYNAME_ (name:length,typeinfo,reclen);

Related Programming Manuals
For programming information about the FILE_GETINFOBYNAME_ procedure, see the
Guardian Programmer’s Guide. For information on the SQL objects and programs,
see the HP NonStop SQL/MP Programming Manual for C and the HP NonStop
SQL/MP Programming Manual for COBOL.

FILE_GETINFOLIST_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
OSS Considerations
Example
Related Programming Manuals

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-63

FILE_GETINFOLIST_ Procedure

Summary
The FILE_GETINFOLIST_ procedure obtains detailed information about a file identified
by file number.

A related (and simpler to use) procedure, FILE_GETINFO_, obtains a limited set of
information about a file identified by file number.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation.

filenum input

INT:value

is a number that identifies the open file of interest. filenum was returned by
FILE_OPEN_ or OPEN when the file was originally opened.

You can also specify -1 for filenum to obtain the last-error value resulting
from a file operation that is not associated with a file number. See
“Considerations.”

#include <cextdecs(FILE_GETINFOLIST_)>

short FILE_GETINFOLIST_ (short filenum
 ,short *item-list
 ,short number-of-items
 ,short *result
 ,short result-max
 ,[short *result-length]
 ,[short *error-item]);

error := FILE_GETINFOLIST_ (filenum ! i
 ,item-list ! i
 ,number-of-items ! i
 ,result ! o
 ,result-max ! i
 ,[result-length] ! o
 ,[error-item]); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-64

FILE_GETINFOLIST_ Procedure

item-list input

INT .EXT:ref.*

is an array of values that specify the items of information to be returned by the
procedure. Each element of the array must be of type INT and contain a code
from Table 5-4 on page 5-66.

number-of-items input

INT:value

specifies the number of items supplied in item-list.

result output

INT .EXT:ref:*

is the buffer in which the requested items of information are returned. The item
values are returned in the order specified in item-list. Each item begins on an
INT boundary. Every variable-length item has an associated item giving its length;
the caller should put this associated item into item-list immediately before the
variable length item.

result-max input

INT:value

specifies the maximum size in bytes of the array of values that can be returned in
result. If the specified size is not large enough to hold the requested items, an
error value of 563 (buffer too small) is returned.

result-length output

INT .EXT:ref:1

returns the length in bytes of the array of values returned in result. result-
length is an odd value only if the last value in the array has an odd length.

error-item output

INT .EXT:ref:1

returns the index of the item that was being processed when an error was
detected. The index of the first item in item-list is 0.

Considerations

• Normally if an error is returned, the contents of the result parameter are
undefined. However, if the returned error code is 2 (operation invalid for file type),
the result parameter contains a combination of correct values (for valid items)
and unchanged memory locations (for invalid items because of the kind of file).
The error-item value points to the first invalid item.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-65

FILE_GETINFOLIST_ Procedure

When error 2 occurs, any items prior to the one pointed to by error-item are
returned with correct values in the result parameter; following items might or
might not be valid. If a following item is known to be valid because of the kind of
file involved, the correct result value for the item can be accessed in the
corresponding location in the result buffer. To do so, the program will have to
account for space in the buffer reserved for preceding invalid items as well as for
space for preceding valid items. (Preceding in this case refers to some item that
occurs before the item in question.) See description of items in Table 5-4 on
page 5-66 to determine the kinds of files for which an item is valid.

Invalid items that are fixed-size will have the amount of space reserved in the
result buffer, but that section of buffer will be unchanged. Invalid items that are
variable-sized have no space reserved for them, but this should not be depended
upon because they could become valid in a future RVU and thus start occupying
space. The programmer might want to place all the items that could cause error 2
in the item list after those that are not expected to cause this error.

• If a file number for which information is being retrieved was opened with the
unstructured access option, the provided information appears as if the file is an
unstructured file without partitions or alternate keys.

• The file system stores error information for the last operation that was not
associated with a file number (such as a purge, waited open, or failed create
operation; the result of a preceding awaitio[x] or alter operation is also stored). You
can obtain this stored information from FILE_GETINFOLIST_ by supplying a value
of -1 for filenum. The error information is returned in items 7 through 10. Valid
values are also returned for items 19 and 20.

• The FILE_GETINFOLIST_ procedure should not be used to determine, the
current-key-value parameter for queue files (item code 15), because a
current key position is not maintained for queue files.

• Support for SQL files includes both Format 1 and Format 2 files.

• If the file being referenced is a Format 2 file and the extent size exceeds 65535,
item codes will return -1 with no error indication.

• For all items in Table 5-4 on page 5-66 that return some form of last modification
time, creation time is returned for an object that has never been modified.
Similarly, for items that return some form of last open time, creation time is
returned for an object that has never been opened.

Table 5-4 on page 5-66 shows the item codes used by FILE_GETINFOLIST_. Item
codes of 30 and greater, except item codes 201 through 206, are also used by
FILE_GETINFOLISTBYNAME_.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-66

FILE_GETINFOLIST_ Procedure

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 1 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 2 File-name length. The length in bytes of the file name returned
by item 2.

2 * File name. The fully qualified name of the specified file at the
time it was opened.

3 2 Current file name length. The length in bytes of the file name
returned by item 4.

4 * Current file name. The current fully qualified name of the
specified file. This might differ from item 2 because the file
might have been renamed since it was opened.

5 2 DEFINE name length. For files opened with a DEFINE, the
length in bytes of the DEFINE name; for other files, 0.

6 * DEFINE name. For files opened with a DEFINE, the name of
the DEFINE.

7 2 Last error. The file-system error number resulting from the last
file-system operation. If filenum identifies an open file, the last
error associated with that file number is returned. If filenum is
-1, the last error for an operation not associated with a file
number is returned. See “Considerations,” earlier in this
subsection.

8 2 Last-error detail. Additional information, if available, for
interpreting the error reported by item 7. This value might be a
file-system error number or another kind of value, depending on
the operation and the primary error.

9 2 Partition in error. For partitioned files, the number of the
partition associated with the error reported by item 7.

10 2 Key in error. For files with alternate keys, the specifier of the
key associated with the error reported by item 7.

11 4 Next record pointer. For disk files that are not key-sequenced
and not accessed with alternate key, the value of the next
record pointer. This item cannot be used with the 64-bit primary-
key election of the FILE_OPEN_ procedure; an attempt results
in error 581. Superseded by item 201.

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-67

FILE_GETINFOLIST_ Procedure

12 4 Current record pointer. For disk files that are not key-
sequenced and not accessed with alternate key, the value of
the current record pointer. This item cannot be used with the 64-
bit primary-key election of the FILE_OPEN_ procedure; an
attempt results in error 581. Superseded by item 202.

13 2 Current key specifier. For structured disk files, the key specifier
of the current key.

14 2 Current key length. For structured disk files, the length in bytes
of the current key value. This item cannot be used with the 64-
bit primary-key election of the FILE_OPEN_ procedure; an
attempt results in error 581. Superseded by item 203.

15 * Current key value. For structured disk files, the current key
value. Item 15 is not defined for queue files. This item cannot be
used with the 64-bit primary-key election of the FILE_OPEN_
procedure; an attempt results in error 581. Superseded by
item 204.

16 2 Current primary-key length. For structured disk files, the length
in bytes of the current primary-key value. This item cannot be
used with the 64-bit primary-key election of the FILE_OPEN_
procedure; an attempt results in error 581. Superseded by
item 205.

17 * Current primary-key value. For structured disk files, the current
primary-key value. This item cannot be used with the 64-bit
primary-key election of the FILE_OPEN_ procedure; an attempt
results in error 581. Superseded by item 206.

18 6 Tape volume. For labeled tape files, the volume serial number
of the reel currently being processed.

19 2 Highest open-file number. The highest file number of any
currently open file.

20 2 Next open-file number. The next file number of any open file
higher than the input filenum value; if no higher-numbered
open file exists, a value of -1 is returned.

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 2 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-68

FILE_GETINFOLIST_ Procedure

21 2 Open access mode. The access mode under which the
specified file has been opened. Values are:
0 read-write
1 read only
2 write only
3 extend (supported for tape, not disk)

22 2 Open exclusion mode. The exclusion mode under which the
specified file has been opened. Values are:
0 shared
1 exclusive
3 protected

23 2 Open nowait depth. The number of concurrent nowait
operations permitted on the specified file, as specified when the
file was opened.

24 2 Open sync depth. The sync depth or receive depth under which
the specified file has been opened. For details, see
FILE_OPEN_ Procedure.

25 2 Open options. The miscellaneous options under which the
specified file has been opened. For details, see FILE_OPEN_
Procedure.

26 4 Operation information. For particular access methods on some
devices, a value associated with the last completed I/O
operation. The meaning of the value is specific to the access
method. For SNAX, it is the exception response identification
number.

30 2 Device type. The device type associated with the specified file.

31 2 Device subtype. The device subtype associated with the
specified file.

32 2 Demountable disk. For disk volumes and disk objects, 1 if the
volume is demountable; 0 otherwise.

33 2 Audited disk. For disk volumes and disk objects, 1 if the volume
can support audited files; 0 otherwise.

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 3 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-69

FILE_GETINFOLIST_ Procedure

34 2 Physical record length. For disk volumes and files, the
maximum transfer length of the device; for processes and
$RECEIVE, 132 by convention; for other devices, a configured
value that generally represents some physical limit. This is
always an unsigned value representing a number of bytes.

35 4 Logical device number. For processes, -1; for other files, the
number of the device supporting the specified file. For
partitioned files, the number of the device supporting the
specified partition is returned.

36 2 Subdevice number. The number associated with a subdevice
and assigned by the device subsystem.

40 2 SQL type. For disk objects:
0 Unstructured or Enscribe file
2 SQL table
4 SQL index
5 SQL protection view
7 SQL shorthand view
11 SQL/MX table or view
12 SQL/MX index

41 2 File type. For disk objects other than SQL shorthand views:
0 unstructured
1 relative
2 entry-sequenced
3 key-sequenced

42 2 File code. For disk objects other than SQL shorthand views,
the application-defined file code.

43 2 Logical record length. For structured disk objects, the
maximum number of bytes in a logical record. Superseded by
item 196.

44 2 Block length. For structured disk objects, the length in bytes of
each block of records in the file; for unstructured disk files, the
size in bytes of the system buffer used internally. Superseded
by item 197.

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 4 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-70

FILE_GETINFOLIST_ Procedure

45 2 Key offset. For key-sequenced disk files, the byte offset from
the beginning of the record to the primary key field.
Superseded by item 198.

46 2 Key length. For key-sequenced disk files, the maximum
number of bytes in the file’s primary key field.

47 2 Lock key length. For key-sequenced disk files, the generic-lock
key length. If this value has never been set, the key length of
the file (the value of item 46) is returned. For information about
generic locking, see the Enscribe Programmer’s Guide.

48 2 Queue File. For disk objects, this is nonzero if the object is a
queue file; otherwise it is zero.

50 2 Primary extent size. For disk objects other than SQL shorthand
views, the size in pages (2048-byte units) of the first extent. A
returned value of -1 means that the extent size cannot fit into
this unsigned 2-byte attribute. Item 199 must be used to get the
correct value. Superseded by item 199.

51 2 Secondary extent size. For disk objects other than SQL
shorthand views, the size in pages (2048-byte units) of extents
after the first extent. A returned value of -1 means that the
extent size cannot fit into this unsigned 2-byte attribute. Item
200 must be used to get the correct value. Superseded by
item 200.

52 2 Maximum extents. For disk objects other than SQL shorthand
views, the maximum number of extents the object is allowed to
have.

53 2 Allocated extents. For disk objects other than SQL shorthand
views, the number of extents currently allocated for the file.

54 8 Creation time. For disk objects other than SQL shorthand
views, the Julian GMT timestamp of the file’s creation.

56 8 Last open time. For disk objects other than SQL shorthand
views, the Julian GMT timestamp of the last time the file was
opened.

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 5 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-71

FILE_GETINFOLIST_ Procedure

57 8 Expiration time. For disk objects other than SQL shorthand
views, the Julian GMT timestamp giving the time before which
the file cannot be purged. If this attribute has not been set, the
returned field is zero-filled.

58 2 File owner. For disk objects, the user ID number that identifies
the owner of the file.

59 2 Safeguard security. For disk objects, 1 if the file is under the
protection of the Safeguard security system; 0 otherwise. This
code is equivalent to bit 14 of code 169.

60 2 Progid security. For disk objects, 1 if a process using the file as
its program file is to use the file owner’s user ID as the process
access ID; 0 otherwise.

61 2 Clear on purge. For disk objects, 1 if the area of disk occupied
by the file should be erased (overwritten with zeros) when the
file is purged; 0 otherwise.

62 4 Operating system security string. For disk objects, an array of
four one-byte values specifying (from left to right) who can read,
write, execute, and purge the file. Each byte contains one of
these values:
0 any local ID
1 member of owner’s group (local)
2 owner (local)
4 any network user (local or remote)
5 member of owner’s community
6 local or remote user having same ID as owner
7 local super ID only

This value is not defined if the file is under Safeguard security.

63 2 Licensed file. For disk files, 1 if the file is licensed to run in
privileged mode; 0 otherwise.

65 2 Odd unstructured file. For unstructured files, 1 if I/O transfers
occur with the exact byte counts specified; 0 if transfers are
rounded up to an even-byte boundary.

66 2 Audited file. For disk objects other than SQL shorthand views,
1 if the object is audited by the Transaction Management
Facility (TMF) subsystem; 0 otherwise.

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 6 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-72

FILE_GETINFOLIST_ Procedure

67 2 Audit compression. For disk objects other than SQL shorthand
views, 1 if audit data for this file is to be compressed; 0
otherwise.

68 2 Data compression. For key-sequenced disk objects, 1 if the
entries in data blocks are to be compressed; 0 otherwise.

69 2 Index compression. For key-sequenced disk objects, 1 if the
entries in index blocks are to be compressed; 0 otherwise.

70 2 Refresh EOF. For disk objects other than SQL shorthand
views, 1 if a change to the end-of-file value is to cause the file
label to be written immediately to disk; 0 otherwise.

71 2 Create options. For disk objects, the miscellaneous attributes
of the file in the form specified in the options parameter of
FILE_CREATE_. These attributes are also available as
separate items (items 65 through 70).

72 2 Write through. For disk objects, 1 if the file label specifies the
use of write-through caching; 0 indicates that buffered writes
are used.

73 2 Verify writes. For disk objects other than SQL shorthand views,
1 if the file label specifies that writes to the file are to be read
back and the data verified; 0 otherwise.

74 2 Serial writes. For disk objects other than SQL shorthand views,
1 if the file label specifies that writes are to be made serially to
the mirrors when a file resides on a mirrored disk; 0 indicates
that the system can choose to do either serial or parallel writes.

75 2 File is open. For disk objects other than SQL shorthand views,
1 if the object is either open or has an incomplete TMF
transaction against it; 0 otherwise. This value should always be
1 when it is obtained by a call to FILE_GETINFOLIST_.

76 2 Crash open. For disk objects other than SQL shorthand views,
1 if the object was open with write access when a system failure
occurred and the object has not been opened since; 0
otherwise. This value should always be 0 when obtained by a
call to FILE_GETINFOLIST_.

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 7 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-73

FILE_GETINFOLIST_ Procedure

77 2 Rollforward needed. For disk objects other than SQL shorthand
views, 1 if the object has the TMF rollforward-needed flag set; 0
otherwise.

78 2 Broken. For disk objects other than SQL shorthand views, 1 if
the object has the broken flag set; 0 otherwise.

79 2 Corrupt. For disk objects other than SQL shorthand views, 1 if
the object has the corrupt flag set; 0 otherwise.

80 2 Secondary partition. For disk objects, 1 if the file is a secondary
partition of a partitioned file.

81 2 Index levels. For key-sequenced disk objects, the number of
levels currently used in the key indexing structure.

82 2 SQL program. For disk objects, 1 if the file is a program file
containing compiled SQL statements; 0 otherwise.

83 2 SQL valid. For disk objects, 1 if the file is a program file
containing compiled SQL statements and the compilation is
probably valid.

84 2 SQL-catalog name length. For disk objects, the number of
bytes in the name of the SQL catalog associated with the
object; 0 if no catalog is associated with the object.

85 * SQL-catalog name. For disk objects, the fully qualified name of
the SQL catalog associated with the object. The length of the
name is given by item 84.

90 2 Number of partitions. For disk objects, the number of
secondary partitions the disk object has.

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 8 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-74

FILE_GETINFOLIST_ Procedure

91 * Partition descriptors. For disk files, an array of 4-byte partition
descriptors, one for each secondary partition. Each entry has
this structure:

INT primary-extent-size;
INT secondary-extent-size;

These values give the primary and secondary extent sizes in
pages (2048-byte units). The length in bytes of this item is 4
times the value of item 90. A value of -1 in either of the fields
means that the corresponding extent size cannot fit into the
unsigned 2-byte field. Item 97 must be used to get the correct
value. Superseded by item 97.

92 * Partition-volume name-length array. For disk files, an array of
INT values, each giving the length in bytes of the volume name
(supplied in item 93) on which the corresponding secondary
partition resides. The length in bytes of this item is 2 times the
value of item 90.

93 * Partition-volume names. For disk files, the concatenated
volume names of the secondary partitions. The names are fully
qualified. The length of each is given by the corresponding
entry in item 92. The length of this item is given by item 96, or
equivalently, by the sum of the elements in item 92.

94 2 Partition partial-key length. For partitioned key-sequenced disk
files, the number of bytes of the primary key that are used to
determine which partition of the file contains a particular record.

95 * Partition partial-key values. For partitioned key-sequenced disk
files, the concatenated partial-key values. Since the number of
entries is given by item 90, and the size of each entry is given
by item 94, the size of item 95 is the product of those two
values.

96 2 Partition-volume names total length. For disk files, the total
number of bytes occupied by the concatenated volume names
of the secondary partitions. This is the same as the sum of the
elements in item 92.

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 9 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-75

FILE_GETINFOLIST_ Procedure

97 * Partition descriptors (32-bit). An array of 8-byte values, one for
each secondary partition. Each entry has this structure:

INT (32) primary-extent-size;
INT (32) secondary-extent-size;

These values give the primary and secondary extent sizes in
pages. The length of this item in bytes is eight times item 90.
Supersedes item 91.

98 * Partition-volume relative names-length array. For disk files, an
array of INT byte counts, each giving the length of the
corresponding secondary partition-volume name in the form
returned by item 99. The length of this item is two times item
90. The length of this item is the sum of the elements in item
98.

99 * Partition-volume relative names. For disk files, the
concatenated names of the volumes of the secondary partitions.
Unlike item 93, the names can be missing a system name
(implying the system of the primary file) depending on how the
names were specified when the file was created.

100 2 Number of alternate keys. For disk files, the number of
alternate-key fields.

101 * Alternate-key descriptors. For disk files, an array of key-
descriptor entries, one for each alternate key. Each entry is 12
bytes long. The structure of each entry is described under item
101 in Table 5-3 on page 5-30 (under FILE_CREATELIST_). The
length in bytes of this item is 12 times the value of item 100.
Superseded by item 106.

102 2 Number of alternate-key files. For disk files, the number of files
holding alternate-key records.

103 * Alternate-file name-length array. For disk files, an array of INT
values, each giving the length in bytes of the corresponding
alternate-file name found in item 104. The length in bytes of
this item is 2 times the value of item 102.

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 10 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-76

FILE_GETINFOLIST_ Procedure

104 * Alternate-file names. For disk files, the concatenated names of
the alternate-key files. The names are fully qualified. The
length of each is given by the corresponding entry in item 103.
The length of this item is given by item 105, or equivalently, by
the sum of the elements of item 103.

105 2 Alternate-file total name length. For disk files, the total number
of bytes occupied by the concatenated alternate-file names.
This is the same as the sum of the elements in item 103.

106 * Alternate-key descriptors (32-bit). An array of 14-byte descriptor
entries, one for each alternate key. Each entry has this
structure:

INT key-specifier;
INT key-len;
INT (32) key-offset;
INT key-filenum;
INT null-value;
INT attributes;

The attributes parameter has these fields:

<0> Do not index when null.
<1> Unique.
<2> Do not update.
<3> Insertion order duplicate.

108 * Alternate-file relative name-length array. For disk files, an array
of INT byte counts, each giving the length of the corresponding
alternate-key file name in the form returned by item 109. The
length of this item is two times item 102.

109 * Alternate-file relative names. For disk files, the concatenated
names of the alternate-key files. Unlike item 104, the system
name can be left out (implying the system of the primary file)
depending on how the names were specified when the file was
created. The length of each name is given by the
corresponding entry in item 108. The length of this item is given
by the sum of the elements of item 108.

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 11 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-77

FILE_GETINFOLIST_ Procedure

110 4 Volume capacity. For disk volumes and disk objects, the data
capacity of the volume as indicated in the volume label,
expressed in pages (2048-byte units). This value accounts for
disk space used for data protection (such as spare sectors), but
not for other system uses. For files residing on Storage
Management Foundation (SMF) virtual disks, this item code will
return a -1.

111 4 Volume free space. For disk volumes and disk objects, the total
free space currently available on the volume, in pages (2048-
byte units). For files residing on Storage Management
Foundation (SMF) virtual disks, this item code will return a 0.

112 4 Volume fragments. For disk volumes and disk objects, the
number of individual free space fragments on the volume. For
files residing on SMF (Storage Management Foundation) virtual
disks, this item code will return a 0.

113 4 Largest volume fragment. For disk volumes and disk objects,
the size in pages of the largest free space fragment on the
volume. For files residing on SMF (Storage Management
Foundation) virtual disks, this item code will return a 0.

114 16 Disk drive types. For disk volumes and disk objects, the types
of drives on which the volume is mounted. This item contains
two 8-byte fields that give the types of the primary and mirror
drives respectively. Each field is a drive-product number in
ASCII. If the information is unavailable for a drive (because it’s
inaccessible or not configured), the corresponding field is
returned blank. For drive models 4110 and 4120, which cannot
be distinguished by software, the returned value is “4110 ”.
For files residing on SMF (Storage Management Foundation)
virtual disks, this item code will return blanks.

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 12 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-78

FILE_GETINFOLIST_ Procedure

115 8 Disk drive capacities. For disk volumes and disk objects, the
capacities in pages (2048-byte units) of the primary and mirror
drives on which the volume is mounted. This item contains two
INT(32) values, expressing in pages (2048-byte units) the
capacities of the primary and mirror drives respectively. The
values account for disk space used for data protection (such as
spare sectors), but not for other system uses. If the information
is unavailable for a drive (because it is inaccessible or not
configured), 0D is returned for that drive. For files residing on
SMF (Storage Management Foundation) virtual disks, this item
code will return blanks.

116 2 Sequential block buffering. 1 if the open is using a sequential
block buffer; 0 otherwise.

117 8 Last open LCT. For disk objects, the timestamp of the last time
the file was opened, expressed in the local civil time (LCT) of
the system on which the file resides.

118 8 Expiration LCT. For disk objects, the timestamp giving the time
before which the file cannot be purged, expressed in the local
civil time (LCT) of the system on which the file resides. If this
attribute has not been set, the returned field is zero-filled.

119 8 Creation LCT. For disk objects, the timestamp of the file’s
creation, expressed in the local civil time (LCT) of the system on
which the file resides.

136 4 Partition EOF. For disk objects other than SQL shorthand views,
the end-of-file value of the partition named in the open
operation (when returned by FILE_GETINFOLIST_) or of the
partition named in this call (when returned by
FILE_GETINFOLISTBYNAME_). A returned value of -1 means
that the end-of-file value cannot fit into this unsigned 4-byte
attribute. Item 193 must be used to get the correct value.
Superseded by item 193.

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 13 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-79

FILE_GETINFOLIST_ Procedure

137 4 Partition maximum size. For disk objects other than SQL
shorthand views, the maximum allowable size in bytes of the
partition named in the open operation (when returned by
FILE_GETINFOLIST_) or of the partition named in this call
(when returned by FILE_GETINFOLISTBYNAME_). A returned
value of -1 means that the partition maximum size cannot fit into
this unsigned 4-byte attribute. Item 194 must be used to get the
correct value. Superseded by item 194.

140 8 Partition modification time. For disk objects other than SQL
shorthand views, the Julian GMT timestamp indicating the last
modification time of the partition named in the open operation
(when returned by FILE_GETINFOLIST_) or of the partition
named in this call (when returned by
FILE_GETINFOLISTBYNAME_).

141 8 Partition modification LCT. For disk objects other than SQL
shorthand views, the timestamp indicating the last modification
time of the partition named in the open operation (when
returned by FILE_GETINFOLIST_) or of the partition named in
this call (when returned by FILE_GETINFOLISTBYNAME_).
The time is expressed in the local civil time (LCT) of the system
on which the file resides. It is derived from the Julian GMT
partition modification time (item code 140).

142 4 Aggregate EOF. For disk objects, the end-of-file value of the file.
For a partitioned file where the entire file has been opened, the
end-of-file value of the entire file is returned. A returned value
of %hFFFFFFFF indicates that the end-of-file value cannot fit
into this unsigned 4-byte attribute. In this case, to obtain the
end-of-file value, use the 8-byte attribute, which is item code
191. Superseded by item 191.

143 4 Aggregate maximum file size. For disk objects, the maximum
allowable size in bytes of the file. For a partitioned file where
the entire file has been opened, the maximum size of the entire
file is returned. A returned value of %hFFFFFFFF indicates that
the maximum file size cannot fit into this unsigned 4-byte
attribute. In this case, to obtain the maximum file size, use the
8-byte attribute, item code 192. Superseded by item 192.

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 14 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-80

FILE_GETINFOLIST_ Procedure

144 8 Aggregate modification time. For disk objects, the Julian GMT
timestamp indicating the last modification time of the file. For a
partitioned file, the most recent modification time of all
accessible partitions.

145 8 Aggregate modification LCT. For disk objects, the timestamp
indicating the last modification time of the file, expressed in the
local civil time (LCT) of the system on which the file resides.
For a partitioned file, the most recent modification time of all
accessible partitions.

153 2 Logical (packed) record length. In an SQL object, the maximum
number of bytes in a packed record.

160 6 Three-word partition modification LCT. For disk objects other
than SQL shorthand views, the three-word timestamp indicating
the last modification time of the partition named in the open
operation (when returned by FILE_GETINFOLIST_) or of the
partition named in this call (when returned by
FILE_GETINFOLISTBYNAME_). The time is expressed in the
local civil time (LCT) of the system on which the file resides and
represents the number of 10-millisecond units since midnight
(00:00) on December 31, 1974.

161 2 OSS file. 1 if the file is an OSS file; 0 otherwise.

164 4 OSS file owner’s group ID. The group ID is a number in the
range 0 through 65535.

165 4 OSS access permissions. Applies only to OSS files. See the
chmod(2) function reference page either online or in the Open
System Services System Calls Reference Manual for a description
of OSS access permissions.

166 2 OSS open. 1 if the open was performed by any of these OSS
functions: creat(), chdir(), open(), or opendir(); 0
otherwise. This code applies only to FILE_GETINFOLIST_.

167 4 File owner. For disk files, the user ID number that identifies the
owner of the file. The user ID is a number in the range 0
through 65535.

168 2 OSS number of links. Applies only to OSS files.

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 15 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-81

FILE_GETINFOLIST_ Procedure

169 2 Security mechanisms in effect. For disk objects, the word of
bits indicates the security mechanisms in effect for the given
object. Note that the security mechanism of an object is not
necessarily related to the overall security of the subvolume or
volume.

<0:10> reserved
<11> POSIX ACL file security
<12> OSS security
<13> SQL security
<14> Safeguard file security
<15> Guardian file security

Note: Bit 11 is supported only on systems running G06.29 and
subsequent RVUs. For systems running H-series RVUs, it is a
reserved bit.

176 2 Unreclaimed free space. For SQL tables and indexes, 1 if the
object has the F flag (UNRECLAIMED FREE SPACE) set; 0
otherwise.

177 2 Incomplete SQLDDL operation. For SQL tables and indexes, 1
if the object has the D flag (INCOMPLETE SQLDDL OPERATION)
set; 0 otherwise.

178 2 Physical volume name length. The length in bytes of the name
returned by item 179.

179 * Physical volume name. For disk objects, the name of the
volume on which the object resides, in external form with
system name. This can be different from the volume indicated
in the object's name (for example, for NonStop Storage
Manager Foundation (SMF) objects).

180 2 Physical volume primary processor. For disk objects, the
processor number that contains the current primary disk
process supporting the volume on which the object resides.

182 2 Physical file name length. The length in bytes of the name
returned by item 183.

183 * Physical file name. For SMF disk objects, the name of the
physical file where the data resides, in fully qualified external
form. For other disk objects, this item has zero length.

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 16 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-82

FILE_GETINFOLIST_ Procedure

184 2 Referencing logical name length. The length in bytes of the
name returned by item 185.

185 * Referencing logical name. For a physical file containing the
data of a SMF virtual disk object, the name of that SMF object
in fully qualified external form. For other disk objects, including
those specified by a SMF logical name, this item has zero
length.

191 8 Aggregate EOF 64-bit. For disk objects, the end-of-file value of
the file. For a partitioned file where the entire file has been
opened, the end-of-file value of the entire file is returned.

192 8 Aggregate maximum file size 64-bit. For disk objects, the
maximum allowable size in bytes of the file. For a partitioned
file where the entire file has been opened, the maximum size of
the entire file is returned.

193 8 Partition end-of-file (64-bit). For disk objects other than SQL
shorthand views, the number of bytes in the object. If the file is
partitioned, determined from the specified partition only.

194 8 Partition maximum size (64-bit). For disk objects other than
SQL shorthand views, the maximum number of bytes the object
is allowed to contain. If the file is partitioned, determined from
the specified partition only.

195 2 File format. Returns the file format (1 or 2). Format 1 files allow
only as many as 4 KB blocks and as many as 2 GB partitions;
Format 2 files allow larger blocks and partitions.

196 4 Logical record length (32-bit). For structured disk files, the
maximum number of bytes in a logical record. Supersedes item
43.

197 4 Block length (32-bit). For structured files, the size of a block of
records. For unstructured files, the unstructured buffer size.
Supersedes item 44.

198 4 Key offset (32-bit). For key-sequenced disk files, the byte offset
from the beginning of the record to the primary-key field.
Supersedes item 45.

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 17 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-83

FILE_GETINFOLIST_ Procedure

199 4 Primary extent size (32-bit). The size in pages (2048-byte
units) of the first extent. Supersedes item 50.

200 4 Secondary extent size (32-bit). The size in pages (2048-byte
units) of extents after the first extent. Supersedes item 51.

201 8 Next record pointer (64-bit). For opened disk files other than
key-sequenced, and not accessed with alternate key, the setting
of the next-record pointer in 64-bit form. Supersedes item 11.

202 8 Current record pointer (64-bit). For opened disk files other than
key-sequenced, and not accessed with alternate key, the setting
of the current record pointer in 64-bit form. Supersedes item
12.

203 2 Current key length. For opened structured disk files, the length
in bytes of the current key value (see item 204). Supersedes
item 14.

204 * Current key value (64-bit). The current key value for opened
structured disk files. The length is given by item 203.
Supersedes item 15.

This item differs from item 15 for non-key-sequenced files when
the current key is the primary key, in which case the 64-bit form
of the key is returned instead of the 32-bit form.

205 2 Current Primary-key length. For opened structured disk files,
the length in bytes of the current primary-key value (obtained
using item 206). Supersedes item 16.

206 * Current Primary-key value (64-bit). The current primary-key
value for opened structured disk files. The length is given by
item 205. Supersedes item 17.

This item differs from item 17 in that for non-key-sequenced
files, the 64-bit form of the key is returned instead of the 32-bit
form.

212 2 Block checksumming option. For Format 2 structured files, 1
indicates that the checksum calculation and comparison is
used; 0 indicates it is not used.

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 18 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-84

FILE_GETINFOLIST_ Procedure

221 * Partition maximum extent size array. For partitioned disk files,
this item is an array of INT of the maximum extents value for
each secondary partition. The length of the array is 2 times the
number of partitions (item 90).

225 2 SQL/MX object. Applies only to disk objects. 1 if the object is
an SQL/MX object, 0 otherwise.

226 2 SQL/MX physical object. Applies only to SQL/MX objects.

<0:14> reserved

<15> 1 if resource fork, 0 otherwise

227 2 MX partition method. Applies only to SQL/MX objects.

1 SQL/MX range partitioned

2 SQL/MX hash partitioned

228 2 ANSI name length. Applies only to SQL/MX objects. The
length, in bytes, of the ANSI name. The length is 0 if the MX
object has no ANSI name (for example, a resource fork).

229 * ANSI name. Applies only to SQL/MX objects. The ANSI name
of the MX object. The length of the name is given bsy item 228.

230 2 ANSI name space. Applies only to SQL/MX objects. The name
of the ANSI name space. The value is either “TA” or “IX”.

2351 2 Direct I/O buffer protection. Applies only to disk objects. The
state of the TRUST flag indicating direct I/O access permission
to user buffers when the process is running. The values are:
0 TRUST flag is disabled
1 TRUST flag is enabled for private access to the process
3 TRUST flag is enabled for shared access to the process

236 32 Disk drive types2. For disk volume and disk objects, the types
of drives on which the volume is mounted. This item returns the
same information as the info item 114 (Disk Drive Type) except
that it returns 16 bytes for each for the primary and secondary
drives. Blanks are returned if one of the drives is not present.

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 19 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-85

FILE_GETINFOLIST_ Procedure

237 10 ErrorSetExternally. For disk files, an array of 5 INT values is
returned.
0 Indicates if the file-system error variables are set

externally anytime for that file. If the value is 0, it implies
that the file-system errors have not been overridden
externally. If the value is 1, it implies that the file-system
errors have been overridden externally. That is,
FILE_SETLASTERROR_ has been invoked for this file.

1 Provides last-error value before it was overridden,
otherwise 0 is returned.

2 Partition in error before overridden, otherwise 0 is
returned.

3 Key in error before overridden, otherwise 0 is returned.
4 Provides error-detail overridden, otherwise 0 is

returned.

The item code returns this information for the specified
filenum. If the filenum identifies an open file, the information
associated with that file number is returned. If the filenum is
-1, the information for an operation not associated with a file
number (such as a purge, waited open, or failed create
operation) is returned.

For more information about the file-system error overrides, see
FILE_SETLASTERROR_ Procedure.

1001 2 Tape process: Density

-1 unsupported or unknown
0 800 bpi (NRZI)
1 1600 bpi (PE)
2 6250 bpi (GCR)
8 38000 bpi
9 Digital Data Storage (DDS)

1002 2 Tape process: Compression

-1 unsupported or unknown
1 compression disabled
2 compression enabled

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 20 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-86

FILE_GETINFOLIST_ Procedure

1003 2 Tape process: Tapemode

-1 unsupported or unknown
0 startstop
1 streaming
2 slow streaming
3 fast streaming

1004 2 Tape process: Level of buffering

-1 unsupported or unknown
0 record
1 file
2 reel

1005 2 Tape or Open SCSI process: Device subtype

-1 unknown
0 passthrough mode
5 5120 tape drive
6 5160 or 5170 tape drive
7 5130 tape drive
8 5180 tape drive
9 5190 tape drive
10 5188 tape drive
11 5142 tape drive
14 521A, 524A, or 525A tape drives

1006 2 Tape process: Automatic Cartridge Loader (ACL) status

-1 not installed or unknown
1 installed

1007 2 Tape process: Number of tracks

-1 unknown
0 not applicable
9 9-track tape drive
18 18-track tape drive
36 36-track tape drive

1008 2 Open SCSI process: SIM queue status

0 not frozen
1 frozen

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 21 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-87

FILE_GETINFOLIST_ Procedure

1009 2 Tape or Open SCSI process: Current device state

0 up
1 down

1010 2 Tape process: current device status

0 not ready
1 online or ready

1011 2 Tape process: Short write mode

-1 unsupported or unknown
0 allow writes shorter than 24 bytes; a record shorter than

24 bytes is padded with zeros to a length of 24 bytes
(default).

1 disallow writes shorter than 24 bytes.
2 allow writes shorter than 24 bytes; no padding is done

on records shorter than 24 bytes.

1012 2 Tape process: Checksum mode

0 normal I/O mode
1 checksum mode

1013 2 Tape or Open SCSI process: Tracing level

0 no tracing
x x tracing level

1014 2 Tape or Open SCSI process: Number of openers

1 1 opener (might be exclusive)
x x openers

1015 2 Tape process: Current controller state

-1 unknown
0 unloaded
1 loaded

1016 2 Tape process: Current assignment status

-1 no applicable
0 unassigned
1 assigned (5188 tape drive only)

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 22 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-88

FILE_GETINFOLIST_ Procedure

1017 2 Tape process: Current tape movement

-1 not at BOT
0 at BOT

1018 2 Tape process: Return end-of-tape (EOT) message when writing
labeled tapes

0 volume switching is transparent
1 notify user of volume switch by sending error 150 (EOT).

COBOL applications do not receive error 150 (EOT);
the COBOL run-time library (RTL) handles this error
transparently.

1019 2 Tape process: Pending errors

1020 2 Tape process: Reason for downing

1021 2 Tape process: Current checkpoint state

1022 2 Open SCSI process: Number of open paths

1023 2 Open SCSI process: Maximum number of I/O requests

1024 2 Open SCSI process: Number of pending I/Os

1025 2 Open SCSI process: Highest number of pending I/Os since the
IOP was started

1028 2 Open SCSI process: Maximum number of openers

1900 4 Tape or Open SCSI process: Maximum transfer length allowed

32767 maximum transfer length is 32767 bytes
57344 maximum transfer length is 57344 bytes

3102 2 Tape process: Length in bytes of attribute 3103. 0 if no tape is
mounted or the tape does not have labels.

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 23 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-89

FILE_GETINFOLIST_ Procedure

OSS Considerations

• These item codes are not applicable to OSS objects but do not cause an error to
be returned: 50, 51, 59, 60, 61, 62, 192, 199, and 200.

Example
itemlist := 3; ! return current file name length
itemlist[1] := 4; ! return current file name
error := FILE_GETINFOLIST_ (filenumber, itemlist, 2,
 result^buffer,
 result^max);

Related Programming Manuals
For programming information about the FILE_GETINFOLIST_ procedure, see the
Guardian Programmer’s Guide. For information on the SQL objects and programs,
see the HP NonStop SQL/MP Programming Manual for C and the HP NonStop
SQL/MP Programming Manual for COBOL.

3103 up to 240 Tape process: Automatic Volume Recognition (AVR) labels

Beginning-of-volume label (VOL1) label and the first beginning-
of-file-section label group (HDR1, HDR2).

3104 2 Tape process: Length in bytes of attribute 3105. 0 if no tape is
mounted or the tape does not have labels.

3105 up to 160 Tape process: Current labels

Beginning-of-file-section label group (HDR1, HDR2) of the
current file.

Table 5-4. FILE_GETINFOLIST_ Item Codes (page 24 of 24)

Items in this table with a size of 2 bytes are of data type INT. The term “disk file”
applies only to Enscribe files. The term “disk object” applies to Enscribe files and
SQL objects. Items described as “Applies only to SQL/MX objects” return file-system
error 2 if queried on anything that is not an SQL/MX object.

Item
Code

Size
(Bytes) Description

1 Item code 235 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-90

FILE_GETINFOLISTBYNAME_ Procedure

FILE_GETINFOLISTBYNAME_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
OSS Considerations
Example
Related Programming Manuals

Summary
The FILE_GETINFOLISTBYNAME_ procedure obtains detailed information about a file
identified by file name.

A related (and simpler to use) procedure, FILE_GETINFOBYNAME_, obtains a limited
set of information about a file identified by file name.

Syntax for C Programmers

Syntax for TAL Programmers

Note. In the TNS/E environment the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(FILE_GETINFOLISTBYNAME_)>

short FILE_GETINFOLISTBYNAME_ (const char *filename
 ,short length
 ,short *item-list
 ,short number-of-items
 ,short *result
 ,short result-max
 ,[short *result-length]
 ,[short *error-item]);

error := FILE_GETINFOLISTBYNAME_ (filename:length ! i:i
 ,item-list ! i
 ,number-of-items ! i
 ,result ! o
 ,result-max ! i
 ,[result-length] ! o
 ,[error-item]); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-91

FILE_GETINFOLISTBYNAME_ Procedure

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation.

filename:length input:input

STRING .EXT:ref:*, INT:value

specifies the Guardian name of the file of interest. The value of filename must
be exactly length bytes long and must be a valid file name or DEFINE name. If
the name is partially qualified, it is resolved using the contents of the =_DEFAULTS
DEFINE.

item-list input

INT .EXT:ref.*

is an array of values that specify the items of information to be returned by the
procedure. Each element of the array must be of type INT and contain a code
value of 30 or greater from Table 5-4 on page 5-50 (under FILE_GETINFOLIST_).

number-of-items input

INT:value

specifies the number of items supplied in item-list.

result output

INT .EXT:ref:*

is the buffer in which the requested items of information are returned. The item
values are returned in the order specified in item-list. Each item begins on an
INT boundary. Every variable-length item has an associated item giving its length;
the caller should put this associated item into item-list immediately before the
variable-length item.

result-max input

INT:value

specifies the maximum size in bytes of the array of values that can be returned in
result. If the specified size is not large enough to hold the requested items, an
error value of 563 (buffer too small) is returned and the contents of result are
undefined.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-92

FILE_GETINFOLISTBYNAME_ Procedure

result-length output

INT .EXT:ref:1

returns the length in bytes of the array of values returned in result. result-
length is an odd value only if the last value in the array has an odd length.

error-item output

INT .EXT:ref:1

returns the index of the item that was being processed when an error was
detected. The index of the first item in item-list is 0.

Considerations

• Normally if an error is returned, the contents of the result parameter are
undefined. However, if the returned error code is 2 (operation invalid for file type),
the result parameter contains a combination of correct values (for valid items)
and unchanged memory locations (for invalid items because of the kind of file).
The error-item value points to the first invalid item.

When error 2 occurs, any items prior to the one pointed to by error-item are
returned with correct values in the result parameter; following items might or
might not be valid. If a following item is known to be valid because of the kind of
file involved, the correct result value for the item can be accessed in the
corresponding location in the result buffer. To do so, the program will have to
account for space in the buffer reserved for preceding invalid items as well as for
space for preceding valid items. (Preceding in this case refers to some item that
occurs before the item in question.) See description of items in Table 5-4 on
page 5-66 to determine the kinds of files for which an item is valid.

Invalid items that are fixed-size will have the amount of space reserved in the
result buffer, but that section of buffer will be unchanged. Invalid items that are
variable-sized have no space reserved for them, but this should not be depended
upon because they could become valid in a future RVU and thus start occupying
space. The programmer might want to place all the items that could cause error 2
in the item list after those that are not expected to cause this error.

• Specifying a subtype 30 process

When FILE_GETINFOLISTBYNAME_ is called with a file name that designates a
subtype 30 process, the procedure sends a device inquiry system message to the
process to determine the device type and subtype. The message sent by
FILE_GETINFOLISTBYNAME_ is in C-series format (message -40) or D-series
format (message -106) depending on the options used when the subtype 30
process opened $RECEIVE through the FILE_OPEN_ procedure. For the formats
of messages -40 and -106, see the Guardian Procedure Errors and Messages
Manual.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-93

FILE_GETINFOLISTBYNAME_ Procedure

The subtype 30 process replies with the requested information in system message
-40 or -106, corresponding to the original message. The returned device type
value should be one of those listed in Appendix A, Device Types and Subtypes. If
the message response is incorrectly formatted, the FILE_GETINFOLISTBYNAME_
caller receives device type and subtype values of 0. The REPLY caller (the
subtype 30 process) receives an error 2.

A deadlock occurs if a subtype 30 process calls FILE_GETINFOLISTBYNAME_ on
its own process name.

• Last modification times and last open times

For all items in Table 5-4 on page 5-66 that return some form of last modification
time, creation time is returned for an object that has never been modified.
Similarly, for items that return some form of last open time, creation time is
returned for an object that has never been opened.

• Specifying a SMF logical file

When the FILE_GETINFOLISTBYNAME_ procedure is called with a file name that
designates an SMF logical file and the physical volume containing the associated
physical file is inaccessible, an error is returned. An exception to this is when a
call requests only items 182 and 183; in that case, the requested physical file
name is returned without error, provided that the SMF virtual volume process is
accessible and encounters no error.

• Secondary partition of non-SQL Enscribe files

If the filename argument contains a secondary partition of an Enscribe file other
than SQL, it returns only the value for the partition named. Only the primary
partition of a file other than an SQL file has information on the other partitions in its
label. Only when filename contains the primary partition do the aggregate items
return the expected information.

• Support for SQL files includes both Format 1 and Format 2 files.

• Referencing Enscribe format 2 files with extent size greater than 65535 or OSS
files larger than approximately 2 gigabytes.

If the file being referenced is an Enscribe format 2 file and the extent size exceeds
65535 or OSS files larger than approximately 2 gigabytes, item codes will return -1
with no error indication.

OSS Considerations

• These item codes are not applicable to OSS objects but do not cause an error to
be returned: 50, 51, 59, 60, 61, 62, 192, 199, and 200.

Example
itemlist := 54; ! return creation timestamp of file
number^of^items := 1;

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-94

FILE_GETLOCKINFO_ Procedure

result^max := 8; ! timestamp is 8 bytes long
error := FILE_GETINFOLISTBYNAME_ (name:length, itemlist,
 number^of^items, result,
 result^max);

Related Programming Manuals
For programming information about the FILE_GETINFOLISTBYNAME_ procedure,
see the Guardian Programmer’s Guide. For information on the SQL objects and
programs, see the HP NonStop SQL/MP Programming Manual for C and the HP
NonStop SQL/MP Programming Manual for COBOL.

FILE_GETLOCKINFO_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
OSS Considerations
Example

Summary
The FILE_GETLOCKINFO_ procedure obtains information about locks (held or
pending) on a local disk file or on a set of files on a local disk volume. Each call
returns information about one lock and as many holders or waiters as permitted by the
caller’s request. A succession of calls can obtain information about all the locks on a
file or volume, or all the locks owned by a process or transaction.

Syntax for C Programmers

• The parameter maxlen specifies the maximum length in bytes of the character
string pointed to by locked-name, the actual length of which is returned by

#include <cextdecs(FILE_GETLOCKINFO_)>

short FILE_GETLOCKINFO_ (const char *name
 ,short length
 ,[short *processhandle]
 ,[short *transid]
 ,short *control
 ,short *lock-descr
 ,short lock-descr-length
 ,short *participants
 ,short max-participants
 ,[char *locked-name]
 ,[short maxlen]
 ,[short *locked-name-length]);

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-95

FILE_GETLOCKINFO_ Procedure

locked-name-length. All three of these parameters must either be supplied or
be absent.

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation. Possible
error values include:

0 Information for one locked file and all its lock holders/waiters was returned
without error. More locks might exist; continue calling FILE_GETLOCKINFO_.

1 End of information about locks associated with a process or transid.

2 The operation specified is not allowed on this type of file.

11 Lock information for the file, process, or transaction was not found. If any
information has been returned already, it is now invalid.

12 The disk-process lock tables were changed between calls, so any previously
returned information might be invalid. To start over, set control to 0 and call
FILE_GETLOCKINFO_ again.

21 Invalid value specified for max-participants.

41 Checksum error on control. The control parameter has been altered
between calls to FILE_GETLOCKINFO_ or was not initialized before the first
call.

45 Information for one locked record or file has been returned, but the
participants buffer was too small to hold all available information on lock
holders/waiters. More locks might exist, so continue calling
FILE_GETLOCKINFO_ (with control unchanged).

error := FILE_GETLOCKINFO_ (name:length ! i:i
 ,[processhandle] ! i
 ,[transid] ! i
 ,control ! i,o
 ,lock-descr ! o
 ,lock-descr-length ! i
 ,participants ! o
 ,max-participants ! i
 ,[locked-name:maxlen] ! o:i
 ,[locked-name-length]); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-96

FILE_GETLOCKINFO_ Procedure

name:length input:input

STRING .EXT:ref:*, INT:value

specifies the name of the disk file or volume for which lock information is to be
retrieved. The value of name must be exactly length bytes long and must be a
valid disk file name or volume name; if processhandle or transid are
specified, it must be a volume name. If the supplied name is partially qualified, it is
resolved using the contents of the =_DEFAULTS DEFINE. The specified disk file
or volume must be on the local system. The value of name cannot be a DEFINE
name.

processhandle input

INT .EXT:ref:10

if present and not null, is the process handle of the process that is holding or
waiting for the locks about which information is to be returned. A nonnull value of
processhandle cannot be supplied when transid is supplied. A null process
handle has -1 in each word.

transid input

INT .EXT:ref:4

if present and not null, is the transaction identifier of the transaction that is holding
or waiting for the locks about which information is to be returned. A nonnull value
of transid cannot be supplied when processhandle is supplied. A null transid
contains 0 in each word.

control input, output

INT .EXT:ref:10

is an array of words used by FILE_GETLOCKINFO_ to control a succession of
calls to the procedure. When making the first of a series of calls, you must
initialize word 0 of this array to the value 0. On subsequent calls, pass the value of
control that was returned by the previous call.

lock-descr output

INT .EXT:ref:*

points to a buffer that, on return, contains a block of words describing a lock.
lock-descr-length specifies the size in bytes of the buffer. If the buffer is not
large enough to contain the information, an error value of 563 (buffer too small) is
returned and the contents of lock-descr are undefined.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-97

FILE_GETLOCKINFO_ Procedure

The information is returned in this format:

[0] Lock type. 0 indicates a file lock; 1 indicates a record lock.

[1] Flags. The bits are:

<0> = 1 Indicates a generic lock

<1:15> (reserved)

[2] The number of participants (the number of holders and waiters for the
lock).

[3:4] Record specifier (4 bytes) if the lock is a record lock on a Format 1 file
that is not key-sequenced; undefined otherwise.

[5] The length in bytes of the key if the lock is a record lock on either a
key-sequenced file or a Format 2 non-key-sequenced file (the length is
always 8 in the latter case); 0 otherwise.

[6:N] The key value if the lock is a record lock on a key-sequenced file, or a
Record specifier (8 bytes) if the lock is a record lock on a Format 2
non-key-sequenced file.

lock-descr-length input

INT:value

specifies the length in bytes of the buffer pointed to by lock-descr.

participants output

INT .EXT:ref:*

returns an array in which each entry describes a process or transaction that is
holding or waiting for the lock described by lock-descr. The maximum number
of processes or transactions that can be described is specified by max-
participants. Each entry is 12 words long and has this format:

[0] Flags. The bits have these meanings:

<0> = 1 The participant is identified by process handle.

0 The participant is identified by transid.

<1:3> = 1 The lock is granted.

0 The lock is in the waiting state.

<4> = 1 The lock is an intent lock internally set by DP2.

<5:11> (Reserved)

<12:15>Lock States. These lock states have these meanings:

LITERAL LK^IS = 1 Intent share for file locks needed.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-98

FILE_GETLOCKINFO_ Procedure

LITERAL LK^IX = 2Intent exclusive for file locks. Needed to lock a
record using LK^UX, LK^X.

LITERAL LK^R = 3 Used only to test for existence of KS.Record range
locks (LK^S AND LK^X).

LITERAL LK^US = 4 Share for unique record locks. For KS record lock
a range is not locked.

LITERAL LK^S = 5 Share for file and record locks. For KS record lock
a range is locked. Lines deleted.

LITERAL LKSIX = 6 Share and intent exclusive derived state for file
locks.

 LITERAL LK^UX = 7 Exclusive unique record locks. For KS record
lock a range is locked. Lines deleted.

LITERAL LK^X = 8 Exclusive for file and record locks. For KS record
lock a range is locked.

[1] Reserved

[2:11] The process handle of the participant
(if participants[0].<0> = 1).

[2:5] The transid of the participant (if participants[0].<0> = 0).

max-participants input

INT:value

specifies the maximum number of lock holders and waiters that can be described
in the participants buffer.

locked-name:maxlen output:input

STRING .EXT:ref:*, INT:value

if present and a volume name is supplied for name, returns the subvolume and file
identifier (the two rightmost parts of the file name) of the file on which the lock is
set. maxlen gives the length in bytes of the string variable locked-name.

locked-name-length output

INT .EXT:ref:1

returns the length in bytes of the value of locked-name.

Considerations

• The FILE_GETLOCKINFO_ procedure supports single SMF logical files but does
not support entire SMF virtual volumes. If the name of an SMF logical file is
supplied to this procedure, the system queries the disk process of the appropriate
physical volume to obtain information about current lock holders and lock waiters

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-99

FILE_GETLOCKINFO_ Procedure

on the file. If the name of an SMF virtual volume is supplied, but not a full logical
file name, an error is returned.

If you call the FILE_GETLOCKINFO_ procedure and supply the name of a physical
volume, lock information is returned for any file on that volume that is open under
an SMF logical file name, but the returned file name is that of the physical file
supporting the logical file.

• A valid range for max-participants is 1-2548.

OSS Considerations

• This procedure operates only on Guardian objects. OSS files cannot have
Guardian locks, so there is no information to be returned. If an OSS file is
specified, error 0, indicating no error, is returned.

Example
! The following code obtains all the available information
! about locks on the specified disk file and about all the
! holders/waiters.

control := 0;
DO
 BEGIN
 error := FILE_GETLOCKINFO_ (myfile:length, , , control,
 lock^descriptor,
 lock^descriptor^len,
 participants,
 max^participants);
 IF (error = 0) ! success, but maybe more locks ! OR
 (error = 45) ! more information available ! THEN
 BEGIN
 -- process the obtained information
 END;
 END;
UNTIL (error <> 0) AND (error <> 45);

IF error <> 1 THEN ! error 1 means end of info
 BEGIN
 -- handle the error
 END;

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-100

FILE_GETOPENINFO_ Procedure

FILE_GETOPENINFO_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The FILE_GETOPENINFO_ procedure obtains information about the opens of one
disk file or all the files on a disk device, or the opens of certain nondisk devices. Each
call returns information about one open; make successive calls to
FILE_GETOPENINFO_ to learn about all the opens.

Syntax for C Programmers

• The parameter maxlen specifies the maximum length in bytes of the character
string pointed to by filename, the actual length of which is returned by
filenamelen. All three of these parameters must either be supplied or be
absent.

#include <cextdecs(FILE_GETOPENINFO_)>

short FILE_GETOPENINFO_ (const char *searchname
 ,short length
 ,long long *prevtag
 ,[short *primary-opener]
 ,[short *backup-opener]
 ,[short *accessmode]
 ,[short *exclusion]
 ,[short *syncdepth]
 ,[char *filename]
 ,[short maxlen]
 ,[short *filenamelen]
 ,[short *accessid]
 ,[short *validmask]);

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-101

FILE_GETOPENINFO_ Procedure

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation. Error 1
(EOF) indicates that there are no more opens. Error 2 (invalid operation) is
returned for nondisk devices that cannot return any valid information.

searchname:length input:input

STRING .EXT:ref:*, INT:value

specifies the name of the disk file, volume, device, or subdevice about which open
information is to be returned. The value of searchname cannot be a DEFINE
name. If the name is partially qualified, it is resolved using the =_DEFAULTS
DEFINE.

prevtag input, output

FIXED .EXT:ref:1

is a value identifying the open that was last returned. Before the first call, initialize
prevtag to 0; on subsequent calls, pass the parameter unchanged.

primary-opener output

INT .EXT:ref:10

is the process handle of the (primary) process that has the file open.

error := FILE_GETOPENINFO_ (searchname:length ! i:i
 ,prevtag ! i,o
 ,[primary-opener] ! o
 ,[backup-opener] ! o
 ,[accessmode] ! o
 ,[exclusion] ! o
 ,[syncdepth] ! o
 ,[filename:maxlen] ! o:i
 ,[filenamelen] ! o
 ,[accessid] ! o
 ,[validmask]); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-102

FILE_GETOPENINFO_ Procedure

backup-opener output

INT .EXT:ref:10

is the process handle of the backup opener process associated with the primary
open. A null process handle (-1 in each word) is returned if there is no backup
opener.

accessmode output

INT .EXT:ref:1

is the access mode with which the file is open. The values are:

0 read-write
1 read only
2 write only

exclusion output

INT .EXT:ref:1

is the exclusion mode with which the file is open. The values are:

0 shared
1 exclusive
2 process exclusive (supported only for Optical Storage Facility)
3 protected

syncdepth output

INT .EXT:ref:1

is the sync depth that was specified when the file was opened.

filename:maxlen output:input

STRING .EXT:ref:*, INT:value

returns the fully qualified file name of the file about which information is being
returned. maxlen is the length in bytes of the string variable filename.

filenamelen output

INT .EXT:ref:1

is the length in bytes of the name returned in filename.

accessid output

INT .EXT:ref:1

is the process access ID (user ID) of the opener at the time the open was done.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-103

FILE_GETOPENINFO_ Procedure

validmask output

INT .EXT:ref:1

returns a value indicating which of the output parameters has returned valid
information. Each parameter has a corresponding bit that is set to 1 if the
parameter is valid for the device, as follows:

<0> primary-opener
<1> backup-opener
<2> accessmode
<3> exclusion
<4> syncdepth
<5> filename
<6> accessid

Considerations

• Opens are not returned in any defined order. In particular, when retrieving
information about all opens on a disk volume, the opens for any one file might not
be grouped together in the sequence of calls.

• The FILE_GETOPENINFO_ procedure supports single SMF logical files but does
not support entire SMF virtual volumes. If the name of an SMF logical file is
supplied to this procedure, the system queries the disk process of the appropriate
physical volume to obtain information about current openers. If the name of an
SMF virtual volume is supplied, but not a full logical file name, an error is returned.

If you call the FILE_GETOPENINFO_ procedure and supply the name of a
physical volume that has an open that was made on an SMF logical file name,
information about the open is returned, but the returned file name is that of the
physical file supporting the logical file.

Example
! The following code causes the names of all open files and
! the process handles of the primary and backup openers to be
! returned for the volume identified by search^name:length.

tag := 0;
DO
 BEGIN
 error := FILE_GETOPENINFO_ (search^name:length, tag,
 pri^opener, back^opener,,,,
 name:max^namelen);
 END;
UNTIL error <> 0; ! error 0 means success & more opens !
 ! left; call again !
IF error <> 1 THEN ! error 1 means no more opens !
 BEGIN
 -- handle error
 END;

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-104

FILE_GETRECEIVEINFO[L]_ Procedure

FILE_GETRECEIVEINFO[L]_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The FILE_GETRECEIVEINFO[L]_ procedure returns information about the last
message read on the $RECEIVE file. Because this information is contained in the
file’s main-memory resident access control block (ACB), the application process is not
suspended by a call to FILE_GETRECEIVEINFO[L]_. Use the
FILE_GETRECEIVEINFOL_ procedure to get an information on the
SERVERCLASS_SENDL_ messages larger than 32K.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-105

FILE_GETRECEIVEINFO[L]_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation. The only
possible errors are error 16 (file not open) and program errors such as error 22
(bounds error).

0 (FEOK)

indicates a successful operation.

receive-info output

INT .EXT:ref:17 (Use with FILE_GETRECEIVEINFO_)

is a block of words describing the last message read on the $RECEIVE file. It has
this structure:

#include <cextdecs(FILE_GETRECEIVEINFO_)>

short FILE_GETRECEIVEINFO_ (short *receive-info);

#include <cextdecs(FILE_GETRECEIVEINFOL_)>

short FILE_GETRECEIVEINFOL_ (short _far *receive-info2);

Note. To ensure that you receive valid information about the last message, call
FILE_GETRECEIVEINFO[L]_ before you perform another readupdate operation on
$RECEIVE.

error := FILE_GETRECEIVEINFO_ (receive-info !o
 ,[dialog-info]); !o

error := FILE_GETRECEIVEINFOL_ (receive-info2); !o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-106

FILE_GETRECEIVEINFO[L]_ Procedure

[0] I/O type. Indicates the data operation last performed by the message sender.
Values are:

0 Not a data message (system message)
1 Sender called WRITE
2 Sender called READ
3 Sender called WRITEREAD

[1] Maximum reply count. The maximum number of bytes of data that can be
returned by REPLY (as determined by the read count of the sender).

[2] Message tag. The value that identifies the request message just read. To
associate a reply with a request, the message tag is passed to the REPLY
procedure. The value returned here is an integer between zero and
receive depth - 1, inclusive, that had not been in use as a message
tag. When a reply is made, its associated message tag value is made
available for use as a message tag for a subsequent request message.

[3] File number. The value that identifies the file associated with this message
in the requesting process. If the received message is a system message
that is not associated with a specific file open, this field contains -1.

[4:5] Sync ID. The sync ID associated with this message. If the received
message is a system message, this field is valid only if the message is
associated with a specific file open; otherwise this field is not applicable
and should be ignored. See “Considerations.”

[6:15]
Sender process handle. The process handle of the process that sent the
last message. For system messages other than the open, close,
CONTROL, SETMODE, SETPARAM, RESETSYNC, or CONTROLBUF
messages, the null process handle (-1 in each word) is returned.

[16] Open label. The value assigned by the application (when replying to the
open system message) to the open on which the received message was
sent. It is often used to find the open table entry for the message. If this
value is unavailable, -1 is returned.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-107

FILE_GETRECEIVEINFO[L]_ Procedure

dialog-info output

INT .EXT:ref:1

is used by context-sensitive Pathway servers. The dialog-info parameter
returns dialog information about the server-class send operation that was initiated
by a requester with a Pathsend procedure call. The bits of dialog-info have
these meanings:

[0:11] Reserved

[12:13] Dialog status. Indicates the last operation performed by the message

 sender. Values are:

receive-info2 output

INT .EXT:ref:* (Use with FILE_GETRECEIVEINFOL_)

is a block of 19 words describing the last message read on the $RECEIVE file. It
has this structure:

[0] I/O type. Indicates the data operation last performed by the message sender.
Values are:

0 Not a data message (system message)
1 Sender called WRITE
2 Sender called READ
3 Sender called WRITEREAD

[1] File number. The value that identifies the file associated with this message
in the requesting process. If the received message is a system message
that is not associated with a specific file open, this field contains -1.

[2] Message tag. The value that identifies the request message just read. To
associate a reply with a request, the message tag is passed to the REPLY
procedure. The value returned here is an integer between zero and

0 Context-free server-class send operation.

1 First server-class send operation in a new dialog.

2 Server-class send operation in an existing dialog.

3 Aborted dialog. No further server-class send operations
will be received in this dialog. There is no buffer
associated with this value.

[14] A copy of the flags.<14> parameter bit in the requester’s
call to the Pathsend SERVERCLASS_DIALOG_BEGIN_
procedure. This bit identifies the transaction model the
requester is using for dialogs. The server can abort the
dialog, by replying with FEEOF, to enforce a level of
transaction control that the requester has not specified.

[15] Reserved

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-108

FILE_GETRECEIVEINFO[L]_ Procedure

receive depth - 1, inclusive, that had not been in use as a message
tag. When a reply is made, its associated message tag value is made
available for use as a message tag for a subsequent request message.

[3] Open label. The value assigned by the application (when replying to the
open system message) to the open on which the received message was
sent. It is often used to find the open table entry for the message. If this
value is unavailable, -1 is returned.

[4:5]Maximum reply count. The maximum number of bytes of data that can be
returned by REPLY. (as determined by the read count of the sender).

[6:7] Sync ID. The sync ID associated with this message. If the received
message is a system message, this field is valid only if the message is
associated with a specific file open; otherwise this field is not applicable
and should be ignored. See “Considerations.”

[8:17]
Sender process handle. The process handle of the process that sent the
last message. For system messages other than the open, close,
CONTROL, SETMODE, SETPARAM, RESETSYNC, or CONTROLBUF
messages, the null process handle (-1 in each word) is returned.

[18] dialog-info. It is 0 if no dialog is active. For information about dialog-info,
see the dialog-info parameter of the FILE_GETRECEIVEINFO_
procedure on page 5-107.

Considerations

• Sync ID definition

A sync ID is a doubleword, unsigned integer. Each opened process has its own
sync ID. Sync IDs are not part of the message data; rather, the receiver of a
message obtains the sync ID value associated with a particular message by calling
FILE_GETRECEIVEINFO[L]_. A file’s sync ID is set to 0 when the file is opened
and when the RESETSYNC procedure is called for that file (RESETSYNC can be
called directly or indirectly through the CHECKMONITOR procedure).

When a request is sent to a process (that is, when a process is the object of a
CONTROL, CONTROLBUF, SETMODE, SETPARAM, open, close, read, write, or
WRITEREAD operation), the system increments the requester’s sync ID just
before sending the message. (Therefore, a process’s first sync ID subsequent to
an open has a value of 0.)

• Duplicate requests

The sync ID allows the server process (that is, the process reading $RECEIVE) to
detect duplicate requests from requester processes. Such duplicate requests are

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-109

FILE_GETSYNCINFO_ Procedure

caused by a backup requester process reexecuting the latest request of a failed
primary requester process, or by certain network failures.

• Open labels

The open label (receive-info[16]) allows the server to quickly find an open-
table entry without having to search for it. The returned value is the same as that
which the server assigned (when replying to the open message) to the open on
which the received message was sent.

• Server process identifying separate opens by the same requester

The file number (receive-info[3]) is used by a server process to identify
separate opens by the same requester process. The returned file number value is
the same as the file number used by the requester to make this request.

Example
error := FILE_GETRECEIVEINFO_ (receive^info);

Related Programming Manual
For programming information about the FILE_GETRECEIVEINFO_ procedure, see the
Guardian Programmer’s Guide.

FILE_GETSYNCINFO_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
The FILE_GETSYNCINFO_ procedure is called by the primary process of a process
pair before starting a series of write operations to a file open with paired access.
FILE_GETSYNCINFO_ returns a file’s synchronization block so that it can be sent to
the backup process in a checkpoint message.The FILE_GETSYNCINFO_ procedure
supersedes the GETSYNCINFO Procedure (Superseded by FILE_GETSYNCINFO_

Note. Neither a cancelreq operation nor an awaitio[x] timeout completion have any affect
on the sync ID (that is, the sync ID is an ever-increasing value).

Also, the sync ID is independent of the sync depth value specified to FILE_OPEN_ or OPEN.

Note. The FILE_GETRECEIVEINFOL_ procedure is supported on systems running J06.07
and later J-series RVUs and H06.18 and later H-series RVUs.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-110

FILE_GETSYNCINFO_ Procedure

Procedure). Unlike the GETSYNCINFO procedure, this procedure can be used with
Enscribe format 2 files and OSS files greater than approximately 2 gigabytes as well as
with other files.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error

INT:value

is a file-system error code that gives the status of the operation.

filenum input

INT:value

is the number that identifies the open file.

infobuf output

INT:EXT.ref:*

is where the synchronization information is stored. The size is given in the
infomax parameter.

infomax input

INT:value

specifies the size in bytes of the infobuf parameter. See “Considerations.”

Note. Typically, FILE_GETSYNCINFO_ is not called directly by application programs.
Instead, it is called indirectly by CHECKPOINT.

#include <cextdecs(FILE_GETSYNCINFO_)>

short FILE_GETSYNCINFO_ (short filenum
 , short * infobuf
 , short infosize);

error := FILE_GETSYNCINFO_ (filenum ! i
 ,infobuf ! o
 ,infomax ! i
 ,infosize); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-111

FILE_OPEN_ Procedure

infosize output

INT:EXT.ref:1

returns the size in bytes of the information stored in the infobuf parameter.

Considerations

• The size of the infomax parameter must meet these limits:

• For nondisk files, except the Transaction Monitoring Facility (TMF) transaction
pseudofile (TFILE), the size must be at least 10 bytes. For the TMF product,
the size must be at least 30 bytes.

• For disk files, the size must be at least 44 bytes for non-key-sequenced files,
and the sum of the primary-key length and 44 bytes for key-sequenced files.

• For files with alternate keys, the size must be at least primary-key length plus
maximum alternate-key length and 44 bytes. The primary-key length is 8 bytes
for non-key-sequenced files, and the maximum alternate-key length is the
maximum value of all the alternate keys for the file.

• For any currently supported file type, an infomax value of 300 is adequate.

FILE_OPEN_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
General Considerations
Disk File Considerations
Consideration for Terminals
Interprocess Communication Considerations
System Message
DEFINE Considerations
Safeguard Considerations
OSS Considerations
Example
Related Programming Manuals

Summary
The FILE_OPEN_ procedure establishes a communication path between an
application process and a file. When FILE_OPEN_ successfully completes, it returns a

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-112

FILE_OPEN_ Procedure

file number to the caller. The file number identifies this access path to the file in
subsequent file-system calls.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation. Some
values are warnings (that is, they indicate conditions that do not prevent the file
from being opened); see the filenum parameter, below, for determining whether
the file was opened successfully.

#include <cextdecs(FILE_OPEN_)>

short FILE_OPEN_ ({ const char *filename |
 const char *pathname }
 ,short length
 ,short *filenum
 ,[short access]
 ,[short exclusion]
 ,[short nowait-depth]
 ,[short sync-or-receive-depth]
 ,[short options]
 ,[short seq-block-buffer-id]
 ,[short seq-block-buffer-len]
 ,[short *primary-processhandle]
 ,[__int32_t elections]);

error := FILE_OPEN_ ({filename|pathname}:length } ! i:i
 ,filenum ! i,o
 ,[access] ! i
 ,[exclusion] ! i
 ,[nowait-depth] ! i
 ,[sync-or-receive-depth] ! i
 ,[options] ! i
 ,[seq-block-buffer-id] ! i
 ,[seq-block-buffer-len] ! i
 ,[primary-processhandle] ! i
 ,[elections]); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-113

FILE_OPEN_ Procedure

filename:length input:input

STRING .EXT:ref:*, INT:value

specifies the name of the Guardian file to be opened. The value of filename
must be exactly length bytes long and must be a valid file name or DEFINE
name. If the name is partially qualified, it is resolved using the contents of the
=_DEFAULTS DEFINE.

pathname input

specifies the OSS file to be opened. length is ignored; the pathname parameter
is terminated by a null character. options.<10> must be set to 1 to open an OSS
file by its pathname. See Appendix D, File Names and Process Identifiers, for a
description of OSS pathname syntax.

filenum input, output

INT .EXT:ref:1

returns a number that is used to identify the file in subsequent file-system calls. If
the file cannot be opened, a value of -1 is returned.

filenum is used as an input parameter only when you are attempting a backup
open. In that case, you must supply the primary-processhandle parameter or
else the input value of filenum is ignored. For a backup open, filenum must be
the filenum value that was returned when the file was opened by the primary
process. If a backup open is successful, the input value of filenum is returned
unless options.<3> is specified, in which case a new file number is assigned for
the backup open. If the backup open is unsuccessful, -1 is returned.

access input

INT:value

specifies the desired access mode of the file to be opened. (See
“Considerations.”) Valid values are:

0 Read-write
1 Read only
2 Write only
3 Extend (supported only for tape)

The default is 0.

exclusion input

INT:value

specifies the desired mode of compatibility with other openers of the file. (See
“Considerations.”) Valid values are:

0 Shared
1 Exclusive

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-114

FILE_OPEN_ Procedure

2 Process exclusive
3 Protected

The default is 0.

nowait-depth input

INT:value

specifies whether I/O operations are to be nowait. If present and not 0, this
parameter specifies the number of nowait I/O operations that can be in progress
for the file concurrently with other processing. The maximum value is 1 for disk
files and $RECEIVE. The maximum value is 15 for other objects, except for the
TMF transaction pseudofile (TFILE), which has a maximum of 1000. (For details
about the TFILE, see the TMF Application Programmer’s Guide.) If this parameter
is omitted or 0, I/O operations are waited.

sync-or-receive-depth input

INT:value

The purpose of this parameter depends on the type of device being opened:

disk file specifies the number of nonretryable (that is, write) requests
whose completion the file system must remember. A value of 1
or greater must be specified to recover from a path failure
occurring during a write operation. This value also implies the
number of write operations that the primary process in a
process pair can perform to this file without intervening
checkpoints to its backup process. For disk files, this
parameter is called sync depth. The maximum value is 15.

If omitted, or if 0 is specified, internal checkpointing does not
occur. Disk path failures are not automatically retried by the
file system.

$RECEIVE file specifies the maximum number of incoming messages read by
READUPDATE[X] that the application process is allowed to
queue before corresponding reply operations must be
performed.

If omitted or 0, READUPDATE[X] and reply operations to
$RECEIVE are not permitted.

For $RECEIVE, this parameter is called receive-depth, and the
maximum number of queued incoming messages is 4047 in
the H06.17/J06.06 and earlier RVUs. From H06.18/J06.07
RVU onwards, the maximum receive-depth value has been
increased from 4047 to 16300.

process pair specifies whether or not an I/O operation is automatically
redirected to the backup process if the primary process or its
processor module fails. For processes, this parameter is called
sync depth. The maximum value is determined by the process.
The value must be at least 1 for an I/O operation to a remote
process pair to recover from a network failure.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-115

FILE_OPEN_ Procedure

If this parameter >= 1, the server is expected to save or be
able to regenerate that number of replies.

If this parameter = 0, and if an I/O operation cannot be
performed to the primary process of a process pair, an error
indication is returned to the originator of the message. On a
subsequent I/O operation, the file system redirects the request
to the backup process.

For other device types, the meaning of this parameter depends on whether the
sync-ID mechanism is supported by the device being opened. If the device does
not support the sync-ID mechanism, 0 is used regardless of what you specify (this
is the most common case). If the device supports the sync-ID mechanism,
specifying a nonzero value causes the results of that number of operations to be
saved; in case of path failures, the operations are retried automatically.

The actual value being used can be obtained by a call to FILE_GETINFOLIST_.

options input

INT:value

specifies optional characteristics. The bits, when set to 1, indicate:

<0> Unstructured access. For disk files, access is to occur as if the file
were unstructured, that is, without regard to record structures and
partitioning. (For unstructured files, setting this bit to 1 causes
secondary partitions to be inaccessible.) Must be 0 for other devices.

<1> Nowait open processing. Specifies that the processing of the open
proceed in a nowait manner. Unless FILE_OPEN_ returns an error, a
nowait open must be completed by a call to AWAITIO[X]. This option
cannot be specified for the Transaction Monitoring Facility (TMF)
transaction pseudofile (TFILE). This option does not determine the
nowait mode of I/O operations; that is controlled by the nowait-
depth parameter. nowait-depth must have a nonzero value
when this option is used.

<2> No open time update. For disk files, the “time of last open” file attribute
is not updated by this open. Must be 0 for other devices.

<3> Any file number for backup open. When performing a backup open,
specifies that the system can use any file number for the backup open.
0 specifies that the backup open is to have the same file number as
the primary open. Error 12 is returned if that file number is already in
use.

<4:9> Reserved (specify 0)

<10> Open an OSS file by its OSS pathname. Specifies that the file to be
opened is identified by the pathname parameter.

<11> Reserved (specify 0)

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-116

FILE_OPEN_ Procedure

<12> No transactions. For $RECEIVE, messages are not to include
transaction identifiers. Must be 0 if bit 15 is 1.

<13> I18N locale support. For $RECEIVE, data messages include
internationalization locale information. Must be 0 if bit 15 is 1. For
information about internationalization, see the Software
Internationalization Guide.

<14> Old format system messages. For $RECEIVE, system messages
should be delivered in C-series format. If this bit is 0, D-series format
messages are delivered. For other device types, this bit must be 0.
See Interprocess Communication Considerations on page 5-127

<15> No file-management system messages. For $RECEIVE, specifies that
the caller does not wish to receive process open, process close,
CONTROL, SETMODE, SETPARAM, RESETSYNC, and
CONTROLBUF messages. If this bit is 0, messages are delivered as
normal; some messages are received only with SETMODE 80. (Note
that the meaning of this flag is opposite from that of the equivalent flag
in the OPEN procedure). For other device types, this bit must be 0.

options (continued)

When options is omitted, 0 is used.

seq-block-buffer-id input

INT:value

if present and not 0, identifies the buffer to be used for shared sequential block
buffering; all opens made through FILE_OPEN_ and using this ID share the same
buffer. Any integer value can be supplied for this parameter.

If seq-block-buffer-id is omitted or 0, and sequential block buffering is
requested, the buffer is not shared. In this case, the buffer resides in the process’s
process file segment (PFS) with the size given by seq-block-buffer-len.

seq-block-buffer-len input

INT:value

specifies whether sequential block buffering is being requested. If this parameter
is supplied with a value greater than 0, it indicates a request for sequential block
buffering and specifies the length in bytes of the sequential block buffer. If this
parameter is omitted or 0, sequential block buffering is not requested. Sequential
block buffering is only for disk files.

If this value is less than the data-block length that was given to this file or to any
associated alternate-key file, the larger value is used. Supplying a nonzero value
for this parameter causes a buffer to be allocated unless an existing buffer is to be
shared (see the seq-block-buffer-id parameter). If an existing buffer is to be
shared, but it is smaller than seq-block-buffer-len, sequential block buffering
is not provided and a warning value of 5 is returned.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-117

FILE_OPEN_ Procedure

primary-processhandle input

INT .EXT:ref:10

indicates that the caller is requesting a backup open and specifies the process
handle of the primary process that already has the file open when its backup
attempts to open the file. If this parameter is supplied and not null (a null process
handle has -1 in each word), filenum must contain the filenum value that was
returned to the primary. If a null process handle is supplied, or the parameter is
omitted, a normal open is being requested.

This option is used only when the backup process is the caller. It is more common
for the primary to perform this operation by a call to FILE_OPEN_CHKPT_.

elections input

INT (32) :value, input

specifies these options:

<0:30> Reserved (specify 0).

<31> Use 64-bit primary keys. For disk files only, bit <31> specifies that 64-
bit primary-key values are used instead of 32-bit values for
unstructured, relative, or entry-sequenced files. Bit <31> is ignored for
key-sequenced files and nondisk devices. The elections parameter
can be used with both Enscribe format 1, Enscribe format 2, and OSS
files.

If omitted, 0 is used.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-118

FILE_OPEN_ Procedure

General Considerations

• File numbers

File numbers are unique within a process. The lowest file number is 0 and is
reserved for $RECEIVE; the remaining file numbers start at 1. The lowest
available file number is always assigned, except in the case of backup opens.
When a file is closed, its file number becomes available for a subsequent file open
to use.

• Maximum number of open files

The maximum number of files in the system that can be open at any given time
depends on the space available for control blocks: access control blocks (ACBs),
file control blocks (FCBs), and open control blocks (OCBs). The amount of space
available for control blocks is limited primarily by the physical memory size of the
system. The maximum amount of space for ACBs is determined by the size of the
process file segment (PFS). See the description of the pfs-size parameter
under the PROCESS_CREATE_ Procedure
(Superseded by PROCESS_LAUNCH_ Procedure).

• Multiple opens by the same process

If a given file is opened more than once by the same process, a unique file number
is returned for each open. These file numbers provide logically separate accesses
to the same file; each file number has its own ACB, its own file position, and its
own last error value. If a nowait IO operation is started and a second nowait
operation is started (using a second file number for the same file), the IO requests
are independent and may arrive in either order at the destination and may
complete in either order.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-119

FILE_OPEN_ Procedure

Multiple opens on a given file can create a deadlock. This shows how a deadlock
situation occurs:

error := FILE_OPEN_ (myfile:len , filenuma ...);
! first open on file myfile.
 .
 .
error := FILE_OPEN_ (myfile:len , filenumb ...);
! second open on file myfile.
 .
 .
error := FILE_OPEN_ (myfile:len , filenumc ...);
! third open on file myfile.
 .

d .
e LOCKFILE (filenumb, ...); ! the file is locked
a . ! using the file number
d . ! associated with the
l . ! second open.
o READUPDATE (filenumc, ...); ! update the file
c . ! associated with the
k . ! third open.

Locks are granted on an open file (that is, file number) basis. Therefore, if a
process has multiple opens of the same file, a lock of one file number excludes
access to the file through other file numbers. The process is suspended forever if
the default locking mode is in effect.

You now have a deadlock. The file number referenced in the LOCKFILE call
differs from the file number in the READUPDATE call.

• Limit on number of concurrent opens

There is a limit on the total number of concurrent opens permitted on a file. This
determination includes opens by all processes. The specific limit for a file is
dependent on the file’s device type:

Disk Files Cannot exceed 65,279 opens per disk

Process Defined by process (see discussion of controlling openers in the
Guardian Programmer’s Guide)

$0 Unlimited opens

$0.#ZSPI 128 concurrent opens permitted

$OSP 10 times the number of subdevices (up to a maximum of 830
opens)

$RECEIVE One open per process permitted

Other Varies by subsystem

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-120

FILE_OPEN_ Procedure

• Nowait I/O

Specifying a nowait-depth value greater than 0 causes all I/O operations to be
performed in a nowait manner. Nowait I/O operations must be completed by a call
to AWAITIO[X]. Nowait IO operations on different file numbers (even if for the
same file) are independent and may arrive in any order at the destination and may
be completed by AWAITIO[X] in any order.

• Nowait opens

If you open a file in a nowait manner (options.<1> = 1) and if FILE_OPEN_
returns no error (error = 0), the open operation must be completed by a call to
AWAITIO[X]. If there is an error, no system message is sent to the object being
opened and you do not need to call AWAITIO[X] to complete the operation.

If there is no error, the filenum parameter returned by FILE_OPEN_ is valid. But
you cannot initiate any I/O operation on the file until you complete the open by
calling AWAITIO[X].

If you specify the tag parameter in the call to AWAITIO[X], a -30D is returned; the
values returned in the buffer and count parameters to AWAITIO[X] are undefined.
If an error returns from AWAITIO[X], it is your responsibility to close the file.

For the TMF transaction pseudofile, or for a waited file (nowait-depth = 0), a
request for a nowait open is rejected.

The file system implementation of a nowait open might use waited calls in some
cases. However, it is guaranteed that the open message is sent nowait to a
process; the opener does not wait for the process being opened to service the
open message.

• Direct and buffered I/O transfers

Except on NSAA systems, a file opened by FILE_OPEN_ uses direct I/O transfers,
by default (user buffers).

SETMODE 72 is used to override or explicitly set the buffer assignment for a file,
that is, use either user buffers or process file segment (PFS) buffers for I/O
transfers. This is unlike OPEN, which uses PFS buffers for I/O transfers, by
default. For systems running H-Series RVUs, the default behavior is determined
by the user_buffers flag in the object file, whether the USERIOBUFFER_ALLOW_
procedure is called, and whether this is an NSAA system.

Calling the USERIOBUFFER_ALLOW_ procedure before the FILE_OPEN
procedure will enable user buffers. The filesystem is still free to select the most
efficient buffers to use. In practice, I/O less than 4096 bytes will use system (PFS)
buffers.

If system buffers are not used, you must ensure that you do not use or modify a
buffer until a nowait I/O is completed. The only way to assure system buffers, is to
use SETMODE 72,1 for that file.

For more information, see Setmode 72 on page 14-80.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-121

FILE_OPEN_ Procedure

• Sequential block buffering

Sequential block buffering is only supported for disk files. If sequential block
buffering is used, the file should usually be opened with protected or exclusive
access. Shared access can be used, but it is somewhat slower than the other
access methods, and there might be concurrency problems. See the discussion of
“Sequential Block Buffering” in the Enscribe Programmer’s Guide.

• Named processes

If you supply a process file name for a named process, it can represent any
process with the same name. System messages are normally sent to the current
primary process. The exception is when a named process supplies its own name
to FILE_OPEN_. In that case the name refers to the backup process and system
messages are sent there.

A named process can be represented with or without a sequence number.
FILE_OPEN_ treats the two name forms differently.

• If you supply a process file name that includes a sequence number, the
process must have a matching sequence number or the open fails with error
14. When retrying I/O on a process opened under such a name, the file
system does not attempt to send messages to a possible backup process of
the same name unless it has a matching sequence number. This is to assure
that it is a true backup.

• If you supply a process file name that does not include a sequence number,
any process with a matching name can be opened and can be sent I/O retries.
A newly created process that receives an I/O retry intended for another
process of the same name will usually reject it with an error 60, but this is
under the control of the application.

• Partitioned files

A separate FCB exists for each partition of a partitioned file. There is one ACB per
accessor (as for single-volume files), but this ACB requires more main memory
since it contains the information necessary to access all of the partitions, including
the location and partial-key value for each partition.

• Disk file open—security check

When a disk file open is attempted, the system performs a security check. The
accessor’s (that is, the caller’s) security level is checked against the file security
level for the requested access mode, as follows:

for read access: read security level is checked.
for write access: write security level is checked.
for read-write access: read and write security levels are checked.

A file has one of seven levels of security for each access mode. (The owner of the
file can set the security level for each access mode by using SETMODE function 1

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-122

FILE_OPEN_ Procedure

or by using the File Utility Program SECURE command.) Table 5-5 shows the
seven levels of security.

For a given access mode, the accessor’s security level is checked against the file
security level. File access is allowed or not allowed as shown in Table 5-6. In this
table, file security levels are indicated by FUP security codes. For a given
accessor security level, a Y indicates that access is allowed to a file with the
security level shown; a hyphen indicates that access is not allowed.

If the caller to FILE_OPEN_ fails the security check, the open fails with an error 48.
A file’s security can be obtained by a call to FILE_GETINFOLIST[BYNAME]_ ,
FILEINFO, or by the File Utility Program (FUP) INFO command.

If you are using the Safeguard product, this security information might not apply.

• Tape file open—access mode

Table 5-5. Levels of Security

FUP
Code

Program
Values Access

– 7 Local super ID only

U 6 Owner (local or remote), that is, any user with owner’s ID

C 5 Member of owner’s group (local or remote), that is, any member
of owner’s community

N 4 Any user (local or remote)

O 2 Owner only (local)

G 1 Member of owner’s group (local)

A 0 Any user (local)

Table 5-6. Allowed File Accesses

Accessor’s Security Level File Security Level

– U C N O G A

Super ID user, local access
Super ID user, remote access

Y
–

Y Y Y
Y Y Y

Y Y Y
– – –

Owner or owner’s group manager, remote access
Member of owner’s group, remote access
Any other user, remote access

–
–
–

Y Y Y
– Y Y
– – Y

– – –
– – –
– – –

Owner or owner’s group manager, local access
Member of owner’s group, local access
Any other user, local access

–
–
–

Y Y Y
– Y Y
– – Y

Y Y Y
– Y Y
– – Y

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-123

FILE_OPEN_ Procedure

The file system does not enforce read-only or write-only access for unlabeled tape,
even though no error is returned if you specify one of these access modes when
opening a tape file.

• File open—exclusion and access mode checking

When a file open is attempted, the requested access and exclusion modes are
compared with those of any opens already granted for the file. If the attempted
open is in conflict with other opens, the open fails with error 12. Table 5-7 lists the
possible current modes and requested modes, indicating whether an open
succeeds or fails.

For the Optical Storage Facility only, the “process exclusive” exclusion mode is
also supported. Process exclusive is the same as exclusive for opens by other
processes, but the same as shared for opens by the same process.

Note. Protected exclusion mode has meaning only for disk files. For other files, specifying
protected exclusion mode is equivalent to specifying shared exclusion mode.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-124

FILE_OPEN_ Procedure

• Applications with large receive-depth values

If you have applications that use large receive-depth values, you must periodically
monitor their Message Quick Cell (MQC) usage levels using the PEEK /CPU N/
MQCINFO command in all processors to make sure that the total amount of
memory allocated for MQCs does not approach the per-processor memory limit for
MQCs. This limit is 128 MB in H06.19 / J06.08 and earlier RVUs, and 1 GB in
H06.20/J06.09 and later RVUs. For more information, see Table J-3 on page 3.

If you run applications with large receive-depth values on systems running
H06.19/J06.08 or earlier RVUs, you must consider upgrading to H06.20/J06.09 or
a later RVU if you notice MQC memory usage levels approach the per-processor

Table 5-7. Exclusion and Access Mode Checking

008CDT .CDD

Open
attempted

with:

File currently open with:

Shared

Read/
Write

Read
Only

Write
Only

Exclusive

Read/
Write

Read
Only

Write
Only

Protected

Read/
Write

Read
Only

Write
Only

Read/
Write

Read
Only

Write
Only

Read/
Write

Read
Only

Write
Only

Read/
Write

Read
Only

Write
Only

Exclusive

Protected

File
Closed

Shared

Access
Mode

Exclusion
Mode

= Open Successful

Legend

= Open Fails

Always Fails

Note: When a program file is running, it is opened
with the equivalent of protected, read-only access.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-125

FILE_OPEN_ Procedure

memory limit of 128 MB. To determine the amount of memory used for MQCs by
CPU N from the PEEK /CPU N/ MQCINFO command output, add the page counts
for all the MQC sizes, and then multiply the total page count allocated for MQCs by
the page size (16 KB).

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-126

FILE_OPEN_ Procedure

Disk File Considerations

• Maximum number of concurrent nowait operations

The maximum number of concurrent nowait operations permitted for an open of a
disk file is 1. Attempting to open a disk file and specify a nowait-depth value
greater than 1 causes FILE_OPEN_ to fail with an error 28.

• Unstructured files

• File pointers after an open

After a disk file is opened, the current-record and next-record pointers begin at
a relative byte address (RBA) of 0, and the first data transfer (unless
positioning is performed) is from that location. After a successful open, the
pointers are:

current-record pointer = 0D
next-record pointer = 0D

• Sharing the same EOF pointer

If a given disk file is opened more than once by the same process, separate
current-record and next-record pointers are provided for each open, but all
opens share the same EOF pointer.

• Structured files

• Accessing structured files as unstructured files

The unstructured access option (options.<0> = 1) permits a file to be
accessed as an unstructured file. Note that the block format used by Enscribe
must be maintained if the file is be accessed again in its structured form. (HP
reserves the right to change this block format at any time.) For information
about Enscribe block formats, see the Enscribe Programmer’s Guide.

For a file opened using the unstructured access option, a data transfer occurs
to the position in the file specified by an RBA (instead of to the position
indicated by a key address field or record number); the number of bytes
transferred is that specified in the file-system procedure call (instead of the
number of bytes indicated by the record format).

If a partitioned file, either structured or unstructured, is opened using the
unstructured access option, only the first partition is opened. The remaining
partitions must be opened individually with separate calls to FILE_OPEN_
(each call specifying unstructured access).

Accessing audited structured files as unstructured files is not allowed.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-127

FILE_OPEN_ Procedure

• Current-state indicators after an open

After successful completion of an open, the current-state indicators have these
values:

• The current position is that of the first record in the file by primary key.

• The positioning mode is approximate.

• The comparison length is 0.

If READ is called immediately after FILE_OPEN_ for a structured file, it reads
the first record in the file; in a key-sequenced file, this is the first record by
primary key. Subsequent reads, without intervening positioning, read the file
sequentially (in a relative or entry-sequenced file) or by primary key (in a key-
sequenced file) through the last record in the file.

When a key-sequenced file is opened, KEYPOSITION is usually called before
any subsequent I/O call (such as READ, READUPDATE, WRITE) to establish
a position in the file.

a position in the file.

• Queue files

If the READUPDATELOCK operation is to be used, the value of thesync-or-
receive-depth parameter must be 0. A separate open may be used for
operations with sync-or-receive-depth > 0.

Sequential block buffering cannot be used.

• 64-bit Primary keys

In order to access non-key-sequenced files bigger than 4 GB, bit <31> of the
FILE_OPEN_ elections parameter must be set. Use of this parameter allows
the use of procedures using 32-bit primary keys (POSITION, KEYPOSITION,
REPOSITION, GETSYNCINFO, and SETSYNCINFO) and the 32-bit key items of
the FILE_GETINFOLIST_, FILEINFO, and FILERECINFO procedures.

Consideration for Terminals
The terminal being used as the operator console should not be opened with exclusive
access. If it is, console messages are not logged.

Interprocess Communication Considerations

• Maximum concurrent nowait operations for an open of $RECEIVE

The maximum number of concurrent nowait operations permitted for an open of
$RECEIVE is 1. Attempting to open $RECEIVE and to specify a value greater
than 1 causes an error 28 to be returned.

• When FILE_OPEN_ completes

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-128

FILE_OPEN_ Procedure

When process A attempts to open process B, FILE_OPEN_ completes as follows:

• If process B has already opened $RECEIVE with file-management system
messages disabled, the open call by process A completes immediately.

• If process B has opened $RECEIVE requesting file-management system
messages enabled, the open call completes when process B reads the open
message from process A by using READ[X], or if B uses READUPDATE[X],
the open call completes when process B replies to the open message (by
using REPLY[X]).

If process B has not yet opened $RECEIVE, the open by process A does not
complete until process B opens $RECEIVE. Specifically, the open by process
A completes as follows:

• When process B opens $RECEIVE with file-management system
messages disabled, a waited open by process A completes immediately,
but a nowait open by process A completes after the first read of $RECEIVE
by process B.

• When process B opens $RECEIVE with file-management system
messages enabled, the open call by process A completes when process B
reads the open message from A by using READ[X], or if B uses
READUPDATE[X], the open call completes when process B replies to the
open message (by using REPLY[X]).

• Message formats

When $RECEIVE is opened by FILE_OPEN_, system messages are delivered to
the caller in D-series format unless messages in C-series format are requested by
setting options.<14> to 1. (No file-management system messages are delivered
to the caller if options.<15> is set to 1 when opening $RECEIVE.)

• Messages from high-PIN processes

Opening $RECEIVE with FILE_OPEN_ implies that the caller is capable of
handling messages from processes with PINs greater than 255.

• Opening $RECEIVE and being opened by a remote long-named process

If a process uses the FILE_OPEN_ procedure to open $RECEIVE and requests
that C-series format messages be delivered (or if a process uses the OPEN
procedure to open $RECEIVE), then a subsequent open of that process by
another process on a remote node that has a process name consisting of more
than five characters will fail with an error 20. Notification of this failure is not sent
to the process reading $RECEIVE.

• Opening an unconverted (C-series format) process from a high-PIN process.

A high-PIN process cannot open an unconverted process unless the unconverted
process has the HIGHREQUESTERS object-file attribute set. If a high-PIN

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-129

FILE_OPEN_ Procedure

process attempts to open a low-PIN process that does not have this attribute set,
the high-PIN process receives file-system error 560.

System Message
When a process is opened by either FILE_OPEN_ or OPEN, it receives a process
open message (unless it specified when opening $RECEIVE that it wants no
messages). This message is in D-series format (message -103) or in C-series format
(message -30), depending on what the receiving process specified when it opened
$RECEIVE. The process handle of the opener can be obtained by a subsequent call
to FILE_GETRECEIVEINFO_. For a description of the process open message, see
the Guardian Procedure Errors and Messages Manual.

DEFINE Considerations

• The filename or pathname parameter can be a DEFINE name; FILE_OPEN_
uses the file name given by the DEFINE as the name of the object to be opened. If
you specify a CLASS TAPE DEFINE without the DEVICE attribute, the system
selects the tape drive to be opened. A CLASS TAPE DEFINE has other effects
when supplied to FILE_OPEN_ ; see Appendix E, DEFINEs for further information
about DEFINEs.

• If a supplied DEFINE name is a valid name but no such DEFINE exists, the
procedure returns an error 198 (missing DEFINE).

• When performing a backup open of a file originally opened through the use of a
DEFINE, filename must contain the same DEFINE name. The DEFINE must
exist and must have the same value as when the primary open was performed.

Safeguard Considerations
For information on files protected by Safeguard, see the Safeguard Reference Manual.

OSS Considerations

• To open an OSS file by its pathname, set options.<10> to 1 and specify the
pathname parameter.

• OSS files can be opened only with shared exclusion mode.

Example
error := FILE_OPEN_ (file^name:length, file^num);

The open in this example has these defaults; waited I/O, exclusion mode (shared),
access mode (read/write), sync depth (0).

Note. This message is also received if the backup process of a process pair performs an
open. Therefore, a process can expect two of these messages when being opened by a
process pair.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-130

FILE_OPEN_CHKPT_ Procedure

Related Programming Manuals
For programming information about the FILE_OPEN_ procedure, see the Guardian
Programmer’s Guide and the Enscribe Programmer’s Guide.

FILE_OPEN_CHKPT_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The FILE_OPEN_CHKPT_ procedure is called by a primary process to open a
designated file for its backup process. These two conditions must be met before
FILE_OPEN_CHKPT_ can be called successfully:

• The primary process must open the file.

• The backup process must be in the “monitor” state (that is, in a call to
CHECKMONITOR).

The call to FILE_OPEN_CHKPT_ causes the CHECKMONITOR procedure in the
backup process to call the FILE_OPEN_ procedure for the designated file.

Syntax for C Programmers
This passive backup procedure is not supported in C programs. For a comparison of
active backup and passive backup, see the Guardian Programmer’s Guide.

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the checkpoint operation.
Additional error information is returned in the status parameter.

error := FILE_OPEN_CHKPT_ (filenum ! i
 ,[status]); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-131

FILE_OPEN_CHKPT_ Procedure

filenum input

INT:value

is the number identifying the open file to be opened in the backup process. This
value was returned by FILE_OPEN_ when the file was opened in the primary
process.

status output

INT .EXT:ref

returns a value indicating the cause of the file-system error returned in error.
Values are:

0 Backup open succeeded (error is 0)
1 File was opened in backup with warning
2 Open failed in backup
3 Unable to communicate with backup
4 Error occurred in primary

Considerations

• Identification of the backup process

The system identifies the backup process to be affected by FILE_OPEN_CHKPT_
from the process’s mom field in the process control block (PCB). For named
process pairs, this field is automatically set up during the creation of the backup
process.

• Nowait opens with FILE_OPEN_CHKPT_

If a process is opened in a nowait manner (options.<1> = 1 in the call to
FILE_OPEN_), the backup open is also performed in a nowait manner. It must be
completed by a call to AWAITIO[X], in which case the error and status values
are available through FILE_GETINFOLIST_ items 7 and 8, respectively. If you
specify the tag parameter to AWAITIO[X], the returned value is -29D; the returned
count and buffer address are undefined.

• Opens performed through the use of DEFINEs

If the primary process opens a file through the use of a DEFINE, that DEFINE must
exist unchanged when FILE_OPEN_CHKPT_ is called.

• Local setmode operations

All local setmode operations (that is, setmodes that are supported by
CHECKSETMODE) that have been applied to the file since the original open are
also applied to the file by FILE_OPEN_CHKPT_.

• SQL/MX objects

FILE_OPEN_CHKPT_ cannot be called for an SQL/MX object.

• See Considerations on page 5-111.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-132

FILE_PURGE_ Procedure

Example
error := FILE_OPEN_CHKPT_ (file^number, status);

FILE_PURGE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
OSS Considerations
Example
Related Programming Manuals

Summary
The FILE_PURGE_ procedure deletes a disk file that is not open. When
FILE_PURGE_ is executed, the disk file name is deleted from the volume’s directory,
and any disk space previously allocated to that file is made available to other files.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation.

filename:length input:input

STRING .EXT:ref:*, INT:value

specifies the name of the file to be purged. The value of filename must be
exactly length bytes long and must be a valid disk file name or DEFINE name. If
the name is partially qualified, it is resolved using the contents of the =_DEFAULTS
DEFINE.

#include <cextdecs(FILE_PURGE_)>

short FILE_PURGE_ (const char *filename
 ,short length);

error := FILE_PURGE_ (filename:length); ! i:i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-133

FILE_PURGE_ Procedure

Considerations

• Purging a file audited by the Transaction Management Facility (TMF) subsystem

If the file is audited by the TMF subsystem and if there are pending
transaction-mode record locks or file locks, any attempt to purge the file fails with
file-system error 12, whether or not openers of the file still exist.

When an audited file is purged, all corresponding dump records are deleted from
the TMF catalog. If the TMF subsystem is not active, attempts to purge an audited
file fail with file-system error 82.

• Purging a partitioned file

When you purge the primary partition of a partitioned file, the file system
automatically purges all the other partitions located anywhere in the network that
are marked as secondary partitions. A secondary partition is marked as such if it
created at the same time as the primary partition.

• Security consideration

When a file is purged, the data is not necessarily overwritten or erased, but
pointers are changed to show the data to be absent. For security reasons, you
might want to set the CLEARONPURGE flag for a file, using either function 1 of the
SETMODE procedure or the File Utility Program (FUP) SECURE command. This
flag causes all data to be physically erased (overwritten with zeros) when the file is
purged.

• Expiration dates

FILE_PURGE_ checks the expiration time of a file before purging it. If the
expiration time is later than the current time, FILE_PURGE_ does not purge the file
and returns file-system error 1091.

OSS Considerations
This procedure operates only on Guardian objects. If an OSS file is specified, error
1163 is returned.

SQL/MX Considerations
FILE_RENAME_ does not operate on SQL/MX objects. If a SQL/MX object is
specified, file-system error 2 is returned.

Example
error := FILE_PURGE_ (old^filename : old^filename^length);

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-134

FILE_RENAME_ Procedure

Related Programming Manuals
For programming information about the FILE_PURGE_ procedure, see the Guardian
Programmer’s Guide.

FILE_RENAME_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Safeguard Considerations
OSS Considerations
Example
Related Programming Manuals

Summary
The FILE_RENAME_ procedure changes the name of an open disk file. If the file is
temporary, assigning a name causes the file to be made permanent.

FILE_RENAME_ returns an error if there are incomplete nowait operations pending on
the specified file.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation.

#include <cextdecs(FILE_RENAME_)>

short FILE_RENAME_ (short filenum
 ,const char *newname
 ,short length);

error := FILE_RENAME_ (filenum ! i
 ,newname:length); ! i:i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-135

FILE_RENAME_ Procedure

filenum input

INT:value

is the number that identifies the open disk file to be renamed. The file number is
obtained from FILE_OPEN_ or OPEN when the file is opened.

newname:length input:input

STRING .EXT:ref:*, INT:value

contains the file name to be assigned to the specified disk file. The value of
newname must be exactly length bytes long. It must be a valid disk file name or
the name of a DEFINE that designates a valid disk file name. If the file name is
partially qualified, it is resolved using the contents of the =_DEFAULTS DEFINE.

Considerations

• Purge access for FILE_RENAME_

The caller must have purge access to the file for the rename operation to be
successful; otherwise, FILE_RENAME_ returns error 48 (security violation).

• Volume specification for newname

The disk volume designated in newname (explicitly or implicitly) must be the same
as the volume specified when opening the file. Neither the volume name nor the
system name can be changed by FILE_RENAME_.

• System specification for newname

If a system is specified as part of newname, it must be the same as the system
name used when the file was opened.

• Partitioned files

When the primary partition of a partitioned file is renamed, the file system
automatically renames all other partitions located anywhere in the network.

• Renaming a file audited by the Transaction Management Facility (TMF) subsystem

The file to be renamed cannot be a file audited by the TMF subsystem. An attempt
to rename such a file fails with error 80 (invalid operation attempted on audited file
or nonaudited disk volume).

• Structured files with alternate keys

If the primary-key file is renamed, it remains linked with the alternate-key file. If
you rename the alternate-key file and then try to access the primary-key file, an
error 4 (failure to open an alternate key file) occurs because the primary-key file is
still linked with the old name for the alternate-key file. You can use the File Utility
Program (FUP) ALTER command to correct this problem.

• SQL/MX Objects

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-136

FILE_RESTOREPOSITION_ Procedure

FILE_RENAME_ cannot be used with SQL/MX objects.

Safeguard Considerations
For information on files protected by Safeguard, see the Safeguard Reference Manual.

OSS Considerations
Error 564 (operation not supported on this file type) is returned if you attempt to
rename an OSS file using the FILE_RENAME_ procedure.

Example
error := FILE_RENAME_ (filenum, name:name^length);

Related Programming Manuals
For programming information about the FILE_RENAME_ procedure, see the Guardian
Programmer’s Guide.

FILE_RESTOREPOSITION_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters

Summary
The FILE_RESTOREPOSITION_ procedure supersedes the REPOSITION Procedure
(Superseded by FILE_RESTOREPOSITION_ Procedure) and is used to position a disk
file to a saved position (the positioning information having been saved by a call to the
FILE_SAVEPOSITION_ Procedure). The FILE_RESTOREPOSITION_ procedure
passes the positioning block obtained by FILE_SAVEPOSITION_ back to the file
system. Following a call to FILE_RESTOREPOSITION_, the disk file is positioned to
the point where it was when FILE_SAVEPOSITION_ was called. Unlike the
REPOSITION procedure, this procedure can be used with Enscribe format 2 files and
OSS files greater than approximately 2 gigabytes as well as with other files.

A call to the FILE_RESTOREPOSITION_ procedure is rejected with an error if any
incomplete nowait operations are pending on the specified file.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-137

FILE_SAVEPOSITION_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error

INT:value

is a file-system error code that gives the status of the operation.

filenum input

INT:value

is the number that identifies the open disk file.

savearea input

INT:EXT.ref:*

is the positioning information from the FILE_SAVEPOSITION_ procedure. The
size is given by the savemax parameter.

savesize input

INT:value

is the size in bytes of the information in the savearea parameter.

FILE_SAVEPOSITION_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

#include <cextdecs(FILE_RESTOREPOSITION_)>

short FILE_RESTOREPOSITION_ (short filenum
 ,short * savearea
 ,short savesize);

error := FILE_RESTOREPOSITION_ (filenum ! i
 ,savearea ! i
 ,savesize); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-138

FILE_SAVEPOSITION_ Procedure

Summary
The FILE_SAVEPOSITION_ procedure supersedes the SAVEPOSITION Procedure
(Superseded by FILE_SAVEPOSITION_ Procedure), and is used to save a disk file’s
current file positioning information in anticipation of a need to return to that position.
The positioning information is returned to the file system in a call to the
FILE_RESTOREPOSITION_ procedure when you want to return to the saved position.
Unlike the SAVEPOSITION procedure, this procedure can be used with Enscribe
format 2 files and OSS files greater than approximately 2 gigabytes as well as with
other files.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error

INT:value

is a file-system error code that gives the status of the operation.

filenum input

INT:value

is the number that identifies the open disk file.

savearea output

INT:EXT.ref:*

is the location where the positioning information is received. The size is given by
the savemax parameter.

#include <cextdecs(FILE_SAVEPOSITION_)>

short FILE_SAVEPOSITION_ (short filenum
 ,short * savearea
 ,short savemax
 ,short * savesize);

error := FILE_SAVEPOSITION_ (filenum ! i
 ,savearea ! o
 ,savemax ! i
 ,savesize); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-139

FILE_SETKEY_ Procedure

savemax input

INT:value

specifies the savemax parameter size in bytes.

savesize output

INT:ref.EXT:1

returns the size in bytes of the information in the savearea parameter.

Considerations

• The size of the savemax parameter must meet these limits:

• The size must be at least 44 bytes for non-key-sequenced files plus the sum of
the primary-key length and 44 bytes for key-sequenced files.

• For files with alternate keys, the size must be at least the primary-key length
plus maximum alternate-key length and 44 bytes. The primary-key length is
eight bytes for non-key-sequenced files and the maximum alternate-key length
is the maximum value of all the alternate keys for the file.

• For any currently supported file type, a savemax value of 300 is adequate.

FILE_SETKEY_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
The FILE_SETKEY_ procedure supersedes the KEYPOSITION[X] Procedures
(Superseded by FILE_SETKEY_ Procedure). The FILE_SETKEY_ procedure is used
to position by primary or alternate key within a structured file. However, positioning by
primary key is usually done within key-sequenced files only when using this procedure;
the FILE_SETPOSITION_ procedure is more commonly used for positioning by
primary key within relative and entry-sequenced files. Unlike the KEYPOSITION[X]
procedures, the FILE_SETKEY_ procedure expects the primary keys for relative and

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-140

FILE_SETKEY_ Procedure

entry-sequenced files to be 8 bytes long. Thus, this procedure can be used with format
2 files as well as with other files.

FILE_SETKEY_ sets the current position, access path, and positioning mode for the
specified file. The current position, access path, and positioning mode define a subset
of the file for subsequent access.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error

INT:value

is a file-system error code that gives the status of the operation.

filenum input

INT:value

is the number that identifies an open-structured disk file.

key-value:key-value-len input, input

STRING.EXT:ref:*, INT:value

is the key value (with its length in bytes) to which the file is to be positioned.

#include <cextdecs(FILE_SETKEY_)>

short FILE_SETKEY_ (short filenum
 , char * key-value
 , short key-len
 , [short keyspecifier]
 , [short positioningmode]
 , [short options]
 , [short comparelength]);

error := FILE_SETKEY_ (filenum ! i
 ,key-value :key-value-len ! i:i
 ,[keyspecifier] ! i
 ,[positioningmode] ! i
 ,[options] ! i
 ,[comparelength]); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-141

FILE_SETKEY_ Procedure

keyspecifier input

INT:value

designates the key field (specified as the hexadecimal equivalent of the key
identifier) to be used as the access path for the file:

keyspecifier 0, or if omitted, means use the file’s primary key as the
access path.

Predefined key specifier for an alternate-key field means use
that field as the access path.

positioningmode input

INT:value

indicates the type of key search to perform and the subset of records obtained.

These values are supported with the positioningmode parameter.

0 approximate

1 generic

2 exact

If positioning-mode is omitted, 0 is used. See the KEYPOSITION[X]
Procedures (Superseded by FILE_SETKEY_ Procedure) for a detailed description
of these values.

options input

INT:value

is a 16-bit value that specifies these options:

<0> if 1, and if a record with exactly the key-length and key-value
specified is found, the record is skipped. If the keyspecifier
indicates a non-unique alternate key, the record is skipped only if both
its alternate key and its primary key match the corresponding portions
of the specified key-value (which should be an alternate key value
concatenated with a primary key value) for key-length bytes
(which should be the sum of the alternate and primary key lengths).
This option is not supported for positioning by primary key in relative or
entry-sequenced files.

<1> return records in descending key order. (The file is read in reverse.)

<2> specifies that positioning is performed to the last record in a set of
records. This bit is ignored unless <1> is also set.

If the options parameter is omitted, 0 is used.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-142

FILE_SETLASTERROR_ Procedure

comparelength input

INT:value

is the length (in bytes) of the key used for comparing generic mode and exact-
positioning mode that is used to decide when to stop returning these records. The
value must be no longer than the key-value-len value. If omitted or 0, the
value used is the smaller value of key-value-len or keylength of the key
specified by the keyspecifier parameter.

Considerations
The considerations for the KEYPOSITION[X] Procedures
(Superseded by FILE_SETKEY_ Procedure) apply to the FILE_SETKEY_ procedure.

FILE_SETLASTERROR_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
The FILE_SETLASTERROR_ procedure is used to set the error information for a file
identified by the file number. This procedure can be used to set the Enscribe file-
system error values: last-error, last-error detail, partition, and key in error.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-143

FILE_SETLASTERROR_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT:value

is a file-system error number that indicates the outcome of the operation.

filenum input

INT:value

is a number that identifies the open file of interest. filenum was returned by
FILE_OPEN_ or OPEN when the file was originally opened.

You can also specify -1 for filenum to set the last-error value for a file that is not
associated with a file number. See Considerations.

errorcode input

INT:value

is a value to set last-error.

Last-error indicates the file-system error number resulting from the last operation
performed on the specified file. See Considerations.

errpart input

INT:value

is a number of the partition associated with the error for partitioned files.

#include <cextdecs(FILE_SETLASTERROR_)>

short FILE_SETLASTERROR_ (short filenum
 , short errorcode
 , [short Errpart]
 , [short Errkey]
 , [short Errdetail]);

error := FILE_SETLASTERROR_ (filenum ! i
 ,errorcode ! i
 ,[Errpart] ! i
 ,[Errkey] ! i
 ,[Errdetail]); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-144

FILE_SETPOSITION_ Procedure

errkey input

INT:value

is a key that specifies the key associated with the error for files with alternate keys.

errdetail input

INT:value

is a value to set the last-error detail that indicates the additional information, if
available, for interpreting the errorcode. This value might be a file-system error
number or another kind of value, depending on the operation and the primary error.

Considerations

• You can set the last-error, last-error detail, partition in error and key in error for a
file that is not associated with a file number by specifying a filenum value of -1 to
FILE_SETLASTERROR_.

• The parameters errpart, errkey and errdetail are set to a default value of 0, if the
user does not pass these parameters.

• If the filenum is not corresponding to a valid open file, error 16 (FENOTOPEN) is
returned.

• Error 590 (FEBADPARMVALUE) is returned if the user passes a value greater than
0 to any of these error values errorpart, errkey or errdetail when errorcode passed
is 0 (FEOK).

• When FILE_SETLASTERROR_ is invoked, the file system remembers that the
error values for that file have been overridden by this procedure.

• The values that were overridden can be obtained by calling FILE_GETINFOLIST_
with an item-code of info_ErrorExternallySet_. The file system remembers the
values that were overridden when the FILE_SETLASTERROR_ was last called.
The file-system error values for the file might have been set many times since
then. For more information, see FILE_GETINFOLIST_ Procedure.

FILE_SETPOSITION_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters

Summary
The FILE_SETPOSITION_ procedure supersedes the POSITION Procedure
(Superseded by FILE_SETPOSITION_ Procedure). This procedure has the same
function as the POSITION procedure but the FILE_SETPOSITION_ procedure

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-145

FILE_SETPOSITION_ Procedure

accepts an 8-byte record specifier. Thus, this procedure can be used with Enscribe
format 2 files and OSS files greater than approximately 2 gigabytes as well as with
other files.

The FILE_SETPOSITION_ procedure positions by primary key within relative and
entry-sequenced files. For unstructured files, the FILE_SETPOSITION_ procedure
specifies a new current position.

For relative and unstructured files, the FILE_SETPOSITION_ procedure sets the
current position, access path, and positioning mode for the specified file. The current
position, access path, and positioning mode define a subset of the file for subsequent
access.

The FILE_SETPOSITION_ procedure is not used with key-sequenced files; the
FILE_SETKEY_ procedure is used instead.

The caller is not suspended because of a call to the FILE_SETPOSITION_ procedure.
A call to the FILE_SETPOSITION_ procedure is rejected with an error indication if
there are incomplete nowait operations pending on the specified file.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error

INT:value

is a file-system error code that gives the status of the operation.

filenum input

INT:value

is the number that identifies the opened file.

recordspecifier input

INT(64):value

#include <cextdecs(FILE_SETPOSITION_)>

short FILE_SETPOSITION_ (short filenum
 , long long recordspecifier);

error := FILE_SETPOSITION_ (filenum ! i
 ,recordspecifier); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-146

FILE_SETPOSITION_ Procedure

is the 8-byte value that specifies the new setting for the current-record and next-
record pointers.

(For relative and unstructured files, the -1 and -2 remain in effect until a new
recordspecifier is supplied.)

Relative Files The recordspecifier parameter is an 8-byte record-
num value.

A value of -2 specifies that the next write should occur at an
unused record position.

A value of -1 specifies that subsequent writes should be
appended to the end-of-file location.

Unstructured Files The recordspecifier parameter is an 8-byte
relative-byte-addr value

A value of -1 specifies that subsequent writes should be
appended to the end-of-file location.

Entry-Sequenced
Files

The recordspecifier parameter is an 8-byte record-
addr (the primary key), whose format contains these
elements:

• Block number (4 bytes)
• Relative record number within the block (4 bytes)

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-147

FILE_SETSYNCINFO_ Procedure

FILE_SETSYNCINFO_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters

Summary
The FILE_SETSYNCINFO_ procedure supersedes the SETSYNCINFO Procedure
(Superseded by FILE_SETSYNCINFO_ Procedure). Unlike the SETSYNCINFO
procedure, this procedure can be used with Enscribe format 2 files and OSS files
greater than approximately 2 gigabytes as well as with other files.

The FILE_SETSYNCINFO_ procedure is used by the backup process of a process pair
after a failure of the primary process.

The FILE_SETSYNCINFO_ procedure passes a process pair’s latest synchronization
block (received in a checkpoint message from the primary) to the file system.
Following a call to the FILE_SETSYNCINFO_ procedure, the backup process can retry
the same series of write operations started by the primary process before its failure.
The use of the sync block ensures that operations that might have been completed by
the primary process before its failure are not duplicated by the backup.

Syntax for C Programmers

Syntax for TAL Programmers

Note. Typically, FILE_SETSYNCINFO_ is not called directly by application programs. Instead,
it is called indirectly by CHECKMONITOR.

#include <cextdecs(FILE_SETSYNCINFO_)>

short FILE_SETSYNCINFO_ (short filenum
 , short * infobuf
 , short infosize);

error := FILE_SETSYNCINFO_ (filenum ! i
 ,infobuf ! i
 ,infosize); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-148

FILE_WRITEREAD_ Procedure

Parameters

error

INT:value

is a file-system error code that gives the status of the operation.

filenum input

INT:value

is the number that identifies the open file.

infobuf input

INT.EXT:ref:*

is the synchronization information returned by the FILE_GETSYNCINFO_
procedure.

infosize input

INT:value

is the size in bytes of the infobuf parameter.

FILE_WRITEREAD_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Errors for FILE_WRITEREAD
Example

Summary
The FILE_WRITEREAD_ procedure is similar to the WRITEREADX procedure except
that it accepts two user buffers for the write and read operations respectively. This
procedure supports the I/O operation only on the process type files.

The FILE_WRITEREAD_ procedure writes data to a process, which was previously
opened, from an array in the application process, then waits for data to be transferred
back from the process. The data buffers for the FILE_WRITEREAD_ procedure can
either be in the caller’s stack segment or in an extended data segment.

If the file is opened for nowait I/O, you must not modify the buffer before the I/O
operation completes with a call to AWAITIOX. This condition also applies to other
processes that may be sharing the segment. The application must ensure that the

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-149

FILE_WRITEREAD_ Procedure

readBuffer and writeBuffer used in the call to the FILE_WRITEREAD_ are not reused
before the I/O operation completes with a call to AWAITIOX.

Interprocess Communication
The FILE_WRITEREAD_ procedure is used to originate a message to
another process, which was previously opened, then waits for a reply from
that process.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation.

filenum input

INT:value

is the number of an open file that identifies the file where the WRITE/READ is to
occur.

Note. The FILE_WRITEREAD_ procedure is supported only on systems running H-series
RVUs, and is available only for native processes.

#include <cextdecs(FILE_WRITEREAD_)>

short FILE_WRITEREAD_ (
 short filename, /* IN */
 char _far * writeBuffer, /* IN */
 char _far * readBuffer, /* OUT */
 __int32_t writeCount, /* IN */
 __int32_t readCount, /* IN */
 __int32_t _far * countRead, /* OUT OPTIONAL */
 __int32_t tag /* IN OPTIONAL */
);

error := FILE_WRITEREAD_ (INT filenum ! i
 , STRING .EXT writeBuffer ! i
 , STRING .EXT readBuffer ! o
 , INT(32) writeCount ! i
 , INT(32) readCount ! i
 , INT(32) .EXT [countRead] ! o
 , INT(32) [tag]); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-150

FILE_WRITEREAD_ Procedure

writeBuffer input

STRING .EXT:ref:*

is an array containing information to be written to the file.

readBuffer output

STRING .EXT:ref:*

is an array containing information that was read from the file on return.

writeCount input

INT(32):value

is the number of bytes to be written:

{0:57344} for interprocess files

readCount input

INT(32):value

specifies the number of bytes to be read:

{0:57344} for interprocess files

countRead output

INT(32) .EXT:ref:1

is for waited I/O only. It returns a count of the number of bytes returned from the
file into readBuffer.

tag input

INT(32):value

is for nowait I/O only. tag must uniquely identify the operation associated with this
FILE_WRITEREAD_.

Considerations

• Waited I/O READ

If a waited I/O FILE_WRITEREAD_ is executed, the countRead parameter
indicates the number of bytes actually read.

Note. The system stores the tag value until the I/O operation completes. The system
then returns the tag information to the program in the tag parameter of the call to
AWAITIO[X], thus indicating that the operation is complete.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-151

FILE_WRITEREAD_ Procedure

• Nowait I/O READ

If a nowait I/O FILE_WRITEREAD_ is executed, the countRead has no meaning
and can be omitted. The count of the number of bytes read is obtained when the
I/O operation completes through the count-transferred parameter of the
AWAITIOX procedure or the FILE_COMPLETE_ procedure.

The FILE_WRITEREAD_ procedure must complete with a call to the AWAITIOX
procedure or the FILE_COMPLETE_ procedure when used with a file that is
opened nowait.

You must not change the contents of the data buffers between the initiation and
completion of a nowait FILE_WRITEREAD_ operation. This is because a retry can
copy the data again from the writeBuffer and cause the wrong data to be written.

You must avoid sharing a buffer between a FILE_WRITEREAD_ and another I/O
operation because this creates the possibility of changing the contents of the data
buffer before the write operation is completed.

• The writeBuffer, readBuffer, and count-transferred may be in the user
stack or in an extended data segment. The buffers and count transferred cannot be
in the user code space.

• If the writeBuffer, readBuffer, or count-transferred is in a selectable
extended data segment, the segment must be in use at the time of the call. Flat
segments allocated by a process are always accessible to the process.

• If the file is opened for nowait I/O, and buffer is in an extended data segment, you
cannot deallocate or reduce the size of the extended data segment before the I/O
operation completes with a call to the AWAITIOX procedure or to the
FILE_COMPLETE_ procedure or is canceled by a call to CANCEL or
CANCELREQ.

• If the file is opened for nowait I/O, the extended segment containing the buffers
should be in use at the time of the call to the AWAITIOX procedure or the
FILE_COMPLETE_ procedure.

• Nowait I/O initiated with these routines might be canceled with a call to CANCEL or
CANCELREQ. The I/O operation is canceled if the file is closed before the I/O
operation completes or if the AWAITIOX procedure or the FILE_COMPLETE_
procedure is called with a positive time limit and the specific file number and the
request times out.

• If the extended address of the buffer is odd, bounds checking rounds the address
to the next lower word boundary and checks an extra byte as well. The odd
address is used for the transfer.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-152

FILEERROR Procedure

Errors for FILE_WRITEREAD
In addition to the other errors, the file-system error 22 is returned when:

• The address of a parameter refers to the selectable segment area but no
selectable segment is in use at the time of the call.

• The address of a parameter references a privileged segment and the caller is not
privileged.

• The file system cannot use the user's segment when needed.

• The writeBuffer and readBuffer memory are overlapping each other partially
(however, if both the buffers point to the same address, it is acceptable).

Example
ERROR := FILE_WRITEREAD_(FILE^NUM, WRITEBUFFER, READBUFFER,
1, 72, NUM^READ);

The WRITEBUFFER contains the information to be written, and READBUFFER
contains information that was read. In this case, 1 byte is to be written, and up to 72
bytes are to be read. The NUM^READ indicates how many bytes are read into the
READBUFFER.

FILEERROR Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The FILEERROR procedure is used to determine whether an I/O operation that
completed with an error should be retried.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-153

FILEERROR Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

indicates whether an I/O operation should be retried, as follows:

0 Operation should not be retried.
1 Operation should be retried.

filenum input

INT:value

is the number of an open file that identifies the file having the error.

Considerations
The FILEERROR procedure is called after a CCL return from a file-system procedure.
The FILEERROR procedure determines if an operation should or should not be retried.

• If the error is caused by one of these:

• A normal access request to a terminal currently in BREAK mode

• BREAK key typed on a terminal where BREAK is enabled

• Disk pack not up to speed

FILEERROR delays the calling process for one second and then returns a 1,
indicating a retry should be performed.

• If the error is an ownership error (error 200) or a path down error (error 201) and
the alternate path is operable, FILEERROR returns a 1, indicating that the
operation should be retried. If the alternate path is inoperable, a 0 is returned.

• If the error is caused by one of these:

• A device not ready

• No write-enable ring on a tape unit

#include <cextdecs(FILEERROR)>

short FILEERROR (short filenum);

status := FILEERROR (filenum); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-154

FILEINFO Procedure (Superseded by
FILE_GETINFOLIST_ Procedure)

• Paper out on a line printer

An appropriate message is printed on the home terminal and is followed by a read
operation from the terminal. If STOP is entered after the read (signaling that the
condition cannot be corrected), FILEERROR returns a 0 to indicate that the
operation should not be retried. If any other data is entered (typically, carriage
return), it signals that the condition has been corrected, and FILEERROR returns
a 1 to indicate that the operation should be retried.

• Any other error results in the file name, followed by the file-system error number,
being printed on the home terminal. A 0 is returned, indicating that the operation
should not be retried.

If the file number has bit <0> set, no message is printed on the home terminal,
unless filenum = -1.

To prevent a message from being printed on the home terminal for filenum = -1,
use filenum = %137777.

Example
error := 1;
WHILE error DO
 BEGIN
 CALL WRITE(fnum,buffer,count);
 IF < THEN
 BEGIN
 IF NOT FILEERROR(fnum) THEN CALL ABEND;
 END
 ELSE error := 0;
 END;

FILEINFO Procedure (Superseded by
FILE_GETINFOLIST_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Examples

Note. The procedure that is superseded by FILE_GETINFO_ or FILE_GETINFOLIST_ does
not support OSS ZYQ files.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-155

FILEINFO Procedure (Superseded by
FILE_GETINFOLIST_ Procedure)

Summary

The FILEINFO procedure obtains error and characteristic information about a file. The
file must be open if you refer to it by its file number, but if you refer to it by its file name,
it need not be open. Table 5-8 on page 5-164 indicates which parameters are valid
when specifying a file number or a file name.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-156

FILEINFO Procedure (Superseded by
FILE_GETINFOLIST_ Procedure)

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is the number of an open file that identifies the file whose characteristics are to be
returned. Either filenum or file-name must be specified; if both are passed,
then file-name is set to the file name associated with filenum. If filenum is
not specified, error 2 is returned for non-disk files.

error output

INT:ref:1

returns the error number associated with the last operation on the file. filenum or
file-name can be specified with this parameter, but see the “Considerations”
before passing these. For error recovery information, see the Guardian Procedure
Errors and Messages Manual.

CALL FILEINFO ([filenum] ! i
 ,[error] ! o
 ,[file-name] ! i,o
 ,[ldevnum] ! o
 ,[devtype] ! o
 ,[extent-size] ! o
 ,[eof-pointer] ! o
 ,[next-record-pointer] ! o
 ,[last-modtime] ! o
 ,[filecode] ! o
 ,[secondary-extent-size] ! o
 ,[current-record-pointer] ! o
 ,[open-flags] ! o
 ,[subdevice] ! o
 ,[owner] ! o
 ,[security] ! o
 ,[num-extents-allocated] ! o
 ,[max-file-size] ! o
 ,[partition-size] ! o
 ,[num-partitions] ! o
 ,[file-type] ! o
 ,[maximum-extents] ! o
 ,[unstructured-buffer-size] ! o
 ,[more-flags] ! o
 ,[sync-depth] ! o
 ,[next-open-fnum]); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-157

FILEINFO Procedure (Superseded by
FILE_GETINFOLIST_ Procedure)

file-name input, output

INT:ref:12

specifies or returns the internal-format file name of this file. Either filenum or
file-name must be passed. If both are passed, file-name returns with the
name of the file associated with filenum; if file-name is passed without
filenum, error 2 is returned for nondisk files.

ldevnum output

INT:ref:1 or INT:ref:16

is the logical device number of the device where this file resides. If the file is a
process file, -1 is returned.

INT:ref:1 is used if the file is not partitioned or if filenum is omitted.

INT:ref:16 is used if the file is partitioned.

For partitioned files, an array of ldevnum is returned, one entry for each of 16
possible partitions:

[0] ldevnum of partition 0

[1] ldevnum of partition 1

 .

 .

 .

[15] ldevnum of partition 15.

If -1 is returned for a partition, the partition is not open.

If the logical device number to be returned exceeds the maximum value allowed,
the value 32767 is returned in ldevnum and 0 is returned in error, indicating that
no error occurred. (The maximum value allowed for ldevnum is 65375, and
should therefore be treated as unsigned. Note that no actual logical device will
ever be assigned the value 32767.)

For partitioned files, ldevnum is set to 32767 and 0 is returned in error if at least
one of the ldevnum values is greater than 65375.

devtype output

INT:ref:1

returns the device type and subtype of the device associated with this primary
partition file. If devtype.<0> = 1, this device is a demountable disk volume. See
Appendix A, Device Types and Subtypes for a list of device types and subtypes.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-158

FILEINFO Procedure (Superseded by
FILE_GETINFOLIST_ Procedure)

extent-size output

INT:ref:1

for disk files, returns the primary extent size in 2048-byte units. For nondisk
devices, it returns the configured physical record length in bytes. For interprocess
files, this parameter has no meaning. A returned value of -1 in this parameter
means that the extent size cannot fit into this unsigned 2-byte parameter. The
superseding procedure must be used to get the correct value.

eof-pointer output

INT(32):ref:1

for disk files only, returns the relative byte address (RBA) of the end-of-file location.
A returned value of -1 in this parameter means that the end-of-file value cannot fit
into this unsigned 4-byte parameter. The superseding procedure must be used to
get the correct value.

next-record-pointer output

INT(32):ref:1

for disk files only, returns the next-record pointer setting:

relative files A record number
entry-sequenced files A record address
unstructured files An RBA
key-sequenced files Parameter is ignored (whatever is passed returns

unchanged).

This parameter is not valid with file-name; use filenum. This parameter cannot
be used with 64-bit primary keys. If an attempt is made, error 581 is returned.

last-modtime output

INT:ref:3

for disk files only, returns a three-word timestamp indicating the last time the file
was modified; if the file has never been modified, its creation time is returned.
last-modtime is of the same form as the interval-clock returned by
TIMESTAMP and can be converted into a date by CONTIME.

You can obtain the same information in a four-word timestamp by calling
FILEINQUIRE.

filecode output

INT:ref:1

for disk files only, returns the application-defined file code that is assigned when
the file is created.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-159

FILEINFO Procedure (Superseded by
FILE_GETINFOLIST_ Procedure)

secondary-extent-size output

INT:ref:1

for disk files only, returns the size of the secondary file extents in 2048-byte units.
A returned value of -1 in this parameter means that the extent size cannot fit into
this unsigned 2-byte parameter. The superseding procedure must be used to get
the correct value.

current-record-pointer output

INT(32):ref:1

for disk files only, returns the setting of the current-record pointer. This can be an
even or odd value. This parameter is invalid with file-name; use filenum. This
parameter cannot be used with 64-bit primary keys. If an attempt is made, error
581 is returned.

relative files A record number
entry-sequenced files A record address
unstructured files An RBA
key-sequenced files Parameter is ignored (whatever is passed returns

unchanged).

open-flags output

INT:ref:1

returns the access granted when the file is opened. This parameter is invalid when
used with file-name; use filenum. In this parameter:

<1> 1 For the $RECEIVE file only, means that the process wants to receive
open, close, CONTROL, SETMODE, RESETSYNC, and
CONTROLBUF messages.

<2> 1 Means unstructured access, regardless of the actual file structure (see
OPEN Procedure (Superseded by FILE_OPEN_ Procedure)).

<3:5> Is the access mode:

0 read/write access
1 read-only access
2 write-only access

<6> 1 Indicates that resident buffers are provided by the application process
for calls to file system I/O routines. A 0 is always returned in this bit
(see OPEN Procedure (Superseded by FILE_OPEN_ Procedure)).

<8> 1 For process files means that the open message is to be sent nowait
and must be completed by a call to AWAITIO.

<9> 1 Specifies that this is a queue file.

<10:11> Is the exclusion mode:

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-160

FILEINFO Procedure (Superseded by
FILE_GETINFOLIST_ Procedure)

0 Shared access
1 Exclusive access
3 Protected access

<12:15> Is the maximum number of concurrent nowait I/O operations that can
be in progress on this file at any given time. open-flags.<12:15> =
0 implies wait I/O.

subdevice output

INT:ref:1

returns the subdevice number associated with this file. Note that these values are
only used internally by the operating system. This parameter is invalid with file-
name; use filenum.

owner output

INT:ref:1

returns the identity of the file’s owner in the form:

owner.<0:7> group number
owner.<8:15> member number

This parameter is invalid with filenum; use file-name.

security output

STRING:ref:5

returns the security assigned to the file. This parameter is invalid with filenum;
use file-name. The fields have these meanings:

[0].<12> 1 Applies to a program file if the file has PROGID authority.
When the program file is run, PROGID sets the caller’s process
access ID (PAID) to the owner’s user ID of the program file.

[0].<13> 1 Applies if the CLEARONPURGE option is on for this file. If on,
this option causes all data to be physically deleted from the
disk when the file is purged. If this option is not on, the disk
space is only logically deallocated when the file is purged, and
no data is actually destroyed.

[0].<14> 1 Indicates there is a SAFEGUARD record for the file.

0 Indicates there is no SAFEGUARD record for the file.
However, the file might still be protected by SAFEGUARD at
the volume or subvolume level.

[1] Returns the reading security of the file.

[2] Returns the writing security of the file.

[3] Returns the execution security of the file.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-161

FILEINFO Procedure (Superseded by
FILE_GETINFOLIST_ Procedure)

[4] Returns the purging security of the file.

In security[1:4], the returned values are:

num-extents-allocated output

INT:ref:1

returns the number of extents that are allocated for the file. This parameter is
invalid with filenum; use file-name.

max-file-size output

INT(32):ref:1

returns the maximum number of bytes configured for the file. This parameter is
invalid with filenum; use file-name. A returned value of -1 in this parameter
means that the true value cannot fit into this unsigned 4-byte parameter. The
superseding procedure must be used to get the correct value.

partition-size output

INT:ref:1

returns the size in words of the area needed for the file’s partition information array.
This file partition information is retrieved from the partition-parameters array
in the FILERECINFO procedure. This parameter is invalid with filenum; use
file-name.

num-partitions output

INT:ref:1

returns the number of secondary partitions configured for the file. This parameter
is invalid with filenum; use file-name.

file-type output

INT:ref:1

returns the file type and other information about the file. This parameter is invalid
with filenum; use file-name. All bits are 0, except as described below:

<2> 1 For systems with the Transaction Management Facility, indicates this
file is audited.

<5:7> Specifies object type for SQL object file:

0 File is not SQL
2 File is an SQL table
4 File is an SQL index

Returned Value 0 1 2 3 4 5 6 7

Security Level A G O n/a N C U Super

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-162

FILEINFO Procedure (Superseded by
FILE_GETINFOLIST_ Procedure)

5 File is an SQL protection view
7 File is an SQL shorthand view

<9> 1 For interrogating queue files.

<10> 1 Indicates REFRESH is specified for this file.

<11> 1 For key-sequenced files, indicates index compression is specified.

<12> 1 For key-sequenced files, indicates data compression is specified.

1 For unstructured files, indicates ODDUNSTR is specified.

<13:15> Specifies the file structure:

0 Unstructured
1 Relative
2 Entry-sequenced
3 Key-sequenced

maximum-extents output

INT:ref:1

returns the maximum number of extents that can be allocated.

unstructured-buffer-size output

INT:ref:1

returns the internal buffer size to be used for an unstructured file.

more-flags output

INT:ref:1

returns various file attribute settings. Unless noted otherwise, these more-flags
bits are valid with both the file-name and filenum parameters:

<0> 0 Verify writes off
1 Verify writes on (current file label default)

<1> 0 System automatically selects serial or parallel writes
1 Serial mirror writes only (current file label default)

<2> 0 Buffered writes enabled
1 write-thru (current file label default)

<3> 0 Audit-checkpoint compression off
1 Audit-checkpoint compression on (current file label default)

<4> 0 Crash-open flag off
1 Crash-open flag on (This is meaningful with the file-name

parameter only.)

<5> 0 Rollforward needed flag off
1 Rollforward needed flag on

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-163

FILEINFO Procedure (Superseded by
FILE_GETINFOLIST_ Procedure)

<6> 0 Broken file flag off
1 Broken file flag on

<7> 0 File closed
1 File is either open or has an incomplete TMF transaction against it.

(This is meaningful with the file-name parameter only.)

<8> 0 Not licensed to have privileged procedures.
1 Licensed to have privileged procedures.

<9> 0 Not a secondary partition of a partitioned file.
1 Is a secondary partition of a partitioned file.

<10> 0 File contents are valid.
1 File contents are probably invalid because a FUP DUP or LOAD,

RESTORE, or similar operation ended abnormally. When this bit is 1,
OPEN fails with error 59, although PURGE will work.

<11:15> Reserved

sync-depth output

INT:ref:1

If this parameter is specified, the filenum parameter must be specified and must
contain the number of an open file. FILEINFO returns the sync depth (or receive
depth for $RECEIVE) of the file.

next-open-fnum output

INT:ref:1

If this parameter is specified, the filenum parameter must be specified and must
contain the number of an open file or -1.

If an open file number is specified in filenum, FILEINFO returns the largest
number of an open file whose file number is less than the file number specified in
filenum. If there is no such file, FILEINFO returns -1.

If -1 is specified in filenum, FILEINFO returns the file number of the open file with
the largest file number, or -1 if no files are currently open.

Table 5-8 on page 5-164 indicates which FILEINFO parameters are valid when
specifying the filenum or file-name parameter.

Caution. If the BUFFERED option is specified for an nonaudited file, a system failure or disk-
process takeover (with sync-depth = 0) could cause the loss of buffered updates for the file
that an application might not detect or handle properly unless modified.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-164

FILEINFO Procedure (Superseded by
FILE_GETINFOLIST_ Procedure)

Condition Code Settings

< (CCL) indicates that an error occurred; the error number returns in error.

= (CCE) indicates that FILEINFO executed successfully.

> (CCG) indicates that an error occurred; the error number returns in error.

Considerations

• Specifying a file number or a file name

If FILEINFO is called specifying filenum, the returned information is obtained
from the access control block. If it is called specifying file-name, but not
filenum, the returned information is obtained from the file label. There is no
check to see if the file is actually opened when file-name is specified.

Table 5-8. FILEINFO filenum and file-name Parameters

Parameter File Number File Name

([< filenum >]
, [< error >]
, [< filename >]
, [< Idevnum >]
, [< devtype >]
, [< extent-size >]
, [< eof-location >]
, [< next-record-pointer >]
, [< last-modtime >]
, [< filecode >]
, [< secondary-extent-size >]
, [< current-record-pointer >]
, [< open-flags2 >]
, [< subdev >]
, [< owner >]
, [< security >]
, [< num-extents-allocated >]
, [< max-file-size >]
, [< partition-size >]
, [< num-partitions >]
, [< file-type >]
, [< maximum-extents >]
, [< unstructured-buffer-size >]
, [< more-flags >]
, [< sync-depth >]
, [< next-open-fnum >])

X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X

X
X
X
X
X
X

X
X
X
X

X
X
X
X
X
X
X
X
X
X

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-165

FILEINFO Procedure (Superseded by
FILE_GETINFOLIST_ Procedure)

• Error returned when a file number is specified

If FILEINFO is called specifying filenum, the last error associated with this file
number is returned. If the file is opened more than once, only errors associated
with filenum are returned; errors for the other opens are ignored. Note that the
error returned might not originate from the last operation on the file. If there is an
error in the call to FILEINFO, such as an incorrect parameter, that error is returned
in error.

• Error returned when only a file name is specified

If FILEINFO is called specifying file-name, but not filenum, only a small
number of errors can be returned. No errors relating to any current open operation
of the file can be returned. Typical errors are:

2 The file name is not a disk file name
11 File does not exist
13 Invalid file name
14 Device does not exist
249 Access to the system specified in file-name failed
250 The system specified in file-name is not part of the network

In general, to obtain information about errors relating to operations on open files
(including failures to open a file), use the file number form of this request. For
information about files that do not have to be opened, use the file name form.

• Waited open that failed

The error number of a preceding awaitio operation on any file or a waited open
operation that failed can be obtained by passing a -1 in the filenum parameter.
The error number returns in error.

• Disk file considerations

The error number of a preceding CREATE or PURGE that failed can be obtained
by passing a -1 in the filenum parameter. The error number returns in error.

• Calling FILEINFO subsequent to a CLOSE

File-system error 16 (file not open) returns if FILEINFO is called subsequent to a
CLOSE.

• FILEINFO and high-PIN processes

If you use FILEINFO to request the file name of an unnamed high-PIN process that
was opened using FILE_OPEN_, an error is returned.

• Calling FILEINFO after ENDTRANSACTION or ABORTTRANSACTION

If there is a delay in the completion of a TMF transaction against a file after a call
to ENDTRANSACTION or ABORTTRANSACTION, and if the file is closed by the
last opener, there is a period of time during which FILEINFO reports that the file is
open (more-flags.<7> = 1) and OPENINFO reports that the file is closed.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-166

FILEINQUIRE Procedure (Superseded by
FILE_GETINFOLISTBYNAME_ Procedure)

• Referencing Enscribe format 2 files with extent size greater than 65535 or OSS
files larger than approximately 2 gigabytes

If the file being referenced is an Enscribe format 2 file and the extent size exceeds
65535 or OSS file larger than approximately 2 gigabytes, item codes will return -1
with no error indication.

Examples
CALL FILEINFO (FILENUM , ERROR); ! get error of read
 ! operation.

CALL FILEINFO (, , FILE^NAME , , , , , , , , , , , , OWNER);

FILEINQUIRE Procedure (Superseded by
FILE_GETINFOLISTBYNAME_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations

Summary

The FILEINQUIRE procedure is used to obtain items of information about a file.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-167

FILEINQUIRE Procedure (Superseded by
FILE_GETINFOLISTBYNAME_ Procedure)

Syntax for TAL Programmers

Parameters

filenumber input

INT:value

identifies the file being inquired about. Required if file-name is not specified.

CALL FILEINQUIRE ([filenumber] ! i
 ,[file-name] ! i
 ,item-list ! i
 ,number-items ! i
 ,result-buffer ! o
 ,result-buffer-length ! i
 ,[error-item] ! o
 ,[error-code]); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-168

FILEINQUIRE Procedure (Superseded by
FILE_GETINFOLISTBYNAME_ Procedure)

file-name input

INT:ref:12

is an internal-format file name that identifies the file being inquired about.
Required if filenumber is not specified. May not be specified if filenumber is
specified. A define-name can be given for this parameter.

item-list input

INT:ref:*

is an array in which the caller specifies the items of file information to be returned
by the procedure. Each INT element of the array must contain a code from
Table 5-9 on page 5-169.

number-items input

INT:value

is the number of items given in item-list.

result-buffer output

INT .EXT:ref:*

is the array in which the requested information items are returned. The items are
returned in the order specified in item-list. Each item begins on an INT
boundary; if the preceding item had a length of an odd number of bytes then an
used byte will occur between the items. The length of each item is given in
Table 5-9 on page 5-169.

result-buffer-length input

INT:value

is the size, in bytes, of the caller’s result-buffer.

error-item output

INT:ref:1

if present, is returned the index of the item which was being processed when an
error was detected. (The index of the first item in item-list is 0.)

error-code output

INT:ref:1

if present, is returned the status of the FILEINQUIRE call using standard file-
system error codes.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-169

FILEINQUIRE Procedure (Superseded by
FILE_GETINFOLISTBYNAME_ Procedure)

Condition Code Settings

< (CCL) indicates that an error occurred (see error-code).

= (CCE) indicates that the FILEINQURE was successful.

> (CCG) indicates that one or more of the items requested are invalid for the file’s
device type, file type, open status, or other characteristic.

Considerations

• A particular item can be valid only when this procedure is called with filenumber,
or only with file-name, or with either. This is indicated in Table 5-9.

• If error 2, operation not allowed for file type, occurs but no other errors occur (as
indicated by condition code CCG), the other, valid items (if any) in the item-list
still have their values returned. If an invalid item is of fixed size, the space for the
item will be reserved in the result buffer, but the value is undefined. If an
invalid item is of variable size, no space for it is reserved.

• If the result buffer is not large enough to hold the specified items, error 563
(buffer too small) will be returned.

• A call to FILEINQUIRE does not alter the saved error code associated with a file.

• For DP2 disk files, the values returned for time of file creation and last open are in
the 4-word format for the time stamp. A peculiarity in the last open date could
arise. The creation date for a file has been maintained since the first DP2 release,
but the last open date and time has been maintained only since the B30 release of
DP2. Therefore, it is possible that the date of last open for DP2 files could appear
to be January 1, 4713 B.C. (returned as 0F). See Table 5-9.

Note. The information that items 6, 7, and 8 return is already available, either through
FILEINFO or FILERECINFO, but some users may find the FILEINQUIRE interface more
convenient.

Table 5-9. FILEINQUIRE Item Codes (page 1 of 3)

Code
Size
(bytes)

Valid with
Number/Name Description

1 6 num For labeled tapes, the tape volume serial
number of the reel currently being processed

2 24 num DEFINE name which was opened. Not valid for
files which were opened without use of a
DEFINE.

3 2 both For key sequenced disk files, the number of
levels used in the key indexing structure.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-170

FILEINQUIRE Procedure (Superseded by
FILE_GETINFOLISTBYNAME_ Procedure)

4 2 both For key sequenced disk files, the generic lock
key length. For Enscribe files, if this value has
never been set, the key length of the file is
returned; for SQL tables, if this value has never
been set, or if the set value is the same as the
key length of the file, 0 is returned.

5 2 both For structured disk files, the length in bytes of
the alternate-key-params array.

6 * both For structured disk files, the alternate- key-
params array. The length of this item is
variable; its length can be determined through
the use of item code 5.

7 2 both For Enscribe disk files, the length in bytes of
the partition-params array.

8 * both For Enscribe disk files, the partition- params
array. The length of this item is variable; its
length can be determined through the use of
item code 7.

11 8 both For DP2 disk files, the time (GMT) when the file
was created.

12 8 both For DP2 disk files, the time (GMT) of the most
recent open of the file. If a file has never been
opened, the time of its creation is returned.

<15>: File is a program file containing compiled
SQL statements.

<14>: File is a program file containing compiled
SQL statements and the compilation is
assumed valid.

14 16 both For disk files, the name of the SQL catalog
subvolume associated with the file in internal
form, or binary zeros if the file is not associated
with an SQL catalog.

Table 5-9. FILEINQUIRE Item Codes (page 2 of 3)

Code
Size
(bytes)

Valid with
Number/Name Description

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-171

FILENAME_COMPARE_ Procedure

FILENAME_COMPARE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The FILENAME_COMPARE_ procedure compares two file names to determine
whether they refer to the same object.

15 8 both Expiration date-time: For DP2 disk files, the
time (GMT) beyond which purging of the file will
be allowed. The value will be 0 if never set.

16 8 both Last modification date-time: For DP2 disk files,
the time (GMT) of the most recent modification
to the file. If a file has never been modified, the
time of its creation is returned. This is the
same information as available through
FILEINFO in 3-word TIMESTAMP form.

17 4 num For particular access methods on some
devices, a value associated with the last
completed I/O operation. The meaning of the
value is specific to the access method. For
SNAX, it is the exception response
identification number.

Table 5-9. FILEINQUIRE Item Codes (page 3 of 3)

Code
Size
(bytes)

Valid with
Number/Name Description

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-172

FILENAME_COMPARE_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the result of the operation. Possible values are:

-1 The file names do not refer to the same object.

0 The file names refer to the same object.

> 0 A file-system error prevented evaluation; the returned value is the file-
system error number.

filename1:length1 input:input

STRING .EXT:ref:*, INT:value

specifies the first file name that is compared. The value of filename1 must be
exactly length1 bytes long. It must be a valid file name or valid DEFINE name; if
it is a partially qualified file name, the contents of the =_DEFAULTS DEFINE are
used to resolve it. See caution under “Considerations.”

filename2:length2 input:input

STRING .EXT:ref:*, INT:value

specifies the second file name that is compared. The value of filename2 must
be exactly length2 bytes long. It must be a valid file name or valid DEFINE

#include <cextdecs(FILENAME_COMPARE_)>

short FILENAME_COMPARE_ (const char *filename1
 ,short length1
 ,const char *filename2
 ,short length2);

error := FILENAME_COMPARE_ (filename1:length1 ! i:i
 ,filename2:length2); ! i:i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-173

FILENAME_COMPARE_ Procedure

name; if it is a partially qualified file name, the contents of the =_DEFAULTS
DEFINE are used to resolve it. See caution under “Considerations.”

Considerations

• The name comparison is not case sensitive. For example, these file names refer
to the same object:

\SYS99.$BIGVOL.MY.FILE
\sys99.$bigvol.my.file

• If one of the input parameters is a process name with the optional sequence-
number field, and it is being compared to the same name without a sequence-
number field, FILENAME_COMPARE_ considers the names equivalent provided
that the named process currently exists and has the given sequence number;
otherwise they are not considered equivalent. If both names have sequence-
number fields, they must be the same for the file names to be considered the
same.

• One or both of the file name parameters can be DEFINE names. For CLASS MAP
DEFINEs, FILENAME_COMPARE_ uses the file name given by the DEFINE to
make the comparison. For DEFINEs of other classes, a DEFINE name is
considered equivalent only to the same DEFINE name.

• The FILENAME_COMPARE_ procedure compares whole file names. If you want
to know whether two file names share a common part (for example, if they are on
the same volume), one or more contiguous sections of each file name can be
extracted by using the FILENAME_DECOMPOSE_ procedure before calling
FILENAME_COMPARE_.

Example
status := FILENAME_COMPARE_ (fname1:len1, fname2:len2);

Related Programming Manual
For programming information about the FILENAME_COMPARE_ procedure, see the
Guardian Programmer’s Guide.

Caution. Passing an invalid file name to this procedure can result in a trap, a signal, or data
corruption. To verify that a file name is valid, use the FILENAME_SCAN_ procedure.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-174

FILENAME_DECOMPOSE_ Procedure

FILENAME_DECOMPOSE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Examples
Related Programming Manual

Summary
The FILENAME_DECOMPOSE_ procedure extracts and returns one or more parts of
a file name or file-name pattern.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation.

#include <cextdecs(FILENAME_DECOMPOSE_)>

short FILENAME_DECOMPOSE_ (const char *filename
 ,short length
 ,char *piece
 ,short maxlen
 ,short *piece-length
 ,short level
 ,[short options]
 ,[short subpart]);

error := FILENAME_DECOMPOSE_ (filename:length ! i:i
 ,piece:maxlen ! o:i
 ,piece-length ! o
 ,level ! i
 ,[options] ! i
 ,[subpart]); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-175

FILENAME_DECOMPOSE_ Procedure

filename:length input:input

STRING .EXT:ref:*, INT:value

specifies the valid file name or file-name pattern from which a piece is extracted.
The value of filename must be exactly length bytes long. See caution under
“Considerations.”

piece:maxlen output:input

STRING .EXT:ref:*, INT:value

returns the extracted piece of filename. maxlen is the length in bytes of the
string variable piece.

piece-length output

INT .EXT:ref:1

returns the length in bytes of the extracted piece of filename. If an error occurs,
0 is returned.

level input

INT:value

specifies a part of filename. Together with options and subpart, it defines
the piece of filename to be returned. Valid values are:

-1 Node name
0 Destination name (for example, volume, device, or process)
1 First qualifier (for example, subvolume)
2 Second qualifier (file identifier if disk file)

options input

INT:value

gives additional information about the piece of filename to be returned. The
fields are:

<0:12> Reserved (specify 0).

<13> = 1 Do not return default values; that is, if a requested part is not present
in filename but a default value exists for it, return a null string
instead of the default value.

= 0 Default values can be returned.

<14> = 1 Include prefix, that is, the entire portion of filename that precedes
the part specified by level.

= 0 Do not include prefix.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-176

FILENAME_DECOMPOSE_ Procedure

<15> = 1 Include suffix, that is, the entire portion of filename that follows
the part specified by level.

= 0 Do not include suffix.

The default value is 0.

subpart input

INT:value

specifies a single section to be extracted from the level 0 (destination) part of
filename. This parameter applies only to process file names, because only a
process file name can have a level 0 part with multiple components. Valid values
are:

0 Extract whole destination, that is, all sections occurring before the period (.).

1 Extract processor, that is, the numeric part designating the processor for an
unnamed process.

2 Extract PIN, that is, the numeric part that gives the process identification
number for an unnamed process.

3 Extract sequence number, that is, the numeric part that gives the sequence
number of a process.

4 Extract name, that is, the alphanumeric section that begins with a dollar sign
and ends at the first colon or period.

The default value is 0.

You should specify a nonzero value for subpart only when level is 0 and bits 14
and 15 (extract prefix and extract suffix) of options are 0.

Considerations

• When the FILENAME_DECOMPOSE_ procedure returns a portion of a file name,
it does not include leading or trailing separators (the characters . :). Internal
separators between the parts of the returned portion are included. Special
characters that are part of the name (the characters $ \ #) are always included.

• The filename parameter can contain a partially qualified file name or file-name
pattern. Unless you specify options.<13> = 1 (no default values), the returned
string reflects the resolution of the file name using the contents of your
=_DEFAULTS DEFINE. If you request a name part that is absent after the file
name has been resolved, either because the default values did not apply or
because you specified options.<13> = 1, FILENAME_DECOMPOSE_ returns a
value of 0 for piece-length.

Caution. Passing an invalid file name or file-name pattern to this procedure can result in a
trap, a signal, or data corruption. To verify that a file name or file-name pattern is valid, use the
FILENAME_SCAN_ procedure.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-177

FILENAME_EDIT_ Procedure

Examples
This table shows some possible combinations of input values for calls to
FILENAME_DECOMPOSE_ and the resulting output values. Note that “suffix” and
“prefix” refer to the “include suffix” and “include prefix” options, respectively; “name”
refers to a subpart value of 4. Assume that the current default values are
“\SYS.$VOL.SUB”.

Related Programming Manual
For programming information about the FILENAME_DECOMPOSE_ procedure, see
the Guardian Programmer’s Guide.

FILENAME_EDIT_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Examples
Related Programming Manual

Input filename level options subpart Output piece

$a.b.c 0 $a

$a.b.c 0 suffix $a.b.c

f 0 $VOL

f 0 suffix $VOL.SUB.f

f 0 prefix \SYS.$VOL

$p:4321.#a 0 $p:4321

$p:4321.#a 0 name $p

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-178

FILENAME_EDIT_ Procedure

Summary
The FILENAME_EDIT_ procedure modifies one or more parts of a file name or file-
name pattern, changing them to a specified value.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation.

filename:maxlen input, output:input

STRING .EXT:ref:*, INT:value

on input, is the file name or file-name pattern to be edited; on output, contains the
edited version of the file name or file-name pattern. The input must be a valid file
name or valid file-name pattern; it must not be a DEFINE name. For the definitions
of file name and file-name pattern. See caution under “Considerations. see
Appendix D, File Names and Process Identifiers.

maxlen is the length in bytes of the string variable filename.

filename-length input, output

INT .EXT:ref:1

#include <cextdecs(FILENAME_EDIT_)>

short FILENAME_EDIT_ (char *filename
 ,short maxlen
 ,short *filename-length
 ,const char *piece
 ,short length
 ,short level
 ,[short options]
 ,[short subpart]);

error := FILENAME_EDIT_ (filename:maxlen ! i,o:i
 ,filename-length ! i,o
 ,piece:length ! i:i
 ,level ! i
 ,[options] ! i
 ,[subpart]); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-179

FILENAME_EDIT_ Procedure

on input, is the length in bytes of the name to be edited; on output, is the length in
bytes of the edited version of the file name.

piece:length input:input

STRING .EXT:ref:*, INT:value

specifies the string that is to replace the portion of filename that is indicated by
the parameters that follow. If used, the value of piece must be exactly length
bytes long. If length is 0, the indicated portion of filename is deleted. See
“Considerations.”

level input

INT:value

specifies a part of filename. Together with options, it defines the section of
filename that is to be replaced. Valid values are:

-1 Node name
0 Destination name (for example, volume, device, or process)
1 First qualifier (for example, subvolume)
2 Second qualifier (file identifier if disk file)

options input

INT:value

gives additional options. If omitted, the default value is 0. The fields are:

<0:13> Reserved (specify 0).

<14> = 1 Remove filename prefix, that is, the entire portion of filename
that precedes the part specified by level.

= 0 Do not remove prefix.

<15> = 1 Remove filename suffix, that is, the entire protion of filename
that follows the part specified by level.

= 0 Do not remove suffix.

subpart input

INT:value

specifies a single section of the level 0 (destination) part of filename to be
replaced. This parameter applies only to process file names, because only a
process file name can have a level 0 part with multiple components. Valid values
are:

0 Replace whole destination, that is, all sections occurring before the period (.).

1 Replace processor, that is, the numeric part designating the processor for an
unnamed process.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-180

FILENAME_EDIT_ Procedure

2 Replace PIN, that is, the numeric part that gives the process identification
number for an unnamed process.

3 Replace sequence number, that is, the numeric part that gives the sequence
number of a process.

.4 Replace name, that is, the alphanumeric section that begins with a question
mark and ends at the first colon or period.

The default value is 0.

You should specify a nonzero value for subpart only when level is 0 and bits 14
and 15 (extract prefix and extract suffix) of options are 0.

Considerations

• The value of piece that you supply to FILENAME_EDIT_ should include special
characters that are part of the file name or file-name pattern (the characters $ \ # *
?) but not the leading or trailing separators (the characters . :). When you supply
multiple parts in piece, you should include separators between the parts. These
strings are examples of valid values for piece:

$S
\MYSYS
$DISK.*
$DISK.#TFILE

• You can request that a portion be deleted from filename by specifying that the
length of piece be zero. When the portion is removed, any unneeded adjacent
separators are also removed. A section can be removed from the middle of a file
name, but the result (as with any modification) must be a valid file name or file-
name pattern.

• When filename contains a partially qualified file name or file-name pattern, the
contents of your =_DEFAULTS DEFINE are used to resolve it. This affects the
operation of FILENAME_EDIT_ in two ways. First, it is possible to replace name
parts that are not present in the input; one is replacing the implicit value with an
explicit one. Second, an implicit name part might appear in the output, but this
occurs only when it is necessary in order to form a valid file name. See these
examples.

• You can use the level parameter to specify any part that is present in filename
or implied through the =_DEFAULTS DEFINE. Generally, level cannot specify
nonexistent right-hand (that is, higher) levels; the exception is that it can specify
the level one greater than the highest level present in filename. Replacement of

Note. The sequence number is mandatory for unnamed processes. Do not remove the
sequence number from an unnamed process file name because a fatal error will result

Caution. Passing an invalid file name or file-name pattern to this procedure can result in a
trap, a signal, or data corruption. To verify that a file name or file-name pattern is valid, use the
FILENAME_SCAN_ procedure.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-181

FILENAME_FINDFINISH_ Procedure

this part effectively appends piece to filename using a period (.) as the
separator.

• If the sequence number is removed from an unnamed file, an FE13 FEBADNAME
error will result.

Examples
This table shows some possible combinations of input values for calls to
FILENAME_EDIT_ and the resulting output values. Note that “suffix” refers to the
“replace suffix” option in options, and “name” refers to a subpart value of 4.
Assume that the current default values are “\SYS.$VOL.SUB”.

Related Programming Manual
For programming information about the FILENAME_EDIT_ procedure, see the
Guardian Programmer’s Guide.

FILENAME_FINDFINISH_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Related Programming Manual

Summary
The FILENAME_FINDFINISH_ procedure releases the resources reserved for a
search that was previously initiated by a call to FILENAME_FINDSTART_.

Input filename piece level Modifiers Output filename

$a.b.c * 1 $a.*.c

$a.b.c * 1 suffix $a.*

$s #mfile 1 $s.#mfile

f x 1 x.f

f $x 0 $x.SUB.f

f \s -1 \s.$VOL.SUB.f

$p:4321.#a $z 0 name $z:4321.#a

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-182

FILENAME_FINDNEXT_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number that indicates the outcome of the operation; error 16
indicates that searchid was not in use.

searchid input

INT:value

is the value that was previously returned by FILENAME_FINDSTART_ to identify
the search request.

Related Programming Manual
For programming information about the FILENAME_FINDFINISH_ procedure, see the
Guardian Programmer’s Guide.

FILENAME_FINDNEXT_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Nowait Considerations
Related Programming Manual

Summary
The FILENAME_FINDNEXT_ procedure returns the next name in a set of named
entities that was defined by a call to the FILENAME_FINDSTART_ procedure.

#include <cextdecs(FILENAME_FINDFINISH_)>

short FILENAME_FINDFINISH_ (short searchid);

error := FILENAME_FINDFINISH_ (searchid); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-183

FILENAME_FINDNEXT_ Procedure

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

• The parameter maxlen specifies the maximum length in bytes of the character
string pointed to by name. The actual length of name in name is returned in name-
length. These three parameters must either all be supplied or all be absent.

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation. Error 1 (end
of file) indicates that no more names are available.

searchid input

INT:value

is the value that was previously returned by FILENAME_FINDSTART_ to identify
the search request.

name:maxlen output:input

STRING .EXT:ref:*, INT:value

contains the name being returned. The level of qualification of the name is
determined by the resolve-level parameter previously supplied to
FILENAME_FINDSTART_.

#include <cextdecs(FILENAME_FINDNEXT_)>

short FILENAME_FINDNEXT_ (short searchid
 ,[char *name]
 ,[short maxlen]
 ,[short *name-length]
 ,[short *entity-info]
 ,[__int32_t tag]);

error := FILENAME_FINDNEXT_ (searchid ! i
 ,[name:maxlen] ! o:i
 ,[name-length] ! o
 ,[entity-info] ! o
 ,[tag]); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-184

FILENAME_FINDNEXT_ Procedure

maxlen is the length in bytes of the string variable name.

name-length output

INT .EXT:ref:1

is the length in bytes of the value returned in name.

entity-info output

INT .EXT:ref:5

if present, returns a block of five words that might contain information about the
entity designated by name. Note that some of the fields do not apply to all kinds of
entities. (None of them apply to nodes.) The fields are:

[0] Device type.

[1] Device subtype.

[2:4] Device-specific information. When the device type is 3 (disk), the
meanings are:

[2] Object type. If greater than 0, this is an SQL object; if equal to 0, this is a
non-SQL disk file; if equal to -1, this is an entire volume or subvolume.

[3] File type. If the entity is a disk file, this is the file type (0 = unstructured, 1
= relative, 2 = entry-sequenced, 3 = key-sequenced); otherwise it is -1.

[4] File code. If the entity is a disk file, this is the file code given to the file;
otherwise it is -1.

For other device types, words [2:4] are not currently defined.

tag input

INT(32):value

specifies a tag value that, when the procedure is used in a nowait manner, is
returned in the completion message. If this parameter is omitted, the value 0D is
used. If the procedure is not used in a nowait manner, this parameter is ignored.
For details, see Nowait Considerations on page 5-185

Considerations

• The sequence of names returned by FILENAME_FINDNEXT_ does not have any
specific order; in particular, the names might not come back in alphabetical order.
Each kind of name part (for example, node or subvolume) has some order that is
consistent for any RVU but might change from RVU to RVU.

• For a certain class of errors, you have the option of continuing the search even
though some of the names cannot be returned. (This includes generic offline
errors. For a discussion of generic offline errors, see FILENAME_FINDSTART_
Procedure.) Errors of this class can be recognized by the fact that even though an

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-185

FILENAME_FINDSTART_ Procedure

error is indicated by the returned error value, a name is still returned in name and
name-length is nonzero.

For these errors, the name returned is that of the entity associated with the error
(for example, the node or device). It is generally not a name of the form being
searched for but is a name to be used for error-reporting purposes. If you continue
the search after one of these errors occurs by again calling
FILENAME_FINDNEXT_, the set of names subordinate to the entity in error is
skipped and the search proceeds to the next entity at that level. For example, if a
device caused the error, a further search skips all subdevices on that device and
proceeds to the next device.

In general, it is not worthwhile to retry errors that do not return a name, because
the condition that caused the error is likely to recur.

For files residing on Storage Management Foundation (SMF) virtual disks, call
FILE_GETINFOLISTBYNAME_ after the file name is returned by
FILENAME_NEXT_. Without the additional call, FILENAME_FINDNEXT_ will
always return 0 as object type.

Nowait Considerations

• If you specify the nowait option (options.<9> = 1) to FILENAME_FINDSTART_ ,
the results are returned in the nowait FILENAME_FINDNEXT_ completion
message (-109), not in the output parameters of the procedure. The format of this
completion message is described in the Guardian Procedure Errors and Messages
Manual. If error is not 0, no completion message is sent to $RECEIVE. Errors
can be reported either on return from the procedure or through the completion
message sent to $RECEIVE.

• Some errors are always returned in error. One of these is error 28, which occurs
if you call FILENAME_FINDNEXT_ a second time on a particular searchid
without having completed the previous call by reading the results from $RECEIVE.

Related Programming Manual
For programming information about the FILENAME_FINDNEXT_ procedure, see the
Guardian Programming Reference Summary.

FILENAME_FINDSTART_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Device Type Considerations
Error Handling

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-186

FILENAME_FINDSTART_ Procedure

Example
Related Programming Manual

Summary
The FILENAME_FINDSTART_ procedure sets up a search of named entities. After
specifying search criteria to FILENAME_FINDSTART_ , you call the
FILENAME_FINDNEXT_ procedure to retrieve individual names.

Syntax for C Programmers

• The character-string parameters search-pattern and startname are each
followed by a parameter length that specifies the length in bytes of the character
string. In each case, the character-string parameter and the corresponding length
parameter must either both be supplied or both be absent.

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation.

#include <cextdecs(FILENAME_FINDSTART_)>

short FILENAME_FINDSTART_ (short *searchid
 ,[const char *search-pattern]
 ,[short length]
 ,[short resolve-level]
 ,[short device-type]
 ,[short device-subtype]
 ,[short options]
 ,[const char *startname]
 ,[short length]);

error := FILENAME_FINDSTART_ (searchid ! o
 ,[search-pattern:length] !
i:i
 ,[resolve-level] ! i
 ,[device-type] ! i
 ,[device-subtype] ! i
 ,[options] ! i
 ,[startname:length]); !
i:i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-187

FILENAME_FINDSTART_ Procedure

searchid output

INT .EXT:ref:1

returns a value that identifies the search request for other file-name inquiry
procedures.

search-pattern:length input:input

STRING .EXT:ref:*, INT:value

if supplied and if length is not 0, contains a valid file-name pattern that specifies
the set of names to be searched. If used, the value of search-pattern must be
exactly length bytes long. A partially qualified file-name pattern is resolved using
the contents of the caller’s =_DEFAULTS DEFINE. “*” is the default search
pattern.

For the definition of file-name pattern, see Appendix D, File Names and Process
Identifiers.

resolve-level input

INT:value

if present, indicates how fully qualified the names returned by
FILENAME_FINDNEXT_ are to be. The value indicates the part that should be the
leftmost component of a returned name. If this parameter is omitted, the default
value is -1. Valid values are:

-1 Node name
0 Destination name (for example, volume, device, or process)
1 First qualifier (for example, subvolume)
2 Second qualifier (file identifier if disk file)

The specified level must not be further to the right than the level in search-
pattern that contains the first asterisk (*) or question mark (?).

device-type input

INT:value

if present and not equal to -1, specifies a device-type value to be used in selecting
returned names. A name returned by FILENAME_FINDNEXT_ must represent, or
must not represent (depending on the value of options), an entity of the specified
device type (or an entity that has a parent device of that device type). If this
parameter is omitted or equal to -1, device type is disregarded when selecting file
names. See Device Type Considerations on page 5-190.

device-subtype input

INT:value

if present and not equal to -1, specifies a device-subtype value to be used in
selecting returned names. A name returned by FILENAME_FINDNEXT_ must

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-188

FILENAME_FINDSTART_ Procedure

represent, or must not represent (depending on the value of options), an entity of
the specified device subtype. If this parameter is omitted or equal to -1, device
subtype is disregarded when selecting file names. See Device Type
Considerations on page 5-190.

options input

INT:value

specifies further options. The bits, when equal to 1, indicate:

The default value is 0. See “Considerations” and Device Type Considerations on
page 5-190.

Bit Meaning

<0:7
>

Reserved (specify 0)

<8> If a physical file corresponding to a NonStop Storage Management
Foundation (SMF) logical file is encountered, the name of the physical
file is to be returned.

<9> The search is to be executed in a nowait manner. When this option is
specified, some parts of the search processing are asynchronous with
respect to the caller, and the results of the search are returned in system
messages sent to $RECEIVE rather than through the output parameters
of FILENAME_FINDNEXT_. See “Considerations.”

<10> Device simulation by subtype 30 processes is not to be supported.

<11> The search is not to include subprocesses; that is, the search is to ignore
qualifier names that are subordinate to names of user processes (other
than device simulation processes). Because there is no search for
qualifier names, the subordinate name inquiry system message (-107) is
not sent by FILENAME_FINDNEXT_. The PROCESS_SETINFO_
procedure enables the receipt of this system message. For more
information on this system message, see the Guardian Procedure Errors
and Messages Manual.

<12> If an entity is encountered that is offline (that is, the system is not
connected or the device is down), an error is to be reported. When this
bit is zero, such entities are sometimes ignored. See Error Handling on
page 5-191.

<13> If device-subtype is supplied, a file name must not match the device
subtype value in order to be returned.

<14> If device-type is supplied, a file name must not match the device type
value in order to be returned.

<15> If startname is supplied, and if the first name returned would be
startname, then that name is to be skipped and this name should be
returned.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-189

FILENAME_FINDSTART_ Procedure

startname:length input:input

STRING .EXT:ref:*, INT:value

if supplied and if length is not 0, specifies a file name that indicates where, within
the set of file names that meet the search criteria, selection should begin. If used,
the value of startname must be exactly length bytes long. It must be a valid file
name and must fall within the set of names described by search-pattern.
Unless options.<15> = 1, the first call to FILENAME_FINDNEXT_ will return this
name (if it exists).

Considerations

• You must call FILENAME_FINDSTART_ to initiate a search for named entities. If
no error occurs, FILENAME_FINDSTART_ returns a searchid value that you use
to identify the particular search when making subsequent calls to
FILENAME_FINDNEXT_. A process can have up to 16 concurrent searches.
(Having more than 16 searches causes FILENAME_FINDSTART_ to fail with error
34.) When finished searching, you should call FILENAME_FINDFINISH_ with
searchid to release the resources.

• The file-name pattern supplied in search-pattern determines the kind of names
that will be returned by FILENAME_FINDNEXT_ and also restricts the range of
name values. For example, * will return node names; $* will return device names
and process file names. Subvolume names can be retrieved with file-name
patterns such as $VOL.*.

More than one level in the file-name pattern can contain asterisks and question
marks. Note that a file-name pattern such as *.*.* designates not only disk files but
also I/O subdevices and processes that have two levels of qualifiers.

For the definition of file-name pattern, see Appendix D, File Names and Process
Identifiers.

• A search for qualifier names of a process (for example, qualifier #TERM1 of the
process $TERM.#TERM1) can be performed if both of these are true:

• The process that is the target of the search called the PROCESS_SETINFO_
procedure and set attribute 49 to 1 to enable the receipt of the subordinate
name inquiry system message (-107).

• options.<11> of the FILENAME_FINDSTART_ procedure is set to 0.

For descriptions of the messages and replies that must be supported to search for
qualifier names, see the Guardian Procedure Errors and Messages Manual.

• The names returned by FILENAME_FINDNEXT_ are returned in a sequence that
is not necessarily alphabetic. (See Considerations on page 5-184.) You can
specify a starting point in this sequence other than the normal one by using the
startname parameter of FILENAME_FINDSTART_ and thereby avoid

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-190

FILENAME_FINDSTART_ Procedure

processing some initial portion of the sequence. You can do this, for instance, to
restart a discontinued search from the point where it stopped.

• When using the nowait option (options.<9> = 1), you still call
FILENAME_FINDNEXT_ for each name but the results are returned in a system
message to $RECEIVE rather than in the output parameters of
FILENAME_FINDNEXT_. For the format of this system message, see the
Guardian Procedure Errors and Messages Manual.

The nowait interface guarantees only that device-type simulation and subname
inquiries to user processes are asynchronous to the caller; any other part of a
search might be synchronous (that is, might execute while the caller waits) or
asynchronous in a given software release.

• The FILENAME_FIND* procedures can be used to search for files on SMF virtual
volumes. However, when searching disk volumes, the names in the special SMF
subvolumes (ZYS* and ZYT*) where SMF physical files reside are not returned by
the FILENAME_FINDNEXT_ procedure except when the search pattern supplied
to the FILENAME_FINDSTART_ procedure includes “ZYS” or “ZYT” as the first
three characters of the subvolume portion of the pattern, or when options.<8> is
set equal to 1.

Device Type Considerations

• The device-type parameter can be used to restrict the set of names that are
returned. If it is supplied, a name must represent an entity of the specified device
type to be returned. If options.<14> is equal to 1, the meaning of device-type
is reversed: all names are returned except those representing entities of the
specified device type. The device-subtype parameter acts in the same manner
with respect to the device subtype. These parameters do not apply to system
name searches. A typical use might be to restrict a file-name pattern such as *.*.*
to disk files by supplying a device-type value of 3.

• Note that if the device-type value is 3, the subordinate name inquiry system
message (-107) is never sent, regardless of the setting of options.<11>.

• The system allows certain processes, which are distinguished by having a device
subtype of 30, to simulate device types. During a file name search, these
processes are normally sent a system message inquiring about the device-type
and subtype values they present. The result of this inquiry is used for selection
under the device-type and device-subtype selection criteria and for
information reporting by FILENAME_FINDNEXT_.

You can suppress device type simulation by specifying options.<10> = 1.
Without device-type simulation, all simulator processes and their subprocesses
show a device type of 0 and a subtype of 30.

• When searching for only disk files, the search is usually more efficient if you use
the device-type parameter to restrict the search to disk devices. Otherwise,
time is spent making inquiries to nondisk devices (which can have subdevices of

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-191

FILENAME_FINDSTART_ Procedure

various device types that must also be searched) and simulator processes (which
can have subprocesses of various simulated device types that must also be
searched).

Error Handling
A section of a search pattern can be termed generic if it does not designate a specific
entity (that is, if the section contains an asterisk or a question mark, or if the section is
to the right of such a character). For example, the destination section $* is generic; the
destination section in \sys.$dev.* is not generic. In *.$dev, both the node and the
destination sections are generic.

Some entities that should be inspected during a search might be offline. This can
occur because either a node is not connected (error 250) or a device is down (errors
62-66). But if the section of the search pattern corresponding to the offline entity is
generic, the normal action of FILENAME_FINDNEXT_ is to bypass the offline entity
without reporting the error. Such an error is termed a generic offline error. You can
cause FILENAME_FINDNEXT_ to report all offline errors, including generic offline
errors, by specifying options.<12> = 1. (Note that it is possible that some remote
nodes are not known to the local node because the local node has not communicated
with them since the node was system loaded; offline errors are not reported in such
cases, regardless of the value of options.)

Errors associated with entities that are designated explicitly (that is, not generically) are
always reported. This includes not only offline errors but also such errors as error 18
(node does not exist) and error 14 (device does not exist).

Example
! process all 6-byte file names in the current subvolume
error := FILENAME_FINDSTART_ (searchid,, 2); ! return only
 ! level 2 name
 ! part
IF NOT error THEN
 error := FILENAME_FINDNEXT_ (searchid, name:128,
 namelen);
WHILE NOT error DO
 BEGIN
 IF namelen = 6 THEN ... ! process name !
 error := FILENAME_FINDNEXT (searchid, name:128,
 namelen);
 END;
error := FILENAME_FINDFINISH_ (searchid);

Related Programming Manual
For programming information about the FILENAME_FINDSTART_ procedure, see the
Guardian Programmer’s Guide.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-192

FILENAME_MATCH_ Procedure

FILENAME_MATCH_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Examples
Related Programming Manual

Summary
The FILENAME_MATCH_ procedure determines whether one or more contiguous
sections of a file name match the corresponding sections of a file-name pattern (that is,
whether the file name sections might be represented by the pattern sections).
FILENAME_MATCH_ does not resolve partially qualified file names.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

returns a value indicating the result of the operation. Valid values are:

2 Match; the name fits the pattern.

1 Partial match; the name fits the left-hand pattern sections.

0 No match; the name does not fit the pattern.

<0 An error occurred; one of these values is returned:

-1 Missing filename parameter

#include <cextdecs(FILENAME_MATCH_)>

short FILENAME_MATCH_ (const char *filename
 ,short length
 ,const char *pattern
 ,short length
 ,[short *generic-set]);

status := FILENAME_MATCH_ (filename:length ! i:i
 ,pattern:length ! i:i
 ,[generic-set]); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-193

FILENAME_MATCH_ Procedure

-2 Missing pattern parameter
-3 Length error on filename parameter
-4 Length error on pattern parameter
-5 Bounds error on generic-set parameter

filename:length input:input

STRING .EXT:ref:*, INT:value

is one or more contiguous sections of a valid file name that is to be tested for a
match with pattern. The value of filename must be exactly length bytes
long. It must have the same level of left-hand qualification as pattern or else a
match cannot result (for example, if pattern starts with a node-name section,
filename must have a node name). See caution under “Considerations.”

pattern:length input:input

STRING .EXT:ref:*, INT:value

is one or more contiguous sections of a valid file-name pattern to be matched. The
value of pattern must be exactly length bytes long. For the definition of file-
name pattern, see Appendix D, File Names and Process Identifiers. See caution
under “Considerations.”

generic-set output

INT .EXT:ref:1

if status is 0, returns a value indicating whether filename is a member of, falls
before, or falls after the generic set of names defined by pattern. A name is part
of the generic set if it matches pattern up to the first wild-card character (* or ?).
Valid values are:

-1 The name falls before the first possible match.
0 The name falls within the set of possible matches.
1 The name falls after the last possible match.

Considerations

• filename and pattern must have the same level of left-hand qualification. For
example, if pattern has a node-name section, filename matches only if it
contains a node name. FILENAME_MATCH_ does not support file-name
resolution with current default values; you can use the FILENAME_RESOLVE_
procedure to resolve partially qualified file names before calling
FILENAME_MATCH_.

• Matching is syntactic only and does not involve lookups of actual processes, logical
devices, or other entities.

Caution. Passing an invalid file name or file-name pattern to this procedure can result in a
trap, a signal, or data corruption. To verify that a file name or file-name pattern is valid, use the
FILENAME_SCAN_ procedure.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-194

FILENAME_RESOLVE_ Procedure

• FILENAME_MATCH_ does not use the process or system context (as defaulting
would require), so it can be used in environments where the PFS (process file
segment) is not available.

Examples
result := FILENAME_MATCH_ (filename:flen, pattern:plen);

This table shows some possible combinations of input parameters and the
corresponding values of status for the foregoing call to FILENAME_MATCH_:

Related Programming Manual
For programming information about the FILENAME_MATCH_ procedure, see the
Guardian Programmer’s Guide.

FILENAME_RESOLVE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The FILENAME_RESOLVE_ procedure converts a partially qualified file name to a fully
qualified file name. You can supply a search list when qualifying a disk file name. You
can also use FILENAME_RESOLVE_ to resolve absent sections of a file-name pattern
or to resolve a DEFINE that contains a file name and can be opened. For the
definitions of file name and file-name pattern, see Appendix D, File Names and
Process Identifiers. For further information about DEFINEs, see Appendix E,
DEFINEs.

filename pattern status generic-set

cab.ride C*B.* 2 (match) N/A

cab c*b.* 1 (partial match) N/A

bable c*b.* 0 (no match) -1 (before set)

c c*b.* 0 (no match) 0 (part of set)

czz.ride c*b.* 0 (no match) 0 (part of set)

d c*b.* 0 (no match) +1 (after set)

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-195

FILENAME_RESOLVE_ Procedure

Syntax for C Programmers

• Some character-string parameters to FILENAME_RESOLVE_ are followed by a
parameter length that specifies the length in bytes of the character string (not
counting the null-byte terminator). Where the parameters are optional, the
character-string parameter and the corresponding length parameter must either
both be supplied or both be absent.

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation.

partialname:length input:input

STRING .EXT:ref:*, INT:value

#include <cextdecs(FILENAME_RESOLVE_)>

short FILENAME_RESOLVE_ (const char *partialname
 ,short length
 ,char *fullname
 ,short maxlen
 ,short *fullname-length
 ,[short options]
 ,[const char *override-name]
 ,[short length]
 ,[const char *search]
 ,[short length]
 ,[const char *defaults]
 ,[short length]);

error := FILENAME_RESOLVE_ (partialname:length !
i:i
 ,fullname:maxlen !
o:i
 ,fullname-length ! o
 ,[options] ! i
 ,[override-name:length] !
i:i
 ,[search:length] !
i:i
 ,[defaults:length]); !
i:i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-196

FILENAME_RESOLVE_ Procedure

is a valid, partially qualified file name or file-name pattern that is to be resolved.
partialname can also be a valid DEFINE name (see the description of the
options parameter). The value of partialname must be exactly length bytes
long. See caution under “Considerations.”

fullname:maxlen output:input

STRING .EXT:ref:*, INT:value

contains the resulting fully qualified file name. The buffer must be distinct from the
partialname, override-name, search, and defaults areas.

maxlen is the length in bytes of the string variable fullname.

fullname-length output

INT .EXT:ref:1

returns the actual length of the resolved file name returned in fullname. 0 is
returned if an error occurs.

options input

INT:value

specifies options. If omitted, the default value is 0. The bits, when equal to 1,
indicate:

Bit Meaning

<0:7
>

Reserved (specify 0).

<8> If partialname consists of a simple unqualified disk file name, a
DEFINE name is generated to use as the override-name. The
generated name is an equal sign (=) followed by partialname. This
name convention corresponds to the ASSIGN name convention used by
TAL. This option cannot be used unless override-name is omitted or
has a length of 0.

<9> If search is supplied and a search fails to find an existing file,
FILENAME_RESOLVE_ resolves partialname using the first entry in
the search DEFINE. If this option is not specified and a search fails to
find an existing file, FILENAME_RESOLVE_ returns error 11.

<10> If a DEFINE name other than one translated by options.<11> or
options.<12> is supplied for partialname, FILENAME_RESOLVE_
returns error 13.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-197

FILENAME_RESOLVE_ Procedure

override-name:length input:input

STRING .EXT:ref:*, INT:value

if supplied and if length is not 0, specifies a DEFINE name to be used as the
primary input instead of partialname. If used, the value of override-name
must be exactly length bytes long. If the DEFINE name does not exist, or if
DEFMODE is OFF, partialname is processed as normal.

search:length input:input

STRING .EXT:ref:*, INT:value

if supplied and if length is not 0, specifies the name of a CLASS SEARCH
DEFINE that is used to resolve single-part file names by testing for the file’s
existence in several subvolumes. See “Considerations” for details. If used, the
value of search must be exactly length bytes long. If the DEFINE does not
exist, DEFMODE is OFF, or partialname does not consist of a single name part,
then no searching is done and no error is reported.

<11> If a DEFINE name is supplied for partialname, and if the DEFINE has a
file name associated with it, that file name is returned as the result.
(Error 198 is returned if the DEFINE doesn’t exist; error 13 is returned if
DEFMODE is OFF.) If neither this option nor options.<12> is specified,
then FILENAME_RESOLVE_ returns the DEFINE name as the result.
This option causes DEFINE names to be translated more often than
options.<12>, but doing so causes the extra information carried in the
DEFINEs to be lost. (Note that CLASS TAPE and SPOOL DEFINEs
carry such information. TAPE DEFINEs do not necessarily have any
specific file name associated with them, and so are not always translated
by this option. CLASS SORT, SUBSORT, CATALOG, DEFAULTS, and
SEARCH DEFINE names are never changed by this option.)

<12> If a DEFINE name is supplied for partialname, and if the DEFINE
contains only a file name (that is, it is a simple MAP DEFINE), then
FILENAME_RESOLVE_ returns that file name as the result. (Error 198
is returned if the DEFINE doesn’t exist; error 13 is returned if DEFMODE
is OFF.) If neither this option nor options.<11> is specified, then the
DEFINE name is returned as the result.

<13> If a logical device number (LDEV) appears as part of partialname,
FILENAME_RESOLVE_ translates it to the corresponding symbolic
device name.

<14> A single name part supplied in partialname is to be treated as a
subvolume name or pattern.

<15> All alphabetic characters in the resolved file name are to be shifted to
upper case. If this option is not specified, characters transferred from
partialname to fullname are unchanged. Characters taken from
defaults are always shifted to upper case, regardless of this option.

Bit Meaning

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-198

FILENAME_RESOLVE_ Procedure

defaults:length input:input

STRING .EXT:ref:*, INT:value

if supplied and if length is not 0, specifies either a default subvolume to be used
for name resolution or the name of a CLASS DEFAULTS DEFINE to be used for
name resolution. If used, the value of defaults must be exactly length bytes
long and must be in this form:

[[\node.]$volume.]subvolume

Any part of the supplied default value that is used in the resolved file name is
shifted to upper case, regardless of the value of options.<15>.

Omitted name parts are taken from the =_DEFAULTS DEFINE. If this parameter is
omitted or if length is 0, the value of the VOLUME attribute of the =_DEFAULTS
DEFINE is used.

Considerations

• FILENAME_RESOLVE_ performs the principal steps of its operation in this order.

1. If the caller supplied the name of an existing DEFINE in override-name, it
substitutes the DEFINE name for partialname.

2. If the criteria for doing a search are met, it performs a search.

3. If the caller specified the appropriate options, it resolves or reduces DEFINEs.

4. It applies default values and resolves LDEVs.

5. It changes the result to upper case.

• options.<14> specifies that a single name part supplied in partialname be
treated as a subvolume name or pattern. This means that the input string “f” is
resolved to the form “\SYS.$VOL.f”. Without this option, “f” would be resolved to
“\SYS.$VOL.SUBV.f”.

• The name $RECEIVE is never expanded with a node name.

• FILENAME_RESOLVE_ does not modify DEFINE names except to change them
to upper case. It also does not check DEFINE names in partialname for
existence, except as noted under options bits 11 and 12.

• If you are using FILENAME_RESOLVE_ to obtain a file name in standard form (to
use as a key, for instance), then you should use options bits 13 (LDEV resolve)
and 15 (upper case).

• Override name

Caution. Passing an invalid file name or file-name pattern to this procedure can result in a
trap, a signal, or data corruption. To verify that a file name or file-name pattern is valid, use the
FILENAME_SCAN_ procedure.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-199

FILENAME_RESOLVE_ Procedure

The override-name parameter provides a way to allow interactive users to
override a program’s normal choice of file name with a CLASS MAP (or other)
DEFINE. The programmer provides the default file name in partial-name and
the DEFINE name that the interactive user would use in override-name.

options.<8> provides a way to automatically generate an override name from the
default name if they are to have a direct correspondence.

• Search lists

If search specifies an existing CLASS SEARCH DEFINE and DEFMODE is ON,
FILENAME_RESOLVE_ can resolve file names by search. The SEARCH DEFINE
contains a sequence of subvolumes to be inspected or names of CLASS
DEFAULTS DEFINEs that contain subvolumes to be inspected.

The search is performed if partialname consists of only the file identifier part of
a file name, that is, if it does not include any delimiters or other special characters
(such as . : $ * ?). The first subvolume in the DEFINE is checked for the existence
of a file with the supplied name, and if that fails, each of the remaining subvolumes
in the SEARCH DEFINE are similarly checked. If no such file exists in any of the
subvolumes, FILENAME_RESOLVE_ returns error 11. (The exception to this is
when options.<9> is equal to 1, in which case FILENAME_RESOLVE_ returns
the name as resolved using the first entry in the SEARCH DEFINE.) If a file is
found, its complete name is returned in fullname.

If either the search parameter specifies a DEFINE that is not CLASS SEARCH or
the defaults parameter specifies a DEFINE that is not CLASS DEFAULTS, an
error 113 is returned.

Example
In this example, name is resolved using a search list if the DEFINE =SRCHLST exists;
if the DEFINE does not exist, name is resolved by normal means.

slist ':=' "=SRCHLST";
error:= FILENAME_RESOLVE_(name:namelen,
 outname:256, outnamelen, , ,
 slist:8);

Related Programming Manual
For programming information about the FILENAME_RESOLVE_ procedure, see the
Guardian Programmer’s Guide.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-200

FILENAME_SCAN_ Procedure

FILENAME_SCAN_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The FILENAME_SCAN_ procedure checks for valid file-name syntax and returns the
length in bytes of that part of the input string that constitutes a file name. Node names
are accepted as valid input, as are partially or fully qualified names of disk files,
processes, and devices. File-name patterns and subvolume names are accepted
when you select the appropriate options. FILENAME_SCAN_ checks syntax only; no
check for the existence of any entity is performed.

For the definitions of file name and file-name pattern, see Appendix D, File Names and
Process Identifiers.

Syntax for C Programmers

Syntax for TAL Programmers

#include <cextdecs(FILENAME_SCAN_)>

short FILENAME_SCAN_ (const char *string
 ,short length
 ,[short *count]
 ,[short *kind]
 ,[short *entity-level]
 ,[short options]);

error := FILENAME_SCAN_(string:length ! i:i
 ,[count] ! o
 ,[kind] ! o
 ,[entity-level] ! o
 ,[options]); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-201

FILENAME_SCAN_ Procedure

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation. Possible
values include:

0 Syntactically correct name found for count bytes; see description of
count parameter

13 The form of the name found is incorrect; also, various program and
resource errors

string:length input:input

STRING .EXT:ref:*, INT:value

is a character string to be searched for a valid file name. string must be exactly
length bytes long. A valid file name must begin at the first character of string.
It can occupy the entire length of string, or it can occupy the left-hand portion of
string and be followed by characters that cannot appear in a valid file name or
file-name pattern.

count output

INT .EXT:ref:1

is the number of characters occupied by the name if a valid name is found. If error
13 is returned in error, count contains the number of characters examined when
the name was determined to be invalid. To know that the entire input string
constitutes a valid name, you should verify that count is equal to length. See
Example on page 5-202.

kind output

INT .EXT:ref:1

identifies the class of name that was found. Possible values are:

0 File name (that is, the name of an entity).

1 File-name pattern. This value can be returned only if options.<15> is
equal to 1. If the input is a name as well as a file-name pattern (that is, it
does not contain an asterisk or question mark), FILENAME_SCAN_
classifies it as a name and not a pattern.

2 DEFINE name.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-202

FILENAME_SCAN_ Procedure

entity-level output

INT .EXT:ref:1

identifies the class of entity represented by the supplied name based on its syntax.
This value corresponds to the “level” of the rightmost name section that appears.
Possible values are:

-1 Node name.
0 Name of device or process without qualifiers.
> 0 Name of device or process with entity-level qualifiers.

Note that a disk file name always has an entity-level greater than 0 (1 if it is a
temporary file; 2 if it is a permanent file). The value returned is not affected by
whether name sections to the left are implied (that is, defaulted).

A DEFINE name always yields a value of 0.

options input

INT:value

specifies options. The bits, when equal to 1, have these meanings:

<0:13> Reserved (specify 0).

<14> Specifies that a subvolume name be accepted as valid input.

<15> Specifies that a file-name pattern be accepted as valid input.

The default value is 0.

Considerations

• The syntax checking performed by FILENAME_SCAN_ includes checks that the
lengths of individual name parts are acceptable. (For example, it checks that a
subvolume name is no more than 8 characters long.) Unless a name occupies the
entire input string, FILENAME_SCAN_ also requires that the character following
the name must not belong to the set of characters that can appear in a file name or
file-name pattern.

• FILENAME_SCAN_ checks only that some left-hand part of the input string is a
valid name; it does not require that the name occupy the entire string. If you need
such a check, you can compare the length of string to the returned count.

Example
This example checks that name is a valid file name with a length of namelen bytes.

error := FILENAME_SCAN_ (name:namelen, count);
IF error <> 0 OR count <> namelen THEN ! if bad name then
 CALL BAD^FILENAME^FOUND; ! call user procedure

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-203

FILENAME_TO_OLDFILENAME_ Procedure

Related Programming Manual
For programming information about the FILENAME_SCAN_ procedure, see the
Guardian Programmer’s Guide.

FILENAME_TO_OLDFILENAME_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The FILENAME_TO_OLDFILENAME_ procedure converts a file name to the C-series
internal file-name format. See Appendix D, File Names and Process Identifiers for
descriptions of C-series and D-series file names.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation.

filename:length input:input

STRING .EXT:ref:*, INT:value

specifies the valid file name to be converted. The value of filename must be
exactly length bytes long. If the name is partially qualified, it is resolved using

#include <cextdecs(FILENAME_TO_OLDFILENAME_)>

short FILENAME_TO_OLDFILENAME_ (const char *filename
 ,short length
 ,short *oldstyle-name);

error := FILENAME_TO_OLDFILENAME_ (filename:length ! i:i
 ,oldstyle-name); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-204

FILENAME_TO_PATHNAME_ Procedure

the contents of the user’s =_DEFAULTS DEFINE. See caution under
“Considerations.”

oldstyle-name output

INT .EXT:ref:12

returns the internal-format file name.

Considerations

• The process file name of an unnamed process can be converted if it has a PIN of
255 or less.

• If filename contains a node name or if the default node name is remote,
oldstyle-name is normally returned in internal network form. Otherwise,
oldstyle-name is in internal local form.

An exception occurs when an 8-character destination name (for example,
“$LONGDEV”) is supplied as part of filename. Such a name is converted
without error into internal local form if the local node is explicitly designated in
filename or in the =_DEFAULTS DEFINE (if filename does not contain a node
name). Otherwise error 20 is returned.

Example
error := FILENAME_TO_OLDFILENAME_ (fname:length,
 oldstylename);

Related Programming Manual
For programming information about the FILENAME_TO_OLDFILENAME_ procedure,
see the Guardian Application Conversion Guide.

FILENAME_TO_PATHNAME_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
OSS Considerations
Related Programming Manual

Caution. Passing an invalid file name to this procedure can result in a trap, a signal, or data
corruption. To verify that a file name is valid, use the FILENAME_SCAN_ procedure.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-205

FILENAME_TO_PATHNAME_ Procedure

Summary
The FILENAME_TO_PATHNAME_ procedure converts a Guardian file name or
subvolume name to an OSS pathname. See Appendix D, File Names and Process
Identifiers for a descriptions of OSS pathname syntax.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation.

0 No error.

563 The pathname buffer is too small to contain the resulting name.

4002 filename specifies a Guardian name for an OSS file that either does not
exist or has been unlinked but is still open by some process. The
corresponding OSS errno value is ENOENT.

4006 The fileset that corresponds to the supplied Guardian name for an OSS file
is not mounted. The corresponding OSS errno value is ENXIO.

4013 The caller does not have search access to one of the directories within all
of the resulting pathnames. The corresponding OSS errno value is
EACCESS.

4014 A parameter has an invalid address. The corresponding OSS errno
value is EFAULT.

#include <cextdecs(FILENAME_TO_PATHNAME_)>

short FILENAME_TO_PATHNAME_ (const char *filename
 ,short length
 ,char *pathname
 ,short maxlen
 ,short *pathlen
 ,short [options]
 ,short [*index]);

error := FILENAME_TO_PATHNAME_ (filename:length ! i:i
 ,pathname:maxlen ! o:i
 ,pathlen ! o
 ,[options] ! i
 ,[index]); ! i,o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-206

FILENAME_TO_PATHNAME_ Procedure

4022 One of these conditions has occurred: options is specified and
options.<0:12> does not contain all zeros; filename is not a valid file
or subvolume name; when resolving multiple pathames to a file, index
does not correspond to a pathname of the file; or options.<13> = 0,
options.14 = 1 and a chroot() function was executed which changed
the root to something other than “/.” The corresponding OSS errno value
is EINVAL.

4202 The root fileset is not mounted. The corresponding OSS errno value is
ENOROOT.

4211 The resulting pathname is longer than the limit defined in PATH_MAX.
(PATH_MAX is a symbolic constant defined in the OSS limits.h header
file.) The corresponding OSS errno value is ECWDTOOLONG.

filename:length input:input

STRING .EXT:ref:*, INT:value

specifies the name of the file or subvolume to be converted. To indicate that
filename contains a subvolume name, use the options parameter. The value
of filename must be exactly length bytes long, and it must be a valid disk file
name. If the name is partially qualified, it is resolved using the contents of the
VOLUME attribute of the =_DEFAULTS DEFINE.

pathname:maxlen output:input

STRING .EXT:ref:*, INT:value

returns the null-terminated OSS pathname that corresponds to the Guardian
filename. maxlen specifies the maximum length in bytes of pathname,
including the terminating null character.

pathlen output

INT .EXT:ref:1

returns the actual length in bytes of the pathname parameter, including the
terminating null character.

options input

INT:value

specifies options for the filename parameter:

<0:12> Reserved (specify 0).

<13> 1 If the caller has appropriate privileges, specifies that pathname is
an absolute pathname with respect to the system root.

0 Specifies that pathname is an absolute pathname with respect to
the current root of the process.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-207

FILENAME_TO_PATHNAME_ Procedure

<14> 1 Specifies that pathname always includes the system name in the
form /E/system/path.

0 Specifies that pathname includes system names only for remote
pathnames; that is, local pathnames do not start with “/E.”

<15> 1 Specifies that a subvolume name be accepted as valid input.

0 Specifies that a the input must be a file name.

The default value is 0.

index input,output

INT .EXT:ref:1

specifies the index of the link to the named file to be returned in pathname.
Specifying a value of -1 finds only the first accessible path. Specifying a value of 0
starts a search for all possible pathnames.

index returns the index to the next pathname to the file. A value of -1 on return
indicates that pathname contains the last (or only) name for the file.

The default value is -1.

OSS Considerations

• If the supplied Guardian file name is not the Guardian file name of an OSS file,
pathname returns an absolute pathname of the form:

/G[/volume[/subvolume[/file-id]]]

• The number of components in the pathname is the same as the number in the
Guardian file name plus the /G prefix.

• volume, if present, is derived from the Guardian volume name by removing
the dollar sign ($).

• subvolume, if present, is the Guardian subvolume name, including any
preceding pound sign (#).

• If the file name contains a node name, it must be that of the node on which the
procedure is called.

• Periods (.) in the Guardian file name are replaced by slashes in the pathname.

• Alphabetic characters in the pathname are all lower case except for the “G” in
“/G.”

• If the supplied Guardian file name is the Guardian file name of an OSS file,
pathname returns the corresponding absolute pathname of the OSS file.

• Some OSS files can have multiple pathnames because additional directory entries
(or links) can be created for existing files. The pathname returned is the first one
found for which the caller has search access unless the index parameter is used.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-208

FILENAME_TO_PROCESSHANDLE_ Procedure

If index is used, all the file names can be returned by making multiple calls to
FILENAME_TO_PATHNAME_ and using the value returned in index from each
call as the value supplied in index for the next call. All pathnames have been
returned when the returned value of index is -1.

• An error is returned (EINVAL) if index does not correspond to a pathname of the
file; for example, as a result of unlinking a pathname between iterations of the
FILENAME_TO_PATHNAME_ procedure. This error condition also indicates that
there are no further pathnames to this file because index values are always
contiguous.

• Two additional file numbers might be allocated: one for the OSS root directory and
one for the OSS current working directory. These files are not necessarily the next
available file numbers and they cannot be closed by calling FILE_CLOSE_.

• A current working directory is established from the value of the VOLUME attribute
of the =_DEFAULTS DEFINE.

• The resident memory used by the calling process increases by a small amount.

• If the resulting pathname represents a file in the Guardian name space (/G), then
the system does not check whether such a file exists.

Example in C
ret = FILENAME_TO_PATHNAME_(argv[1], /* Guardian file name */
 (short)strlen(argv[1]), /* length of file name */
 pathname, /* buffer for OSS path
 name */
 PATH_MAX, /* length of buffer */
 &pathlen, /* length of path name */
 ,);

Related Programming Manual
For programming information about the FILENAME_TO_PATHNAME_ procedure, see
the Open System Services Programmer’s Guide.

FILENAME_TO_PROCESSHANDLE_
Procedure

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-209

FILENAME_TO_PROCESSHANDLE_ Procedure

Summary
The FILENAME_TO_PROCESSHANDLE_ procedure converts a file name to a
process handle.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation.

filename:length input:input

STRING .EXT:ref:*, INT:value

contains the valid process file name to be translated. The value of filename
must be exactly length bytes long. If qualifiers are present, they are ignored. If a
node name is not present, the current default node name in the =_DEFAULTS
DEFINE is used. See caution under “Considerations.”

processhandle output

INT .EXT:ref:10

returns the process handle of the process designated by filename.

Considerations

• If the file name to be converted by FILENAME_TO_PROCESSHANDLE_
designates something besides a process (for example, a disk file or a tape device),

#include <cextdecs(FILENAME_TO_PROCESSHANDLE_)>

short FILENAME_TO_PROCESSHANDLE_ (const char *filename
 ,short length
 ,short *processhandle);

error := FILENAME_TO_PROCESSHANDLE_ (filename:length !
i:i
 ,processhandle); ! o

Caution. Passing an invalid file name to this procedure can result in a trap, a signal, or data
corruption. To verify that a file name is valid, use the FILENAME_SCAN_ procedure.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-210

FILENAME_UNRESOLVE_ Procedure

the procedure returns the process handle of the process that controls the device
(that is, the I/O process).

• When converting the process file name of a named process,
FILENAME_TO_PROCESSHANDLE_ looks up the process by name in the
destination control table (DCT). If the name is not found, error 14 is returned.
However, it is sometimes possible for the name of a nonexistent process to be
found in the DCT, in which case error 0 is returned. Therefore, even for a named
process, error 0 (successful conversion of a process handle) does not guarantee
that the process exists.

Related Programming Manual
For programming information about the FILENAME_TO_PROCESSHANDLE_
procedure, see the Guardian Programmer’s Guide.

FILENAME_UNRESOLVE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Examples
Related Programming Manual

Summary
The FILENAME_UNRESOLVE_ procedure accepts a file name as input, deletes left-
hand sections that match the default values, and returns a file name that is
semantically equivalent to the input file name.

Syntax for C Programmers

• The character-string parameters longname and defaults are each followed by a
parameter length that specifies the length in bytes of the character string. Where

#include <cextdecs(FILENAME_UNRESOLVE_)>

short FILENAME_UNRESOLVE_ (const char *longname
 ,short length
 ,char *shortname
 ,short maxlen
 ,short *shortname-length
 ,[short level]
 ,[const char *defaults]
 ,[short length]);

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-211

FILENAME_UNRESOLVE_ Procedure

the parameters are optional, the character-string parameter and the corresponding
length parameter must either both be supplied or both be absent.

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation.

longname:length input:input

STRING .EXT:ref:*, INT:value

contains the valid file name or file-name pattern to be acted upon by
FILENAME_UNRESOLVE_. The value of longname must be exactly length
bytes long. See caution under “Considerations.”

shortname:maxlen output:input

STRING .EXT:ref:*, INT:value

defines the buffer where the resultant file name is to be placed. This buffer can
occupy the same area as longname. The length of the resultant name is never
greater than the length of longname.

maxlen is the length in bytes of the string variable shortname.

shortname-length output

INT .EXT:ref:1

returns the length in bytes of the name returned in shortname. If an error occurs,
0 is returned.

level input

INT:value

specifies the first part of the file name, scanning from the left, that should be
returned even if it matches the default name. Name parts of this level and greater

error := FILENAME_UNRESOLVE_ (longname:length !
i:i
 ,shortname:maxlen !
o:i
 ,shortname-length ! o
 ,[level] ! i
 ,[defaults:length]); !
i:i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-212

FILENAME_UNRESOLVE_ Procedure

are always returned if they are present in longname. If omitted, the default level is
0 (that is, no more than the node name is to be removed). Valid values are:

-1 Node name
0 Destination name (for example, volume, device, or process)
1 First qualifier (for example, subvolume)
2 Second qualifier (file identifier if disk file)

defaults:length input:input

STRING .EXT:ref:*, INT:value

if supplied and if length is not 0, specifies either a subvolume name to be used
as the default subvolume name or the name of a CLASS DEFAULTS DEFINE.
The contents of defaults are compared with longname to perform the
unresolved operation.

If used, the value of defaults must be exactly length bytes long and must be in
this form:

[[\node.]$volume.]subvolume

Omitted name parts are taken from the =_DEFAULTS DEFINE.

If this parameter is omitted or if length is 0, the value of the VOLUME attribute of
the =_DEFAULTS DEFINE is used.

Considerations

• The FILENAME_UNRESOLVE_ procedure compares a specified file name with the
default subvolume specification and removes left-hand sections that are identical.
It scans the input file name from the left, and when it finds a difference, it returns
that part and everything to the right. Name parts are never removed from the
section indicated by level or from sections to the right of that point.

Examples
error := FILENAME_UNRESOLVE_ (longname:longlen,
 shortname:maxlen,

Caution. Passing an invalid file name or file-name pattern to this procedure can result in a
trap, a signal, or data corruption. To verify that a file name or file-name pattern is valid, use the
FILENAME_SCAN_ procedure.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-213

FILERECINFO Procedure (Superseded by
FILE_GETINFOLISTBYNAME_ Procedure)

 shortname-len,
 level);

This table gives some possible input values for the above example, along with the
output. Assume that the current default values are “\SYS.$VOL.SUB”.

Related Programming Manual
For programming information about the FILENAME_UNRESOLVE_ procedure, see the
Guardian Programmer’s Guide.

FILERECINFO Procedure (Superseded by
FILE_GETINFOLISTBYNAME_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Condition Codes
Example

Summary

The FILERECINFO procedure obtains record characteristics of a disk file.

longname (input) level shortname (output)

\mysys.$myvol.mysvol.myfile 0 \mysys.$myvol.mysvol.myfile

\sys.$myvol.mysvol.myfile 0 $myvol.mysvol.myfile

\sys.$vol.mysvol.myfile 0 $vol.mysvol.myfile

mysvol.myfile 0 mysvol.myfile

sub.myfile 1 sub.myfile

sub.myfile 2 myfile

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-214

FILERECINFO Procedure (Superseded by
FILE_GETINFOLISTBYNAME_ Procedure)

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is the number of an open file that identifies the file whose characteristics are to be
returned. You must specify either filenum or file-name; specifying both
causes a CCL condition code.

current-keyspecifier output

INT:ref:1

returns the current key field’s key specifier. This is invalid when you specify the
file-name parameter; use filenum.

current-keyvalue output

STRING:ref:*

returns the value of the current key for current-keylen bytes. This is invalid
when you specify the file-name parameter; use filenum. This value is not valid
for queue files. Also, this parameter cannot be used with a non-key-sequenced file
opened with 64-bit primary keys open flag. If an attempt is made, the call will fail
with condition code CCL.

CALL FILERECINFO ([filenum] ! i
 ,[current-keyspecifier] ! o
 ,[current-keyvalue] ! o
 ,[current-keylen] ! o
 ,[current-primary-keyvalue] ! o
 ,[current-primary-keylen] ! o
 ,[partition-in-error] ! o
 ,[specifier-of-key-in-error] ! o
 ,[file-type] ! o
 ,[logical-recordlen] ! o
 ,[blocklen] ! o
 ,[key-sequenced-parameters] ! o
 ,[alternate-key-parameters] ! o
 ,[partition-parameters] ! o
 ,[file-name]); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-215

FILERECINFO Procedure (Superseded by
FILE_GETINFOLISTBYNAME_ Procedure)

current-keylen output

INT:ref:1

returns the current key length in bytes. This is invalid when the file-name
parameter is specified; use filenum.

current-primary-keyvalue output

STRING:ref:*

returns the value of the current primary key for current-primary-keylen
bytes. This is invalid when you specify the file-name parameter; use filenum.
This parameter cannot be used with a non-key-sequenced file opened with a 64-bit
primary keys open flag. If an attempt is made, the call will fail with condition code
CCL.

current-primary-keylen output

INT:ref:1

returns the length, in bytes, of the current primary key. This is invalid when you
specify the file-name parameter; use filenum.

partition-in-error output

INT:ref:1

returns a number from 0 through 15 that indicates the partition in which the latest
error occurred for this file. This is invalid when you specify the file-name
parameter; use filenum.

specifier-of-key-in-error output

INT:ref:1

returns the key specifier associated with the latest error occurring with this file.
This is invalid when you specify the file-name parameter; use filenum.

These parameters are the only parameters returned when you specify file-name:

file-type output

INT:ref:1

returns a number indicating the type of file being accessed.

<2> 1 For systems with the Transaction Management Facility, indicates this
file is audited.

<5:7> Specifies object type for SQL object file:

0 File is not SQL
2 File is an SQL table
4 File is an SQL index

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-216

FILERECINFO Procedure (Superseded by
FILE_GETINFOLISTBYNAME_ Procedure)

5 File is an SQL protection view
7 File is an SQL shorthand view

<9> 1 Specifies that this is a queue file.

<10> 1 Means REFRESH is specified for this file.

<11> 1 For key-sequenced files, means index compression is specified.

<12> 1 For key-sequenced files, means data compression is specified.

1 For unstructured files, means ODDUNSTR is specified.

<13:15> Specifies the file structure:

0 Unstructured
1 Relative
2 Entry-sequenced
3 Key-sequenced

logical-recordlen output

INT:ref:1

returns the maximum size of the logical record in bytes.

blocklen output

INT:ref:1

returns the length, in bytes, of a block of records for the file.

key-sequenced-parameters output

INT:ref:*

is an array where the parameters unique to a key-sequenced file are returned.
(For the format of this array, see CREATE Procedure
(Superseded by FILE_CREATELIST_ Procedure).)

alternate-key-parameters output

INT:ref:*

is an array where the parameters describing the file’s alternate keys are returned.
(For the format of this array, see CREATE Procedure
(Superseded by FILE_CREATELIST_ Procedure). The length of the array can be
obtained by calling FILEINQUIRE.)

partition-parameters output

INT:ref:*

is an array where the parameters describing a multivolume file are returned. (For
the format of this array, see CREATE Procedure

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-217

FILERECINFO Procedure (Superseded by
FILE_GETINFOLISTBYNAME_ Procedure)

(Superseded by FILE_CREATELIST_ Procedure). The length of the array can be
obtained by calling FILEINQUIRE.) The 2-byte unsigned extent size fields of this
parameter are cannot represent all possible values. When a value is not
representable, -1 is substituted. The superseding procedure must be used to get
the correct value.

file-name input

INT:ref:12

is an internal-format file name that identifies the file whose characteristics are
returned. You must specify either filenum or file-name; specifying both
causes a CCL condition code.

When you specify file-name, the only parameters returned are filetype,
logical-recordlen, blocklen, key-sequenced-parameters,
alternate-key-parameters, and partition-parameters.

This information is acquired from the volume directory and not from any system
control structures, so there is no check to see if the file is actually opened by this or
any other process.

Considerations

• The FILERECINFO procedure is used to determine whether a file is a queue file or
an ordinary key-sequenced file. This procedure should not be used for determining
the value of the current key of the queue file, because the current key position is
not maintained for queue files. The current-keyvalue parameter that would be
returned for a queue file is undefined.

Condition Codes

< (CCL) indicates that an error occurred. This can indicate that the specified file
was not found or that both filenum and file-name were specified in
the same FILERECINFO call. This can also indicate that the current-
keyvalue and current-primary-keyvalue parameters were used
with non-key-sequenced files opened with 64-bit primary keys open flag.

= (CCE) indicates that FILERECINFO executed successfully.

> (CCG) indicates that the file is not a disk file.

Example
CALL FILERECINFO (FILE^NUMBER
 , ! current key specifier.
 , ! current key value.
 , ! current key length.
 , ! current primary key value.
 , ! current primary key length.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-218

FIXSTRING Procedure

 , ! partition in error.
 , ! key in error.
 ,FILE^TYPE);

FIXSTRING Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Example
Related Programming Manual

Summary
The FIXSTRING procedure is used to edit a string based on subcommands provided in
a template.

Syntax for C Programmers

• The function value returned by, which indicates the condition code, can be
interpreted by _status_lt(), _status_eq(), or _status_gt() (defined in
the file tal.h).

Syntax for TAL Programmers

#include <cextdecs(FIXSTRING)>

_cc_status FIXSTRING (char *template
 ,short template-len
 ,char *data
 ,short _near *data-len
 ,[short maximum-data-len]
 ,[short _near *modification-status]
);

CALL FIXSTRING (template ! i
 ,template-len ! i
 ,data ! i,o
 ,data-len ! i,o
 ,[maximum-data-len] ! i
 ,[modification-status]); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-219

FIXSTRING Procedure

Parameters

template input

STRING:ref:*

is the character string to be used as a modification template.

There are three basic subcommands that you can use in template: replacement,
insertion, and deletion.

In addition, replacement can be either explicit (a subcommand beginning with “R”)
or implicit (a subcommand beginning with any nonblank character other than “R,”
“I,” or “D”). The form of template is:

template = { subcommand // ... }

subcommand =

 { Rreplacement string } ! replace subcommand
 { Iinsertion string } ! insert subcommand
 { D } ! delete subcommand
 { replacement string } ! implicit replacement

template-len input

INT:value

is the length, in bytes, of the template string.

data input, output

STRING:ref:*

on input, is a string to be modified. The resulting string returns in this parameter.

data-len input, output

INT:ref:1

on input, contains the length, in bytes, of the string input in data. On return, it
contains the length, in bytes, of the modified data string in data.

maximum-data-len input

INT:value

contains the maximum length, in bytes, to which data can expand during the call
to FIXSTRING. If omitted, 132 is used for this value.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-220

FIXSTRING Procedure

modification-status output

INT:ref:1

returns an integer value as follows:

0 No change was made to data.
1 A replacement, insertion, or deletion was performed on data (see

“Considerations”).

Condition Code Settings
< (CCL) indicates that one or more of the required parameters is missing.

= (CCE) indicates that the operation completed successfully.

> (CCG) indicates that an insert or replace would have caused the data string to
exceed the maximum-data-len.

Considerations

• template considerations

A character in template is recognized as the beginning of a subcommand if it is
the first nonblank character in template, the first nonblank character following “//,”
or the first nonblank character following a “D” subcommand. Otherwise, it is
considered part of a previous subcommand.

Note that a subcommand may immediately follow “D” without being preceded by
“//.”

If a subcommand begins with “R,” “I,” or “D,” it is recognized as an explicit
command. Otherwise, it is recognized as an implied replacement.

The action of the subcommands is as follows:

• R (or r) for “replace”

This subcommand replaces characters in data with replacement-string
on a one-for-one basis. Replacement begins with the character corresponding
to R. The replacement-string is terminated by the end of template or
by a “//” sequence in template. Trailing blanks are considered part of the
replacement string (that is, blanks are not ignored).

• Implied replacement

A subcommand that does not begin with “R,” “I,” or “D” is recognized as a
replacement-string. Characters in replacement-string replace the
corresponding characters in data on a one-for-one basis.

• D (or d) for “delete”

This subcommand deletes the corresponding character in data.

• I (or i) for “insert”

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-221

FNAME32COLLAPSE Procedure (Superseded)

This subcommand inserts a string from template into data preceding the
character corresponding to the “I”. The insertion-string is terminated by
the end of template or by a “//” sequence in template. Trailing blanks are
considered part of the insertion string (that is, they are not ignored).

• When data is truncated

The maximum-data-len serves to protect data residing past the end of the data
string. Therefore, data is truncated whenever data-len exceeds maximum-
data-len during processing by FIXSTRING.

In particular, FIXSTRING truncates data if data-len temporarily exceeds
maximum-data-len, even if template contains delete subcommands that result
in a data string of the correct length.

• When insertion string is truncated

If an insertion causes the length of data to exceed maximum-data-len, the
FIXSTRING truncates insertion-string.

• modification-status is equal to 1 if a replacement is performed that leaves
data unchanged.

Example
CALL FIXSTRING (S^TEMP^ARRAY , TEMP^LEN , SCOMMAND , NUM);

Related Programming Manual
For programming information about the FIXSTRING utility procedure, see the Guardian
Programmer’s Guide.

FNAME32COLLAPSE Procedure (Superseded)
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary

FNAME32COLLAPSE converts the 32-character file name used by the Distributed
Name Service to external format for display.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-222

FNAME32COLLAPSE Procedure (Superseded)

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

length returned value

INT

is the number of bytes in extname or 0 if an error occurred.

intname input

STRING .EXT:ref:32

is a 32-character array containing a subsystem object name in the form:

\sysname$volume subvol file-id

extname output

STRING .EXT:ref:35

contains, on return, the external form of intname:

\sysname.$volume.subvol.file-id

Considerations

• The caller must pass a valid subsystem object name in intname. Invalid names
cause unpredictable results.

• If a parameter is missing or a bounds error occurs on a parameter, length will
contain 0.

Related Programming Manual
For network programming applications, see the Distributed Name Service (DNS)
Manual.

length := FNAME32COLLAPSE (intname ! i
 ,extname) ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-223

FNAME32EXPAND Procedure
(Superseded by FILENAME_SCAN_ Procedure)

FNAME32EXPAND Procedure
(Superseded by FILENAME_SCAN_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary

FNAME32EXPAND expands a partial file name from the compacted external form to
the 32-character file name used by the Distributed Name Service (DNS) programmatic
interface.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

length returned value

INT

is the length, in bytes, of the file name in extname, or 0 if an error occurred.

extname input

STRING .EXT:ref:35

is the file name to be expanded. The file name must be in one of the forms
acceptable to FNAMEEXPAND. For details, see FNAMEEXPAND Procedure

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

length := FNAME32EXPAND (extname ! i
 , intname ! o
 , defaults); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-224

FNAME32EXPAND Procedure
(Superseded by FILENAME_SCAN_ Procedure)

(Superseded by FILENAME_SCAN_ Procedure and FILENAME_RESOLVE_
Procedure).

intname output

STRING .EXT:ref:32

is an array of 32 characters where FNAME32EXPAND returns the expanded file
name. This array can be the same array as extname.

defaults input

STRING .EXT:ref:16 or 18

is an array of eight words containing the default volume and subvolume name (and
optionally system number) that is to be used in the file name expansion. This array
has the same format as the corresponding parameter to FNAMEEXPAND.

Or it is an array of nine words where the first word contains the default system
number and the remaining eight words contain the default volume and subvolume
names.

Considerations
FNAME32EXPAND differs from FNAMEEXPAND in these ways:

• All 35 characters of the extname parameter must be addressable, even if the
actual file name occupies less space.

• All alphabetic characters in the internal name are in upper case.

• Internal names returned by the procedure are always in network form.

• FNAME32EXPAND accepts file names that have eight-character device names in
network format or file names where a default system number is passed in the
defaults parameter.

• FNAME32EXPAND returns 0 if the defaults parameter specifies a system
number that is not currently defined.

• FNAME32EXPAND returns 0 if a parameter is missing or if a bounds error occurs
on a parameter. It also returns 0 if the first byte of defaults is not “\$”, blank,
or 0.

• If a default system other than the caller’s system and an eight-character default
volume name are desired, the defaults parameter must be in the nine-word
format. FNAME32EXPAND interprets the defaults parameter as being nine
words in length if the high-order byte of the first word is zero.

Related Programming Manual
For network programming applications, see the Distributed Name Service (DNS)
Manual.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-225

FNAME32TOFNAME Procedure (Superseded)

FNAME32TOFNAME Procedure (Superseded)
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary

FNAME32TOFNAME converts a file name from the 32-character format used by the
Distributed Name Service (DNS) to its internal format.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

status returned value

INT

indicates the outcome of the call:

-1 File name successfully converted
0 File name cannot be converted, or an error occurred

fname32 input

STRING .EXT:ref:32

is the name to be converted. The array must contain a file name in DNS format.

fname output

STRING .EXT:ref:24

is a 24-character array where the name is returned.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

status := FNAME32TOFNAME (fname32 ! i
 ,fname); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-226

FNAMECOLLAPSE Procedure (Superseded by
OLDFILENAME_TO_FILENAME_ Procedure)

Considerations

• If a parameter is missing or if a bounds error occurs on a parameter, 0 is returned.

• If the first eight characters of fname32 contain the name of the system on which
the procedure is called, fname is returned in local format.

• If the first eight characters of fname32 name a system other than the one on
which the procedure is called and the next eight characters specify an eight-
character device name, FNAME32TOFNAME returns 0 to indicate that the file
name cannot be converted to internal format because it is too long.

• It is the calling program’s responsibility to pass a valid DNS file name in fname32.
Invalid file names can cause unpredictable results.

Related Programming Manual
For network programming applications, see the Distributed Name Service (DNS)
Manual.

FNAMECOLLAPSE Procedure (Superseded by
OLDFILENAME_TO_FILENAME_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary

The FNAMECOLLAPSE procedure converts a file name from internal to external form.
The system number of a network file name is converted to the corresponding system
name.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-227

FNAMECOLLAPSE Procedure (Superseded by
OLDFILENAME_TO_FILENAME_ Procedure)

Syntax for TAL Programmers

Parameters

length returned value

INT

returns the number of bytes in external-name.

internal-name input

INT:ref:12

is the name to be converted. internal-name is an array of 12 words.
internal-filename cannot be the same array as external-filename. For
a description of valid internal file names, see the discussion of “Internal File
Names” in Appendix D, File Names and Process Identifiers.

external-name output

STRING:ref:26 or STRING:ref:34

returns the external form of internal-name. If internal-name is a local file
name, external-name contains a maximum of 26 bytes; if a network name is
converted, external-name contains a maximum of 34 bytes. (See the
FNAMEEXPAND procedure.)

Considerations

• Invalid file names

It is the responsibility of the program calling FNAMECOLLAPSE to pass a valid file
name in internal-name. Invalid file names cause unpredictable results such as
retrieving information from the wrong file.

• Passing a bad sysnum value

If internal-name is in network form, and the system number in the second byte
does not correspond to any system in the network, FNAMECOLLAPSE supplies
“??” as the system name.

• System names as filenames

The procedure does not always attach system names so that it will work properly
as a filename. For example, the internal filename for an unnamed process
produces a printable string; however, the string is not acceptable as a filename.

length := FNAMECOLLAPSE (internal-name ! i
 ,external-name); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-228

FNAMECOMPARE Procedure
(Superseded by FILENAME_COMPARE_

Example
LENGTH := FNAMECOLLAPSE (INTNAME , EXTNAME);

FNAMECOMPARE Procedure
(Superseded by FILENAME_COMPARE_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Examples

Summary

The FNAMECOMPARE procedure compares two file names within a local or network
environment to determine whether these file names refer to the same file or device.
For example, one name might be a logical device number, while the other reference
might be a symbolic name. The file names compared must be in the standard 12-word
internal format that FNAMEEXPAND returns.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. If INTNAME is passed in local internal form, for example “$SYSTEM SUBVOL
MYFILE”, it converts to the external local form “$SYSTEM.SUBVOL.MYFILE”.

If INTNAME is passed in network form, for example “\sysnumSYSTEMSUBVOL MYFILE”, it
converts to the external network form, “\system-name.$SYSTEM.SUBVOL.MYFILE”.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-229

FNAMECOMPARE Procedure
(Superseded by FILENAME_COMPARE_

Syntax for TAL Programmers

Parameters

status returned value

INT

returns a value indicating the outcome of the comparison. Values for status are:

-1 The file names do not refer to the same file.

0 The file names refer to the same file.

1 The file names refer to the same volume name, device name, or process name
on the same system; however, words [4:11] are not the same:

filename1[4] <> filename2[4] FOR 8

A value less than -1 is the negative of a file-system error code; in these cases, the
comparison is not attempted.

filename1 input

INT:ref:12

is the first file name that is compared. Each filename array can contain either a
local or a network file name in 12-word internal format. For the definitions of file
names, see Appendix D, File Names and Process Identifiers.

filename2 input

INT:ref:12

is the second file name that is compared.

Considerations

• The arrays containing the file names for comparison are not modified.

• Alphabetic characters not upshifted

Alphabetic characters within qualified process names are not upshifted before
comparison.

• Passing DEFINE names

Either or both of the file name parameters can be DEFINE names. For CLASS
MAP DEFINEs, the procedure uses the file name given by the DEFINE to make
the comparison. A name that designates a DEFINE of another class compares
equal only to a name that designates the same DEFINE. If a DEFINE name is a

status := FNAMECOMPARE (filename1 ! i
 ,filename2); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-230

FNAMECOMPARE Procedure
(Superseded by FILENAME_COMPARE_

logical name but no such DEFINE exists, the procedure returns the negative file-
system error -198 (missing DEFINE).

• Passing logical device numbers for file names

If a logical device number format (such as $0076) is used for one file name but not
for the second file name, the device table of the referenced system is consulted to
determine whether the names are equivalent. This is the only case where the
device table is used.

• FNAMECOMPARE and negative file errors

Negative file-system error codes indicate that a logical device number format is
passed for one file name and not for the second and that the device is connected
to a remote network node. Some of the most common negative file-system error
codes returned are:

-13 An invalid file name specification for either file name is made.

-14 The device does not exist. Only one of the file names is passed in logical
device number format (requiring a check of the device table), and the file
name represents a device connected to a remote node.

-18 No such system is defined in this network. Only one of the file names is
passed in logical device number format (requiring a check of the device
table), and the file name represents a device connected to a remote node.

-22 A parameter or buffer is out of bounds.

-250 All paths to the system are down. Only one of the file names is passed in
logical device number format (requiring a check of the device table), and
the file name represents a device connected to a remote node.

Examples
FNAME1 ':=' ["$TERM1" , 9 * [" "]];
FNAME2 ':=' [%56006 , "TERM1 " , 8 * [" "]];
 ! "\ , "TERM1";
STATUS := FNAMECOMPARE (FNAME1 , FNAME2);

Execution of this example on system number 6 returns a 0 in STATUS.

On other systems, execution of the example returns a status of -1.

Whether a system is a network node or not, execution of

FNAME1 ':=' ["$SERVR #START UPDATING"];
FNAME2 ':=' ["$SERVR #FINISH UPDATING"];
STATUS := FNAMECOMPARE (FNAME1 , FNAME2);

returns a status of +1.

In any system, execution of

FNAME1 ':=' ["$0013 ", 9 * [" "]];
FNAME2 ':=' ["$DATAX", 9 * [" "]];
STATUS := FNAMECOMPARE (FNAME1 , FNAME2);

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-231

FNAMEEXPAND Procedure
(Superseded by FILENAME_SCAN_ Procedure and

returns a status of 0 if the device name $DATAX is defined as logical device number 13
at SYSGEN time; in all other cases, it returns a status of -1.

FNAMEEXPAND Procedure
(Superseded by FILENAME_SCAN_ Procedure
and FILENAME_RESOLVE_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary

The FNAMEEXPAND procedure is used to expand a partial file name from the
compacted external form to the standard 12-word internal form usable by other file-
system procedures.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

length returned value

INT

returns the length, in bytes, of the file name in external-filename. If an invalid
file name is specified, 0 is returned.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

length := FNAMEEXPAND (external-filename ! i
 ,internal-filename ! o
 ,default-names); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-232

FNAMEEXPAND Procedure
(Superseded by FILENAME_SCAN_ Procedure and

external-filename input

STRING:ref:27 or STRING:ref:35

is the file name to be expanded. The file name must be in the form:

[\sysname.]file-name or

definename

followed by a delimiter, and where file-name is in one of these forms:

[$volname.][subvol-name.]file-id

$processname[.#1st-qualif-name[.2nd-qualif-name]]

$devname

$ldevnum

the delimiter that follows file-name can be any character that is not valid as part
of an external file name, such as blank or null. When the external-filename is
34 characters and a delimiter is required, the length of the external-filename
expands to 35 characters.

When \system is present, $volname cannot consist of eight characters unless
\system is the local system and default-names does not include a system
number. In that case the output name is in local form.

internal-filename output

INT:ref:12

is an array of 12 words where FNAMEEXPAND returns the expanded file name.
FNAMEEXPAND (unlike FNAMECOLLAPSE) can have the same source and
destination buffers (file names) since it uses a temporary intermediate storage area
for the conversion. (See “Considerations” for the form of the returned internal-
filename.)

default-names input

INT:ref:8

is an array of eight words containing the default volume and subvolume names to
be used in file name expansion. The default-names values are used when the
corresponding values are not specified in external-filename (see
“Considerations” below). default-names is of the form:

[0:3] default volname. First two bytes can be “\sysnum,” in which case “$” is
omitted from volume name. (blank-filled on right)

[4:7] default subvolname (blank-filled on right)

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-233

FNAMEEXPAND Procedure
(Superseded by FILENAME_SCAN_ Procedure and

[0:7] corresponds directly to word[1:8] of the command interpreter startup
message. For the startup message format, see the Guardian Procedure
Errors and Messages Manual.

Considerations

• Expanding network file names

FNAMEEXPAND converts local file names to local names and network file names
to network names.

When network file names are involved, FNAMEEXPAND converts the system
name to the appropriate system number (see Example on page 5-234). (If the
system name is unknown, FNAMEEXPAND supplies 255 for the system number;
FNAMEEXPAND calls LOCATESYSTEM for this work.)

Results of file name expansion by FNAMEEXPAND

• file-id returns as:

[0:3] $default-volname (blank-fill)
[4:7] default-subvolname (blank-fill)
[8:11] file-id (blank-fill)

• subvolname.file-id returns as:

[0:3] $default-volname (blank-fill)
[4:7] subvolname (blank-fill)
[8:11] file-id (blank-fill)

• $volname.file-id returns as:

[0:3] $volname (blank-fill)
[4:7] default-subvolname (blank-fill)
[8:11] file-id (blank-fill)

• $volname.subvolname.file-id returns as:

[0:3] $volname (blank-fill)
[4:7] subvolname (blank-fill)
[8:11] file-id (blank-fill)

• $processname.#1st-qualif-name returns as:

[0:3] $processname (blank-fill)
[4:7] #1st-qualif-name (blank-fill)
[8:11] (blank-fill)

• $processname.#1st-qualif-name.2nd-qualif-name returns as:

[0:3] $processname (blank-fill)
[4:7] #1st-qualif-name (blank-fill)
[8:11] 2nd-qualif-name (blank-fill)

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-234

FNAMETOFNAME32 Procedure (Superseded)

• $devname returns as:

[0:11] $devname (blank-fill)

• $ldevnum returns as:

[0:11] $ldevnum (blank-fill)

If any of the forms described above are preceded by “\sysname,” the result is as given
above, except that “\sysnum” replaces “$” in the result.

• definename returns as:

[0:11] definename (blank-fill)

Any other file name is invalid.

Example
LENGTH := FNAMEEXPAND (INNAME , OUTNAME , PSMG[1]);

FNAMETOFNAME32 Procedure (Superseded)
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary

FNAMETOFNAME32 converts a file name from the 12-word internal format to the
32-character Distributed Name Service (DNS) format.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-235

FNAMETOFNAME32 Procedure (Superseded)

Syntax for TAL Programmers

Parameters

status returned value

INT

indicates the outcome of the call.

-1 File name successfully converted
0 File name cannot be converted, or an error occurred.

fname input

STRING .EXT:ref:24

is the name to be converted. The array must contain a valid file name in 12-word
internal format.

fname32 output

STRING .EXT:ref:32

contains, on return, the file name in DNS format. If status is returned as zero,
the contents of this array have not been modified by the procedure.

Considerations

• If fname is in network format and the system number specified is not currently
defined to the network, FNAMETOFNAME32 returns 0 to indicate that the file
name cannot be converted.

• If a parameter is missing or a bounds error occurs on a parameter, 0 is returned.

Related Programming Manual
For network programming applications, see the Distributed Name Service (DNS)
Manual.

status := FNAMETOFNAME32 (fname ! i
 ,fname32); ! o

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-236

FORMATCONVERT[X] Procedure

FORMATCONVERT[X] Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Related Programming Manual

Summary
The FORMATCONVERT and FORMATCONVERTX procedures convert a format (a
data record layout described by means of edit descriptors) from external form to the
internal form that is required for presentation to the FORMATDATA[X] procedures. The
FORMATCONVERT and FORMATCONVERTX procedures are identical, except that
FORMATCONVERT requires that all of its reference parameters be 16-bit addresses,
while FORMATCONVERTX accepts extended (32-bit) addresses for all of its reference
parameters. For information about edit descriptors, see Appendix F, Formatter Edit
Descriptors.

Syntax for C Programmers

#include <cextdecs(FORMATCONVERT)>

short FORMATCONVERT (char _near *iformat
 ,short iformatlen
 ,char _near *eformat
 ,short eformatlen
 ,short _near *scales
 ,short _near *scale-count
 ,short conversion);

#include <cextdecs(FORMATCONVERTX)>

short FORMATCONVERTX (char *iformat
 ,short iformatlen
 ,const char *eformat
 ,short eformatlen
 ,short *scales
 ,short *scale-count
 ,short conversion);

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-237

FORMATCONVERT[X] Procedure

Syntax for TAL Programmers

Parameters

status returned value

INT

is a value indicating the outcome of FORMATCONVERT[X]:

> 0 Indicates successful conversion. The value is the number of bytes in the
converted format (iformat).

= 0 Indicates iformatlen was insufficient to hold the entire converted
format.

< 0 Indicates an error in the format. The value is the negated byte location in
the input string at which the error was detected. The first byte of
eformat is numbered 1.

iformat output

STRING:ref:* (Use with FORMATCONVERT)
STRING .EXT:ref:* (Use with FORMATCONVERTX)

is an array in which FORMATCONVERT[X] stores the converted format. The
contents of this array must be passed to the FORMATDATA[X] procedure as an
integer parameter, but FORMATCONVERT requires it to be in byte-addressable G-
relative storage. Thus iformat must be aligned on a word boundary, or the
contents of iformat must be moved to a word-aligned area when it is passed to
FORMATDATA[X]. (The area passed to FORMATDATA need not be in byte-
addressable storage.)

iformatlen input

INT:value

is the length, in bytes, of the iformat array. If the converted format is longer than
iformatlen, the conversion terminates and a status value <= 0 returns.

status := FORMATCONVERT[X] (iformat ! o
 ,iformatlen ! i
 ,eformat ! i
 ,eformatlen ! i
 ,scales ! o
 ,scale-count ! i,o
 ,conversion); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-238

FORMATCONVERT[X] Procedure

eformat input

STRING:ref:* (Use with FORMATCONVERT)
STRING .EXT:ref:* (Use with FORMATCONVERTX)

is the format string in external (ASCII) form.

eformatlen input

INT:value

is the length, in bytes, of the eformat string.

scales output

INT:ref:* (Use with FORMATCONVERT)
INT .EXT:ref:* (Use with FORMATCONVERTX)

is an integer array. FORMATCONVERT[X] processes the format from left to right,
placing the scale factor (the number of digits that appear to the right of the decimal
point) specified or implied by each repeatable edit descriptor into the next available
element of scales. This is done until the last repeatable edit descriptor is
converted or the maximum specified by scale-count is reached, whichever
occurs first.

scale-count input, output

INT:ref:* (Use with FORMATCONVERT)
INT .EXT:ref:* (Use with FORMATCONVERTX)

on call, is the number of occurrences of the scales array.

On return, scale-count contains the actual number of repeatable edit
descriptors converted.

If the number of repeatable edit descriptors present is greater than the number
entered here, FORMATCONVERT[X] stops storing scale factors when the scale-
count maximum is reached, but it continues to process the remaining edit
descriptors and it continues incrementing scale-count.

Note. The scales parameter information is included to provide information needed by the
ENFORM product. It might not interest most users of FORMATCONVERT[X]. If so, supply a
variable initialized to 0 for scales and scale-count.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-239

FORMATDATA[X] Procedure

conversion input

INT:value

Specifies the type of conversion to be done:

0 Check validity of format only. No data is stored into iformat. The scale
information is stored in the scales array.

1 Produce expanded form with modifiers and decorations. This requires
additional storage space, but the execution time is half that of version 2
(below). The size required is approximately 10 times eformatlen.

2 Produce compact conversion, ignoring modifiers and decorations. The
resulting format requires little storage space, but the execution time is twice as
long as version 1 (above).

Related Programming Manual
For programming information about the FORMATCONVERT[X] procedure, see the
Guardian Programmer’s Guide.

FORMATDATA[X] Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary

The FORMATDATA (which is superseded by FORMATDATAX) and FORMATDATAX
procedures convert data item values between internal and external representations, as
specified by a format (previously converted from external to internal form by
FORMATCONVERT[X]) or by the list-directed conversion rules. The FORMATDATA
and FORMATDATAX procedures are identical, except that FORMATDATA requires that

Note. The FORMATDATA procedure cannot be called by native processes. Although this
procedure is supported for TNS processes, it should not be used for new development. Use
the FORMATDATAX procedure.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-240

FORMATDATA[X] Procedure

all of its reference parameters be 16-bit addresses, while FORMATDATAX accepts
extended (32-bit) addresses for all of its reference parameters.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT:value

indicates the outcome of the call. Possible values are:

0 Successful operation
267 Buffer overflow
268 No buffer
270 Format loopback

#include <cextdecs(FORMATDATA)>

short FORMATDATA (char _near *buffer
 ,short bufferlen
 ,short buffer-occurs
 ,short _near *length
 ,short _near *iformat
 ,short _near *variable-list
 ,short variable-list-len
 ,short flags);

#include <cextdecs(FORMATDATAX)>

short FORMATDATAX (char *buffer
 ,short bufferlen
 ,short buffer-occurs
 ,short *length
 ,short *iformat
 ,short *variable-list
 ,short variable-list-len
 ,short flags);

error := FORMATDATA[X] (buffer ! i,o
 ,bufferlen ! i
 ,buffer-occurs ! i
 ,length ! o
 ,iformat ! i
 ,variable-list ! i
 ,variable-list-len ! i
 ,flags); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-241

FORMATDATA[X] Procedure

271 EDIT item mismatch
272 Invalid input character
273 Bad format
274 Numeric overflow

buffer input, output

STRING:ref:* (Use with FORMATDATA)
STRING .EXT:ref:* (Use with FORMATDATAX)

is a buffer or a series of contiguous buffers where the formatted output data is
placed or where the input data is found. The length, in bytes, of buffer must be
at least bufferlen * buffer-occurs.

bufferlen input

INT:value

is the length, in bytes, of each buffer in the buffer array.

buffer-occurs input

INT:value

is the number of buffers in buffer.

length output

INT:ref:* (Use with FORMATDATA)
INT .EXT:ref:* (Use with FORMATDATAX)

is an array that must have at least as many elements as there are buffers in the
buffer array on output. FORMATDATA[X] stores the highest referenced
character position in each buffer in the corresponding length element. If a buffer
is not accessed, -1 is stored for that buffer and for all succeeding ones. If a buffer
is skipped (for example, due to consecutive buffer advance descriptors in the
format), 0 is stored.

There are no values stored in the length parameter during the input operation.

iformat input

INT:ref:* (Use with FORMATDATA)
INT .EXT:ref:* (Use with FORMATDATAX)

is an integer array containing the internal format, constructed by a previous call to
FORMATCONVERT[X].

variable-list input

INT:ref:* (Use with FORMATDATA)
INT .EXT:ref:* (Use with FORMATDATAX)

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-242

FORMATDATA[X] Procedure

is a 4- to 7-word entry for each array or variable. See “Considerations” for the
contents and form of this array.

variable-list-len input

INT:value

is the number of variable-list entries passed in this call.

flags input

INT:value

Bit:

<15> Input

0 FORMATDATA[X] performs output operations.
1 FORMATDATA[X] performs input operations.

<14:5>Reserved, specify 0

<4> Null value passed

0 Each variable-list item is a 4-word group (FORMATDATA) or a
5-word group (FORMATDATAX).

1 Each variable-list item is a 5-word group (FORMATDATA) or a
7-word group (FORMATDATAX).

<3> P-Relative (iformat array)

0 The iformat array address is G-relative.
1 The iformat array address is P-relative.

<2> List-directed (for information about list-directed operations, see the
Guardian Programmer’s Guide)

0 Apply the format-directed operation.
1 Apply the list-directed operation.

<1:0> Reserved, specify 0

Considerations

• A passed P-relative iformat array must be in the same code segment as the call.

• variable-list array form

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-243

FORMATDATA[X] Procedure

The 4- to 7-word entry for each array or variable consists of these items:

Word FORMATDATA Contents FORMATDATAX Contents
 +--------------------+ +--------------------+
 [0] | dataptr | | |
 |--------------------| |-- dataptr --|
 [1] | datatype | | |
 |--------------------| |--------------------|
 [2] | databytes | | datatype |
 |--------------------| |--------------------|
 [3] | dataoccurs | | databytes |
 |--------------------| |--------------------|
 [4] | nullptr (optional) | | dataoccurs |
 +--------------------+ |--------------------|
 [5] | |
 |- nullptr (optional) -|
 [6] | |
 +--------------------+

dataptr

is the address of the array or variable. For FORMATDATA, dataptr is a byte
address for data types 0, 1, 12-15, and 17, and is a word address for other types.
For FORMATDATAX, dataptr is an extended address.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-244

FORMATDATA[X] Procedure

datatype

is the type and scale factor of the element:

bits <8:15>:

0 String
1 Numeric string unsigned
2 Integer(16) signed
3 Integer(16) unsigned
4 Integer(32) signed
5 Integer(32) unsigned
6 Integer(64) signed
7 Not used
8 Real(32)
9 Complex(32*2)
10 Real(64)
11 Complex(64*2)
12 Numeric string, sign trailing, embedded
13 Numeric string, sign trailing, separate
14 Numeric string, sign leading, embedded
15 Numeric string, sign leading, separate
16 Not used
17 Logical * 1 (1 byte)
18 Not used
19 Logical * 2 (INT(16))
20 Not used
21 Logical * 4 (INT(32))
22 Integer(8) signed
23 Integer (8) unsigned

bits <0:7> Scale factor moves the position of the implied decimal point by
adjusting the internal representation of the expression. Scale
factor is the number of positions that the implied decimal point is
moved to the left (factor > 0) or to the right (factor <= 0) of the least
significant digit. This value must be 0 for data types 0, 17, 19, and
21.

databytes

is the size, in bytes, of the variable or array element used to determine the size
of strings and address spacing.

dataoccurs

is the number of elements in the array nullptr (supply 1 for undimensioned
variables).

If <> 0, it is the byte address of the null value. If = 0, there is no null value for
this variable.

Note. Data types 7 through 11 require floating-point firmware.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-245

FP_IEEE_DENORM_GET_ Procedure

Example
ERROR := FORMATDATAX (BUFFERS , BUF^LEN , NUM^BUFS , BUF^LENS
 , WFORMAT , VLIST , 4 , 0);

Related Programming Manual
For programming information about the FORMATDATA procedure, see the Guardian
Programmer’s Guide.

FP_IEEE_DENORM_GET_ Procedure

Summary
The FP_IEEE_DENORM_GET_ procedure reads the IEEE floating-point
denormalization mode.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

DeNorm output

INT(32)

The denormalization control mode.

Note. This procedure is supported in the G06.06 RVU and all subsequent G-series RVUs. IEEE
floating-point is available on all S-series processors except S70000 servers with NSR-G processors.

#include <kfpieee.h>
fp_ieee_denorm FP_IEEE_DENORM_GET_ (void);

?source $system.system.kfpieee
DeNorm := FP_IEEE_DENORM_GET_ ;

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-246

FP_IEEE_DENORM_SET_ Procedure

DeNorm can have these values:

FP_IEEE_DENORM_SET_ Procedure

Summary
The FP_IEEE_DENORM_SET_ procedure sets the IEEE floating-point
denormalization mode.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

NewMode input

INT(32)

The denormalization control mode.

FP_IEEE_DENORMALIZATION_ENABLE Denormalization in IEEE
floating point allows for
greater precision in the
representation of numbers
that are very close to zero.
This is the standard mode.

FP_IEEE_DENORMALIZATION_DISABLE The nonstandard mode.
When denormalization is
disabled, fractions that are
too small to be represented
in standard IEEE form are
represented as zero,
causing a loss of precision.

Note. This procedure is supported in the G06.06 RVU and all subsequent G-series RVUs. IEEE
floating-point is available on all S-series processors except S70000 servers with NSR-G processors.

#include <kfpieee.h>
void FP_IEEE_DENORM_SET_(fp_ieee_denorm new_mode);

?source $system.system.kfpieee
FP_IEEE_DENORM_SET_ (NewMode); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-247

FP_IEEE_ENABLES_GET_ Procedure

NewMode can have these values:

Consideration
Operations with denormalization disabled can cause problems by causing a gap
around zero in the distribution of values that can be represented. With
denormalization disabled, the results will not comply with the IEEE standard and
might not match results on any other system.

FP_IEEE_ENABLES_GET_ Procedure

Summary
The FP_IEEE_ENABLES_GET_ procedure reads the IEEE floating-point trap enable
mask. A set bit (value of one) means that the trap for that particular exception is
enabled. A zero bit means that it is disabled.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

FP_IEEE_DENORMALIZATION_ENABLE Denormalization in IEEE
floating point allows for
greater precision in the
representation of numbers
that are very close to zero.
This is the standard mode.

FP_IEEE_DENORMALIZATION_DISABLE The nonstandard mode.
When denormalization is
disabled, fractions that are
too small to be represented
in standard IEEE form are
represented as zero,
causing a loss of precision.

Note. This procedure is supported in the G06.06 RVU and all subsequent G-series RVUs. IEEE
floating-point is available on all S-series processors except S70000 servers with NSR-G processors.

#include <kfpieee.h>
fp_ieee_enables FP_IEEE_ENABLES_GET_(void);

?source $system.system.kfpieee
Traps := FP_IEEE_ENABLES_GET_ ;

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-248

FP_IEEE_ENABLES_GET_ Procedure

Traps input

INT(32)

The 32-bit trap enable mask.

Mask bit values of Traps are:

Considerations

• A constant named FP_IEEE_ALL_ENABLES is equivalent to a combination of the
mask bits to enable traps for all the exceptions.

• In some cases, the conditions that cause a trap are slightly different from the
conditions that cause the corresponding exception flag to be set.

• When a trap happens, a SIGFPE signal is raised, and the corresponding signal
handler is called. The SIGFPE signal handler typically does a function frame trace
showing the point of failure, and then abends the process. The SIGFPE signal is
not allowed to return to the point where the trap happened.

• Trap handling is an optional part of the IEEE floating-point standard. See
FP_IEEE_EXCEPTIONS_GET_ Procedure on page 5-253 and
FP_IEEE_EXCEPTIONS_SET_ Procedure on page 5-255 for an alternative to
using traps.

• The compiler optimizer might reorder operations within a local routine and cause
different results from the FP_ IEEE status procedures than intended. To work
around this, place arithmetic operations in a separate function. The compiler
cannot optimize across function boundaries, so the FP_IEEE status procedure will
be called in the intended order.

FP_IEEE_ENABLE_INVALID Trap on FP_IEEE_INVALID
exception.

FP_IEEE_ENABLE_DIVBYZERO Trap on FP_IEEE_DIVBYZERO
exception.

FP_IEEE_ENABLE_OVERFLOW Trap on FP_IEEE_OVERFLOW
exception.

FP_IEEE_ENABLE_UNDERFLOW Trap on FP_IEEE_UNDERFLOW
exception.

FP_IEEE_ENABLE_INEXACT Trap on FP_IEEE_INEXACT
exception.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-249

FP_IEEE_ENABLES_SET_ Procedure

FP_IEEE_ENABLES_SET_ Procedure

Summary
The FP_IEEE_ENABLES_SET_ procedure sets the IEEE floating-point trap enable
mask. A set bit (value of one) enables a trap for the particular exception. A zero bit (the
normal value) disables that trap.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

NewMask input

INT(32)

The 32-bit traps flag.

Traps flag values of Traps are:

Considerations

Note. This procedure is supported in the G06.06 RVU and all subsequent G-series RVUs. IEEE
floating-point is available on all S-series processors except S70000 servers with NSR-G processors.

#include <kfpieee.h>
void FP_IEEE_ENABLES_SET_(fp_ieee_enables new_mask);

?source $system.system.kfpieee
FP_IEEE_ENABLES_SET_ (NewMask); ! i

FP_IEEE_ENABLE_INVALID Trap on FP_IEEE_INVALID
exception.

FP_IEEE_ENABLE_DIVBYZERO Trap on FP_IEEE_DIVBYZERO
exception.

FP_IEEE_ENABLE_OVERFLOW Trap on FP_IEEE_OVERFLOW
exception.

FP_IEEE_ENABLE_UNDERFLOW Trap on FP_IEEE_UNDERFLOW
exception.

FP_IEEE_ENABLE_INEXACT Trap on FP_IEEE_INEXACT
exception.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-250

FP_IEEE_ENV_CLEAR_ Procedure

• When you enable traps, you will not get a trap from a left-over status; you will trap
only from operations that happen after you enable the traps.

• For more considerations for this procedure, see Considerations on page 5-248.

Examples

C Example

#include <kfpieee.h>

void TrapsEnableExample(void) {

 FP_IEEE_ENABLES_SET_
 (FP_IEEE_ENABLE_INVALID |
 FP_IEEE_ENABLE_DIVBYZERO|
 FP_IEEE_ENABLE_OVERFLOW
);
}

This sets traps on the FP_IEEE_INVALID, FP_IEEE_DIVBYZERO, and
FP_IEEE_OVERFLOW exceptions.

TAL Example

?nolist
?source $system.system.kfpieee
?list

proc TrapsEnableExample;

begin

 call FP_IEEE_ENABLES_SET_
 (FP_IEEE_ENABLE_INVALID
 LOR FP_IEEE_ENABLE_DIVBYZERO
 LOR FP_IEEE_ENABLE_OVERFLOW
);

end;

FP_IEEE_ENV_CLEAR_ Procedure

Summary
The FP_IEEE_ENV_CLEAR_ procedure sets the floating-point environment
(consisting of the rounding mode, the exception flags, the trap enables, and the
denormalization mode) back to its initial values. The initial values are as follows:

Rounding mode Round to nearest or nearest even value

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-251

FP_IEEE_ENV_CLEAR_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

SavedEnv input

INT(32)

The current floating-point environment is saved here before it is set to its initial
values.

Consideration
FP_IEEE_ENV_CLEAR_ and FP_IEEE_ENV_RESUME_ are for use by a
process, such as a signal handler, a clean-up routine, or a procedure that needs to
tolerate being called with any possible values in the floating-point status and
control. They are not for use by interrupt handlers.

Examples

C Example

#include <kfpieee.h>

void TotalEnvExample(void) {
 fp_ieee_env previousEnv;
 previousEnv = FP_IEEE_ENV_CLEAR_(); /*restore initial env*/
 Do_Computation();
 FP_IEEE_ENV_RESUME_(previousEnv) /*restore previous env*/
}

Exception flags No exceptions encountered (zeroes)

Trap enables All floating-point traps disabled

Denormalization Denormalized enabled

Note. This procedure is supported in the G06.06 RVU and all subsequent G-series RVUs. IEEE
floating-point is available on all S-series processors except S70000 servers with NSR-G processors.

#include <kfpieee.h>
fp_ieee_env FP_IEEE_ENV_CLEAR_(void);

?source $system.system.kfpieee
SavedEnv := FP_IEEE_ENV_CLEAR_ ;

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-252

FP_IEEE_ENV_RESUME_ Procedure

TAL Example

proc DOCOMPUTATION; external;

?nolist
?source $system.system.kfpieee
?list

proc TotalEnvExample;

begin

 int(32) previousEnv;

 previousEnv := FP_IEEE_ENV_CLEAR_; ! revert to standard env
 call DOCOMPUTATION; ! do IEEE floating-point computation
 call FP_IEEE_ENV_RESUME_(previousEnv) ! restore saved env
end;

FP_IEEE_ENV_RESUME_ Procedure

Summary
The FP_IEEE_ENV_RESUME_ procedure restores the floating-point environment (the
rounding mode, the exception flags, the trap enables, and the denormalization mode)
to the values it had before calling FP_IEEE_ENV_CLEAR_.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

SavedEnv input

INT(32)

The previous floating-point environment that was saved by the last call to
FP_IEEE_ENV_CLEAR_.

Note. This procedure is supported in the G06.06 RVU and all subsequent G-series RVUs. IEEE
floating-point is available on all S-series processors except S70000 servers with NSR-G processors.

#include <kfpieee.h>
void FP_IEEE_ENV_RESUME_(fp_ieee_env savedEnv);

?source $system.system.kfpieee
FP_IEEE_ENV_RESUME_ (SavedEnv); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-253

FP_IEEE_EXCEPTIONS_GET_ Procedure

Considerations
For a description of considerations for this procedure, see Consideration on
page 5-251.

Examples
For an example of the use of this procedure, see Examples on page 5-251.

FP_IEEE_EXCEPTIONS_GET_ Procedure

Summary
The FP_IEEE_EXCEPTIONS_GET_ procedure reads the IEEE floating-point
exception mask.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

Exceptions input

INT(32)

The 32-bit exception flags.

Note. This procedure is supported in the G06.06 RVU and all subsequent G-series RVUs. IEEE
floating-point is available on all S-series processors except S70000 servers with NSR-G processors.

#include <kfpieee.h>
fp_ieee_exceptions FP_IEEE_EXCEPTIONS_GET_(void);

?source $system.system.kfpieee
Exceptions := FP_IEEE_EXCEPTIONS_GET_ ;

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-254

FP_IEEE_EXCEPTIONS_GET_ Procedure

Exception flag values of Exceptions are:

Considerations

• In addition to the above enumerated constants, a constant named
FP_IEEE_ALL_EXCEPTS is equivalent to a combination of all the exception bits.

• Once exception flags are set, they stay set until explicitly reset.

• More than one exception flag can result from a single floating-point operation.

Examples

C Example

#include <kfpieee.h>

void Example(void) {

 FP_IEEE_EXCEPTIONS_SET_(0); /* clear exceptions */
 DoComputation(); /* floating-point computation */
 if(FP_IEEE_EXCEPTIONS_GET_() &
 (FP_IEEE_INVALID|FP_IEEE_OVERFLOW|FP_IEEE_DIVBYZERO)
)

 printf("Trouble in computation! \n");
}

Value Cause

FP_IEEE_INVALID Arithmetic calculations using either positive or
negative infinity as an operand, zero divided by
zero, the square root of -1, the rem function with
zero as a divisor (which causes divide by zero),
comparisons with invalid numbers, or impossible
binary-decimal conversions.

FP_IEEE_DIVBYZERO Computing x/0, where x is finite and nonzero.

FP_IEEE_OVERFLOW Result too large to represent as a normalized
number.

FP_IEEE_UNDERFLOW Result both inexact and too small to represent
as a normalized number.

FP_IEEE_INEXACT Result less accurate than it could have been
with a larger exponent range or more fraction
bits. Most commonly set when rounding off a
repeating fraction such as 1.0/3.0. Also set for
underflow cases and some overflow cases, but
not for division by zero.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-255

FP_IEEE_EXCEPTIONS_SET_ Procedure

TAL Example

proc DOCOMPUTATION; external;

?nolist
?source $system.system.kfpieee
?list

literal -- return codes for Example
 NO_PROBLEM = 0D,
 TROUBLE_IN_COMPUTATION = 1D;

int(32) proc Example;

begin

 call FP_IEEE_EXCEPTIONS_SET_(0D); ! Clear exception bits
 call DOCOMPUTATION; ! Routine to do IEEE fp computation

 if(FP_IEEE_EXCEPTIONS_GET_ LAND ! test for exceptions
 (FP_IEEE_INVALID LOR FP_IEEE_OVERFLOW LOR
FP_IEEE_DIVBYZERO)

) then return(TROUBLE_IN_COMPUTATION);
 return(NO_PROBLEM);

FP_IEEE_EXCEPTIONS_SET_ Procedure

Summary
The FP_IEEE_EXCEPTIONS_SET_ procedure sets the IEEE floating-point exception
mask.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

NewFlags input

INT(32)

Note. This procedure is supported in the G06.06 RVU and all subsequent G-series RVUs. IEEE
floating-point is available on all S-series processors except S70000 servers with NSR-G processors.

#include <kfpieee.h>
void FP_IEEE_EXCEPTIONS_SET_
 (fp_ieee_exceptions new_flags);

?source $system.system.kfpieee
FP_IEEE_EXCEPTIONS_SET_ (NewFlags); ! i

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-256

FP_IEEE_ROUND_GET_ Procedure

The 32-bit exception flags.

Exception flag values of NewFlags are:

Considerations
For a description of considerations for this procedure, see Considerations on
page 5-254.

Examples
For examples of the use of this call, see Examples on page 5-254.

FP_IEEE_ROUND_GET_ Procedure

Summary
The FP_IEEE_ROUND_GET_ procedure reads the current rounding mode.

FP_IEEE_INVALID Arithmetic calculations using either positive or
negative infinity as an operand, zero divided by
zero, the square root of -1, the rem function with
zero as a divisor (which causes divide by zero),
comparisons with invalid numbers, or impossible
binary-decimal conversions.

FP_IEEE_DIVBYZERO Computing x/0, where x is finite and nonzero.

FP_IEEE_OVERFLOW Result too large to represent as a normalized
number.

FP_IEEE_UNDERFLOW Result both inexact and too small to represent
as a normalized number.

FP_IEEE_INEXACT Result less accurate than it could have been
with a larger exponent range or more fraction
bits. Most commonly set when rounding off a
repeating fraction such as 1.0/3.0. Also set for
underflow cases and some overflow cases, but
not for division by zero.

Note. This procedure is supported in the G06.06 RVU and all subsequent G-series RVUs. IEEE
floating-point is available on all S-series processors except S70000 servers with NSR-G processors.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-257

FP_IEEE_ROUND_SET_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

RoundMode input

INT(32)

The 32-bit rounding mode code.

Rounding mode values returned by this procedure are:

FP_IEEE_ROUND_SET_ Procedure

Summary
The FP_IEEE_ROUND_SET_ procedure sets the current rounding mode.

#include <kfpieee.h>
p_ieee_round FP_IEEE_ROUND_GET_(void);

?source $system.system.kfpieee
RoundMode := FP_IEEE_ROUND_GET_ ;

FP_IEEE_ROUND_NEAREST Round toward the representable
value nearest the true result. In
cases where there are two equally
near values, the "even" value (the
value with the least-significant bit
zero) is chosen (the standard
rounding mode).

FP_IEEE_ROUND_UPWARD Round up (toward plus infinity).

FP_IEEE_ROUND_DOWNWARD Round down (toward minus infinity).

FP_IEEE_ROUND_TOWARDZERO Round toward zero (truncate).

Note. This procedure is supported in the G06.06 RVU and all subsequent G-series RVUs. IEEE
floating-point is available on all S-series processors except S70000 servers with NSR-G processors.

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-258

FP_IEEE_ROUND_SET_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

NewMode input

INT(32)

The 32-bit rounding mode code.

The rounding mode can have one of these values:

#include <kfpieee.h>
void FP_IEEE_ROUND_SET_(fp_ieee_round new_mode);

?source $system.system.kfpieee
FP_IEEE_ROUND_SET_ (NewMode); ! i

FP_IEEE_ROUND_NEAREST Round toward the representable
value nearest the true result. In
cases where there are two equally
near values, the "even" value (the
value with the least-significant bit
zero) is chosen (the standard
rounding mode).

FP_IEEE_ROUND_UPWARD Round up (toward plus infinity).

FP_IEEE_ROUND_DOWNWARD Round down (toward minus infinity).

FP_IEEE_ROUND_TOWARDZERO Round toward zero (truncate).

Guardian Procedure Calls (F)

Guardian Procedure Calls Reference Manual—522629-030
5-259

FP_IEEE_ROUND_SET_ Procedure

Guardian Procedure Calls Reference Manual—522629-030
6-1

6 Guardian Procedure Calls (G)
This section contains detailed reference information for all user-accessible Guardian
procedure calls beginning with the letter G. Table 6-1 on page 6-1 lists all the
procedures in this section.

Table 6-1. Procedures Beginning With the Letter G

GETCPCBINFO Procedure

GETCRTPID Procedure (Superseded by PROCESS_GETINFOLIST_ Procedure)

GETDEVNAME Procedure (Superseded by DEVICE_GETINFOBYLDEV_ Procedure
(Superseded on G-series RVUs) or FILENAME_FINDNEXT_ Procedure)

GETINCREMENTEDIT Procedure

GETPOOL Procedure (Superseded by POOL_* Procedures)

GETPOOL_PAGE_ Procedure (H-Series RVUs Only)

GETPOSITIONEDIT Procedure

GETPPDENTRY Procedure (Superseded by PROCESS_GETPAIRINFO_ Procedure)

GETREMOTECRTPID Procedure (Superseded by PROCESS_GETINFOLIST_ Procedure)

GETSYNCINFO Procedure (Superseded by FILE_GETSYNCINFO_ Procedure)

GETSYSTEMNAME Procedure (Superseded by NODENUMBER_TO_NODENAME_
Procedure)

GETSYSTEMSERIALNUMBER Procedure

GIVE^BREAK Procedure

GROUP_GETINFO_ Procedure

GROUP_GETNEXT_ Procedure

GROUPIDTOGROUPNAME Procedure (Superseded by GROUP_GETINFO_ Procedure)

GROUPMEMBER_GETNEXT_ Procedure

GROUPNAMETOGROUPID Procedure (Superseded by GROUP_GETINFO_ Procedure)

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-2

GETCPCBINFO Procedure

GETCPCBINFO Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example

Summary
The GETCPCBINFO procedure provides a process with information from its own (the
current) process control block (PCB).

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

request-id input

INT:value

specifies the information to be returned. Each request ID causes a value of type
INT to be returned in cpcb-info. The list of valid request IDs are:

0 Remote creator flag; returns 1 in cpcb-info if creator was remote.

1 Logged-on process state; returns 1 in cpcb-info if the process is currently
logged on.

2 Safeguard-authenticated logon flag; returns 1 in cpcb-info if the process
was started after successfully logging on via a terminal owned by Safeguard.

#include <cextdecs(GETCPCBINFO)>

void GETCPCBINFO (short request-id
 ,short _near *cpcb-info
 ,short in-length
 ,short _near *out-length
 ,short _near *error);

CALL GETCPCBINFO (request-id ! i
 ,cpcb-info ! o
 ,in-length ! i
 ,out-length ! o
 ,error); ! o

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-3

GETCPCBINFO Procedure

3 Safeguard-authenticated logoff state; returns 1 in cpcb-info if the
Safeguard-authenticated logon flag is set but the process has logged off.

4 Inherited-logon flag; returns 1 in cpcb-info if the logon was inherited by the
process.

5 Stop-on-logoff flag; returns 1 in cpcb-info if the process is to be stopped
when it requests to be placed in the logged-off state.

6 Propagate-logon flag; returns 1 in cpcb-info if the process’s local
descendants are to be created with the inherited-logon flag set.

7 Propagate-stop-on-logoff flag; returns 1 in cpcb-info if the process’s local
descendants are to be created with the stop-on-logoff flag set.

16 Logon flags and states; returns current settings of all the logon flags and state
indicators in cpcb-info.

The bits are defined as follows:

<0:8> (reserved)
<9> Propagate stop-on-logoff
<10> Propagate logon
<11> Stop on logoff
<12> Inherited logon
<13> Safeguard-authenticated logoff state
<14> Safeguard-authenticated logon
<15> Logged-on state

cpcb-info output

INT:ref:*

is an array that returns with the information requested from the PCB.

in-length input

INT:value

specifies the length, in bytes, of the cpcb-info array. (This is used to prevent
possible data overrun.)

out-length output

INT:ref:1

specifies the number of bytes of information returned in cpcb-info.

error output

INT:ref:1

returns a file-system error number indicating the outcome of the PCB information
request.

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-4

GETCRTPID Procedure
(Superseded by PROCESS_GETINFOLIST_

Example
CALL GETCPCBINFO (REQUEST^ID
 , PCB^INFO
 , IN^LENGTH
 , OUT^LENGTH
 , ERROR^REQUEST);

GETCRTPID Procedure
(Superseded by PROCESS_GETINFOLIST_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Example

Summary

The GETCRTPID procedure is used to obtain the 4-word CRTPID (which contains the
process name or creation timestamp in words [0:2] and cpu,pin in word [3])
associated with a process. The term CRTPID is synonymous with process ID as used
in this manual.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

cpu,pin input

INT:value

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

CALL GETCRTPID (cpu,pin ! i
 ,process-id); ! o

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-5

GETCRTPID Procedure
(Superseded by PROCESS_GETINFOLIST_

is the processor number and PIN number of the process whose CRTPID is
returned (see process-id[3] below for the format). The PIN number is used to
identify a process’s process control block (or PCB) in a given processor.

process-id output

INT:ref:4

is the 4-word array where GETCRTPID returns the CRTPID (or process ID) of the
process specified by cpu,pin. The process-id is returned in local form, that is,

[0:2] Process name or creation timestamp
 [3].<0:3>

Reserved
 .<4:7>

processor number where the process is executing
 .<8:15>

PIN assigned by the operating system to identify the process in the
processor

Condition Code Settings
< (CCL) indicates that GETCRTPID failed, or that no such process exists, or that

the process exists but it is terminating.

= (CCE) indicates that GETCRTPID completed successfully.

> (CCG) does not return from GETCRTPID.

Considerations

• Passing the process ID to OPEN

The process ID returned from GETCRTPID is suitable for passing directly to the
file-system OPEN procedure (if expanded to 12 words and blank-filled on the
right).

• An application acquiring its own process ID

An application that is running at a low PIN can acquire its own process-id by
passing the results of the MYPID procedure to the GETCRTPID procedure:

CALL GETCRTPID (MYPID, MY^PROCESSID);

The PID of a process is NOT shorthand for the process ID. It is a term for the
cpu,pin for a process.

• High-PIN processes

You cannot use GETCRTPID for high-PIN processes because a high PIN cannot fit
into cpu,pin or process-id.

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-6

GETDEVNAME Procedure
(Superseded by DEVICE_GETINFOBYLDEV_

Example
CALL GETCRTPID (PID , PROCESS^ID);

GETDEVNAME Procedure
(Superseded by DEVICE_GETINFOBYLDEV_
Procedure (Superseded on G-series RVUs) or
FILENAME_FINDNEXT_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary

The GETDEVNAME procedure obtains the name associated with a logical device
number. GETDEVNAME returns the name of a designated logical device, if such a
device exists, and if the device attributes match any optional devtype and
devsubtype parameters specified. If the designated logical device does not exist or
does not match optional devtype, and devsubtype parameters, the search
continues for the name of the next higher (numerically) logical device which does meet
these criteria.

When GETDEVNAME searches for the next higher logical device and optional
parameters are supplied, it returns the name of the next higher logical device that
matches all supplied sysnum, devtype and devsubtype parameters.

A status word is returned from GETDEVNAME that indicates whether or not the
designated device exists or if a higher entry exists. By repeatedly calling
GETDEVNAME and supplying successively higher logical device numbers, you can
obtain the names of all system devices.

Parameters devtype and devsubtype can serve as a mask for those callers
interested only in a particular type or subtype of device.
By passing either devtype or devsubtype or both, the caller can exclude all devices
with other types or subtypes from the search.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-7

GETDEVNAME Procedure
(Superseded by DEVICE_GETINFOBYLDEV_

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

status returned value

INT

indicates the outcome of the call. The values of status can be:

0 Successful; the name of the designated logical device is returned in devname.
1 The designated logical device does not exist. The logical device number of the

next higher device is returned in ldevnum; the name of that device is returned
in devname.

2 There is no logical device with ldevnum equal to or greater than ldevnum
which matches the devtype and devsubtype parameters, if supplied.

4 The system specified could not be accessed.
99 Parameter error.

ldevnum input, output

INT:ref:1

is the logical device number at which an ascending search for a logical device is to
begin. If any of the optional sysnum, devtype, and devsubtype parameters are
specified, only devices that match the specified parameters satisfy the search.
The range of valid logical device number input values is 0 through 65375.

You can also specify a starting value of 65535 to request a search starting with the
lowest-numbered logical device in the system. This alternative is equivalent to
specifying a starting value of 0, and is provided only for compatibility with previous
RVUs.

On return, ldevnum receives the number of the first matching logical device, if one
exists. The ldevnum remains unchanged if no such logical device exists. If
ldevnum is out of range on input, GETDEVNAME returns a status value of 2 (no

status := GETDEVNAME (ldevnum ! i,o
 ,devname ! o
 ,[sysnum] ! i
 ,[devtype] ! i
 ,[devsubtype]); ! i

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-8

GETDEVNAME Procedure
(Superseded by DEVICE_GETINFOBYLDEV_

logical device exists whose logical device number is greater than or equal to
ldevnum) and ldevnum remains unchanged.

devname output

INT:ref:4

returns the device name or volume name of the designated device, if it exists, or
the next higher (numerically) logical device if the designated device does not exist.
The devname remains unchanged if no higher logical device exists.

sysnum input

INT:value

specifies the system (in a network) that is searched for ldevnum. If omitted, the
local system is assumed.

devtype input

INT:value

specifies an optional device type qualifier. If specified, the device type has to
match the designated device. If they do not match, the device is ignored and the
search continues.

devsubtype input

INT:value

specifies an optional device subtype qualifier. If specified, the device subtype has
to match the designated device. If they do not match, the device is ignored and
the search continues.

Considerations

• The device name is returned in network form whenever the sysnum parameter is
supplied (except when the local system number is specified).

• If the sysnum parameter is supplied, devices whose names contain seven
characters are not accessible using this procedure. This is because internal-form
network names are limited to six characters.

• A process name is returned as a device name if you specify a logical device
number that corresponds to a destination control table (DCT) entry for a process.

Note. The calling program must treat ldevnum as unsigned. This exception exists for
compatibility with previous RVUs.

It was formerly possible to request a search starting at the lowest logical device in the
system by passing any negative number in ldevnum. This functionality still exists, but the
negative number must be either -1 or the equivalent unsigned value (65535). An arbitrary
negative number is no longer accepted.

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-9

GETINCREMENTEDIT Procedure

• If the devname being returned is that of a demountable disk, and the disk has been
demounted or is down, GETDEVNAME returns a status of 0, and the name
returned will be one of these:

• 4 words of blanks (" "," "," "," ")

• 4 words of zero (0,0,0,0)

• 1 word identifying the node number and 3 words of blanks, for example,
"\n"," "," "," " (n is the value in SYSNUM)

• 1 word identifying the node number and 3 words of zero for example,
"\n",0,0,0 (n is the value in SYSNUM)

Example
INT system; !target system
INT ldev; !ldev to start search
INT name [0:3] := [" "];
STRING names = name;
INT status;

 ! get next disk name
 DO
 BEGIN
 ldev := ldev + 1;
 status := getdevname (ldev, name, system, 3);
 END
 UNTIL (status '>' 1)
 OR (name AND name <> " "
 AND NOT (names = "\" AND (name[1] = " "
 OR name[1] = 0)));

GETINCREMENTEDIT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Related Programming Manual

Summary
The GETINCREMENTEDIT procedure returns the record number increment value for
an IOEdit file.

GETINCREMENTEDIT is an IOEdit procedure and can only be used with files that
have been opened by OPENEDIT or OPENEDIT_.

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-10

GETPOOL Procedure
(Superseded by POOL_* Procedures)

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

increment returned value

INT(32)

returns the record number increment value for the specified file, or 0 if the file is not
open. The record number is 1000 times the EDIT line number.

filenum input

INT:value

specifies the file number of the open file of interest.

Related Programming Manual
For programming information about the GETINCREMENTEDIT procedure, see the
Guardian Programmer’s Guide.

GETPOOL Procedure
(Superseded by POOL_* Procedures)

Summary
Considerations for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Example
Related Programming Manual

#include <cextdecs(GETINCREMENTEDIT)>

__int32_t GETINCREMENTEDIT (short filenum);

increment := GETINCREMENTEDIT (filenum); ! i

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-11

GETPOOL Procedure
(Superseded by POOL_* Procedures)

Summary

The GETPOOL procedure obtains a block of memory from a buffer pool.

Considerations for C Programmers

• You cannot call GETPOOL directly from a C program, because it returns a value
and also sets the condition-code register. To access this procedure, you must
write a “jacket” procedure in TAL that your C program can call directly. For
information on how to do this, see the discussion of procedures that return a value
and a condition code in the C/C++ Programmer’s Guide. Note that the POOL_*
procedures, which should be used in new development can be called directly from
C.

Syntax for TAL Programmers

Parameters

address returned value

EXTADDR

returns the extended address of the memory block obtained if the operation is
successful or returns -1D if an error occurred or block-size is 0. (Values less
than -1D may be returned to privileged callers.)

pool-head input, output

INT .EXT:ref:19

is the pool head previously defined by a call to DEFINEPOOL.

block-size input

INT(32):value

is the size, in bytes, of the memory obtained from the pool. This number cannot be
greater than %377770D. To check data structures without getting any memory
from the pool, set block-size to zero.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development. *POOL procedures are replaced by POOL_* procedures. There is
no one-for-one replacement.

address := GETPOOL (pool-head ! i,o
 ,block-size); ! i

Caution. address should be a simple INT(32) or EXTADDR variable; otherwise, the
assignment can alter the condition code.

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-12

GETPOOL_PAGE_ Procedure (H-Series RVUs
Only)

Condition Code Settings

< (CCL) indicates that block-size is out of range, or that the data structures are
invalid; -1D is returned.

= (CCE) indicates that the operation is successful; extended address of block is
returned if block-size is greater than zero, or -1D is returned if
block-size is equal to 0.

> (CCG) indicates that insufficient memory is available; -1D is returned.

Considerations

• For performance reasons in the operating system, GETPOOL and PUTPOOL do
not check pool data structures on each call. A process that destroys data
structures or uses an incorrect address for a parameter can terminate on a call to
GETPOOL or PUTPOOL: a TNS Guardian process can get an instruction failure
trap (trap 1) or invalid address trap (trap 0); an OSS or native process can receive
a SIGILL or SIGSEGV signal.

• In the native environment, GETPOOL verifies that all data blocks returned from the
pool are aligned on a 16-byte boundary. HP suggests that code running in the
TNS environment also allocate data blocks in 16-byte chunks.

Example
@PBLOCK := GETPOOL (POOL^HEAD , $UDBL($LEN(PBLOCK)));
 ! get pool block size of PBLOCK in bytes.

Related Programming Manual
For programming information about the GETPOOL memory-management procedure,
see the Guardian Programmer’s Guide.

GETPOOL_PAGE_ Procedure (H-Series RVUs
Only)

Summary
Considerations for C Programmers
Syntax for TAL Programmers
Parameters

Summary
The GETPOOL_PAGE_ procedure obtains a block of memory from a buffer pool. The
memory is aligned on a page boundary and the space allocated is a multiple of a
page size.

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-13

GETPOOL_PAGE_ Procedure (H-Series RVUs
Only)

Considerations for C Programmers

• You cannot call GETPOOL_PAGE_ directly from a C program, because it returns a
value and also sets the condition-code register. To access this procedure, you
must write a “jacket” procedure in TAL that your C program can call directly. For
information on how to do this, see the discussion of procedures that return a value
and a condition code in the C/C++ Programmer’s Guide. Note that the POOL_*
procedures, which should be used in new development can be called directly from
C.

Syntax for TAL Programmers

Parameters

address returned value

EXTADDR

returns the extended address of the memory block obtained if the operation is
successful or returns -1D if an error occurred or block-size is 0. (Values less
than -1D may be returned to privileged callers.)

pool-head input, output

INT .EXT:ref:19

is the pool head previously defined by a call to DEFINEPOOL.

block-size input

INT(32):value

is the size, in bytes, of the memory obtained from the pool. This number cannot be
greater than %377770D. To check data structures without getting any memory
from the pool, set block-size to zero.

Condition Code Settings

< (CCL) indicates that block-size is out of range, or that the data structures are
invalid; -1D is returned.

address := GETPOOL (pool-head ! i,o
 ,block-size); ! i

Caution. address should be a simple INT(32) or EXTADDR variable; otherwise, the
assignment can alter the condition code.

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-14

GETPOSITIONEDIT Procedure

= (CCE) indicates that the operation is successful; extended address of block is
returned if block-size is greater than zero, or -1D is returned if
block-size is equal to 0.

> (CCG) indicates that insufficient memory is available; -1D is returned.

GETPOSITIONEDIT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Related Programming Manual

Summary
The GETPOSITIONEDIT procedure returns the record number (1000 times the EDIT
line number) of the line in the specified file most recently read or written (that is, it
returns the current record number).

GETPOSITIONEDIT is an IOEdit procedure and can only be used with files that have
been opened by OPENEDIT or OPENEDIT_.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

position returned value

INT(32)

returns the current record number (1000 times the EDIT line number) of the
specified file. It returns -1 if the file is not open or if the file is positioned at its
beginning. It returns -2 if the last operation was a read end-of-file.

#include <cextdecs(GETPOSITIONEDIT)>

__int32_t GETPOSITIONEDIT (short filenum);

position := GETPOSITIONEDIT (filenum); ! i

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-15

GETPPDENTRY Procedure
(Superseded by PROCESS_GETPAIRINFO_

filenum input

INT:value

specifies the file number of the open file of interest.

Related Programming Manual
For programming information about the GETPOSITIONEDIT procedure, see the
Guardian Programmer’s Guide.

GETPPDENTRY Procedure
(Superseded by PROCESS_GETPAIRINFO_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations

Summary

The GETPPDENTRY procedure is used to obtain a description of a named process
pair by its index into the destination control table (DCT). To obtain process pair
descriptions by process name, use either the PROCESS_GETPAIRINFO_ procedure
or the LOOKUPPROCESSNAME procedure.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-16

GETPPDENTRY Procedure
(Superseded by PROCESS_GETPAIRINFO_

Syntax for TAL Programmers

Parameters

index input

INT:value

specifies the index value of the DCT entry to be returned. The first entry is 0, the
second is 1, and so on. The largest valid value that can be specified is 65375.

sysnum input

INT:value

specifies the system where the process pair exists.

ppd output

INT:ref:9

is an array where GETPPDENTRY returns the nine-word DCT entry specified by
the given index and sysnum. Its format is:

[0:2] Process name (in local form)

 [3].<0:7> processor of primary process

 [3].<8:15> PIN of primary process

 [4].<0:7> processor of backup process if it is a process pair. (This is 0 if
there is no backup.)

 [4].<8:15> PIN of backup process, if it is a process pair. (This is 0 if there
is no backup.)

[5:8] process-id of ancestor. Note that the process-id is a 4-
word array that contains:

[0:2] Process name or creation timestamp

[3].<0:3> Reserved

[3].<4:7> processor number where the process is
executing

[3].<8:15> PIN assigned by the operating system to identify
the process in the processor

CALL GETPPDENTRY (index ! i
 ,sysnum ! i
 ,ppd); ! o

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-17

GETPPDENTRY Procedure
(Superseded by PROCESS_GETPAIRINFO_

Condition Code Settings
< (CCL) indicates that the DCT in the given system cannot be accessed.

= (CCE) indicates that the GETPPDENTRY completed successfully.

> (CCG) indicates that the index is greater than the last entry in the DCT.

Considerations

• Checking the DCT entry

If index is not currently being used, GETPPDENTRY returns CCE and sets ppd
to zeros. To check for all conditions, an application could contain this code:

CALL GETPPDENTRY(INDEX^NUM , SYS^NUM , PROCESS^PAIR^DESCRIPT
);
IF < THEN ... ; ! system unavailable.
IF > THEN ! STOP, no more DCT entries available.
IF = AND PROCESS^PAIR^DESCRIPT THEN ... ! found an entry.
ELSE
 ! unused entry, try the next INDEX^NUM.

• Difference between GETPPDENTRY and LOOKUPPROCESSNAME

The difference between the GETPPDENTRY procedure and the
LOOKUPPROCESSNAME procedure is:

GETPPDENTRY is primarily used to obtain a local or remote process pair
description by its index into a system table.

LOOKUPPROCESSNAME
is primarily used to obtain a local or remote process pair
description by its name.

• High-PIN considerations

If you call GETPPDENTRY for a named process pair that has a high-PIN process
as the primary or backup, the ppd array (ppd [0:8]) is returned filled with zeros.

If you call GETPPDENTRY for a named process pair that has a high-PIN process
as the ancestor, a synthetic process ID is returned in ppd [5:8]. A synthetic
process ID contains a PIN value of 255 in place of a high-PIN value, which cannot
be represented by 8 bits.

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-18

GETREMOTECRTPID Procedure
(Superseded by PROCESS_GETINFOLIST_

GETREMOTECRTPID Procedure
(Superseded by PROCESS_GETINFOLIST_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Example

Summary

The GETREMOTECRTPID procedure is used to obtain the 4-word process ID
associated with a remote process. The process ID contains the remote process name
or creation timestamp in words[0:2] and cpu,pin in word[3]. The term CRTPID is
synonymous with process ID as used in this manual.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

cpu,pin input

INT:value

is the processor number and PIN number of the process whose process ID is
returned (see process-id[3] below for the format). The PIN number is used to
identify a process’s process control block (or PCB) in a given processor. Note that
without a system number, cpu,pin is not sufficient to identify a remote process in
a network.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

CALL GETREMOTECRTPID (cpu,pin ! i
 ,process-id ! o
 ,sysnum); ! i

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-19

GETREMOTECRTPID Procedure
(Superseded by PROCESS_GETINFOLIST_

process-id output

INT:ref:4

is the 4-word array where GETREMOTECRTPID returns the process ID of the
process specified by cpu,pin. The process-id is returned as follows:

[0:2] Process name or creation timestamp

 [3].<0:3> Reserved

 .<4:7> processor number where the process is executing

 .<8:15> PIN assigned by the operating system to identify the process
in the processor

If sysnum specifies a remote system, the process ID is in network form; if sysnum
specifies the local system, it is in local form. The two forms differ only in the form
of the process name.

A local process name consists of six bytes with the first byte being a “$” and the
second containing an alphabetic character. The remaining four characters
(optional) can be alphanumeric. Note that a full six character local process name
cannot be converted to a remote form.

A remote process name consists of six bytes with the first byte containing a ”\” and
the second containing the network system number where the process resides.
The third must be an alphabetic character. The remaining three characters can be
alphanumeric.

sysnum input

INT:value

is a value specifying the system from which the process ID is to be returned.

Condition Code Settings
< (CCL) indicates the GETREMOTECRTPID failed for one of these reasons:

• No such process exists.

• The process exists but it is terminating.

• The remote system could not be accessed.

• The process has an inaccessible name, consisting of more than four
characters.

= (CCE) indicates that GETREMOTECRTPID was successful.

> (CCG) does not return from GETREMOTECRTPID.

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-20

GETSYNCINFO Procedure
(Superseded by FILE_GETSYNCINFO_ Procedure)

Considerations
You cannot use GETREMOTECRTPID for high-PIN processes because a high PIN
cannot fit into cpu,pin or process-id.

Example
CALL GETREMOTECRTPID (PID , CRT^PID , SYS^NUM);

GETSYNCINFO Procedure
(Superseded by FILE_GETSYNCINFO_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Example

Summary
The GETSYNCINFO procedure is called by the primary process of a process pair
before starting a series of write operations to a file open with paired access.
GETSYNCINFO returns a file’s synchronization block so that it can be sent to the
backup process in a checkpoint message.

Syntax for C Programmers

• The function value returned by GETSYNCINFO, which indicates the condition
code, can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

Note. Typically, GETSYNCINFO is not called directly by application programs. Instead, it is
called indirectly by CHECKPOINT.

#include <cextdecs(GETSYNCINFO)>

_cc_status GETSYNCINFO (short filenum
 ,[short _near *sync-block]
 ,[short _near *sync-block-size]);

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-21

GETSYNCINFO Procedure
(Superseded by FILE_GETSYNCINFO_ Procedure)

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is the number of an open file that identifies the file whose sync block is obtained.

sync-block output

INT:ref:*

returns the synchronization block for this file. The size, in words, of sync-block
is determined as follows:

• For unstructured disk files, size = 8 words.

• For ENSCRIBE structured files, size in words = 11 + (longest alt key len + pri
key len + 1) / 2.

• For the Transaction Management Facility, the transaction pseudofile size = 9
words.

• For processes, size = 2 words.

• For other files, size = 1 word.

sync-block-size output

INT:ref:1

returns the size, in words, of the sync block data.

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that GETSYNCINFO was successful.

> (CCG) indicates that the file is not a disk file.

Considerations

• The GETSYNCINFO procedure cannot be used with Enscribe format 2 files or
OSS files larger than approximately 2 gigabytes. If an attempt is made to use the
GETSYNCINFO procedure with these files, error 581 is returned. For information

CALL GETSYNCINFO (filenum ! i
 ,[sync-block] ! o
 ,[sync-block-size]); ! o

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-22

GETSYSTEMNAME Procedure (Superseded by
NODENUMBER_TO_NODENAME_ Procedure)

on how to perform the equivalent task with large files, see the
FILE_GETSYNCINFO_ Procedure.

• File number has not been opened

If the GETSYNCINFO file number does not match the file number of the open file
that you are trying to access, then the call to GETSYNCINFO returns with file-
system error 16.

• Buffer address out of bounds

If an out-of-bounds application buffer address parameter is specified in the
GETSYNCINFO call (that is, a pointer to the buffer has an address that is outside
of the data area of the process) or if the buffer lies within the data area that is used
by GETSYNCINFO, then the call returns with file-system error 22.

Example
CALL GETSYNCINFO (FILE^NUM , SYNC^ID);

GETSYSTEMNAME Procedure (Superseded by
NODENUMBER_TO_NODENAME_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The GETSYSTEMNAME procedure supplies the system name associated with a
system number.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-23

GETSYSTEMNAME Procedure (Superseded by
NODENUMBER_TO_NODENAME_ Procedure)

Syntax for TAL Programmers

Parameters

ldev returned value

INT

returns one of these values:

1:32766 The logical device number of the network line handler that controls the
current path to the system designated by sysnum. The logical device
number has at most 15 bits of magnitude and the specified system is
accessible.

32767 Indicates one of these:

The line handler exists and the specified system is accessible, but the
line handler logical device number exceeds 15 bits of magnitude.

or

The specified system is the local system, so there is no line handler
logical device number to return.

In either case, the system name is returned in sysname.

0 The specified system does not exist.

-1 All paths to the specified system are down.

-3 Bounds error occurred on sysname.

sysnum input

INT:value

{0:254} is the number of the system; the name is returned in sysname.

sysname output

INT:ref:4

returns the name of the system corresponding to sysnum.

Considerations
When retrieving a line handler logical device number that exceeds 15 bits of
magnitude:

ldev := GETSYSTEMNAME (sysnum ! i
 ,sysname); ! o

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-24

GETSYSTEMSERIALNUMBER Procedure

GETSYSTEMNAME uses the number 32767 to represent any logical device number
whose value exceeds 15 bits of magnitude. (The value 32767 is reserved and is never
used as an actual logical device number.) To retrieve logical device numbers having
more than 15 bits of magnitude, replace calls to GETSYSTEMNAME with calls to
NODENUMBER_TO_NODENAME_.

Example
LDEV := GETSYSTEMNAME(SYS^NUM ,SYS^NAME);

GETSYSTEMSERIALNUMBER Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example

Summary
The GETSYSTEMSERIALNUMBER procedure returns the system serial number of the
caller’s system as an ASCII character string of numerals.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns -1 if max-buffer-length is too small. Otherwise, it returns a file-system
error value.

#include <cextdecs(GETSYSTEMSERIALNUMBER)>

 short GETSYSTEMSERIALNUMBER (short *string-buffer
 , short max-buffer-length
 , short *string-length);

error := GETSYSTEMSERIALNUMBER (<string-buffer > ! o
 , <max-buffer-length > ! i
 , <string-length >);!o

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-25

GIVE^BREAK Procedure

string-buffer output

INT .EXT:ref:*

is the string array that contains the numerals of the system serial number on
return.

max-buffer-length input

INT:value

is the size of the string array buffer string-buffer.

string-length output

INT .EXT:ref:1

returns the number of numerals in the serial number that is returned in string-
buffer.

Example
This example calls GETSYSTEMSERIALNUMBER and displays the result.

main()
{
#define MAX_ID_LEN 60

 char idbuf[MAX_ID_LEN];

 short error;
 short idlen;
 if (error = GETSYSTEMSERIALNUMBER(idbuf, MAX_ID_LEN,
 &idlen))
 printf("GETSYSTEMSERIALNUMBER error %d\n",
error);
 else {
 idbuf[idlen] = '\0';
 printf("System serial number is %s\n", idbuf);
 }
}

GIVE^BREAK Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example
Related Programming Manual

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-26

GIVE^BREAK Procedure

Summary
The GIVE^BREAK procedure returns BREAK to the previous owner (the process that
owned BREAK before the last call to TAKE^BREAK).

GIVE^BREAK is a sequential I/O (SIO) procedure and should be used only with files
that have been opened by OPEN^FILE.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system or sequential I/O procedure error indicating the outcome of
the operation.

common-fcb input

INT:ref:*

identifies the file returning BREAK to the previous owner. The common-fcb
parameter is allowed for convenience. If BREAK is not owned, this call is ignored.

#include <cextdecs(GIVE_BREAK)>

short GIVE_BREAK (short { _near *common-fcb }
 { _near *file-fcb });

error := GIVE^BREAK ({ common-fcb } ! i
 { file-fcb }); ! i

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-27

GROUP_GETINFO_ Procedure

file-fcb input

INT:ref:*

identifies the file returning BREAK to the previous owner. If BREAK is not owned,
this call is ignored.

Example
CALL GIVE^BREAK (OUT^FILE); ! return BREAK to
 ! previous owner.

Related Programming Manual
For programming information about the GIVE^BREAK procedure, see the Guardian
Programmer’s Guide.

GROUP_GETINFO_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The GROUP_GETINFO_ procedure returns attributes of the specified group, such as
the group’s textual description and whether the group is automatically deleted when
the last member is deleted. The group can be identified by group name or group ID.

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-28

GROUP_GETINFO_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the call. Common
errors returned are:

0 No error.

11 Record not in file. The specified group name or group ID is undefined.

22 Parameter out of bounds. An input parameter is not within the valid range,
or return information does not fit into the length of the space provided, or
an output parameter overlays the stack marker that was created by calling
this procedure.

29 Missing parameter. This procedure was called without specifying a
required parameter.

590 Bad parameter value. Either the value specified in group-curlen is
greater than the value specified in group-maxlen, the value specified in

Note. In the TNS/E environment the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(GROUP_GETINFO_)>

short GROUP_GETINFO_ ([char *group-name]
 ,[short group-maxlen]
 ,[short *group-curlen]
 ,[__int32_t *groupid]
 ,[short *is-auto-delete]
 ,[char *descrip]
 ,[short descrip-maxlen]
 ,[short *descriplen]);

error := GROUP_GETINFO_ ([group-name:group-maxlen] !
i,o:i
 ,[group-curlen] ! i,o
 ,[groupid] ! i,o
 ,[is-auto-delete] ! o
 ,[descrip:descrip-maxlen] ! o:i
 ,[descriplen]); ! o

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-29

GROUP_GETINFO_ Procedure

group-curlen is not within the valid range, or the value specified in
group-id is not within the valid range.

For more information on file-system error messages, see the Guardian Procedure
Errors and Messages Manual.

group-name:group-maxlen input, output:input

STRING .EXT:ref:*, INT:value

on input, if present and if group-curlen is not 0, group-name specifies the
group name for which information is to be returned.

On output, if groupid is specified and group-curlen is set to 0, returns the
group name corresponding to the group ID specified.

group-name is passed, and returned, in the form of a case-sensitive string that is
up to 32 alphanumeric characters long.

group-maxlen specifies the length of the string variable group-name in bytes.

This parameter pair is required if group-curlen is specified.

group-curlen input, output

INT .EXT:ref:1

on input, if group-name is specified, contains the actual length of group-name in
bytes. The default value is 0.

On output, if group-name is returned, this parameter contains the actual length of
group-name in bytes.

This parameter is required if group-name:group-maxlen is specified.

groupid input, output

INT(32) .EXT:ref:1

on input, if group-curlen is 0 or omitted, specifies the group ID for which
information is to be returned.

On output, if group-name is specified and group-curlen is not 0, this
parameter returns the group ID corresponding to the specified group name.

group-id is a value in the range 0 through 65,535.

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-30

GROUP_GETINFO_ Procedure

is-auto-delete output

INT .EXT:ref:1

indicates whether the specified group is automatically deleted when it no longer
contains members. This parameter returns these values:

-1 The group is deleted when it becomes empty.

 0 The group is not deleted when it becomes empty.

descrip:descrip-maxlen ouput:input

STRING .EXT:ref:*, INT:value

if present and if descrip-maxlen is not 0, returns a string containing a
description of the specified group. The maximum length of descrip is 255.

descrip-maxlen specifies the length of the string variable descrip in bytes.

This parameter pair is required if descriplen is specified.

descriplen output

INT .EXT:ref:1

is the length in bytes of the string returned in descrip.

This parameter is required if descrip:descrip-maxlen is specified.

Considerations
Either group-name or group-id must be supplied. If both parameters are supplied
and group-curlen is greater than zero, group-name is treated as an input
parameter and group-id is treated as an output parameter. If both parameters are
supplied and group-curlen is zero, group-id is treated as an input parameter.

Example
!get the descriptive text, if any, on the specified group ID
error :=
 GROUP_GETINFO_ (,,group^id,,descrip:maxlen,real^len);

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-31

GROUP_GETNEXT_ Procedure

GROUP_GETNEXT_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The GROUP_GETNEXT_ procedure returns a group name and group ID. On
successive calls, all group names and group IDs can be obtained.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the call. Common
errors returned are:

0 No error.

11 Record not in file. There are no more groups, or the specified group name
is undefined.

Note. In the TNS/E environment the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(GROUP_GETNEXT_)>

short GROUP_GETNEXT_ ([char *group-name]
 ,[short group-maxlen]
 ,[short *group-curlen]
 ,[__int32_t *groupid]);

error := GROUP_GETINFO_ (group-name:group-maxlen ! i,o:i
 ,group-curlen ! i,o
 ,[groupid]); ! o

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-32

GROUP_GETNEXT_ Procedure

22 Parameter out of bounds. An input parameter is not within the valid range,
or return information does not fit into the length of the space provided, or
an output parameter overlays the stack marker that was created by calling
this procedure.

29 Missing parameter. This procedure was called without specifying a
required parameter.

590 Bad parameter value. The value specified in group-curlen is greater
than the value specified in group-maxlen.

For more information on file-system error messages, see the Guardian Procedure
Errors and Messages Manual.

group-name:group-maxlen input, output:input

STRING .EXT:ref:*, INT:value

on input, if group-curlen is not 0, group-name specifies a character string that
precedes the next group-name to be returned. group-maxlen specifies the
length of the string variable group-name in bytes. To obtain the first group name,
set group-curlen to 0.

On output, this parameter returns the group name that follows the group-name
specified as the input parameter.

The group-name parameter is passed, and returned, in the form of a case-
sensitive string that is as many as 32 alphanumeric characters long.

group-curlen input, output

INT .EXT:ref:1

on input, contains the actual length of group-name in bytes. To obtain the first
group name, set group-curlen to 0. The default value is 0.

On output, this parameter contains the actual length of group-name in bytes.

groupid output

INT(32) .EXT:ref:1

returns the group ID corresponding to the returned group-name.

groupid is a value in the range 0 through 65535.

Considerations

• Names are not returned in any particular order, and the order can change from one
RVU to the next.

• Naming rules in the Guardian environment are more restrictive than those in the
OSS environment.

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-33

GROUPIDTOGROUPNAME Procedure
(Superseded by GROUP_GETINFO_ Procedure)

Example
! obtain all group names
i := 0;
curlen := 0;
DO
 error := GROUP_GETNEXT_ (name:MAXLEN, curlen);
 group^list[i] ’:=’ name for curlen BYTES;
 i := i + 1;
UNTIL (error <> 0);

GROUPIDTOGROUPNAME Procedure
(Superseded by GROUP_GETINFO_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Example

Summary

The GROUPIDTOGROUPNAME procedure returns the group name associated with
an existing group ID from the USERID file.

Syntax for C Programmers

• The function value returned by GROUPIDTOGROUPNAME, which indicates the
condition code, can be interpreted by _status_lt(), _status_eq(), or
_status_gt() (defined in the file tal.h).

Syntax for TAL Programmers

Note. This procedure is supported for compatibility with previous software and should not be
used for new development. This procedure does not support file-sharing groups.

#include <cextdecs(GROUPIDTOGROUPNAME)>

_cc_status GROUPIDTOGROUPNAME (short _near *id-name);

CALL GROUPIDTOGROUPNAME (id-name) ; ! i,o

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-34

GROUPMEMBER_GETNEXT_ Procedure

Parameters

id-name input, output

INT:ref:4

On input, contains the group ID to be converted to a group name. The group ID is
passed in the form:

id-name.<8:15> = group ID {0:255}

On return, contains the group name associated with the specified group ID in the
form:

id-name FOR 4 = group name (blank-filled)

Condition Code Settings
< (CCL) indicates that a required parameter is missing, that a buffer is out of

bounds, or that an I/O error occurred when accessing the
$SYSTEM.SYSTEM.USERID file.

= (CCE) indicates that the designated group name is returned.

> (CCG) indicates that the specified group ID is undefined.

Example
INT .NAME^ID [0:3] := 8; !this is ACCTING group!
 .
 .
 .
CALL GROUPIDTOGROUPNAME (NAME^ID); !on return,
 !name^id = "ACCTING "

GROUPMEMBER_GETNEXT_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The GROUPMEMBER_GETNEXT_ procedure returns a user member or alias
associated with a group ID. On successive calls, all user members and aliases
associated with a given group ID can be obtained.

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-35

GROUPMEMBER_GETNEXT_ Procedure

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the call. Common
errors returned are:

0 No error.

11 Record not in file. The specified group has no more members or is
undefined.

22 Parameter out of bounds. An input parameter is not within the valid range,
or return information does not fit into the length of the space provided, or
an output parameter overlays the stack marker that was created by calling
this procedure.

29 Missing parameter. This procedure was called without specifying all
parameters.

590 Bad parameter value. Either the value specified in member-curlen is
greater than the value specified in member-maxlen, the value specified
in member-curlen is not within the valid range, or the value specified in
group-id is not within the valid range.

#include <cextdecs(GROUPMEMBER_GETNEXT_)>

short GROUPMEMBER_GETNEXT_ (__int32_t groupid
 ,char *member-name
 ,short member-maxlen
 ,short *member-curlen);

error := GROUPMEMBER_GETNEXT_
 (groupid ! i
 ,member-name:member-maxlen ! i,o:i
 ,member-curlen); ! i,o

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-36

GROUPMEMBER_GETNEXT_ Procedure

For more information on file-system error messages, see the Guardian Procedure
Errors and Messages Manual.

groupid input

INT(32):value

specifies the group ID whose associated user member or alias is to be returned.
The group ID is a value in the range 0 through 65535.

member-name:member-maxlen input, output:input

STRING .EXT:ref:*, INT:value

on input, specifies a character string that precedes the next member-name to be
returned. member-maxlen specifies the length of the string variable member-
name in bytes. To obtain the first user member or alias, set member-curlen to 0.

On output, this parameter returns the user member or alias that follows the
member-name specified as the input parameter.

member-name is passed, and returned, in one of two forms:

group name.user member

The group name and user member are each up to 8 alphanumeric
characters long, and the first character must be a letter. The group name
and user member are separated by a period (.).

alias

The alias is a case-sensitive string made up of 1 to 32 alphanumeric
characters, periods (.), hyphens (-), or underscores (_). The first character
must be alphanumeric.

member-curlen input, output

INT .EXT:ref:1

on input, if member-name is specified, contains the actual length of member-name
in bytes. To obtain the first name, set member-curlen to 0.

On output, this parameter returns the actual length of member-name in bytes.

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-37

GROUPNAMETOGROUPID Procedure
(Superseded by GROUP_GETINFO_ Procedure)

Considerations

• Aliases are defined only when Safeguard is installed.

• Names are not returned in any particular order, and the order can change from one
RVU to the next.

• Naming rules in the Guardian environment are more restrictive than those in the
OSS environment.

Example
! obtain all names associated with a particular group ID
i := 0;
user^list.len[i] := 0;
DO
error := GROUPMEMBER_GETNEXT_
 (group^id, user^list.name[i]: maxlen, user^list.len[i]);
user^list.len [i + 1] := user^list.len[i];
user^list.name[i + 1] ‘:=‘
 user^list.name[i] FOR user^list.len[i] BYTES;
i := i + 1;
UNTIL (error <> 0);

GROUPNAMETOGROUPID Procedure
(Superseded by GROUP_GETINFO_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Example

Summary

The GROUPNAMETOGROUPID procedure returns the group ID associated with an
existing group name from the USERID file.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development. This procedure does not support file-sharing groups.

Guardian Procedure Calls (G)

Guardian Procedure Calls Reference Manual—522629-030
6-38

GROUPNAMETOGROUPID Procedure
(Superseded by GROUP_GETINFO_ Procedure)

Syntax for C Programmers

• The function value returned by GROUPNAMETOGROUPID, which indicates the
condition code, can be interpreted by _status_lt(), _status_eq(), or
_status_gt() (defined in the file tal.h).

Syntax for TAL Programmers

Parameters

name-id input, output

INT:ref:4

on input, name-id contains the group name to be converted (in place) to a group
ID. The group name is passed in the form:

name-id FOR 4 = group name (blank filled)

The group name must be input in uppercase.

On return, name-id contains the group ID associated with the group name in the
form:

name-id.<8:15> = group ID {0:255}

Condition Code Settings

< (CCL) indicates that name-id is out of bounds, or that an I/O error occurred
when the procedure accessed the $SYSTEM.SYSTEM.USERID file.

= (CCE) indicates that the designated group ID is returned.

> (CCG) indicates that the specified group name is undefined.

Example
INT .NAMEID [0:3] := ["GATORS "]; !want to get group ID
 .
 .
CALL GROUPNAMETOGROUPID (NAMEID);
!on return, NAMEID[0].<8:15> = contains the group ID
IF <> THEN ... !error occurred

#include <cextdecs(GROUPNAMETOGROUPID)>

_cc_status GROUPNAMETOGROUPID (short _near *name-id);

CALL GROUPNAMETOGROUPID (name-id); ! i,o

Guardian Procedure Calls Reference Manual—522629-030
7-1

7
Guardian Procedure Calls (H-K)

This section contains detailed reference information for all user-accessible Guardian
procedure calls beginning with the letters H through K. Table 7-1 lists all the
procedures in this section.

Table 7-1. Procedures Beginning With the Letters H Through K

HALTPOLL Procedure

HEADROOM_ENSURE_ Procedure

HEAPSORT Procedure

HEAPSORTX_ Procedure

HIST_FORMAT_ Procedure

HIST_GETPRIOR_ Procedure

HIST_INIT_ Procedure

INCREMENTEDIT Procedure

INITIALIZEEDIT Procedure

INITIALIZER Procedure

INTERPRETINTERVAL Procedure

INTERPRETJULIANDAYNO Procedure

INTERPRETTIMESTAMP Procedure

JULIANTIMESTAMP Procedure

KEYPOSITION[X] Procedures (Superseded by FILE_SETKEY_ Procedure)

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-2

HALTPOLL Procedure

HALTPOLL Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Example
Related Programming Manuals

Summary
The HALTPOLL procedure is normally used to stop continuous polling.

Syntax for C Programmers

• The function value returned by HALTPOLL, which indicates the condition code, can
be interpreted by _status_lt(), _status_eq(), or _status_gt() (defined
in the file tal.h).

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is the number of an open file that HALTPOLL stops polling.

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that the HALTPOLL procedure executed successfully.

> (CCG) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

Example
CALL HALTPOLL (FNUM);

#include <cextdecs(HALTPOLL)>

_cc_status HALTPOLL (short filenum);

CALL HALTPOLL (filenum); ! i

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-3

HEADROOM_ENSURE_ Procedure

FNUM is the integer returned from the call to FILE_OPEN_ or OPEN that opened the
particular communication line. HALTPOLL forces the immediate termination of an
outstanding nowait read operation within a point-to-point station, or it stops any polling
that is in progress within a multipoint station.

Related Programming Manuals
For programming information about the HALTPOLL procedure, see the data
communication manuals.

HEADROOM_ENSURE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary

The HEADROOM_ENSURE_ procedure allows you to check that the current
stack has enough room for the needs of your process. The default value of 0D
indicates that the main stack can grow to 1 MB in the TNS/R enviroment and to 2
MB in the TNS/E environment. Note there are two stacks in the TNS/E
environment: the memory stack and the RSE backing store. For most processes,
the default value is adequate. This procedure can help you, for example, when
specifying parameters for the PROCESS_LAUNCH_ procedure.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

Note. This procedure can be called only from a native process. Its pTAL syntax is declared
only in the EXTDECS0 file.

#include <cextdecs(HEADROOM_ENSURE_)>

__int32_t HEADROOM_ENSURE_ (__int32_t room);

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-4

HEADROOM_ENSURE_ Procedure

Syntax for TAL Programmers

Parameters

ret-val returned value

INT(32)

returns the number of bytes between the current stack pointer and the stack limit if
room is <= 0D. If room is > 0D, ret-val indicates the outcome of the operation.
It returns one of these values:

0D Either the requested space already exists in the stack space or the stack
space was successfully enlarged to make enough room for the request.

5D The request would have exceeded the maximum stack size.

6D The stack pointer is invalid.

7D The stack pointer does not address a main stack or a privileged stack.

36D The system was unable to allocate memory.

43D The system was unable to obtain swap space.

45D The Kernel Managed-Swap Facility (KMSF) was unable to obtain swap
space.

room input

INT(32):value

in the TNS/R environment, specifies the additional space in bytes to be allocated to
the stack if room is > 0D. If room is <= 0D, HEADROOM_ENSURE_ returns the
current headroom; that is, the number of bytes between the current stack pointer
and the limit of the stack. In the TNS/E environment, specifies the minimum size of
either the memory stack or the RSE backing store. When room is <=0D, it is the
size of the remaining memory stack (calculated as the difference between the
maximum stack and the used stack amount.)

Considerations

• If HEADROOM_ENSURE_ returns an error (not 0D), the stack is not enlarged.

• If HEADROOM_ENSURE_ is called from a user (nonprivileged) process, the main
stack of the process is the target. If the call is made from a privileged procedure,
the privileged stack is the target.

• The amount by which the stack is enlarged might be greater than the value
specified in room. The stack size is rounded up by a unit determined by the

ret-val := HEADROOM_ENSURE_ (room); ! i

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-5

HEAPSORT Procedure

system.

Example
error := HEADROOM_ENSURE_ (room);

HEAPSORT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The HEAPSORT procedure is used to sort an array of equal-sized elements in place.

Syntax for C Programmers

• The compare-function parameter is an application-supplied comparison
function that must be written in C. It must return values as described earlier in this
subsection under the compare-proc parameter in the TAL syntax.

Syntax for TAL Programmers

Parameters

array input, output

INT:ref:*

contains equal-sized elements to be sorted.

#include <cextdecs(HEAPSORT)>

short HEAPSORT (short _near *array
 ,short num-elements
 ,short size-of-element
 ,short (*)()compare-function);

CALL HEAPSORT (array ! i,o
 ,num-elements ! i
 ,size-of-element ! i
 ,compare-proc); ! i

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-6

HEAPSORT Procedure

num-elements input

INT:value

is the number of elements in array.

size-of-element input

INT:value

is the size, in words, of each element in array.

compare-proc input

INT PROC

is an application-supplied function procedure that HEAPSORT calls to determine
the sorted order (ascending or descending) of the elements in array.

This procedure must be of the form:

INT PROC compare-proc (element-a , element-b);
 INT .element-a;
 INT .element-b;

The compare-proc must compare element-a with element-b and return
either of these values:

0 (indicating false) if element-b should precede element-a
1 (indicating true) if element-a should precede element-b

element-a and element-b are INT:ref parameters.

Considerations

• In addition to its local variables, HEAPSORT allocates stack space equal to the
value you specify as the size of one array element. If insufficient stack space is
available, the call to HEAPSORT fails: a TNS Guardian process gets a stack
overflow trap; an OSS or native process receives a SIGSTK signal.

Example
In this example, HEAPSORT sorts the elements in array in ascending order.

CALL HEAPSORT (array, num^elements, element^size,
 ascending);

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-7

HEAPSORTX_ Procedure

HEAPSORTX_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The HEAPSORTX_ procedure is used to sort an array of equal-sized elements in
place.

Syntax for C Programmers

• compare-function is an application-supplied comparison function that must be
written in C. It must return values as described under the compare-proc
parameter in the TAL syntax, earlier in this subsection.

Syntax for TAL Programmers

Parameters

error returned value

INT

Note. In the TNS/E environment, the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(HEAPSORTX_)>

short HEAPSORTX_ (short *array
 ,__int32_t num-elements
 ,short size-of-element
 ,short (*)()compare-function
 ,__int32_t _far *pointer-array);

error := HEAPSORTX_ (array ! i,o
 ,num-elements ! i
 ,size-of-element ! i
 ,compare-proc ! i
 ,[pointer-array]); ! i

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-8

HEAPSORTX_ Procedure

indicates the outcome of the operation. It returns one of these values:

0 Array has been successfully sorted.
29 Required parameter is missing.
590 Invalid parameter supplied.
632 Insufficient stack space for temporary variable (see “Considerations”).

array input, output

INT .EXT:ref:*

contains equal-sized elements to be sorted.

num-elements input

INT(32):value

is the number of elements in array.

size-of-element input

INT:value

is the size, in words, of each element in array.

compare-proc input

INT PROC

is an application-supplied function procedure that HEAPSORTX_ calls to compare
two array elements and determine their sorted order. The addresses of these
elements are supplied as parameters to compare-proc.

This procedure must be of the form:

INT PROC compare-proc (element-a , element-b);
 INT .EXT element-a;
 INT .EXT element-b;

The compare-proc must compare element-a with element-b and return a
result. It must return zero (false) if element-b should precede element-a; it
must return a nonzero value (true) if element-a should precede element-b.

pointer-array input

INT(32) .EXT:ref:*

provides space for an array that is used to optimize the sort. The size of each
element in the array is an INT(32) and the number of elements is equal to the
value specified for the num-elements parameter. You do not need to supply any
data in the array, nor should you expect any useful data in the array on return. The
value that you supply is simply a pointer to an area that has been allocated by your
program that is of sufficient size for the array. The array is used as a work area by
the sort.

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-9

HIST_FORMAT_ Procedure

If this parameter is specified, and not equal to 0D, the sort builds an array of
pointers in the area supplied by this parameter. It is these pointers that are
rearranged as the sort progresses. Only when the sort is complete is the actual
data supplied in the array parameter rearranged. If this parameter is omitted or
specified as 0D, the sort works directly on the data supplied in the array
parameter. Supplying this parameter can substantially improve the performance of
the sort, especially if there is a large number of elements or a large element size.

Considerations

• In addition to its local variables, HEAPSORTX_ allocates stack space equal to the
value you specify as the size of one array element. If insufficient stack space is
available, HEAPSORTX_ returns an error 632.

Example
In this example, HEAPSORTX_ sorts the elements in ARRAY in ascending order.

CALL HEAPSORTX_ (array, num^elements, element^size,
 ascending);

Related Programming Manual
For programming information about the HEAPSORTX_ procedure, see the Guardian
Programmer’s Guide.

HIST_FORMAT_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example Code
Example Traces: Case 1
Example Traces: Case 2
Example Traces: Case 3
Example Traces: Case 4

Summary
The HIST_FORMAT_ procedure produces an ASCII text representation of the process
state whose context is established by a previous call to the HIST_INIT_ procedure or
HIST_GETPRIOR_ procedure. See the HIST_INIT_ Procedure for an overview of how
HIST_INIT_, HIST_FORMAT_, and HIST_GETPRIOR_ can be used together to
perform stack tracing. This procedure displays RISC register contents for TNS/R
code and IPF register contents TNS/E code.

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-10

HIST_FORMAT_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

ret-val returned value

INT

if the procedure is successful, returns the length of the output text in bytes or zero
(0) if there is no more text for the current context. If the procedure is unsuccessful,
ret-val contains a negative value as follows:

-2 HIST_BAD_WIDTH

The value of the limit parameter is less than the minimum width for output
defined by the HIST_MinWidth literal in the HHISTRY header file.

-9 HIST_BAD_WORKSPACE

The workspace structure has an invalid version identifier. This error can
occur if HIST_FORMAT_ is called without first calling the HIST_INIT_
procedure or if the workspace structure has become corrupted.

-10 HIST_BAD_FORMAT_CALL

Nothing to format. This error can occur if you call HIST_FORMAT_ again
after a previous call returned zero indicating no more text for the current
context.

workspace input, output

INT .EXT:ref:(HISTWORKSPACE_TEMPLATE)

identifies the workspace area. One purpose of this area is to specify the format of
the contents of the output text. The specific instance of the workspace must have
been initialized by the HIST_INIT_ or HIST_PRIOR_ procedure. You can adjust
the content and format of the display by setting the workspace.FormatSelect
field; see “Considerations.”

#include <histry.h>

short HIST_FORMAT_ (NSK_histWorkspace *workspace
 ,char *text
 ,const uint16 limit);

?SOURCE $SYSTEM.SYSTEM.HHISTRY

ret-val := HIST_FORMAT_ (workspace !i,o
 ,text !o
 ,limit); !i

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-11

HIST_FORMAT_ Procedure

text output

STRING .EXT:ref:*

is the buffer in which the output text is returned. The text has no termination
character. The length of the text string is returned in ret-val.

limit input

INT:value

specifies the maximum length in bytes of the output line. This value must not be
less than the minimum width specified by the HIST_MinWidth literal in the
HHISTRY file; otherwise, an error occurs.

Considerations

• The workspace.FormatSelect field determines what information is reported.
This field is initialized to a default value by the HIST_INIT_ procedure, but it can be
changed by the caller before the first HIST_FORMAT_ call for any stack frame.
Changing FormatSelect between successive calls to HIST_FORMAT_ without
an intervening call to HIST_GETPRIOR_ has an undefined effect. The field is a bit
mask formed by combining these literals:

 HF_CodeSpace Shows the code space in which the procedure resides; for
example, user code (UC), user code RISC (UCr), accelerated
system library (acc SL), system code RISC (SCr), system
library RISC (SLr), or millicode (milli). For TNS code, it shows
the code segment index (for example, UL.00). For named
native shared run-time libraries (SRLs), it shows the SRL
name (not its object file name).

HF_Context Shows the RISC register contents whenever a full context is
available (for example, when a signal is generated). If a full
context is available for a frame in TNS or accelerated mode
when the emulated TNS registers R0 through R7 are
available, they are also shown.

HF_Context_TNS Shows the emulated TNS registers R0 through R7 when
available. This option is redundant if the HF_Context option is
set.

HF_Gaps Shows discontinuities. Three hyphens (---) denote a
discontinuity in the calling sequence; for example, when a trap
or system-generated nondeferrable signal occurred. An
ellipsis (...) denotes missing procedure activation records in
the chain of events. See “Protected Contexts” later under
“Considerations.”

HF_LocLineIPF For procedures executing in TNS/E native mode, shows the
program counter (pc), previous stack pointer (PSP), and stack

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-12

HIST_FORMAT_ Procedure

pointer (sp), when relevant, in hexadecimal 64-bit values.
HF_LocLineRISC is the TNS/R equivalent for
HF_LocLineIPF.

The PSP is defined as FP plus the frame offset (the size of
the stack frame). Compiler-listed variable offsets are relative
to PSP.

If a larger set of IPF registers is being displayed because of
the HF_Context or HF_Registers options, the HF_LocLineIPF
information is redundant and is not shown.

HF_LocLineRISC For procedures executing in TNS/R native mode, shows the
program counter (pc), virtual frame pointer (VFP), frame
pointer (FP), and stack pointer (sp), when relevant, in
hexadecimal. HF_LocLineIPF is the TNS/E equivalent for
HF_LocLineRISC.

The FP is used to access formal parameters and local
variables of the procedure. It is typically the stack pointer
(sp). The output identifies the pointer and displays its value
for any procedure with a stack frame.

The VFP is defined as FP plus the frame offset (the size of
the stack frame). Compiler-listed variable offsets are relative
to VFP.

If a larger set of RISC registers is being displayed because of
the HF_Context or HF_Registers options, the
HF_LocLineRISC information is redundant and not shown.

HF_LocLineTNS For procedures executing in TNS or accelerated mode, shows
the values of P, E, L, and S (when available), in octal.

HF_Name Shows the procedure name if available. If the name is not
available, the action depends upon the rest of the
FormatSelect field. If no other option is set (other than
HF_Parent), HIST_FORMAT_ returns 0 and nothing is
formatted for display. In this special case, you can change
FormatSelect and call HIST_FORMAT_ again without
causing a HIST_BAD_FORMAT_CALL error.

If any other option is set in FormatSelect, the code address
is displayed instead of the unavailable name.

HF_Offset Shows the offset from the beginning of the procedure of the
current program location, if it is available and nonzero.

HF_Parent Shows the name of the parent procedure for any
subprocedure, in addition to the subprocedure name, in the
form PROC.SUBPROC. This option is effective only if the

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-13

HIST_FORMAT_ Procedure

HF_Name option is also set. By itself, HF_Name causes only
.SUBPROC to be shown.

This option supports code that is displaying a single context
(as from a signal handler) without tracing the stack. In a stack
trace, the parent name typically appears later in the trace.

HF_Registers Shows all the RISC registers for which the value is known. In
general, the complete set is known only when initiating (or
continuing) a trace from a uContext structure (that is, the
HIST_INIT_ procedure was called with options.<13:15> set
to HO_Init_uContext). Otherwise, only those registers whose
values are still known are displayed; these registers include
the save registers (s0 through s8), which are saved by the
called procedure if used, the stack pointer (sp) and program
counter (pc), which revert to their original values when a
procedure exits, and the global pointer (gp), which is not
changed.

• These literals define combinations of other HF_* literals:

HF_base = HF_Name + HF_Offset + HF_CodeSpace

HF_trace = HF_base + HF_Gaps

HF_withContext = HF_trace + HF_Context + HF_Context_TNS

HF_full = HF_withContext + HF_Registers

• The default FormatSelect value set by the HIST_INIT_ procedure is HF_trace
unless the HO_OneLine or HO_Init_address bit is set in the options parameter of
the HIST_INIT_ procedure call; in that case, the default value is HF_base +
HF_Parent.

• HF_withContext causes the full context to be displayed whenever a new context is
available, such as at the invocation of a signal handler. HF_full causes all
available state information to be displayed for native frames.

• Typically, the name, offset, and code space are displayed on one line, but that can
spill onto multiple lines when necessary. Individual procedure names,
subprocedure names, and SRL names longer than 65 characters are truncated.
Truncated names have a greater-than sign (>) shown as the last character.

• Any output generated by the HF_LocLineTNS or HF_LocLineRISC option appears
on a separate line, unless the HO_OneLine bit is set in the options parameter of
the HIST_INIT_ call. Register displays occupy the last three to ten lines,
depending upon the registers available.

• Protected contexts

When a run-time event that requires immediate attention, such as a hardware trap,
causes a signal to be generated, the uContext structure presented to the signal
handler contains either one or two contexts. The primary context is a complete

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-14

HIST_FORMAT_ Procedure

record of the procedure context at the site of the event. If that site was in protected
code, a secondary context contains part of the state at the site of transition into
protected code.

A context is protected if the process was privileged when the signal was generated
but the signal handler was installed from nonprivileged code.

For example, if a user program invokes a CALLABLE procedure (switching into
privileged mode) and an attempt to access an invalid address occurs within the
privileged code, the primary context is that of the invalid operation, and the
secondary context is that of the user procedure at the site of the call to the
CALLABLE procedure.

The secondary context is limited to those registers that, by convention, are saved
and restored by all subsequent callers. Registers used as temporary values
(including procedure parameters and return values) are not available; see the
earlier discussion of the HF_Registers literal.

If the signal handler in the previous example performed a stack trace, calling the
HIST_INIT_ procedure and specifying the options HO_Init_Here,
HO_ShowProtected, and HO_NoSuppress, the trace would look something like
this:

Returned Text Explanation

HANDLER + 0x28 (UCr) Indicates the current procedure (that
is, the signal handler) and the offset.

PK_SIG_HANDLER_JACKET_
 + 0x54 (SLr)

Indicates the procedure that called the
handler and the offset of the call. The
system procedure that called the
handler is considered a transition
frame and is suppressed by default.

 --- Denotes a break in the calling
sequence. In this case,
PRIV_PROC_ did not call
PK_SIG_HANDLER_JACKET_; the
operating system intervened in
response to a trap.

PRIV_PROC_ + 0x5C (SCr) Indicates the procedure in which and
the offset where the trap occurred.
This context is the primary context in
the uContext generated at the time of
the trap. It is found automatically
when tracing through the special jacket
procedure. This context is suppressed
unless the HO_ShowProtected option
of HIST_INIT_ is in effect.

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-15

HIST_FORMAT_ Procedure

If the signal handler instead passed its uContext and specified the
HO_Init_uContext option to HIST_INIT_, the trace would start with PRIV_PROC_
and otherwise appear the same.

Example Code
This example code shows the way this procedure is typically called in the TNS/R
environment:

STRUCT hws (HISTWORKSPACE_TEMPLATE);
 .
 .
 .
error := HIST_INIT_ (hws, version1, options, context);
IF error <> HIST_OK THEN...;
DO BEGIN
 WHILE (len := HIST_FORMAT_ (hws, buffer, limit)) > 0D DO
 .
 ! Print text in buffer
 .
 END UNTIL (error := HIST_GETPRIOR_(hws)) <> HIST_OK;
IF error <> HIST_DONE THEN...;

Omit the DO loop and the HIST_GETPRIOR_ call to display only a single procedure
state.

... Denotes one or more stack frames that
are not shown; although a complete
chain of procedure calls did take place,
they are not all displayed. In this case,
USER_PROC did not call
PRIV_PROC_ directly; the activation
record of the original CALLABLE
procedure (and perhaps others in the
chain of calls leading to the failure)
was discarded as the signal was
delivered to the user’s handler.

USER_PROC + 0x1C0 (UCr) Indicates the caller of the CALLABLE
procedure most recently invoked from
nonprivileged code. This is the
secondary context in the uContext
structure. It was generated by tracing
the stack to the privileged boundary,
before the switch to nonprivileged
mode to enter the user’s signal handler
occurred.

 AnotherProc + 0x2F8 (UCr) Indicates the call site of USER_PROC.

Returned Text Explanation

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-16

HIST_FORMAT_ Procedure

To specify a nondefault format selection, place an assignment to
workspace.FormatSelect after the HIST_INIT_ call but outside the WHILE loop.

Example Traces: Case 1
These traces are produced by a procedure named xtracer called from a native signal
handler. xtracer starts the trace by calling the HIST_INIT_ and HIST_FORMAT_
procedures. A SIGSEGV signal is generated in a procedure that is invoked from a
CALLABLE procedure. The CALLABLE procedure is invoked from the unprivileged
procedure HIST_TEST_ACTOR_.

For the first trace, the options parameter of HIST_INIT_ and the FormatSelect
field of the workspace structure passed to HIST_FORMAT_ are set up as follows:

• options equals HO_Init_Here.

• FormatSelect equals HF_trace (the default value).

An example trace In the TNS/R environment :

An example trace In the TNS/E environment :

For the next trace:

• options equals HO_Init_Here + HO_ShowProtected.

• FormatSelect equals HF_trace (the default value).

The HO_ShowProtected option allows the resulting trace to show the procedure
named doer that was trapped using the invalid address.

An example trace in the TNS/R environment:

xtracer + 0x60 (UCr)
handler + 0x170 (UCr)
...
HIST_TEST_ACTOR_ + 0x2F0 (UCr)
PROGRAM + 0x510 (UCr

options = HO_Init_Here
FormatSelect = HF_trace

xtracer + 0x110 (UCr)
handler + 0x220 (UCr)
...
HIST_TEST_ACTOR + 0x80 (UCr)
main + 0xAD0 (UCr)
_MAIN + 0x160 (UCr)

xtracer + 0x60 (UCr)
handler + 0x170 (UCr)

doer + 0x5C (UCr)
...
HIST_TEST_ACTOR_ + 0x2F0 (UCr)
PROGRAM + 0x510 (UCr)

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-17

HIST_FORMAT_ Procedure

An example trace in the TNS/E environment:

For the next trace:

• options equals HO_Init_Here + HO_ShowProtected.

• FormatSelect equals HF_trace (the default value) + HF_Context.

The resulting trace shows the full context at the point of the trap and the partial context
at the transition to privileged state.

An example trace in the TNS/R environment:

options = HO_Init_Here + HO_ShowProtected
FormatSelect = HF_trace

xtracer + 0x110 (UCr)
handler + 0x220 (UCr)

doer + 0x170 (UCr)
...
HIST_TEST_ACTOR + 0x80 (UCr)
main + 0xAD0 (UCr)
_MAIN + 0x160 (UCr)

 xtracer + 0x60 (UCr)
 handler + 0x170 (UCr)

 doer + 0x5C (UCr)
 Mode=Native, Priv pc=70002290
 $00: at=00000000 v0=0000001F v1=00008801 |
HI=0000267C
 $04: a0=08008590 a1=00000000 a2=00000000 a3=80AD5F60 |
LO=B8987780
 $08: t0=FFFFFFFF t1=0000001E t2=00000001 t3=0000001F |
 $12: t4=0000001F t5=00000000 t6=00004801 t7=20040000 |
 $16: s0=00000004 s1=00000001 s2=FFFFFFFF s3=FFFFFFFF |
 $20: s4=FFFFFFFF s5=FFFFFFFF s6=FFFFFFFF s7=FFFFFFFF |
 $24: t8=C4863C14 t9=00000000 | FP=sp
 $28: gp=08008590 sp=5FFFFE88 s8=4FFFFE50 ra=70002288 |
VFP=5FFFFEB8
 ...
 HIST_TEST_ACTOR_ + 0x2F0 (UCr)
 $16: s0=00000000 s1=00000001 s2=FFFFFFFF s3=FFFFFFFF |
 $20: s4=FFFFFFFF s5=FFFFFFFF s6=FFFFFFFF s7=FFFFFFFF | FP=sp
 $28: gp=08008590 sp=4FFFFCE0 s8=4FFFFE50 pc=7000269C |
VFP=4FFFFE38
 PROGRAM + 0x510 (UCr)

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-18

HIST_FORMAT_ Procedure

 An example trace in the TNS/E environment:

For the next trace:

• options equals HO_Init_Here + HO_ShowProtected.

• FormatSelect equals HF_trace (the default value) + HF_LocLineRISC.

The resulting trace shows the pc, VFP, FP, and sp registers. Note that while most
procedures use sp as FP, PROGRAM uses s8, so both s8 and sp are shown.

options = HO_Init_Here + HO_ShowProtected
FormatSelect = HF_trace + HF_Context

xtracer + 0x110 (UCr)
handler + 0x220 (UCr)

doer + 0x170 (UCr)
 Mode=Native, Priv
 pc:0x0000000070001910 rp:0x0000000070001C00
 psp:0x000000006DFDFE80 sp:0x000000006DFDFE00
 cfm:0x000000000000060E bsp:0x000000006DF04100
 lc:0x0000000000000000 ec:0x0000000000000000 pred:0x0000000000001201
Static general registers (0:31)
000: 0000000000000000 00000000080003F0 400000000000058D E000000201508070
004: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
008: 000000000000001C 00034A45F5F7F980 0000000000000514 0000000000000000
012: 000000006DFDFE00 00000000000BAD0D FFFFFFFFE2048E00 FFFFFFFFE204B018
016: FFFFFFFFE2C40060 000000006DFDD250 FFFFFFFFE2048F38 0000000000000000
020: 000000006DFDFE30 FFFFFFFF91104080 FFFFFFFF91104080 FFFFFFFF91104080
024: 0000000000000000 0000000000000000 000000006DFDFBF0 000000006DFDFDC0
028: 0000000000000000 0000000000000004 00000000000028A0 00000000000028AC
 |
 |
 |

HIST_TREST_ACTOR + 0x80 (UCR)
Mode=Native, Priv
 pc:0x0000000070001CC0 rp:0x0000000070002810
 psp:0x000000006FFFFDF0 sp:0x000000006DFDFD80
 cfm:0x0000000000000409 bsp:0x00000006E000108
 lc:0x0000000000000000 ec:0x0000000000000000 pred:0x0000000000001201
Static general registers (0:31)
000: 000000000000000 00000000080003F0 <unknown> <unknown>
004: 0000000000000000 00000000080003F0 0000000000000000 0000000000000000
 |
 |
 |
Stacked general registers (32:45)
032: 0000000000000001 4000000000000205 0000000070001C00 000000006DFDFE20
036: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
040: 0000000000000001 0000000000000000 0000000000000000 000000006DFC32D0
044: 00000000080002F0 0000000000000000
 fpsr:0x0009804C8A70033F
 fpsr decode - traps:0x3F sf0:0x000C sf1:0x114E sf2:0x004C sf3:0x004C
Lower floating point registers (0:31)
000: 0000000000000000.0000000000000000 0000000000000FFF.8000000000000000
008: 000000000000FFFE.EAFCA11000000000 000000000002FFF4.A0B0000000000000
010: 000000000000FFFE.EAD7C13369D14000 000000000000FFE9.C9C0F20000000000
012: 000000000000FFFE.EAD7C6FC0D0551CA 000000000001003E.0000000000000000
026: 0000000000000000.0000000000000000 0000000000000000.0000000000000000
028: 0000000000000000.0000000000000000 0000000000000000.0000000000000000
030: 0000000000000000.0000000000000000 0000000000000000.0000000000000000
main + 0xAD0 (UCr)
_MAIN + 0x160 (UCr)

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-19

HIST_FORMAT_ Procedure

 An example trace in the TNS/R environment:

An example trace in the TNS/E environment:

In the next example, doer was called in unprivileged state. For this trace:

• options equals HO_Init_uContext + HO_OneLine, and the address of the
handler’s context is passed in the context parameter of HIST_INIT_.

• FormatSelect equals HF_trace (the default value) + HF_LocLineRISC.

The HO_OneLine option causes the name and register states to appear on the same
line. Only one frame is reported because HIST_GETPRIOR_ is not called.

An example in the TNS/R environment:

An example trace in the TNS/E environment:

xtracer + 0x60 (UCr)
 pc=0x70000B20 VFP=0x4FFFFAF0 FP=sp=0x4FFFF878
handler + 0x170 (UCr)
 pc=0x7000218C VFP=0x4FFFFB20 FP=sp=0x4FFFFAF0

doer + 0x5C (UCr) pc=0x70002290 VFP=0x5FFFFEB8 FP=sp=0x5FFFFE88
...
HIST_TEST_ACTOR_ + 0x2F0 (UCr)
 pc=0x7000269C VFP=0x4FFFFE38 FP=sp=0x4FFFFCE0
PROGRAM + 0x510 (UCr)
 pc=0x700014B4 VFP=0x4FFFFE90 FP=s8=0x4FFFFE50 sp=0x4FFFFE38

options = HO_Init_Here + HO_ShowProtected
FormatSelect = HF_trace + HF_LocLineIPF

xtracer + 0x110 (UCr)
 pc:0x0000000070000CD0 psp:0x000000006FFFDFD0 sp:0x000000006FFFCD70
handler + 0x220 (UCr)
 pc:0x0000000070001520 psp:0x000000006FFFE050 sp:0x000000006FFFDFD0

doer + 0x170 (UCr)
 pc:0x0000000070001910 psp:0x000000006DFDFE80 sp:0x000000006DFDFE00
...
HIST_TEST_ACTOR + 0x80 (UCr)
 pc:0x0000000070001CC0 psp:0x000000006FFFFDF0 sp:0x000000006FFFFD80
main + 0xAD0 (UCr)
 pc:0x0000000070002810 psp:0x000000006FFFFEE0 sp:0x000000006FFFFDF0
_MAIN + 0x160 (UCr)
 pc:0x0000000070002CE0 psp:0x000000006FFFFF30 sp:0x000000006FFFFEE0

 doer + 0x5C (UCr) pc=0x70002290 VFP=0x4FFFFCE0 FP=sp=0x4FFFFCB0

 options = HO_Init_uContext + HO_OneLine
FormatSelect = HF_trace + HF_LocLineIPF

doer + 0x170(UCr) pc:0x0000000070001910 psp:0x000000006DFDFE80sp:0x000000
006DFDFE00

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-20

HIST_FORMAT_ Procedure

Example Traces: Case 2
This trace results from a sequence of events similar to case 1, except that the
CALLABLE procedure named caller attempts to divide by zero before invoking doer.
The output does not include an ellipsis because the trap occurs in a CALLABLE
procedure called by a nonprivileged procedure.

For this trace:

• options equals HO_Init_Here + HO_ShowProtected + HO_NoSuppress.

• FormatSelect equals HF_trace (the default value).

An example trace in the TNS/R environment:

An example trace in the TNS/E environment:

Example Traces: Case 3
The next sequence of examples is similar to case 1, except:

• The process is unprivileged when it generates a SIGSEGV signal.

• The signal occurs in millicode (a move-bytes operation).

In the first trace:

• options equals HO_Init_uContext + HO_NoSuppress, and the address of the
handler’s context is passed in the context parameter of HIST_INIT_.

• FormatSelect equals HF_trace (the default value).

An example trace in the TNS/R environment:

xtracer + 0x60 (UCr)
handler + 0x170 (UCr)
PK_SIG_HANDLER_JACKET_ + 0x68 (SLr)

caller + 0x28 (UCr)
HIST_TEST_ACTOR_ + 0x2BC (UCr)
PROGRAM + 0x510 (UCr)

options = HO_Init_Here + HO_ShowProtected + HO_NoSuppress
FormatSelect = HF_trace

xtracer + 0xF0 (UCr)
handler + 0x220 (UCr)
$UD_S__SigHandlerJacket + 0x3B0 (SLr)

caller + 0x100 (SLr)
HIST_TEST_ACTOR_ + 0xB0 (UCr)
main + 0xAD0 (UCr)
_MAIN + 0x160 (UCr)

pc=%h7E0014C4 (Milli)
doer + 0xB0 (UCr)
HIST_TEST_ACTOR_ + 0x304 (UCr)
PROGRAM + 0x514 (UCr)

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-21

HIST_FORMAT_ Procedure

An example trace in the TNS/E environment:

In the next trace:

• options equals HO_Init_uContext + HO_NoSuppress, and the address of the
handler’s context is passed in the context parameter of HIST_INIT_.

• FormatSelect equals HF_trace (the default value) + HF_Context.

An example trace in the TNS/R environment:

 (millicode example)
options = HO_Init_uContext + HO_NoSuppress
FormatSelect = HF_trace

copyData + 0x6C51 (Milli)
_SharedMilli_MOVB_FWD + 0x2B0 (Milli)
doer + 0x1A0 (UCr)
HIST_TEST_ACTOR + 0xC0 (UCr)
main + 0xB10 (UCr)
_MAIN + 0x160 (UCr)

pc=%h7E0014C4 (Milli)
 Mode=Native pc=7E0014C4
 $00: at=00000000 v0=0000001D v1=00008801 |HI=00001F67
 $04: a0=4FFFFCDC a1=66666666 a2=00000000 a3=80AD5F60 |LO=D9E29E00
 $08: t0=0000FE00 t1=00000004 t2=00000001 t3=0000001D |
 $12: t4=6666666A t5=00000000 t6=00004801 t7=20040000 |
 $16: s0=00000005 s1=00000001 s2=FFFFFFFF s3=FFFFFFFF |
 $20: s4=FFFFFFFF s5=FFFFFFFF s6=FFFFFFFF s7=FFFFFFFF |
 $24: t8=C6203C14 t9=00000000 |
 $28: gp=08008590 sp=4FFFFCB0 s8=4FFFFE50 ra=700022E4 |
doer + 0xB0 (UCr)
HIST_TEST_ACTOR_ + 0x304 (UCr)
PROGRAM + 0x514 (UCr)

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-22

HIST_FORMAT_ Procedure

An example trace in the TNS/E environment:

In the next trace:

• options equals HO_Init_uContext + HO_NoSuppress, and the address of the
handler’s context is passed in the context parameter of HIST_INIT_.

• FormatSelect equals HF_trace (the default value) + HF_LocLineRISC (in the
TNS/R environment) or HF_LocLineIPF (in the TNS/E environment).

An example trace in the TNS/R environment:

options = HO_Init_uContext + HO_NoSuppress
FormatSelect = HF_trace + HF_Context

copyData + 0x6C51 (Milli)
 Mode=Native
 pc:0xFFFFFFFFE25145B1 rp:0xFFFFFFFFE250C2F0
 psp:0x000000006FFFFC10 sp:0x000000006FFFF560
 cfm:0x0000000000002E5C bsp:0x000000006E0002C8
 lc:0x0000000000000000 ec:0x0000000000000000 pred:0x0000000000001FC1
Static general registers (0:31)
000: 0000000000000000 FFFFFFFFE2804BE0 4000000000000008 E000000201508070
004: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
008: 000000000000001C 00034A45F5F7F980 0000000000000514 0000000000000000
012: 000000006FFFF560 00000000000BAD0D 00000000080003F0 0000000008000538
016: FFFFFFFFE250C040 000000006DFDF680 000000006DFDFFB8 0000000000000001
020: 000000006FFFF9D0 000000006DFDFFB8 0000000002C80014 000000006E000D48
024: C0000000000012AD 0000000000000000 000000006FFFFCC0 000000006FFFFBD0
 |
 |
 |
120: 0000000000000001 0000000000000001 0000000000000001 000000006FFFFC48
 fpsr:0x0009804C8A70033F
 fpsr decode - traps:0x3F sf0:0x000C sf1:0x114E sf2:0x004C sf3:0x004C
Lower floating point registers (0:31)
000: 0000000000000000.0000000000000000 000000000000FFFF.8000000000000000
002: 000000000001003E.0000000000000001 000000000001003E.0000000000000001
004: 000000000001003E.0000000000000001 000000000001003E.0000000000000001
006: 000000000001003E.0000000000000001 000000000001003E.0000000000000001
008: 000000000000FFFE.EE3D1E6000000000 000000000002FFF4.A0B0000000000000
010: 000000000000FFFE.EE17BBE0BFC78000 000000000000FFE9.C9C0F20000000000
012: 000000000000FFFE.EE17C1BDE0729676 000000000001003E.0000000000000000
014: 000000000001003E.0000000000000000 000000000001003E.0000000000010830
016: 0000000000000000.0000000000000000 0000000000000000.0000000000000000
018: 0000000000000000.0000000000000000 0000000000000000.0000000000000000
020: 0000000000000000.0000000000000000 0000000000000000.0000000000000000
022: 0000000000000000.0000000000000000 0000000000000000.0000000000000000
024: 0000000000000000.0000000000000000 0000000000000000.0000000000000000
_SharedMilli_MOVB_FWD + 0x2B0 (Milli)
doer + 0x1A0 (UCr)
HIST_TEST_ACTOR + 0xC0 (UCr)
main + 0xB10 (UCr)
_MAIN + 0x160 (UCr)

pc=%h7E0014C4 (Milli) sp=0x4FFFFCB0
doer + 0xB0 (UCr)
 pc=0x700022E4 VFP=0x4FFFFCE0 FP=sp=0x4FFFFCB0
HIST_TEST_ACTOR_ + 0x304 (UCr)
 pc=0x700026B0 VFP=0x4FFFFE38 FP=sp=0x4FFFFCE0
PROGRAM + 0x514 (UCr)
 pc=0x700014B8 VFP=0x4FFFFE90 FP=s8=0x4FFFFE50 sp=0x4FFFFE38

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-23

HIST_FORMAT_ Procedure

An example trace in the TNS/E environment:

Example Traces: Case 4
This example shows a stack trace started from a TNS procedure. In this case, the
TNS procedure is a static function named xtracer in the C source file named SHTC.
xtracer calls the native HIST_* procedures to perform the trace. These examples are
identical in the TNS/R and TNS/E environments

• options equals HO_Init_Here.

• FormatSelect equals HF_trace (the default value).

For the next trace:

• options equals HO_Init_Here.

• FormatSelect equals HF_trace (the default value) + HF_LocLineTNS.

The next trace is from an accelerated version of the same program:

• options equals HO_Init_Here.

• FormatSelect equals HF_trace (the default value) + HF_LocLineTNS.

(millicode example)
options = HO_Init_uContext + HO_NoSuppress
FormatSelect = HF_trace + LocLineIPF

copyData + 0x6C51 (Milli)
 pc:%h0000000000000000 psp:0x000000006FFFFC10 sp:0x000000006FFFF560
_SharedMilli_MOVB_FWD + 0x2B0 (Milli)
 pc:%h0000000000000000 psp:0x000000006FFFFD00 sp:0x000000006FFFFC10
doer + 0x1A0 (UCr)
 pc:0x0000000070001960 psp:0x000000006FFFFD80 sp:0x000000006FFFFD00
HIST_TEST_ACTOR + 0xC0 (UCr)
 pc:0x0000000070001D60 psp:0x000000006FFFFDF0 sp:0x000000006FFFFD80
main + 0xB10 (UCr)
 pc:0x00000000700028B0 psp:0x000000006FFFFEE0 sp:0x000000006FFFFDF0
_MAIN + 0x160 (UCr)
 pc:0x0000000070002D40 psp:0x000000006FFFFF30 sp:0x000000006FFFFEE0

SHTC.xtracer + %37 (UC.00)
main + %740 (UC.00)
_MAIN + %32 (UC.00)

SHTC.xtracer + %37 (UC.00)
 P=%001314 E=%000200:T,UC.00 L=%023502 S=%024142
main + %740 (UC.00)
 P=%001071 E=%000200:T,UC.00 L=%023453
_MAIN + %32 (UC.00)
 P=%000125 E=%000200:T,UC.00 L=%023430

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-24

HIST_GETPRIOR_ Procedure

Note that, like the S register, the accelerated program counter (pc) value is known only
at the point of the HIST_INIT_ call.

HIST_GETPRIOR_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The HIST_GETPRIOR_ procedure establishes a previous procedure call as the
process context for display by the next HIST_FORMAT_ procedure call. For an
overview of how HIST_INIT_, HIST_FORMAT_, and HIST_GETPRIOR_ can be used
together to perform stack tracing, see the HIST_INIT_ Procedure. This procedure
displays RISC register contents for TNS/R code and IPF register contents for TNS/E
code.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the operation:

0 HIST_OK

SHTC.xtracer + %37 (acc UC.00)
 pc=%h70420D84 P=%001314 E=%000200:T,UC.00 L=%023502 S=%024142
main + %740 (UC.00)
 P=%001071 E=%000200:T,UC.00 L=%023453
_MAIN + %32 (UC.00)
 P=%000125 E=%000200:T,UC.00 L=%023430

#include <histry.h>

short HIST_GETPRIOR_ (NSK_histWorkspace *workspace);

?SOURCE $SYSTEM.SYSTEM.HHISTRY

error := HIST_GETPRIOR_ (workspace); ! i,o

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-25

HIST_GETPRIOR_ Procedure

The procedure executed successfully.

1 HIST_DONE

The procedure has reached the base of the stack trace.

-8 HIST_ERROR

The stack tracing mechanism failed.

-9 HIST_BAD_WORKSPACE

The workspace structure has an invalid version identifier. This error can occur
if HIST_GETPRIOR_ is called without first calling the HIST_INIT_ procedure or
if the workspace structure has become corrupted.

workspace input, output

INT .EXT:ref:(HISTWORKSPACE_TEMPLATE)

identifies the context and format of the process state to be displayed by the next
HIST_FORMAT_ procedure call. On input, it must have already been initialized by
a previous call to the HIST_INIT_ procedure and might have been modified by
previous calls to HIST_GETPRIOR_. On output, it identifies the previous
unsuppressed context. See “Considerations.”

Considerations

• Suppression of a stack frame by HIST_INIT_ or HIST_PRIOR_ is determined by a
bit mask in the field workspace.FrameSuppress. The HIST_INIT_ procedure
initializes the field to a default set of transition frames, or to zero (0) if the
HO_NoSuppress option is specified in the call to HIST_INIT_.

• The procedure activations or stack frames to be displayed must exist and remain
undisturbed on the stack. You must therefore use care to ensure that these
procedure activations are not disturbed while the stack trace is taking place. For
example, if a stack trace is initiated from the context of the caller or by using a
jump buffer, the procedure that called HIST_INIT_ or the setjmp() function
should not exit before the calls to HIST_GETPRIOR_.

• You can call HIST_GETPRIOR_ without calling HIST_FORMAT_ to skip a frame in
a stack trace. For example, a procedure can generate a stack trace starting from
its caller (instead of itself) by calling HIST_INIT_ with the HO_Init_Here option, and
then calling HIST_GETPRIOR_ before the first call to HIST_FORMAT_.

Example
error := HIST_GETPRIOR_ (hws);

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-26

HIST_INIT_ Procedure

HIST_INIT_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Considerations
Example

Summary
The HIST_INIT_ procedure initializes a process history display or stack trace. It
validates parameter and establishes the context to display and from which to begin
tracing.

HIST_INIT_, is used with the HIST_FORMAT_ and HIST_GETPRIOR_ procedures to
provide the ability to display process state, including register contents and procedure
activation history or stack traces. You do not need to be concerned with details of TNS
or native architectures to use these procedures. This procedure displays RISC register
contents for TNS/R code and IPF register contents for TNS/E code.

These procedures can be used to perform these:

• Display the state of the current procedure and its callers, typically for diagnostic
purposes.

• Display the state of a process interrupted by a signal.

• Identify the procedure containing a specified code address.

This use provides a service similar to that of ADDRTOPROCNAME, generalized to
accommodate addresses in accelerated code and in native code.

For additional details and examples, see HIST_FORMAT_ Procedure.

Syntax for C Programmers

#include <histry.h>

short HIST_INIT_ (NSK_histWorkspace *workspace
 ,const uint32 version
 ,const uint16 options
 ,const void *context);

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-27

HIST_INIT_ Procedure

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the operation:

0 HIST_OK

The procedure terminated normally.

1 HIST_DONE

The procedure has reached the base of the stack trace.

-3 HIST_BAD_VERSION

An invalid value was specified for the version parameter.

-4 HIST_BAD_OPTION

An invalid value was specified for the options parameter. An undefined bit
was set.

-5 HIST_BAD_CONTEXT

A null value was specified for the context parameter. The context
parameter must contain an address.

-6 HIST_NOT_IMPLEMENTED

A specified options bit is defined but not implemented.

-7 HIST_INIT_ERROR

An error occurred during an attempt to initialize the stack trace.

-8 HIST_ERROR

The stack tracing mechanism failed while attempting to trace back to the
calling procedure.

-11 HIST_MISSING_HOOK

This error is not returned in the D40 RVU.

?SOURCE $SYSTEM.SYSTEM.HHISTRY

error := HIST_INIT_ (workspace !i,o
 ,version !i
 ,options !i
 ,context); !i

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-28

HIST_INIT_ Procedure

workspace input, output

INT .EXT:ref:(HISTWORKSPACE_TEMPLATE)

identifies the workspace area to be initialized by this procedure with information
that establishes how the stack trace will proceed. This area must be allocated
before you call this procedure. The address of this workspace area is passed to
subsequent calls to the HIST_FORMAT_ and HIST_GETPRIOR_ procedures.

version input

INT(32):value

identifies the version of the structure and literal declarations used to compile the
caller. HistVersion1 is a literal value defined in HHISTRY to identify the initial
version.

options input

INT:value

controls the initialization process and subsequent trace.

The type of context must be specified as one of these:

<13:15> =0 HO_Init_Here

starts a trace of the current stack with the context of this call to
HIST_INIT_. The context parameter is ignored in this case.

 1 HO_Init_uContext

uses the uContext structure whose address is passed in the
context parameter. A uContext structure is a structure of type
UCONTEXT_T that is passed to a signal handler installed by the
SIGACTION_INIT_ or SIGACTION_SUPPLANT_ procedure.
HIST_INIT_ initializes the trace at the point where the signal was
generated. See “Protected contexts” under “Considerations” for
more information.

 2 HO_Init_JmpBuf

uses the context saved in a native jump buffer to start tracing at
the point of a call to the SETJMP_ or SIGSETJMP_ procedure that
filled the jump buffer. The address of the buffer is passed to
HIST_INIT_ in the context parameter.

 3 HO_Init_31Regs

is reserved for HP use.

 4 HO_Init_Address

uses a 32-bit native address for the context. This address is
passed to the HIST_INIT_ procedure in the context parameter.

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-29

HIST_INIT_ Procedure

A subsequent call to HIST_FORMAT_ returns context for that
location. The address must point to a code location, but that
location can contain TNS instructions or RISC instructions. To find
out what is at a TNS address, you must first convert the TNS
address into a RISC address. For details on address translation,
see the System Description Manual.

 10 HO_Init_FuncPtr

uses a 32-bit function pointer for the context. In the TNS/E
environment, the function pointer is an Official Function Descriptor
(OFD); a two-element array consisting of a 64-bit code address
and a 64-bit GP address. The OFD is passed to the HIST_INIT_
procedure in the context parameter. A subsequent call to
HIST_FORMAT_ returns the context for the code address that was
passed through the OFD. In the TNS/R environment, the function
pointer is a 32-bit native address that is also passed to the
HIST_INIT_ procedure in the context parameter. When you
specify the HO_Init_FuncPtr option in the TNS/R environment, it is
equivalent to specifying the HO_Init_Address option. For more
information on the HO_Init_Address option, see the description
above. Note that a subsequent call to HIST_FORMAT_ always
returns the correct context for the code location. This is true
regardless of whether an OFD (TNS/E environment) or a 32-bit
native address (TNS/R environment) is passed to the HIST_INIT_
procedure in the context parameter specified with the
HO_Init_FuncPtr option. The HO_Init_FuncPtr option is not
supported from the TNS environment.

In addition, the displayed context is affected when any combination of these bits
are set to 1:

<11> HO_NoSuppress

enables the display of transition frames, including the shells by
which TNS code calls native procedures, the system procedure
that calls a signal handler, and some transitions within low-level
system software. By default, transition frames are not displayed.

<10> HO_ShowProtected

enables the display of protected context when a signal is
generated within protected code. If a signal is generated within
protected code, such as in a procedure running privileged, the
context at that site is preserved in the uContext structure passed
to the signal handler, but it is not displayed unless this option is
set.

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-30

HIST_INIT_ Procedure

<7> HO_OneLine

modifies some formatting options to optimize the display of
information in a single output line. It does not, however, ensure
that all the information fits in one line.

context input

EXTADDR:value

designates the procedure context for display. The type of context whose address
appears in context must match the context type specified in the options
parameter bits <13:15> (the HO_Init_* value) as follows:

Considerations

• Suppression of a stack frame by HIST_INIT_ or HIST_PRIOR_ is determined by a
bit mask in the field workspace.FrameSuppress. The HIST_INIT_ procedure
initializes the field to a default set of transition frames, or to zero (0) if the
HO_NoSuppress option of HIST_INIT_ is specified in the call to HIST_INIT_.

HIST_INIT_ examines the FrameSuppress field at least once after initializing it.
To prevent suppression of initial frames, you need to set the HO_NoSuppress
option.

• On return from the HIST_INIT_ procedure, the designated procedure context is
ready for examination and display. If that context is suppressed (and the
HO_NoSuppress option is not specified), then the next previous unsuppressed
context is available. If no unsuppressed context is available, HIST_INIT_ returns
an error.

• Stack tracing

The HIST_INIT_ procedure is used with the HIST_FORMAT_ and
HIST_GETPRIOR_ procedures to perform stack tracing. HIST_INIT_ is called first
to initialize a workspace and determine the context to be displayed. A double loop
of HIST_FORMAT_ and HIST_GETPRIOR_ procedure calls then displays a history
of context transitions: HIST_FORMAT_ provides the text for display, and
HIST_PRIOR_ establishes the next context (for the previous procedure).

The HO_Init_Address option of HIST_INIT_ does not start a stack trace. It
generates only one context. However, the same loop of calls still works; the loop
simply terminates after one iteration. When this option is specified, the only
effective workspace.FormatSelect options are HF_Name, HF_Parent,

If options.<13:15> specifies... Then context must point to...

HO_Init_Here (0) Anything (it is ignored)

HO_Init_uContext (1) A uContext structure

HO_Init_JmpBuf (2) A jump buffer

HO_Init_Address (4) A code address

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-31

INCREMENTEDIT Procedure

HF_Offset, or HF_CodeSpace. These are all selected by default. The user can
assign a subset. For a description of workspace.FormatSelect options, see
HIST_FORMAT_ Procedure.

• Protected contexts

When a run-time event that requires immediate attention, such as a hardware trap,
causes a signal to be generated, the uContext structure presented to the signal
handler contains either one or two contexts. The primary context is a complete
record of the procedure context at the site of the event. If that site was in protected
code, a secondary context contains part of the state at the site of transition into
protected code.

For example, if a user program invokes a CALLABLE procedure (switching into
privileged mode) and an attempt to access an invalid address occurs within the
privileged code, the primary context is that of the invalid operation and the
secondary context is that of the user procedure at the site of the call to the
CALLABLE procedure.

The secondary context is limited to those registers that, by convention, are saved
and restored by all subsequent callers. Registers used as temporary values
(including procedure parameters and return values) are not available.

For a sample display of primary and secondary context, see HIST_FORMAT_
Procedure.

• TNS process support

The HIST_INIT_ procedure can be called from a TNS process. However,
HO_Init_Here and HO_Init_Address are the only supported context option for TNS
callers. For native callers, the trace begins with the caller of HIST_INIT_, because
the activation records for HIST_INIT_ and its shell ($HIST_INIT_) are suppressed,
regardless of the setting of the HO_NoSuppress option.

TNS stack frames can also be encountered if a trace is begun within native
procedures and proceeds through TNS frames in a TNS process.

Example
error := HIST_INIT_ (hws, vers, options, context);

INCREMENTEDIT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Example
Related Programming Manual

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-32

INCREMENTEDIT Procedure

Summary
The INCREMENTEDIT procedure sets the increment to be added to successive line
numbers for lines that will be added to an EDIT file without explicitly specified line
numbers. Each time a file is opened by OPENEDIT or OPENEDIT_, the increment is
reset to 1 (which would be specified in this procedure as 1000).

INCREMENTEDIT is an IOEdit procedure and can only be used with files that have
been opened by OPENEDIT or OPENEDIT_.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

Syntax for TAL Programmers

Parameters

filenum input

INT:value

specifies the file number of the open file for which the line number increment is to
be set.

increment input

INT(32):value

specifies the increment to be added to successive line numbers for lines that will
be added to the file without explicitly specified line numbers. The value should be
specified as 1000 times the line number increment value. If this parameter is
omitted, the value 1000 is used. The possible EDIT line numbers are 0, 0.001,
0.002, ... 99999.999.

#include <cextdecs(INCREMENTEDIT)>

short INCREMENTEDIT (short filenum
 ,[__int32_t increment]);

CALL INCREMENTEDIT (filenum ! i
 ,[increment]); ! i

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-33

INITIALIZEEDIT Procedure

Example
In these example, INCREMENTEDIT sets the line number increment value
to 10.

INT(32) increment := 10000D;
 .
 .
CALL INCREMENTEDIT (filenumber, increment);

Related Programming Manual
For programming information about the INCREMENTEDIT procedure, see the
Guardian Programmer’s Guide.

INITIALIZEEDIT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Nowait Considerations
Example
Related Programming Manual

Summary
The INITIALIZEEDIT procedure allocates the EDIT file segment (EFS) to be used by
IOEdit and initializes the data structures that it contains. If your program uses IOEdit,
this procedure is called automatically by the first IOEdit procedure that your program
calls. It is necessary to call INITIALIZEEDIT explicitly only when your program needs
to specify a value for one or more of its parameters.

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-34

INITIALIZEEDIT Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation.

swapvol input

INT .EXT:ref:4

is a four-word array containing the name of the disk volume in which the EFS is to
be allocated. If this parameter is omitted or if INITIALIZEEDIT is unable to allocate
the EFS on the specified device, the name of the caller’s swap volume is used.
(The swap volume of the calling program is normally the same as its object file
volume, unless the SWAP option of the TACL RUN command was invoked.) If the
EFS cannot be allocated on the caller’s swap volume, INTIALIZEEDIT then tries
every disk volume in the system until it succeeds. For a description of what occurs
if INITIALIZEEDIT is unable to allocate the EFS on any disk volume in the system,
see the errorabend parameter.

maxfiles input

INT:value

specifies the maximum number of files that IOEdit will be able to have open at one
time. If this parameter is omitted or if a value less than 30 is specified, 30 is used.
If a value greater than 255 is specified, 255 is used.

#include <cextdecs(INITIALIZEEDIT)>

short INITIALIZEEDIT ([short *swapvol]
 ,[short maxfiles]
 ,[short errorabend]
 ,[short nowait-option]);

error := INITIALIZEEDIT ([swapvol] ! i
 ,[maxfiles]) ! i
 ,[errorabend] ! i
 ,[nowait-option]); ! i

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-35

INITIALIZEEDIT Procedure

errorabend input

INT:value

specifies the action that INITIALIZEEDIT is to take if it is unable to allocate the
EFS on any disk volume. If errorabend is omitted or if 0 is specified, failure to
allocate the EFS causes INITIALIZEEDIT to return an error 33 (unable to obtain
I/O segment space); otherwise, it writes a message to the caller’s home terminal
and terminates abnormally. When INITIALIZEEDIT is called by another IOEdit
procedure, -1 is specified for this parameter.

nowait-option input

INT:value

specifies whether to use double buffering for files opened for nowait I/O, as follows:

0 Don’t use double buffering on any file.

1 Use double buffering on all files that the user opens for nowait I/O before
calling OPENEDIT_ (or OPENEDIT).

2 Use double buffering on all files opened for nowait I/O, whether by the user
or by OPENEDIT_ (or OPENEDIT).

3 Has the same effect as a value of 2.

If this parameter is omitted or if its value is none of the above, 0 is used.

For additional information, see Nowait Considerations.

Nowait Considerations
IOEdit always returns to the caller with the operation finished. In this sense, it does not
perform nowait I/O. Note that for write operations, the operation is considered finished
when the data is in the IOEdit buffer and might not yet have been passed to the file
system. The nowait-option parameter controls how this buffering is done.

• If nowait-option is set to 0 or is left unspecified, and nowait I/O was specified
when the file was opened, IOEdit calls AWAITIOX after every operation. You do
not need to call the COMPLETEIOEDIT procedure.

• If nowait-option is set to 1 and IOEdit determines that the file is being
accessed sequentially, IOEdit reads ahead or writes behind when it performs
nowait I/O on the buffers for files that are opened for nowait access.

• If nowait-option is set to 2 or 3 and IOEdit determines that the file is being
accessed sequentially, IOEdit reads ahead and writes behind for all files, not just
those opened for nowait access.

• If nowait-option is set to 1, 2, or 3 and the calling process calls AWAITIO[X]
with the file number set to -1 (any file), you must call COMPLETEIOEDIT to let

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-36

INITIALIZER Procedure

IOEdit know when the nowait operation on the buffer has finished, even if the
process is accessing nonedit files nowait.

Example
In this example, a call to INITIALIZEEDIT specifies that the EFS be allocated on
$BIGVOL, and that if the EFS cannot be allocated on $BIGVOL or any other disk
volume on the system, INITIALIZEEDIT should display an error message to the home
terminal and terminate abnormally.

INT .EXT swapvol[0:3] := [“$BIGVOL”];
INT errorabend := -1;
 .
 .
error := INITIALIZEEDIT (swapvol, , errorabend);

Related Programming Manual
For programming information about the INITIALIZEEDIT procedure, see the Guardian
Programmer’s Guide.

INITIALIZER Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary
The INITIALIZER procedure is used to read the startup message and, optionally, to
request receipt of assign and param messages sent by the starting process (which is
often a TACL process). The INITIALIZER procedure optionally initializes file control
blocks (FCBs) with the information read from the startup and assign messages.

Syntax for C Programmers

• Do not call INITIALIZER from a Guardian or OSS C program. You can instead
obtain the startup information from the C run-time. For information on how to
obtain the startup information from a Guardian C program, see the C/C++
Programmer’s Guide.

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-37

INITIALIZER Procedure

Syntax for TAL Programmers

Parameters

status returned value

INT

returns one of these values:

0 This is a primary process (of a potential process pair).

-1 This is a backup process, CHECKMONITOR returned (indicating that the
primary failed before establishing a takeover point), and bit 12 of flags is 1.

rucb input

INT:ref:*

is a table containing pointers to FCBs (see “Considerations”).

passthru output

INT:ref:*

is an array where the startupproc, paramsproc, and assignproc procedures
can return information to or receive information from the caller of INITIALIZER.

startupproc, paramsproc, assignproc input

are application-supplied message-processing procedures that INITIALIZER calls
when it receives a startup message, param message, or assign message,
respectively.

These procedures must be of the form:

PROC name ([rucb]
 ,[passthru]
 ,[message]
 ,[msglen]
 ,[match])
 VARIABLE;

status := INITIALIZER ([rucb] ! i
 ,[passthru] ! o
 ,[startupproc] ! i
 ,[paramsproc] ! i
 ,[assignproc] ! i
 ,[flags] ! i
 ,[timelimit] ! i
 ,[num^fcbs] ! i
 ,[fcb^array]); ! i

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-38

INITIALIZER Procedure

rucb

INT:ref:*

is the run-unit control block described in the Guardian Programmer’s Guide.

passthru

INT:ref:*

is an array where the procedure can save information for or retrieve
information from the caller of INITIALIZER.

message

INT:ref:*

is the startup message, the param message, or one of the assign messages
received. The maximum length of a message is 1028 bytes (including the
trailing null characters).

msglen

INT:value

is the length, in bytes, of the message.

match

INT:value

is the match count. For each assign message, the FCBs (if rucb is passed)
are searched for a logical file name matching the logical file name contained in
the assign message. If a match is found, the information from the assign
message is put into the FCBs, and the match count is incremented.

If this is not an assign message or if the rucb parameter is not passed, the
match count is always 0.

flags input

INT:value

contains several fields that determine actions to be taken by INITIALIZER, as
follows:

<0:10> Must be 0

<11> Request assign and param messages? 0 = yes, 1 = no

<12> Abnormally end if backup takeover occurs before first primary stack
checkpoint? 0 = yes, 1 = no

<13> If 1, CALL MONITORNET (-1)

<14> If 1, CALL MONITORCPUS (-1)

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-39

INITIALIZER Procedure

<15> If 1 and the caller is a TNS Guardian process, CALL ARMTRAP (-1,-1);

If 1 and the caller is a native Guardian process, CALL
SIGACTION_INIT_ (SIG_ABORT)

The default value is 0.

timelimit input

INT(32):value

specifies how long INITIALIZER is to wait on $RECEIVE, as follows:

>= 0D timelimit specifies the maximum amount of time (in units of 0.01
second) that INITIALIZER is to wait on $RECEIVE.

= -1D INITIALIZER is to wait indefinitely.

< -1D INITIALIZER calls ABEND.

If this parameter is omitted, the default value 6000D (60 seconds) is used.

num^fcbs input

INT:value

specifies the number of FCBs passed in the fcb^array parameter. This
parameter is required for native mode processes that require FCB processing by
INITIALIZER. It is optional for TNS processes.

fcb^array input

WADDR:ref:*

is an array of addresses, each of which points to an FCB to be modified by
INITIALIZER. This parameter is required for native mode processes that require
FCB processing by INITIALIZER. It is optional for TNS processes.

Considerations

• $RECEIVE and the INITIALIZER procedure

The INITIALIZER procedure provides a way of receiving startup, assign, and
param messages without concern for details of the $RECEIVE protocol. (For
information about $RECEIVE, see the Guardian Programmer’s Guide.)
INITIALIZER opens and obtains messages from $RECEIVE; calls the user-
supplied procedure, passing the messages as a parameter to the procedure; and
closes $RECEIVE.

The INITIALIZER procedure waits on $RECEIVE for the amount of time specified
by the timelimit parameter. If a startup message is not received within that
time, or if any other error is detected on $RECEIVE, INITIALIZER calls ABEND.
Except in rare cases, the default timelimit value (60 seconds) is appropriate
and should be used.

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-40

INITIALIZER Procedure

• Sequential I/O (SIO) procedures and FCBs

If the rucb parameter is supplied, INITIALIZER modifies FCBs based on the
information supplied by the startup and assign messages. These FCBs are in the
form expected by the sequential I/O procedures and can be used with the SIO
procedures without change. If the application does not use the SIO procedures to
access the files, but needs to use them to get startup information, the information
recovered from the assign messages can be obtained from the FCBs by using the
CHECK^FILE procedure. For additional about SIO procedures, see the Guardian
Programmer’s Guide.

• Assign and param messages

Except when invoked by the backup process of a process pair, INITIALIZER reads
the startup message, then optionally requests assign and param messages (see
flags.<11>. For each assign message, the FCBs (if rucb is passed) are
searched for a logical file name matching the logical file name contained in the
assign message. If a match is found, the information from the assign message is
put into the file’s FCBs, and the match count is incremented.

For proper matching of names, the “progname” and “filename” fields of the assign
message must be blank-padded.

Note that you can perform your own processing of these messages using
startupproc, assignproc, and paramproc irrespective of whether you use
FCBs.

• Calls to ABEND

INITIALIZER calls the ABEND procedure for any errors it detects. If INITIALIZER
does call ABEND, text describing the cause of the call is passed in the process
deletion (ABEND) system message. The possible causes are:

• Timeout reading $RECEIVE.

• Invalid value specified for the timelimit parameter.

• Unable to open $RECEIVE.

• Unable to obtain process handle.

• Unexpected message from the creator process.

• In the backup process of a process pair, CHECKMONITOR returned and bit 12
of flags was equal to zero.

• The number of FCBs specified in ALLOCATE^CBS, ALLOCATE^CBS^D00, or
num^fcbs is incorrect, or the format of an FCB is invalid.

For further information about the text that is passed in the process deletion
(ABEND) system message, see “INITIALIZER Errors” in the Guardian Procedure
Errors and Messages Manual.

• FCBs and native mode

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-41

INTERPRETINTERVAL Procedure

In native mode, you must use the num^fcbs and fcb^array parameters to
explicitly reference any FCBs that INITIALIZER modifies, for example, using file
names supplied in the Startup, ASSIGN, or PARAM messages.

Related Programming Manual
For programming information about the INITIALIZER utility procedure, see the
Guardian Programmer’s Guide.

INTERPRETINTERVAL Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example
Related Programming Manual

Summary
The INTERPRETINTERVAL procedure takes a fixed variable (quad) containing a value
representing a number of microseconds and converts it into a combination of days,
hours, minutes, seconds, milliseconds, and microseconds. All output parameters are
optional.

This procedure is similar to CONVERTPROCESSTIME except that
INTERPRETINTERVAL places no limit on the timestamp value.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

#include <cextdecs(INTERPRETINTERVAL)>

__int32_t INTERPRETINTERVAL (long long time
 ,[short _near *hours]
 ,[short _near *minutes]
 ,[short _near *seconds]
 ,[short _near *milsecs]
 ,[short _near *microsecs]);

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-42

INTERPRETINTERVAL Procedure

Syntax for TAL Programmers

Parameters

days returned value

INT(32)

returns either the number of days in the interval of time (0D or greater), or an error
indication of -1D if time is negative.

time input

FIXED:value

specifies the 4-word fixed time interval.

hours output

INT:ref:1

returns the number of hours in the interval of time (0 or greater).

minutes output

INT:ref:1

returns the number of minutes in the interval of time (0 or greater).

seconds output

INT:ref:1

returns the number of seconds in the interval of time (0 or greater).

milsecs output

INT:ref:1

returns the number of milliseconds in the interval of time (0 or greater).

microsecs output

INT:ref:1

returns the number of microseconds in the interval of time (0 or greater).

days := INTERPRETINTERVAL (time ! i
 ,[hours] ! o
 ,[minutes] ! o
 ,[seconds] ! o
 ,[milsecs] ! o
 ,[microsecs]); ! o

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-43

INTERPRETJULIANDAYNO Procedure

Example
FIXED START, FINISH;
INT(32) DAYS;
INT HRS;
INT MIN;
INT SEC;
 .
 .
DAYS := INTERPRETINTERVAL (FINISH - START, HRS, MIN, SEC);
IF DAYS < 0D THEN ...

Related Programming Manual
For programming information about the INTERPRETINTERVAL procedure, see the
Guardian Programmer’s Guide.

INTERPRETJULIANDAYNO Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example
Related Programming Manual

Summary
The INTERPRETJULIANDAYNO procedure converts a Julian day number to the year,
month, and day.

The Julian calendar is the integral number of days since January 1, 4713 B.C. The
formal definition of the Julian day states that it starts at 12:00 (noon), Greenwich mean
time (GMT).

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

#include <cextdecs(INTERPRETJULIANDAYNO)>

void INTERPRETJULIANDAYNO (__int32_t julian-day-num
 ,short _near *year
 ,short _near *month
 ,short _near *day);

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-44

INTERPRETJULIANDAYNO Procedure

Syntax for TAL Programmers

Parameters

julian-day-num input

INT(32):value

is the Julian day number to be converted. The julian-day-num must not be
less than 1,721,120 (year 0, month 3, day 1) nor greater than 3,182,395. Values
outside this range are invalid and result in -1 being returned in the year
parameter.

year output

INT:ref:1

returns the Gregorian year (for example, 1984, 1985, and so forth).

month output

INT:ref:1

returns the Gregorian month (1-12).

day output

INT:ref:1

returns the Gregorian day of the month (1-31).

Example
CALL INTERPRETJULIANDAYNO (JULIANDAYNO, YR, MN, DAY);

Related Programming Manual
For programming information about the INTERPRETJULIANDAYNO procedure, see
the Guardian Programmer’s Guide.

CALL INTERPRETJULIANDAYNO (julian-day-num ! i
 ,year ! o
 ,month ! o
 ,day); ! o

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-45

INTERPRETTIMESTAMP Procedure

INTERPRETTIMESTAMP Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The INTERPRETTIMESTAMP procedure converts a 64-bit Julian timestamp into a
Gregorian (the common civil calendar) date and time of day.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

Syntax for TAL Programmers

Parameters

ret-date-time returned value

INT(32)

returns the 32-bit Julian day number. A value of -1D is returned if the supplied
Julian timestamp is out of range (see “Considerations”).

julian-timestamp input

FIXED:value

is a 64-bit Julian timestamp to be converted.

#include <cextdecs(INTERPRETTIMESTAMP)>

__int32_t INTERPRETTIMESTAMP (long long julian-timestamp
 ,short _near *date-and-time);

ret-date-time := INTERPRETTIMESTAMP (julian-timestamp ! i
 ,date-and-time); ! o

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-46

JULIANTIMESTAMP Procedure

date-and-time output

INT:ref:8

returns an array containing the date and time of day. A value of -1 is returned in
word [0] if the supplied Julian timestamp is out of range (see “Considerations”).
This array has this form:

[0] The Gregorian year (1984, 1985, ...)
[1] The Gregorian month (1-12)
[2] The Gregorian day of month (1-31)
[3] The hour of the day (0-23)
[4] The minute of the hour (0-59)
[5] The second of the minute (0-59)
[6] The millisecond of the second (0-999)
[7] The microsecond of the millisecond (0-999)

Considerations

• INTERPRETTIMESTAMP checks that the Julian timestamp corresponds to a time
in the range 1 January 0001 00:00 through 31 December 10000 23:59:59.999999.
If the supplied value is out of range, the procedure returns a value of -1D in ret-
date-time and -1 in date-and-time[0].

• For additional information on Julian timestamps, see JULIANTIMESTAMP
Procedure.

Example
RETURN^DATE^TIME := INTERPRETTIMESTAMP (JULIAN^TIME,
 DATE^TIME);

Related Programming Manual
For programming information about the INTERPRETTIMESTAMP procedure, see the
Guardian Programmer’s Guide.

JULIANTIMESTAMP Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-47

JULIANTIMESTAMP Procedure

Summary
The JULIANTIMESTAMP procedure returns either a four-word,
microsecond-resolution, Julian-date-based timestamp or the number of microseconds
elapsed since the last system load.

The Julian calendar is the integral number of days since January 1, 4713 B.C. The
formal definition of the Julian day states that it starts at 12:00 (noon), Greenwich mean
time (GMT).

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

retval returned value

FIXED

is a value representing the number of microseconds since 12:00 (noon) GMT
(Julian proleptic calender) January 1, 4713 B.C., unless type = 3. To convert this
retval to a more usable form, use the INTERPRETTIMESTAMP procedure.

If type = 3, the value returned is the number of microseconds since the last
system load. To convert this retval to a more usable form, use the
INTERPRETINTERVAL procedure.

type input

INT:value

is one of these values specifying the type of time requested:

0 Current GMT
1 System-load GMT
2 SYSGEN GMT
3 Microseconds since system load

#include <cextdecs(JULIANTIMESTAMP)>

long long JULIANTIMESTAMP ([short type]
 ,[short _near *tuid]
 ,[short _near *error]
 ,[short node]);

retval := JULIANTIMESTAMP ([type] ! i
 ,[tuid] ! o
 ,[error] ! o
 ,[node]); ! i

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-48

JULIANTIMESTAMP Procedure

If type is not supplied, then type 0 is used. If type is out of range (that is, not 0,
1, 2, or 3), then a retval of -1F and an error of -1 are returned.

tuid output

INT:ref:1

is a time-update ID. This is used when calling the SETSYSTEMCLOCK procedure
with relative GMT (see SETSYSTEMCLOCK Procedure).

error output

INT:ref:1

is returned only from a remote system with one exception: a value of -1 is returned
when type is out of range.

node input

INT:value

is the system number of the remote node from which you want the timestamp. A
value of -1 indicates that this parameter is not present and that the current node
should be used.

Considerations

• System message -10 (SETTIME) allows processes to determine the magnitude of
and the reason for a time change. For descriptions of interprocess system
messages sent to processes, see the Guardian Procedure Errors and Messages
Manual.

• A 64-bit Julian timestamp is based on the Julian Date. It is a quantity equal to the
number of microseconds since 12:00 (noon) Greenwich mean time (Julian
proleptic calendar) January 1, 4713 B.C. This timestamp can represent either
Greenwich mean time, local standard time, or local civil time. There is no way to
examine a Julian timestamp and determine which of the three times it represents.

Procedures that work with a 64-bit Julian timestamp are COMPUTETIMESTAMP,
CONVERTTIMESTAMP, INTERPRETTIMESTAMP, JULIANTIMESTAMP, and
SETSYSTEMCLOCK. Where possible, it is recommended that applications use
these procedures rather than the procedures that work with 48-bit timestamps.

• A 48-bit timestamp is a quantity equal to the number of 10-millisecond units since
00:00, 31 December 1974. The 48-bit timestamp always represents local civil time
(wall clock time); consequently, this value is affected by standard time/daylight
saving time changes and time zone differences.

Procedures that work with a 48-bit timestamp are: CONTIME, TIME, and
TIMESTAMP.

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-49

JULIANTIMESTAMP Procedure

• Process creation time is initialized by calling TIMESTAMP, which returns the local
civil time in centiseconds (0.01 second = 10 milliseconds) since midnight (00:00)
on 31 December 1974, in an array of three words. Only the two low-order words
are saved in the process control block (PCB); this is sufficient to make the
unnamed process ID unique.

• The RCLK instruction ($READCLOCK in TAL) is another source of timestamps. It
returns a 64-bit timestamp representing the local civil time in microseconds since
midnight (00:00) on 31 December 1974. Note that this is not a Julian timestamp
and therefore it is not transferable across HP systems. Applications should avoid
using the RCLK instruction except where necessary.

• Process timing uses 64-bit elapsed time counters with microsecond resolution;
these are also not Julian timestamps.

• There is no way to generalize about internal timing using 64-bit Julian timestamps
or 48-bit timestamps. Each section of the operating system manages time using
the method most appropriate for its application.

• All time and calendar units in this discussion are defined in The Astronomical
Almanac published annually by the U.S. Naval Observatory and the Royal
Greenwich Observatory.

• The value returned by JULIANTIMESTAMP(3), a count of the number of
microseconds since COLDLOAD of this processor is not affected by SETTIME.
Therefore the calculation:
JULIANTIMESTAMP(0) - JULIANTIMESTAMP(1)
(current time) - (cold load time)
will not always match what is returned by JULIANTIMESTAMP(3).

Example
MY^TIME := JULIANTIMESTAMP; ! returns the current GMT

Related Programming Manual
For programming information about the JULIANTIMESTAMP procedure, see the
Guardian Programmer’s Guide.

Note. Because processor clocks are not synchronized to the nearest microsecond, values
obtained from different processors might not agree.

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-50

KEYPOSITION[X] Procedures
(Superseded by FILE_SETKEY_ Procedure)

KEYPOSITION[X] Procedures
(Superseded by FILE_SETKEY_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Example
Related Programming Manual

Summary
The KEYPOSITION[X] procedures are used to position by primary or alternate key
within a structured file. However, positioning by primary key is usually done within key-
sequenced files only when using this procedure; the POSITION procedure is more
commonly used for positioning by primary key within relative and entry-sequenced
files.

KEYPOSITION sets the current position, access path, and positioning mode for the
specified file. The current position, access path, and positioning mode define a subset
of the file for subsequent access.

KEYPOSITIONX supports positioning to a primary or alternate key when the key value
resides in a buffer in an extended segment. Only the key-value parameter is
different for KEYPOSITIONX; all other parameters are the same as for KEYPOSITION.

Syntax for C Programmers

• The function value returned by KEYPOSITION[X], which indicates the condition
code, can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

#include <cextdecs(KEYPOSITION)>

_cc_status KEYPOSITION (short filenum
 ,char *key-value
 ,[short key-specifier]
 ,[short length-word]
 ,[short positioning-mode]);

#include <cextdecs(KEYPOSITIONX)>

_cc_status KEYPOSITIONX (short filenum
 ,const char *key-value
 ,[short key-specifier]
 ,[short length-word]
 ,[short positioning-mode]);

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-51

KEYPOSITION[X] Procedures
(Superseded by FILE_SETKEY_ Procedure)

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is the number of an open file where the positioning is to take place.

key-value input

STRING:ref:* (Use with KEYPOSITION)
STRING .EXT:ref:* (Use with KEYPOSITIONX)

is the address of the buffer in the stack containing the key value (KEYPOSITION)
or the address of the buffer containing the key value (KEYPOSITIONX).

The key-value may be in the user’s stack or, if KEYPOSITIONX is used, in an
extended data segment. The key-value may not be in the user’s code space.

For KEYPOSITIONX, the key-value address must be relative; it cannot be an
absolute address. If the key-value is in an extended segment, the extended
segment must be in use at the time of the call.

key-specifier input

INT:value

designates the key field to be used as the access path for the file:

key-specifier 0, or if omitted, means use the file’s primary key as the
access path.

predefined key specifier for an alternate-key field, means
use that field as the access path.

CALL KEYPOSITION[X] (filenum ! i
 ,key-value ! i
 ,[key-specifier] ! i
 ,[length-word] ! i
 ,[positioning-mode]); ! i

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-52

KEYPOSITION[X] Procedures
(Superseded by FILE_SETKEY_ Procedure)

length-word input

INT:value

contains two values:

<0:7> compare-length (left byte) specifies, in bytes, the length to use for
key comparisons made to decide when to stop returning records under
the generic or exact positioning modes.

<8:15> key-length (right byte) specifies how many bytes of the key-value
are to be searched for in the file to find the initial position.

• If length-word is omitted, compare-length and key-length are defined to
be the length of the key (key-specifier) defined when the file was created.
That is, if key-specifier is omitted or 0, compare-length and key-length
are the length of the primary key. If key-specifier is the key specifier for an
alternate key, the length of the alternate-key field is used.

• If length-word is 0, compare-length and key-length are also 0. This
results in positioning to the beginning of the file. (Although key-value is still a
required parameter, its value is ignored when length-word = 0.)

• If key-length = 0 and compare-length <> 0, file-system error 21 is returned
from KEYPOSITION.

• If key-length <> 0 and compare-length = 0, compare-length is defined to
be the minimum of key-length or the key length defined when the file was
created.

• If key-length <> 0 and compare-length <> 0, the supplied values are used.

See “KEYPOSITION and file-system Error 21” under ”Considerations.”

positioning-mode input

INT:value

<0> if 1, and if a record with exactly the key-length and key-value
specified is found, the record is skipped. If the key-specifier
indicates a non-unique alternate key, the record is skipped only if both
its alternate key and its primary key match the corresponding portions
of the specified key-value (which should be an alternate key value
concatenated with a primary key value) for key-length bytes
(which should be the sum of the alternate and primary key lengths).
This option is not supported for positioning by primary key in relative or
entry-sequenced files.

<1> if 1, specifies that subsequent calls to READ or READLOCK return
records in descending key order (the file is read in reverse).

<2> if 1, and if positioning-mode.<1> = 1 (read-reverse), specifies that
positioning is performed to the last record in the set of records

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-53

KEYPOSITION[X] Procedures
(Superseded by FILE_SETKEY_ Procedure)

matching the key criteria. If positioning-mode.<1> = 0, this bit is
ignored.

<14:15> indicates the type of key search to perform and the subset of records
obtained.

0 approximate

Positioning occurs to the first record whose key field, as
designated by the key-specifier, contains a value equal to or
greater than key-value for key-length bytes (equal to or less
than when read-reverse is used).

1 generic

Positioning starts at the first record whose key field, as designated
by the key-specifier, contains a value equal to or greater than
key-value for key-length bytes (equal to or less than when
read-reverse is used). Records will be accessed until one is
reached whose key field does not start with a value equal to key-
value for compare-length bytes.

2 exact

Positioning occurs to the first record whose key field, as
designated by the key-specifier, contains a value of exactly
compare-length bytes and is equal to key-value.

If positioning-mode is omitted, 0 is used.

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that the KEYPOSITION was successful.

> (CCG) indicates that this is not a structured disk file.

Considerations

• The calling application process is not suspended because of a call to
KEYPOSITION.

• The KEYPOSITION and KEYPOSITIONX procedures expect primary-key values
for relative and entry-sequenced files to be in 4-byte form. Thus, these procedures
cannot be used with format 2 files (which require keys in 8-byte form). If an attempt
is made to use these procedures with format 2 files, error 581 is returned. See the
FILE_SETKEY_ Procedure for information on how to perform the equivalent task
with format 2 files.

• Error if incomplete nowait operations pending

A call to the KEYPOSITION procedure is rejected with an error indication if there
are any incomplete nowait operations pending on the specified file.

• Positioning on duplicate or nonexistent records

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-54

KEYPOSITION[X] Procedures
(Superseded by FILE_SETKEY_ Procedure)

No searching of indexes is done by KEYPOSITION; therefore, a nonexistent or
duplicate record is not reported until a subsequent READ, READUPDATE,
WRITEUPDATE, LOCKREC, READLOCK, READUPDATELOCK, or
WRITEUPDATEUNLOCK is performed.

• KEYPOSITION and disk seeks

KEYPOSITION does not cause the disk heads to be repositioned; the heads are
repositioned when a subsequent I/O call (READ, READUPDATE, WRITE, and so
forth) transfers data.

• Positioning exact

If an exact KEYPOSITION is performed, and a compare-length is specified
which is less than that specified when the file was created, compare-length
must match the variable key length specified when the record is entered into the
file. Otherwise, a subsequent call to READ, READUPDATE, WRITEUPDATE,
LOCKREC, READLOCK, READUPDATELOCK, or WRITEUPDATEUNLOCK is
rejected.

• Current-state indicators after a KEYPOSITION

Current-state indicators following a successful KEYPOSITION are:

current position is that of the record indicated by the key-value, key-
specifier, positioning-mode, and key-length, or the
subsequent record if positioning-mode.<0> is set to l.

positioning mode is from positioning-mode if it is supplied; otherwise, it is
approximate mode.

compare length is determined as follows for generic searches:

IF length-word.<0:7> <> 0
 THEN length-word.<0:7>
ELSE
IF length-word.<8:15> > length of key-specifier
 THEN length of key-specifier
ELSE length-word.<8:15>

• Positioning to the middle of a duplicate alternate key

Positioning with an alternate key is usually done by giving the alternate key value
you want. This always positions the file to the first record of the set of records that
contains duplicates of the specified alternate key value.

To position to an arbitrary record within the set of duplicate records, you can
specify a key-value consisting of the alternate key value concatenated with the
primary key value of the desired record within the set, and specify the key-
length as the sum of the alternate key length and the primary key length (except
for insertion-ordered keys).

• Saving current position

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-55

KEYPOSITION[X] Procedures
(Superseded by FILE_SETKEY_ Procedure)

When positioning by standard (not insertion-ordered) alternate key, you can save
the current file position for later access by concatenating alternate-key value and
primary key values in a temporary buffer. This permits you to return to that position
in a key-sequenced file; for example:

temporary-buffer ':='
 record.altkeyfield FOR $LEN (record.altkeyfield)
 & record.primarykey FOR $LEN (record.primarykey);

Use this to reposition to the same record:

KEYPOSITION (filenum , temporary-buffer
 , key-specifier ,
 $LEN (record.altkeyfield) +
 $LEN (record.primarykey) ,
 positioning-mode);

Use this to reposition to the next record:

KEYPOSITION (filenum , temporary-buffer ,
 key-specifier ,
 $LEN (record.altkeyfield) +
 $LEN (record.primarykey),
 %100000 + positioning-mode);

In either case, if generic positioning is desired, the generic length would be placed
in the upper 8 bits of the length-word parameter.

This method will not work when positioning with an insertion-ordered alternate key,
because the value of the timestamp portion of the alternate key is not contained in
the primary record. However, you can use the SAVEPOSITION and REPOSITION
procedures to save and restore the current position when positioning to an
insertion-ordered alternate (or any other) key is in effect.

• Positioning to the start of a file

To position to the first record of a key-sequenced file, you can use this call to
specify a zero length-word:

INT ZERO := 0;
CALL KEYPOSITION (FILENUM , ZERO ,, ZERO);

• Considerations for Position-to-Last Option

The standard operation of KEYPOSITION is to position to the first record that
satisfies the positioning criteria specified by key-value, key-length, compare-
length, and positioning-mode. When reading a file in reverse order,
however, you might want to position to the last record in the set of records
matching the positioning criteria. Consider these records:

Record Number Key Value

0 AAA

1 ABA

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-56

KEYPOSITION[X] Procedures
(Superseded by FILE_SETKEY_ Procedure)

Following an approximate KEYPOSITION to key-value = “AB”, key-length
= 2, and positioning-mode = read-reverse, a call to READ would return record
number 1 from the set of records shown above. The same call to KEYPOSITION,
but with position-to-last also specified, would result in record number 3 being
returned from READ.

A similar situation arises when you read a key-sequenced file with duplicate
alternate keys. When an alternate-key file allows duplicate alternate keys that are
ordered by primary-key value (the standard ordering method), key-value should
be thought of as having two parts: the alternate-key value and the primary-key
value. You can specify both parts or you can specify the alternate-key value only.
Consider these records:

Following an approximate KEYPOSITION to key-value = “BBB”, key-length =
3, and position-mode = read-reverse, the position would be just before record 1
and after record 0. This position results because, when key-value is specified
as “BBB”, the primary-key part is null (the lowest possible key value). A call to
READ would return record 0. The same call to KEYPOSITION, but with position-
to-last specified, would result in record 2 being returned from READ.

For the primary key of relative and entry-sequenced files, the key-value
parameter to KEYPOSITION is a 4-byte string containing a doubleword record
number value. When read-reverse and approximate positioning are specified,
initial positioning is performed to the first record whose record number is equal to
or less than the record number passed in key-value. Records are returned in
descending record number order from successive calls to READ. The position-to-
last option has no effect (is ignored) for a KEYPOSITION to an exact record
number in a relative or entry-sequenced file.

Positioning to the last record in a file with KEYPOSITION is accomplished by
specifying approximate mode, read-reverse, and position-to-last in the
positioning-mode parameter, and setting key-length to 0. A subsequent call
to READ will return the last record in the file.

• Read Reverse and SAVEPOSITION

2 ABB

3 ABC

4 ACA

Record Number Alternate Key Primary Key

0 AAA 30

1 BBB 10

2 BBB 20

3 CCC 40

Record Number Key Value

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-57

KEYPOSITION[X] Procedures
(Superseded by FILE_SETKEY_ Procedure)

When saving the current position in a relative or entry-sequenced file with no
alternate keys, the SAVEPOSITION procedure requires an additional three words
in the positioning buffer, for a total of seven words when read-reverse
positioning is in effect. If you have programs currently using SAVEPOSITION with
a four-word positioning buffer, please note this change.

• Read-reverse action on current and next record pointers

Following a call to READ when reverse-positioning mode is in effect, the next-
record-pointer contains the record number or address which precedes the
current record number or address.

Following a read of the first record in a file (where current- record-pointer
= 0) with reverse positioning, the next-record- pointer will contain an invalid
record number or address since no previous record exists. A subsequent call to
READ would return an “end-of-file” error, whereas a call to WRITE would return an
“invalid position” error (error 550) since an attempt was made to write beyond the
beginning of the file.

• KEYPOSITION and file-system error 21

If any of these conditions are true, error 21 is returned by KEYPOSITION:

• If the primary file is a key-sequenced file and one of these is true:

• key-specifier is omitted or 0 and key-length is greater than the key
length defined for the primary file.

• compare-length is greater than key-length.

• If the key-specifier is not zero and one of these is true:

• key-length is greater than the sum of length of the alternate-key field
and the length of the primary key of the file.

• key-length is less than or equal to the length of the alternate-key field,
and compare-length is greater than key-length.

• key-length is greater than the length of the alternate-key field and the
primary file is not key-sequenced, and the difference of key-length and
compare-length is less than 4.

• key-length is greater than the length of the alternate-key field and the
primary file is not key-sequenced, and the key-length is less than the
sum of the length of the alternate-key field and the length of the primary
key of the file.

• KEYPOSITIONX error

In addition to the errors returned from KEYPOSITION, error 22 is returned from
KEYPOSITIONX in either of these cases:

• the address of the key-value parameter is extended, but no segment is in
use at the time of the call or the segment in use is invalid.

Guardian Procedure Calls (H-K)

Guardian Procedure Calls Reference Manual—522629-030
7-58

KEYPOSITION[X] Procedures
(Superseded by FILE_SETKEY_ Procedure)

• the address of the key-value parameter is extended, but it is an absolute
address and the caller is not privileged.

• Queue Files

To read a queue file in last-in, first-out order, set positioning-mode <0:2> := 3.
There are no alternate keys for queue files; the key-specifier parameter must
be 0 or omitted.

When using approximate or generic positioning, the compare-length and key-
length parameters should exclude the trailing 8 bytes of the record, because this
field contains a system-generated timestamp. Consequently, length-word is
typically used with queue files.

Example
KEY ':=' "BROWN";
COMPARE^LEN := 5;

CALL KEYPOSITION (INFILE , KEY , , COMPARE^LEN);

Related Programming Manual
For programming information about the KEYPOSITION file-system procedure, see the
Enscribe Programmer’s Guide and the Guardian Programmer’s Guide.

Guardian Procedure Calls Reference Manual—522629-030
8-1

8 Guardian Procedure Calls (L)
This section contains detailed reference information for all user-accessible Guardian
procedure calls beginning with the letter L. Table 8-1 lists all the procedures in this
section.

Table 8-1. Procedures Beginning With the Letter L

LABELEDTAPESUPPORT Procedure

LASTADDR Procedure (Superseded by ADDRESS_DELIMIT_ Procedure)

LASTADDRX Procedure (Superseded by ADDRESS_DELIMIT_ Procedure)

LASTRECEIVE Procedure (Superseded by FILE_GETRECEIVEINFO[L]_ Procedure)

LOCATESYSTEM Procedure (Superseded by NODENAME_TO_NODENUMBER_
Procedure)

LOCKFILE Procedure

LOCKINFO Procedure (Superseded by FILE_GETLOCKINFO_ Procedure)

LOCKREC Procedure

LONGJMP_ Procedure

LOOKUPPROCESSNAME Procedure (Superseded by PROCESS_GETPAIRINFO_
Procedure)

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-2

LABELEDTAPESUPPORT Procedure

LABELEDTAPESUPPORT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Related Programming Manual

Summary
This procedure is callable; it provides a way for nonprivileged programs to determine if
tape label processing is enabled in the system.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

retvalue returned value

INT

1 Tape label processing is enabled.
0 Tape label processing is not enabled.
< 0 The returned value is a file-system error expressed as a negative value

(that is, the returned value is equal to 0 minus the error code value).

sysnum input

INT:value

specifies the system on which the inquiry is to be conducted.

Related Programming Manual
For programming information about the LABELEDTAPESUPPORT procedure, see the
Guardian Programmer’s Guide.

#include <cextdecs(LABELEDTAPESUPPORT)>

short LABELEDTAPESUPPORT ([short sysnum]);

retvalue := LABELEDTAPESUPPORT [(sysnum)] ; ! i

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-3

LASTADDR Procedure
(Superseded by ADDRESS_DELIMIT_ Procedure)

LASTADDR Procedure
(Superseded by ADDRESS_DELIMIT_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters

Summary

LASTADDR (last address) returns the ‘G’[0] relative address of the last word in the
application process’s data area. (To obtain the last extended address available, use
LASTADDRX.)

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

last-addr returned value

INT

returns the ‘G’[0] relative word address of the last word in the application process’s
data area.

Note. This procedure cannot be called by native processes. Although this procedure is
supported for TNS processes, it should not be used for new development.

#include <cextdecs(LASTADDR)>

short LASTADDR ();

last-addr := LASTADDR;

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-4

LASTADDRX Procedure
(Superseded by ADDRESS_DELIMIT_ Procedure)

LASTADDRX Procedure
(Superseded by ADDRESS_DELIMIT_
Procedure)

Summary
Syntax for C Programmers
CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.
Parameters
Example

Summary

LASTADDRX allows user programs to check stack limits or parameter addresses.
LASTADDRX returns the last extended address available in the specified relative
segment. A selectable extended data segment must be currently addressable (that is,
a call to USESEGMENT must have been made for this segment). You can use
LASTADDR with 16-bit addresses and LASTADDRX with 32-bit addresses, so both the
last address and the last extended address are available to your program to check
stack limits or parameter addresses.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

last-addr returned value

INT(32)

Note. This procedure cannot be called by native processes. Although this procedure is
supported for TNS processes, it should not be used for new development.

#include <cextdecs(LASTADDRX)>

__int32_t LASTADDRX ([short seg]);

last-addr := LASTADDRX ([seg]); ! i

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-5

LASTRECEIVE Procedure
(Superseded by FILE_GETRECEIVEINFO[L]_

returns the last valid extended address in the segment indicated by seg. If either
the segment is not allocated, the segment is a flat segment, or there is a parameter
error, a value of -1D is returned.

seg input

INT:value

specifies the relative segment number of the segment of interest. Valid values are:

0 User data

1 If privileged, it is system data; if not, it is user data

2 Current code

3 User code

4-1023 Selectable extended data segment. This value is the segment number
portion (bits <0:14>) of the segment’s address.

If this parameter is omitted, 0 is used.

Example
LITERAL FEBOUNDSERR = 22;
IF ADDR > LASTADDRX ($HIGH(ADDR).<2:14>) THEN
 RETURN FEBOUNDSERR;

LASTRECEIVE Procedure
(Superseded by FILE_GETRECEIVEINFO[L]_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Example

Summary

The LASTRECEIVE procedure is used to obtain the 4-word process ID and the
message tag associated with the last message read from the $RECEIVE file. This

Note. There are additional considerations for privileged callers.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-6

LASTRECEIVE Procedure
(Superseded by FILE_GETRECEIVEINFO[L]_

information is contained in the file’s main-memory resident access control block (ACB).
An application process is not suspended because of a call to LASTRECEIVE.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

process-id output

INT:ref:4

returns the 4-word process ID of the process that sent the last message read
through the $RECEIVE file. If the process ID is of the named form and thus in the
destination control table (DCT), the information returned consists of:

[0:2] $process-name
 [3].<0:3> Reserved
 .<4:7> processor number where the process is executing
 .<8:15> PIN assigned by operating system to identify the process in

the processor

If the process ID is of the unnamed form and thus not in the DCT, the information
returned consists of:

[0:2] creation-time-stamp
 [3].<0:3> Reserved
 .<4:7> processor number where the process is executing
 .<8:15> PIN assigned by operating system to identify the process in

the processor

process-id (continued)

If the process ID is of the network form, the information returned consists of:

[0].<0:7> “\”
[0].<8:15> System number
[1:2] Process name

Note. To ensure that you receive valid information about the last message, call
LASTRECEIVE before you perform another READUPDATE on $RECEIVE. If you received an
error condition on the last message, call FILEINFO or FILE_GETINFO_ to obtain the error
value before you call LASTRECEIVE.

CALL LASTRECEIVE ([process-id] ! o
 ,[message-tag]); ! o

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-7

LASTRECEIVE Procedure
(Superseded by FILE_GETRECEIVEINFO[L]_

[3].<0:3> Reserved
 .<4:7> processor number in which the process is executing
 .<8:15> PIN assigned by the operating system to identify the process

in the processor

message-tag output

INT:ref:1

is used when the application process performs message queuing. message-tag
returns a value that identifies the request message just read among other requests
currently queued. To associate a reply with a given request, message-tag is
passed in a parameter to the REPLY procedure.

The value of message-tag is an integer between 0 and receive-depth minus
1, inclusive, that is not currently being used as a message tag. When a reply is
made, its associated message tag value is made available for use as a message
tag for a subsequent request message.

Condition Code Settings
< (CCL) indicates that $RECEIVE is not open.

= (CCE) indicates that LASTRECEIVE was successful.

> (CCG) does not return from LASTRECEIVE.

Considerations

• The process ID that is returned by LASTRECEIVE

The process ID returned by LASTRECEIVE following receipt of a preceding open,
close, CONTROL, SETMODE, SETPARAM, RESETSYNC, or CONTROLBUF
system message, or a data message, identifies the process associated with the
operation. The high-order three words of the process ID will be 0 following the
receipt of system messages other than the ones just named.

• Synthetic process ID

If HIGHREQUESTERS is enabled for the calling process (either because the
?HIGHREQUESTERS flag is set in the program file or because the caller used
FILE_OPEN_ to open $RECEIVE) and the last message was sent by a high-PIN
process, then the returned process ID is as described above except that the value
of the PIN is 255. This form of the process ID is referred to as a synthetic
process ID. It is not a full identification of the process but it is normally sufficient
for distinguishing, for example, one requester from another requester. For further
details, see the Guardian Programmer’s Guide.

• Remote opener with a long process file name

If the calling process used FILE_OPEN_ to open $RECEIVE and did not request to
receive C-series format messages, and if the last message read from $RECEIVE
is from a remote process that has a process name consisting of more that five

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-8

LOCATESYSTEM Procedure (Superseded by
NODENAME_TO_NODENUMBER_ Procedure)

characters, then the value of process-id returned by LASTRECEIVE is
undefined.

Example
CALL LASTRECEIVE (PROG1^ID);

The LASTRECEIVE procedure returns the identification of the process that sent the
last message.

LOCATESYSTEM Procedure (Superseded by
NODENAME_TO_NODENUMBER_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary

The LOCATESYSTEM procedure provides the system number corresponding to a
system name and returns the logical device number of the line handler controlling the
path to a given system.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

ldev returned value

INT

returns one of these values:

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

ldev := LOCATESYSTEM (sysnum ! i,o
 ,[sysname]); ! i

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-9

LOCATESYSTEM Procedure (Superseded by
NODENAME_TO_NODENUMBER_ Procedure)

1 : 32766 The logical device number of the network line handler that controls the
current path to the system designated by sysnum. The logical device
number has at most 15 bits of magnitude and the specified system is
accessible.

32767 Indicates one of these:

The line handler exists and the specified system is accessible, but the
line handler logical device number exceeds 15 bits of magnitude.

or

The specified system is the local system, so there is no line handler
logical device number to return.

In either case, the system number is returned in sysnum.

0 The specified system does not exist.

-1 All paths to the specified system are down.

-3 Bounds error occurred on sysname or sysnum.

sysnum input, output

INT:ref:1

is the number of the system to be located unless you specify sysname. If you
specify sysname, then the system number that corresponds to sysname returns
into sysnum.

sysname input

INT:ref:4

if present, specifies the name of the system to be located and causes the
corresponding system number to be returned in sysnum.

Considerations

• If the caller provides sysname, sysnum is returned the corresponding number, but
if the caller omits sysname, the caller must supply sysnum.

• If the sysname specified does not exist, sysnum is set to 255.

• When retrieving a line handler logical device number that exceeds 15 bits of
magnitude:

LOCATESYSTEM uses the number 32767 to represent any logical device number
whose value exceeds 15 bits of magnitude. (The value 32767 is reserved and is
never used as an actual logical device number.) To retrieve logical device
numbers having more than 15 bits of magnitude, replace calls to LOCATESYSTEM
with calls to NODENAME_TO_NODENUMBER_.

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-10

LOCKFILE Procedure

Example
LDEV := LOCATESYSTEM (SYS^NUM , SYS^NAME);

LOCKFILE Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
OSS Considerations
Related Programming Manual

Summary
The LOCKFILE procedure is used to exclude other users from accessing a file (and
any records within that file). The “user” is defined either as the opener of the file
(identified by filenum) if the file is not audited—or the transaction (identified by the
TRANSID) if the file is audited.

If the file is currently unlocked or is locked by the current user when LOCKFILE is
called, the file (and all its records) becomes locked, and the caller continues executing.

If the file is already locked by another user, behavior of the system is specified by the
locking mode. There are two “locking” modes available:

• Default—Process requesting the lock is suspended (see “Considerations”).

• Alternate—Lock request is rejected with file-system error 73. When the alternate
locking mode is in effect, the process requesting the lock is not suspended (see
“Considerations”).

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

• The function value returned by LOCKFILE, which indicates the condition code, can
be interpreted by _status_lt(), _status_eq(), or _status_gt() (defined
in the file tal.h).

#include <cextdecs(LOCKFILE)>

_cc_status LOCKFILE (short filenum
 ,[__int32_t tag]);

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-11

LOCKFILE Procedure

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is the number of an open file that identifies the file to be locked.

tag input

INT(32):value

is for nowait I/O only. tag is a value you define that uniquely identifies the
operation associated with this LOCKFILE.

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that the LOCKFILE was successful.

> (CCG) indicates that the file is not a disk file.

Considerations

• Nowait and LOCKFILE

If the LOCKFILE procedure is used to initiate an operation with a file opened
nowait, it must complete with a corresponding call to the AWAITIO procedure.

• Locking modes

• Default mode

If the file is already locked by another user when LOCKFILE is called, the
process requesting the lock is suspended and queued in a “locking” queue
behind other users trying to access the file. When the file becomes unlocked,
the user at the head of the locking queue is granted access to the file. If the
user at the head of the locking queue is requesting a lock, it is granted the lock
and resumes execution. If the user at the head of the locking queue is
requesting a read, the read operation continues to completion.

CALL LOCKFILE (filenum ! i
 ,[tag]); ! i

Note. The system stores the tag value until the I/O operation completes. The system then
returns the tag information to the program in the tag parameter of the call to AWAITIO, thus
indicating that the operation completed.

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-12

LOCKFILE Procedure

• Alternate mode

If the file is already locked by another user when the call to LOCKFILE is
made, the lock request is rejected, and the call to LOCKFILE completes
immediately with error 73 (“file is locked”). The alternate locking mode is
specified by calling the SETMODE procedure and specifying function 4.

• Locks and open files—applies to non-audited files only

Locks are granted on an open file (that is, file number) basis. Therefore, if a
process has multiple opens of the same file, a lock of one file number excludes
access to the file through other file numbers.

• Attempting to read a locked file in default locking mode

If the default locking mode is in effect when a call to READ or READUPDATE is
made to a file which is locked by another user, the caller of READ or
READUPDATE is suspended and queued in the “locking” queue behind other
users attempting to access the file.

• Accessing a locked file

If the file is locked by a user other than the caller at the time of the call, the call is
rejected with file-system error 73 (“file is locked”) when:

• READ or READUPDATE is called, and the alternate locking mode is in effect.

• WRITE, WRITEUPDATE, or CONTROL is called.

• A count of the locks in effect is not maintained. Multiple locks can be unlocked with
one call to UNLOCKFILE. For example:

 .
CALL LOCKFILE (FILE^A,...); ! FILE^A becomes locked.
 .
CALL LOCKFILE (FILE^A,...); ! is a null operation,
 ! because the file is
 ! already locked.
 1 A condition code
 ! of CCE returns.
 .
CALL UNLOCKFILE (FILE^A,...); ! FILE^A becomes
 unlocked.
 .
CALL UNLOCKFILE (FILE^A,...); ! is a null operation,
 ! because the file is
 ! already unlocked.
 ! A condition code of
 ! CCE returns.

Note. For non-audited files, a deadlock condition—a permanent suspension of your
application—occurs if READ or READUPDATE is called by the process which has a record
locked by a filenum other than that supplied in READ or READUPDATE. (For an explanation
of multiple opens by the same process, see the FILE_OPEN_ procedure.)

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-13

LOCKINFO Procedure
(Superseded by FILE_GETLOCKINFO_ Procedure)

OSS Considerations
This procedure operates only on Guardian objects. If an OSS file is specified, error 2
occurs.

Related Programming Manual
For programming information about the LOCKFILE file-procedure, see the Enscribe
Programmer’s Guide and the Guardian Programmer’s Guide.

LOCKINFO Procedure
(Superseded by FILE_GETLOCKINFO_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
OSS Considerations

Summary

LOCKINFO provides information about locks (held or pending) on a local DP2 disk
volume. Each call returns information about one lock, plus as many holders/waiters as
the size of the caller’s buffer permits; successive calls can obtain information about all
the locks for a volume, file, process, or transaction.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-14

LOCKINFO Procedure
(Superseded by FILE_GETLOCKINFO_ Procedure)

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error code indicating the outcome of the call. See “Considerations”
for values that may be returned.

searchtype input

INT:value

indicates the type of lock search that is desired (see the searchid parameter for
more details on search options).

Valid values and their uses are:

0 Return lock information for volume searchid. A valid DP2 disk volume name
must be placed in searchid[0:3]. Successive calls will eventually return
information for all locks on that volume.

1 Return lock information for file searchid. A valid file name must be passed
in searchid[0:11]. Successive calls will eventually return information for
all locks on the identified file.

2 Return information on locks for volume searchid[0:3], requested by the
process identified by the process ID in searchid[4:7]. Successive calls
will eventually return information for all locks on the specified volume
requested by the specified process. If the process ID of a named process is
passed, the name must be in uppercase characters.

3 Return information on locks for volume searchid[0:3], requested by the
TMF transaction identified by a transid in searchid words [4:7]. Successive
calls will eventually return information for all locks on the specified volume
requested by the specified transaction.

searchid input

INT .EXT:ref:12

identifies the volume, file, volume and process, or volume and transaction for
which information is to be returned. Words [0:3] of searchid must always contain

error := LOCKINFO (searchtype ! i
 ,searchid ! i
 ,ctlwds ! i,o
 ,buffersize ! i
 ,buffer); ! o

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-15

LOCKINFO Procedure
(Superseded by FILE_GETLOCKINFO_ Procedure)

the name of the local DP2 disk volume that is to be searched. For the four
different values of searchtype, these formats apply:

ctlwds input, output

INT .EXT:ref:4

provides information needed by the file system to return successive pieces of lock
information over a sequence of calls.

On input, ctlwds must be set to zeros before calling LOCKINFO for the first time
for one combination of searchtype/searchid. On all subsequent calls, ctlwds
must be passed to LOCKINFO as previously returned. If it is modified in any way,
error 41 may be returned.

On output, ctlwds returns the information LOCKINFO needs for the next call.
These four words must be passed exactly as they were returned on the previous
call to LOCKINFO.

buffersize input

INT:value

indicates the size, in bytes, of the buffer available for returned lock information.
The minimum value is 294. The size of the buffer determines how much
information can be returned on each LOCKINFO call.

buffer output

STRING .EXT:ref:*

specifies the buffer in which LOCKINFO will place the lock information. The
structure of the information returned in buffer is described under
“Considerations.”

Considerations

• Structure of returned data

The lock information returned by one call to LOCKINFO is mapped in the user-
supplied buffer using the structures on the next page.

The structure LIB describes one locked resource, and contains the byte offset from
the beginning of the buffer to the first LABINFO structure. LIB also contains the
number of holder/waiter entries (LABINFO occurrences) that are returned.

searchtype [0:3] [4:7] [8:11]

0 volume ignored ignored

1 volume subvolume file ID

2 volume process ID ignored

3 volume TRANSID ignored

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-16

LOCKINFO Procedure
(Superseded by FILE_GETLOCKINFO_ Procedure)

This TAL example describes the detailed layout of the structure:

STRUCT LIB (*);
BEGIN
 STRING
 TYPE, ! File lock = 0, record lock = 1
 LOCKLEN; ! Byte length of locked key (0 if
 ! not a key-sequenced file.)
 INT
 MISC, ! Miscellaneous flags
 FILENAME[0:7], ! Subvol/filename of locked file
 NUMLABS; ! Number of LABINFO entries
 ! returned
 INT(32)
 LABOFFSET; ! Byte offset from buffer start to
 ! first LABINFO
 STRING
 KEYVALUE[0:255]; ! Locked key value (if LOCKLEN > 0)
 INT(32)
 RECADDR = KEYVALUE; ! Locked record ID
 ! (if LOCKLEN = 0)
END;

Definitions for the MISC word of the LIB structure (the remaining bits are reserved
for future use):

DEFINE
 GENERIC^LOCK = MISC.<0>#; ! If set, record lock is a
 ! generic key lock

The number of LABINFO entries that can be returned to the caller of LOCKINFO
depends on the size of the LIB buffer (specified in the parameter buffersize).

The structure LABINFO describes one lock “holder” or “waiter” of/for the locked
resource described by the above LIB structure. There are LIB.NUMLABS
occurrences of the LABINFO structure.

The detailed layout of LABINFO is described by this example:

STRUCT LABINFO (*);
BEGIN
INT
 MISC, ! ID type, lock and grant state
 ! (see below)
 USERID[0:3], ! Process ID or TRANSID (see below)
 RESERVED; ! reserved for future use.
END;

Definitions for the MISC word of the LABINFO structure (the remaining bits are
reserved for future use):

DEFINE
 IDTYPE = MISC.<0> #, ! If set: USERID is a process
 ! ID
 GRANTSTATE = MISC.<1:3> #,! 0 = Waiting; 1 = Granted
 INTENTFLAG = MISC.<4> #; ! Indicates the lock is an

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-17

LOCKINFO Procedure
(Superseded by FILE_GETLOCKINFO_ Procedure)

 ! intent. (an intent is a lock
 ! internally established by
 ! DP2 to prevent interference
 ! from file lockers.)

• Returned error codes

00 Information for one locked resource and all its accessors was returned
without error. More locks may exist; continue calling LOCKINFO.

01 End of lock information for searchtype/searchid.

02 Invalid searchtype (not 0, 1, 2, or 3).

11 Lock information for the file, process, or transaction in searchid was not
found. If any information has been returned already, it is now invalid.

12 The lock tables in DP2 were changed between calls, so any previously
returned information may be invalid. To start over, set ctlwds to zero and
call LOCKINFO again.

21 buffersize is less than the minimum.

22 The address of ctlwds or buffer is out of bounds.

41 Checksum error on ctlwds. The ctlwds parameter has been altered
between calls to LOCKINFO or was not initialized before the first call.

45 Information for one locked resource was returned, but the supplied buffer
was too small to hold all available lock accessors information (the number
of holders/waiters that could be returned is always found in
LIB.NUMLABS). More locks may exist, so continue calling LOCKINFO
(with ctlwds unchanged).

Other file-system errors may be returned; these are documented in the Guardian
Procedure Errors and Messages Manual.

• Obtaining lock information for remote resources

LOCKINFO accepts the designation of a remote resource in searchid and
attempts to obtain the information.

• High-PIN considerations

You cannot specify the process ID of a high-PIN process in the searchid
parameter of LOCKINFO because the identifier does not fit.

If the holder (or waiter) of a lock is a high-PIN process, the LABINFO.USERID field
returned in buffer contains a PIN value of 255 for that process.

• Support for HP NonStop Storage Management Foundation (SMF) objects

The LOCKINFO procedure supports single SMF logical files but does not support
entire SMF virtual volumes. If the name of a SMF logical file is supplied to this
procedure, the system queries the disk process of the appropriate physical volume
to obtain information about current lock holders and lock waiters on the file. If the

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-18

LOCKREC Procedure

name of a SMF virtual volume is supplied, but not a full logical file name, an error
is returned.

If you call the LOCKINFO procedure and supply the name of a physical volume,
lock information is returned for any file on that volume that was opened under a
SMF logical file name, but the returned file name is that of the physical file
supporting the logical file.

OSS Considerations
This procedure operates only on Guardian objects. OSS files cannot have Guardian
locks, so there is no information to be returned. If an OSS file is specified, error 0,
indicating no error, is returned; the result is the same as calling LOCKINFO on a
Guardian file that has no locks.

LOCKREC Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
OSS Considerations
Related Programming Manual

Summary
The LOCKREC procedure excludes other users from accessing a record at the current
position. The “user” is defined either as the opener of the file (identified by filenum) if
the file is not audited—or the transaction (identified by the TRANSID) if the file is
audited.

For key-sequenced, relative, and entry-sequenced files, the current position is the
record with a key value that matches exactly the current key value. For unstructured
files, the current position is the relative byte address (RBA) identified by the current-
record pointer.

If the record is unlocked when LOCKREC is called, the record becomes locked, and
the caller continues executing.

If the file is already locked by another user, behavior of the system is specified by the
locking mode. There are two “locking” modes available:

• Default—Process requesting lock is suspended (see “Considerations”).

Note. LOCKREC operations cannot be used with queue files.

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-19

LOCKREC Procedure

• Alternate—Lock request is rejected with file-system error 73. When the alternate
locking mode is in effect, the process requesting the lock is not suspended (see
“Considerations”).

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

• The function value returned by LOCKREC, which indicates the condition code, can
be interpreted by _status_lt(), _status_eq(), or _status_gt() (defined
in the file tal.h).

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is the number of an open file that identifies the file containing the record to be
locked.

tag input

INT(32):value

is for nowait I/O only. tag is a value you define that uniquely identifies the
operation associated with this LOCKREC.

Condition Code Settings

Note. A call to LOCKFILE is not equivalent to locking all records in a file; that is, locking all
records still allows insertion of new records, but file locking does not. File locks and record
locks are queued in the order they are issued.

#include <cextdecs(LOCKREC)>

_cc_status LOCKREC (short filenum
 ,[__int32_t tag]);

CALL LOCKREC (filenum ! i
 ,[tag]); ! i

Note. The system stores the tag value until the I/O operation completes. The system then
returns the tag information to the program in the tag parameter of the call to AWAITIO[X], thus
indicating that the operation completed.

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-20

LOCKREC Procedure

< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that the LOCKREC was successful.

> (CCG) indicates that the file is not a disk file.

Considerations

• Nowait and LOCKREC

If the LOCKREC procedure is used to initiate an operation with a file opened
nowait, it must complete with a corresponding call to the AWAITIO procedure.

• Default locking mode

If the record is already locked by another user when LOCKREC is called, the
process requesting the lock is suspended and queued in a “locking” queue behind
other users also requesting to lock or read the record.

When the record becomes unlocked, the user at the head of the locking queue is
granted access to the record. If the user at the head of the locking queue is
requesting a lock, it is granted the lock and resumes execution. If the user at the
head of the locking queue is requesting a read operation, the read operation
continues to completion.

• Alternate locking mode

If the record is already locked by another user when LOCKREC is called, the lock
request is rejected, and the call to LOCKREC completes immediately with file-
system error 73 (“record is locked”). The alternate locking mode is specified by
calling the SETMODE procedure and specifying function 4.

• Attempting to read a locked record in default locking mode

If the default locking mode is in effect when READ or READUPDATE is called for a
record that is locked by another user, the caller to READ or READUPDATE is
suspended and queued in the “locking” queue behind other users attempting to
lock or read the record. (Another “user” means another open filenum if the file is
not audited, or another TRANSID if the file is audited.)

• Selecting the locking mode with SETMODE

The locking mode is specified by the SETMODE procedure with function = 4.

Note. For non-audited files, a deadlock condition—a permanent suspension of your
application—occurs if READ or READUPDATE is called by the process which has a record
locked by a filenum other than that supplied to READ or READUPDATE. (For an
explanation of multiple opens by the same process, see the FILE_OPEN_ or OPEN
procedure.)

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-21

LOCKREC Procedure

• A count of the locks in effect is not maintained. Multiple locks can be unlocked with
one call to UNLOCKFILE. For example:

CALL LOCKREC (file^a,...); ! locks the current record
 ! in "file^a."
 ...
CALL LOCKREC (file^a,...); ! has no effect since the
 ! current record is already
 ! locked.
 ...
CALL UNLOCKREC (file^a,...); ! unlocks the current record
 ! in "file^a."
 ...
CALL UNLOCKREC (file^a,...); ! has no effect since the
 ! current record is not
 ! locked.

• Structured files

• Calling LOCKREC after positioning on a nonunique key

If the call to LOCKREC immediately follows a call to KEYPOSITION where a
nonunique alternate key is specified, the LOCKREC fails. A subsequent call to
FILE_GETINFO_ or FILEINFO shows that an error 46 (invalid key) occurred.
However, if an intermediate call to READ is performed, the call to LOCKREC is
permitted because a unique record is identified.

• Current-state indicators after LOCKREC

After a successful LOCKREC, current-state indicators are unchanged.

• Unstructured files

• Locking the RBA in an unstructured file

Record positions in an unstructured file are represented by an RBA, and the
RBA can be locked with LOCKREC. To lock a position in an unstructured file,
first call POSITION with the desired RBA, and then call LOCKREC. This locks
the RBA; any other process attempting to access the file with exactly the same
RBA encounters a “record is locked condition.” You can access that RBA by
positioning to RBA-2. Depending on the process’s locking mode, the call either
fails with file-system error 73 (“record is locked”) or is placed in the locking
queue.

• Record pointers after LOCKREC

After a call to LOCKREC, the current-record, next-record, and end-of-file
pointers remain unchanged.

• Ways to avoid or resolve deadlocks

One way to avoid deadlock is to use one of the alternate locking modes that can
be established by function 4 of the SETMODE procedure. A common method
of avoiding deadlock situations is to lock records in some predetermined order.

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-22

LONGJMP_ Procedure

Deadlocks can be resolved if you lock records using a nowait open and call
AWAITIO with a timeout specified.

OSS Considerations
This procedure operates only on Guardian objects. If an OSS file is specified, error 2
occurs.

Related Programming Manual
For programming information about the LOCKREC file-procedure, see the Enscribe
Programmer’s Guide and the Guardian Programmer’s Guide.

LONGJMP_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The LONGJMP_ procedure performs a nonlocal goto. It restores the state of the
calling process with context saved in a jump buffer by the SETJMP_ procedure.
Control returns to the location of the corresponding SETJMP_ procedure call.

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-23

LONGJMP_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

env input

INT .EXT:ref:(JMP_BUF_TEMPLATE)

indicates the address of a jump buffer containing the process context to be
restored.

value input

INT(32)

specifies the value to be returned at the destination of the long jump; that is, at the
location of the corresponding SETJMP_ call. If this value is set to 0D, then 1D is
returned; otherwise value is returned.

Considerations

• LONGJMP_ is the TAL or pTAL procedure name for the C longjmp() function.
The C longjmp() function complies with the POSIX.1 standard.

• Do not call LONGJMP_ with a jump buffer that contains the signal mask that was
set up by a call to the SIGSETJMP_ procedure, or the system will raise a
SIGABRT signal.

LONGJMP_ can be used with a jump buffer initialized by the SIGSETJMP_
procedure only if the call to SIGSETJMP_ does not save the signal mask.

• LONGJMP_ does not return. Normally, return is made at the location of the
corresponding SETJMP_ procedure.

• The jump buffer is assumed to be valid and initialized by an earlier call to
SETJMP_. If an invalid address is passed or if the caller modifies the jump buffer,

#include <setjmp.h>

jmp_buf env;

void longjmp (jmp_buf env
 ,int value);

?SOURCE $SYSTEM.ZGUARD.HSETJMP

LONGJMP_ (env ! i
 ,value); ! i

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-24

LOOKUPPROCESSNAME Procedure
(Superseded by PROCESS_GETPAIRINFO_

the result is undefined and could cause the system to deliver a non-deferrable
signal to the process.

• If LONGJMP_ detects an error, a SIGABRT or SIGILL signal is raised (except for
TNS processes).

• The jump buffer must be accessible to both the LONGJMP_ procedure call and the
associated SETJMP_ procedure call.

• The procedure that invoked the corresponding call to SETJMP_ must still be
active. That is, the activation record of the procedure that called SETJMP_ must
still be on the stack.

• A long jump across a transition boundary between the TNS and native
environments, in either direction, is not permitted. Any attempt to do so will be fatal
to the process.

• A nonprivileged caller cannot jump to a privileged area. Any attempt to do so will
be fatal to the process. A privileged caller, however, can execute a long jump
across the privilege boundary; privileges are automatically turned off before control
returns to the SETJMP_ procedure.

• As a result of optimization, the values of nonvolatile local variables in the
procedure that calls SETJMP_ might not be the same as they were when
LONGJMP_ was called if the variables are modified between the calls to SETJMP_
and LONGJMP_. C and pTAL programs can declare variables with the volatile
type qualifier; this is the only safe way of preserving local variables between calls
to SETJMP_ and LONGJMP_. Alternatively, you can make the variables global.

Example
LONGJMP_ (env, value);

Related Programming Manual
For programming information about the LONGJMP_ procedure, see the Guardian
Programmer’s Guide.

LOOKUPPROCESSNAME Procedure
(Superseded by PROCESS_GETPAIRINFO_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-25

LOOKUPPROCESSNAME Procedure
(Superseded by PROCESS_GETPAIRINFO_

Summary

The LOOKUPPROCESSNAME procedure is used to obtain a description of a named
process pair by its name or by its index into the local destination control table (DCT).
To obtain remote process pair descriptions by index, use the GETPPDENTRY
procedure.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

ppd input, output

INT:ref:9

on input, is either:

• the internal format process name

• the entry number in the DCT ({0:n}), where the specified value is not greater
than 9215,

for the entry to be returned.

On return, ppd is of the form:

[0:2] Process name of entry

 [3].<0:7> processor for primary process

 .<8:15> PIN for primary process

 [4].<0:7> processor of backup process, else 0

 .<8:15> PIN of backup process, else 0

[5:8] process-id of the ancestor. Note that the process-
id is a 4-word array where process-id[0:2] contains
the process name or creation timestamp and process-
id[3] contains:

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

CALL LOOKUPPROCESSNAME (ppd); ! i,o

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-26

LOOKUPPROCESSNAME Procedure
(Superseded by PROCESS_GETPAIRINFO_

[3].<0:3> Reserved

 .<4:7> processor number where the process is
executing

 .<8:15> PIN assigned by the operating system to
identify the process in the processor

If the process name is not in the DCT, ppd is unchanged.

Condition Code Settings
< (CCL) indicates that the specified process name is not in the directory, or that the

remote system could not be accessed, or that the specified process pair
has a high-PIN process as the primary or backup.

= (CCE) indicates that the specified name was found.

> (CCG) indicates that the specified entry number exceeds the last table entry.

Considerations

• Network use

Remote DCT entries can be obtained by passing the process name (in network
form) of the process desired. On return, the process name remains in network
form.

This is an example of using LOOKUPROCESSNAME to get the DCT entry for the
name process “$PROC” running on the system “\DETROIT”:

EXTERNAL^NAME ':=' 17 * [" "]; ! blanks.
EXTERNAL^NAME ':=' "\DETROIT.$PROC";
 ! note that "$proc1" is not a valid remote name.
CALL FNAMEEXPAND (EXTERNAL^NAME , INTERNAL^NAME , DEFAULTS
);
 ! converts \DETROIT to its system number.
CALL LOOKUPPROCESSNAME (INTERNAL^NAME);
 ! returns the desired DCT entry.

To obtain DCT entries using an entry-num, use the GETPPDENTRY procedure.

If you call LOOKUPPROCESSNAME for a named process pair whose ancestor is
a named process on a remote node with a process name of six characters
(including the $), ppd [5:8] is returned filled with zeros.

• High-PIN considerations

If you call LOOKUPPROCESSNAME for a named process pair that has a high-PIN
process as the primary or backup, condition code < (CCL) is returned.

If you call LOOKUPPROCESSNAME for a named process pair that has a high-PIN
process as the ancestor, a synthetic process ID is returned in ppd [5:8]. A
synthetic process ID contains a PIN value of 255 in place of a high-PIN value,
which cannot be represented by 8 bits.

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-27

LOOKUPPROCESSNAME Procedure
(Superseded by PROCESS_GETPAIRINFO_

• DCT Index as an input parameter

Although supported for backward compatibility, use of a DCT index as an input
parameter is not recommended. The maximum DCT index value that
LOOKUPPROCESSNAME can handle as input is 9215, which is far below the
system limit. This also means that LOOKUPPROCESSNAME cannot reliably be
used to scan the entire DCT by index.

• This procedure does not return information on a named process that is reserved
for future use and is not started.

Guardian Procedure Calls (L)

Guardian Procedure Calls Reference Manual—522629-030
8-28

LOOKUPPROCESSNAME Procedure
(Superseded by PROCESS_GETPAIRINFO_

Guardian Procedure Calls Reference Manual—522629-030
9-1

9 Guardian Procedure Calls (M)
This section contains detailed reference information for all user-accessible Guardian
procedure calls beginning with the letter M. Table 9-1 lists all the procedures in this
section.

Table 9-1. Procedures Beginning With the Letter M

MBCS_ANY_KATAKANA_ Procedure

MBCS_CHAR_ Procedure

MBCS_CHARSIZE_ Procedure

MBCS_CHARSTRING_ Procedure

MBCS_CODESETS_SUPPORTED_ Procedure

MBCS_DEFAULTCHARSET_ Procedure

MBCS_EXTERNAL_TO_TANDEM_ Procedure

MBCS_FORMAT_CRT_FIELD_ Procedure

MBCS_FORMAT_ITI_BUFFER_ Procedure

MBCS_MB_TO_SB_ Procedure

MBCS_REPLACEBLANK_ Procedure

MBCS_SB_TO_MB_ Procedure

MBCS_SHIFTSTRING_ Procedure

MBCS_TANDEM_TO_EXTERNAL_ Procedure

MBCS_TESTBYTE_ Procedure

MBCS_TRIMFRAGMENT_ Procedure

MESSAGESTATUS Procedure

MESSAGESYSTEMINFO Procedure

MOM Procedure (Superseded by PROCESS_GETINFOLIST_ Procedure)

MONITORCPUS Procedure

MONITORNET Procedure

MONITORNEW Procedure

MOVEX Procedure

MYGMOM Procedure (Superseded by PROCESS_GETINFOLIST_ Procedure)

MYPID Procedure (Superseded by PROCESSHANDLE_GETMINE_ Procedure and
PROCESSHANDLE_DECOMPOSE_ Procedure)

MYPROCESSTIME Procedure

MYSYSTEMNUMBER Procedure (Superseded by NODENAME_TO_NODENUMBER_
Procedure or PROCESSHANDLE_GETMINE_ Procedure and
PROCESSHANDLE_DECOMPOSE_ Procedure)

MYTERM Procedure (Superseded by PROCESS_GETINFOLIST_ Procedure)

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-2

MBCS_ANY_KATAKANA_ Procedure

MBCS_ANY_KATAKANA_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
The MBCS_ANY_KATAKANA_ procedure checks a string of HP Kanji characters for
any Katakana characters. Katakana 1-byte characters are permitted in a string of HP
Kanji characters.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

result returned value

INT

returns the result of the MBCS_ANY_KATAKANA_ test. The returned value is
either 0 or 1:

0 indicates that the buffer string does not contain any Katakana characters or
that charset did not specify the HP Kanji multibyte character set.

1 indicates that the HP Kanji buffer string contains at least one Katakana
character.

buffer input

STRING .EXT:ref:*

is the string to be tested for Katakana characters. The buffer pointer is not
moved or changed by the MBCS_ANY_KATAKANA_ procedure.

#include <cextdecs(MBCS_ANY_KATAKANA_)>

short MBCS_ANY_KATAKANA_ (char *buffer
 ,short length
 ,[short charset]);

result := MBCS_ANY_KATAKANA_ (buffer ! i
 ,length ! i
 ,[charset]); ! i

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-3

MBCS_CHAR_ Procedure

length input

INT:value

is the number of bytes in the buffer string. The MBCS_ANY_KATAKANA_
procedure tests only the number of bytes specified in the length parameter and
does not access the area beyond buffer[length - 1].

charset input

INT:value

identifies the multibyte character set (MBCS) to be used. If charset is omitted or
null, the default MBCS character set identifier returned from the
MBCS_DEFAULTCHARSET_ procedure is used. The presence of Katakana
characters is not valid in conjunction with any MBCS other than HP Kanji.

Any value may be specified; however, the returned result will always be 0 if 1
(for HP Kanji) is not specified.

Considerations
The Japanese 1-byte Kanji character set is defined in the Japanese Industrial Standard
(JIS) X0208 (formerly C6226); the Japanese Katakana character set is defined in
JIS X0201 (formerly C6220).

MBCS_CHAR_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary
The MBCS_CHAR_ procedure indicates whether a string of bytes is part of an HP
multibyte character set (MBCS) and that testmbcschar points to the first byte of a
valid character of charset MBCS.

The MBCS_CHAR_ procedure also performs a positive range test on all bytes of the
referenced character. If all bytes pass the range test, TRUE is returned, otherwise
FALSE is returned.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-4

MBCS_CHAR_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

result returned value

INT

returns the result of the MBCS character test.

0 indicates that charset is not a supported MBCS (see charinfo
parameter), or charset is a supported MBCS and testmbcschar
does not point to the first byte of a valid character of one of the MBCS
character sets listed under charset.

nonzero indicates that the character set is a supported MBCS, and
testmbcschar points to the first byte of a valid character of
charset MBCS. For 2-byte character sets, the returned value is the
integer value of the sixteen bits which form the multibyte character,
using byte-1 as the high order byte and byte-2 as the low order byte of
the pair. All currently supported MBCSs are 2-byte character sets.

testmbcschar input

STRING .EXT:ref:*

is an extended pointer to the first of a group of bytes to be tested for membership
in the MBCS identified by the charset parameter. The caller is responsible for
ensuring legitimate access to all bytes of the group. All bytes are range tested for
valid membership in the specified character set. If any byte fails the range test, the
group fails and FALSE is returned. The testmbcschar pointer is not altered by
the MBCS_CHAR_ procedure.

#include <cextdecs(MBCS_CHAR_)>

short MBCS_CHAR_ (char *testmbcschar
 ,[short charset]
 ,[short *charinfo]);

result := MBCS_CHAR_ (testmbcschar ! i
 ,[charset] ! i
 ,[charinfo]); ! i,o

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-5

MBCS_CHAR_ Procedure

charset input

INT:value

identifies the MBCS to be used. If charset is omitted or null, the default MBCS
identifier returned from the MBCS_DEFAULTCHARSET_ is used.

These MBCSs are supported by the MBCS_CHAR_ procedure:

1 HP Kanji
9 HP Hangul
10 HP Chinese Big 5
11 HP Chinese PC
12 HP KSC5601

charinfo input, output

INT .EXT:1

on input, charinfo specifies the number of bytes, beginning with
testmbcschar, that may be read by the MBCS_CHAR_ procedure. If charinfo
is equal to or greater than the size of a single multibyte character of the MBCS
identified by charset, the MBCS_CHAR_ procedure tests for the presence of a
multibyte character. If the integer value supplied in charinfo is less than the size
of a single multibyte character of the MBCS identified by charset, no test is made
and FALSE with no error indication is returned. When omitted, it is assumed that
at least enough bytes can be read to compose a single multibyte character of the
MBCS identified by charset. There is no null value for this parameter.

If charinfo is returned on output, it provides this information:

when result is nonzero:

<0:7> contains the display size (in columns) of the multibyte character
identified by the test.

<8:15> contains the internal size (in bytes) of the multibyte character
identified by the test.

when result is zero, charinfo contains one of these values indicating the
cause of failure of the MBCS_CHAR_ test:

0 No reported error; tested character is a 1-byte character
29 Required parameter missing
-2 An unknown character set was specified

Considerations

• Tests are provided for HP Kanji (Shift-JIS), HP Hangul, HP Chinese Big 5, HP
Chinese PC and HP Korean KSC5601 format MBCS. HP Kanji is the standard
internal representation used by HP for the character set defined in the JIS X0208
standard (formerly JIS C6226). Chinese Big 5 is a character set defined by
vendors in Taiwan. Chinese PC is the character set used by IBM on Chinese PCs.
HP Hangul support is provided for the Korean character set in use by KIPS on HP

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-6

MBCS_CHAR_ Procedure

6526 terminals as well as for the new standard Hangul (KSC 5601) character set.
All MBCSs are similar in format and are suitable for internal representation of the
multibyte character set in conjunction with an ASCII-like 1-byte character set.

• In most supported MBCS schemes, single-byte values have multiple- character
identities. For example, in the HP Kanji MBCS format, all ASCII alphabetic and all
1-byte Japanese Katakana characters also appear within HP Kanji MBCS
characters. Furthermore, all byte values which appear as the first byte of HP Kanji
characters might also appear in the second byte of HP Kanji characters. Similar
ambiguous usage of individual byte values occurs in other supported MBCSs.
Proper character identification depends both on value range testing and context.
Because of the multiple identity of individual byte values, it is not safe to attempt to
identify characters selected at random from a text string. Proper character
identification requires analysis of text strings from a starting location with known
conditions. Character analysis must begin on a byte position that is known to be
either a 1-byte character or the first byte of a multibyte character.

• To obtain correct results, supply a valid starting point and ensure legitimate access
to the text buffer. Text strings should begin only with a 1-byte character or with the
first byte of a multibyte character. Thus, you can call the MBCS_CHAR_
procedure with the testmbcschar parameter set to the address of the first byte of
a text string. Subsequent calls to test other locations within the text string must be
based upon the results of the initial and succeeding calls, with the testmbcschar
pointer being advanced by the size of the character found, following each call to
MBCS_CHAR_. This code sample illustrates the proper use of the MBCS_CHAR_
procedure:

@testmbcschar := @first byte in text string;
WHILE processing mixed text string
DO
BEGIN --text string loop
charsize := number of bytes remaining in text string;
IF MBCS_CHAR_(testmbcschar, charset, charsize)
THEN -- found valid MBCS character
 BEGIN -- process and advance pointer

 ... user-required MBCS character processing here ...

 @testmbcschar := @testmbcschar +
 $dbl(charsize.<8:15>);
 END -- process and advance pointer
ELSE -- found a 1-byte character
 BEGIN -- process and advance pointer

 ... user-required 1-byte character processing here ...

 @testmbcschar := @testmbcschar + 1d;
 END; -- process and advance pointer
END; -- text string loop

When calling the MBCS_CHAR_ procedure, you must prevent attempts to read
out-of-bounds data. In the preceding example, the amount of remaining buffer

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-7

MBCS_CHARSIZE_ Procedure

space (number of bytes) is conveyed by the charinfo parameter on the call;
MBCS_CHAR_ does not attempt to access data beyond this buffer. When this
parameter is omitted, the MBCS_CHAR_ procedure operates upon the assumption
that enough bytes may be read to compose one character of the current MBCS.
The caller assumes responsibility for the accuracy of this assumption.

Related Programming Manual
For programming information about the MBCS_CHAR_ procedure, see the Guardian
Programmer’s Guide.

MBCS_CHARSIZE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Related Programming Manual

Summary
The MBCS_CHARSIZE_ procedure returns the display size (in columns) and the
storage size (in bytes) of multibyte character set (MBCS) characters from the character
set specified by the charset parameter.

The storage size of all supported internal MBCSs has a 1:1 relationship to the number
of display columns required; thus, a 20-byte string of HP Kanji characters requires 20
columns of display space on a terminal or printer.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

result returned value

INT

is the size in bytes of each character in the MBCS specified by the charset
parameter.

#include <cextdecs(MBCS_CHARSIZE_)>

short MBCS_CHARSIZE_ ([short charset]);

result := MBCS_CHARSIZE_ [(charset)]; ! i

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-8

MBCS_CHARSTRING_ Procedure

0 indicates that either no MBCS is configured or the specified MBCS is
not supported.

nonzero indicates that the result parameter contains this information:

<0:7> contains the display size (in columns) of the multibyte
character identified by the test.

<8:15> contains the internal size (in bytes) of the multibyte
character identified by the test.

charset input

INT:value

identifies the multibyte character set (MBCS) to be used. If charset is omitted or
null, the default MBCS identifier returned from the MBCS_DEFAULTCHARSET_ is
used. These MBCSs are supported by the MBCS_CHAR_ procedure:

1 HP Kanji
9 HP Hangul
10 HP Chinese Big 5
11 HP Chinese PC
12 HP KSC5601

Related Programming Manual
For programming information about the MBCS_CHARSIZE_ procedure, see the
Guardian Programmer’s Guide.

MBCS_CHARSTRING_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
The MBCS_CHARSTRING_ procedure tests the contents of a data string for the
exclusive use of MBCS characters of known internal character sets. This procedure
depends upon the MBCS_CHAR_ procedure to test each group of bytes in the data
string for validity; it inherently supports all the character sets known to the
MBCS_CHAR_ procedure. The MBCS_CHARSTRING_ procedure recognizes blank
MBCS characters. For the purposes of this procedure, a blank MBCS character is a
string of blank (%H20) bytes of the same storage length as an MBCS character of the
current MBCS.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-9

MBCS_CHARSTRING_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

result returned value

INT

returns the result of the MBCS character test of the testmbcsstring text
string.

0 indicates that the charset parameter contains an unknown MBCS identifier
(see charinfo description) or contains a known MBCS identifier but the test
of testmbcsstring for valid characters failed.

1 indicates that all MBCS characters in the testmbcsstring are valid
characters (or blanks) of the specified MBCS.

testmbcsstring input

STRING .EXT:ref:*

is an extended pointer to the first byte of a data string to be tested. The contents
of the data string are not altered by the MBCS_CHARSTRING_ procedure.

bytecount input

INT:value

is the number of bytes contained in testmbcsstring. The
MBCS_CHARSTRING_ procedure tests only the number of bytes specified in the
bytecount parameter and does not access the area beyond
testmbcsstring[bytecount-1].

#include <cextdecs(MBCS_CHARSTRING_)>

short MBCS_CHARSTRING_ (char *testmbcschar
 ,short bytecount
 ,short *index
 ,[short charset]
 ,[short *charinfo]);

result := MBCS_CHARSTRING_ (testmbcsstring ! i
 ,bytecount ! i
 ,index ! o
 ,[charset] ! i
 ,[charinfo]); ! o

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-10

MBCS_CODESETS_SUPPORTED_ Procedure

index output

INT .EXT:ref:1

is the byte index of the first byte group found in the string that is not a valid MBCS
character and is not a group of blanks (%H20) the size of an MBCS character.

charset input

INT:value

identifies the MBCS to be used. If charset is omitted or null, the default
character set from the MBCS_DEFAULTCHARSET_ procedure is used. The
MBCS_CHARSTRING_ procedure does not examine or validate the character set
identification, but simply passes it on to the MBCS_CHAR_ procedure.
MBCS_CHARSTRING_ inherently supports all the MBCSs known to the
MBCS_CHAR_ procedure.

charinfo output

INT .EXT:ref:1

indicates the cause of failure of the MBCS_CHARSTRING_ test. The
MBCS_CHARSTRING_ procedure returns a file-system error 29 to indicate
missing required parameters; other error indications are passed back from the
MBCS_CHAR_ procedure. For returned values and interpretations, see
MBCS_CHAR_ Procedure.

Considerations
The MBCS_CHARSTRING_ procedure uses the MBCS_CHAR_ procedure to test the
specified text string for multibyte characters. All MBCSs supported by the
MBCS_CHAR_ procedure are inherently supported by the MBCS_CHARSTRING_
procedure.

MBCS_CODESETS_SUPPORTED_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Related Programming Manual

Summary
The MBCS_CODESETS_SUPPORTED_ procedure returns a 32-bit integer value.
Each bit of the returned value indicates the presence of a particular multibyte character
set (MBCS).

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-11

MBCS_CODESETS_SUPPORTED_ Procedure

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

result returned value

INT(32)

is a 32-bit value indicating available MBCS support. A bit set to 1 indicates the
presence of an MBCS:

 <1> = HP Kanji
 <2> = IBM Kanji
 <3> = IBM Kanji Mixed
 <4> = JEF (Fujitsu) Kanji
 <5> = JEF (Fujitsu) Kanji Mixed
 <6> = reserved
 <7> = JIS Kanji
 <8> = reserved
 <9> = HP Hangul
<10> = Chinese Big 5
<11> = Chinese PC (5550C)
<12> = HP KSC5601 (with KIPS extensions)

Other bits are unassigned.

Related Programming Manual
For programming information about the MBCS_CODESETS_SUPPORTED_
procedure, see the Guardian Programmer’s Guide.

#include <cextdecs(MBCS_CODESETS_SUPPORTED_)>

__int32_t MBCS_CODESETS_SUPPORTED_ ();

result := MBCS_CODESETS_SUPPORTED_ ;

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-12

MBCS_DEFAULTCHARSET_ Procedure

MBCS_DEFAULTCHARSET_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary
The MBCS_DEFAULTCHARSET_ procedure returns the default multibyte character
set (MBCS) identification.

HP systems support various MBCSs in different ways. HP Kanji (Shift-JIS), Chinese
Big 5, Chinese PC, Hangul, and KSC5601 data formats are supported as internal code
representations. IBM and Fujitsu Kanji formats are supported by translation from the
HP Kanji internal format.

The MBCS_DEFAULTCHARSET_ procedure returns the default MBCS internal format
in use on the system queried. The default value is hardcoded; that is, it can be
changed only by reconfiguring the system.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

result returned value

INT

returns the identifier of the default MBCS character set:

Note. Each system must have a MBCS_DEFAULTCHARSET_ specified.

#include <cextdecs(MBCS_DEFAULTCHARSET_)>

__int32_t MBCS_DEFAULTCHARSET_ ();

result := MBCS_DEFAULTCHARSET_ ;

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-13

MBCS_EXTERNAL_TO_TANDEM_ Procedure

 0 = No MBCS configured
 1 = HP Kanji
 9 = HP Hangul
10 = HP Chinese Big 5
11 = HP Chinese PC
12 = HP KSC5601

Considerations
HP Kanji is the default character set. This default can only be changed by
reconfiguring the system. Contact your HP representative for information on changing
the default MBCS.

Related Programming Manual
For programming information about the MBCS_DEFAULTCHARSET_ procedure, see
the Guardian Programmer’s Guide.

MBCS_EXTERNAL_TO_TANDEM_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
The MBCS_EXTERNAL_TO_TANDEM_procedure translates a text string from a
specified external format to the HP internal text format.

Syntax for C Programmers

Note. In the TNS/E environment the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-14

MBCS_EXTERNAL_TO_TANDEM_ Procedure

Syntax for TAL Programmers

Parameters

error-code returned value

INT

returns a procedure error code. Possible error codes are:

0 Successful completion of the translation
-1 Translation truncated due to lack of destination buffer space
-2 Unknown translation requested
-3 Invalid source string length
-4 Invalid character in Kanji-only source string
-5 Control string parameter too long
29 Required parameter missing

source-string input, output

INT(32) .EXT:ref:1

is a pointer to a double-word integer containing the extended address of the source
text string to be translated. After translation, the address points to the byte
following the last byte in the source string that was successfully translated.

#include <cextdecs(MBCS_EXTERNAL_TO_TANDEM_)>

short MBCS_EXTERNAL_TO_TANDEM_ (__int32_t *source-string
 ,__int32_t *destination- string
 ,short source-length
 ,short maximum-length
 ,short intermediate
 ,short external-form
 ,short *finished-length
 ,[char *shift-to-MBCS]
 ,[char *shift-to-one-byte]);

error-code := MBCS_EXTERNAL_TO_TANDEM_
 (source-string ! i,o
 ,destination-string ! i,o
 ,source-length ! i
 ,maximum-length ! i,o
 ,intermediate ! i
 ,external-form ! i
 ,finished-length ! o
 ,[shift-to-MBCS] ! i
 ,[shift-to-one-byte]); ! i

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-15

MBCS_EXTERNAL_TO_TANDEM_ Procedure

destination-string input, output

INT(32) .EXT:ref:1

is a pointer to a double-word integer containing the extended address of the
location to receive the translated text string. After translation, the address points to
the byte following the last byte in the destination string.

source-length input

INT:value

is the length, in bytes, of the source text string.

maximum-length input, output

INT .EXT:ref:1

on input, is the maximum allowable number of bytes of space in the output
destination string.

While all formal parameters (except shift-to-MBCS and shift-to-one-byte)
are mandatory for string translation, specifying only the source-length,
maximum-length, and external-form parameters (omitting all other
parameters), returns the maximum length required for the destination string,
without any string translation.

intermediate input

INT:value

is a logical flag indicating the optional forms of the source data string.

For translations from an EBCDIC type of data format, this parameter is interpreted
as follows:

When TRUE, the source text string is in an intermediate form which must be
further processed to yield the correct ASCII/JIS format for one-byte characters.
An example of this is data from IBM Katakana devices which has already been
through the HP “universal” EBCDIC/ASCII conversion.

When FALSE, the source data string is still in EBCDIC format. It has not been
through the HP universal EBCDIC/ASCII conversion.

For translations from a format containing JIS standard Kanji and a JIS or ASCII-like
one-byte character set, this parameter is interpreted as follows:

When TRUE, the source text stream is in shift-in/ shift-out (SI/SO) format.
Conversion of the source text stream begins in shift-in state. ASCII SI/SO
characters that frame data character sub-strings are removed and each byte

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-16

MBCS_EXTERNAL_TO_TANDEM_ Procedure

whose byte value is greater than octal 40, in the SI/SO framed substrings, has
the high-order bit turned on.

When FALSE, the source text stream is in eight-bit data format. SI/SO
processing is not done.

external-form input

INT:value

indicates the format of the source text stream:

• IBM external formats

° Data stream without substring frames

0 IBM Kanji only (without subfield strings)

° Data stream using SO/SI substring frames

1 IBM Kanji EBCDIC

2 IBM Kanji/Katakana-EBCDIC

° Data stream using character attribute substring framing
(IBM 3270 data stream only)

11 IBM Kanji EBCDIC

12 IBM Kanji/Katakana-EBCDIC

• JEF external formats

° Data stream using KI/KO substring frames

3 JEF (Fujitsu) Kanji only

4 JEF (Fujitsu) Kanji EBCDIC

5 JEF (Fujitsu) Kanji/Katakana-EBCDIC

• Other external formats

8 JIS X0208 Kanji/JIS X0201 (was C6226/C6220)

finished-length output

INT .EXT:ref:1

contains the byte count of the translated destination string upon successful
completion of the translation. For other cases, the value is undefined.

shift-to-MBCS input

STRING .EXT:ref:*

is an optional pointer to a string containing the escape or control string used to
indicate a shift to a multibyte character set in the source text string. This string

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-17

MBCS_EXTERNAL_TO_TANDEM_ Procedure

must always be in HP internal (not EBCDIC) character format, regardless of the
final form of the source string.

This procedure does not contain logic for identifying escape or control strings. The
control strings that are used are either the specified default control strings or user-
supplied alternative control strings. In earlier versions of this procedure, control
strings were null delimited. While null-delimited control strings are still supported,
an alternative format that supports control strings containing null bytes is now also
provided. The IBM Kanji character attribute (described following) is an example of
an alternative format.

The alternative format must be expressed as (null flag, count, string), where the
first byte is a null flag indicator of the alternative string form, the second byte
contains an integer value representing the length of the control string, and the third
and subsequent bytes represent the value of the control string.

The minimum length for a control string is 1 byte, and the maximum length is 20
bytes. If the procedure receives a zero-length control string, the results are
undefined.

When the control string values are not user-supplied, the default values used for
control strings expressed in the original null-delimited format are as follows:

IBM Kanji [%H0E,null]

JEF (Fujitsu) Kanji [%H88,null]

JIS X0208 Kanji [%H1B, %H24,%H42,null]

When the control string values are not user-supplied, the default values used for
control strings expressed in the alternative format are as follows:

IBM Kanji
 character attribute [null, %H03, %H88, %HA2, %H38]

shift-to-one-byte input

STRING .EXT:ref:*

is an optional pointer to a string containing the escape or control string used to
indicate a shift to a 1-byte character set in the source text string. This string must
always be in HP internal (not EBCDIC) character format, regardless of the final
form of the source string.

This procedure does not contain logic for identifying escape or control strings. The
control strings that are used are either the specified default control strings or user-
supplied alternative control strings. In earlier versions of this procedure, control
strings were null delimited. While null-delimited control strings are still supported,
an alternative format that supports control strings containing null bytes is now also
provided. The IBM Kanji character attribute (described following) is an example of
an alternative format.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-18

MBCS_EXTERNAL_TO_TANDEM_ Procedure

The alternative format that supports user-supplied control strings containing null
bytes must be expressed as (null flag, count, string), where the first byte is a null
flag indicator of the alternative string form, the second byte contains an integer
value representing the length of the control string, and the third and subsequent
bytes represent the value of the control string.

The minimum length for a control string is 1 byte, and the maximum length is 20
bytes. If the procedure receives a zero-length control string, the results are
undefined.

When the control string values are not user-supplied, the default values used for
control strings expressed in the original null-delimited format are as follows:

IBM Kanji [%H0F,null]

JEF (Fujitsu) Kanji [%H89,null]

JIS X0208 Kanji [%H18,%H28,%H4A,null]

When the control string values are not user-supplied, the default values used for
control strings expressed in the alternative format are as follows:

IBM Kanji
 character attribute [null, %H03, %H88, %HA2, %H00]

Considerations

• All parameters except shift-to-MBCS and shift-to-one-byte are necessary
for a string translation operation.

• To determine the maximum length of the destination string, you must specify the
source-length, maximum-length, and external-form parameters. The
other formal parameters can be omitted if you want to determine only the
maximum length of the destination string, without performing any string translation.
When performing string translation, if less than this amount of space is allowed, the
translation procedure might fail due to insufficient space in the destination string.

• Any invalid 2-byte character that is found in the source string is mapped to the
value %HFCFC. Any nondisplayable 2-byte character that is found in the source
string is mapped to the value %HFCFB.

• The definition of nondisplayable and invalid characters varies with the target
mapping format. The IBM and Fujitsu character sets contain extensions that are
not supported in the HP internal character set. When extension character codes
are encountered, they are mapped to the nondisplayable character code for the HP
character set.

The most common definition of an invalid character code is a character pair that is
expected to be a 2-byte code but has an invalid first or second byte.

Any character mapped to either a nondisplayable or invalid character target code
becomes nonrecoverable for conversion to the original format.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-19

MBCS_FORMAT_CRT_FIELD_ Procedure

MBCS_FORMAT_CRT_FIELD_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Consideration

Summary
The MBCS_FORMAT_CRT_FIELD_ procedure formats Kanji only or mixed data types
for specific terminal types.

Syntax for C Programmers

Note. In the TNS/E environment the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(MBCS_FORMAT_CRT_FIELD_)>

short MBCS_FORMAT_CRT_FIELD_ (__int32_t *source-string
 ,__int32_t *destination-string
 ,short source-length
 ,short maximum-length
 ,short intermediate
 ,short terminal-type
 ,short last-column
 ,short *max-data-size
 ,short *screen-start-col
 ,[char *shift-to-MBCS]
 ,[char *shift-to-one-byte]
 ,[short startmode]);

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-20

MBCS_FORMAT_CRT_FIELD_ Procedure

Syntax for TAL Programmers

Parameters

error-code returned value

INT

returns a procedure error code.

 0 Successful completion of the translation
-1 Source string translation incomplete, ran out of destination buffer area or ran

out of space in the screen field
-2 Unknown terminal type specified
-3 Invalid source string length
-4 Invalid character in Kanji-only source string
-5 Control string parameter too long
29 Required parameter missing

source-string input, output

INT(32) .EXT:ref:1

is the address of an extended address pointer to the source text string to be
formatted. Upon return from the format function, this pointer points to the first
unformatted byte in the source string. When the entire source string has been
formatted, this pointer points to the position beyond the last byte of the source
string.

destination-string input, output

INT(32) .EXT:ref:1

is the address of an extended address pointer to the location to receive the
formatted text string. Upon return from the format function, this pointer points to
the first unfilled byte in the destination string.

error-code := MBCS_FORMAT_CRT_FIELD_
 (source-string ! i,o
 ,destination-string ! i,o
 ,source-length ! i
 ,maximum-length ! i
 ,intermediate ! i
 ,terminal-type ! i
 ,last-column, ! i
 ,max-data-size ! i,o
 ,screen-start-col ! i,o
 ,[shift-to-MBCS] ! i
 ,[shift-to-one-byte] ! i
 ,[startmode]); ! i

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-21

MBCS_FORMAT_CRT_FIELD_ Procedure

source-length input

INT:value

is the length, in bytes, of the source text string.

maximum-length input

INT: value

is the maximum allowable number of bytes of space usable in the output
destination string.

intermediate input

INT:value

is a logical flag indicating the desired format of the translated data string.

When TRUE, the translated destination CRT field is in pre-EBCDIC format. This is
an intermediate form which yields the final EBCDIC data format after passing the
HP standard ASCII/EBCDIC translation routine. This is the normal form to use for
formatting CRT fields which are then displayed through the HP SNAX access
method.

When FALSE, the translated destination CRT field is in final EBCDIC format upon
completion of this procedure.

terminal-type input

INT:value

indicates the terminal type to receive the formatted data.

4 Fujitsu F-6650/F-6680 with lowercase alphabet
5 Fujitsu F-6650/F-6680 with 1-byte Katakana
11 IBM character attribute device with lowercase alphabet
12 IBM character attribute device with 1-byte Katakana

last-column input

INT:value

indicates the width in columns of the display device.

max-data-size input, output

INT .EXT:ref:1

on input, contains an integer indicating the maximum number of displayable
characters that can be held by the destination screen field. This value does not
include the attribute byte.

on output, contains the byte count (length) of the translated data in the destination
CRT field.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-22

MBCS_FORMAT_CRT_FIELD_ Procedure

screen-start-col input, output

INT .EXT:ref:1

on input, contains the starting column on the current line of the screen where the
first displayable data character may appear.

on output, contains an integer which represents the sum of the screen-start-
col and the displayable length of the data inserted into the field by the translate
function.

shift-to-MBCS input

STRING .EXT:ref:*

is an optional pointer to a string containing the escape, control, or other string to be
used to indicate a shift to a multibyte character set in the destination text string.
This string must always be in HP internal format (not EBCDIC), regardless of the
final form of the destination string. When not supplied, a default string is used by
the format routine (for Fujitsu terminals, it is [%H88, null]).

shift-to-one-byte input

STRING .EXT:ref:*

is an optional pointer to a string containing the escape, control, or other string to be
used to indicate a shift to a 1-byte character set in the destination text string. This
string must always be in HP internal format (not EBCDIC), regardless of the final
form of the destination string. When not supplied, a default string is used by the
format routine (for Fujitsu terminals, it is [%H89, null]).

startmode input

INT:value

specifies the optional start mode of the formatting operation. When this parameter
has a value of 1, the formatting operation begins in the 1-byte mode. When this
parameter has a value of 2, the formatting operation begins in the 2-byte (MBCS)
mode. If any other value is specified, or if this parameter is not used, the starting
mode is determined from the source string content. This parameter can be used to
force a start in MBCS mode for a string that begins with double spaces. This is the
only known ambiguous condition that might require the use of this parameter.

Consideration
Determining the size of the destination buffer is the responsibility of the calling
procedure.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-23

MBCS_FORMAT_ITI_BUFFER_ Procedure

MBCS_FORMAT_ITI_BUFFER_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Consideration

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-24

MBCS_FORMAT_ITI_BUFFER_ Procedure

Summary
The MBCS_FORMAT_ITI_BUFFER_ procedure formats ITI buffers for specific terminal
types. This procedure is designed to support a known subset of double-byte character
set SNA3270 display devices. Formatting is confined to the data area of the ITI buffer.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error-code returned value

INT

returns a procedure error code.

Note. In the TNS/E environment the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(MBCS_FORMAT_ITI_BUFFER_)>

short MBCS_FORMAT_ITI_BUFFER_ (__int32_t *source-string
 ,__int32_t *destination-string
 ,short source-length
 ,short maximum-length
 ,short intermediate
 ,short terminal-type
 ,short maximum-col-count
 ,short *finished-length
 ,short *screen-col-count
 ,[char *shift-to-MBCS]
 ,[char *shift-to-one-byte]
 ,[short startmode]);

error-code := MBCS_FORMAT_ITI_BUFFER_
 (source-string ! i,o
 ,destination-string ! i,o
 ,source-length ! i
 ,maximum-length ! i
 ,intermediate ! i
 ,terminal-type ! i
 ,maximum-col-count ! i
 ,finished-length ! o
 ,screen-col-count ! o
 ,[shift-to-MBCS] ! i
 ,[shift-to-one-byte] ! i
 ,[startmode]); ! i

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-25

MBCS_FORMAT_ITI_BUFFER_ Procedure

 0 Successful completion of the translation
-1 Source string translation incomplete, ran out of destination buffer area
-2 Unknown terminal type specified
-3 Invalid source string length
-4 Invalid character in Kanji only source string
-5 Control string parameter too long
29 Required parameter missing

source-string input, output

INT(32) .EXT:ref:1

is the address of an extended pointer to the source text string to be formatted.
Upon return from the format function, this pointer is advanced to point to the byte
following the last byte in the source string that was successfully processed by the
format ITI buffer operation.

destination-string input, output

INT(32) .EXT:ref:1

is the address an extended pointer to the location to receive the formatted text
string. Upon return from the format function, this pointer is advanced to point to
the byte following the last byte in the destination string that was filled by the format
ITI buffer operation.

source-length input

INT:value

is the length, in bytes, of the source text string.

maximum-length input

INT:value

is the maximum allowable number of bytes of space usable in the output
destination string.

intermediate input

INT:value

is a logical flag indicating the desired format of the translated data string.

When TRUE, the translated destination text string is in an intermediate form which
yields the final EBCDIC data format after passing the HP standard ASCII/EBCDIC
translation routine. This is the normal form to use for formatting buffers which are
then displayed through the HP SNAX access method.

When FALSE, the translated destination text string is in final EBCDIC format upon
completion of this procedure.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-26

MBCS_FORMAT_ITI_BUFFER_ Procedure

terminal-type input

INT:value

indicates the terminal type to receive the formatted data.

0 IBM 3274-series
1 IBM Emulation on IBM5550 with lowercase alphabet
2 IBM Emulation on IBM5550 with 1-byte Katakana
4 Fujitsu F-6650/F-6680 with lowercase alphabet
5 Fujitsu F-6650/F-6680 with 1-byte Katakana
11 IBM character attribute device with lowercase alphabet
12 IBM character attribute device with 1-byte Katakana

maximum-col-count input

INT:value

indicates the width (in columns) of the display device.

finished-length output

INT .EXT:ref:1

contains the byte count of the part of the destination string containing successfully
translated data.

screen-col-count output

INT .EXT:ref:1

contains the displayable column count of the formatted buffer.

shift-to-MBCS input

STRING .EXT:ref:*

is an optional pointer to a string containing the escape, control, or other string used
to indicate a shift to a multibyte character set in the destination text string. This
string must always be in HP internal format (not EBCDIC), regardless of the final
form of the destination string. When not supplied, a default string is used by the
format routine:

for IBM terminals [%H0E, null]
for Fujitsu terminals [%H88, null]
for IBM terminals with

character attribute device [null, %H03, %H88, %HA2, %H38]

shift-to-one-byte input

STRING .EXT:ref:*

is an optional pointer to a string containing the escape, control, or other string used
to indicate a shift to a 1-byte character set in the destination text string. This string
must always be in HP internal format (not EBCDIC), regardless of the final form of

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-27

MBCS_MB_TO_SB_ Procedure

the destination string. When not supplied, a default string is used by the format
routine:

for IBM terminals [%H0F, null]
for Fujitsu terminals [%H89, null]
for IBM terminals with

character attribute device [null, %H03, %H88, %HA2, %H00]

startmode input

INT:value

specifies the optional start mode of the formatting operation. When this parameter
has a value of 1, the formatting operation begins in the 1-byte mode. When this
parameter has a value of 2, the formatting operation begins in the 2-byte (MBCS)
mode. If any other value is specified, or if this parameter is not used, the starting
mode is determined from the source string content. This parameter can be used to
force a start in MBCS mode for a string that begins with Kanji double-spaces. This
is the only known ambiguous condition that might require the use of this parameter.

Consideration
Determining the size of the destination buffer is the responsibility of the calling
procedure.

MBCS_MB_TO_SB_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
This procedure and the companion MBCS_SB_TO_MB_ procedure allow conversion
of the ninety-four displayable characters of the ASCII character set between 1-byte
ASCII and characters of the specified MBCS. The MBCS_MB_TO_SB_ procedure
converts multibyte characters to the corresponding 1-byte ASCII characters.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-28

MBCS_MB_TO_SB_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

mbytestring:mbytecount input:input

STRING .EXT:*, INT:value

specifies a text string with ASCII-equivalent characters in the multibyte character
set identified by charset. mbytestring is the input text string to be converted
by this procedure; it must be exactly mbytecount bytes long.

sbytestring:sbytecount output:input

STRING .EXT:*, INT:value

returns the converted text string containing 1-byte characters. The string variable
sbytestring must be exactly sbytecount bytes long.

rbytecount output

INT .EXT:ref:1

returns the actual byte length of the converted text string contained in
sbytestring.

charset input

INT:value

is the optional identifier of the reference MBCS. When omitted or null, the default
MBCS character set identifier from the MBCS_DEFAULTCHARSET_ procedure is
used. These multibyte character sets are supported by this procedure:

#include <cextdecs(MBCS_MB_TO_SB_)>

void MBCS_MB_TO_SB_ (char *mbytestring
 ,short mbytecount
 ,char *sbytestring
 ,short sbytecount
 ,short *rbytecount
 ,[short charset]
 ,[short *charinfo]);

CALL MBCS_MB_TO_SB_ (mbytestring:mbytecount ! i:i
 ,sbytestring:sbytecount ! o:i
 ,rbytecount ! o
 ,[charset] ! i
 ,[charinfo]); ! o

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-29

MBCS_REPLACEBLANK_ Procedure

1 HP Kanji
9 HP Hangul
10 HP Chinese Big 5
11 HP Chinese PC
12 HP KSC5601

charinfo output

INT .EXT:ref:1

is an optional parameter that returns an indication of any cause of failure. Except
for file-system error 29 (required missing parameter), this procedure does not
initiate error indications but simply passes on the errors returned by the
MBCS_CHAR_ procedure. For returned values and interpretations, see
MBCS_CHAR_ Procedure. Upon return of an error from the MBCS_CHAR_
procedure, the operation is aborted and processing is returned to the caller.

Considerations
The input text string may contain any combination of mixed 1-byte and multibyte
characters. Eligible multibyte characters are converted to the appropriate ASCII
equivalent characters. Other characters or bytes encountered in the input string are
moved to the output string without change. Multibyte blanks are converted to
equivalent sized strings of ASCII blanks (%H20).

MBCS_REPLACEBLANK_ Procedure
Summary
Syntax for C Programmers
Sytax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary
The MBCS_REPLACEBLANK_ procedure replaces nonstandard blanks.

Within multibyte character sets, there are usually characters defined that have a blank
display attribute of the same width as the other multibyte characters of the same
character set. Since these characters do not have an internal representation that is
recognized by HP subsystems as blanks, they cannot be used as word separators or
delimiters in the same manner as the 1-byte space character.

HP recommends that multibyte strings of blanks be used instead of normally defined
multibyte character blanks. It is not possible to guarantee that this recommendation
will always be followed, so it is also recommended that data be processed to replace
the multibyte blanks of the current character set with blank strings of equivalent length.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-30

MBCS_REPLACEBLANK_ Procedure

This procedure allows callers to replace the normally-defined multibyte blank
characters with equivalent-sized strings of blank (%H20) characters.

Syntax for C Programmers

Sytax for TAL Programmers

Parameters

bytestring input

STRING .EXT:ref:*

is a pointer to a buffer containing a properly formed text string that may contain any
mixture of 1-byte and MBCS characters. A properly formed text string may not
begin with the second or subsequent byte of an MBCS character or end with any
byte of a MBCS character other than the last. (See MBCS_TRIMFRAGMENT_
Procedure.) The contents of the bytestring pointer are not altered by the shift
operation.

bytecount input

INT:value

is an integer variable containing the length in bytes of the text string bytestring.

charset input

INT:value

identifies the multibyte character set (MBCS) to be used. If charset is omitted or
null, the default MBCS from the MBCS_DEFAULTCHARSET_ procedure is used.
MBCS_REPLACEBLANK_ does not examine or validate the character set
identification but simply passes it on to the MBCS_CHAR_ procedure. All MBCSs
supported by the MBCS_CHAR_ procedure are inherently supported by this

#include <cextdecs(MBCS_REPLACEBLANK_)>

void MBCS_REPLACEBLANK_ (char *bytestring
 ,short bytecount
 ,[short charset]
 ,[short *charinfo]);

CALL MBCS_REPLACEBLANK_ (bytestring ! i
 ,bytecount ! i
 ,[charset] ! i
 ,[charinfo]); ! i,o

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-31

MBCS_REPLACEBLANK_ Procedure

procedure. This procedure replaces different multibyte character pairs depending
on the charset value.

charinfo input, output

INT .EXT:ref:1

indicates the cause of failure of the requested test. This procedure returns file-
system error 29 to indicate missing required parameters; other error indications are
passed back from the MBCS_CHAR_ procedure. For returned values and
interpretations, see MBCS_CHAR_ Procedure. Upon return of an error from the
MBCS_CHAR_ procedure, the operation is aborted and processing is returned to
the caller.

Considerations
Except for the HP Hangul data format, none of the supported internal MBCS data
formats use character definitions that include single-byte values of %H20 in
combination with other values to form multibyte characters. In other words, with the
exception of HP Hangul, none of the characters of the supported internal multibyte
character sets contain embedded blanks. When using any of the supported MBCSs
other than HP Hangul, following the use of this procedure, any remaining bytes having
the value of %H20 can be interpreted as ordinary blanks.

When the HP Hangul character set is specified, extra care is required because byte
values of %H20 can appear as 1-byte blanks, the second byte of multibyte characters,
or in pairs as 2-byte blanks.

Related Programming Manual
For programming information about the MBCS_REPLACEBLANK_ procedure, see the
Guardian Programmer’s Guide.

charset Character Becomes

HP Kanji %H8140 %H2020

HP Hangul %HFC20 %H2020

HP Chinese Big 5 %HA140 %H2020

HP Chinese PC %H8140 %H2020

HP KSC5601 %HA1A1 %H2020

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-32

MBCS_SB_TO_MB_ Procedure

MBCS_SB_TO_MB_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
This procedure and the companion MBCS_MB_TO_SB_ procedure are provided to
allow conversion of the ninety-four displayable characters of the ASCII character set
between 1-byte ASCII and characters of the specified MBCS. The
MBCS_SB_TO_MB_ procedure converts 1-byte ASCII characters to the corresponding
multibyte characters.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

sbytestring:sbytecount input:input

STRING .EXT:*, INT:value

specifies a text string with 1-byte ASCII characters. sbytestring is the input text
string to be converted by this procedure; it must be exactly sbytecount bytes
long.

#include <cextdecs(MBCS_SB_TO_MB_)>

void MBCS_SB_TO_MB_ (char *sbytestring
 ,short sbytecount
 ,char *mbytestring
 ,short mbytecount
 ,short *rbytecount
 ,[short charset]
 ,[short *charinfo]);

CALL MBCS_SB_TO_MB_ (sbytestring:sbytecount ! i:i
 ,mbytestring:mbytecount ! o:i
 ,rbytecount ! o
 ,[charset] ! i
 ,[charinfo]); ! o

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-33

MBCS_SB_TO_MB_ Procedure

mbytestring:mbytecount output:input

STRING .EXT:*, INT:value

returns the converted text string containing multibyte characters. The string
variable mbytestring must be exactly mbytecount bytes long.

rbytecount output

INT .EXT:ref:1

returns the actual byte length of the converted text string contained in
mbytestring.

charset input

INT:value

is the optional identifier of the reference MBCS. When omitted or null, the default
MBCS character set identifier from the MBCS_DEFAULTCHARSET_ procedure is
used. These multibyte character sets are supported by this procedure:

1 HP Kanji
9 HP Hangul
10 HP Chinese Big 5
11 HP Chinese PC
12 HP KSC5601

charinfo output

INT .EXT:ref:1

is an optional parameter that returns an indication of any cause of failure. is an
optional reference parameter used to return an indication of any cause of failure of
the requested test. Except for file-system error 29 (missing parameter), this
procedure does not initiate error indications but simply passes on the errors
returned by the MBCS_CHAR_ procedure. For returned values and interpretations,
see MBCS_CHAR_ Procedure. Upon return of an error from the MBCS_CHAR_
procedure, the operation is aborted and processing is returned to the caller.

Considerations
The input text string may contain any combination of mixed 1-byte and multibyte
characters. All 1-byte ASCII characters are converted to the appropriate ASCII
equivalent characters in the specified multibyte character set. Other characters or
bytes encountered in the input string are moved to the output string without change.
All 1-byte blanks are moved without conversion or extension.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-34

MBCS_SHIFTSTRING_ Procedure

MBCS_SHIFTSTRING_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Consideration
Related Programming Manual

Summary
The MBCS_SHIFTSTRING_ procedure upshifts or downshifts all alphabetic characters
in a multibyte character set (MBCS) string. Both multibyte alphabetic characters of the
specified MBCS and 1-byte alphabetic characters of the ASCII character set are case
shifted by this procedure.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

bytestring input

STRING .EXT:ref:*

is a pointer to a buffer containing a properly formed text string that may contain any
mixture of 1-byte and MBCS characters. A properly formed text string may not
begin with the second or subsequent byte of an MBCS character or end with any
byte of an MBCS character other than the last. (See the
MBCS_TRIMFRAGMENT_ Procedure.) The contents of the bytestring pointer
are not altered by the shift operation.

#include <cextdecs(MBCS_SHIFTSTRING_)>

void MBCS_SHIFTSTRING_ (char *bytestring
 ,short bytecount
 ,short casebit
 ,[short charset]
 ,[short *charinfo]);

CALL MBCS_SHIFTSTRING_ (bytestring ! i
 ,bytecount ! i
 ,casebit ! i
 ,[charset] ! i
 ,[charinfo]); ! o

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-35

MBCS_SHIFTSTRING_ Procedure

bytecount input

INT:value

is an integer variable containing the length in bytes of the text string bytestring.

casebit input

INT:value

is a variable indicating the type of case shift to be applied to the 1-byte alphabetic
characters in the bytestring. When the case bit (bit <15>) is set to 0, an upshift is
requested; when the case bit is set to 1, a downshift is requested.

charset input

INT:value

identifies the multibyte character set (MBCS) to be used. If charset is omitted or
null, the default MBCS from the MBCS_DEFAULTCHARSET_ procedure is used.
This procedure does not examine or validate the character set identification but
simply passes it on to the MBCS_CHAR_ procedure. All MBCSs supported by the
MBCS_CHAR_ procedure are inherently supported by this procedure.

charinfo output

INT .EXT:ref:1

indicates the cause of failure of the requested test. This procedure returns file-
system error 29 to indicate missing required parameters; other error indications are
returned by the MBCS_CHAR_ procedure. (For returned values and
interpretations, see MBCS_CHAR_ Procedure.) Upon return of an error from the
MBCS_CHAR_ procedure, the shift operation is aborted and processing is
returned to the caller.

Consideration
You must not use the SHIFTSTRING procedure with text that contains multibyte
characters because of the potential damage to such characters. To avoid such
potential damage, the SHIFTSTRING procedure is replaced by the
MBCS_SHIFTSTRING_ procedure whenever an MBCS is installed.

The MBCS_SHIFTSTRING_ procedure appears similar to the SHIFTSTRING
procedure but has significant differences: the characteristics of parameters are
different and two parameters are added. This procedure handles upshift and downshift
operations on a string of mixed single and multibyte characters—a function beyond the
capability of the current case-shifting procedures.

Related Programming Manual
For programming information about the MBCS_SHIFTSTRING_ procedure, see the
Guardian Programmer’s Guide.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-36

MBCS_TANDEM_TO_EXTERNAL_ Procedure

MBCS_TANDEM_TO_EXTERNAL_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
The MBCS_TANDEM_TO_EXTERNAL_ procedure translates a text string from HP
internal format to a specified external text format.

Syntax for C Programmers

Note: In the TNS/E environment the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(MBCS_TANDEM_TO_EXTERNAL_)>

short MBCS_TANDEM_TO_EXTERNAL_ (__int32_t *source-string
 ,__int32_t *destination-string
 ,short source-length
 ,short maximum-length
 ,short intermediate
 ,short external-form
 ,short *finished-length
 ,[char *shift-to-MBCS]
 ,[char *shift-to-one-byte]);

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-37

MBCS_TANDEM_TO_EXTERNAL_ Procedure

 Syntax for TAL Programmers

Parameters

error-code returned value

INT

returns a procedure error code. Possible error codes are:

0 Successful completion of the translation
-1 Translation truncated due to lack of destination buffer space
-2 Unknown translation requested
-3 Invalid source string length
-4 Invalid character in Kanji-only source string
-5 Control string parameter too long
29 Required parameter missing

source-string input, output

INT(32) .EXT:ref:1

is a pointer to a double-word integer containing the extended address of the source
text string to be translated. After translation, this address points to the byte
following the last byte in the source string that was successfully translated.

destination-string input, output

INT(32) .EXT:ref:1

is a pointer to a double-word integer containing the extended address of the
location to receive the translated text string. After translation, this address points
to the byte following the last byte in the destination string used by the translation
operation.

error-code := MBCS_TANDEM_TO_EXTERNAL_
 (source-string ! i,o
 ,destination-string ! i,o
 ,source-length ! i
 ,maximum-length ! i,o
 ,intermediate ! i
 ,external-form ! i
 ,finished-length ! o
 ,[shift-to-MBCS] ! i
 ,[shift-to-one-byte]); ! i

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-38

MBCS_TANDEM_TO_EXTERNAL_ Procedure

source-length input

INT:value

is the length, in bytes, of the source text string.

maximum-length input, output

INT .EXT:ref:1

on input, is the maximum allowable number of bytes of space in the output
destination string.

While all the formal parameters (shift-to-MBCS and shift-to-one-byte) are
mandatory for a string translation, specifying only the source-length,
maximum-length, and external-form parameters (omitting all other
parameters), returns the maximum length required for a destination string, without
any string translation.

intermediate input

INT:value

is an optional logical flag indicating the desired format of the translated data string.

For translations to an EBCDIC type of data format, this parameter is interpreted as
follows:

When TRUE, the translated destination text string is in an intermediate form
which yields the final EBCDIC data format after passing the HP standard
ASCII/EBCDIC translation routine.

When FALSE, the translated destination text string is in final EBCDIC format
upon completion of this procedure.

For translations to a format containing JIS standard Kanji and a JIS or ASCII-like 1-
byte character set, this parameter is interpreted as follows:

When TRUE, the translated data stream is in shift-in/ shift-out (SI/SO) format.
An initial ASCII SI or SO character is placed at the beginning of the destination
string, depending on the value of the first byte of translated text. ASCII SI/SO
characters frame data character sub-strings which represent byte values of
octal 240 or greater. The high-order bit of each byte in these sub-strings is set
off.

When FALSE, the translated data stream is in an eight-bit data format. SI/SO
characters are not inserted in the translated data text stream.

external-form input

INT:value

indicates the target format for the destination text translation. The four high-order
bits of this parameter (external-form.<0:3>) are reserved for use by the Kanji

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-39

MBCS_TANDEM_TO_EXTERNAL_ Procedure

EM3270 product. For all other uses, the four high order bits must be set to null.
The twelve low-order bits of this parameter (external-form.<4:15>) have this
meaning:

• IBM external formats

• Data stream without substring frames

0 IBM Kanji only

• Data stream using SO/SI substring frames

1 IBM Kanji EBCDIC

2 IBM Kanji/Katakana-EBCDIC

• Data stream using character attribute substring framing
(IBM 3270 data stream only)

11 IBM Kanji EBCDIC

12 IBM Kanji/Katakana-EBCDIC

• JEF external formats

• Data stream using KI/KO substring frames

3 JEF (Fujitsu) Kanji only

4 JEF (Fujitsu) Kanji EBCDIC

5 JEF (Fujitsu) Kanji/Katakana-EBCDIC

• Other external formats

8 JIS X0208 Kanji/JIS X0201 (was C6226/C6220)

finished-length output

INT .EXT:ref:1

contains the byte count of the part of the destination string containing data which
was successfully translated. When this parameter is missing, the translate function
attempts to return an estimate of the space required for the destination string.

shift-to-MBCS input

STRING .EXT:ref:*

is an optional pointer to a string containing the escape or control string used to
indicate a shift to a multibyte character set in the destination text string. This string
must always be in HP internal (not EBCDIC) character format, regardless of the
final form of the source string.

This procedure does not contain logic for identifying escape or control strings. The
control strings that are used are either the specified default control strings or user-
supplied alternative control strings. In earlier versions of this procedure, control
strings were null delimited. While null-delimited control strings are still supported,

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-40

MBCS_TANDEM_TO_EXTERNAL_ Procedure

an alternative format that supports control strings containing null bytes is now also
provided. The IBM Kanji character attribute (described following) is an example of
an alternative format.

The alternative format must be expressed as (null flag, count, string), where the
first byte is a null flag indicator of the alternative string form, the second byte
contains an integer value representing the length of the control string, and the third
and subsequent bytes represent the value of the control string.

The minimum length for a control string is 1 byte, and the maximum length is 20
bytes. If the procedure receives a zero-length control string, the results are
undefined.

When the control string values are not user-supplied, the default values used for
control strings expressed in the original null-delimited format are as follows:

IBM Kanji [%H0E,null]

JEF (Fujitsu) Kanji [%H88,null]

JIS X0208 Kanji [%H1B, %H24,%H42,null]

When the control string values are not user-supplied, the default values used for
control strings expressed in the alternative format are as follows:

IBM Kanji
 character attribute [null, %H03, %H88, %HA2, %H38]

shift-to-one-byte input

STRING .EXT:ref:*

is an optional pointer to a string containing the escape or control string used to
indicate a shift to a 1-byte character set in the source text string. This string must
always be in HP internal (not EBCDIC) character format, regardless of the final
form of the source string.

This procedure does not contain logic for identifying escape or control strings. The
control strings that are used are either the specified default control strings or user-
supplied alternative control strings. In earlier versions of this procedure, control
strings were null delimited. While null-delimited control strings are still supported,
an alternative format that supports control strings containing null bytes is now also
provided. The IBM Kanji character attribute (described following) is an example of
an alternative format.

The alternative format that supports user-supplied control strings containing null
bytes must be expressed as (null flag, count, string), where the first byte is a null
flag indicator of the alternative string form, the second byte contains an integer
value representing the length of the control string, and the third and subsequent
bytes represent the value of the control string.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-41

MBCS_TANDEM_TO_EXTERNAL_ Procedure

The minimum length for a control string is 1 byte, and the maximum length is 20
bytes. If the procedure receives a zero-length control string, the results are
undefined.

When the control string values are not user-supplied, the default values used for
control strings expressed in the original null-delimited format are as follows:

IBM Kanji [%H0F,null]

JEF (Fujitsu) Kanji [%H89,null]

JIS X0208 Kanji [%H18,%H28,%H4A,null]

When the control string values are not user-supplied, the default values used for
control strings expressed in the alternative format is as follows:

IBM Kanji
 character attribute [null, %H03, %H88, %HA2, %H00]

Considerations

• All parameters except shift-to-MBCS and shift-to-one-byte are necessary
for a string translation operation.

• In general, translations to external text formats yield text strings of increased
length. If less than this amount of space is allowed, the translation procedure might
fail due to insufficient space in the destination string. To determine the maximum
length of the destination string after translation, specify the source-length,
maximum-length, and external-form parameters, and the other formal
parameters can be omitted.

• In the HP internal character sets, text bytes having the byte value x20 are used to
represent blank characters or spaces in both the 1-byte and the 2-byte character
sets. A 1-byte blank is represented by a single x20 byte. A 2-byte blank is
represented by two consecutive x20 bytes. When converting text from the HP
internal format to an external format, some ambiguity might be introduced in
choosing the 1-byte or 2-byte mode for the external form of two or more
consecutive x20 bytes found in the internal text string.

For conversion of Kanji-only text, any 1-byte character (including a 1-byte blank) is
considered invalid and causes an error to be returned from this procedure. Two
consecutive 1-byte blanks in Kanji-only text is converted to a 2-byte blank in the
external format.

In mixed-text conversion operations, when blank bytes are encountered, the
conversion logic avoids changing the 1-byte/2-byte mode if possible. If compatible,
the external 1-byte/2-byte mode of the blanks is assumed to be the same as that of
the context before the location of the blank bytes. One or more blanks found at the
start of a field, or following other 1-byte characters, are treated as 1-byte blanks.
One or more pairs of blanks following other 2-byte characters are treated as 2-byte

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-42

MBCS_TANDEM_TO_EXTERNAL_ Procedure

blanks. This table summarizes the blank-handling logic followed in text conversion
operations from HP internal to other external formats.

• When MBCS_TANDEM_TO_EXTERNAL_ finds invalid or nondisplayable two-byte
characters in the source string, it maps them to reserved values as follows:

• The definition of nondisplayable and invalid characters varies with the target
mapping format.

Mapping between HP and IBM formats is done with mapping tables. There are
many HP 2-byte character codes that do not have defined fonts. These character
codes do not have defined character code targets in the IBM format, and thus they
are mapped to the nondisplayable character code.

Mapping between HP formats and Fujitsu or JIS formats is done by algorithm. The
HP internal character set is larger than the supported Fujitsu or JIS character set.
Valid 2-byte character codes from the HP internal character set are mapped to the
target nondisplayable character code.

• The most common definition of an invalid character code is a character pair that is
expected to be a 2-byte code but has an invalid first or second byte.

Any character mapped to either a nondisplayable or invalid character target code
becomes nonrecoverable for conversion to the original format.

Target Field Type
Internal Text
Number of Blanks Location in Field

External Text Number
and Type of Blanks

Kanji only 1 Any none (invalid)

Kanji only 2 Any one 2-byte

Mixed text 1 Any one 1-byte

Mixed text 2 Beginning two 1-byte

Mixed text 2 Following 1-byte two 1-byte

Mixed text 2 Following 2-byte one 2-byte

Note. The common representation for a 2-byte blank character in the Shift-JIS character code
is x8140, While HP subsystem software might not recognize and treat this character code as a
blank, if it is present in an internal text string, it will be mapped to a 2-byte blank when the text
is converted to an external Kanji character set.

Destination Format Invalid Pairs Map to Nondisplayable Pairs Map to

IBM %HFEFE %HFEFD

Fujitsu %HA0FE %HA0FD

JIS %H2222 %H2223

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-43

MBCS_TESTBYTE_ Procedure

MBCS_TESTBYTE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary
The MBCS_TESTBYTE_ procedure returns the identification of a specified byte
contained within a text string of mixed data.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

result returned value

INT

returns the identification of the byte contained in buffer[testindex].

0 1-byte character
1 First byte of a multibyte character
2 Intermediate byte of a multibyte character
3 Last byte of a multibyte character

#include <cextdecs(MBCS_TESTBYTE_)>

short MBCS_TESTBYTE_ (char *buffer
 ,short bytecount
 ,short *testindex
 ,[short charset]
 ,[short *charinfo]);

result := MBCS_TESTBYTE_ (buffer ! i
 ,bytecount ! i
 ,testindex ! i,o
 ,[charset] ! i
 ,[charinfo]); ! o

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-44

MBCS_TESTBYTE_ Procedure

buffer input

STRING .EXT:ref:*

is a pointer to a buffer containing a properly formed text string which may contain
any mixture of 1-byte and multibyte characters. A properly formed text string may
not begin with the second or subsequent byte of a multibyte character or end with
a fragment of a multibyte character. The buffer is not altered by the test
operation. This procedure does not alter the contents of the text string referenced
by buffer.

bytecount input

INT:value

is the number of bytes in the buffer text string.

testindex input, output

INT .EXT:ref:1

on input, specifies the string index of the byte in buffer to be tested.

On output, if result indicates that buffer[testindex] is part of a multibyte
character, then testindex contains the byte index of the first byte of the multibyte
character containing the tested byte.

charset input

INT:value

identifies the multibyte character set (MBCS) to be used. If charset is omitted or
null, the MBCS returned from the MBCS_DEFAULTCHARSET_ procedure is used.
This procedure does not examine or validate the character set identification, but
simply passes it on to the MBCS_CHAR_ procedure. All MBCSs supported by the
MBCS_CHAR_ procedure are supported by this procedure.

charinfo output

INT .EXT:ref:1

indicates the cause of failure of the requested test. This procedure returns file-
system error 29 to indicate missing required parameters; other error indications are
passed back from the MBCS_CHAR_ procedure. For returned values and
interpretations, see MBCS_CHAR_ Procedure. Upon return of an error from the
MBCS_CHAR_ procedure, the operation is aborted and processing is returned to
the caller.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-45

MBCS_TESTBYTE_ Procedure

Considerations

• A simple range check is not adequate to establish positive identification of MBCS
byte usages.

The set of second-byte values used by Shift-JIS Kanji characters overlaps the byte
value ranges of ASCII, 1-byte Katakana, and the set of byte values used for the
first byte of Shift-JIS Kanji characters. Taken out of context, the second byte of a
Shift-JIS character could be mistaken as an ASCII character, a 1-byte Katakana
character, or the first byte of a Kanji character.

A combination of relative position and value range analysis is required to correctly
establish usage identity as a 1-byte character or as a particular MBCS byte identity.
This is the basic purpose of the MBCS_TESTBYTE_ procedure.

• To obtain proper results from the use of this procedure, the caller must ensure that
the string referenced by the buffer parameter is a properly formed text string. A
properly formed text string meets these criteria:

• The first byte (buffer[0]) is either a 1-byte character or the first byte of an
MBCS character. It can be assumed that a displayable line of text input from a
terminal meets this requirement. Do not assume that an arbitrarily selected
extract from a text string meets this requirement.

• The last byte in a properly formed text string is either a 1-byte character or an
MBCS final byte. A line of text typed at a terminal in conversational mode does
not necessarily meet this requirement. (MBCS_TRIMFRAGMENT_
Procedure.) Do not assume that an arbitrarily selected extract from a text
string meets this requirement.

• This procedure does not alter the contents of the text string.

• The MBCS_TESTBYTE_ procedure tests isolated bytes in a text string for MBCS
characteristics. On each call to this procedure, the buffer text string is analyzed
from the beginning up to a point just past buffer[testindex].

Repetitive analysis of a text string from the beginning is not particularly efficient.
This procedure is not the function of choice for iterative operations where each
byte or character in a text string is to be tested and processed. For operations
where it is necessary to test and process each byte in a text string, greater
efficiency can be achieved by using a user-coded procedure which progressively
tests and processes as it works its way through the target text string. For a sample
user-coded procedure, see MBCS_CHAR_ Procedure.

Related Programming Manual
For programming information about the MBCS_TESTBYTE_ procedure, see the
Guardian Programmer’s Guide.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-46

MBCS_TRIMFRAGMENT_ Procedure

MBCS_TRIMFRAGMENT_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Related Programming Manual

Summary
The MBCS_TRIMFRAGMENT_ procedure detects and trims trailing multibyte
character fragments from text strings.

In conversational mode operations, a string read from a terminal might contain a partial
multibyte character at the end of the string; the result perhaps of a read operation of an
odd length. If the terminal operator attempts to enter a string of greater length than the
requested read count, the read operation will complete upon reaching the requested
read count. If the characters entered by the terminal operator were all 2-byte
characters, then the input byte which satisfies the read count becomes the first byte of
a 2-byte character. The second byte of the character is lost. Since multibyte
characters and 1-byte characters may be freely mixed in text strings, with a multibyte
character beginning at any byte location, a trailing fragment can occur at the end of
any conversational mode read operation. The multibyte character fragment is an
undesirable effect of the use of 1-byte I/O operations to handle multibyte characters.

Syntax for C Programmers

Syntax for TAL Programmers

#include <cextdecs(MBCS_TRIMFRAGMENT_)>

void MBCS_TRIMFRAGMENT_ (char *bytestring
 ,short *bytecount
 ,[short charset]
 ,[short *charinfo]);

CALL MBCS_TRIMFRAGMENT_ (bytestring ! i
 ,bytecount ! i,o
 ,[charset] ! i
 ,[charinfo]); ! o

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-47

MBCS_TRIMFRAGMENT_ Procedure

Parameters

bytestring input

STRING .EXT:ref:*

is a pointer to a buffer containing a text string which may contain any mixture of 1-
byte and MBCS characters. The content of the bytestring pointer is not altered
by the trim operation.

bytecount input, output

INT .EXT:ref:1

on input, is an integer variable containing the length in bytes of the text string
bytestring.

on output, is an integer variable containing the length in bytes of the text string
bytestring. The output value will be less than the input value when a multibyte
character fragment has been found and trimmed from the text string.

charset input

INT:value

identifies the multibyte character set (MBCS) to be used. If charset is omitted or
null, the MBCS returned from the MBCS_DEFAULTCHARSET_ procedure is used.
This procedure does not examine or validate the character set identification, but
simply passes it on to the MBCS_CHAR_ procedure. All MBCSs supported by the
MBCS_CHAR_ procedure are supported by this procedure.

charinfo output

INT .EXT:ref:1

indicates the cause of failure of the requested test. This procedure may return an
indication that the specified character set is not recognized (-2), or of missing
required parameters (file-system error 29).

Related Programming Manual
For programming information about the MBCS_TRIMFRAGMENT_ procedure, see the
Guardian Programmer’s Guide.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-48

MESSAGESTATUS Procedure

MESSAGESTATUS Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Related Programming Manual

Summary
MESSAGESTATUS determines if a particular message received through
READUPDATE has been canceled.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

is a value indicating the cancellation status of the indicated message:

 1 Message has been canceled.
 0 Message has not been canceled.
-1 No pending message is associated with the given tag (see “Considerations”).

message-tag input

INT:value

is the message tag returned from FILE_GETRECEIVEINFO_ or RECEIVEINFO
following receipt of the message. If omitted, the most recently received message
is indicated.

Considerations

• If a message is canceled, any information supplied to REPLY (which must still be
called) is not passed back to the message originator. A message can be canceled
because the originator called CANCEL, CANCELREQ, FILE_CLOSE_ , CLOSE, or

#include <cextdecs(MESSAGESTATUS)>

short MESSAGESTATUS ([short message-tag]);

status := MESSAGESTATUS ([message-tag]); ! i

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-49

MESSAGESYSTEMINFO Procedure

certain forms of AWAITIO; cancellation will also be caused by a stop of the
originating process, failure of the originator’s processor, or a network
communication failure.

• This procedure is best used for a program that is concerned about one particular
request. If a program deals with many requests concurrently and constantly
monitors $RECEIVE, use of system message -38 (queued message cancellation)
may be more appropriate. You can be notified when pending messages are
canceled with a system message -38 if SETMODE 80 has been enabled (see
SETMODE Procedure).

Related Programming Manual
For programming information about the MESSAGESTATUS procedure, see the
Guardian Programmer’s Guide.

MESSAGESYSTEMINFO Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
MESSAGESYSTEMINFO measures the current number of messages to or from a
process so it can issue a warning when a limit is nearly reached.
MESSAGESYSTEMINFO is used with CONTROLMESSAGESYSTEM.

You can use MESSAGESYSTEMINFO during checkout of a program that uses
CONTROLMESSAGESYSTEM, for example, to verify that initialization was done as
expected.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-50

MESSAGESYSTEMINFO Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns these file-system error numbers:

0 Successful, no error
2 Bad itemcode
21 Bad value
22 Bounds error
29 Missing parameter

See the Guardian Procedure Errors and Messages Manual for more information.

itemcode input

INT:value

specifies the item code of the information to be retrieved. See this list.

value output

INT .EXT:ref:1

returns the value indicated in this list.

#include <cextdecs(MESSAGESYSTEMINFO)>

short MESSAGESYSTEMINFO (short itemcode
 ,short *value);

error := MESSAGESYSTEMINFO (itemcode ! i
 ,value); ! o

Item Code Returned Value

0 Current limit on the number of messages to this process, as set by
CONTROLMESSAGESYSTEM.

1 Current limit on the number of messages from this process, as set
by CONTROLMESSAGESYSTEM.

4 The number of outstanding messages to this process.

5 The number of outstanding messages from this process.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-51

MOM Procedure
(Superseded by PROCESS_GETINFOLIST_

Considerations
MESSAGESYSTEMINFO is inherently tied to the internal workings of the message
system, so one or more of its functions might not be supported by future versions of
the message system. If it returns a nonzero error, the caller should record the error,
but should otherwise ignore the error.

MOM Procedure
(Superseded by PROCESS_GETINFOLIST_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
OSS Considerations

Summary

The MOM procedure provides a process with the 4-word process ID of its creator. The
process ID is a 4-word array, where process-id [0:2] contains the process name or
creation timestamp and process-id [3] contains the cpu,pin for the process.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

process-id output

INT:ref:4

is the 4-word array where MOM returns the process ID of the caller’s creator. For
an unnamed process, process-id is:

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

CALL MOM (process-id); ! o

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-52

MOM Procedure
(Superseded by PROCESS_GETINFOLIST_

[0].<0:1> 2
 .<2:7> Reserved
 .<8:15> System number (0 through 254)
[1:2] Low-order 32 bits of creation timestamp
[3].<0:3> Reserved
 .<4:7> processor number where the process is executing
 .<8:15> PIN assigned by the operating system to identify the

process in the processor

For a named local process, process-id is:

[0:2] $process-name
[3].<0:3> Reserved
 .<4:7> processor number where the process is executing
 .<8:15> PIN assigned by the operating system to identify the

process in the processor

For a named remote process, process-id is:

[0].<0:7> “\” (ASCII backslash)
 .<8:15> System number
[1:2] $process-name
[3].<0:3> Reserved
 .<4:7> processor number where the process is executing
 .<8:15> PIN assigned by the operating system to identify the

process in the processor

Considerations

• Calling MOM from a named process or process pair

If the caller is a single named process (that is, the caller is the primary process of a
named process pair with no backup process), zeros are returned in
process-id.

If the caller of MOM is the primary process of a named process pair and there is a
backup process, the process ID of the backup is returned.

If the caller of MOM is the backup process of a named process pair, the process ID
of the primary is returned.

• Passing the process ID to the system procedures

The process ID returned from MOM is suitable for passing directly to any file-
system procedure. (If you expand the process ID into a 12-word array and fill it with
blanks on the right before or after the call to MOM, you can pass the process ID as
a file name to any Guardian procedure.)

• Calling MOM from an adopted process

If another process has made itself the creator of the caller of MOM (through a call
to STEPMOM or PROCESS_SETINFO_), then the process ID of the adopting
process is returned.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-53

MONITORCPUS Procedure

• Network consideration

If a process’s creator is on a remote system, its process ID is returned by MOM in
network form. A process can use this fact to determine whether it is created
locally.

• Calling MOM from a high-PIN process

If the mom of the calling process is a high-PIN process, MOM returns a synthetic
process ID. A synthetic process ID contains a PIN value of 255 in place of a high-
PIN value, which cannot be represented by 8 bits.

• Calling MOM from a remote process with a long process name

If the mom of the calling process is a named process on a remote node and has a
process name consisting of more than five characters, the call to MOM fails: a TNS
Guardian process terminates with a limits exceeded trap (trap 5); an OSS or native
process receives a SIGLIMIT signal.

OSS Considerations
By default, an OSS process does not have a mom process; therefore, zeros are
returned in process-id. An OSS process can have a mom process if it was created
by one of the OSS tdm_spawn set of functions, the tdm_fork() function, or one of
the tdm_exec set of functions; see the reference pages either online or in the Open
System Services System Calls Reference Manual for details. An OSS process does
have a mom process if a mom process has been explicitly assigned by either the
PROCESS_SETINFO_ or STEPMOM procedure.

MONITORCPUS Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example

Summary
The MONITORCPUS procedure instructs the operating system to notify the application
process if a designated processor module either:

• Fails (indicated by the absence of an operating system “I’m alive” message)

• Returns from a failed to an operable state (that is, reloaded by means of a
command interpreter RELOAD command)

The calling application process is notified by means of a system message read through
the $RECEIVE file.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-54

MONITORCPUS Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

cpu-mask input

INT:value

is a bit that is set to “1,” corresponding to each processor module to be monitored:

<0> 1 processor module 0 to be monitored
<1> 1 processor module 1 to be monitored
.
.
.
<14> 1 processor module 14 to be monitored
<15> 1 processor module 15 to be monitored

0 means no notification occurs.

Messages

• processor down

System message -2 (processor down) is received if failure occurs with a processor
module that is being monitored (for the description and form of system messages,
see the Guardian Procedure Errors and Messages Manual). Please be aware that
this message expires in 3 minutes; it must be read before expiration or it will be
lost.

• processor up

System message -3 (processor up) is received if a reload occurs with a processor
module that is being monitored.

For a list of system messages sent to processes, see the Guardian Procedure Errors
and Messages Manual.

Example
CALL MONITORCPUS (%100000 '>>' BACKUP^CPU); ! monitor the
 ! backup CPU.

#include <cextdecs(MONITORCPUS)>

void MONITORCPUS (short cpu-mask);

CALL MONITORCPUS (cpu-mask); ! i

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-55

MONITORNET Procedure

MONITORNET Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
The MONITORNET procedure enables or disables receipt of system messages
concerning the status of processors in remote systems.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

enable input

INT:value

contains one of these values:

0 Disable receipt of messages
1 Enable receipt of messages

Considerations

• To receive status changes for local processors

MONITORNET only provides notification of status changes for remote processors.
To receive notification of status changes for local processors, an application
process must still call MONITORCPUS.

• Change in status of network processors

A process that has enabled MONITORNET receives a system message (-8, -100, -
110, -111, or -113) on $RECEIVE whenever a change in the status of a remote
processor occurs. The processor status bit masks have a 1 in bit cpu number to
indicate that the processor is up and a 0 to indicate that the processor is down.

#include <cextdecs(MONITORNET)>

void MONITORNET (short enable);

CALL MONITORNET (enable); ! i

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-56

MONITORNEW Procedure

See the Guardian Procedure Errors and Messages Manual for details on system
messages sent to processes.

MONITORNEW Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Consideration

Summary
The MONITORNEW procedure enables or disables receipt of the SETTIME and Power
On messages.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

enable input

INT:value

contains one of these values:

0 Disable receipt of messages
1 Enable receipt of messages

Consideration
The SETTIME and Power On messages are not received unless the process makes a
call to MONITORNEW with enable set to 1. To disable receipt of these messages,
the process must make another call, setting enable to 0.

#include <cextdecs(MONITORNEW)>

void MONITORNEW (short enable);

CALL MONITORNEW (enable); ! i

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-57

MOVEX Procedure

MOVEX Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary
MOVEX moves data between extended data segments without the need for absolute
addressing; it serves both privileged and nonprivileged users.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error code indicating the outcome of the call:

0 Successful call; the specified data was moved.
2 Either source-seg-id or dest-seg-id specified a nonexistent

extended data segment, or the destination data segment has read-only
access.

22 One of the parameters specifies an address that is out of bounds.

#include <cextdecs(MOVEX)>

short MOVEX ([short source-seg-id]
 ,char *source
 ,[short dest-seg-id]
 ,char *dest
 ,__int32_t byte-count);

error := MOVEX ([source-seg-id] ! i
 ,source ! i
 ,[dest-seg-id] ! i
 ,dest ! i
 ,byte-count); ! i

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-58

MOVEX Procedure

24 Either source-seg-id or dest-seg-id specified a privileged
segment ID (greater than 2047), but the caller was not privileged.

29 A required parameter is not supplied.

source-seg-id input

INT:value

specifies the segment ID of the extended data segment referenced by source. If
the relative segment in source does not indicate an extended data segment,
source-seg-id is ignored and may be omitted; otherwise it is required and must
indicate an existing extended data segment.

source input

STRING .EXT:ref

specifies the relative extended address of the source of the first byte to be moved.

dest-seg-id input

INT:value

specifies the segment ID of the extended data segment referenced by dest. If the
relative segment in dest does not indicate an extended data segment,
dest-seg-id is ignored and may be omitted. Otherwise, dest-seg-id is
required and must indicate an existing extended data segment.

dest input

STRING .EXT:ref

specifies the relative extended address of the first byte in the destination location.

byte-count input

INT (32):value

specifies the number of bytes to be moved from source to dest.

Considerations

• MOVEX works properly only on completely separate selectable segments. The
result from a MOVEX operation is undefined if the source and destination ranges
overlap. If these ranges overlap, then the move statements ':=' from TAL and '=:'
from pTAL should be used instead.

• Segment moves can be performed more efficiently using programming language
statements than using MOVEX to move data between:

• Areas within the same extended data segment

• Flat extended data segment

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-59

MYGMOM Procedure
(Superseded by PROCESS_GETINFOLIST_

• The currently in-use selectable segment and flat extended data segments

• nonextended relative locations

• extended and nonextended relative locations

• If the caller is privileged, no bounds checking is performed.

• This diagram indicates restrictions on data movement from the source to the
dest based upon the privileged state of the caller:

• MOVEX does not alter the status of the current in-use segment.

Related Programming Manual
For programming information about the MOVEX procedure, see the Guardian
Programmer’s Guide.

MYGMOM Procedure
(Superseded by PROCESS_GETINFOLIST_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Relative Segment Source Destination

0 current data ok ok

1 system data not allowed not allowed

2 current code not allowed not allowed

3 user code ok not allowed

>3 extended data
seg ID <= 2047

ok ok

>3 extended data
seg ID > 2047

privileged only privileged only

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-60

MYGMOM Procedure
(Superseded by PROCESS_GETINFOLIST_

Summary

The MYGMOM procedure provides a process that is a member of a batch job with the
process ID of its job ancestor (GMOM). See the NetBatch User’s Guide for information
on batch processing.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

process-id output

INT:ref:4

is a 4-word array where MYGMOM returns the process ID of the job ancestor in
network form.

Considerations

• A process may not always have a job ancestor. In that case, zeros are returned.

• The process ID returned from MYGMOM is suitable for passing directly to any file-
system procedure. (If you pad the process ID with blanks before or after the call to
MYGMOM, you can pass the process ID as a file name to any Guardian
procedure.)

• If the job ancestor of the calling process is a high-PIN process, MYGMOM returns
a synthetic process ID. A synthetic process ID contains a PIN value of 255 in
place of a high-PIN value, which cannot be represented by 8 bits.

• If the job ancestor of the calling process is a named process on a remote node and
has a process name consisting of more than five characters, the call to MYGMOM
fails: a Guardian TNS process terminates with a limits exceeded trap (trap 5); an
OSS or native process receives a SIGLIMIT signal.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

CALL MYGMOM (process-id); ! o

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-61

MYPID Procedure (Superseded
by PROCESSHANDLE_GETMINE_ Procedure and

Related Programming Manual
For programming information about batch processing and the MYGMOM procedure,
see the NetBatch User’s Guide.

MYPID Procedure
(Superseded
by PROCESSHANDLE_GETMINE_ Procedure
and PROCESSHANDLE_DECOMPOSE_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary

The MYPID procedure provides a process with its own processor and PIN number.
This one-word quantity has been called the PID of a process, with no connection to the
4-word process ID.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

cpu,pin returned value

INT

is the caller’s processor (bits <4:7>) and PIN number (bits <8:15>). Note that bits
<0:3> are always 0.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

cpu,pin := MYPID;

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-62

MYPROCESSTIME Procedure

Considerations
If the caller of the MYPID procedure is a high-PIN process, the call to MYPID fails: a
TNS Guardian process terminates with a limits exceeded trap (trap 5); an OSS or
native process receives a SIGLIMIT signal.

MYPROCESSTIME Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Related Programming Manual

Summary
The MYPROCESSTIME procedure returns the process execution time of the calling
process. Process time is the processor time in microseconds that the process has
consumed; processor time used for system procedures called is also included.

Syntax for C Programmers

 Syntax for TAL Programmers

Parameters

process-time returned value

FIXED

is a value representing the clock of the current process in microseconds.

Related Programming Manual
For programming information about the MYPROCESSTIME procedure, see the
Guardian Programmer’s Guide.

#include <cextdecs(MYPROCESSTIME)>

long long MYPROCESSTIME ();

process-time := MYPROCESSTIME;

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-63

MYSYSTEMNUMBER Procedure (Superseded by
NODENAME_TO_NODENUMBER_ Procedure or

MYSYSTEMNUMBER Procedure
(Superseded by
NODENAME_TO_NODENUMBER_ Procedure
or PROCESSHANDLE_GETMINE_ Procedure
and PROCESSHANDLE_DECOMPOSE_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Consideration

Summary

The MYSYSTEMNUMBER procedure provides a process with its own system number.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

sysnum returned value

INT

is the caller’s system number.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

sysnum := MYSYSTEMNUMBER;

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-64

MYTERM Procedure
(Superseded by PROCESS_GETINFOLIST_

Consideration

• Part of network or local system

This IF (skeleton) statement determines if you are running on a network system.

IF NOT (SYS^NUM := MYSYSTEMNUMBER) THEN
 ! not on network system

If the caller is running in a local nonnamed system, MYSYSTEMNUMBER returns
0. Since 0 is a valid system number, a process wishing to determine the name of
the system on which it is running can use this call.

CALL GETSYSTEMNAME(MYSYSTEMNUMBER, NAME);

A return of all blanks in a name indicates that the system is not part of a network,
or that it is a local system which is not named.

MYTERM Procedure
(Superseded by PROCESS_GETINFOLIST_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Considerations

Summary

The MYTERM procedure provides a process with the file name of its home terminal.
The file name returned from MYTERM is suitable for passing directly to any Guardian
procedure that accepts a file name in internal form.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-65

MYTERM Procedure
(Superseded by PROCESS_GETINFOLIST_

Syntax for TAL Programmers

file-name output

INT:ref:12

is a 12-word array where MYTERM returns the device name and the subdevice
name, if any, of the home terminal in one of these two forms:

$devname [#subdev-name]
$process-name [#subname]

Considerations

• The file name returned from MYTERM is the same form as that used by the file-
system procedures.

• The home terminal is always the same as the home terminal of a process’s true
creator (not the process that adopted it through STEPMOM or
PROCESS_SETINFO_), unless the home terminal is altered by SETMYTERM or
the home terminal option in PROCESS_CREATE_, PROCESS_SPAWN_,
NEWPROCESS, NEWPROCESSNOWAIT, OSS tdm_fork(), OSS
tdm_spawn(), or one of the OSS tdm_exec set of functions.

If the process calling MYTERM is a descendant of a command interpreter, then the
home terminal is the same as that of the command interpreter or that of an explicit
TERM specifier on the RUN command.

• If the home terminal is on a remote node and has either a device name consisting
of more than seven characters or a process name consisting of more than five
characters, the call to MYTERM fails; a Guardian TNS process terminates with a
limits exceeded trap (trap 5): an OSS or native process receives a SIGLIMIT
signal. If the home terminal is unnamed and its I/O process is running at a high
PIN, MYTERM also fails with a trap 5 or a SIGLIMIT signal.

CALL MYTERM (file-name); ! o

Guardian Procedure Calls (M)

Guardian Procedure Calls Reference Manual—522629-030
9-66

MYTERM Procedure
(Superseded by PROCESS_GETINFOLIST_

Guardian Procedure Calls Reference Manual—522629-030
10-1

10 Guardian Procedure Calls (N)
This section contains detailed reference information for all user-accessible Guardian
procedure calls beginning with the letter N. Table 10-1 lists all the procedures in this
section.

Table 10-1. Procedures Beginning With the Letter N

NEWPROCESS Procedure (Superseded by PROCESS_LAUNCH_ Procedure)

NEWPROCESSNOWAIT Procedure (Superseded by PROCESS_LAUNCH_ Procedure)

NEXTFILENAME Procedure (Superseded by FILENAME_FINDNEXT_ Procedure)

NO^ERROR Procedure

NODE_GETCOLDLOADINFO_ Procedure

NODENAME_TO_NODENUMBER_ Procedure

NODENUMBER_TO_NODENAME_ Procedure

NSK_FLOAT_IEEE TO TNS Procedures

NSK_FLOAT_TNS TO IEEE Procedures

NUMBEREDIT Procedure

NUMIN Procedure

NUMOUT Procedure

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-2

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
General Considerations
DEFINE Considerations
Batch Processing Considerations
Safeguard Considerations
OSS Considerations
Example
Related Programming Manual

Summary

The NEWPROCESS procedure is used to create a new process and, optionally, set a
number of process attributes. When a new process is created, its 4-word process ID is
returned to the caller.

You can use this procedure to create only Guardian processes, although you can call it
from a Guardian process or an OSS process. The program file must contain a
program for execution in the Guardian environment. The program file and any user
library file must reside in the Guardian name space.

DEFINEs for the process context of the creator can be propagated to a new process.
Further, any or all of the file names given in the filenames parameter can be DEFINE
names.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-3

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

Syntax for TAL Programmers

Parameters

filenames input

INT:ref:12 or INT:ref:36

is an array that contains the internal-format file name of the program to be run and,
optionally, two additional fields. The new process is created on the system where
the program file resides. If the program file name is in local form, the caller’s
system is assumed.

The program file must be in the Guardian name space and contain a program for
execution in the Guardian environment.

For the program file only, if you specify a file on the subvolume
$SYSTEM.SYSTEM and the file is not found, NEWPROCESS then searches on
the subvolume $SYSTEM.SYSnn. For information about file names, see
Appendix D, File Names and Process Identifiers.

The additional fields, which are used only if bit 1 of the priority parameter is set
to 1, are as follows:

filenames[12:23] = library-file

is the internal-format file name of a user library to be used by the process. The
user library must be on the same system as the process being created. If the
supplied name is in local form, the system where the process is created is
assumed. The library file must reside in the Guardian name space.

filenames[24:35] = swap-file

 is not used, but you can provide it for informational purposes. If supplied, the
swap file must be on the same system as the process being created. If the
supplied name is in local form, the system where the process is created is
assumed. Native processes swap to a file that is managed by the Kernel-
Managed Swap Facility. For more information on this facility, see the Kernel-

CALL NEWPROCESS (filenames ! i
 ,[priority] ! i
 ,[memory-pages] ! i
 ,[processor] ! i
 ,[process-id] ! o
 ,[error] ! o
 ,[name] ! i
 ,[hometerm] ! i
 ,[flags] ! i
 ,[jobid] ! i
 ,[errinfo] ! o
 ,[pfs-size]); ! i

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-4

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

Managed Swap Facility (KMSF) Manual. To reserve swap space for the
process, create the process using the PROCESS_LAUNCH_ procedure and
specify the Z^SPACE^GUARANTEE field of the param-list parameter.
Alternatively, use the nld utility to set native process attributes.

For TNS processes on RVUs preceding the D42 RVU, this field is the internal-
format file name of a file to be used as a swap file for the data stack. The
swap file must be on the same system as the process being created. If the
supplied name is in local form, the system where the process is created is
assumed.

For more information, see General Considerations on page 10-18.

priority input

INT:value

is a value consisting of three parts:

<0> is the debug bit. If priority.<0> = 1, the system sets a code
breakpoint on the first executable instruction of the program’s MAIN
procedure.

<1> determines use of the additional fields of the filenames parameter.
If priority.<1> = 1, the additional fields in filenames are used. If
priority.<1> = 0, these extra fields are ignored.

<2:7> should be 0.

<8:15> is the execution priority to be assigned to the new process {1:199}. If
priority.<8:15> = 0, the priority of the caller of NEWPROCESS is
used. If a value greater than 199 is specified, 199 is used.

If priority is omitted, the caller’s priority is used; this is equivalent to setting bits
<0> and <1> to 0.

memory-pages input

INT:value

for TNS processes, specifies the minimum number of 2048-byte memory pages
allocated to the new process for user data. The actual amount of memory
allocated is processor-dependent. If memory-pages is omitted or is less than the
value assigned when the program is compiled (or created with Binder), then the
compilation value is used. In any case, the maximum number of pages permitted
is 64.

For native processes, this parameter is ignored. To specify the maximum size of
the main stack, create a new process using the PROCESS_LAUNCH_ procedure
and specify the Z^MAINSTACK^MAX field of the param-list parameter.
Alternatively, use the nld utility to set process attributes.

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-5

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

processor input

INT:value

specifies the processor where the new process runs. If omitted, the new process
runs in the same processor as the caller.

process-id output

INT:ref:4

is a four-word array where NEWPROCESS returns the process ID of the new
process. If the new process was created in:

• The local system, then the local form of the process ID is returned.

• The remote system, then the network form of the process ID is returned. (A
new process is created on the same node where its program file resides.)

If no process was created, zero is returned in process-id.

Use a 12-word array if the process ID is to be passed to any of the appropriate file-
system procedures that accept file names, such as OPEN, provided if the larger
array is blank-filled on the right.

error output

INT:ref:1

returns two numbers indicating the outcome of the process creation attempt. The
numbers each occupy one byte in a 16-bit word as follows:

error.<0:7> error
error.<8:15> error-detail (provides additional information about the

error)

If the error value exceeds 255 (will not fit in 8 bits), it is reported as 119. If the
detail value exceeds 255, both 8-bit fields contain 119. Because of the limited
capacity of this parameter, it has been superseded by the errinfo parameter,
which returns the full 16-bit value of each number.

Table 10-2 on page 10-7 summarizes the error values and relates them to
process creation errors (as issued by PROCESS_LAUNCH_) described in
Table 12-4 on page 12-120.

name input

INT:ref:3

if present, is a name to be given to the new process. It is entered into the
destination control table (DCT). name is of the form:

name[0:2] = $process-name

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-6

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

process-name must be preceded by a dollar sign (“$”) and consists of a
maximum of five alphanumeric characters; the first character must be alphabetic.
(If the process is created on a remote system and it is necessary to be able to
access the process, its name should consist of, at most, four characters and the
“$”; this leaves a byte for the system to insert the node number.) Note that
$process-name is the first 3 words of the 4-word process ID.

If name is not supplied, the process ID of the new process is of the unnamed form,
containing a timestamp in words [0:2] instead of $process-name, with the
cpu,pin of the new process in the fourth word. The process-name will not be
entered into the DCT.

hometerm input

INT:ref:12

is the internal-format file name of the home terminal for the new process. The
specified value must designate a terminal or a process. The default is the home
terminal of the caller.

flags input

INT:value

flags.<10:12> are used to supply the DEFINE mode for the new process:

flags.<10> 0 Use the DEFINE mode of caller
1 Use value in flags.<12>

flags.<12> 0 DEFINEs disabled
1 DEFINEs enabled

flags.<14:15> set the debugging attributes for the new process:

flags.<14> 1 Saveabend file creation
0 No saveabend file creation

flags.<15> 1 INSPECT
0 DEBUG

When flags is specified, bits <14> and <15> are ORed with the corresponding
flags in the object code file. If flags.<14> is set but flags.<15> is not, then
flags.<15> is also set.

If flags is omitted, then the defaults are set from the flags in the object code file
(set by compiler directives at compile time, after the object flags are ORed with the
caller’s debugging attributes).

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-7

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

jobid input

INT:value

is an integer identifying a new job to be created with the new process as the first
process of the job and the caller as the GMOM of the new process. This integer is
used by the NetBatch Scheduler. (See Batch Processing Considerations on
page 10-21)

errinfo output

INT .EXT:ref:2

returns two numbers indicating the outcome of the process creation attempt, as
follows:

errinfo[0] error

errinfo[1] error-detail (provides additional information about the error)

Table 10-2 summarizes the error values and relates them to process creation
errors (as issued by PROCESS_LAUNCH_) described in Table 12-4 on
page 12-120.

pfs-size input

INT(32):value

meaningful only if the process is being created on a pre-G06 RVU. On G06 and
later RVUs, this value is range checked, but is otherwise ignored.

If present and nonzero, this parameter specifies the size in bytes of the process file
segment (PFS) of the new process. In G-series RVUs, maximum PFS size is 8
MB. In H-series RVUs, maximum PFS size is 32 MB. A value in this range
overrides the nld or Binder value stored in the program file. If you omit pfs-size
or specify 0:

• the nld or Binder value is used if it is nonzero

• a default value is used otherwise
Table 10-2. Summary of NEWPROCESS Error Codes (page 1 of 12)

error

<0 : 7>

Corresponding Process Creation Error (see Table 12-4 on
page 12-120)
<8:15>

0 No error, process created

1 Process had undefined externals, but was started

2 No process control block available

* For a list of all file-system and DEFINE errors, see the Guardian Procedure Errors and Messages Manual.

**When error.<8:15> indicates the number of a shared run-time library (SRL), the number represents

either the public SRL relative number, or 00 for a native user library. For more information on shared run-time

libraries (SRLs) see the nld and noft Manual

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-8

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

3 File-system error occurred on program file:

<8:15> is file-system error number*

4 Unable to allocate map

5 File-system error occurred on swap file:

<8:15> is a file-system error number*

6 Invalid file format:

2 Program file is not a disk file.

3 Library file is not a disk file.

4 Program file does not have file code 100 or 700.

5 Library file does not have file code 100 or 700.

6 Program file does not have correct file structure.

7 Library file does not have correct file structure.

8 Program file requires a later RVU of the operating
system.

9 Library file requires a later RVU of the operating
system.

10 Program file does not have a main procedure.

13 Library file has a main procedure.

14 Program file has a stack definition of zero pages.

16 Program file has an invalid procedure entry point
(PEP).

17 Library file has an invalid procedure entry point (PEP).

18 Initial extended segment information in program file is
inconsistent.

19 Initial extended segment information in library file is
inconsistent.

20 Program file resident size is greater than the code
area length.

21 Library file resident size is greater than the code area
length.

Table 10-2. Summary of NEWPROCESS Error Codes (page 2 of 12)

error

<0 : 7>

Corresponding Process Creation Error (see Table 12-4 on
page 12-120)
<8:15>

* For a list of all file-system and DEFINE errors, see the Guardian Procedure Errors and Messages Manual.

**When error.<8:15> indicates the number of a shared run-time library (SRL), the number represents

either the public SRL relative number, or 00 for a native user library. For more information on shared run-time

libraries (SRLs) see the nld and noft Manual

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-9

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

6, continued 22 The file was not prepared by the nld utility or the
Binder program.

23 Library file was not prepared by the nld utility or the
Binder program.

24 Program file has undefined data blocks.

25 Library file has undefined data blocks.

26 Program file has data blocks with unresolved
references.

27 Library file has data blocks with unresolved
references.

28 Program file has too many TNS code segments.

29 Library file has too many TNS code segments.

30 Native code length in the program file is invalid.

31 Native code length in the library file is invalid.

32 Native code address in the program file is invalid.

33 Native code address in the library file is invalid.

34 Native data length in the program file is invalid.

35 Native data length in the library file is invalid.

36 Native data address in the program file is invalid.

37 Native data address in the library file is invalid.

38 Program file has too many native code segments.

39 Library file has too many native code segments.

40 Program file has invalid native resident areas.

41 Library file has invalid native resident areas.

42 Accelerator header in program file is invalid.

43 Accelerator header in library file is invalid.

44 UC (user code) option was not used when the
program file was accelerated.

45 UL (user library) option was not used when the library
file was accelerated.

Table 10-2. Summary of NEWPROCESS Error Codes (page 3 of 12)

error

<0 : 7>

Corresponding Process Creation Error (see Table 12-4 on
page 12-120)
<8:15>

* For a list of all file-system and DEFINE errors, see the Guardian Procedure Errors and Messages Manual.

**When error.<8:15> indicates the number of a shared run-time library (SRL), the number represents

either the public SRL relative number, or 00 for a native user library. For more information on shared run-time

libraries (SRLs) see the nld and noft Manual

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-10

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

6, continued 46 Program file has entry in native fixup list with invalid
external entry point (XEP) index value or invalid code
address value.

47 Library file has entry in native fixup list with invalid
external entry point (XEP) index value or invalid code
address value.

48 Accelerated program file has external procedure
identifier list (EPIL), internal procedure identifier list
(IPIL), or external entry point table with incorrect
format.

49 Accelerated library file has external procedure
identifier list (EPIL), internal procedure identifier list
(IPIL), or external entry point table with incorrect
format.

50 UC (user code) was accelerated using the wrong
Accelerator option (UC, UL, SC, or SL).

51 UL (user library) was accelerated using the wrong
Accelerator option (UC, UL, SC, or SL).

52 Program file was accelerated with incompatible
version of the Accelerator.

53 Library file was accelerated with incompatible version
of the Accelerator.

54 Program file has invalid callable gateway (GW) table.

55 Library file has invalid callable gateway (GW) table.

56 Wrong processor type is target in program file.

57 Wrong processor type is target in library file.

58 Program file has inconsistent native fixup list
information.

59 Library file has inconsistent native fixup list
information.

60 An internal structure of the program file contains an
error.

6, continued 61 An internal structure of the library file contains an error.

Table 10-2. Summary of NEWPROCESS Error Codes (page 4 of 12)

error

<0 : 7>

Corresponding Process Creation Error (see Table 12-4 on
page 12-120)
<8:15>

* For a list of all file-system and DEFINE errors, see the Guardian Procedure Errors and Messages Manual.

**When error.<8:15> indicates the number of a shared run-time library (SRL), the number represents

either the public SRL relative number, or 00 for a native user library. For more information on shared run-time

libraries (SRLs) see the nld and noft Manual

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-11

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

62 An internal structure of the program file contains an
error.

63 An internal structure of the library file contains an error.

64 An internal structure of the program file has an entry
point value of 0.

65 An internal structure of the library file has an entry
point value of 0.

66 An internal structure of the program file contains an
error.

67 An internal structure of the library file contains an error.

68 The list of unresolved procedure names in the
program file contains an error.

69 The list of unresolved procedure names in the library
file contains an error.

70 The fixup computed an invalid file offset to the code
area of the program file.

71 The fixup computed an invalid file offset to the code
area of the library file.

72 The program file has an invalid fixup item.

73 The library file has an invalid fixup item.

74 An internal structure of the program file contains an
error.

75 An internal structure of the library file contains an error.

76 The program file has an instruction at a call site that is
not the type expected for its fixup item.

77 The library file has an instruction at a call site that is
not the type expected for its fixup item.

6, continued 78 The header of a native program file is not in correct
format.

79 The header of a native library file is not in correct
format.

80 The code in the program file starts at the wrong virtual
address.

Table 10-2. Summary of NEWPROCESS Error Codes (page 5 of 12)

error

<0 : 7>

Corresponding Process Creation Error (see Table 12-4 on
page 12-120)
<8:15>

* For a list of all file-system and DEFINE errors, see the Guardian Procedure Errors and Messages Manual.

**When error.<8:15> indicates the number of a shared run-time library (SRL), the number represents

either the public SRL relative number, or 00 for a native user library. For more information on shared run-time

libraries (SRLs) see the nld and noft Manual

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-12

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

81 The code in the library file starts at the wrong virtual
address.

82 The program file has too much data for the main stack.

84 The code area of the program file is too large.

85 The code area of the library file is too large.

86 The program file has a gateway (GW) table but no
callable procedures.

87 The library file has a gateway (GW) table but no
callable procedures.

89 The file codes of the program file and library file do not
match.

90 The program file being started can run only in the
Guardian environment and it is being started in the
OSS environment, or vice versa.

91 The library file being started can run only in the
Guardian environment and it is being started in the
OSS environment, or vice versa.

92 The program and the library conflict on global data
mapping. This error is reported on the program. The
user library selected is not compatible with the user
library specified when the nld utility or the Binder
program originally created the program object file.

94 The program expects to import variable names from
the library and the library is not exporting any.

6, continued 96 The program file uses a shared run-time library (SRL)
and is switching to a new library, but the program was
accelerated by an old version of the Accelerator
program that does not support SRL data relocation at
fixup time. Use a version of the Accelerator program
provided with the D30.00 or later RVU of the operating
system.

Table 10-2. Summary of NEWPROCESS Error Codes (page 6 of 12)

error

<0 : 7>

Corresponding Process Creation Error (see Table 12-4 on
page 12-120)
<8:15>

* For a list of all file-system and DEFINE errors, see the Guardian Procedure Errors and Messages Manual.

**When error.<8:15> indicates the number of a shared run-time library (SRL), the number represents

either the public SRL relative number, or 00 for a native user library. For more information on shared run-time

libraries (SRLs) see the nld and noft Manual

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-13

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

97 The library file uses a shared run-time library (SRL)
and is switching to a new library, but the program was
accelerated by an old version of the Accelerator
program that does not support SRL data relocation at
fixup time. Use a version of the Accelerator program
provided with the D30.00 or later RVU of the operating
system.

98 The program file has no code spaces.

99 The library file has no code spaces.

100 The program file is not executable. Either it was not
linked with the nld utility or it was not linked correctly.

101 The library file is not executable. Either it was not
linked with the nld utility or it was not linked correctly.

102 The program file is not executable because it was
linked with an incompatible version of the nld utility.

103 The library file is not executable because it was linked
with an incompatible version of the nld utility.

104 The program file is not executable because it has
more than one HP information header. An error
occurred during the linking of the program file.

105 The library file is not executable because it has more
than one HP information header. An error occurred
during the linking of the library file.

106 The program file is not executable because it has
more than one REGINFO information header. An error
occurred during the linking of the program file.

6, continued 107 The library file is not executable because it has more
than one REGINFO information header. An error
occurred during the linking of the library file.

108 The program file is not executable because it does not
have a GINFO information header. An error occurred
during the linking of the program file.

109 The library file is not executable because it does not
have GINFO information header. An error occurred
during the linking of the library file.

Table 10-2. Summary of NEWPROCESS Error Codes (page 7 of 12)

error

<0 : 7>

Corresponding Process Creation Error (see Table 12-4 on
page 12-120)
<8:15>

* For a list of all file-system and DEFINE errors, see the Guardian Procedure Errors and Messages Manual.

**When error.<8:15> indicates the number of a shared run-time library (SRL), the number represents

either the public SRL relative number, or 00 for a native user library. For more information on shared run-time

libraries (SRLs) see the nld and noft Manual

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-14

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

110 The program file is not executable because it does not
have either a HP information header, a REGINFO
information header, or a text header. An error occurred
during the linking of the program file.

111 The library file is not executable because it does not
have either a HP information header, a REGINFO
information header, or a text header. An error occurred
during the linking of the library file.

112 The program file specifies too many shared run-time
libraries (SRLs).

113 The library file specifies too many shared run-time
libraries (SRLs).

114 The program file specifies duplicate shared run-time
libraries (SRLs).

115 The library file specifies duplicate shared run-time
libraries (SRLs).

117 The shared run-time library (SRL) does not export any
procedures.

121 The shared run-time library (SRL) does not have a file
code of 700.

7 Unlicensed privileged program.

8 Process name error:

<8:15> is a file-system error number*.

9 Library conflict.

10 Unable to communicate with system monitor process:

<8:15> is a file-system error number*.

11 File-system error occurred on library file:

<8:15> is a file-system error number*.

12 Program file and library file specified are same file.

13 Extended data segment initialization error:

<8:15> is a file-system error number*.

14 Extended segment swap file error:

<8:15> is a file-system error number*.

Table 10-2. Summary of NEWPROCESS Error Codes (page 8 of 12)

error

<0 : 7>

Corresponding Process Creation Error (see Table 12-4 on
page 12-120)
<8:15>

* For a list of all file-system and DEFINE errors, see the Guardian Procedure Errors and Messages Manual.

**When error.<8:15> indicates the number of a shared run-time library (SRL), the number represents

either the public SRL relative number, or 00 for a native user library. For more information on shared run-time

libraries (SRLs) see the nld and noft Manual

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-15

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

15 Invalid home terminal:

<8:15> is a file-system error number*.

16 I/O error to home terminal:

<8:15> is a file-system error number*.

17 DEFINE context propagation error:

<8:15> is a propagation error number:

 0 Unable to convert a DEFINE name to network form
(see DEFINE Considerations on page 10-21)

 2 Excessive number of DEFINES declared (see DEFINE
Considerations on page 10-21)

 3 Invalid DEFMODE supplied

18 Object file with an invalid process device subtype (see General
Considerations on page 10-18)

19 Process device subtype specified in backup process not the same as
that in the primary process

20 DSC error: invalid ZZPIM file (this error is returned only to privileged
callers on D-series RVUs)

21 DSC error: dynamic IOP error (this error is returned only to privileged
callers on D-series RVUs)

22 pfs-size out of range.

23 Cannot create PFS:

<8:15> is a file-system error number*.

24 An unknown error number was returned from a remote system
(probably running another level of software):

<8:15> is an unknown error number*.

25 Unable to allocate a privileged stack for the process

26 Unable to lock the privileged stack for the process

27 Unable to allocate a main stack for the process

28 DSC error: unable to lock the main stack of a native IOP (this error
returned only to privileged callers on D-series RVUs)

29 Security inheritance failure

Table 10-2. Summary of NEWPROCESS Error Codes (page 9 of 12)

error

<0 : 7>

Corresponding Process Creation Error (see Table 12-4 on
page 12-120)
<8:15>

* For a list of all file-system and DEFINE errors, see the Guardian Procedure Errors and Messages Manual.

**When error.<8:15> indicates the number of a shared run-time library (SRL), the number represents

either the public SRL relative number, or 00 for a native user library. For more information on shared run-time

libraries (SRLs) see the nld and noft Manual

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-16

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

30 Unable to allocate the native globals of a native process

31 Unable to lock the native globals of a native IOP (this error returned
only to privileged callers)

32 Main stack maximum value too large

33 Heap maximum value too large

34 Space guarantee value too large

35 Process creation request specifies duplicate shared run-time libraries
(SRLs); error.<8:15> contains the numbers** of the duplicate SRLs in
the form xxyy (where xx is the first SRL and yy is the duplicate SRL)

36 Unable to find a shared run-time library (SRL) specified by the
program file; error.<8:15> contains the SRL number** that could not
be found

37 Unable to find a shared run-time library (SRL) specified by another
SRL; error.<8:15> contains the SRL numbers** in the form xxyy
(where xx is the SRL that specifies the yy SRL)

38 Process creation request specifies too many shared run-time libraries
(SRLs); error.<8:15> contains the maximum number of SRLs that can
be specified

39 The program file requires fixups to a shared run-time library (SRL)
that is unavailable because it is running; error.<8:15> contains the
SRL number**

40 A shared run-time library (SRL) requires fixups to another SRL that is
unavailable because it is running; error.<8:15> contains the SRL
numbers** of the two SRLs in the form xxyy (where xx is the SRL that
requires the fixup to the running yy SRL)

41 Security violation; Program file is not licensed but a shared run-time
library (SRL) is licensed and has instance data; error.<8:15> contains
the licensed SRL number**

42 Security violation; Program file is licensed but a shared run-time
library (SRL) is not licensed; error.<8:15> contains the unlicensed
SRL number**

43 Program file requires a symbol from a shared run-time library (SRL)
but the SRL is not exporting it; error.<8:15> contains the SRL
number** that does not export the required symbol

47 Requested swap space for the process cannot be guaranteed

Table 10-2. Summary of NEWPROCESS Error Codes (page 10 of 12)

error

<0 : 7>

Corresponding Process Creation Error (see Table 12-4 on
page 12-120)
<8:15>

* For a list of all file-system and DEFINE errors, see the Guardian Procedure Errors and Messages Manual.

**When error.<8:15> indicates the number of a shared run-time library (SRL), the number represents

either the public SRL relative number, or 00 for a native user library. For more information on shared run-time

libraries (SRLs) see the nld and noft Manual

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-17

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

48 Number of shared run-time libraries (SRLs) specified by a shared
run-time library is incorrect; error.<8:15> contains the SRL number**
that caused the error

49 A shared run-time library (SRL) has undefined externals; error.<8:15>
contains the SRL number** that has undefined externals

50 Number of shared run-time libraries (SRLs) specified for the program
file is incorrect

51 Number of shared run-time libraries (SRLs) specified for the library
file is incorrect

52 Security violation; a shared run-time library (SRL) must be licensed to
be used by callable or privileged code

53 Unable to obtain global virtual space

54 Mismatch between the symbolic reference in the importing module
and the actual type in the exporting module

55 There was an unresolved external reference for data

56 Error detail contains these subcodes:

 1 IEEE Floating Point unavailable on this CPU

 2 Unrecognized floattype in object file

 3 Conflicting floattype values in object files

119 Error returned in error.<0:7> too large to fit into one byte; instead of
the error parameter, specify the errinfo parameter, which is a two-
word parameter, to obtain complete error information

3xx Invalid file format on shared run-time library (SRL) number** xx.;
errinfo contains one of these error subcodes:

 1 The file indicated by the DEFINE is not a disk file.

 3 The file indicated by the DEFINE does not have the
correct file structure.

 11 The shared run-time library (SRL) was not prepared by
nld utility.

 40 The shared run-time library (SRL) code starts at the
wrong virtual address, has invalid text, or invalid data.

 42 The shared run-time library (SRL) code area is too
large.

Table 10-2. Summary of NEWPROCESS Error Codes (page 11 of 12)

error

<0 : 7>

Corresponding Process Creation Error (see Table 12-4 on
page 12-120)
<8:15>

* For a list of all file-system and DEFINE errors, see the Guardian Procedure Errors and Messages Manual.

**When error.<8:15> indicates the number of a shared run-time library (SRL), the number represents

either the public SRL relative number, or 00 for a native user library. For more information on shared run-time

libraries (SRLs) see the nld and noft Manual

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-18

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

General Considerations

• When bit 1 of priority is set to 1

To specify only one of the two extra fields, the calling process must set
priority.<1> to 1 and fill the file-name not specified with blanks.

If library-file:

• is specified, unresolved external references are resolved first from the
specified library-file, then from the system library.

• is specified and library-file[0] is 0 (binary), then the library file used by
the process when it was last run is removed, and the process runs with no
library file. (The references that were previously resolved on the user library
are resolved on the system library.)

• is not specified, the program runs with the library file previously associated with
the program file, if any. For TNS and non-PIC native programs, but not for PIC

 43 The shared run-time library (SRL) either has a
gateway (GW) table but no callable procedures or has
gateways that are not in the (GW) area.

 50 The shared run-time library (SRL) is not executable.
Either it was not linked with the nld utility or it was not
linked correctly.

 55 The shared run-time library (SRL) is not executable
because it does not have either a HP information
header, a REGINFO information header, or a text
header. An error occurred during the linking of the
program file.

 56 The process creation request specifies too many
shared run-time libraries (SRLs).

 58 The shared run-time library (SRL) does not export any
procedures.

 60 The shared run-time library (SRL) does not have a file
code of 700.

5xx File-system error on shared run-time library (SRL) number xx.**;
errinfo contains a file-system error number*

Table 10-2. Summary of NEWPROCESS Error Codes (page 12 of 12)

error

<0 : 7>

Corresponding Process Creation Error (see Table 12-4 on
page 12-120)
<8:15>

* For a list of all file-system and DEFINE errors, see the Guardian Procedure Errors and Messages Manual.

**When error.<8:15> indicates the number of a shared run-time library (SRL), the number represents

either the public SRL relative number, or 00 for a native user library. For more information on shared run-time

libraries (SRLs) see the nld and noft Manual

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-19

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

programs, that association can be changed by running the program with a
specified library (or by specifying none). The association can be set by the
Binder or linker. For more information about TNS user libraries, see the Binder
Manual. For more information about TNS/R native user libraries and shared
run-time libraries, see the nld and noft Manual. For more information about
TNS/E native user libraries and shared run-time libraries, see the eld Manual
and the enoft Manual. For more information about dynamic-link libraries
(including native user libraries used with PIC programs), see the ld and rld
Reference Manual.

For TNS processes on RVUs preceding the D42 RVU, if swap-file:

• is specified and a file of that name exists, that file is used for memory swapping
of the user data stack during execution of the process; if no file of that name
exists, a file of that name and of the necessary size is created and used for
swapping.

• is not specified, a =_DEFAULTS DEFINE swap-file is used if available,
otherwise a temporary file is created on the disk where the program file
resides.

• specifies only the disk device name (filling the rest of the file name with
blanks), a temporary file is created on the specified disk device.

• Creation of the backup of a named process pair

If the backup of a named process pair is created, the backup process becomes the
“creator” of the primary (that is, the caller to NEWPROCESS).

• Program file and user library file differences

A “user library” is an object file containing one or more procedures. The difference
between a program file and a library file is that the library file cannot contain a main
procedure. Undefined externals from a library are resolved only from the system
library. A program file must contain a main procedure. For more information about
TNS user libraries, see the Binder Manual. For more information about TNS/R
native user libraries and shared run-time libraries, see the nld and noft Manual. For
more information about TNS/E native user libraries and shared run-time libraries,
see the eld Manual and the enoft Manual. For more information about dynamic-link
libraries (including native user libraries used with PIC programs), see the ld and rld
Reference Manual.

• Library conflict—NEWPROCESS error

The library file for a process can be shared by any number of processes.
However, when a TNS or non-PIC native program file is shared by two or more
processes, all processes must have the same user library configuration; that is, all
processes sharing the program either have the same user library, or they have no
user library. An error 9 (“library conflict”) occurs when a copy of the running
program runs with a different library configuration than was specified in the call to
NEWPROCESS.

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-20

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

• Startup messages and NEWPROCESS

The caller of NEWPROCESS has the responsibility to format and send a startup
message to the new process, if one is required. For more information on the
startup message, see the Guardian Procedure Errors and Messages Manual.

• Device subtypes for named processes

Process device subtype is an object file attribute that can be set when compiling or
linking a program. FILEINFO, DEVICEINFO, and other information procedures
return the device type and subtype of a named process. A process with a device
subtype other than zero must be named.

There are 63 device subtypes available (0 is the default subtype):

48 - 63 are for general use. Any user may create a named process with a
process subtype in this range.

1 - 47 are reserved for definition by HP. Currently, 1 is a CMI process, 2 is a
security monitor process, 30 is a device simulation process, and 31 is a
spooler collector process. Additionally, for subtypes 1 - 15, if the caller
of NEWPROCESS does not have a creator access ID of the Super ID,
the object file is not LICENSED, or the object file is not PROGIDed to
the Super ID, NEWPROCESS rejects the request with an error.

• HP reserved process names

The operating system reserved process name space includes these names:
$Xname, $Yname, and $Zname, where name is from 1 through 4 alphanumeric
characters. You should not use names of this form in any application. System-
generated process names (from PROCESS_LAUNCH_, PROCESS_SPAWN_,
PROCESS_CREATE_ , NEWPROCESS[NOWAIT], PROCESSNAME_CREATE_ ,
CREATEPROCESSNAME and CREATEREMOTENAME procedures) are selected
from this set of names. For more information about reserved process names, see
Appendix B, Reserved Process Names.

• Creator access ID (CAID) and process access ID (PAID)

The creator access ID of the new process is always the same as the process
access ID of the creator process. The process access ID of the new process is the
same as that of the creator process unless the program file has the PROGID
attribute set; in that case the process access ID of the new process is the same as
the user ID of the program file’s owner and the new process is always local.

• NEWPROCESS and low PINs

Processes created by NEWPROCESS always have low PINs because a high PIN
cannot fit into a 4-word process ID.

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-21

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

DEFINE Considerations

• DEFINEs from the process context of the caller are propagated to the new
process. DEFINEs are propagated to the new process according to the DEFINE
mode of the new process. Buffer space for DEFINEs being propagated to a new
process is limited to 2 MB whether the process is local or remote. However, the
caller can propagate only as many DEFINEs as the child’s PFS can accommodate
in the buffer space for the DEFINEs themselves and in the operational buffer space
needed to do the propagation. The maximum number of DEFINEs that can be
propagated varies depending upon the size of the DEFINEs being passed. For an
estimate of the size of each type of DEFINE, see DEFINESAVE Procedure.

• When a process is created, its DEFINE working set is initialized with the default
attributes of class MAP.

• Any or all of the three filenames in the filenames parameter may be DEFINE
names; NEWPROCESS will use the disk volume or file given in the DEFINE. If
program-file is a DEFINE name but no such DEFINE exists, the appropriate
error is returned. If either of the other names, library-file or swap-file, is a
logical name but the DEFINE is missing, the procedure will behave as if the file
name was not present in the call. This characteristic of accepting absence of
DEFINEs provides the programmer with a convenient mechanism which allows,
but does not require, user specification of library or swap file location.

• Each process has an associated count of the changes to its context. This count is
incremented each time the procedures DEFINEADD, DEFINEDELETE, and
DEFINEDELETEALL are invoked and a consequent change to the process context
occurs. In the case of DEFINEDELETE and DEFINEDELETEALL the count is
incremented by one even if more than one DEFINE is deleted. The count is also
incremented if the DEFINE mode of the process is changed. If a call to
CHECKDEFINE causes a DEFINE in the backup to be altered, deleted or added,
then the count for the backup process is incremented. This count is 0 for newly-
created processes, and new processes do not inherit the count of their creators.

Batch Processing Considerations

• When the process being created is part of a batch job, NEWPROCESS sends a
job process creation message to the job ancestor of the batch job. (See the
discussion of “job ancestor” in the Guardian Programmer’s Guide.) The message
identifies the new process and contains the job ID as originally assigned by the job
ancestor.

This enables the job ancestor to keep track of all the processes belonging to a
given job.

For the format of the job process creation message, see the Guardian Procedure
Errors and Messages Manual.

Note. The job ancestor facility is intended for use by the NetBatch product. Other applications
that use this facility might be incompatible with the NetBatch product.

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-22

NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

• NEWPROCESS can create a new process and establish that process as a
member of the caller’s batch job. In that case the caller’s job ID is propagated to
the new process. If the caller is part of a batch job, to start a new process that is
part of the caller’s batch job, omit the jobid parameter.

• NEWPROCESS can create a new process separate from any batch job, even if the
caller is a process that belongs to a batch job. In that case the job ID of the new
process is 0. To start a new process that is not part of a batch job, specify 0 for
jobid.

• NEWPROCESS can create a new batch job and establish the new process as a
member of the newly created batch job. In that case, the caller becomes the job
ancestor of the new job; the job ID supplied by the caller becomes the job ID of the
new process. To start a new batch job, specify a nonzero value for jobid.

A job ancestor must not have a process name that is greater than four characters
(not counting the dollar sign). When the caller of NEWPROCESS is to become a
job ancestor, it must conform to this requirement.

• When jobid is not supplied:

• If the caller is not part of a batch job, neither is the newly created process; its
job ID is 0.

• If the caller is part of a batch job, the newly created process is part of the same
job because its job ID is propagated to the new process.

• Once a process belongs to a batch job, it remains part of the job.

Safeguard Considerations
For information on processes protected by Safeguard, see the Safeguard Reference
Manual.

OSS Considerations

• You cannot create an OSS process using the NEWPROCESS procedure.
NEWPROCESS returns error 12 if you try.

• You can call NEWPROCESS from an OSS process to create a Guardian process.

• Every Guardian process has these security-related attributes for accessing OSS
objects. These attributes are passed, unchanged, from the caller to the new
process, whether the caller is an OSS process or a Guardian process:

• Real, effective, and saved user ID

• Real, effective, and saved group ID

• Group list

• Login name

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-23

NEWPROCESSNOWAIT Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

• Current working directory (cwd)

• Maximum file size

• Default OSS file security

No other OSS process attribute is inherited by the new process.

• OSS file opens in the calling process are not propagated to the new process.

Example
CALL NEWPROCESS (pfile^name, , , , process^id, error);

Related Programming Manual
For programming information on batch processing, see the NetBatch User’s Guide.

NEWPROCESSNOWAIT Procedure
(Superseded by PROCESS_LAUNCH_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
NEWPROCESSNOWAIT Completion Message
DEFINE Considerations
Batch Processing Considerations
OSS Considerations
Example
Related Programming Manual

Summary

The NEWPROCESSNOWAIT procedure is used to create a new process in a nowait
manner and, optionally, set a number of process attributes. When a new process is
created, its 4-word process ID is returned to the caller by a system message on the
caller’s $RECEIVE file.

You can use this procedure to create only Guardian processes, although you can call it
from a Guardian process or an OSS process. The program file must contain a
program for execution in the Guardian environment. The program file and any user
library file must reside in the Guardian name space.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-24

NEWPROCESSNOWAIT Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

DEFINEs for the process context of the creator can be propagated to a new process.
Further, any or all of the filenames given in the filenames parameter can be DEFINE
names.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

filenames input

INT:ref:12 or INT:ref:38

is an array that contains the internal-format file name of the program to be run and
three additional fields: library-file, swap-file, and tag. The new process
is created on the system where the program file resides. If the program file name
is in local form, the caller’s system is assumed.

The program file must be in the Guardian name space and contain a program for
execution in the Guardian environment.

For the program file only, if you specify a file on the subvolume
$SYSTEM.SYSTEM and the file is not found, NEWPROCESSNOWAIT then
searches on the subvolume $SYSTEM.SYSnn. For information about file names,
see Appendix D, File Names and Process Identifiers.

The additional fields, which are used only if bit 1 of the priority parameter is set
to 1, are as follows:

filenames[12:23] = library-file

is the internal-format file name of a user library to be used by the process. The
user library must be on the same system as the process being created. If the

CALL NEWPROCESSNOWAIT (filenames ! i
 ,[priority] ! i
 ,[memory-pages] ! i
 ,[processor] ! i
 ,[process-id] ! unused
 ,[outcome] ! o
 ,[name] ! i
 ,[hometerm] ! i
 ,[flags] ! i
 ,[jobid] ! i
 ,[errinfo] ! o
 ,[pfs-size]); ! i

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-25

NEWPROCESSNOWAIT Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

supplied name is in local form, the system where the process is created is
assumed. The library file must reside in the Guardian name space.

filenames[24:35] = swap-file

is not used, but you can provide it for informational purposes. If supplied, the
swap file must be on the same system as the process being created. If the
supplied name is in local form, the system where the process is created is
assumed. Processes swap to a file that is managed by the Kernel-Managed
Swap Facility. For more information on this facility, see the Kernel-Managed
Swap Facility (KMSF) Manual. To reserve swap space for the process, create
the process using the PROCESS_LAUNCH_ procedure and specify the
Z^SPACE^GUARANTEE field of the param-list parameter. Alternatively,
use the nld utility to set TNS/R native process attributes or the eld utilitiy to
set TNS/E native process attributes.

For TNS processes on RVUs preceding the D42 RVU, this field is the internal-
format file name of a file to be used as a swap file for the data stack. The
swap file must be on the same system as the process being created. If the
supplied name is in local form, the system where the process is created is
assumed.

filenames[36:37] = tag

is a 2-word value used to identify the completion message from the call to
NEWPROCESSNOWAIT. See Message.

priority input

INT:value

is a value passed out of priority that has three parts:

<0> is the debug bit. If priority.<0> = 1, then a code breakpoint is set
on the first executable instruction of the program’s MAIN procedure.

<1> indicates the interpretation of the additional fields of the filenames
parameter. If priority.<1> = 1, the additional fields in
filenames are used. If priority.<1> = 0, these extra fields are
ignored.

<2:7> should be 0.

<8:15> is the execution priority assigned to the new process {1:199}. If
priority.<8:15> = 0, then the priority of the caller of procedure
NEWPROCESSNOWAIT is used. If a value greater than 199 is
specified, then 199 is used.

If priority is omitted, the caller’s priority is used.

memory-pages input

INT:value

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-26

NEWPROCESSNOWAIT Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

For TNS processes, specifies the minimum number of 2048-byte memory pages
allocated to the new process for user data. The actual amount of memory
allocated is processor-dependent. If memory-pages is omitted or is less than the
value assigned when the program is compiled (or created with Binder), then the
compilation value is used. In any case, the maximum number of pages permitted
is 64.

For native processes, this parameter is ignored. To override default values, call
the PROCESS_LAUNCH_ procedure to create a new process and specify the
Z^MAINSTACK^MAX, Z^HEAP^MAX, and Z^SPACE^GUARANTEE fields of the
param-list parameter. Alternatively, use the nld utility to set the process
attributes.

processor input

INT:value

is a value specifying the processor where the new process runs. If omitted, the
new process runs in the same processor as the caller.

process-id unused

INT:ref:4

outcome output

INT:ref:1

returns two numbers indicating the outcome of the process creation attempt. The
numbers each occupy one byte in a 16-bit word as follows:

outcome.<0:7> error
outcome.<8:15> error-detail (provides additional information about the

 error)

If the error value exceeds 255 (will not fit in 8 bits), it is reported as 119. If the
detail value exceeds 255, both 8-bit fields contain 119. Because of the limited
capacity of this parameter, it has been superseded by the errinfo parameter,
which returns the full 16-bit value of each number.

Table 10-2 on page 10-7 summarizes the error values and relates them to
process creation errors (as issued by PROCESS_LAUNCH_) described in
Table 12-4 on page 12-120.

name input

INT:ref:3

if present, is a name to be given to the new process. It is entered into the
destination control table (DCT). name is of the form:

name[0:2] = $process-name

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-27

NEWPROCESSNOWAIT Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

process-name must be preceded by a dollar sign (“$”) and consists of a
maximum of five alphanumeric characters; the first character must be alphabetic.
(If the process is created in a remote system and it is necessary to be able to
access the process, its name should consist of, at most, four characters and the
“$”; this leaves a byte for the system to insert the node number into the six bytes
above.) Note that $process-name is the first 3 words of the 4-word process ID.

If name is not supplied, the process ID of the new process is of the unnamed form,
containing a timestamp in words [0:2] instead of $process-name, with the
cpu,pin of the new process in the fourth word. The process-name will not be
entered into the DCT.

hometerm input

INT:ref:12

is the internal-format file name of the home terminal for the new process. The
specified value must designate a terminal or a process. The default is the home
terminal of the caller.

flags input

INT:value

flags.<10:12> are used to supply the DEFINE mode for the new process:

flags.<10> 0 Use the DEFINE mode of caller
1 Use value in flags.<12>

flags.<12> 0 DEFINEs disabled
1 DEFINEs enabled

flags.<14:15> set the debugging attributes for the new process:

flags.<14> 1 Saveabend file creation
0 No saveabend file creation

flags.<15> 1 INSPECT
0 DEBUG

When flags is specified, the bits <14> and <15> are ORed with the
corresponding flags in the object code file. If flags.<14> is set but flag.<15>
is not, then flags.<15> is also set.

If these flags are omitted then the defaults are set from the flags in the object
code file (set by compiler directives at compile time, after the object flags are ORed
with the caller’s debugging attributes).

jobid input

INT:value

is an integer identifying a new job to be created with the new process as the first
process of the job and the caller as the GMOM of the new process. (For batch

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-28

NEWPROCESSNOWAIT Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

processing with NetBatch, see the Batch Processing Considerations subsection
under NEWPROCESS Procedure (Superseded by PROCESS_LAUNCH_
Procedure).)

errinfo output

INT .EXT:ref:2

returns two numbers indicating the outcome of the process creation attempt, as
follows:

errinfo[0] error

errinfo[1] error-detail (provides additional information about the error)

Table 10-2 on page 10-7 summarizes the error values and relates them to
process creation errors (as issued by PROCESS_LAUNCH_) described in
Table 12-4 on page 12-120.

pfs-size input

INT(32):value

meaningful only if the process is being created on a pre-G06 RVU. On G06 and
later RVUs, this value is range checked, but is otherwise ignored.

If present and nonzero, this parameter specifies the size in bytes of the process file
segment (PFS) of the new process.In G-series RVUs, maximum PFS size is 8 MB.
In H-series RVUs, maximum PFS size is 32 MB. A value in this range overrides
the nld or Binder value stored in the program file. If you omit pfs-size or specify
0:

• the nld or Binder value is used if it is nonzero

• a default value is used otherwise

Considerations

• When bit 1 of priority is set to 1

The value in the tag parameter appears in the message returned upon completion
of NEWPROCESSNOWAIT. To specify only one or two of the three extra fields,
the calling process must set priority.<1> to 1 and fill the fields not to be
specified with blanks.

If library-file:

• is specified, unresolved external references are resolved first from the
specified library-file, then from the system library.

• is specified and library-file[0] is 0, then the library file used by the
process when it was last run is removed, and the process runs with no library
file. (The references that were previously resolved on the user library are
resolved on the system library.)

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-29

NEWPROCESSNOWAIT Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

• is not specified, the program runs with the same library file as the last time it
was run (or no file, if that was how it was run) or with the library file currently
executing.

For TNS processes on RVUs preceding the D42 RVU, if swap-file:

• is specified and a file of that name exists, that file is used for memory swaps of
the user data stack during execution of the process; if no file of that name
exists, a file of that name and of the necessary size is created and used for
swaps.

• is not specified, a =_DEFAULTS DEFINE swap-file is used if available,
otherwise a temporary file is created on the disk where the program file
resides.

• specifies only the device name (filling the rest of the file name with blanks), a
temporary file is created on the specified device.

• When a nonzero value is returned in error

If NEWPROCESSNOWAIT cannot initiate process creation (for instance, if an
invalid processor number is specified), no message appears on $RECEIVE. The
error parameter is returns a nonzero value indicating the error.

• Startup messages and NEWPROCESSNOWAIT

The caller of NEWPROCESSNOWAIT has the responsibility to format and send a
startup message to the new process, if one is required. For more information on
the startup message, see the Guardian Procedure Errors and Messages Manual.

• NEWPROCESSNOWAIT and low PINs

Processes created by NEWPROCESSNOWAIT always have low PINs because a
high PIN cannot fit into a 4-word process ID.

• See also subsections General Considerations, DEFINE Considerations, and Batch
Processing Considerations under NEWPROCESS Procedure
(Superseded by PROCESS_LAUNCH_ Procedure).

NEWPROCESSNOWAIT Completion Message
If NEWPROCESSNOWAIT succeeds in initiating process creation or if an error
occurs during process creation, the NEWPROCESSNOWAIT completion system
message(-12) is sent to $RECEIVE upon completion. The format of the
NEWPROCESSNOWAIT completion message is described in the Guardian
Procedure Errors and Messages Manual.

DEFINE Considerations
See DEFINE Considerations on page 10-21.

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-30

NEWPROCESSNOWAIT Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

Batch Processing Considerations
See Batch Processing Considerations on page 10-21.

OSS Considerations

• You cannot create an OSS process using the NEWPROCESSNOWAIT procedure.
NEWPROCESSNOWAIT returns error 12 if you try.

• You can call NEWPROCESSNOWAIT from an OSS process to create a Guardian
process.

• Every Guardian process has these security-related attributes for accessing OSS
objects. These attributes are passed, unchanged, from the caller to the new
process, whether the caller is an OSS process or a Guardian process:

• Real, effective, and saved user ID

• Real, effective, and saved group ID

• Group list

• Login name

• Current working directory (cwd)

• Maximum file size

• Default OSS file security

No other OSS process attribute is inherited by the new process.

• OSS file opens in the calling process are not propagated to the new process.

Example
CALL NEWPROCESSNOWAIT (pfile^name
 , ! Priority.
 , ! Memory pages.
 , ! Processor.
 , ! Process ID - not used
 ,error
 ,new^name);

Related Programming Manual
For programming information on batch processing, see the NetBatch User’s Guide.

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-31

NEXTFILENAME Procedure
(Superseded by FILENAME_FINDNEXT_

NEXTFILENAME Procedure
(Superseded by FILENAME_FINDNEXT_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary

The NEXTFILENAME procedure is used to obtain the name of the next disk file on a
designated volume. NEXTFILENAME returns the next file name in alphabetic
sequence after the file name supplied as the parameter. The alphabetic sequence
includes digits 0-9; if the volume contains temporary files, the first temporary file is
returned when file-name is $volname (blank-fill).

The intended use of NEXTFILENAME is in an iterative loop, where the file name
returned in one call to NEXTFILENAME specifies the starting point for the alphabetic
search in the subsequent call to NEXTFILENAME. In this manner, a volume’s file
names are returned to the application process in alphabetic order through successive
calls to NEXTFILENAME.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the call. Common errors
returned are:

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

error := NEXTFILENAME (file-name); ! i,o

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-32

NEXTFILENAME Procedure
(Superseded by FILENAME_FINDNEXT_

0 No error; next file name in alphabetic sequence is returned in file-name.

1 End-of-file, there is no file in alphabetic sequence following the file name
supplied in file-name.

13 Invalid file name specification.

For a list of all file-system errors, see the Guardian Procedure Errors and
Messages Manual.

file-name input, output

INT:ref:12

on the call, is the internal-format file name from which the search for the next file
name begins. file-name on the initial call can be one of these forms.

To obtain the name of the first file on $volname:

file-name[0:11] $volname (blank-fill)
or
\sysnum volname (blank-fill)

To obtain the name of the first file in subvol-name on $volume:

file-name[0:3] $volname (blank-fill)
or
\sysnum volname (blank-fill)

file-name[4:11] = subvol-name (blank-fill)

To return the name of the next file in alphabetic sequence:

file-name[0:3] $volname (blank-fill)
or
\sysnum volname (blank-fill)

file-name[4:7] subvol-name (blank-fill)
file-name[8:11]
file-id (blank-fill)

When file-name returns, it contains the next file name, if any, in alphabetic
sequence.

Considerations

• The NEXTFILENAME procedure can be used to search for files on HP NonStop
Storage Management Foundation (SMF) virtual volumes. However, the names in
the special SMF subvolumes (ZYS* and ZYT*) where SMF physical files reside are
not returned.

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-33

NO^ERROR Procedure

Example
FNAME ':=' ["$SYSTEM ", 8 * [" "]];
WHILE NOT (ERROR := NEXTFILENAME (FNAME)) DO
 BEGIN
 .
 .
 .
 END;

NO^ERROR Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example

Summary
NO^ERROR is called internally by sequential I/O (SIO) procedures. Error handling
and retries are implemented within the SIO procedure environment by the NO^ERROR
procedure.

If the file is opened by OPEN^FILE, then the NO^ERROR procedure can be called
directly for the file-system procedures.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

no-retry returned value

INT

#include <cextdecs(NO_ERROR)>

short NO_ERROR (short state
 ,short _near *file-fcb
 ,short _near *good-error-list
 ,short retryable);

no-retry := NO^ERROR (state ! i
 ,file-fcb ! i
 ,good-error-list ! i
 ,retryable); ! i

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-34

NO^ERROR Procedure

indicates whether or not the I/O operation should be retried. Values of no-retry
are:

 0 operation should be retried.
<>0 operation should not be retried.

If no-retry is not 0, one of this is indicated:

• state is not 0.

• No error occurred; error is 0.

• Error is a good error number on the list.

• Fatal error occurred, and abort-on-error mode is OFF.

• Error is a BREAK error, and BREAK is enabled for file-fcb.

state input

INT:value

if nonzero, indicates the operation is considered successful. The file error and
retry count variables in the file control block (FCB) are set to zero, with no-retry
returned as nonzero. Typically, either of two values is passed in this position:

= (CCE) immediately follows a file-system call. If equal is true, the operation is
successful. This eliminates a call to FILEINFO by NO^ERROR.

0 forces NO^ERROR to first check the error value in the FCB. If the
FCB error is 0, NO^ERROR calls FILEINFO for the file.

file-fcb input

INT:ref:*

identifies the file to be checked.

good-error-list input

INT:ref:*

is a list of error numbers; if one of the numbers matches the current error, no-
retry is returned as nonzero (no retry). The format of good-error-list, in
words, is:

[0] number of error numbers in list {0:n}
[1] good error number
 .
 .
 .
[n] good error number

retryable input

INT:value

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-35

NODE_GETCOLDLOADINFO_ Procedure

is used to determine whether certain path errors should be retried. If retryable
is not zero, errors in the range of {120, 190, 202:231} cause retry according to the
device type as follows:

If the path error is either of {200:201}, a retry indication is given in all cases
following the first attempt.

Example
INT GOOD^ERROR [0:1] := [1, 11]; ! nonexistent record.
 .
 .
 .
NO^ERROR (= , OUT^FILE , GOOD^ERROR , FALSE);

NODE_GETCOLDLOADINFO_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example

Summary
The NODE_GETCOLDLOADINFO_ procedure retrieves the name of the OSIMAGE
file from which the specified node was system loaded.

NODE_GETCOLDLOADINFO_ assists subsystems that look for their configuration
files on $SYSTEM.SYSnn, or that must know the name of the system-load subvolume.

Device Retry Indication

Operator Yes

Process NA

$RECEIV
E

NA

Disk (opened with sync depth of 1, so not
applicable)

Terminal Yes

Printer Yes

Mag Tape No

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-36

NODE_GETCOLDLOADINFO_ Procedure

Syntax for C Programmers

• The parameter length specifies the length in bytes of the character string pointed
to by nodename. The parameters nodename and length must either both be
supplied or both be absent.

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the operation. Valid values are:

0 File name successfully retrieved
1 (reserved)
2 Parameter error
3 Bounds error
4 Unable to communicate with node

filename:maxlen output:input

STRING .EXT:ref:*, INT:value

returns the fully qualified name of the file from which the specified node was
system loaded.

maxlen is the length in bytes of the string variable filename.

filename-length output

INT .EXT:ref:1

is the actual length in bytes of the returned file name.

nodename:length input:input

STRING .EXT:ref:*, INT:value

#include <cextdecs(NODE_GETCOLDLOADINFO_)>

short NODE_GETCOLDLOADINFO_ (char *filename
 ,short maxlen
 ,short *filename-length
 ,[const char *nodename]
 ,[short length]);

error := NODE_GETCOLDLOADINFO_ (filename:maxlen ! o:i
 ,filename-length ! o
 ,[nodename:length]); ! i:i

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-37

NODENAME_TO_NODENUMBER_ Procedure

if supplied and length is not 0, specifies the name of the node for which system-
load information is to be returned. If used, the value of nodename must be exactly
length bytes long. The default is the name of the local node.

Example
error := NODE_GETCOLDLOADINFO_ (name:maxlen, name^len);

NODENAME_TO_NODENUMBER_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters

Summary
The NODENAME_TO_NODENUMBER_ procedure converts a node name (system
name) to the corresponding node number (system number). It can also be used to
obtain the number of the caller’s node.

Syntax for C Programmers

The parameter length specifies the length in bytes of the character string pointed to
by nodename. The parameters nodename and length must either both be supplied
or both be absent.

Note. In the TNS/E environment the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(NODENAME_TO_NODENUMBER_)>

short NODENAME_TO_NODENUMBER_ ([const char *nodename]
 ,[short length]
 ,__int32_t *nodenumber
 ,[__int32_t *ldevnum]);

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-38

NODENUMBER_TO_NODENAME_ Procedure

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation.

nodename:length input:input

STRING .EXT:ref:*, INT:value

specifies the name of the node whose number is to be returned. nodename must
be exactly length bytes long. If nodename is omitted or if length is 0, the
number of the local node is returned.

nodenumber output

INT(32) .EXT:ref:1

returns the number of the specified node. If nodename is omitted or if length is
0, nodenumber returns the number of the caller’s node.

ldevnum output

INT(32) .EXT:ref:1

returns the logical device number of the line handler to the specified node. If the
specified node is the local node, ldevnum returns 32767. If error is nonzero,
ldevnum is undefined.

NODENUMBER_TO_NODENAME_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Consideration

Summary
The NODENUMBER_TO_NODENAME_ procedure converts a node number (system
number) to the corresponding node name (system name). It can also be used to
obtain the name of the caller’s node.

error := NODENAME_TO_NODENUMBER_ ([nodename:length] ! i:i
 ,nodenumber ! o
 ,[ldevnum]); ! o

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-39

NODENUMBER_TO_NODENAME_ Procedure

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation.

nodenumber input

INT(32):value

if present and not -1D, is the number of the node whose name is to be returned. If
nodenumber is omitted or -1D, the name of the caller’s node is returned.

nodename:maxlen output:input

STRING .EXT:ref:*, INT:value

returns the name of the specified node. If nodenumber is omitted, nodename
returns the name of the caller’s node. maxlen specifies the length in bytes of the
string variable nodename.

nodename-length output

INT .EXT:ref:1

returns the length in bytes of the value returned in nodename.

#include <cextdecs(NODENUMBER_TO_NODENAME_)>

short NODENUMBER_TO_NODENAME_ ([__int32_t nodenumber]
 ,char *nodename
 ,short maxlen
 ,short *length
 ,[__int32_t *ldevnum]);

error := NODENUMBER_TO_NODENAME_ ([nodenumber] ! i
 ,nodename:maxlen ! o:i
 ,nodename-length ! o
 ,[ldevnum]); ! o

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-40

NSK_FLOAT_IEEE TO TNS Procedures

ldevnum output

INT(32) .EXT:ref:1

returns the logical device number of the line handler to the specified node. If the
specified node is the local node, ldevnum returns 32767. If error is nonzero,
ldevnum is undefined.

Consideration
If the value specified for nodenumber does not designate a node that is known to the
local system, an error value of 18 is returned. In this case, the nodename parameter
returns a printable string such as “\255” showing the node number that was supplied as
input (provided that the number fits in seven characters).

NSK_FLOAT_IEEE TO TNS Procedures

NSK_FLOAT_IEEE32_TO_TNS32_ Procedure
NSK_FLOAT_IEEE64_TO_TNS32_ Procedure
NSK_FLOAT_IEEE64_TO_TNS64_ Procedure

Summary
These procedures convert numbers in the IEEE floating-point format to numbers in the
TNS floating-point format.

The specific functions of each are as follows:

Procedure Function

NSK_FLOAT_IEEE32_TO_TNS32_ Convert a 32-bit IEEE floating-point value to
a 32-bit TNS floating-point value.

NSK_FLOAT_IEEE64_TO_TNS32_ Convert a 64-bit IEEE floating-point value to
a 32-bit TNS floating-point value.

NSK_FLOAT_IEEE64_TO_TNS64_ Convert a 64-bit IEEE floating-point value to
a 64-bit TNS floating-point value.

Note. These procedures are supported in the G06.06 RVU and all subsequent G-series RVUs. IEEE
floating-point is available on all S-series processors except S70000 servers with NSR-G processors.

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-41

NSK_FLOAT_IEEE32_TO_TNS32_ Procedure
NSK_FLOAT_IEEE64_TO_TNS32_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

ErrorBits returned value

INT(32)

returns the 32-bit error mask.

No bits set means the result was exactly equal in value to the input. This value can
be identified with NSK_FLOAT_OK, which is equal to zero.

#include <kfpconv.h>

uint32 NSK_FLOAT_IEEE32_TO_TNS32_
 (const NSK_float_IEEE32 *in_p /* pointer to input */
 , NSK_float_TNS32 *out_p /* pointer to output */
);

uint32 NSK_FLOAT_IEEE64_TO_TNS32_
 (const NSK_float_IEEE64 *in_p /* pointer to input */
 , NSK_float_TNS32 *out_p /* pointer to output */
);

uint32 NSK_FLOAT_IEEE64_TO_TNS64_
 (const NSK_float_IEEE64 *in_p /* pointer to input */
 , NSK_float_TNS64 *out_p /* pointer to output */
);

ErrorBits := NSK_FLOAT_IEEE32_TO_TNS32_ (IEEEData ! i
 ,TNS_Data); ! o

ErrorBits := NSK_FLOAT_IEEE64_TO_TNS32_ (IEEEData ! i
 ,TNS_Data); ! o

ErrorBits := NSK_FLOAT_IEEE64_TO_TNS64_ (IEEEData ! i
 ,TNS_Data); ! o

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-42

NSK_FLOAT_IEEE32_TO_TNS32_ Procedure
NSK_FLOAT_IEEE64_TO_TNS32_ Procedure

This is a list of the error bits that can be set by at least one of the three
IEEE_TO_TNS conversion procedures:

This indicates which procedures can produce which errors:

For NSK_FLOAT_IEEE32_TO_TNS32_:

IEEE_Data input

INT .ext:ref (NSK_float_ieee32)

The 32-bit IEEE floating-point number.

TNS_Data output

INT .ext:ref (NSK_float_tns32)

The 32-bit TNS floating-point number

For NSK_FLOAT_IEEE32_TO_TNS64_:

NSK_FLOAT_TNS_OVERFLOW The input was out of range (either too
big in magnitude, infinity, or not a
number (NaN)). The result had the
largest possible magnitude.

NSK_FLOAT_TNS_UNDERFLOW The input was out of range (too small
in magnitude) and could not be
represented correctly.

NSK_FLOAT_TNS_INEXACT The result did not exactly match the
input.

NSK_FLOAT_WAS_INFINITY Overflow happened because the input
was an IEEE infinity.

NSK_FLOAT_WAS_NAN Overflow happened because the input
was an IEEE NaN.

Conversion Over-
flow

Under-
flow

In-
exact

Was_
Inf

Was_
NaN

IEEE64 to TNS64 YES YES YES YES YES

IEEE64 to TNS32 YES YES YES YES YES

IEEE32 to TNS32 YES NO YES YES YES

Note. For IEEE32-to-TNS32 conversion, overflow can occur only if the input is infinite
or a NaN.

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-43

NSK_FLOAT_IEEE32_TO_TNS32_ Procedure
NSK_FLOAT_IEEE64_TO_TNS32_ Procedure

IEEE_Data input

INT .ext:ref (NSK_float_ieee32)

The 32-bit IEEE floating-point number.

TNS_Data output

INT .ext:ref (NSK_float_tns64)

The 64-bit TNS floating-point number

For NSK_FLOAT_IEEE64_TO_TNS64_:

IEEE_Data input

INT .ext:ref (NSK_float_ieee64)

The 64-bit IEEE floating-point number.

TNS_Data output

INT .ext:ref (NSK_float_tns64)

The 64-bit TNS floating-point number

Considerations

• These procedures are usable by both TNS floating-point-format callers and IEEE
floating-point-format callers.

• The procedures do not require the data to be aligned on 4-byte or 8-byte
boundaries. Shared2 (2-byte) alignment is sufficient.

• The NonStop operating system uses big-endian data formats for all data. For data
interchange with little-endian computers using IEEE floating point (such as Alpha
processors and Intel® processors), you must reverse the order of bytes in the data.

• Four data structures are declared for containers of data in the four supported
formats:

NSK_float_ieee64 For 64-bit IEEE floating-point numbers

NSK_float_tns64 For 64-bit TNS floating-point numbers

NSK_float_ieee32 For 32-bit IEEE floating-point numbers

NSK_float_tns32 For 32-bit TNS floating-point numbers

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-44

NSK_FLOAT_IEEE32_TO_TNS32_ Procedure
NSK_FLOAT_IEEE64_TO_TNS32_ Procedure

Examples

C Example

#include <kfpconv.h>
#include <stdio.h>

void example1(void) {

 NSK_float_ieee64 before;
 NSK_float_tns32 after;

 ReadIEEE64(&before); /* read in value to convert */
 if(NSK_FLOAT_IEEE64_TO_TNS32_(&before, &after)
 & NSK_FLOAT_TNS_OVERFLOW)

 printf("Overflow!\n");

 WriteTNS32(&after); /* write out result */

}

TAL Example

?nolist
?source $system.system.kfpconv
?list

int(32) proc example2(x);
real(64) .ext x; -- IEEE64 before, TNS64 after

begin

 int(32) error;
 int .ext before (NSK_float_ieee64) = x;
 int .ext after (NSK_float_tns64) = x;

 error := NSK_FLOAT_IEEE64_TO_TNS64_(before, after);
 if ($int(error) LAND $int(NSK_FLOAT_TNS_OVERFLOW)) then
 return(2D); -- 2 for overflow (out of range)
 return(0D); -- 0 for no errors

end;

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-45

NSK_FLOAT_TNS TO IEEE Procedures

NSK_FLOAT_TNS TO IEEE Procedures

NSK_FLOAT_TNS32_TO_IEEE32_ Procedure
NSK_FLOAT_TNS32_TO_IEEE64_ Procedure
NSK_FLOAT_TNS64_TO_IEEE64_ Procedure

Summary
These procedures convert numbers in the TNS floating-point format to numbers in the
IEEE floating-point format.

The specific functions of each are as follows:

Procedure Function

NSK_FLOAT_TNS32_TO_IEEE32_ Convert a 32-bit TNS floating-point value to
a 32-bit IEEE floating-point value.

NSK_FLOAT_TNS32_TO_IEEE64_ Convert a 32-bit TNS floating-point value to
a 64-bit IEEE floating-point value.

NSK_FLOAT_TNS64_TO_IEEE64_ Convert a 64-bit TNS floating-point value to
a 64-bit IEEE floating-point value.

Note. These procedures are supported in the G06.06 RVU and all subsequent G-series RVUs. IEEE
floating-point is available on all S-series processors except S70000 servers with NSR-G processors.

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-46

NSK_FLOAT_TNS32_TO_IEEE32_ Procedure
NSK_FLOAT_TNS32_TO_IEEE64_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

ErrorBits returned value

INT(32)

returns the 32-bit error mask.

No bits set means the result was exactly equal in value to the input. This value can
be identified with NSK_FLOAT_OK, which is equal to zero.

#include <kfpconv.h>

uint32 NSK_FLOAT_TNS32_TO_IEEE32_
 (const NSK_float_TNS32 *in_p /* pointer to input */
 , NSK_float_IEEE32 *out_p /* pointer to output */
);

uint32 NSK_FLOAT_TNS32_TO_IEEE64_
 (const NSK_float_TNS32 *in_p /* pointer to input */
 , NSK_float_IEEE64 *out_p /* pointer to output */
);

uint32 NSK_FLOAT_TNS64_TO_IEEE64_
 (const NSK_float_TNS64 *in_p /* pointer to input */
 , NSK_float_IEEE64 *out_p /* pointer to output */
);

ErrorBits := NSK_FLOAT_TNS32_TO_IEEE32_ (TNS_Data ! i
 ,IEEE_Data); ! o

ErrorBits := NSK_FLOAT_TNS32_TO_IEEE64_ (TNS_Data ! i
 ,IEEE_Data); ! o

ErrorBits := NSK_FLOAT_TNS64_TO_IEEE64_ (TNS_Data ! i
 ,IEEE_Data); ! o

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-47

NSK_FLOAT_TNS32_TO_IEEE32_ Procedure
NSK_FLOAT_TNS32_TO_IEEE64_ Procedure

This is a list of the error bits that can be set by at least one of the three
TNS_TO_IEEE conversion procedures:

This indicates which procedures can produce which errors:

For NSK_FLOAT_TNS32_TO_IEEE32_

TNS_Data input

INT .ext:ref NSK_float_tns32

The 32-bit TNS floating-point number.

IEEE_Data output

INT .ext:ref NSK_float_ieee32

The 32-bit IEEE floating-point number

For NSK_FLOAT_TNS32_TO_IEEE64_

TNS_Data input

INT .ext:ref NSK_float_tns32

The 32-bit TNS floating-point number.

IEEE_Data output

INT .ext:ref NSK_float_ieee64

The 64-bit IEEE floating-point number

For NSK_FLOAT_TNS64_TO_IEEE64_

TNS_Data input

INT .ext:ref NSK_float_tns64

NSK_FLOAT_IEEE_OVERFLOW The input was out of range (too big in
magnitude), and the result was an IEEE
infinity. The sign of the result matched the
sign of the input.

NSK_FLOAT_IEEE_UNDERFLOW The input was out of range (too small in
magnitude) and could not be represented
exactly, even as a denormalized number.

NSK_FLOAT_IEEE_INEXACT The result did not exactly match the input.

Conversion Overflow Underflow Inexact

TNS64 to IEEE64 NO NO YES

TNS32 to IEEE64 NO NO NO

TNS32 to IEEE32 YES YES YES

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-48

NSK_FLOAT_TNS32_TO_IEEE32_ Procedure
NSK_FLOAT_TNS32_TO_IEEE64_ Procedure

The 64-bit TNS floating-point number.

IEEE_Data output

INT .ext:ref NSK_float_ieee64

The 64-bit IEEE floating-point number

Considerations
For description of considerations for this procedure, ee Considerations on page 10-43.

Examples

C Example

#include <kfpconv.h>
#include <stdio.h>

void example3(void) {

 NSK_float_tns32 before;
 NSK_float_ieee32 after;

 ReadTNS32(&before); /* read in value to convert */

 if(NSK_FLOAT_TNS32_TO_IEEE32_(&before, &after)
 & NSK_FLOAT_IEEE_OVERFLOW)

 printf("Overflow!\n");

 WriteIEEE32(&after); /* write out result */

}

TAL Example

?nolist
?source $system.system.kfpconv
?list

int(32) proc example4(x);
real(64) .ext x; -- TNS64 before, IEEE64 after

begin

 int(32) error;
 int .ext before (NSK_float_tns64) = x;
 int .ext after (NSK_float_ieee64) = x;

 error := NSK_FLOAT_TNS64_TO_IEEE64_(before, after);

 if ($int(error) LAND $int(NSK_FLOAT_IEEE_INEXACT)) then
 return(1D); -- 1 for inexact
 return(0D); -- 0 for no errors

end;

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-49

NUMBEREDIT Procedure

NUMBEREDIT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example
Related Programming Manual

Summary
The NUMBEREDIT procedure renumbers the lines of an EDIT file that are in a
specified range. You can specify the new starting number and increment for the range
of lines to be renumbered.

NUMBEREDIT is an IOEdit procedure and can only be used with files that have been
opened by OPENEDIT or OPENEDIT_.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a value that indicates the outcome of the operation. The value is a file-
system error number or one of these values:

#include <cextdecs(NUMBEREDIT)>

short NUMBEREDIT (short filenum
 ,__int32_t first
 ,__int32_t last
 ,[__int32_t start]
 ,[__int32_t increment]);

error := NUMBEREDIT (filenum ! i
 ,first ! i
 ,last ! i
 ,[start] ! i
 ,[increment]); ! i

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-50

NUMBEREDIT Procedure

-6 Exhausted valid line numbers.
-10 Unable to complete renumbering; file is unchanged.

filenum input

INT:value

is the number that identifies the open file in which lines are to be renumbered.

first input

INT(32):value

specifies 1000 times the line number of the first line in the range of lines to be
renumbered. If a negative value is specified, the line number of the first line in the
file is used.

last input

INT(32):value

specifies 1000 times the line number of the last line in the range of lines to be
renumbered. If a negative value is specified, the line number of the last line in the
file is used.

start input

INT(32):value

specifies 1000 times the line number to be assigned to the first renumbered line. If
this parameter is omitted, the old line number is retained for the first renumbered
line unless first is a negative value, in which case 1000 is used for start.

increment input

INT(32):value

specifies 1000 times the value to be added to each successive line number when
renumbering lines. If this parameter is omitted, 1000 is used unless the value
represented by start has a fractional part (that is, if start, when divided by
1000, contains a value to the right of the decimal point); in that case, the value
used is the largest power of 10 that does not exceed the value of the fractional
part. If last is a negative value, 1000 is used for increment.

Example
In this example, NUMBEREDIT renumbers lines 50 through 100 in the specified file.
After the call, these same lines will be numbered starting at 49 with successive line
numbers increasing by an increment of 0.100.

INT(32) first := 50000D;
INT(32) last := 100000D;
INT(32) start := 49000D;

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-51

NUMIN Procedure

INT(32) increment := 100D;
 .
 .
err := NUMBEREDIT (filenumber, first, last,
 start, increment);

Related Programming Manual
For programming information about the NUMBEREDIT procedure, see the Guardian
Programmer’s Guide.

NUMIN Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary
The NUMIN procedure converts the ASCII characters used to represent a number into
the signed integer value for that number.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

next-addr returned value

BADDR

#include <cextdecs(NUMIN)>

short NUMIN (char *ascii-num
 ,short _near *signed-result
 ,short base
 ,short _near *status);

next-addr := NUMIN (ascii-num ! i
 ,signed-result ! o
 ,base ! i
 ,status); ! o

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-52

NUMIN Procedure

returns the ‘G’[0] relative string address of the first character in ascii-num not
used in the conversion.

ascii-num input

STRING:ref:*

is an array containing the number to be converted to signed integer form.
ascii-num is of the form:

[+] [%] [h/H] number nonnumeric
[-] [b/B]

where “%” means treat the number as a binary, octal, or hexadecimal value (as
indicated) regardless of the specified base. Note that nonnumeric applies only
to hexadecimal values.

signed-result output

INT:ref:1

returns the result of the conversion.

base input

INT:value

specifies the number base of ascii-num. Legitimate values are 2 through 10
and 16.

status output

INT:ref:1

returns a number that indicates the outcome of the conversion. The values for
status are:

 1 Nonexistent number (string does not start with “+,” “-,” “%,” or numeric)
 0 Valid conversion
-1 Invalid integer (number cannot be represented in 15 bits) or bad character in

ascii-num.

Considerations

• When number conversion stops

Number conversion stops on the first ASCII numeric character representing a
value greater than base -1 or a nonnumeric ASCII character.

• Base-10 numeric value range

Base-10 numeric values must be in the range of -32768 through 32767. Numeric
values in other number bases are accepted if they can be represented in 16 bits.
Note that the magnitude is computed first, so the value can then be negated (for
example, %177777 = -%1).

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-53

NUMOUT Procedure

Related Programming Manual
For programming information about the NUMIN procedure, see the Guardian
Programmer’s Guide.

NUMOUT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Consideration
Related Programming Manual

Summary
The NUMOUT procedure converts unsigned integer values to their ASCII equivalents.
The result is returned right-justified in an array. Any preceding blanks are zero filled.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

ascii-result output

STRING:ref:*

is an array where the converted value returns. The ASCII representation is right-
justified in ascii-result[0:width -1]. Any preceding blanks are zero filled.

unsigned-integer input

INT:value

#include <cextdecs(NUMOUT)>

void NUMOUT (char *ascii-result
 ,short unsigned-integer
 ,short base
 ,short width);

CALL NUMOUT (ascii-result ! o
 ,unsigned-integer ! i
 ,base ! i
 ,width); ! i

Guardian Procedure Calls (N)

Guardian Procedure Calls Reference Manual—522629-030
10-54

NUMOUT Procedure

is the value to be converted.

base input

INT:value

is the number base for the resulting conversion. Any number in the range 2 to 10
is valid.

width input

INT:value

is the maximum number of characters permitted in ascii-result. Characters
might be truncated on the left side.

Consideration
If width is too small to contain the number, the most significant digits are lost.

Related Programming Manual
For programming information about the NUMOUT utility procedure, see the Guardian
Programmer’s Guide.

Guardian Procedure Calls Reference Manual—522629-030
11-1

11 Guardian Procedure Calls (O)
This section contains detailed reference information for all user-accessible Guardian
procedure calls beginning with the letter O. Table 11-1 lists all the procedures in this
section.

Table 11-1. Procedures Beginning With the Letter O

OBJFILE_GETINFOLIST_ Procedure

OLDFILENAME_TO_FILENAME_ Procedure

OLDSYSMSG_TO_NEWSYSMSG_ Procedure

OPEN Procedure (Superseded by FILE_OPEN_ Procedure)

OPEN^FILE Procedure

OPENEDIT Procedure (Superseded by OPENEDIT_ Procedure)

OPENEDIT_ Procedure

OPENER_LOST_ Procedure

OPENINFO Procedure (Superseded by FILE_GETOPENINFO_ Procedure)

OSS_PID_NULL_ Procedure

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-2

OBJFILE_GETINFOLIST_ Procedure

OBJFILE_GETINFOLIST_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
General Consideration
Attribute Codes and Value Representations
Example

Summary
The OBJFILE_GETINFOLIST_ procedure obtains information about the object file or
user library file of the calling process.

Syntax for C Programmers

Syntax for TAL Programmers

Note. OBJFILE_GETINFOLIST_ does not support dynamic-link libraries.

#include <cextdecs(OBJFILE_GETINFOLIST_)>

short OBJFILE_GETINFOLIST_ (short *ret-attr-list
 ,short ret-attr-count
 ,short *ret-values-list
 ,short ret-values-maxlen
 ,short *ret-values-len
 ,[short lib-info]
 ,[short *error-detail]
 ,[const char *srl-filename]
 ,[short srl-filename-len]);

error := OBJFILE_GETINFOLIST_
 (ret-attr-list ! i
 ,ret-attr-count ! i
 ,ret-values-list ! o
 ,ret-values-maxlen ! i
 ,ret-values-len ! o
 ,[lib-info] ! i
 ,[error-detail] ! o
 ,[srl-filename:srl-filename-len]); ! i:i

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-3

OBJFILE_GETINFOLIST_ Procedure

Parameters

error returned value

INT

indicates the outcome of the operation. It returns one of these values:

0 Information is returned successfully.

1 File-system error; error-detail contains the error number. Error 563
(buffer too small) is returned if ret-values-list is too small to contain all
the requested information.

2 Parameter error; error-detail contains the number of the first parameter
found to be in error, where 1 designates the first parameter on the left.

3 Bounds error; error-detail contains the number of the first parameter
found to be in error, where 1 designates the first parameter on the left.

4 Invalid attribute code specified; error-detail contains the attribute code
that is unknown to OBJFILE_GETINFOLIST_.

5 The process does not have a user library.

6 The process header cannot be found.

ret-attr-list input

INT .EXT:ref:*

specifies an array of INTs indicating the attributes that are to have their values
returned in ret-values-list. For details, see Attribute Codes and Value
Representations on page 11-5.

ret-attr-count input

INT:value

specifies how many items the caller is supplying in ret-attr-list.

If the requested information doesn’t fit in ret-values-list, the procedure
returns an error value of 1 and an error-detail value of 563 (buffer too
small). No information is returned.

The maximum value for this parameter is 1024.

ret-values-list output

INT .EXT:ref:*

contains ret-values-len bytes of returned information. The values parallel the
items in ret-attr-list. Each value begins on a word boundary. For details,
see Attribute Codes and Value Representations on page 11-5.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-4

OBJFILE_GETINFOLIST_ Procedure

ret-values-maxlen input

INT:value

specifies the maximum length in bytes of ret-values-list. The size of ret-
values-list cannot exceed 1024 bytes.

ret-values-len output

INT .EXT:ref:1

returns the actual length in bytes of ret-values-list.

lib-info input

INT:value

specifies whether you are requesting information on an object file or a library file.

error-detail output

INT .EXT:ref:1

for some error conditions, contains additional information. See the returned value
error.

srl-filename:srl-filename-len input:input

if lib-info is 2, specifies the name of the native shared run-time library. The
value of srl-filename must be exactly srl-filename-len bytes long. This
parameter is ignored if lib-info is 0 or 1. To obtain the name of a native shared
run-time library, call the PROCESS_GETINFOLIST_ procedure with attributes 115
through 118.

General Consideration
If an error is returned, the contents of ret-values-list and ret-values-len are
undefined.

0 (default) Object file

1 TNS user library file

2 Native shared run-time library file

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-5

OBJFILE_GETINFOLIST_ Procedure

Attribute Codes and Value Representations
The individual attribute codes and their associated value representations are as
follows:

Each value begins on a word boundary. The attribute values are:

• 1: Binder timestamp (for TNS object files only)

is the three-word timestamp for when the object file was last updated. For a
description of this timestamp, see TIMESTAMP Procedure. If the object file is a
native object file, 0 is returned.

• 2: minimum tosversion (for TNS object files only)

Attribute Code TAL Value Representation

1 Binder timestamp
(for TNS object files only)

INT (3 words)

2 minimum tosversion
(for TNS object files only)

INT

3 Inspect length
(for TNS object files only)

INT(32)

4 Binder length
(for TNS object files only)

INT(32)

5 Inspect on INT

6 high PIN INT

7 high requesters INT

8 run named INT

9 PFS size INT(32)

10 target processor INT

11 accelerator timestamp
(for TNS object files only)

INT (4 words)

12 compilation mode
(for TNS object files only)

INT

13 run mode
(for TNS object files only)

INT

15 linker timestamp
(for native object files only)

INT(32)

16 buffer size for attribute code 17
(for non-PIC native object files only)

INT

17 Native shared run-time library name
information (in a variable-sized
array)
(for non-PIC native object files only)

INT number of names,
INT file name length,
STRING name

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-6

OBJFILE_GETINFOLIST_ Procedure

is the earliest RVU of the operating system on which the object file can run. For a
description of the tosversion, see TOSVERSION Procedure. A value of 0 indicates
that either the object file can run on any RVU of the operating system or the object
file is a native object file.

• 3: Inspect length (for TNS object files only)

is the length in bytes of the Inspect region of the file. A value of 0 is returned if the
file has no Inspect region. If the object file is a native object file, 0D is returned.

• 4: Binder length (for TNS object files only)

is the length in bytes of the Binder region of the file. A value of 0 is returned if the
file has no Binder region. If the object file is a native object file, 0D is returned.

• 5: Inspect on

indicates whether the debugger for the file is the Inspect debugger or Debug. A
value of 0 indicates Debug; a value of 1 indicates the Inspect debugger.

• 6: high PIN

indicates whether the process can run with a high PIN. A value of 1 indicates it
can run with a high PIN; a value of 0 indicates it must be a low PIN. If either the
object file or its user library has the high PIN flag turned off, the process must run
with a low PIN.

• 7: high requesters

indicates whether the process can handle requests from high-PIN processes. A
value of 1 indicates that the process can handle requests from high-PIN
processes; a value of 0 indicates that the process might or might not support
requests from high-PIN processes.

• 8: run named

indicates whether the object file must be run as a named process. A value of 1
indicates that the object file must be run as a named process; a value of 0
indicates that the object file is not required to run as a named process. If either the
object file or its user library has this attribute set to 1, the process is given a name
even if none is explicitly requested by the creator.

• 9: PFS size

is the size in words of the process file segment (PFS) as specified in the object file.
If value is 0, the nld or Binder value is used if it is nonzero; otherwise, a default
value is used.

• 10: target processor

indicates the processor family for which the program has been compiled. Possible
values are:

0 Unspecified
1 TNS/R or TNS/E processors

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-7

OBJFILE_GETINFOLIST_ Procedure

2 TNS processors
3 Any

If the object file is a native object file, the value of this attribute is always 1 (TNS/R
or TNS/E processors).

• 11: accelerator timestamp (for TNS object files only)

is the four-word Julian timestamp for when the object file was accelerated. For a
description of the Julian timestamp, see JULIANTIMESTAMP Procedure. If the file
is not accelerated or the file is a native object file, 0 is returned. The accelerator
timestamp should not be confused with the accelerator version timestamp.

• 12: compilation mode (for TNS object files only)

indicates whether the object file has been accelerated. A value of 1 indicates that
it has been accelerated; a value of 0 indicates that it has not been accelerated.

• 13: run mode (for TNS object files only)

indicates whether the object file will run accelerated. A value of 1 indicates that it
will run accelerated; a value of 0 indicates that it will not run accelerated. Run
mode is meaningful only if the file has been accelerated.

• 15: linker timestamp (for native object files only)

is the 32-bit integer timestamp in the form returned by the time() function defined
in the header file time.h. That is, it is a UNIX-style timestamp. This form, the
Coordinated Universal Time, is expressed as the number of seconds since the
start of January 1, 1970. If the file is not a native object file, 0D is returned.

• 16: buffer size for attribute code 17 (for non-PIC native object files only)

is the size of the buffer, in bytes, for the array returned in attribute 17. 0 indicates
that the object file does not use shared run-time libraries.

• 17: native shared run-time library name information (for non-PIC native object files
only)

returns information on shared run-time library names (which are not necessarily
the same as their file names) referenced by either the object file (lib-info is 0),
the user library file (lib-info is 1), or the specified shared run-time library (lib-
info is 2) in this variable-sized array.

Returns a null list of SRLs if the file is PIC.

Tal Value
Representati
on

Description

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-8

OLDFILENAME_TO_FILENAME_ Procedure

Example
 attr^list[0] := 12; ! return compilation mode
 attr^list[1] := 13; ! return run mode
 err := OBJFILE_GETINFOLIST_ (attr^list, 2,
 return^values^list, 4,
 return^values^len);

OLDFILENAME_TO_FILENAME_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary
The OLDFILENAME_TO_FILENAME_ procedure converts a file name in the C-series
internal file-name format to a file name in the D-series file-name format. See
Appendix D, File Names and Process Identifiers for descriptions of C-series and D-
series file names.

INT Number of shared run-time library names returned. This value
indicates how many pairs of INT and STRING listed, as below.
follow this value.

INT Length of the shared run-time library name.

STRING Name. (The returned string ends on an odd-byte boundary so
that the next attribute returned will begin on an even-byte
boundary.)

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-9

OLDFILENAME_TO_FILENAME_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation.

oldfilename input

INT .EXT:ref:12

specifies a valid internal file name to be converted.

filename:maxlen output:input

STRING .EXT:ref:*, INT:value

contains the resulting file name. maxlen specifies the length in bytes of the string
variable filename.

filename-length output

INT .EXT:ref:1

returns the actual byte length of the file name returned in filename. 0 is returned
if an error occurs.

Considerations

• The output file name always includes a node name regardless of whether the input
name was in network form. Note that the node name in the output is independent
of the =_DEFAULTS DEFINE, as is the node name in the input. This is because
the default node name in an internal file name is the node that the caller is running
on, not the value in the =_DEFAULTS DEFINE.

#include <cextdecs(OLDFILENAME_TO_FILENAME_)>

short OLDFILENAME_TO_FILENAME_ (short *oldfilename
 ,char *filename
 ,short maxlen
 ,short *filename-length);

error := OLDFILENAME_TO_FILENAME_ (oldfilename ! i
 ,filename:maxlen ! o:i
 ,filename-length); ! o

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-10

OLDSYSMSG_TO_NEWSYSMSG_ Procedure

• If the node number that is specified as part of oldfilename does not designate a
node that is known to the local system, an error value of 18 is returned. In this
case, the value returned in filename includes a printable string such as “\255,”
showing the node number that was supplied as input in place of a valid node
name.

• When converting the process file name of a named or an unnamed process,
OLDFILENAME_TO_FILENAME_ looks up the process in a system table and it
might send a system message. An error 14 is returned if the process does not
exist.

Related Programming Manual
For programming information about the OLDFILENAME_TO_FILENAME_ procedure,
see the Guardian Application Conversion Guide.

OLDSYSMSG_TO_NEWSYSMSG_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
The OLDSYMSG_TO_NEWSYSMSG_ procedure converts a C-series format system
message to its D-series equivalent. See “Considerations” for a list of the messages
that this procedure accepts and produces.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-11

OLDSYSMSG_TO_NEWSYSMSG_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the result of the check. Valid values are:

0 Message successfully converted

1 File-system error; error-detail contains the file-system error number.

2 Parameter error; error-detail contains the number of the first parameter
found to be in error, where 1 designates the first parameter on the left.

3 Bounds error; error-detail contains the number of the first parameter
found to be in error, where 1 designates the first parameter on the left.

4 The supplied system message is not supported by this procedure; no
conversion was performed.

oldmsg:length input:input

STRING .EXT:ref:*, INT:value

is the message to be converted. oldmsg must be exactly length bytes long.

newmsg:maxlen output:input

STRING .EXT:ref:*, INT:value

returns the equivalent D-series system message, if any. maxlen is the length in
bytes of the string variable newmsg.

#include <cextdecs(OLDSYSMSG_TO_NEWSYSMSG_)>

short OLDSYSMSG_TO_NEWSYSMSG_ (char *oldmsg
 ,short length
 ,char *newmsg
 ,short maxlen
 ,short *newmsg-length
 ,[short *error-detail]);

error := OLDSYSMSG_TO_NEWSYSMSG _ (oldmsg:length !
i:i
 ,newmsg:maxlen !
o:i
 ,newmsg-length ! o
 ,[error-detail]); ! o

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-12

OLDSYSMSG_TO_NEWSYSMSG_ Procedure

newmsg-length output

INT .EXT:ref:1

returns the actual length of the returned D-series system message, or 0 if the
supplied message has no equivalent.

error-detail output

INT .EXT:ref:1

for some returned errors, contains additional information. See error, above.

Considerations

• A 250-byte buffer is adequate to hold any of the new messages. This value can
always be used for the maxlen of newmsg.

• The old messages and new messages can be mapped one-to-one with the
exception of the network status change message (-8). Depending on its content,
the network status change message is converted into one of four new messages
(see below).

• OLDSYSMSG_TO_NEWSYSMSG_ converts these system messages:

C-series message D-series message

-5 Process deletion: STOP -
101

Process deletion: STOP

-6 Process deletion: ABEND -
101

Process deletion: ABEND

-8 Network status change (all
processors down)

-
110

Loss of communication with
node

-8 Network status change (single
processor down, 0 or more
processors up)

-
100

Remote processor down

-8 Network status change (2 or
more processors down, 0 or
more processors up)

-
110

Loss of communication with
node

-8 Network status change
(connection established)

-
111

Establishment of communication
with node

-8 Network status change (0 or
more processors up when node
already connected)

-
113

Remote processor up

-9 Job process creation -
112

Job process creation

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-13

OPEN Procedure (Superseded by FILE_OPEN_
Procedure)

OPEN Procedure (Superseded by FILE_OPEN_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Disk File Considerations
Terminal Consideration
Interprocess Communication Considerations
Message
DEFINE Considerations
Safeguard Considerations
OSS Considerations
Example
Related Programming Manuals

Summary

The OPEN procedure establishes a communication path between an application
process and a file. When OPEN completes, a file number returns to the application

-
12

NEWPROCESSNOWAIT
completion

-
102

Nowait PROCESS_LAUNCH_ or
PROCESS_CREATE_
completion

-
20

Break on device -
105

Break on device

-
30

Process open -
103

Process open

-
31

Process close -
104

Process close

-
40

Device type inquiry -
106

Device type inquiry

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

C-series message D-series message

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-14

OPEN Procedure (Superseded by FILE_OPEN_
Procedure)

process. The file number identifies this access to the file in subsequent file-system
calls.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

file-name input

INT:ref:12

is an array containing the internal-format file name of the file to be opened. For
additional information about file names, see Appendix D, File Names and Process
Identifiers .

Note that file-name can be a DEFINE name. For additional information about
DEFINEs, see Appendix E, DEFINEs.

filenum output

INT:ref:1

returns a number used to identify the file in subsequent system calls. A -1 is
returned if OPEN fails.

CALL OPEN (file-name ! i
 ,filenum ! o
 ,[flags] ! i
 ,[sync-or-receive-depth] ! i
 ,[primary-filenum] ! i
 ,[primary-process-id] ! i
 ,[seq-block-buffer-id] ! i
 ,[buffer-length] ! i
 ,[primary-define]); ! i

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-15

OPEN Procedure (Superseded by FILE_OPEN_
Procedure)

flags input

INT:value

specifies certain attributes of the file. If omitted, all fields are set to 0. The bit fields
in the flags parameter are defined in Table 11-2.

sync-or-receive-depth input

INT:value

The purpose of this parameter depends on the type of device being opened:

Disk file specifies the number of nonretryable (that is, write) requests whose
completion the file system must remember. A value of one or greater
must be specified to recover from a path failure occurring during a write
operation. This value also implies the number of write operations the
primary process in a primary and backup process pair can perform to
this file without intervening checkpoints to its backup process. For disk
files, this parameter is called sync depth. The maximum sync depth
value is 15.

If omitted, or if 0 is specified, internal checkpointing does not occur.
Disk path failures are not automatically retried by the file system.

$RECEIVE file
specifies the maximum number of incoming messages read by
READUPDATE that the application process is allowed to queue before
corresponding REPLYs must be performed.

If omitted, READUPDATE and REPLY to $RECEIVE are not permitted.

For $RECEIVE, this parameter is called receive-depth, and the
maximum number of queued incoming messages is 4047 in the
H06.17/J06.06 and earlier RVUs. From H06.18/J06.07 RVU onwards,
the maximum receive-depth value has been increased from 4047 to
16300.

process pair
specifies whether or not an I/O operation is automatically redirected to
the backup process if the primary process or its processor module fails.
For processes, this parameter is called sync depth. The maximum
value is determined by the process. The value must be at least 1 for
an I/O operation to a remote process pair to recover from a network
failure.

If this parameter >= 1, the server is expected to save or be able to
regenerate that number of replies.

If this parameter = 0, and if an I/O operation cannot be performed to
the primary process of a process pair, an error indication is returned to
the originator of the message. On a subsequent I/O operation, the file
system redirects the request to the backup process.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-16

OPEN Procedure (Superseded by FILE_OPEN_
Procedure)

For other device types, the meaning of this parameter depends on whether the
sync-ID mechanism is supported by the device being opened. If the device does
not support the sync-ID mechanism, 0 is used regardless of what you specify (this
is the most common case). If the device supports the sync-ID mechanism,
specifying a nonzero value causes the results of that number of operations to be
saved; in case of failures, the operations can be retried if necessary.

The actual value being used can be obtained by a call to FILE_GETINFOLIST_ or
FILEINFO.

primary-filenum input

INT:value

is the file number returned to the primary process when it opened this file.
primary-filenum must be passed as -filenum.

primary-filenum and primary-process-id are supplied only if the open is
by the backup process of a process pair, the file is currently open by the primary
process, and the checkpointing facility is not used. Both parameters must be
supplied.

A negative file number indicates that the same file number should be returned in
the backup as was returned in the primary. If a negative file number is specified
and the file number is already open by the backup process, OPEN returns file-
system error 12. In this situation, a process pair would indicate externally that
error 12 (file in use) exists when, in fact, the file is not in use by the normal
definition (open by another process in exclusive mode).

primary-process-id input

INT:ref:4

is an array that contains the 4-word process-id of the corresponding primary
process.

primary-process-id and primary-filenum are supplied only if the open is
by the backup process of a process pair, the file is currently open by the primary
process, and the checkpointing facility is not used. Both parameters must be
supplied.

seq-block-buffer-id input

INT:ref:1

is a 16-bit value, the address of which identifies the sequential block buffer to be
shared, if sequential block buffering is used and if sharing is desired. If sharing is
not desired, this parameter can be omitted since all sequential buffers will reside in
the process’s PFS with the size given by buffer-length. All opens giving this

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-17

OPEN Procedure (Superseded by FILE_OPEN_
Procedure)

ID share the same sequential block buffer. Any integer value can be supplied for
this parameter.

If sequential block buffering is used, the file should usually be opened with
protected or exclusive access. Shared access can be used, although there are
potential concurrency problems, and it is somewhat slower than other access
methods in the case of key-sequenced files. See the discussion of “Sequential
Block Buffering” in the Enscribe Programmer’s Guide.

buffer-length input

INT:value

is the length in bytes of the sequential block buffer. This is the only parameter that
is required for the sequential block buffering option to be in effect when buffer
sharing is not used.

If the buffer-length is less than the data-blocklen specified in the creation
of this file or any associated alternate-key files, then the larger size is used, unless
a buffer that was established by an earlier call to OPEN is being shared and is too
small. In that case OPEN succeeds but returns a CCG indication (a subsequent
call to FILEINFO or FILE_GETINFO_ shows that an error 5 occurred). Normal
system buffering is then used instead of the application process’s sequential buffer.

If this parameter is omitted, sequential block buffering is not attempted.

primary-define input

INT:ref:12

specifies the name of the DEFINE which was used as the file-name in the open
of the primary process. (In the backup, file-name must be the actual name of
the file.) The DEFINE must exist and must have the same value as it did when the
primary open was made. This parameter is relevant only for a process pair which
does not use the CHECKOPEN or CHECKMONITOR procedures.

The primary-define parameter should be supplied only if this open is a backup
open and the primary open was made using a DEFINE.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-18

OPEN Procedure (Superseded by FILE_OPEN_
Procedure)

Condition Code Settings

< (CCL) indicates that the open failed (call FILEINFO or FILE_GETINFO_). If
OPEN fails, a -1 is returned in filenum.= (CCE)indicates that the file was
opened successfully.

> (CCG) indicates the file was opened successfully but an exceptional condition was
detected (call FILEINFO or FILE_GETINFO_).

Table 11-2. OPEN flags Parameter (page 1 of 2)

Flag Flag in Octal Meaning

<0> %100000 For disk files, if this bit is 1, the “last open time”
attribute of the file being opened is not updated by this
open. For other files, this bit should be zero.

<1> %40000 For the $RECEIVE file only, specifies whether the
opener wants to receive open, close, CONTROL,
SETMODE, SETPARAM, RESETSYNC, and
CONTROLBUF system messages. Note that some
messages are received only with SETMODE 80.

0 = no, 1 = yes (must be 0 for all files other than
$RECEIVE)

<2> %20000 Specifies that access to an Enscribe file is to occur as
if the file were unstructured, that is, without regard to
record structures and partitioning, (Note that for
unstructured files, setting this bit to 1 makes secondary
partitions inaccessible.) Setting this bit to 0 provides
normal structured access to the file.

0 = normal access, 1 = unstructured access

<3> %10000 (Reserved) must be 0 for nonprivileged users.

<4:5> %6000
(If both bits set)

Access mode

0 = Read/write
1 = Read-only
2 = Write-only
3 = reserved

<6> %1000 Must be 0 (reserved)

<7> %400 Must be 0 (reserved)

<8> %200 For process files, indicates that the open message is
sent nowait and must be completed with a call to
AWAITIO[X]. OPEN returns a valid file number.

0 = no, 1 = yes (must be 0 for all other files)

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-19

OPEN Procedure (Superseded by FILE_OPEN_
Procedure)

Considerations

• File numbers

Within a process, the file numbers are unique. The lowest numeric file number is 0
and is reserved for $RECEIVE. Remaining file numbers start at 1. The lowest
available file number is always assigned. Once a file is closed, its file number
becomes available, and a subsequent open can reuse that file number.

• Maximum number of open files

The maximum number of files in the system that can be open at any given time
depends on the space available for control blocks; access control blocks (ACBs),
file control blocks (FCBs), and open control blocks (OCBs). The amount of space
available for control blocks is limited primarily by the physical memory size of the
system. Each process can have up to one megabyte of space for ACBs; the
default is 128 kilobytes for ACBs.

• Multiple openings by the same process

If a given file is opened more than once by the same process, a new ACB is
created for each open. This provides logically separate accesses to the same file
because a unique file number returns to the process for each open. Whenever you
reference a file in a procedure, the file number is supplied by you in the filenum
parameter of the procedure.

Multiple opens on a given file can create a deadlock. This shows how a deadlock
situation occurs:

OPEN(MYFILE , filenuma ...);
! first open on file MYFILE.
 .
 .
OPEN(MYFILE , filenumb ...);

<9> %100 Must be 0 (reserved)

<10:11
>

%60
(If both bits set)

Exclusion mode

0 = shared
1 = exclusive
2 = process exclusive (supported for Optical Storage

Facility only)
3 = protected

<12:15
>

%17
(If all four bits
set)

> 0 implies nowait I/O and the maximum number of
concurrent nowait I/O operations that can be in
progress on this file at any given time.

0 implies waited I/O.

Table 11-2. OPEN flags Parameter (page 2 of 2)

Flag Flag in Octal Meaning

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-20

OPEN Procedure (Superseded by FILE_OPEN_
Procedure)

! second open on file MYFILE.
 .
 .
OPEN(MYFILE , filenumc ...);
! third open on file MYFILE.
 .

d .
e LOCKFILE (filenumb, ...); ! the file is locked
a . ! using the file number
d . ! associated with the
l . ! second open.
o READUPDATE (filenumc, ...); ! update the file
c . ! associated with the
k . ! third open.

Locks are granted on an open file (that is, file number) basis. Therefore, if a
process has multiple opens of the same file, a lock of one file number excludes
access to the file through other file numbers. The process is suspended forever if
the default locking mode is in effect.

You now have a deadlock. The file number referenced in the LOCKFILE call
differs from the file number in the READUPDATE call.

• Limit number of times file can be open

There is a limit to the total number of times a given file can be open at one time.
This determination includes opens by all processes.

The specific limit for a file is dependent on the file’s device type:

Disk Files Cannot exceed 32,767 opens per disk

Process Defined by process (see discussion of “controlling openers” in the
Guardian Programmer’s Guide)

$0 Unlimited opens

$0.#ZSPI 128 concurrent opens permitted

$OSP 10 times the number of subdevices (up to a maximum of 83
subdevices)

$RECEIVE One open per process permitted

Other Varies by subsystem

• Nowait opens—errors

If a process file is opened in a nowait manner (flags.<8> = 1), that file is opened
as nowait and checkopened in a nowait manner. Errors detected in parameter
specification and system data space allocation are returned by the call to OPEN,
and the operation is considered unsuccessful. If there is an error, no message to
the process being opened is sent, and no call to AWAITIO is needed to complete
the open.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-21

OPEN Procedure (Superseded by FILE_OPEN_
Procedure)

If there are no parameter or data space allocation errors, the filenum parameter
is valid when OPEN returns. However, no I/O operation on the file can be initiated
until the open is completed, and other errors are reported by a call to AWAITIO.

If the tag parameter is specified in the call to AWAITIO, a -30D returns. The
values returned in the buffer and count parameters to AWAITIO are undefined. If
an error returns from AWAITIO, it is the user’s responsibility to close the file.

For a nonprocess or waited (nowait depth = 0) file, flags.<8> is internally reset to
0 and ignored. A call to FILEINFO after the call to OPEN can return the value of
the internal flags; if bit <8> = 1, then a call to AWAITIO must be performed to
complete the open.

For considerations when using nowait I/O, see the Enscribe Programmer’s Guide.
For a general discussion of nowait I/O, see the Guardian Programmer’s Guide.

• Direct and buffered I/O transfers

A file opened by OPEN uses an intermediate buffer in the process file segment
(PFS) for I/O (read) transfers by default; SETMODE 72 is used to force the system
to use direct I/O transfers. This is unlike FILE_OPEN_ , which uses direct I/O
transfers by default.

The system buffers are used for files opened by OPEN. If you want to use user
buffers instead of system buffers, set SETMODE 72,2. Note that calling the
USERIOBUFFER_ALLOW_ procedure before the OPEN procedure does not
override the implicit SETMODE 72,1 for files opened by OPEN.

• Partitioned files

A separate pair of FCBs exist for each partition of a partitioned file. There is one
ACB per accessor (as for single-volume files), but this ACB requires more main
memory since it contains the information necessary to access all of the partitions,
including the location, alternate keys, and partial-key value for each partition.

• Disk file open—security check

When a disk file open is attempted, the system performs a security check. The
accessor’s (that is, the caller’s) security level is checked against the file security
level for the requested access mode, as follows:

for read access: read security level is checked.
for write access: write security level is checked.
for read-write access: read and write security levels are checked.

A file has one of seven levels of security for each access mode. (The owner of the
file can set the security level for each access mode by using SETMODE function 1
or by using the File Utility Program SECURE command.) Table 11-3 shows the
seven levels of security.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-22

OPEN Procedure (Superseded by FILE_OPEN_
Procedure)

For a given access mode, the accessor’s security level is checked against the file
security level. File access is allowed or not allowed as shown in Table 11-4. In this
table, file security levels are indicated by FUP security codes. For a given
accessor security level, a Y indicates that access is allowed to a file with the
security level shown; a hyphen indicates that access is not allowed.

If the caller to FILE_OPEN_ fails the security check, the open fails with an error 48.
A file’s security can be obtained by a call to FILE_GETINFOLIST[BYNAME]_ ,
FILEINFO, or by the File Utility Program (FUP) INFO command.

If you are using the Safeguard product, this security information might not apply.

• Tape file open—access mode

Table 11-3. Levels of Security

FUP Code
Program
Values Access

– 7 Local super ID only

U 6 Owner (local or remote), that is, any user with owner’s
ID

C 5 Member of owner’s group (local or remote), that is,
any member of owner’s community

N 4 Any user (local or remote)

O 2 Owner only (local)

G 1 Member of owner’s group (local)

A 0 Any user (local)

Table 11-4. Allowed File Accesses

Accessor’s Security Level File Security Level

– U C N O G A

Super ID user, local access
Super ID user, remote access

Y
–

Y Y Y
Y Y Y

Y Y Y
– – –

Owner or owner’s group manager, remote
access
Member of owner’s group, remote access
Any other user, remote access

–
–
–

Y Y Y
– Y Y
– – Y

– – –
– – –
– – –

Owner or owner’s group manager, local
access
Member of owner’s group, local access
Any other user, local access

–
–
–

Y Y Y
– Y Y
– – Y

Y Y Y
– Y Y
– – Y

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-23

OPEN Procedure (Superseded by FILE_OPEN_
Procedure)

The file system does not enforce read-only or write-only access for unlabeled tape,
even though no error is returned if you specify one of these access modes when
opening a tape file.

• File open—exclusion and access mode checking

When a file open is attempted, the requested access and exclusion modes are
compared with those of any opens already granted for the file. If the attempted
open is in conflict with other opens, the open fails with error 12.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-24

OPEN Procedure (Superseded by FILE_OPEN_
Procedure)

Table 11-5 lists the possible current modes and requested modes, indicating
whether an open succeeds or fails.

• Applications with large receive-depth values

If you have applications that use large receive-depth values, you must periodically
monitor their Message Quick Cell (MQC) usage levels using the PEEK /CPU N/
MQCINFO command in all the processors to make sure that the total amount of
memory allocated for MQCs does not approach the per-processor memory limit for

Note. Protected exclusion mode has meaning only for disk files. For other files, specifying
protected exclusion mode is equivalent to specifying shared exclusion mode.

Table 11-5. Exclusion and Access Mode Checking

008CDT .CDD

Open
attempted

with:

File currently open with:

Shared

Read/
Write

Read
Only

Write
Only

Exclusive

Read/
Write

Read
Only

Write
Only

Protected

Read/
Write

Read
Only

Write
Only

Read/
Write

Read
Only

Write
Only

Read/
Write

Read
Only

Write
Only

Read/
Write

Read
Only

Write
Only

Exclusive

Protected

File
Closed

Shared

Access
Mode

Exclusion
Mode

= Open Successful

Legend

= Open Fails

Always Fails

Note: When a program file is running, it is opened
with the equivalent of protected, read-only access.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-25

OPEN Procedure (Superseded by FILE_OPEN_
Procedure)

MQCs. This limit is 128 MB in H06.19 / J06.08 and earlier RVUs, and 1 GB in
H06.20 / J06.09 and later RVUs. For more information, see Table J-3 on page 3.

If you run applications with very large receive-depth values on systems running
H06.19/J06.08 or earlier RVUs, you must consider upgrading to H06.20/J06.09 or
a later RVU if you notice MQC memory usage levels approach the per-processor
memory limit of 128 MB.To determine the amount of memory used for MQCs by
CPU N from the PEEK /CPU N/ MQCINFO command output, add the page counts
for all MQC sizes, and then multiply the total page count allocated for MQCs by the
page size (16 KB).

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-26

OPEN Procedure (Superseded by FILE_OPEN_
Procedure)

Disk File Considerations

• Maximum number of concurrent nowait operations

The maximum number of concurrent nowait operations permitted for an open of a
disk file is one. Attempting to open a disk file and specify a value greater than 1
returns an error indication. A subsequent call to FILEINFO or FILE_GETINFO_
shows that an error 28 occurred.

• Unstructured files

• File pointers after open

After a disk file is opened, the current-record and next-record pointers begin at
a relative byte address (RBA) of zero, and the first data transfer (unless an
intervening POSITION is performed) is from that location. After a successful
open, the pointers are:

current-record pointer = 0D
next-record pointer = 0D

• Sharing the same EOF pointer

If a given disk file is opened more than once by the same process, separate
current-record and next-record pointers are provided for each open, but all
opens share the same EOF pointer.

• Structured files

• Accessing structured files as unstructured files

The unstructured access option (flags.<2>) permits a file to be accessed as
an unstructured file. For OPEN, with this option specified, a data transfer
occurs to the position in the file specified by an RBA (instead of to the position
indicated by a key address field or record number); the number of bytes
transferred is that specified in the file-system procedure call (instead of the
number of bytes indicated by the record format). If a partitioned, structured file
is opened as an unstructured file, only the first partition is opened. The
remaining partitions must be opened individually with separate calls to OPEN
(each call to OPEN specifying unstructured access).

Accessing audited structured files as unstructured files is not allowed.

• Current-state indicators after open

After successful completion of OPEN, the current-state indicators have these
values:

• The current position is that of the first record in the file by primary key.

Caution. Programmers using this option are cautioned that the block format used by Enscribe
must be maintained if the file is to be accessed again in its structured form. (HP reserves the
right to change this block format at any time.) For information about Enscribe block formats,
see the Enscribe Programmer’s Guide.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-27

OPEN Procedure (Superseded by FILE_OPEN_
Procedure)

• The positioning mode is approximate.

• The comparison length is 0.

If READ is called immediately after OPEN for any structured file, it reads the
first record in the file; in a key-sequenced file, this is the first record by primary
key. Subsequent reads, without intervening positioning, read the file
sequentially or by primary key through the last record in the file.

When a key-sequenced file is opened, KEYPOSITION usually is called before
any subsequent I/O call (such as READ, READUPDATE, WRITE) to establish
a position in the file.

• Queue files

If the READUPDATELOCK[X] operation is to be used, the sync-or-receive-
depth parameter must be 0. A separate open may be used for operations with
sync-or-receive-depth > 0.

Sequential block buffering cannot be used.

Terminal Consideration
The terminal being used as the operator console should not be opened with exclusive
access. If it is, console messages are not logged.

Interprocess Communication Considerations

• Maximum concurrent nowait operations for an open of $RECEIVE

The maximum number of concurrent nowait operations permitted for an open of
$RECEIVE is one. Attempting to open $RECEIVE and to specify a value greater
than 1 returns an error indication. A subsequent call to FILEINFO or
FILE_GETINFO_ shows that an error 28 occurred.

• When open completes

When process A attempts to open process B, open completes as follows:

• The open for process A won’t complete if process B has not opened its
$RECEIVE.

• If process B has opened its $RECEIVE, but has not requested system
messages, the open for process A completes immediately.

• If process B has opened its $RECEIVE requesting system messages, and with
a receive-depth equal to 0, the open for process A completes when
process B does a read of $RECEIVE to get the open message from A.

• If process B has opened its $RECEIVE requesting system messages and with
receive-depth greater than 0, the open for process A completes after
process B has read the open message of process A and replied to it.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-28

OPEN Procedure (Superseded by FILE_OPEN_
Procedure)

• Opening high-PIN processes

The OPEN procedure cannot be used to open a high-PIN unnamed process
because the process ID cannot fit into the process file name; FILE_OPEN_ must
be used instead. However the OPEN procedure can be used on high-PIN named
processes, devices, and files on high-PIN volumes.

• Opening an unconverted (C-series) process from a high-PIN process.

A high-PIN process cannot open an unconverted process unless the unconverted
process has the HIGHREQUESTERS object-file attribute set. If a high-PIN
process attempts to open a low-PIN process that does not have this attribute set,
file-system error 560 occurs.

• Opening $RECEIVE and being opened by a remote long-named process

If a process uses the OPEN procedure to open $RECEIVE (or if it uses the
FILE_OPEN_ procedure to open $RECEIVE and requests that C-series format
messages be delivered), then a subsequent open of that process (using either
OPEN or FILE_OPEN_) by another process on a remote node that has a process
name consisting of more than five characters will fail with an error 20.

Message
The process open system message is received by a process when it is opened by
another process. The 4-word process ID of the opener can be obtained in a
subsequent call to FILE_GETRECEIVEINFO_ , LASTRECEIVE, or RECEIVEINFO.
For a description and the form of this message and all system messages, see the
Guardian Procedure Errors and Messages Manual.

DEFINE Considerations
The file-name parameter can be a DEFINE name; OPEN will use the file name
given by the DEFINE as the object to be opened. If a CLASS TAPE DEFINE without
the DEVICE attribute is referenced, a specific tape drive will be selected. A DEFINE of
CLASS TAPE has other effects when supplied to OPEN; see Appendix E, DEFINEs for
further information about DEFINEs.

If no DEFINE exists for the specified DEFINE name, the procedure returns error 198
(missing DEFINE).

Note. This message is also received if the backup process of a process pair performs the
open. Therefore, a process can expect two of these messages when being opened by a
process pair.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-29

OPEN^FILE Procedure

Safeguard Considerations
For information on files protected by Safeguard, see the Safeguard Reference Manual.

OSS Considerations

• This procedure operates only on Guardian objects. If an OSS file is specified,
error 1163 is returned.

Example
CALL OPEN (FILE^NAME , FILE^NUM);

The file in this call has these defaults; wait I/O, exclusion mode (shared), access mode
(read/write), sync depth (0).

Related Programming Manuals
For programming information about the OPEN file-system procedure, see the Enscribe
Programmer’s Guide.

OPEN^FILE Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
General Considerations
EDIT File Considerations
Level-3 Spooling Considerations
Example
Related Programming Manual

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-30

OPEN^FILE Procedure

Summary
The OPEN^FILE procedure permits access to a file when using sequential I/O (SIO)
procedures.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system or SIO procedure error number indicating the outcome of the
operation.

If the abort-on-open-error mode is in effect (the default situation), the only possible
value of error is 0.

common-fcb input

INT:ref:*

#include <cextdecs(OPEN_FILE)>

short OPEN_FILE (short _near *common-fcb
 ,short _near *file-fcb
 ,[short _near *block-buffer]
 ,[short block-bufferlen]
 ,[__int32_t flags]
 ,[__int32_t flags-mask]
 ,[short max-recordlen]
 ,[short prompt-char]
 ,[short _near *error-file-fcb]);

error := OPEN^FILE (common-fcb ! i
 ,file-fcb ! i
 ,[block-buffer] ! i
 ,[block-bufferlen] ! i
 ,[flags] ! i
 ,[flags-mask] ! i
 ,[max-recordlen] ! i
 ,[prompt-char] ! i
 ,[error-file-fcb]); ! i

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-31

OPEN^FILE Procedure

is an array of FCBSIZE or FCBSIZE^D00 words for use by the SIO procedures.
Only one common file control block (FCB) is used per process. This means the
same data block is passed to all OPEN^FILE calls. The common FCB must be
initialized before the first call to OPEN^FILE following a process startup. The size
of the file control block differs between TNS processes and native processes.

file-fcb input

INT:ref:*

is an array of FCBSIZE or FCBSIZE^D00 words for use by the SIO procedures.
The file FCB uniquely identifies this file to other SIO procedures. The file FCB
must be initialized with the name of the file to be opened before OPEN^FILE is
called. The size of the file control block differs between TNS processes and
native processes.

For information about the FCB structure, see the Guardian Programmer’s Guide.

block-buffer input

INT:ref:*

is an array used for one of four different purposes:

• When reading a structured file, the presence of this parameter indicates a request
for sequential block buffering. If more than one file refers to the same block-buffer
address, they share the same sequential block buffer.

• When reading or writing an EDIT file, the buffer is used by SIO to contain EDIT file
pages being assembled or disassembled. The buffer must be supplied for an EDIT
file.

• When using level-3 spooling, the buffer is used by SIO to hold records that are to
be sent to a spooler collector.

• If block-buffer is not being used for any of the other three purposes, then the
array is used for SIO record blocking and deblocking. No blocking is performed if
any of these occurs:

• block-buffer or block-bufferlen is omitted.

• The value of block-bufferlen is insufficient according to the record length
for the file.

• Read/write access is indicated.

Blocking occurs when block-buffer is supplied, the block buffer is of
sufficient length (as indicated by block-bufferlen), and blocking is
appropriate for the device.

For TNS processes, the block buffer must be located within ‘G’[0:32767] of
the data area. This limit does not apply to native processes.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-32

OPEN^FILE Procedure

block-bufferlen input

INT:value

indicates the length, in bytes, of the block buffer. This length must be able to
contain at least one logical record. For an EDIT file, the minimum length on read is
144 bytes; on write, the minimum length is 1024 bytes. For use with level-3
spooling, the minimum length is 1024 bytes.

flags input

INT(32):value

if present, is used with the flags-mask parameter to set file transfer
characteristics. If omitted, all positions are treated as zeros.

These literals can be combined using signed addition because bit 0 is not used:

ABORT^OPENERR KEEP^LASTOPENTIME PURGE^DATA
ABORT^XFERERR LEVEL3^SPOOL^ENABLE READ^TRIM
AUTO^CREATE MUSTBENEW VAR^FORMAT
AUTO^TOF NOWAIT WRITE^FOLD
BLOCKED OLD^RECEIVE WRITE^PAD
CRLF^BREAK PRINT^ERR^MSG WRITE^TRIM

For the meanings of literals used with flags, see General Considerations on
page 11-33. Literal declarations are contained in the file
$SYSTEM.SYSTEM.GPLDEFS.

flags-mask input

INT(32):value

specifies which bits of the flag field are used to alter the file transfer characteristics.
A characteristic to be altered is indicated by entering a 1 in the bit position
corresponding to the flags parameter. A 0 indicates the default setting is used. If
this parameter is omitted, all positions are treated as zeros.

max-recordlen input

INT:value

specifies the maximum record length for records within this file. If this parameter is
omitted, the maximum record length is 132.

The open is aborted with an SIOERR^INVALIDRECLENGTH, error 520, if the file’s
record length exceeds the maximum record length and max-recordlen is not 0.
If max-recordlen is 0, then any record length is permitted.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-33

OPEN^FILE Procedure

prompt-char input

INT:value

specifies the interactive prompt character for reading from terminals or processes.
“?” is the default prompt. The prompt character is limited to seven bits, <9:15>.

error-file-fcb input

INT:ref:*

if present, specifies a file where error messages are displayed for all files. Only
one error-reporting file is allowed per process. The file specified in the latest
OPEN^FILE call is the one used. Omitting this parameter does not alter the setting
of the current error-reporting file.

The default error-reporting file is the home terminal.

If the error-reporting file is not open when needed, it is opened only for the duration
of the message printing, then closed. Remember that the error-reporting file FCB
must be initialized.

For information about the file FCB, see the Guardian Programmer’s Guide.

General Considerations

• Specifics of AUTO^TOF

If AUTO^TOF is ON, a top-of-form control operation is performed to the file when
both (1) the file being opened is a process or a line printer, and (2) write access is
specified.

• When read/write access is not permitted

If the file is an EDIT file or if blocking is specified, either read or write access must
be specified for the open to succeed. Read/write access is not permitted.

• Accessing a temporary disk file

When using OPEN^FILE to access a temporary disk file, AUTO^CREATE must be
OFF; otherwise, the OPEN^FILE call results in a file-system error 13.

• Sync depth of open files

All files opened with the OPEN^FILE procedure are opened with a sync depth of 1.
This is the only possible sync depth; no other can be set.

• Opening $RECEIVE

If you attempt to use a C-series format common FCB with a D-series format FCB
for $RECEIVE, OPEN^FILE fails with an error 536.

• Error-reporting file

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-34

OPEN^FILE Procedure

The error-reporting file is used, when possible, for reporting errors. If this file
cannot be used or if the error is with the error-reporting file, the default error-
reporting file is used.

• Appending data to the file

SIO procedures append data to the file if access is write only and PURGE^DATA is
OFF (the default value).

• Opening $RECEIVE with the OLD^RECEIVE flag ON

If $RECEIVE is open with the OLD^RECEIVE flag ON (receive C-series format
messages), a subsequent open of the caller by another process on a remote node
that has a name consisting of more than five characters fails with an error 20.
Notification of this failure is not sent to the caller reading $RECEIVE.

• List of literals used with flags and flags-mask

ABORT^OPENERR (%1D) Abort on open error; defaults to ON (1). If ON and a
fatal error occurs during the OPEN^FILE call, all files are
closed and the process ends abnormally. If OFF (0), the
file-system or SIO-procedure error number is returned to
the caller.

ABORT^XFERERR (%2D) Abort on data transfer error; defaults to ON. If ON
and a fatal error occurs during a data transfer operation
(such as a call to any SIO procedure except OPEN^FILE),
all files are closed and the process ends abnormally. If
OFF, the file-system or SIO-procedure error number is
returned to the caller.

AUTO^CREATE (%10D) Auto create; defaults to ON. If ON, and if open
access is write, a file is created if one does not already
exist. If write access is not given and the file does not exist,
error 11 is returned. If no file code has been assigned or if
the file code is 101, and if a block buffer of at least 1024
bytes is provided, an EDIT file is created. If there is not a
buffer of sufficient size and no new file code is specified,
then a file code of 0 is used. (See EDIT File Considerations
on page 11-36.) The default extent sizes are 8 pages for
the primary extent and 32 pages for the secondary extent.
The maximum number of extents is 500.

AUTO^TOF (%100D) Auto top of form; defaults to ON. If ON and the
file is a line printer or process that is open with write
access, a page eject is issued to the file within the
OPEN^FILE procedure.

BLOCKED (%400D) Nondisk blocking; defaults to OFF. A block buffer
of sufficient length must also be specified.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-35

OPEN^FILE Procedure

CRLF^BREAK (%40000D) Carriage return/line feed (CR/LF) on BREAK;
defaults to ON. If ON and BREAK is enabled, a CR/LF is
written to the terminal when BREAK is entered.

KEEP^LASTOPENTIME
(%400000D) Keep last open time; defaults to OFF. If ON
and open access to a disk file is read only, the “time of last
open” file attribute is not updated by this open. If OFF, the
“time of last open” file attribute is updated. This flag is
ignored if the file is not a disk file or if open access is not
read only.

LEVEL3^SPOOL^ENABLE
(%200000D) Enable level-3 spooling when writing to a
spooler collector; defaults to OFF. If ON, writing to the
spooler collector is buffered and a block buffer with a length
of at least 1024 bytes must be provided. If OFF or if the
other requirements for level-3 spooling are not met, one
record at a time is written to the spooler collector. See
Level-3 Spooling Considerations on page 11-37.

MUSTBENEW (%20D) File must be new; defaults to OFF. This flag
applies only if AUTO^CREATE is ON. If the file already
exists, error 10 is returned.

NOWAIT (%200D) Nowait I/O; defaults to OFF (wait I/O). If ON,
nowait I/O is in effect. If NOWAIT is specified in the open
flags of OPEN^FILE, then the nowait depth is 1. It is not
possible to use a nowait depth greater than 1 using SIO
procedures.

OLD^RECEIVE (%100000D) Receive C-series format system messages;
defaults to OFF. If ON, system messages read by the caller
from $RECEIVE are in C-series format. If OFF, system
messages read from $RECEIVE are in D-series format.
This flag is ignored for all files other than $RECEIVE. It is
also ignored if you are using a C-series format FCB; all
messages are then in C-series format.

PRINT^ERR^MSG (%4D) Print error message; defaults to ON. If ON, and a
fatal error occurs, an error message is displayed on the
error file. This file is the home terminal unless otherwise
specified.

PURGE^DATA (%40D) Purge data; defaults to OFF. If ON, and open
access is write, the data is purged from the file after the
open. If OFF, the new data is appended to the existing
data.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-36

OPEN^FILE Procedure

READ^TRIM (%2000D) Read trailing blank trim; defaults to ON. If ON,
the count-returned parameter on a READ^FILE call
does not account for trailing blanks.

VAR^FORMAT (%1000D) Variable-length records; defaults to OFF for
fixed-length records. If ON, the maximum record length for
variable-length records is 254 bytes.

WRITE^FOLD (%10000D) Write fold; defaults to ON. If ON, writes that
exceed the record length cause multiple logical records to
be written. If OFF, writes that exceed the record length are
truncated to record-length bytes; no error message or
warning is given.

WRITE^PAD (%20000D) Write blank pad; defaults to ON for disk fixed-
length records and OFF for all other files. If ON, writes of
less than record-length bytes, including the last record if
WRITE^FOLD is in effect, are padded with trailing blanks to
fill out the logical record.

WRITE^TRIM (%4000D) Write trailing blank trim; defaults to ON. If ON,
trailing blanks are trimmed from the output record before
being written to the file.

EDIT File Considerations

• When creating a file, if you do not assign a file code for the new file or if you assign
it a file code of 101, and if you provide a block buffer of at least 1024 bytes, an
EDIT file is created. If you do not provide a block buffer of sufficient size and if you
assign no file code, a file code of 0 is used. If you assign a file code of 101 but do
not provide a block buffer of sufficient size, an error is returned.

• EDIT files are created with the ODDUNSTR attribute set. EDIT files created before
the D20 RVU might not have this attribute set. When opening an EDIT file created
before D20 that does not have the ODDUNSTR attribute set, SIO alters the file so
that it has this attribute set.

• Starting in the D20 RVU, the EDIT file directory is written to the end of a new disk
extent whenever a new extent is used (although in the case of a new EDIT file, the
directory is not moved to the end of the primary extent until the first page is filled).
The result is that, starting in D20, an EDIT file might appear to be larger (that is,
the value of EOF is greater) when compared to the same file managed by SIO
before D20. The file is not actually larger, as the same amount of disk space is
allocated in both cases. The difference is that in the newer version, the last part of
each new extent is immediately put into use.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-37

OPEN^FILE Procedure

• SIO always performs buffered I/O, using the disk process buffering mechanism to
enhance performance, when writing to an EDIT file. You can force SIO to flush
buffered data to disk by calling WRITE^FILE and specifying a write-count of -1.

• For performance reasons, it is recommended that you provide a block buffer with a
length of about 2100 bytes. This is because SIO normally requires slightly more
than 2048 bytes to assemble EDIT file pages.

• You must specify either read or write access when opening an EDIT file; read/write
access is not permitted.

Level-3 Spooling Considerations

• Level-3 spooling allows multiple records to be sent per message to a spooler
collector, greatly reducing the number of messages required to do spooling. To
use level-3 spooling with SIO, you must open a spooler collector by calling
OPEN^FILE. These requirements must be met:

• You must set the LEVEL3^SPOOL^ENABLE flag ON in the call to OPEN^FILE.

• You must provide a block buffer with a length of at least 1024 bytes.

• The open exclusion mode of the file must be shared.

• The maximum record length of the print line buffer is 900 bytes.

If any of these requirements are not met, level-3 spooling is not enabled. You can
verify whether level-3 spooling is enabled by calling the CHECK^FILE procedure
and specifying the FILE^LEVEL3^SPOOLING operation.

• CONTROL or SETMODE operations are not allowed on a file that is opened by
SIO for level-3 spooling; error 2 is returned by CONTROL or SETMODE for any
operation. Certain CONTROL operations can be requested in a call to
OPEN^FILE or WRITE^FILE; these continue to be available when a file is opened
for level-3 spooling.

• The spooler interface procedures, through which SIO performs spooling, do not
support nowait I/O. You can set the NOWAIT flag ON in a call to OPEN^FILE and
WRITE^FILE, but SIO still performs I/O operations to a spooler collector in a
waited manner.

Example
ERROR := OPEN^FILE (COMMON^FCB , IN^FILE , BUFFER
 , BUFFER^SIZE , FLAGS , FLAGS^MASK , , PROMPT);

Related Programming Manual
For programming information about the OPEN^FILE procedure, see the Guardian
Programmer’s Guide.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-38

OPENEDIT Procedure (Superseded by OPENEDIT_
Procedure)

OPENEDIT Procedure
(Superseded by OPENEDIT_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary

The OPENEDIT procedure allocates and initializes data blocks in the EDIT file
segment (EFS) so that the specified file can be accessed later by the IOEdit
procedures. It optionally creates and opens the specified file through the file system.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation. The
possible values include:

-1 Page-count value is inconsistent.
-2 Page-table tags are out of order.
-3 Page-table tag is outside valid range.
-4 Page-table block number is outside of file.
-5 Page table has duplicate block numbers.

Note. The OPENEDIT procedure is supported for compatibility with previous software. For
new development, the OPENEDIT_ procedure should be used instead.

error := OPENEDIT (file-name ! i
 ,filenum ! i,o
 ,[flags] ! i
 ,[sync-depth] ! i
 ,[write-thru]); ! i

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-39

OPENEDIT Procedure (Superseded by OPENEDIT_
Procedure)

11 File does not exist; indicates that the file does not exist and that the flags
parameter indicates read-only access to the file.

14 Device does not exist; indicates that the device-name part of the file name
designates a device that either does not exist or is not a disk device.

16 File has not been opened, wrong file type; indicates that the file is not an EDIT
file (that is, the file type is not unstructured or the file code is not 101 or 102).

31 Unable to obtain buffer space; indicates that the file’s directory does not fit into
IOEdit’s extended data segment and OPENEDIT is unable to enlarge the
segment.

34 Unable to obtain memory space for control block; indicates that the number of
IOEdit files already open is equal to the maximum number specified or
assumed when INITIALIZEEDIT was called.

59 File is bad; indicates that the file exists and has the correct file type and file
code for an EDIT file, but the data in the file has an incorrect format and
OPENEDIT is unable to repair it.

The negative values listed above indicate that OPENEDIT has found a format error
in the file that it can probably correct. At the time that one of these values is
returned, the file has not yet been altered. If you immediately call CLOSEEDIT or
CLOSEEDIT_ , the file is closed without change. If instead you call another IOEdit
procedure, IOEdit tries to correct the format of the file. The format corrections are
written to disk when CLOSEEDIT or CLOSEEDIT_ is finally called. If IOEdit fails to
correct the format error, error 59 is returned for all subsequent IOEdit operations
on the file.

file-name input

INT .EXT:ref:12

is an array containing the internal-format file name that identifies the file to be
opened. If the file must be created, this name is assigned to it.

filenum input, output

INT:value

on input, if the specified value is greater than or equal to 0 and if the file
designated by file-name exists, indicates that the caller has already opened the
file through the file system and that filenum is the number returned by the file
system to identify the open file. In this case, OPENEDIT only verifies that the file is
an EDIT file and creates the internal data structures necessary for subsequent
IOEdit operations on the file. If filenum is a negative value or if the file does not
exist, OPENEDIT opens the file by calling OPEN (after calling CREATE, if
necessary) and then creates the internal IOEdit data structures.

On return, if OPENEDIT called OPEN, the returned value is the number returned
by OPEN to identify the open file. If OPENEDIT did not call OPEN, the input value
of filenum is returned unchanged.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-40

OPENEDIT Procedure (Superseded by OPENEDIT_
Procedure)

flags input

INT:value

specifies the value that is passed to the flags parameter of the OPEN procedure
if OPENEDIT opens the file. These conditions apply:

• If OPENEDIT opens the file and if the flags parameter is omitted, the value
%002001 (read-only, shared access, nowait mode) is used.

• If OPENEDIT opens the file and if the flags parameter specifies write-only
access, OPENEDIT opens the file with read-write access instead, because any
write to an EDIT file requires reading a directory within the file to determine
where to write the line.

• If the file is already open with write-only access at the time of the call to
OPENEDIT, the procedure returns an error 2 (invalid operation), because it is
unable to change the file’s access mode.

• If the file does not exist and if the value of flags specifies (or defaults to)
read-only access, OPENEDIT returns error 11 (file does not exist). If the file
does not exist and if the flags value specifies read-write access, OPENEDIT
creates the file and opens it.

For a detailed description of this parameter, see the flags parameter under
OPEN Procedure (Superseded by FILE_OPEN_ Procedure).

sync-depth input

INT:value

specifies the sync depth value to be passed to the OPEN procedure if OPENEDIT
opens the file. If this parameter is omitted, 0 is used.

For a detailed description of this parameter, see the sync-or-receive-depth
parameter under OPEN Procedure (Superseded by FILE_OPEN_ Procedure).

write-thru input

INT:value

if present and not 0, specifies that each call to an IOEdit procedure that changes
the content of the file should fully update the disk copy of the file. This means that
every file access results in one or more physical I/O operations. Note that using
this option can cause severe performance degradation.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-41

OPENEDIT_ Procedure

Considerations

• The caller must set the filenum parameter to an appropriate value before each
call to OPENEDIT, because its value might be changed upon return.

• If the file is already open at the time of the call to OPENEDIT, the flags, sync-
depth, and write-thru parameters to OPENEDIT are ignored.

• OPENEDIT sets the file’s current record number to -1 and resets the line number
increment to 1 (that is, it resets the record number increment to 1000).

• If OPENEDIT calls the CREATE procedure, it sets the primary and secondary
extent sizes to two pages each and sets the maximum number of extents to 900.

• If OPENEDIT opens a file that is already open by the same process, it writes to
disk all the buffers for that file, including directory information. This assures that
the file is in an up-to-date state at the completion of the open. For a general
discussion of coordinating concurrent file access, see the Guardian Programmer’s
Guide.

Also Considerations on page 11-19.

Example
In this example, OPENEDIT calls OPEN for the file $MYVOL.TEST.AFILE. The default
flag values are used (read-only, shared access, and nowait mode).

INT .EXT fname[0:11] := [“$MYVOL TEST AFILE ”];
INT .EXT fnumber := -1;
 .
 .
err := OPENEDIT (fname, fnumber);

Related Programming Manual
For programming information about the IOEdit procedures, see the Guardian
Programmer’s Guide.

OPENEDIT_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-42

OPENEDIT_ Procedure

Summary
The OPENEDIT_ procedure allocates and initializes data blocks in the EDIT file
segment (EFS) so that the specified file can be accessed later by the IOEdit
procedures. It optionally creates and opens the specified file through the file system.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation. The
possible values include:

-1 Page-count value is inconsistent.
-2 Page-table tags are out of order.
-3 Page-table tag is outside valid range.
-4 Page-table block number is outside of file.
-5 Page table has duplicate block numbers.

11 File does not exist; indicates that the file does not exist and that the access
parameter indicates read-only access to the file.

14 Device does not exist; indicates that the device-name part of the file name
designates a device that either does not exist or is not a disk device.

16 File has not been opened, wrong file type; indicates that the file is not an EDIT
file (that is, the file type is not unstructured or the file code is not 101 or 102).

#include <cextdecs(OPENEDIT_)>

short OPENEDIT_ (const char *file-name
 ,short length
 ,short *filenum
 ,[short access]
 ,[short exclusion]
 ,[short nowait]
 ,[short sync-depth]
 ,[short write-thru]);

error := OPENEDIT_ (file-name:length ! i:i
 ,filenum ! i,o
 ,[access] ! i
 ,[exclusion] ! i
 ,[nowait] ! i
 ,[sync-depth] ! i
 ,[write-thru]); ! i

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-43

OPENEDIT_ Procedure

31 Unable to obtain buffer space; indicates that the file’s directory does not fit into
IOEdit’s extended data segment and OPENEDIT_ is unable to enlarge the
segment.

34 Unable to obtain memory space for control block; indicates that the number of
IOEdit files already open is equal to the maximum number specified or
assumed when INITIALIZEEDIT was called.

59 File is bad; indicates that the file exists and has the correct file type and file
code for an EDIT file, but the data in the file has an incorrect format and
OPENEDIT_ is unable to repair it.

The negative values listed above indicate that OPENEDIT_ has found a format
error in the file that it can probably correct. At the time that one of these values is
returned, the file has not yet been altered. If you immediately call CLOSEEDIT_ or
CLOSEEDIT, the file is closed without change. If instead you call another IOEdit
procedure, IOEdit tries to correct the format of the file. The format corrections are
written to disk when CLOSEEDIT_ or CLOSEEDIT is finally called. If IOEdit fails to
correct the format error, error 59 is returned for all subsequent IOEdit operations
on the file.

file-name:length input:input

STRING .EXT:ref:*, INT:value

specifies the name of the file to be opened. If the file must be created, this name is
assigned to it. The value of file-name must be exactly length bytes long and
must be a valid file name or DEFINE name. If the name is partially qualified, it is
resolved using the contents of the =_DEFAULTS DEFINE.

filenum input, output

INT:ref:1

on input, if the specified value is greater than or equal to 0 and if the file
designated by file-name exists, indicates that the caller has already opened the
file through the file system and that filenum is the number returned by the file
system to identify the open file. In this case, OPENEDIT_ only verifies that the file
is an EDIT file and creates the internal data structures necessary for subsequent
IOEdit operations on the file. If filenum is a negative value or if the file does not
exist, OPENEDIT_ opens the file by calling FILE_OPEN_ (after calling

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-44

OPENEDIT_ Procedure

FILE_CREATE_, if necessary), and then creates the internal IOEdit data
structures.

On return, if OPENEDIT_ called FILE_OPEN_, the returned value is the number
returned by FILE_OPEN_ to identify the open file. If OPENEDIT_ did not call
FILE_OPEN_, the input value of filenum is returned unchanged.

access input

INT:value

specifies the value that is passed to the access parameter of the FILE_OPEN_
procedure if OPENEDIT_ opens the file. These conditions apply:

• If OPENEDIT_ opens the file and if the access parameter is omitted, 1 is used
(indicating read-only access).

• If OPENEDIT_ opens the file and if the access parameter is equal to 2
(indicating write-only access), OPENEDIT_ opens the file with read-write
access instead, because any write to an EDIT file requires reading a directory
within the file to determine where to write the line.

• If the file is already open with write-only access at the time of the call to
OPENEDIT_, the procedure returns an error 2 (invalid operation), because it is
unable to change the file’s access mode.

• If the file does not exist and if the access parameter is omitted or equal to 1
(indicating read-only access), OPENEDIT_ returns error 11 (file does not exist).
If the file does not exist and if the access parameter is equal to 0 (indicating
read-write access), OPENEDIT_ creates the file and opens it.

For a detailed description of this parameter, see the access parameter under
FILE_OPEN_ Procedure.

exclusion input

INT:value

specifies the value that is passed to the exclusion parameter of the
FILE_OPEN_ procedure if OPENEDIT_ opens the file. If this parameter is omitted,
0 is used (indicating shared access).

For a detailed description of this parameter, see the exclusion parameter under
FILE_OPEN_ Procedure.

nowait input

INT:value

specifies the value that is passed to the nowait-depth parameter of the
FILE_OPEN_ procedure if OPENEDIT_ opens the file. If this parameter is omitted,
1 is used (indicating that a maximum of one nowait I/O operation can be in
progress at any time for this file).

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-45

OPENEDIT_ Procedure

For a detailed description of this parameter, see the nowait-depth parameter
under FILE_OPEN_ Procedure.

For a description of how opening a file for nowait access affects an edit file, see
Nowait Considerations on page 7-35.

sync-depth input

INT:value

specifies the sync depth value to be passed to the FILE_OPEN_ procedure if
OPENEDIT_ opens the file. If this parameter is omitted, 0 is used.

For a detailed description of this parameter, see the sync-or-receive-depth
parameter under FILE_OPEN_ Procedure.

write-thru input

INT:value

if present and not 0, specifies that each call to an IOEdit procedure that changes
the content of the file should fully update the disk copy of the file. This means that
every file access results in one or more physical I/O operations. Note that using
this option can cause severe performance degradation.

Considerations

• The caller must set the filenum parameter to an appropriate value before each
call to OPENEDIT_ , because its value might be changed upon return.

• If the file is already open at the time of the call to OPENEDIT_, the access,
exclusion, nowait, sync-depth, and write-thru parameters to
OPENEDIT_ are ignored.

• OPENEDIT_ sets the file’s current record number to -1 and resets the line number
increment to 1 (that is, it resets the record number increment to 1000).

• If OPENEDIT_ calls the FILE_CREATE_ procedure, it sets the primary and
secondary extent sizes to two pages each and sets the maximum number of
extents to 900.

• If OPENEDIT_ opens a file that is already open by the same process, it writes to
disk all the buffers for that file, including directory information. This assures that
the file is in an up-to-date state at the completion of the open. For a general
discussion of coordinating concurrent file access, see the Guardian Programmer’s
Guide.

Also see Considerations in the FILE_OPEN_ Procedure.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-46

OPENER_LOST_ Procedure

Example
In this example, OPENEDIT_ calls FILE_OPEN_ for the file $MYVOL.TEST.AFILE.
These default values are used: read-only, shared access, nowait mode, sync depth of
0, and no unbuffered writes.

STRING .EXT fname[0:16] := [“$MYVOL.TEST.AFILE”];
INT length := 17;
INT .EXT fnumber := -1;
 .
 .
err := OPENEDIT_ (fname:length, fnumber);

Related Programming Manual
For programming information about the OPENEDIT_ procedure, see the Guardian
Programmer’s Guide.

OPENER_LOST_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The OPENER_LOST_ procedure examines a system message and searches an open
table to determine if an opener has been lost. An opener might be lost due to a
processor or system failure that is reported in the system message.

An opener is a process that has opened the process that is calling OPENER_LOST_.
An open table is a table that describes the opens (or openers) of the caller; it is created
and maintained by the caller. See “Considerations,” later in this subsection, for the
description of an open table.

When a process receives a system message on $RECEIVE, it can call
OPENER_LOST_ to determine if the message indicates that an opener has been lost.
If OPENER_LOST_ finds that an opener has been lost, it deletes the table entry for
that opener and returns the table index of the entry. The returned table index can be

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-47

OPENER_LOST_ Procedure

supplied to OPENER_LOST_ in a subsequent call, along with the same system
message, to search for additional lost openers.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

indicates the result of the search. Valid values are:

0 Search completed; no lost openers

1 (reserved)

2 Parameter error

3 Bounds error

4 Backup opener lost

5 Primary opener lost; backup promoted to primary

6 Opener(s) lost; table entry now free

7 Message is not a relevant status-change message.

message:length input:input

STRING .EXT:ref:*, INT:value

#include <cextdecs(OPENER_LOST_)>

short OPENER_LOST_ (char *message
 ,short length
 ,short *table
 ,short *index
 ,short number-of-entries
 ,short entry-size);

status := OPENER_LOST_ (message:length ! i:i
 ,table ! i
 ,index ! i,o
 ,number-of-entries ! i
 ,entry-size); ! i

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-48

OPENER_LOST_ Procedure

is the status-change system message that was received. message must be
exactly length bytes long. Relevant messages include:

If any other system message is supplied, an error is returned and the index is not
advanced.

length is the length in bytes of the message.

table input

INT .EXT:ref:*

points to the beginning of the open table to be searched.

If the process handles of the primary and backup openers are not stored in the first
20 words of each table entry, table must point to the process handle of the first
primary opener, not to the beginning of the table. See “Considerations.”

index input, output

INT .EXT:ref:*

on input, contains an index indicating at what point in the open table the search is
to begin. On return, if a lost opener is discovered, index contains the index of
that opener’s table entry; otherwise, its contents are undefined.

Ordinarily, you initialize index to -1 at the start of a search and do not alter its
contents on subsequent calls (continuing the same search). See “Considerations.”

number-of-entries input

INT:value

contains the total number of entries in the open table.

entry-size input

INT:value

contains the size in words of each entry in the open table.

Considerations

• Determining if an opener has been lost

The OPENER_LOST_ procedure reports that an opener has been lost if:

 -2 Local processor failure

 -8 Network status change

-100 Remote processor failure

-110 Connection to remote system lost

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-49

OPENER_LOST_ Procedure

• The connection to a remote system is lost and the process was running in that
system.

• A remote processor has failed and the process was running in that processor.

• A local processor has failed and the process was running in that processor.

• The open table

The open table is created and maintained by the caller. There should be an entry
for each open of the caller, containing the process handles of the primary and
backup openers plus any additional information that the caller wishes to store.

The OPENER_LOST_ procedure makes these assumptions about the open table
that is supplied to it:

• Entries are of fixed length and are entry-size long.

• The process handles of the primary and backup openers are stored back-to-
back (the primary preceding the backup) in contiguous 10-word fields within
each entry.

• If the primary and backup process handles are not the first fields in the entry,
table points to the first word of the first entry’s primary-opener process
handle rather than to the first word of the table entry.

• An unused primary or backup field is marked with a null process handle (-1 in
each word).

When an opener is lost, OPENER_LOST_ makes any necessary updates to the
primary and backup fields of the open table. If the backup opener is lost, the
backup process handle is set to null. If the primary opener is lost, the backup
process handle is moved to the primary opener field and the backup opener field is
set to null (-1 in each word).

These illustrates a possible layout for an opener table entry:

• Searching the open table

To search the open table, call OPENER_LOST_ repeatedly until the returned
status value is either 0 or a value that indicates an error condition. Before
making the first call, initialize index to -1; do not alter its contents after that.

Example
index := -1; ! initialize table
 ! index

Section Length

process handle of primary opener 10 words

process handle of backup opener 10 words

miscellaneous information some fixed length

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-50

OPENINFO Procedure
(Superseded by FILE_GETOPENINFO_ Procedure)

DO ! do until search
 ! is finished
 BEGIN ! or an error
 ! occurs:
 status := OPENER_LOST_ (message:length ! search table
 ,table^ptr, ! for next
 ,index, ! affected
 ,num^of^entries ! entry
 ,entry^size);
 do any necessary work
 END
UNTIL status = 0 OR status = 2 OR status = 3 OR status = 7;

OPENINFO Procedure
(Superseded by FILE_GETOPENINFO_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
OSS Considerations
Example

Summary

The OPENINFO procedure obtains information about the opens of one disk file or of all
the files on a disk device, or of certain nondisk devices. For these nondisk devices,
only the pricrtpid and the backcrtpid parameters contain valid information.
Each call returns information about one open; call OPENINFO successively to learn
about all the opens.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-51

OPENINFO Procedure
(Superseded by FILE_GETOPENINFO_ Procedure)

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

error returned value

INT

is the file-system error number indicating the outcome of the call. Error 1 (EOF)
indicates there are no further opens. Error 2 (invalid operation) is returned for
nondisk devices that cannot return any valid information.

searchname input

INT:ref:12

is the internal-format file name of the disk volume or disk file whose open
information is being requested.

prevtag input, output

INT:ref:1

is a number identifying which open was last returned. Before making the first call,
the user should set his prevtag variable to 0. On subsequent calls, the value
should be that returned by the previous call.

error := OPENINFO (searchname ! i
 ,prevtag ! i,o
 ,[pricrtpid] ! o
 ,[backcrtpid] ! o
 ,[accessmode] ! o
 ,[exclusion] ! o
 ,[syncdepth] ! o
 ,[file-name] ! o
 ,[accessid] ! o
 ,[validmask]); ! o

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-52

OPENINFO Procedure
(Superseded by FILE_GETOPENINFO_ Procedure)

pricrtpid output

INT:ref:4

is the process ID of the (primary) process that has the file open.

backcrtpid output

INT:ref:4

is the process ID of the backup process of a process-pair that has the file open, or
is all zeros if there is no open by a backup.

accessmode output

INT:ref:1

is the access mode with which the file is open. The codes are:

0 read-write
1 read only
2 write only

exclusion output

INT:ref:1

is the exclusion mode with which the file is open. The codes are:

0 shared
1 exclusive
2 process exclusive (supported only for Optical Storage Facility)
3 protected

syncdepth output

INT:ref:1

is the sync depth specified when the file was opened.

file-name output

INT:ref:12

is the internal-format file name of the file which is open. This is of use when the
searchname specified was not a file name.

accessid output

INT:ref:1

is the process access ID (user ID) of the opener at the time the open was done.

validmask output

INT:ref:1

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-53

OPENINFO Procedure
(Superseded by FILE_GETOPENINFO_ Procedure)

returns a value indicating which of the information parameters had valid
information returned. Each parameter has a corresponding bit in this value set to
true if the parameter is valid for the device, as follows:

<0> pricrtpid
<1> backcrtpid
<2> accessmode
<3> exclusion
<4> syncdepth
<5> file-name
<6> accessid

Considerations

• Order of returned information

Opens are not returned in any defined order. In particular, when retrieving
information about all opens on a disk volume, the opens for any one file are not
grouped together in the sequence of calls.

• High-PIN considerations

If a caller uses OPENINFO to obtain the process ID of a primary or backup
process that has a high PIN, the returned validmask bit for that process ID is 0
and the returned process ID value is all zeros. Thus, if the primary process has a
high PIN, validmask.<0> = 0 and pricrtpid is zero-filled; if the backup process
has a high PIN, validmask.<1> = 0 and backcrtpid is zero-filled.

• Support for HP NonStop Storage Management Foundation (SMF) objects

The OPENINFO procedure supports single SMF logical files but does not support
entire SMF virtual volumes. If the name of a SMF logical file is supplied to this
procedure, the system queries the disk process of the appropriate physical volume
to obtain information about current openers. If the name of a SMF virtual volume is
supplied, but not a full logical file name, an error is returned.

If you call the OPENINFO procedure and supply the name of a physical volume
that has an open that was made on a SMF logical file name, information about the
open is returned, but the returned file name is that of the physical file supporting
the logical file.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-54

OSS_PID_NULL_ Procedure

OSS Considerations
It is often necessary to run OSS processes at high PINs. See “Considerations,” earlier,
for more information.

Example
DEVICE^NAME^PADDED ':=' ["$DEVICE ",8*[" "]];
NUM := 0;

DO -- Get OPENINFO for the device
 BEGIN
 ERROR := OPENINFO(DEVICE^NAME^PADDED,
 NUM,
 PCRTPID,
 BCRTPID,
 ACCESSMODE,
 EXCLUSION,
 SYNC,
 FILENAME,
 ACCESSID);
 IF ERROR = 0 !SUCCESS! THEN
 BEGIN
 -- Process (filter/sort) OPEN-record
 END;
 END -- Get OPENINFO for the device
UNTIL ERROR <> 0 !SUCCESS!;

IF ERROR = 2 !INVALID OPERATION! THEN
 BEGIN
 -- Device doesn't support OPENINFO
 END
ELSE IF ERROR <> 1 !END OF FILE! THEN
 BEGIN
 -- File-system error/resource problem
 END;

OSS_PID_NULL_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
OSS Considerations

Summary
The OSS_PID_NULL_ procedure returns a null OSS process ID.

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-55

OSS_PID_NULL_ Procedure

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

oss-pid returned value

INT (32)

is a null OSS process ID.

OSS Considerations
A null OSS process ID can be passed to a procedure such as
PROCESS_GETINFOLIST_ to indicate that the OSS process ID parameter is not
present (an alternative to omitting the parameter). The value of the null OSS process
ID can change from one RVU to another.

#include <cextdecs(OSS_PID_NULL_)>

__int32_t OSS_PID_NULL_ (void);

oss-pid := OSS_PID_NULL_;

Guardian Procedure Calls (O)

Guardian Procedure Calls Reference Manual—522629-030
11-56

OSS_PID_NULL_ Procedure

Guardian Procedure Calls Reference Manual—522629-030
12-1

12 Guardian Procedure Calls (P)
This section contains detailed reference information for all user-accessible Guardian
procedure calls beginning with the letter P. Table 12-1 lists all the procedures in this
section.

Table 12-1. Procedures Beginning With the Letter P (page 1 of 2)

PACKEDIT Procedure

PATHNAME_TO_FILENAME_ Procedure

POOL_CHECK_ Procedure

POOL_DEFINE_ Procedure

POOL_GETINFO_ Procedure

POOL_GETSPACE_ Procedure

POOL_GETSPACE_PAGE_ Procedure (H-Series RVUs Only)

POOL_PUTSPACE_ Procedure

POOL_RESIZE_ Procedure

POSITION Procedure (Superseded by FILE_SETPOSITION_ Procedure)

POSITIONEDIT Procedure

PRIORITY Procedure (Superseded by PROCESS_SETINFO_ Procedure or
PROCESS_GETINFOLIST_ Procedure)

PROCESS_ACTIVATE_ Procedure

PROCESS_CREATE_ Procedure (Superseded by PROCESS_LAUNCH_ Procedure)

PROCESS_DEBUG_ Procedure

PROCESS_DELAY_ Procedure (H-Series RVUs Only)

PROCESS_GETINFO_ Procedure

PROCESS_GETINFOLIST_ Procedure

PROCESS_GETPAIRINFO_ Procedure

PROCESS_LAUNCH_ Procedure

PROCESS_SETINFO_ Procedure

PROCESS_SETSTRINGINFO_ Procedure

PROCESS_SPAWN_ Procedure

PROCESS_STOP_ Procedure

PROCESS_SUSPEND_ Procedure

PROCESSACCESSID Procedure (Superseded by PROCESS_GETINFOLIST_ Procedure)

PROCESSFILESECURITY Procedure (Superseded by PROCESS_SETINFO_ Procedure or
PROCESS_GETINFOLIST_ Procedure)

PROCESSHANDLE_COMPARE_ Procedure

PROCESSHANDLE_DECOMPOSE_ Procedure

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-2

PROCESSHANDLE_GETMINE_ Procedure

PROCESSHANDLE_NULLIT_ Procedure

PROCESSHANDLE_TO_CRTPID_ Procedure

PROCESSHANDLE_TO_FILENAME_ Procedure

PROCESSHANDLE_TO_STRING_ Procedure

PROCESSINFO Procedure (Superseded by PROCESS_GETINFOLIST_ Procedure)

PROCESSNAME_CREATE_ Procedure

PROCESSOR_GETINFOLIST_ Procedure

PROCESSOR_GETNAME_ Procedure

PROCESSORSTATUS Procedure

PROCESSORTYPE Procedure

PROCESSSTRING_SCAN_ Procedure

PROCESSTIME Procedure (Superseded by PROCESS_GETINFOLIST_ Procedure)

PROGRAMFILENAME Procedure (Superseded by PROCESS_GETINFOLIST_ Procedure)

PURGE Procedure (Superseded by FILE_PURGE_ Procedure)

PUTPOOL Procedure (Superseded by POOL_* Procedures)

Table 12-1. Procedures Beginning With the Letter P (page 2 of 2)

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-3

PACKEDIT Procedure

PACKEDIT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary
The PACKEDIT procedure converts a line image from unpacked format into EDIT
packed line format. The input value is a text string that can include sequences of blank
characters; the returned value is the same text in packed format with blank
compression codes.

PACKEDIT is an IOEdit procedure and is intended for use with files that have been
opened by OPENEDIT or OPENEDIT_.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

unpacked-line input

STRING .EXT:ref:*

is a string array that contains the line in unpacked format that is to be converted.
The length of unpacked-line is specified by the unpacked-length parameter.

#include <cextdecs(PACKEDIT)>

void PACKEDIT (char *unpacked-line
 ,short unpacked-length
 ,char *packed-line
 ,short packed-limit
 ,short *packed-length
 ,[short full-length]);

CALL PACKEDIT (unpacked-line ! i
 ,unpacked-length ! i
 ,packed-line ! o
 ,packed-limit ! i
 ,packed-length ! o
 ,[full-length]); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-4

PACKEDIT Procedure

unpacked-length input

INT:value

specifies the length in bytes of unpacked-line.

packed-line output

STRING .EXT:ref:*

is a string array that contains the line in packed format that is the outcome of the
conversion. The length of the packed line is returned in the packed-length
parameter.

packed-limit input

INT:value

specifies the length in bytes of the string variable packed-line.

packed-length output

INT .EXT:ref:1

returns the actual length in bytes of the value returned in packed-line. If
packed-line is not large enough to contain the value that is the output of the
conversion, packed-length returns a value of -1.

full-length input

INT:value

if present and not equal to 0, specifies that all trailing space characters (if any) in
the line being processed should be retained in the output line image. Otherwise,
trailing space characters are discarded.

Considerations

• If a line contains few sequences of blank characters, it might require more bytes in
packed format than in unpacked format. To provide for this, you should specify a
value for packed-limit that is at least 8% greater than unpacked-length.

Related Programming Manual
For programming information about the PACKEDIT procedure, and for a description of
the EDIT packed line format, see the Guardian Programmer’s Guide.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-5

PATHNAME_TO_FILENAME_ Procedure

PATHNAME_TO_FILENAME_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
OSS Considerations
Example in C
Related Programming Manual

Summary
The PATHNAME_TO_FILENAME_ procedure converts an OSS pathname to a
Guardian file name. For a description of the OSS pathname syntax, see Appendix D,
File Names and Process Identifiers.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation:

0 No error.

563 The buffer pointed to by filename is too small.

4002 No such pathname exists. The corresponding OSS errno value is
ENOENT.

#include <cextdecs(PATHNAME_TO_FILENAME_)>

short PATHNAME_TO_FILENAME_ (const char *path
 ,char *filename
 ,short maxlen
 ,short *length
 ,[short *infoflags]);

error := PATHNAME_TO_FILENAME_ (pathname ! i
 ,filename:maxlen ! o:i
 ,length ! o
 ,[info-flags]); ! o

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-6

PATHNAME_TO_FILENAME_ Procedure

4006 A prefix within pathname refers to an OSS fileset other than the root
fileset that is not mounted. The corresponding OSS errno value is
ENXIO.

4013 Search permission is denied on a component of the pathname prefix. The
corresponding OSS errno value is EACCESS.

4014 A specified parameter has an invalid address. The corresponding OSS
errno value is EFAULT.

4020 A prefix within pathname refers to a file other than a directory. The
corresponding OSS errno value is ENOTDIR.

4022 pathname is invalid. The corresponding OSS errno value is EINVAL.

4131 The pathname, a component of the pathname, or a symbolic link in the
pathname is longer than PATH_MAX characters. (PATH_MAX is a
symbolic constant that is defined in the OSS limitsh header file.) For
pathname syntax, see Appendix D, File Names and Process
Identifiers. The corresponding OSS errno value is ENAMETOOLONG.

4200 The pathname or a component of the pathname has too many symbolic
links to resolve the specified pathname. The corresponding OSS errno
value is ELOOP.

4202 The root fileset is not mounted. The corresponding OSS errno value is
ENOROOT.

4203 OSS is not installed or is not initialized. The corresponding OSS errno
value is EOSSNOTRUNNING.

pathname input

STRING .EXT:ref:*

is the null-terminated OSS pathname to be converted into its corresponding
Guardian file name.

filename:maxlen output:input

STRING .EXT:ref:*, INT:value

returns the Guardian file name that corresponds to pathname. The file name is
not null-terminated; its length is returned in length.

maxlen specifies the maximum length in bytes of the name that can be returned
in filename. If maxlen is not large enough, error returns 563 (buffer too small)
and length returns the actual length of the name.

filename contains a null string if pathname does not correspond to a Guardian
file name. In this case, the value returned in error is 0.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-7

PATHNAME_TO_FILENAME_ Procedure

length output

INT .EXT:ref:1

returns the length in bytes of the fully qualified Guardian file name returned in
filename. If error returns 563 (buffer too small) due to filename being to
small to contain the name, length returns the actual length of the name.

info-flags output

INT .EXT:ref:1

contains additional information about the file. info-flags is returned as a bit
mask defined as:

<0:14> Reserved

<15> = 1 The specified file is a Guardian file.
= 0 The specified file is an OSS file.

OSS Considerations

• If the file identified by pathname is in the Guardian name space (/G), then the file
name is syntactically changed to the Guardian format without checking whether the
file exists. The local pathname of a permanent Guardian disk file has the form
/G/volume/subvol/file-id which corresponds to the Guardian name
$volume.subvol.file-id. Similarly, the local pathname for a temporary
Guardian disk file has the form /G/volname/#number which corresponds to the
Guardian name $volume.#number. The conversion takes place as follows:

• The initial “/G/” is removed.

• The remaining slash separators (/) are replaced by periods.

• If the current directory symbol (.) is part of the pathname it is safely ignored.

• If the parent directory symbol (..) is part of the pathname, the first element to
the left is deleted.

• A leading dollar sign ($) is added for part of the Guardian volume name.

• Any period (.), hyphen (-), or underscore (_) characters within pathname
elements are deleted.

• Name elements are truncated to eight characters after the “.”, “-”, and “_”
characters are deleted.

• No timestamps are updated as a result of this procedure.

• Two additional file numbers might be allocated: one for the OSS root directory and
one for the OSS current working directory. These files are not necessarily the next
available file numbers and they cannot be closed by calling FILE_CLOSE_.

• A current OSS working directory is established from the value of the VOLUME
attribute of the =_DEFAULTS DEFINE.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-8

POOL_CHECK_ Procedure

• The resident memory used by the calling process increases by a small amount.

Example in C
ret = PATHNAME_TO_FILENAME_(
 argv[1], /* OSS Pathname */
 filename, /* Guardian file name buffer */
 64, /* size of file name buffer */
 &filelen, /* length of file name */
 &status); /* if = 1, Guardian file (/G)
 if = 0, OSS file */

Related Programming Manual
For programming information about the PATHNAME_TO_FILENAME_ procedure, see
the Open System Services Programmer’s Guide.

POOL_CHECK_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The POOL_CHECK_ procedure checks the internal pool data structures and returns
error information.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

#include <cextdecs(POOL_CHECK_)>

short POOL_CHECK_ (short *pool
 ,[__int32_t *corruption-address]
 ,[__int32_t *block]
 ,[__int32_t *block-size]
 ,[short *tag-size]);

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-9

POOL_CHECK_ Procedure

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the call:

0 No error.

2 Required parameter missing. pool must be specified.

3 Bounds error. A parameter on the parameter list has a bounds error.

9 Corrupt pool header.

11 Corrupt allocated blocks. Data is probably written beyond the allocated block.

12 Corrupt free list blocks. Data is probably written into a returned block.

pool input

INT .EXT:ref:*

is the address of the pool as specified in the call to the POOL_DEFINE_
procedure.

corruption-address output

EXTADDR .EXT:ref:1

is defined for these values of error:

block output

EXTADDR .EXT:ref:1

error := POOL_CHECK_ (pool ! i
 ,[corruption-address] ! o
 ,[block] ! o
 ,[block-size] ! o
 ,[tag-size]); ! o

error corruption-address

11 Address of the allocated block where the corruption is detected.

12 Address of the free block where the corruption is detected.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-10

POOL_CHECK_ Procedure

is defined for these values of error:

block-size output

INT .EXT:ref:1

is defined for these values of error:

tag-size output

INT .EXT:ref:1

is the size in bytes of a boundary tag that defines the beginning or end of a block.

Considerations
See “Considerations” in POOL_DEFINE_ Procedure.

Example
error := POOL_CHECK_(pool, corruption^addr, pblock);

Related Programming Manual
For programming information about the POOL_CHECK_ memory-management
procedure, see the Guardian Programmer’s Guide.

error block

11 Address of the valid allocated block that precedes the address where
the corruption is detected. If the corruption is detected in the first
block, then block is -4D.

12 Address of the valid free block that precedes the address where the
corruption is detected. If the corruption is detected in the first block,
then block is -4D.

error block-size

11 Block size of the last valid allocated block that precedes the address
where the corruption is detected. If the corruption is detected in the
first block, then block is -4D and block-size is undefined.

12 Block size of the last valid free block that precedes the address where
the corruption is detected. If the corruption is detected in the first
block, then block is -4D and block-size is undefined.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-11

POOL_DEFINE_ Procedure

POOL_DEFINE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The POOL_DEFINE_ procedure designates a portion of a user’s stack or an extended
data segment for use as a pool.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the call:

0 No error.

2 Required parameter missing. Pool and pool-size must be specified or a
non-privileged caller specified a non-zero value for priv-only.

#include <cextdecs(POOL_DEFINE_)>

short POOL_DEFINE_ (short *pool
 ,__int32_t pool-size
 ,[short alignment]
 ,[short priv-only]);

error := POOL_DEFINE_ (pool ! i
 ,pool-size ! i
 ,[alignment] ! i
 ,[priv-only]); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-12

POOL_DEFINE_ Procedure

3 Bounds error. pool is in a read-only segment, or pool-size is larger than
the space available.

4 Invalid size. pool-size is too small to allocate the minimum size pool
including the pool header.

5 Alignment error on pool. pool is not in alignment with the selected
alignment.

6 Invalid alignment. alignment is not 0, 4, 8, or 16.

pool input

INT .EXT:ref:*

specifies the address of the first word of the memory space to be used as the pool,
including the pool header. The address must be aligned according to
alignment; the default alignment is 8 bytes.

pool-size input

INT(32):value

specifies the size of the pool, including the pool header, in bytes. The maximum
size is limited only by the amount of space available to the application. The
address of the end of the pool is always equal to the address specified for pool
plus the value of pool-size. Pool space overhead and adjustments for
alignment do not cause the pool to extend past this boundary.

alignment input

INT:value

specifies the alignment of blocks allocated from the pool.

0 8 byte alignment
4 4 byte alignment
8 8 byte alignment
16 16 byte alignment (the default alignment)

On TNS processors, an 8-byte alignment is recommended.

On native processors, a smaller alignment generates the most compact pool
with the least cache alignment, and a larger alignment generates the least
compact pool with most cache alignment.

priv-only input

This parameter can only be used by a privileged caller.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-13

POOL_DEFINE_ Procedure

Considerations

• Internal variable-length pool header

The POOL_DEFINE_ procedure creates an internal variable-length pool header at
the beginning of the pool. The length of the header can change between RVUs or
processor types. Information in the header is retrieved by calling the
POOL_GETINFO_ procedure; the header should not be accessed directly, since it
is subject to change.

• Stack addresses converted to extended addresses

If the pool is in the user data stack, the TAL compiler automatically converts data
stack addresses to extended addresses.

• Read-only segments

If you specify a pool in an extended data segment that is allocated as a read-only
segment, the POOL_DEFINE_ procedure returns error 3 (bounds error).

• Dynamic memory allocation

Several Guardian procedures support the creation of memory pools and the
dynamic allocation of variable-sized blocks from a pool. The calling program
provides the memory area to be used as the pool and then calls the
POOL_DEFINE_ procedure to initialize the pool. The pool can reside in the user
data stack or in an extended data segment. The pool procedures accept and
return extended addresses that apply to both the stack and extended memory.

Once the pool is defined, the process can reserve blocks of various sizes from the
pool by calling the POOL_GETSPACE_ procedure and can release blocks by
calling the POOL_PUTSPACE_ procedure. The program must release one entire
block in a POOL_PUTSPACE_ call; it cannot release part of a block or multiple
blocks in one POOL_PUTSPACE_ call. If the pool is too small or is larger than
necessary, the process can resize the pool by calling the POOL_RESIZE_
procedure. For detecting potential problems with the pool, the POOL_GETINFO_
procedure returns information about a pool and the POOL_CHECK_ procedure
checks the internal data structures of a pool.

Be careful to use only the currently reserved blocks of the pool. Using blocks that
are not reserved causes pool corruption. If multiple pools are defined, make sure
to return reserved blocks to the correct pool. For debugging purposes, call
POOL_GETINFO_ for information on the pool header and call POOL_CHECK_ to
check the pool for consistency.

• Pool management methods

This information is supplied for use in evaluating the appropriateness of using the
Guardian pool routines in user application programs and in determining the proper
size of a pool.

Note. There are additional considerations for privileged callers.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-14

POOL_GETINFO_ Procedure

Each block allocated by the POOL_GETSPACE_ procedure has a tag at the
beginning of the block and a tag at the end of the block. A block boundary tag
serves three purposes:

• It contains the size of each block so that the program does not need to specify
the length of a block when releasing it.

• It serves as a check to ensure that the program does not erroneously use more
memory than the block contains (although it does not stop the program from
overwriting).

• It provides for efficient coalescing of adjacent free blocks.

• POOL can only be defined on a single segment. It cannot be defined from segment
space of two consecutive logical segments.

The pool space overhead on each block can be substantial if very small blocks are
allocated (in current RVUs, the minimum block size is 32 bytes).

Although pools can also be used to manage the allocation of a collection of equal-
sized blocks, these procedures are not recommended for that purpose because
they can consume more processor time and pool memory than user-written
routines designed for that specific task.

Example
error := POOL_DEFINE_ (pool, 2048D);

Related Programming Manual
For programming information about the POOL_DEFINE_ memory-management
procedure, see the Guardian Programmer’s Guide.

POOL_GETINFO_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-15

POOL_GETINFO_ Procedure

Summary
The POOL_GETINFO_ procedure returns information about the specified pool.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

Syntax for TAL Programmers

#include <cextdecs(POOL_GETINFO_)>

short POOL_GETINFO_ (short *pool
 ,[short *error-detail]
 ,[__int32_t *avail-pool-size]
 ,[__int32_t *curalloc]
 ,[__int32_t *maxalloc]
 ,[__int32_t *fail-block-size]
 ,[short *curfrag]
 ,[short *maxfrag]
 ,[short *alignment]
 ,[short *tag-size]);

error := POOL_GETINFO_ (pool ! i
 ,[error-detail] ! o
 ,[avail-pool-size] ! o
 ,[curalloc] ! o
 ,[maxalloc] ! o
 ,[fail-block-size] ! o
 ,[curfrag] ! o
 ,[maxfrag] ! o
 ,[alignment] ! o
 ,[tag-size]); ! o

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-16

POOL_GETINFO_ Procedure

Parameters

error returned value

INT

indicates the outcome of the call:

0 No error

2 Required parameter missing. error-detail contains the number of the first
parameter found to be in error, where 1 designates the first parameter on the
left.

3 Bounds error. error-detail contains the number of the first parameter
found to be in error, where 1 designates the first parameter on the left.

9 Corrupt pool header.

pool input

INT .EXT:ref:*

is the address of the pool as specified in the call to the POOL_DEFINE_
procedure.

error-detail output

INT .EXT:ref:1

for some returned errors, contains additional information. See error.

avail-pool-size output

INT(32) .EXT:ref:1

is the available space in bytes in the pool, not including the pool header.

Note that the value of the pool-size parameter specified in the POOL_DEFINE_
procedure is larger than this value because it includes the pool header.

curalloc output

INT(32) .EXT:ref:1

is the current amount of space allocated from the pool in bytes, not including the
pool header.

maxalloc output

INT(32) .EXT:ref:1

is the maximum amount of space ever allocated from the pool, in bytes, since it
was originally allocated with the POOL_DEFINE_ procedure. maxalloc does not
include the pool header.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-17

POOL_GETINFO_ Procedure

fail-block-size output

INT(32) .EXT:ref:1

is the size in bytes of the block that the POOL_GETSPACE_ procedure failed to
allocate when it returned an error value of 10 (unable to allocate space). Note
that the value of the block-size parameter specified in the POOL_GETSPACE_
procedure is smaller than fail-block-size because it is not rounded up. For a
description of the differences between the requested block size and the allocated
block size, see Considerations on page 12-13.

curfrag output

INT .EXT:ref:1

is the number of free fragments in the pool.

maxfrag output

INT .EXT:ref:1

is the maximum number of free fragments that the pool has ever had since it was
originally allocated with the POOL_DEFINE_ procedure.

alignment output

INT .EXT:ref:1

is the pool alignment selected when the pool was originally allocated with the
POOL_DEFINE_ procedure.

tag-size output

INT .EXT:ref:1

is the size in bytes of one of the tags used to mark the free or allocated blocks.

Considerations

See Considerations on page 12-13.

Example
error :=
 POOL_GETINFO_ (pool, error^detail, avail^pool^size);
 ! determine the available pool size

Related Programming Manual
For programming information about the POOL_GETINFO_ memory-management
procedure, see the Guardian Programmer’s Guide.

Note. There are additional considerations for privileged callers.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-18

POOL_GETSPACE_ Procedure

POOL_GETSPACE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The POOL_GETSPACE_ procedure obtains a block of memory from a buffer pool.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

Syntax for TAL Programmers

Parameters

block returned value

INT(32)

returns the extended address of the first byte in the memory block obtained if the
operation is successful, and returns %37777000000D if an error occurs.

pool input

INT .EXT:ref:*

is the address of the pool as specified in the call to the POOL_DEFINE_
procedure. When POOL_GETSPACE_ is called, the pool header is updated.

#include <cextdecs(POOL_GETSPACE_)>

__int32_t POOL_GETSPACE_ (short *pool
 ,__int32_t block-size
 ,short *error);

block := POOL_GETSPACE_ (pool ! i
 ,block-size ! i
 ,[error]); ! o

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-19

POOL_GETSPACE_PAGE_ Procedure (H-Series
RVUs Only)

block-size input

INT(32):value

is the size in bytes of the memory to be obtained from the pool. This value can
range from 1 byte through the available space in the pool. The block size of the
allocated block can be rounded up to retain the alignment of the pool.

error output

INT .EXT:ref:1

indicates the outcome of the call:

0 No error.

2 Required parameter missing.

4 Invalid size. block-size is not within the valid range.

9 Corrupt pool header.

10 Unable to allocate space.

Considerations

POOL_GETSPACE_ and POOL_PUTSPACE_ do not check pool data structures on
each call. A process that destroys data structures or uses an incorrect address for a
parameter can fail on a call to POOL_GETSPACE_ or POOL_PUTSPACE_: a TNS
process can get an instruction failure trap (trap 1) or invalid address trap (trap 0); a
native process can receive a SIGILL or SIGSEGV signal.

Example
@pblock := POOL_GETSPACE_(pool, $UDBL($LEN(pblock)));
 ! get a pool block of PBLOCK size.

Related Programming Manual
For programming information about the POOL_GETSPACE_ memory-management
procedure, see the Guardian Programmer’s Guide.

POOL_GETSPACE_PAGE_ Procedure (H-
Series RVUs Only)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters

Note. There are additional considerations for privileged callers.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-20

POOL_GETSPACE_PAGE_ Procedure (H-Series
RVUs Only)

Summary
The POOL_GETSPACE_PAGE_ procedure obtains a block of memory from a buffer
pool. The memory is aligned on a page boundary and the space allocated is a
multiple of a page size.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

Syntax for TAL Programmers

Parameters

block returned value

INT(32)

returns the extended address of the first byte in the memory block obtained if the
operation is successful, and returns %37777000000D if an error occurs.

pool input

INT .EXT:ref:*

is the address of the pool as specified in the call to the POOL_DEFINE_
procedure. When POOL_GETSPACE_PAGE_ is called, the pool header is
updated.

error output

INT .EXT:ref:1

indicates the outcome of the call:

0 No error.

2 Required parameter missing.

#include <cextdecs(POOL_GETSPACE_PAGE_)>

__int32_t POOL_GETSPACE_PAGE_ (short *pool
 ,__int32_t block-size
 ,short *error);

block := POOL_GETSPACE_PAGE_ (pool ! i
 ,block-size ! i
 ,[error]); ! o

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-21

POOL_PUTSPACE_ Procedure

4 Invalid size. size is not within the valid range.

9 Corrupt pool header.

10 Unable to allocate space.

POOL_PUTSPACE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The POOL_PUTSPACE_ procedure returns a block of memory to a buffer pool.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the call:

0 No error.

2 Required parameter missing.

3 Bounds error: block is not within the pool boundaries.

9 Corrupt pool header.

11 Corrupt allocated block: Data is probably written beyond the allocated block or
the block has already been returned.

#include <cextdecs(POOL_PUTSPACE_)>

short POOL_PUTSPACE_ (short *pool
 ,short *block);

error := POOL_PUTSPACE_ (pool ! i
 ,block); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-22

POOL_RESIZE_ Procedure

pool input

INT .EXT:ref:*

is the address of the pool as specified in the call to the POOL_DEFINE_
procedure. When POOL_PUTSPACE_ is called, the pool header is updated.

block input

INT .EXT:ref:*

is the address of the block to be returned to the pool.

Considerations
POOL_GETSPACE_ and POOL_PUTSPACE_ do not check pool data structures on
each call. A process that destroys data structures can fail on a call to
POOL_GETSPACE_ or POOL_PUTSPACE_: a TNS Guardian process can get a
bounds violation trap (trap 0); an OSS or native process can receive a SIGSEGV
signal.

Example
error := POOL_PUTSPACE_ (pool, pblock);
 ! put a block obtained from POOL_GETSPACE_ back into
 ! the pool obtained from POOL_DEFINE_.

Related Programming Manual
For programming information about the POOL_PUTSPACE_ memory-management
procedure, see the Guardian Programmer’s Guide.

POOL_RESIZE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The POOL_RESIZE_ procedure changes the size of a pool that was initialized by the
POOL_DEFINE_ procedure.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-23

POOL_RESIZE_ Procedure

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the call:

0 No error.

2 Required parameter missing.

3 Bounds error. pool is in a read-only segment, or new-pool-size is larger
than the available space.

4 Invalid size. new-pool-size is too small to allocate the minimum size pool,
including the pool header.

9 Corrupt pool header.

11 Corrupt allocated blocks. Data is probably written beyond the allocated block.

12 Corrupt free list blocks. Data is probably written into a returned block.

13 Unable to shrink pool.

pool input

INT .EXT:ref:*

is the address of the pool as specified in the call to the POOL_DEFINE_
procedure. When POOL_RESIZE_ is called, the pool header is updated.

new-pool-size input

INT(32):value

#include <cextdecs(POOL_RESIZE_)>

short POOL_RESIZE_ (short *pool
 ,__int32_t new-pool-size);

error := POOL_RESIZE_ (pool ! i
 ,new-pool-size); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-24

POSITION Procedure
(Superseded by FILE_SETPOSITION_ Procedure)

specifies the new size of the pool, including the pool header, in bytes. The
maximum size is limited only by the amount of space available to the application.
The address of the end of the pool is always equal to the address specified for the
pool parameter plus the value of the new-pool-size parameter. Pool space
overhead and adjustments for alignment do not cause the pool to extend past this
boundary.

Considerations
See Considerations on page 12-13.

Example
error := POOL_RESIZE_ (pool, 4096D);

Related Programming Manual
For programming information about the POOL_RESIZE_ memory-management
procedure, see the Guardian Programmer’s Guide.

POSITION Procedure
(Superseded by FILE_SETPOSITION_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Related Programming Manuals

Summary

The POSITION procedure positions by primary key within relative and entry-
sequenced files. For unstructured files, the POSITION procedure specifies a new
current position.

For relative and unstructured files, POSITION sets the current position, access path,
and positioning mode for the specified file. The current position, access path, and
positioning mode define a subset of the file for subsequent access.

The POSITION procedure is not used with key-sequenced files; KEYPOSITION is
used instead.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-25

POSITION Procedure
(Superseded by FILE_SETPOSITION_ Procedure)

The caller is not suspended because of a call to POSITION.

A call to the POSITION procedure is rejected with an error indication if there are
incomplete nowait operations pending on the specified file.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

• The function value returned by POSITION, which indicates the condition code, can
be interpreted by _status_lt(), _status_eq(), or _status_gt() (defined
in the file tal.h).

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is the number of an open file that identifies the file where the positioning is to take
place.

record-specifier input

INT(32):value

#include <cextdecs(POSITION)>

_cc_status POSITION (short filenum
 ,__int32_t record-specifier);

CALL POSITION (filenum ! i
 ,record-specifier); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-26

POSITION Procedure
(Superseded by FILE_SETPOSITION_ Procedure)

is the 4-byte value that specifies the new setting for the current-record and next-
record pointers.

(For relative and unstructured files, the -1D and -2D remain in effect until a new
record-specifier is supplied.)

Relative Files record-specifier is a 4-byte record-num..

-2D specifies that the next write should occur at an unused
record position.

-1D specifies that subsequent writes should be appended to
the end-of-file location.

Unstructured Files record-specifier is a 4-byte relative-byte-addr.

-1D or -2D specifies that subsequent writes should be
appended to the EOF location.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-27

POSITION Procedure
(Superseded by FILE_SETPOSITION_ Procedure)

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that the POSITION was successful.

> (CCG) indicates no operation; filenum does not designate a disk file.

Considerations

• POSITION does not cause the disk heads to be repositioned (at least until a
subsequent data transfer is initiated).

• POSITION cannot be used with Enscribe format 2 and OSS files if the file was
opened with the "Use 64 bit keys" choice to FILE_OPEN_ (which is necessary to
access a file with a file size of over 2 GB). If an attempt is made to use the
POSITION procedure with such files, error 581 is returned. For information on how
to perform the equivalent task with Enscribe format 2 files and OSS files greater
than approximately 2 gigabytes, see the FILE_SETPOSITION_ Procedure.

• Unstructured files

• File pointers after POSITION

After a successful call to POSITION for an unstructured file, the file pointers
are:

current^record^pointer := record-specifier;
next^record^pointer := record-specifier;

• Value of record-specifier for unstructured files

Entry-Sequenced
Files

The record-specifier is a 4-byte record-addr (the
primary key), whose format depends upon the file's block
size as follows:

Block size Number of bits for
block number

Number of bits for the
relative record number
within that block

4096 20 12

2048 21 11

1024 22 10

512 23 9

In all cases, the block number occupies the leftmost bits,
and the record number occupies the rightmost bits.

For information about record-addr, see the Enscribe
Programmer’s Guide.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-28

POSITIONEDIT Procedure

Unless the unstructured file is created with the odd unstructured attribute (also
known as ODDUNSTR) set, the RBA passed in record-specifier must be
an even number. If the odd unstructured attribute is set when the file is
created, the RBA passed in record-specifier can be either an odd or
even value. (You set the odd unstructured attribute with the FILE_CREATE_,
FILE_CREATELIST_, or CREATE procedure, or with the File Utility Program
(FUP) SET and CREATE commands.)

For even unstructured files (that is, files created with the odd unstructured
attribute not set), the record-specifier parameter must be an even byte
address, or the operation fails with file-system error 2.

• Relative and entry-sequenced files

• Writing to entry-sequenced files

Inserts to entry-sequenced files always occur at the end of the file.

• Current-state indicators for structured files

After a successful POSITION to a relative or entry-sequenced file, the current-
state indicators are:

Current position is that of the record indicated by the record-specifier.

Positioning mode is approximate.

Comparison length is 4.

Current primary-key value is set to the value of the record-specifier.

Related Programming Manuals
For programming information about the POSITION file-system procedure, see the
Enscribe Programmer’s Guide and the Guardian Programmer’s Guide.

POSITIONEDIT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example
Related Programming Manual

Summary
The POSITIONEDIT procedure sets the next record number to a specified value for a
specified file.

POSITIONEDIT is an IOEdit procedure and can only be used with files that have been
opened by OPENEDIT or OPENEDIT_.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-29

POSITIONEDIT Procedure

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation.

filenum input

INT:value

specifies the file number of the open file for which the next record number is to be
set.

record-number input

INT(32):value

specifies the value to which the file’s next record number is to be set. This value is
1000 times the EDIT line number of the intended record. You can specify -1 to
indicate positioning to the beginning of the file; you can specify -2 to indicate
positioning to the end of file.

Example
In this example, POSITIONEDIT sets the next record number to indicate line 500 in the
specified file.

INT(32) next-record-number := 500000D;
 .
 .
error := POSITIONEDIT (filenumber, next-record-number);

#include <cextdecs(POSITIONEDIT)>

short POSITIONEDIT (short filenum
 ,__int32_t record-number);

error := POSITIONEDIT (filenum ! i
 ,record-number); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-30

PRIORITY Procedure
(Superseded by PROCESS_SETINFO_ Procedure

Related Programming Manual
For programming information about the POSITIONEDIT procedure, see the Guardian
Programmer’s Guide.

PRIORITY Procedure
(Superseded by PROCESS_SETINFO_
Procedure or PROCESS_GETINFOLIST_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary

The PRIORITY procedure enables a process to examine or change its initial priority.
The current priority is updated to the initial priority value when the process waits for an
external event to occur.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

old-priority returned value

INT

returns a value that is either:

• The current priority of the process if new-priority is not specified

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

old-priority := PRIORITY ([new-priority] ! i
 ,[init-priority]); ! o

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-31

PROCESS_ACTIVATE_ Procedure

• The previous value of the current priority when new-priority is specified

• A 0, indicating that the specified new-priority value is out of range and
that the priority was not changed

new-priority input

INT:value

specifies a new execution priority value in the range {1:199} for this process. If
omitted, the initial priority remains unchanged.

init-priority output

INT:ref:1

returns the initial run priority of the process when it was started.

Considerations

• A caller of PRIORITY executing in privileged mode can set its priority to a value
greater than 199. However, if such a process has a priority greater than that of the
memory-manager process and gets a memory page fault, the call to PRIORITY
fails: a Guardian TNS process gets a “no memory available” trap (trap 12); an OSS
or native process receives a SIGNOMEM signal.

• The current priority rather than the initial priority is returned. Due to the sliding
priority feature on NonStop servers, the current priority may be lower than the initial
priority if the process is processor-bound (that is, the process does not perform any
I/O requests while running).

Example
LAST^PRI := PRIORITY (100); ! changes the current
 ! priority to 100.

PROCESS_ACTIVATE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Safeguard Considerations
OSS Considerations
Related Programming Manual

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-32

PROCESS_ACTIVATE_ Procedure

Summary
The PROCESS_ACTIVATE_ procedure returns a suspended process or process pair
to the ready state. A process is suspended by calling the PROCESS_SUSPEND_ or
SUSPENDPROCESS procedure, or by entering a TACL SUSPEND command.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the operation. It returns one of these values:

0 Process successfully activated.
2 Process is already in the ready state.
11 Process does not exist.
48 Security violation.
201 Unable to communicate with processor where the process is running.

processhandle input

INT .EXT:ref:10

is a process handle that specifies the process to be activated:

• To activate a single process, specify the process handle of that process.

• To activate a process pair, specify the process handle of either the primary or
backup process.

specifier input

INT:value

for a named process pair, indicates whether both members should be activated.
Valid values are:

0 Activate the specified process.

#include <cextdecs(PROCESS_ACTIVATE_)>

short PROCESS_ACTIVATE_ (short *processhandle
 ,[short specifier]);

error := PROCESS_ACTIVATE_ (processhandle ! i
 ,[specifier]); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-33

PROCESS_ACTIVATE_ Procedure

1 Activate both members of current instance of named process pair if the
specified process is part of a named process pair; otherwise, activate the
specified process.

If this parameter is omitted, 0 is used.

Considerations

• Procedure use

You can use PROCESS_ACTIVATE_ to activate any suspended process or
process pair, even if it was suspended by a call to SUSPENDPROCESS.

• Security

When PROCESS_ACTIVATE_ is called on a Guardian process, the caller must be
the super ID, the group manager of the process access ID, or a process with the
same process access ID as the process or process pair being activated. For
information about the process access ID, see the description under General
Considerations on page 12-62 and the Guardian User’s Guide.

The caller must be local to the same system as the specified process. A process
is considered to be local to the system on which its creator is local. A process is
considered to be remote, even if it is running on the local system, if its creator is
remote. (In the same manner, a process running on the local system whose
creator is also running on the local system might still be considered remote
because it’s creator’s creator is remote.)

A remote process running on the local system can become a local process by
successfully logging on to the local system with a call to the
USER_AUTHENTICATE_ (or VERIFYUSER) procedure. After a process logs on
to the local system, any processes that it creates are considered local.

When PROCESS_ACTIVATE_ is called on an OSS process, the security rules that
apply are the same as those that apply when the OSS kill() function is called.
See the kill(2) function reference pages either online or in the Open System
Services System Calls Reference Manual for details.

Safeguard Considerations
For information on processes protected by Safeguard, see the Safeguard Reference
Manual.

OSS Considerations
When used on an OSS process, PROCESS_ACTIVATE_ has the same effect as
calling the OSS kill() function with the input parameters as follows:

• The signal parameter set to SIGCONT

• The pid parameter set to the OSS process ID of the process identified by
process-handle in the PROCESS_ACTIVATE_ call.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-34

PROCESS_CREATE_ Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

The SIGCONT signal is delivered to the target process.

Related Programming Manual
For programming information about the PROCESS_ACTIVATE_ procedure, see the
Guardian Programmer’s Guide.

 PROCESS_CREATE_ Procedure
(Superseded by PROCESS_LAUNCH_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
General Considerations
Nowait Considerations
Compatibility Considerations
DEFINE Considerations
Batch Processing Considerations
Safeguard Considerations
OSS Considerations
Example
Related Programming Manuals

Summary

The PROCESS_CREATE_ procedure creates a new process and, optionally, assigns a
number of process attributes.

You can use this procedure to create only Guardian processes, although you can call it
from a Guardian process or an OSS process. The program file must contain a
program for execution in the Guardian environment. The program file and user library
file must reside in the Guardian name space; that is, they must not be OSS files.

You can specify that the new process be created in either a waited or nowait manner.
When it is created in a waited manner, identification for the new process is returned
directly to the caller. When it is created in a nowait manner, its identification is returned
in a system message sent to the caller’s $RECEIVE file.

DEFINEs can be propagated to the new process. The DEFINEs can come from the
caller’s context or from a buffer of DEFINEs saved by the DEFINESAVE procedure.

Any of the file-name parameters can contain DEFINE names.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-35

PROCESS_CREATE_ Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

• The parameter maxlen specifies the maximum length in bytes of the character
string pointed to by process-descr, the actual length of which is returned by
process-descr-len. All three of these parameters must either be supplied or
be absent.

• Some character-string parameters to PROCESS_CREATE_ are followed by a
parameter length that specifies the length in bytes of the character string. Where
the parameters are optional, the character-string parameter and the corresponding
length parameter must either both be supplied or both be absent.

#include <cextdecs(PROCESS_CREATE_)>

short PROCESS_CREATE_ ([const char *program-file]/* i,i1*/
 ,[short length] /* i,i1*/
 ,[const char *library-file] /*i,i 2*/
 ,[short length] /* i,i2*/
 ,[const char *swap-file] /* i,i3*/
 ,[short length] /* i,i3*/
 ,[const char *ext-swap-file] /* i,i4*/
 ,[short length] /* i,i4*/
 ,[short priority] /* i 5*/
 ,[short processor] /* i 6*/
 ,[short *processhandle] /* o 7*/
 ,[short *error-detail] /* o 8*/
 ,[short name-option] /* i 9*/
 ,[const char *name] /*i,i10*/
 ,[short length] /*i,i10*/
 ,[char *process-descr] /*o,i11*/
 ,[short maxlen] /* o,i11*/
 ,[short *process-descr-len] /* o 12*/
 ,[__int32_t nowait-tag] /* i 13*/
 ,[const char *hometerm] /*i,i 14*/
 ,[short length] /* i,i14*/
 ,[short memory-pages] /* i 15*/
 ,[short jobid] /* i 16*/
 ,[short create-options] /* i 17*/
 ,[const char *defines] /*i,i 18*/
 ,[short length] /*i,i 18*/
 ,[short debug-options] /* i 19*/
 ,[__int32_t pfs-size]); /* i 20 */;

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-36

PROCESS_CREATE_ Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the operation. Table 12-3 on page 12-111 summarizes
possible values for error.

program-file:length input:input

STRING .EXT:ref:*, INT:value

if supplied and if length is not 0, specifies the name of the program file to be run.
If used, the value of program-file must be a valid file name and must be exactly
length bytes long. The file must reside in the Guardian name space and must
contain a program for execution in the Guardian environment.

The new process is created on the node where the program file resides. If the
program file name is partially qualified, it is resolved using the =_DEFAULTS
DEFINE. If you specify a file on the subvolume $SYSTEM.SYSTEM and the file is
not found, PROCESS_CREATE_ then searches on the subvolume
$SYSTEM.SYSnn.

For a description of file name syntax, see Appendix D, File Names and Process
Identifiers.

This parameter must be supplied unless the caller is creating its backup process.

error := PROCESS_CREATE_ ([program-file: length] ! i,i 1 !
 ,[library-file: length] ! i:i 2 !
 ,[swap-file: length] ! i:i 3 !
 ,[ext-swap-file: length ! i:i 4 !
 ,[priority] ! i 5 !
 ,[processor] ! i 6 !
 ,[processhandle] ! o 7 !
 ,[error-detail] ! o 8 !
 ,[name-option] ! I 9 !
 ,[name: length] ! i:i10 !
 ,[process-descr: maxlen]!o:i 11 !
 ,[process-descr-len] ! o 12 !
 ,[nowait-tag] ! i 13 !
 ,[hometerm: length] !i:i 14 !
 ,[memory-pages] ! i 15 !
 ,[jobid] ! i 16 !
 ,[create-options] ! i 17 !
 ,[defines: length] !i:i 18 !
 ,[debug-options] ! i 19 !
 ,[pfs-size]); ! i 20 !

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-37

PROCESS_CREATE_ Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

library-file:length input:input

STRING .EXT:ref:*, INT:value

if supplied and if length is not 0 or -1, specifies the name of the user library file to
be used by the process. If used, the value of library-file must be exactly
length bytes long. If the library file name is partially qualified, it is resolved using
the =_DEFAULTS DEFINE. The user library file must be on the same node as the
process being created and must reside in the Guardian name space.

If library-file is specified, unresolved external references are resolved first
from the specified library-file, then from the system library.

If library-file is specified and length is -1, the new process is to run with no
user library file. (The references that were previously resolved from the user
library are resolved from the system library.) For the program to remove a linkage
to a library file, the caller must have write permission to the program file.

If library-file is not specified or length is 0, then the program runs with the
same library file as the last time it was run (or with no file if that was how it was
run) or with the library file currently executing. Write permission to the program file
is not required. For more information about TNS user libraries, see the Binder
Manual. For more information about TNS/R native user libraries and shared run-
time libraries, see the nld and noft Manual. For more information about dynamic-
link libraries (including native user libraries used with PIC programs), see the ld
and rld Reference Manual.

If an external reference cannot be resolved, it is modified to invoke the debugger
when referenced. PROCESS_CREATE_ then returns a warning 14 and issues a
warning message to the home terminal the first time the program is run. (The
warning 14 and the terminal message are issued again the first time the program is
run following a system load).

swap-file:length input:input

STRING .EXT:ref:*, INT:value

is not used, but you can provide it for informational purposes. If supplied, the
swap file must be on the same system as the process being created. If the
supplied name is in local form, the system where the process is created is
assumed. Processes swap to a file that is managed by the Kernel-Managed Swap
Facility (KMSF). For more information on this facility, see the Kernel-Managed
Swap Facility (KMSF) Manual. To reserve swap space for the process, create the
process using the PROCESS_LAUNCH_ procedure and specify the
Z^SPACE^GUARANTEE field of the param-list parameter. Alternatively, use
the nld utility to set TNS/R native process attributes or the eld utility to set
TNS/E native processes.

For TNS processes on RVUs preceding the D42 RVU, if supplied and if length is
not 0, swap-file specifies the name of a file to be used as the swap file for the
user data stack segment of the process. If used, the value of swap-file must be

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-38

PROCESS_CREATE_ Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

exactly length bytes long. If the swap file name is partially qualified, it is resolved
using the =_DEFAULTS DEFINE. The swap file must be on the same node as the
process being created and must be an unstructured file.

See “Considerations” for more information about swap files.

ext-swap-file:length input:input

STRING .EXT:ref:*, INT:value

for TNS processes, if not specified or length is 0, the Kernel-Managed Swap
Facility (KMSF) allocates swap space for the default extended data segment of the
process. For more information on this facility, see the Kernel-Managed Swap
Facility (KMSF) Manual.

For TNS processes, if specified and length is not 0, ext-swap-file contains
the name of a file to be used as the swap file for the default extended data
segment of the process. If used, the value of ext-swap-file must be exactly
length bytes long. If the swap file name is partially qualified, it is resolved using
the =_DEFAULTS DEFINE. The swap file must be on the same node as the
process being created and must be an unstructured file.

For native processes, this parameter is ignored because native processes do not
need an extended swap file.

See “Considerations” for more information about swap files.

priority input

INT:value

is the initial execution priority to be assigned to the new process. Execution priority
is a value in the range of 1 to 199, where 199 is the highest possible priority. If you
omit this parameter, or if you specify -1, the priority of the caller is used. If you
specify 0, a value less than -1, or a value greater than 199, error 2 is returned.

processor input

INT:value

specifies the processor in which the new process is to run. If you omit this
parameter, or if you specify -1, the processor is chosen as follows:

Backup process: determined by system
Other process on local system: same processor as caller
Process on remote system: determined by system

The processor number can be obtained by passing processhandle to
PROCESSHANDLE_DECOMPOSE_.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-39

PROCESS_CREATE_ Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

processhandle output

INT .EXT:ref:10

returns the process handle of the new process. If you created the process in a
nowait manner, the process handle is returned in the completion message sent to
$RECEIVE rather than through this parameter.

error-detail output

INT .EXT:ref:1

returns additional information about some classes of errors. The sets of values for
error-detail vary according to the error value, as described in Table 12-4 on
page 12-120.

name-option input

INT:value

specifies whether the process is to be named and, if so, whether the caller is
supplying the name or the system must generate it. Valid values are:

0 Process is unnamed (unless the RUNNAMED object file attribute is set for the
program file).

1 Process is named; name is supplied in name.

2 Process is named; system must generate a name. (The generated name is
four characters long, not including the $.)

3 Process is caller’s backup; use caller’s name.

4 Process is named; system must generate a name. (The generated name is
five characters long, not including the $.

If this parameter is omitted, 0 is used.

If either the program file or the library file (if any) has the RUNNAMED program-file
flag set, the system overrides name-option of 0 and generates a name. The
system also generates a name if RUNNAMED is set and name-option is 2, 4, or
omitted. The generated name is four characters long, not including the $, unless
name-option is 4. In the latter case, the name is five characters long, not
including the $.

name:length input:input

STRING .EXT:ref:*, INT:value

if name-option is 1 and length is not 0, specifies a name to be assigned to the
new process. If used, the value of name must be exactly length bytes long. The
name can include a node name, but the node must match that of the program file.
See “General Considerations,” later in this subsection, and Appendix B, Reserved
Process Names for information about reserved process names.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-40

PROCESS_CREATE_ Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

For other values of name-option, this parameter should be omitted (or length
should be set to 0), since the system will either generate a name or, in the case of
backup creation, use the name of the caller.

process-descr:maxlen output:input

STRING .EXT:ref:*, INT:value

if present and maxlen is not 0, returns a process descriptor suitable for passing to
FILE_OPEN_. maxlen specifies the length of the string variable process-descr
in bytes. If it is not 0, the value of maxlen must be at least 33.

If you created the process in a nowait manner, the process descriptor is returned in
the completion message sent to $RECEIVE rather than in process-descr.

process-descr-len output

INT .EXT:ref:1

if process-descr is returned, contains its actual length in bytes.

nowait-tag input

INT(32):value

if present and not -1D, indicates that the process is to be created in a nowait
manner; the procedure returns as soon as process creation is initiated. For details,
see Nowait Considerations on page 12-46.

If nowait-tag is -1D or omitted, the process is created in a waited manner.

hometerm:length input:input

STRING .EXT:ref:*, INT:value

if supplied and if length is not 0, is a file name that designates the home terminal
for the new process. If used, the value of hometerm must be exactly length
bytes long. If hometerm is partially qualified, it is resolved using the =_DEFAULTS
DEFINE.

hometerm can be a named or unnamed process. The default value is the home
terminal of the caller.

memory-pages input

INT:value

For TNS processes, specifies the minimum number of 2048-byte memory pages
allocated to the new process for user data. The actual amount of memory
allocated is processor-dependent. If memory-pages is either omitted or less than
the value previously assigned either by a compiler directive at compile time or by a
Binder command at bind time, the previously assigned value is used. In any case,
the maximum number of pages permitted is 64.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-41

PROCESS_CREATE_ Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

For native processes, this parameter is ignored. To specify the maximum size of
the main stack, create a new process using the PROCESS_LAUNCH_ procedure
and specify the Z^MAINSTACK^MAX field of the param-list parameter.
Alternatively, use the nld utility to set the TNS/R process attributes or the eld
utility to set the TNS/E process attributes .

jobid input

INT:value

if present and not 0 or -1, is an integer (job ID) that identifies the job to be created.
The new process is the first process of the job and the caller is the job ancestor of
the new process. This value is used by the NetBatch scheduler. See “Batch
Processing Considerations” for information about how to use this parameter.

create-options input

INT:value

provides information about the environment of the new process. The fields are:

<9> =
0

If the caller is named, the process deletion message, if any,
will go only to the current instance of the calling process.

=
1

If the caller is named, the process deletion message, if any,
will go to whatever process has the calling process’s name
(regardless of sequence number) at that time.

<10> =
0

Force new process into a low PIN if the calling process has
the inherited force-low attribute set.

=
1

Ignore the value of the caller’s inherited force-low attribute.

<11:12
>

=
0

Propagate only the DEFINEs in the caller’s context.

=
1

Propagate only the DEFINES in the defines parameter.

=
2

Propagate both sets of defines; in case of name conflicts,
use the ones in defines.

<13> =
0

Use caller’s DEFINE mode.

=
1

Use value in bit 14.

<14> =
0

DEFINEs disabled (ignored if bit 13 is 0).

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-42

PROCESS_CREATE_ Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

The default value is 0.

If you specify create-options.<9> = 1, the process deletion message (in the
event that the created process terminates) is sent to any process that has the
calling process’s name at that time, regardless of the sequence number. If you
specify create-options.<9> = 0, the process deletion message is sent only to
the instance of the process or process pair to which the calling process belongs.
An “instance” is any process in an unbroken chain of primary and backup
processes. Every process that is part of an instance has the same sequence
number.

If you specify create-options.<15> = 1 (requires low PIN), the program is run
at a low PIN. If you specify create-options.<15> = 0 (can be assigned any
PIN), the program runs at a PIN of 256 or higher if its program file and library file (if
any) have the HIGHPIN program-file flag set and if a high PIN is available.
However, if the calling process has the inherited force-low attribute set and you
specify “can run at any PIN,” the new process is forced into a low PIN even if all of
the other conditions for running at a high PIN are met. See “Compatibility
Considerations” and “DEFINE Considerations” for more information.

defines:length input:input

STRING .EXT:ref:*, INT:value

if supplied and if length is not 0, specifies a set of DEFINEs to be propagated to
the new process. The value of defines must be exactly length bytes long. The
set of DEFINEs should have been created through one or more calls to
DEFINESAVE. For all cases except backup creation, DEFINEs are propagated
according to the values specified in create-options. See “DEFINE
Considerations” for details.

When a process creates its backup, all of the caller’s DEFINEs are propagated
regardless of create-option. If defines is specified, it is ignored.

=
1

DEFINEs enabled (ignored if bit 13 is 0).

<15> =
0

Can run at any PIN.

=
1

Requires low PIN (in range 0 through 254).

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-43

PROCESS_CREATE_ Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

debug-options input

INT:value

sets the debugging attributes for the new process. The fields are:

<0:11> Reserved (specify 0)

<12> 1 Enter Debug or the Inspect debugger at the first executable
instruction of the program's MAIN procedure.

0 Begin normal program execution.

<13> 1 If the process traps, create a saveabend file.
0 If the process traps, do not create a saveabend file.

<14> 1 Use debugger specified in bit 15 and saveabend option
specified in bit 13 regardless of program-file flag setting.

0 Use standard rules for debugger selection.

<15> 1 Use the Inspect debugger.
0 Use Debug.

When debug-options is specified, bits 13 and 15 are ORed with the
corresponding flags in the program file. If the result is that bit 13 is set but bit 15 is
not, then 15 is also turned on (that is, if “save file creation” is selected, the Inspect
debugger becomes the selected debugger).

If bit 14 is set, the above paragraph on debugger selection does not apply. The
debugger specified by bit 15 is used, regardless of the flags in the program file.

If debug-options is omitted, then the debugger and saveabend defaults are set
from the flags in the program file (set either by compiler directives at compile time,
nld flag at link time, or Binder command at bind time) after these flags are ORed
with the corresponding states of the calling process.

pfs-size input

INT(32):value

meaningful only if the process is being created on a pre-G06 RVU. On G06 and
later RVUs, this value is range checked, but is otherwise ignored.

If present and nonzero, this parameter specifies the size in bytes of the process file
segment (PFS) of the new process. In G-series RVUs, maximum PFS size is 8
MB. In H-series RVUs, maximum PFS size is 32 MB. A value in this range
overrides the nld or Binder value stored in the program file. If you omit pfs-size
or specify 0:

• the nld or Binder value is used if it is nonzero

• a default value is used otherwise

General Considerations

• Partially qualified file names are resolved using the contents of the caller’s
=_DEFAULTS DEFINE. If a node name is not present in either the file name or the

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-44

PROCESS_CREATE_ Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

appropriate attribute of the DEFINE, the resolved name will include the caller’s
node.

See below for details on resolution of specific file-name parameters.

• For TNS and accelerated processes on RVUs preceding the D42.00 RVU, if
swap-file or ext-swap-file:

• is specified and a file with that name exists, that file is used for memory
swapping of the user data stack (swap-file) or the default extended data
segment (ext-swap-file) during execution of the process; if no file of that
name exists, then a file of that name and of the necessary size is created and
used for swapping. If the file name is partially qualified, the system uses the
=_DEFAULTS DEFINE to resolve it.

• Specifies the name of a temporary file that is already in use, an error is
returned.

• Specifies only the disk volume name, then a temporary file is created on the
specified disk device.

• Is not specified or length is 0, then the SWAP volume name in the
=_DEFAULTS DEFINE is used if available. Otherwise, the system chooses
where to place the file.

• Creation of the backup of a named process pair

If the backup of a named process pair is created, the backup process becomes the
creator or mom of the primary (that is, of the caller to PROCESS_CREATE_) and
the primary becomes the mom of the newly created backup process. See the
discussions of “mom process” and “ancestor process” in the Guardian
Programmer’s Guide.

• Program file and user library file differences

A user library is an program file containing one or more procedures. The
difference between a program file and a library file is that the library file cannot
contain a MAIN procedure; a program file must contain a MAIN procedure.
Undefined external references in a program file are resolved from the user library,
if any, or the system library. Unresolved references in a library are resolved only
from the system library.

• Library conflict—PROCESS_CREATE_ error

The library file for a process can be shared by any number of processes.
However, when a program is shared by two or more processes, all processes must
have the same user library configuration; that is, all processes sharing the program
either have the same user library, or they have no user library. A library conflict
error occurs when there is already a copy of the program running with a library
configuration different from that specified in the call to PROCESS_CREATE_.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-45

PROCESS_CREATE_ Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

• Device subtypes for named processes (process subtypes)

The device subtype (or process subtype) is a program file attribute that can be set
by a TAL compiler directive at compile time, nld flag at link time, or Binder
command at bind time. You can obtain the device type and subtype of a named
process by calling FILE_GETINFO[BYNAME]_ , FILEINFO, or DEVICEINFO.

Note that a process with a device subtype other than 0 must always be named.

There are 64 process subtypes available, where 0 is the default subtype for
general use. The other subtypes are as follows:

1 to 47 are reserved for definition by HP. Currently, 1 is a CMI process, 2 is a
security monitor process, 30 is a device simulation process, and 31 is a
spooler collector process. Also, for subtypes 1 to 15,
PROCESS_CREATE_ rejects the create request with an invalid
process subtype error unless the caller has a creator access ID of the
super ID, or the program file is licensed, or the program file has the
PROGID attribute set and an owner of the super ID.

48 to 63 are for general use. Any user can create a named process with a
device subtype in this range.

For a list of all device types and subtypes, see Appendix A, Device Types and
Subtypes.

• Reserved process names

The operating system reserved process name space includes these names:
$Xname, $Yname, and $Zname, where name is from 1 through 4 alphanumeric
characters. You should not use names of this form in any application. System-
generated process names (from PROCESS_LAUNCH_, PROCESS_SPAWN_,
PROCESS_CREATE_ , NEWPROCESS[NOWAIT], PROCESSNAME_CREATE_ ,
CREATEPROCESSNAME and CREATEREMOTENAME procedures) are selected
from this set of names. For more information about reserved process names. see
Appendix B, Reserved Process Names.

• Creator access ID (CAID) and process access ID (PAID)

The creator access ID of the new process is always the same as the process
access ID of the creator process. The process access ID of the new process is the
same as that of the creator process unless the program file has the PROGID
attribute set; in that case the process access ID of the new process is the same as
the user ID of the program file’s owner and the new process is always local.

• I/O error to the home terminal

An I/O error to the home terminal can occur if there are undefined externals in the
program file and PROCESS_CREATE_ is unable to open or write to the home
terminal to display the undefined externals messages. The error-detail
parameter contains the file-system error number that resulted from the open or
write that failed.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-46

PROCESS_CREATE_ Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

Nowait Considerations

• If you call this procedure in a nowait manner, the results are returned in the nowait
PROCESS_LAUNCH_ or PROCESS_CREATE_ completion message (-102), not
the output parameters of the procedure. The format of this completion message is
described in the Guardian Procedure Errors and Messages Manual. If error is
not 0, no completion message is sent to $RECEIVE. Errors can be reported either
on return from the procedure, in which case error and error-detail might be
meaningful, or through the completion message sent to $RECEIVE.

Compatibility Considerations

• If the new process is to be accessible to a process with a low PIN, then it must be
forced into a low PIN (below 255). You can force the process into a low PIN either
by specifying create-options.<15> = 1 (requires a low PIN), or by making sure
that the program-file high-PIN flag is off.

• If you want the new process to be forced into a low PIN only if the calling process
was forced into a low PIN, specify create-options.<10> = 0 (requires a low PIN
if the caller has the inherited force-low attribute set) and create-options.<15> =
0 (can have any PIN).

• If you want explicit control over each child process with respect to running with a
high or low PIN, specify create-options.<10> = 1 (ignore the caller’s inherited
force-low attribute) and create-options.<15> = either 1 (requires a low PIN) or
0 (can be assigned any PIN) as appropriate.

• If the new process is unnamed, it must be forced into a low PIN if it is to be
accessible to processes that do not know about high PINs.

• If the new process has a high PIN and has a name with five or fewer characters
(not counting the $), it is accessible to any high PIN process running on any node
in the network.

• For further information on compatibility, see the Guardian Programmer’s Guide and
the Guardian Application Conversion Guide.

DEFINE Considerations

• DEFINEs are propagated to the new process from the process context of the
caller, from a caller-supplied buffer containing DEFINEs collected by calls to
DEFINESAVE, or from both of these. DEFINEs are propagated to the new process
according to the DEFINE mode of the new process and the propagation option
specified in create-options. If both sets of DEFINEs are propagated and both
sets contain a DEFINE with the same name, the DEFINE in the caller-supplied
buffer is used. When a caller is creating its backup, the caller’s DEFINEs are
always propagated, regardless of the options chosen.

The =_DEFAULTS DEFINE is always propagated, regardless of the options
chosen. If the DEFINE buffer contains a =_DEFAULTS DEFINE, that one is

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-47

PROCESS_CREATE_ Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

propagated; otherwise, the =_DEFAULTS DEFINE in the caller’s context is
propagated.

Buffer space for DEFINEs being propagated to a new process is limited to 2 MB
whether the process is local or remote. However, the caller can propagate only as
many DEFINEs as the child’s PFS can accommodate in the buffer space for the
DEFINEs themselves and in the operational buffer space needed to do the
propagation. The maximum number of DEFINEs that can be propagated varies
depending upon the size of the DEFINEs being passed.

• When a process is created, its DEFINE working set is initialized with the default
attributes of CLASS MAP.

• The program-file, library-file, swap-file, or ext-swap-file can be
DEFINE names; PROCESS_CREATE_ uses the disk volume or file given in the
DEFINE. If program-file is a DEFINE name but no such DEFINE exists, an
error is returned. If any of the other names is a DEFINE name but no such
DEFINE exists, the procedure behaves as if no name were specified. This feature
of accepting names of nonexistent DEFINEs as input gives the programmer a
convenient mechanism that allows, but does not require, user specification of the
location of the library file, the swap file, or the extended swap file.

• For each process, a count is kept of the changes to that process’s DEFINEs. This
count is always 0 for newly-created processes. The count is incremented each
time the procedures DEFINEADD, DEFINEDELETE, DEFINESETMODE, and
DEFINEDELETEALL are invoked and a consequent change to the process context
occurs. In the case of DEFINEDELETE and DEFINEDELETEALL, the count is
incremented by one even if more than one DEFINE is deleted. The count is also
incremented if the DEFINE mode of the process is changed. If a call to
CHECKDEFINE causes a DEFINE in the backup to be altered, deleted, or added,
then the count for the backup process is incremented.

Batch Processing Considerations

• When the process being created is part of a batch job, PROCESS_CREATE_
sends a job process creation message to the job ancestor of the batch job. (See
the discussion of “job ancestor” in the Guardian Programmer’s Guide.) The
message identifies the new process and contains the job ID as originally assigned
by the job ancestor. This enables the job ancestor to keep track of all the
processes belonging to a given job.

For the format of the job process creation message, see the Guardian Procedure
Errors and Messages Manual.

• PROCESS_CREATE_ can create a new process and establish that process as a
member of the caller’s batch job. In that case the caller’s job ID is propagated to

Note. The job ancestor facility is intended for use by the NetBatch product. Other applications
that use this facility might be incompatible with the NetBatch product.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-48

PROCESS_CREATE_ Procedure
(Superseded by PROCESS_LAUNCH_ Procedure)

the new process. If the caller is part of a batch job, to start a new process that is
part of the caller’s batch job, omit jobid or set it to -1.

• PROCESS_CREATE_ can create a new process separate from any batch job,
even if the caller is a process that belongs to a batch job. In that case the job ID of
the new process is 0. To start a new process that is not part of a batch job, specify
0 for jobid.

• PROCESS_CREATE_ can create a new batch job and establish the new process
as a member of the newly created batch job. In that case, the caller becomes the
job ancestor of the new job; the job ID supplied by the caller becomes the job ID of
the new process. To start a new batch job, specify a nonzero value (other than -1)
for jobid.

A job ancestor must not have a process name that is greater than four characters
(not counting the dollar sign). When the caller of PROCESS_CREATE_ is to
become a job ancestor, it must conform to this requirement.

• When jobid is omitted or set to -1:

• If the caller is not part of a batch job, neither is the newly created process; its
job ID is 0.

• If the caller is part of a batch job, the newly created process is part of the same
job because its job ID is propagated to the new process.

• Once a process belongs to a batch job, it remains part of the job.

Safeguard Considerations
For information on processes protected by Safeguard, see the Safeguard Reference
Manual.

OSS Considerations

• You cannot create an OSS process using the PROCESS_CREATE_ procedure.
PROCESS_CREATE_ returns error 12 if you try. Use the PROCESS_SPAWN_
procedure or OSS functions to create an OSS process.

• You can call PROCESS_CREATE_ from an OSS process to create a Guardian
process.

• Every Guardian process has these security-related attributes for accessing OSS
objects. These attributes are passed, unchanged, from the caller to the new
process, whether the caller is an OSS process or a Guardian process:

• Real, effective, and saved user ID

• Real, effective, and saved group ID

• Group list

• Login name

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-49

PROCESS_DEBUG_ Procedure

• Current working directory (cwd)

• Maximum file size

• Default OSS file security

No other OSS process attribute is inherited by the new process.

• OSS file opens in the calling process are not propagated to the new process.

Example
err := PROCESS_CREATE_ (pfile^name , , , , , , proc^handle,
 error^detail);

Related Programming Manuals
For programming information about the PROCESS_CREATE_ procedure, see the
Guardian Programmer’s Guide. For programming information on batch processing,
see the appropriate NetBatch manual.

PROCESS_DEBUG_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
OSS Considerations
Example
Related Programming Manual

Summary
The PROCESS_DEBUG_ procedure invokes the debugging facility on the calling
process or on another process.

The operating system provides a debugging facility that responds to debug events by
passing control to one of two debugging utilities: Debug or Inspect. Debug is a low-
level debugger. Inspect is an interactive symbolic debugger that lets you control
program execution, display values, and modify values in terms of source-language
symbols.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-50

PROCESS_DEBUG_ Procedure

Syntax for C Programmers

The parameter length specifies the length in bytes of the character string pointed to
by terminal-name. The parameters terminal-name and length must either both
be supplied or both be absent.

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the process debug
attempt. Possible values include:

0 Debug request accepted. If the process to be debugged is not the calling
process, the request might have been queued.

11 Process does not exist.
48 Security violation.
201 Unable to communicate with the processor of the process.
640 The target process runs in privileged mode and the now parameter was

not set equal to 1.

processhandle input

INT .EXT:ref:10

is the process handle of the process to be debugged. If processhandle is
omitted or null, the calling process is to be debugged. The null process handle is
one which has -1 in each word (Refer to Guardian procedure call,
PROCESSHANDLE_NULLIT_). However, PROCESS_DEBUG also treats a
process handle with -1 in the first word as a null process handle.

terminal-name:length input:input

STRING .EXT:ref:*, INT:value

#include <cextdecs(PROCESS_DEBUG_)>

short PROCESS_DEBUG_ ([short *processhandle]
 ,[const char *terminal-name]
 ,[short length]
 ,[short now]);

error := PROCESS_DEBUG_ ([processhandle] ! i
 ,[terminal-name:length] ! i:i
 ,[now]); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-51

PROCESS_DEBUG_ Procedure

if supplied and if length is not 0, is a file name that designates the terminal from
which the process is to be debugged. If used, the value of terminal-name must
be exactly length bytes long. If terminal-name is partially qualified, it is
resolved using the contents of the =_DEFAULTS DEFINE.

The default is the current home terminal of the process to be debugged.

now input

INT:value

if 1, specifies that the process be debugged immediately (even if it is currently
executing privileged code); if omitted or 0, specifies that the normal debug
sequence be executed.

The process access ID (PAID) of the calling process must be the super ID to use
this parameter.

If the calling process runs only in privileged mode, now must be set to 1 or an error
is returned.

Considerations

• The caller of PROCESS_DEBUG_ must be the super ID, the group manager of the
process access ID, or a process with the same process access ID as the specified
process or process pair. For information about the process access ID, see
General Considerations on page 12-62 and the Guardian User’s Guide.

The caller must be local to the same system as the specified process. A process
is considered to be local to the system on which its creator is local. A process is
considered to be remote, even if it is running on the local system, if its creator is
remote. (In the same manner, a process running on the local system whose
creator is also running on the local system might still be considered remote
because it’s creator’s creator is remote.)

A remote process running on the local system can become a local process by
successfully logging on to the local system with a call to the
USER_AUTHENTICATE_ procedure (or VERIFYUSER). After a process logs on
to the local system, any processes that it creates are considered local.

• While a process is in the debug state, you can interactively display and modify the
contents of its registers and data area, and set breakpoints. To debug a program,
you must have execute access to run the program and read access to the program
file.

• In addition to placing an explicit call to the PROCESS_DEBUG_ (or DEBUG)
procedure in the source program, you can force a process into the debug state by:

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-52

PROCESS_DEBUG_ Procedure

• Starting the process using the TACL RUND (RUN DEBUG) command. The
process enters the debug state before the first instruction of the MAIN
procedure executes.

• Starting the process with a call to PROCESS_CREATE_,
PROCESS_SPAWN_, NEWPROCESS, NEWPROCESSNOWAIT, OSS
tdm_fork(), OSS tdm_spawn(), or one of the OSS tdm_exec set of
functions, and setting the appropriate option. The process enters the debug
state before the first instruction of the MAIN procedure executes.

• Starting the process from the command interpreter. While the process is
executing, press the BREAK key. The command interpreter returns to the
command input mode. Find the cpu,pin of the process and type in DEBUG
cpu,pin, or find the name of the process (if it is named) and type in DEBUG
process-name.

• Issuing a DEBUG command to a command interpreter on another local
terminal while the process is executing. Find the cpu,pin of the process and
type in DEBUG cpu,pin, or find the name of the process (if it is named) and
type in DEBUG process-name.

• Specifying a breakpoint when a process is in the debug state. When the
breakpoint is reached, the process enters the debug state.

• Issuing a DEBUG command to a TACL process running at another local
terminal.

• You can use Inspect by setting the Inspect attribute associated with a process.
The value of a process’s Inspect attribute can be set with:

• The ?INSPECT or ?SAVEABEND TAL compiler directive

• The nld -SET INSPECT or -SET SAVEABEND flags during a linking session

• The Binder SET INSPECT or SET SAVEABEND commands during a binding
session

• The TACL SET INSPECT command before the RUN command that starts the
process

• The INSPECT parameter of the RUN command that starts the process

• The appropriate option in the PROCESS_CREATE_, PROCESS_SPAWN_,
NEWPROCESS, NEWPROCESSNOWAIT, OSS tdm_fork(), OSS
tdm_spawn(), or one of the OSS tdm_exec set of functions.

• Processes inherit the Inspect attribute from their ancestor processes.

• Calling PROCESS_DEBUG_ and passing no parameters (or specifying only the
caller’s process handle) is not the exact equivalent of calling the DEBUG
procedure. Some processes (in particular, system processes) would need to
specify the now parameter as equal to 1 (the default is 0). DEBUG, which has no
now parameter, functions as if it had a now parameter set equal to 1.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-53

PROCESS_DEBUG_ Procedure

In general, the preferred method for a process to invoke the debug facility on itself
is to call DEBUG rather than to call PROCESS_DEBUG_.

OSS Considerations
When used on an OSS process, PROCESS_DEBUG_ forces the process into the
Inspect debugger. You can change the home terminal by specifying terminal-name.
Note that the home terminal is often the same device as the OSS controlling terminal.

To debug an OSS process, one of these must be true:

• The calling process must have the appropriate privileges; that is, it must be locally
authenticated as the super ID on the system where the target process is executing.

• All these apply:

• The caller’s effective user ID is the same as the saved user ID of the target
process.

• The caller has sufficient “non-remoteness”: that is, the caller is locally
authenticated, or the target process is remotely authenticated and the caller is
authenticated from the viewpoint of the system where the target process is
executing.

• The caller has read access to the program file and any library files.

• The program does not contain PRIV or CALLABLE routines.

• The target is not a system process.

• The now parameter is not specified.

Only program file owners and users with appropriate privileges are able to debug
programs that set the user ID.

Example
error := PROCESS_DEBUG_ (proc^handle, terminal:length);

Related Programming Manual
For information about the Debug facility, see the Debug Manual. For information about
the Inspect facility, see the Inspect Manual. For programming information about the
PROCESS_DEBUG_ procedure, see the Guardian Programmer’s Guide.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-54

PROCESS_DELAY_ Procedure (H-Series RVUs
Only)

PROCESS_DELAY_ Procedure (H-Series RVUs
Only)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The PROCESS_DELAY_ procedure permits a process to suspend itself for a timed
interval.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

timeout input

FIXED:value

specifies the time, in microsecond units, that the caller of PROCESS_DELAY_ is to
be suspended.

Considerations

• The process stops executing for at least timeout microseconds.

• time-period value <= 0D

A value of less than or equal to 0D results in no delay as such, but returns this
process to the Ready List.

• Measuring time by the processor clock

The PROCESS_DELAY_ procedure measures time according to the internal clock
of the processor in which the calling process is executing. Processor time is time
as measured by a particular process. Typically, processor time differs slightly from

#include <cextdecs(PROCESS_DELAY_)>

void PROCESS_DELAY_ (long long (Timeout);

CALL PROCESS_DELAY_(timeout) ; ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-55

PROCESS_GETINFO_ Procedure

system time and varies slightly from processor to processor. System time is
determined by taking the average of all the processor times in the system.

When measuring short intervals, the difference between processor time and
system time is negligible. However, when measuring long intervals (such as
several hours or more), the difference can be noticeable. For a discussion about
measuring long time intervals, see Considerations on page 14-142.

Example
CALL PROCESS_DELAY_(60000000F); -- delay for 60 seconds

PROCESS_GETINFO_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
General Considerations
Mom Considerations
Home Terminal Considerations
I/O Processes That Control Multiple Devices
OSS Considerations
Example
Related Programming Manual

Summary
The PROCESS_GETINFO_ procedure obtains a limited set of information about a
specified process.

A related procedure, PROCESS_GETINFOLIST_ , obtains detailed information about a
particular process or set of processes that meet specified criteria.

Note. Currently, the minimum timeout supported for PROCESS_DELAY_ procedures is:

• 2 milliseconds for H06.12 and earlier H-series RVUs

• 1 millisecond for privileged processes from H06.13 onwards

• 2 milliseconds for non-privileged processes from H06.13 onwards

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-56

PROCESS_GETINFO_ Procedure

Syntax for C Programmers

Some character-string parameters to PROCESS_GETINFO_ are followed by a
parameter maxlen that specifies the maximum length in bytes of the character string
and an additional parameter that returns the actual length of the string. Where these
parameters are optional, the character-string parameter and the two parameters that
follow it must either all be supplied or all be absent.

Note. In the TNS/E environment, the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include < cextdecs(PROCESS_GETINFO_)>
 /*input error*/
 /*output detail*/
short PROCESS_GETINFO_ ([short *processhandle] /*i,o 1 */
 , [char *proc-fname] /* o 2 */
 , [short maxlen] /* o 2 */
 , [short *proc-fname-len] /* o 3 */
 , [short *priority] /* i 4 */
 , [short *mom’s-processhandle] /*i 5 */
 , [char *hometerm] /* i 6 */
 , [short maxlen] /* i 6 */
 , [short *hometerm-len] /* i 7 */
 , [long long *process-time]/* i 8 */
 , [short *creator-access-id]/*i 9 */
 , [short *process-access-id]/*i 10 */
 , [short *gmom’s-processhandle]/* i11 */
 , [short *jobid] /* i 12 */
 , [char *program-file] /* i 13 */
 , [short maxlen] /* i 13 */
 , [short *program-len] /* i 14 */
 , [char *swap-file] /* i 15 */
 , [short maxlen] /* i 15 */
 , [short *swap-len] /* i 16 */
 , [short *error-detail] /* i 17 */
 , [short *proc-type] /* i 18 */
 , [__int32_t *oss-pid]); /* i 19*/;

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-57

PROCESS_GETINFO_ Procedure

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the call. It returns one of these values:

0 Information is returned for the specified process.
1 File-system error; error-detail contains the error number.
2 Parameter error; error-detail contains the number of the first parameter

found to be in error, where 1 designates the first parameter on the left.
3 Bounds error; error-detail contains the number of the first parameter

found to be in error, where 1 designates the first parameter on the left.
4 Specified process does not exist
5 Unable to communicate with processor
6 Unable to communicate with system

processhandle input,output

INT .EXT:ref:10

 ! Input Error
 ! ! Output Detail !
error := PROCESS_GETINFO_ ([processhandle] ! i,o 1 !
 ,[proc-fname: maxlen] ! o:i 2 !
 ,[proc-fname-len] ! o 3 !
 ,[priority] ! o 4 !
 ,[mom's-processhandle] ! o 5 !
 ,[hometerm: maxlen] ! o:i 6 !
 ,[hometerm-len] ! o 7 !
 ,[process-time] ! o 8 !
 ,[creator-access-id] ! o 9 !
 ,[process-access-id] ! o 10 !
 ,[gmom's-processhandle] ! o 11 !
 ,[jobid] ! o 12 !
 ,[program-file: maxlen] o:i 13 !
 ,[program-len] ! o 14 !
 ,[swap-file: maxlen] ! o:i 15 !
 ,[swap-len] ! o 16 !
 ,[error-detail] ! o 17 !
 ,[proc-type] ! o 18 !
 ,[oss-pid]); ! o 19!

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-58

PROCESS_GETINFO_ Procedure

specifies the process for which information is to be returned. If processhandle
is omitted or null, information about the caller is returned. If processhandle is
null, it returns the caller’s process handle. The null process handle is one which
has -1 in each word (Refer to Guardian procedure call,
PROCESSHANDLE_NULLIT_). However, PROCESS_GETINFO_ also treats a
process handle with -1 in the first word as a null process handle.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-59

PROCESS_GETINFO_ Procedure

proc-fname:maxlen output:input

STRING .EXT:ref:*, INT:value

if present and maxlen is not 0, returns the process file name of the target process.
Normally, this value is a process descriptor. However, if the specified process is an
I/O process (that is, a process that controls a device or volume), the returned value
is the fully qualified device or volume name.

maxlen is the length in bytes of the string variable proc-fname.

proc-fname-len output

INT .EXT:ref:1

contains the actual length of the process file name being returned.

priority output

INT .EXT:ref:1

returns the current execution priority of the specified process. The initial priority
can be obtained by calling PROCESS_GETINFOLIST_.

mom's-processhandle output

INT .EXT:ref:10

returns the process handle of the mom of the specified process.

hometerm:maxlen output:input

STRING .EXT:ref:*, INT:value

if present and maxlen is not 0, returns the fully qualified file name of the home
terminal of the specified process. maxlen specifies the length in bytes of the
string variable hometerm.

hometerm-len output

INT .EXT:ref:1

contains the actual length in bytes of the value returned in hometerm.

process-time output

FIXED .EXT:ref:1

returns the execution time, in microseconds, of the specified process. This value
includes processor time consumed by the application code of the process plus
processor time consumed by Guardian procedures called.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-60

PROCESS_GETINFO_ Procedure

creator-access-id output

INT .EXT:ref:1

returns the creator access ID of the specified process. See “Considerations” for
information about the creator access ID.

process-access-id output

INT .EXT:ref:1

returns the process access ID of the specified process. See “Considerations” for
information about the process access ID.

gmom's-processhandle output

INT .EXT:ref:10

returns the process handle of the job ancestor (GMOM) of the specified process.

jobid output

INT .EXT:ref:1

returns the job ID of the specified process. The job ID is a value that was assigned
by the job ancestor when the job was created. If jobid is 0, the process does not
belong to a job.

program-file:maxlen output:input

STRING .EXT:ref:*, INT:value

if present and maxlen is not 0, returns the fully qualified Guardian program file
name of the specified process. maxlen specifies the length in bytes of the string
variable program-file.

program-len output

INT .EXT:ref:1

contains the actual length in bytes of the program file name being returned.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-61

PROCESS_GETINFO_ Procedure

swap-file:maxlen output:input

STRING .EXT:ref:*, INT:value

returns $volume.#0. Processes do not swap to $volume.#0; they swap to a swap
file managed by the Kernel-Managed Swap Facility. For more information on this
facility, see the Kernel-Managed Swap Facility (KMSF) Manual.

For TNS processes on RVUs preceding the D42 RVU, swap-file returns the
internal-format file name of the swap file for the process’s data segment. This is
often the name of a temporary file unless a specific swap file is supplied at run
time. It can also indicate the current swap volume.

maxlen specifies the length in bytes of the string variable swap-file.

swap-len output

INT .EXT:ref:1

contains the actual length in bytes of the value returned in swap-file.

error-detail output

INT .EXT:ref:1

for some returned errors, contains additional information. See error.

proc-type output

INT .EXT:ref:1

returns the process type. The bits are defined as follows:

<0:14> (reserved)

<15> 0 Process is a Guardian process.
1 Process is an OSS process.

oss-pid output

INT(32) .EXT:ref:1

returns the OSS process ID of an OSS process; otherwise, it returns the null OSS
process ID (the null OSS process ID is obtained by calling the OSS_PID_NULL_
procedure).

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-62

PROCESS_GETINFO_ Procedure

General Considerations

• Process access ID (PAID) and creator access ID (CAID)

An access ID is a word associated with a given process that contains a group ID
number in the left byte and a user ID number in the right byte. Two types of
access IDs are used in the operating system.

The process access ID (PAID) is returned by PROCESS_GETINFO_ and is
normally used for security checks when a process attempts to access a disk file.

The creator access ID (CAID) is returned by PROCESS_GETINFO_ and identifies
the user who created the process. It is normally used, often with the PAID, for
security checks on interprocess operations such as stopping a process or creating
a backup for a process.

The PAID and the CAID usually differ only when a process is run from a program
file that has the PROGID attribute set. This attribute is usually set with the File
Utility Program (FUP) SECURE command and PROGID option. In such a case,
the process access ID returned by PROCESS_GETINFO_ is the same as the
program file’s owner ID.

For more information about access IDs, see the Guardian User’s Guide .

• Obtaining information about a process that is terminating

If the process specified in a call to PROCESS_GETINFO_ is in the terminating
state, the procedure still returns information about that process. This differs from
the behavior of some of the procedures superseded by PROCESS_GETINFO_,
such as GETCRTPID and GETREMOTECRTPID, which treat a terminating
process as if it did not exist.

• Return value of PROCESS_GETINFO_

If the process specified in the call to PROCESS_GETINFO_ is in the starting or
terminating stage, or if its program file or libraries are being loaded by RLD, then
the procedure returns $< coldload-vol>.< coldload-subvol>.NOPROGRM as the
program file name.

• Error 3 will be returned if any of the ‘buffers’ to accept file names are not
largeenough to hold the returned filename. The current maximum size for a NSK
Error-Detail for return error 2 or 3 may not be the same as the comma
separatedargument list and are as follows:

1. processhandle

2. proc-fname or maxlen

3. proc-fname-len

4. priority

5. mom’s-processhandle

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-63

PROCESS_GETINFO_ Procedure

6. hometerm or maxlen

7. hometerm-len

8. process-time

9. creator-access-id

10. process-access-id

11. gmom’s-processhandle

12. jobid

13. program-file or maxlen

14. program-len

15. swap-file or maxlen

16. swap-len

17. error-detail

18. proc-type

19. oss-pid

Mom Considerations

• Obtaining the mom (mom's-processhandle) of a named process or process pair

If the specified process is a single named process (that is, the specified process is
the primary process of a named process pair with no backup process), a null
process handle (-1 in each word) is returned in mom's-processhandle.

If the specified process is the primary process of a named process pair and there
is a backup process, the process handle of the backup is returned in mom's-
processhandle.

If the specified process is the backup process of a named process pair, the
process handle of the primary is returned in mom's-processhandle.

• The caller can always retrieve its own mom, if it has one.

• If another process has become the mom of the specified process by a call to
PROCESS_SETINFO_ or STEPMOM, then the process handle of that other
process is returned in mom's-processhandle.

• By default, an OSS process does not have a mom process; therefore, a null
process handle is returned in mom's-processhandle. An OSS process can
have a mom process if it was created by the OSS tdm_fork() or one of the
tdm_exec set of functions; see the online reference pages or the Open System
Services System Calls Reference Manual for details. An OSS process does have

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-64

PROCESS_GETINFO_ Procedure

a mom process if a mom process has been explicitly assigned by either the
PROCESS_SETINFO_ or STEPMOM procedure.

Home Terminal Considerations

• The home-terminal file name returned by PROCESS_GETINFO_ is in a form
suitable for passing directly to file-system procedures such as FILE_OPEN_.

• The home terminal is always the same as the home terminal of the original creator
(not stepmom) of the process unless the home terminal is altered by a call to
PROCESS_SETSTRINGINFO_, SETMYTERM, PROCESS_DEBUG_ or
DEBUGPROCESS, or the home terminal option is supplied to
PROCESS_CREATE_, PROCESS_SPAWN_, NEWPROCESS,
NEWPROCESSNOWAIT, OSS tdm_fork(), OSS tdm_spawn(), or one of the
OSS tdm_exec set of functions.

I/O Processes That Control Multiple Devices

• If processhandle is an I/O process that controls multiple devices, the returned
proc-fname is the name of the first device controlled by that I/O process.

OSS Considerations

• Use this procedure to find out if a process is an OSS process and to retrieve the
OSS process ID associated with the process handle.

• An OSS process can change its processor,pin value during its lifetime. Zombie
processes are not returned, because processor,pin pairs are not defined for
zombie processes. The OSS process ID is a unique identifier representing an OSS
process. It is a positive integer. It is not reused by the system until the process
lifetime ends. A zombie process is an inactive process that will be deleted by its
parent process.

Example
error := PROCESS_GETINFO_ (proc^handle ,
 proc^descriptor:maxlen ,
 proc^desc^length , ,
 moms^proc^handle , , , , , ,
 gmoms^proc^handle , jobid);

Related Programming Manual
For programming information about the PROCESS_GETINFO_ procedure, see the
Guardian Programmer’s Guide.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-65

PROCESS_GETINFOLIST_ Procedure

PROCESS_GETINFOLIST_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
General Considerations
Attribute Codes and Value Representations
OSS Considerations
Example
Related Programming Manual

Summary
The PROCESS_GETINFOLIST_ procedure obtains detailed information about a
specified process or about a set of processes that meet specified criteria. You can
specify processes for which information is to be returned in one of several ways:

• You can specify the process handle of a particular process.

• You can specify the node name, processor, and PIN of a particular process.

• You can specify the node name and OSS process ID of a particular OSS process.

• You can specify a node name, processor, and PIN, along with a set of search
criteria; the procedure searches processes in the specified processor starting at
the specified PIN. You can specify that PROCESS_GETINFOLIST_ return
information for only the first process that meets the search criteria or for multiple
processes that meet the search criteria.

• You can omit the first four parameters and the oss-pid parameter to have
information returned for the calling process.

A related procedure, PROCESS_GETINFO_ , is recommended for obtaining less
information about a specified process.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-66

PROCESS_GETINFOLIST_ Procedure

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

#include <cextdecs(PROCESS_GETINFOLIST_)>

short PROCESS_GETINFOLIST_ ([short cpu] /* i 1 */
 ,[short *pin] /* i,o 2 */
 ,[char *nodename] /* i:i 3 */
 ,[short length] /* i:i 3 */
 ,[short *processhandle] /* i 4 */
 ,short *ret-attr-list /* i 5 */
 ,short ret-attr-count /* i 6 */
 ,short *ret-values-list /* o 7 */
 ,short ret-values-maxlen /* i 8 */
 ,short *ret-values-len /* o 9 */
 ,[short *error-detail] /* o 10 */
 ,[short srch-option] /* i 11 */
 ,[short *srch-attr-list] /* i 12 */
 ,[short srch-attr-count] /* i 13 */
 ,[short *srch-values-list] /* i 14 */
 ,[short srch-values-len] /* i 15 */
 ,{ __int32_t oss-pid]) ; /* i 16*/;

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-67

PROCESS_GETINFOLIST_ Procedure

• The parameter length specifies the length in bytes of the character string pointed
to by nodename. The parameters nodename and length must either both be
supplied or both be absent.

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the operation. It returns one of these values:

0 Information is returned for the specified process or processes; error-
detail contains the number of processes for which information has been
returned (might be more than one process if in search mode).

1 File-system error; error-detail contains the error number.

2 Parameter error; error-detail contains the number of the first parameter
found to be in error, where 1 designates the first parameter on the left. Note
that parameters are counted as in TAL; thus, nodename:length are
considered together as number 3, and processhandle is number 4.

3 Bounds error; error-detail contains the number of the first parameter
found to be in error, where 1 designates the first parameter on the left.

4 Specified process does not exist or does not meet search criteria. If search
criteria were specified, the information returned is for a process (or processes)

error := PROCESS_GETINFOLIST_ ([cpu] ! i 1 !
 ,[pin] ! i,o 2 !
 ,[nodename: length] ! i:i 3!
 ,[processhandle] ! i 4!
 , ret-attr-list ! i 5!
 , ret-attr-count ! i 6!
 , ret-values-list ! o 7!
 , ret-values-maxlen ! i 8!
 , ret-values-len ! o 9!
 ,[error-detail] ! o 10!
 ,[srch-option] ! i 11!
 ,[srch-attr-list] ! i 12!
 ,[srch-attr-count] ! i 13!
 ,[srch-values-list] ! i 14!
 ,[srch-values-len] ! i 15!
 ,[oss-pid]); ! i 16 !

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-68

PROCESS_GETINFOLIST_ Procedure

with a higher PIN; error-detail contains the number of processes for
which information has been returned (might be more than one process if in
search mode). If no search criteria were specified, no information was
returned and error-detail contains 0.

5 Unable to communicate with cpu; cpu might not exist.

6 Unable to communicate with nodename.

7 No more matches exist; error-detail contains the number of processes
for which information has been returned (might be 0).

8 (reserved)

9 Invalid search attribute code; error-detail contains the first code in
question to be detected (error-detail is not an index into a list).

10 Invalid search value; error-detail contains the associated attribute code
(not an index into a list).

11 Invalid return attribute code; error-detail contains the code in question
(error-detail is not an index into a list).

12 Invalid srch-option

14 Invalid auxiliary data size specification in an attribute code; error-detail
contains the attribute code.

15 An iterative attribute was not the last attribute in ret-attr-list; error-detail
contains the attribute code.

16 Attribute not permitted in a search request; error-detail contains the
attribute code.

17 Attribute restricted to privileged callers; error-detail contains the attribute
code.

cpu input

INT:value

if present and not -1, is the number of the processor of interest. cpu must be used
with pin.

cpu,pin, and optionally nodename:length, should be specified either when a
search is to be performed or when the caller is interested in a specific process but
does not know its process handle. If cpu and pin are specified, processhandle
must be omitted or null (-1 in each word) and oss-pid must be omitted or null (a
null OSS process ID is obtained by calling the OSS_PID_NULL_ procedure).

pin input,output

INT .EXT:ref:1

if present and not -1, contains either the PIN of the process of interest or the PIN of
the first process to be examined in a search. pin is required if cpu is specified.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-69

PROCESS_GETINFOLIST_ Procedure

If srch-option is omitted or 0, the caller is requesting information about process
pin.

If srch-option is 1 or 2, the caller wants to search the processes in cpu for
those that match a set of criteria (such as having a particular user ID and program
file name). In this case, pin is used to indicate where to begin searching, and is
usually set to 0 on the initial call. When the procedure returns, pin has been
updated to reflect the starting point for a subsequent call. pin is set to -1 if no
more matches would be found on a subsequent call.

nodename:length input:input

STRING .EXT:ref:*, INT:value

if present and length is not 0, specifies the name of the node on which cpu,pin
or oss-pid resides; this parameter cannot be used with processhandle. If
used, the value of nodename must be exactly length bytes long. If cpu and pin
are specified or oss-pid is specified but nodename:length is omitted or
length is 0, the local node is used.

If a remote node could be running an operating system version earlier than D30,
use the applicable attributes code (73) to determine which attribute code ranges
are defined for the calling process.

processhandle input

INT .EXT:ref:10

if present and not null, is an input parameter specifying the process handle of the
process of interest. The null process handle is one which has -1 in each word
(Refer to Guardian procedure call, PROCESSHANDLE_NULLIT_). However,
PROCESS_GETINFOLIST_ also treats a process handle with -1 in the first word
as a null process handle.

If a value is supplied for processhandle, then srch-option must be omitted or
0, nodename:length must be omitted or length must be 0, cpu and pin must
be omitted or -1, and oss-pid must be omitted or null (a null OSS process ID is
obtained by calling the OSS_PID_NULL_ procedure).

ret-attr-list input

INT .EXT:ref:*

is an array of INTs indicating the attributes, and any auxiliary data supplied with
auxilary data attributes, that are to have their values returned in
ret-values-list. See Attribute Codes and Value Representations on
page 12-75 for details on the attribute format. The attributes you can specify are
described in Table 12-2.

ret-attr-count input

INT:value

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-70

PROCESS_GETINFOLIST_ Procedure

indicates the number of 16-bit words the caller is supplying in ret-attr-list.
This number includes the attribute count and the word count for any auxiliary data
supplied with auxiliary data attributes. Valid values for the ret-attr-count
parameter are in the range 0 through 1024.

ret-values-list output

INT .EXT:ref:*

contains ret-values-len words of returned information. The values parallel the
items in ret-attr-list. For details, see Attribute Codes and Value
Representations on page 12-75. Each value begins on a word boundary. A
variable-length string, such as a file name, is represented by an INT value giving
the byte length of the string followed by the actual string. If a string is an odd
number of bytes in length, it is followed by an unused byte whose value is
indeterminate.

If srch-option indicates that information can be returned for multiple processes,
then the ret-values-list might contain information for more than one process.
The second process’s information starts at the first word boundary following the
last item of the first process’s information. The procedure returns as many
complete sets of values as will fit in the buffer; it does not return one or more
complete sets plus a partial set.

If the return values don’t fit in ret-values-list, the procedure returns an
error of 1 and an error-detail value of 563 (buffer too small); no process
information is returned.

Whenever srch-option is 1 or 2, the caller should either include the PIN (38) or
OSS process ID (90) attribute in the set of requested attributes in order to identify
the Guardian or OSS process associated with each set of returned values.

ret-values-maxlen input

INT:value

is the maximum length in words of ret-values-list. Valid values for the
ret-values-maxlen parameter are in the range 0 through 8192.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-71

PROCESS_GETINFOLIST_ Procedure

ret-values-len output

INT .EXT:ref:1

is the actual length in words of ret-values-list.

error-detail output

INT .EXT:ref:1

for some returned errors, contains additional information. See error, above.

srch-option input

INT:value

has one of these values:

0 Return information for only the process specified by [nodename,] cpu,pin or
by processhandle. You cannot specify oss-pid with this value. These
parameters are ignored when srch-option is set to 0: srch-attr-
list, srch-attr-count, srch-values-list, and srch-values-
len.

1 Start a search at [nodename,] cpu,pin and return information for the first
matching process. You cannot specify processhandle or oss-pid with
this value.

2 Start a search at [nodename,] cpu,pin and return information for as many
matching processes as will fit in ret-values-list. You cannot specify
processhandle or oss-pid with this value.

3 Return information for only the OSS process specified by
[nodename,] oss-pid. You cannot specify processhandle or
cpu,pin with this value. These parameters are ignored when srch-
option is set to 3: srch-attr-list, srch-attr-count, srch-
values-list, and srch-values-len.

The default is 0.

If you specify a value of 1 or 2 and an error of 0 or 4 is returned, information has
been returned for at least one process.

If you specify a value of 1 or 2 and an error of 7 (no more matches) is returned,
the search is complete; the value of error-detail indicates whether any
process information has been returned. If no process information has been
returned, the value of error-detail is 0 and the value of pin, if specified, is -1;
the values of all other output parameters are indeterminate.

srch-attr-list input

INT .EXT:ref:*

is an array of integer attribute codes specifying the items that are included in the
search criteria. This parameter must be supplied if srch-option is 1 or 2. This
parameter is ignored if srch-option is 0 or 3. For the list of valid codes, see
Attribute Codes and Value Representations on page 12-75.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-72

PROCESS_GETINFOLIST_ Procedure

srch-attr-count input

INT:value

is the number of entries in srch-attr-list. This parameter must be supplied if
srch-option is 1 or 2. This parameter is ignored if srch-option is 0 or 3.

srch-values-list input

INT .EXT:ref:*

is a list of the match values for the attributes in srch-attr-list. Its order must
exactly parallel the order of the attribute codes. The value representations are
described under Attribute Codes and Value Representations on page 12-75. Each
value begins on a word boundary. A variable-length string, such as a file name, is
represented by an INT value giving the byte length of the string followed by the
actual string. If a string is an odd number of bytes in length, it is padded with an
extra byte whose value is indeterminate.

This parameter must be present if srch-option is 1 or 2. This parameter is
ignored if srch-option is 0 or 3.

srch-values-len input

INT:value

if present, is the length in words of srch-values-list.

This parameter must be present if srch-option is 1 or 2. This parameter is
ignored if srch-option is 0 or 3.

oss-pid input

INT(32):value

if present and not null, contains the OSS process ID of the OSS process of
interest. A null OSS process ID is obtained by calling the OSS_PID_NULL_
procedure. nodename:length should be specified when the caller wants
information about an OSS process on a remote node. The attributes OSS
controlling terminal (27) and OSS program pathname (93) are valid only on the
local node.

If a value is supplied for oss-pid, then srch-option must be 3,
processhandle must be omitted or null (-1 in each word), and cpu and pin must
be omitted or -1. This parameter is ignored if srch-option is 0,1, or 2.

General Considerations

• All considerations listed under PROCESS_GETINFO_ also apply to
PROCESS_GETINFOLIST_.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-73

PROCESS_GETINFOLIST_ Procedure

• You must qualify any file names used as search attributes. If the process of
interest is located on a remote node, local-form file names are treated as local to
that node, not local to the caller’s node.

• All returned file names are fully qualified.

• When using PROCESS_GETINFOLIST_ procedure, if you want to get information
on every process in the processor, specify a search criteria that will find every
process. For example, specify Search Attribute Code 9 with 0 as the search value.
Information will be returned for all processes since all processes have a priority
that is greater than or equal to 0.

Auxiliary Data
Certain attributes require auxiliary data that provides additional information about the
attributes. This auxiliary data is provided by the caller and immediately follows the
attribute code in the ret-attr-list array. The word containing the attribute code
includes a field in which the caller specifies the length of the auxiliary data (see
Attribute Codes and Value Representations on page 12-75).

Note that if any auxiliary data is included in ret-attr-list, the ret-attr-count
parameter must include the word count for the auxiliary data.

Iterative Attributes
Iterative attributes are used to report information about multiple loadfiles. These
attributes return a variable length array describing object files loaded for the target
process. The iterative attributes perform an iterative query, in which multiple loadfiles
are queried. Each iteration is an invocation of PROCESS_GETINFOLIST_. Iteration is
controlled by a 64-bit context value that is input as auxiliary data in ret-attr-list
and returned in ret-values-list.

To start an iterative query, the caller initially sets the context value to zero. When the
query is complete, that is, all loadfiles requested by the attribute have been reported,
the returned context value is zero.

A nonzero returned context value indicates that the returned information has exceeded
the amount of available space specified by ret-values-list and
ret-values-maxlen. In this case, as much information as will fit in the space is
returned; the caller can then copy the returned context value into the attribute’s
auxiliary data and call PROCESS_GETINFOLIST_ to continue iterating.

An iterative attribute must be the last one in the attribute list. If it is not, an error is
reported. Iterative attributes cannot be used with srch-option 1 or 2.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-74

PROCESS_GETINFOLIST_ Procedure

Loadfile Types
Several attributes return information about loadfiles, including the loadfile type. The
loadfile type is indicated by a code having one of the values shown in this table:

Using the Loadfile Type Code Values
The type code value returned is one of the values 0 through 8 plus other values as
appropriate. Thus, for example, a DLL dynamically loaded into an OSS process would
have a type code value of 28936, broken down as follows:

28936 = 0x7108
= 8 (DLL)

Code ID suffix* Description

15 LTMASK Mask to isolate the loadfile type; one of the values 0
through 8, as follows:

0 ERROR Error (for example, no loadfile segment at the
specified address)

1 TNSUNAXLPRG Unaccelerated TNS program

2 TNSUNAXLUL Unaccelerated TNS user library

3 TNSAXCLPRG Accelerated TNS program

4 TNSAXCLUL Accelerated TNS user library

5 NOPICELFPRG Non-PIC ELF program

6 NOPICELFSRL Non-PIC ELF shared run-time library (SRL)

7 PICELFPRG PIC ELF program

8 PICELFDLL PIC ELF dynamic-link library (DLL)

768 LIBMASK Mask to isolate the next three values

256 PRIVATELIB Ordinary library (not a public or implicit library)

512 PUBLICLIB Public library (one of the set of installed public
libraries)

768 IMPLIB Implicit library

2048 OSIMAGE This object is included in OSIMAGE

4096 DYNAMIC This library was loaded dynamically

8192 OSSPROCESS This file was loaded in an OSS process, so its name is
in OSS format

16384 MAYSETBPT Privilege is not required to debug (set breakpoints in)
this file

* These constants are declared in DDL-based header files, including ZSYSC section
process_getinfolist_return, with identifiers ZSYS_VAL_PINF_TYPE_suffix and ZSYSTAL section
PROCESS^GETINFOLIST^RETURN with identifiers ZSYS^VAL^PINF^TYPE^suffix.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-75

PROCESS_GETINFOLIST_ Procedure

+ 256 (ordinary library)
+ 4096 (dynamically loaded)
+ 8192 (loaded in OSS process)
+ 16384 (OK to debug)

Attribute Codes and Value Representations
Each attribute code is contained in a 16-bit word defined as follows:

For attributes with no auxiliary data, the data length is 0.

The individual attribute codes and their associated value representations are shown in
Table 12-2 on page 12-75. The attribute codes are defined symbolically in ZSYSDDL.
For example, see section process_itemcodes in ZSYSC or PROCESS^ITEMCODES
in ZSYSTAL. (Comments in these files see the attribute codes as “item codes”.) These
files are distributed in an installation subvolume named ZSYSDEFS.

low-order 12 bits contains the attribute index

high-order 4 bits contains the length, in 16-bit words, of any auxiliary data

Table 12-2. PROCESS_GETINFOLIST_ Attribute Codes and Value
Representations (page 1 of 5)

Code Attribute TAL Value Representation

1*+ creator access ID INT

2*+ process access ID INT

3+^ maximum priority (search only) INT

4*+ Guardian program file INT bytelength, STRING

5*+ home terminal INT bytelength, STRING

6*+ gmom’s process handle INT (10 words)

7*+ jobid INT

8+ process subtype INT

9+^ minimum priority (search only) INT

10+ process state INT

11+ system process type INT (mask), INT (value)

12+^ earliest creation time
(search only)

FIXED

13+^ latest creation time
(search only)

FIXED

14+ lowered priority none (as a search attribute)
INT (as a return attribute)

* indicates that this attribute is also a parameter of PROCESS_GETINFO_
+ indicates that this attribute can be used as search attributes
& indicates that this attribute applies only to OSS processes
^ indicates that this attribute cannot be specified as a return attribute
@ indicates that this attribute requires auxiliary data.The data lengthn in the high-order 4 bits is shown as n<<12

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-76

PROCESS_GETINFOLIST_ Procedure

15+ process list INT

16-20 (reserved for future use)

21+ real group ID INT(32)

22+ real user ID INT(32)

23+ effective user ID INT(32)

24, 25 (reserved for future use)

26+& OSS session leader INT(32)

27+& OSS controlling terminal INT bytelength,
STRING <= 1024

28*+ process type INT

29 (reserved for future use)

30* process time FIXED

31 wait state INT

32 process state INT

33+ library file INT bytelength, STRING

34* swap file INT bytelength, STRING

35 context changes INT

36 DEFINE mode INT

37 licenses INT

38 PIN INT

39* file name INT bytelength, STRING

40* mom's process handle INT (10 words)

41 process file security INT

42* current priority INT

43 initial priority INT

44 remote creator INT

45 logged-on state INT

46 extended swap file INT bytelength, STRING

47 primary INT

48* process handle INT (10 words)

Table 12-2. PROCESS_GETINFOLIST_ Attribute Codes and Value
Representations (page 2 of 5)

Code Attribute TAL Value Representation

* indicates that this attribute is also a parameter of PROCESS_GETINFO_
+ indicates that this attribute can be used as search attributes
& indicates that this attribute applies only to OSS processes
^ indicates that this attribute cannot be specified as a return attribute
@ indicates that this attribute requires auxiliary data.The data lengthn in the high-order 4 bits is shown as n<<12

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-77

PROCESS_GETINFOLIST_ Procedure

49 qualifier info available INT

50 Safeguard-authenticated logon INT

51 force low INT

53 creation timestamp FIXED

54 current pages INT

55 messages sent INT(32)

56 messages received INT(32)

57 receive queue length INT

58 receive queue maximum length INT

59 page faults INT(32)

62 named INT

63 stop mode INT

64 stop request queue INT

65 mom’s file name INT bytelength, STRING

66 gmom’s file name INT bytelength, STRING

67 Safeguard-authenticated logoff
state

INT

68 inherited logon INT

69 stop on logoff INT

70 propagate logon INT

71 propagate stop-on-logoff INT

72 logon flags and states INT

73 applicable attributes INT

75 nice() function value INT(32)

76 process file segment (PFS) size
that is being used at a particular
time

INT(32)

77 maximum PFS size used INT(32)

80 effective group ID INT(32)

81 saved set-group-ID INT(32)

82 login name INT bytelength, STRING <= 32 chars

Table 12-2. PROCESS_GETINFOLIST_ Attribute Codes and Value
Representations (page 3 of 5)

Code Attribute TAL Value Representation

* indicates that this attribute is also a parameter of PROCESS_GETINFO_
+ indicates that this attribute can be used as search attributes
& indicates that this attribute applies only to OSS processes
^ indicates that this attribute cannot be specified as a return attribute
@ indicates that this attribute requires auxiliary data.The data lengthn in the high-order 4 bits is shown as n<<12

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-78

PROCESS_GETINFOLIST_ Procedure

83 group list INT n, INT(32) [0:n-1]

84 saved set-user-ID INT(32)

90*& OSS process ID INT(32)

91& OSS command INT bytelength, STRING <= 1024
chars

92& OSS arguments INT bytelength, STRING <= 1024
chars

93& OSS program pathname INT bytelength, STRING <= 1024
chars

94& OSS parent process ID INT(32)

95& OSS elapsed time INT(64)

96& OSS processor time INT(64)

97& OSS start time INT(64)

98 OSS group leader process ID INT(32)

99& OSS process status INT(32)

100 process file segment (PFS) size INT(32)

101 server class name INT bytelength, STRING

102 origin of main stack INT(32)

103 current main stack size INT(32)

104 maximum main stack size INT(32)

105 origin of the privileged stack INT(32)

106 current privileged stack size INT(32)

107 maximum privileged stack size INT(32)

108 start of global data INT(32)

109 size of global data INT(32)

110 start of native heap area INT(32)

111 current size of native heap area INT(32)

112 maximum size of native heap area INT(32)

113 guaranteed swap space INT(32)

115 Native shared run-time library:
buffer size required for attribute
116

INT

Table 12-2. PROCESS_GETINFOLIST_ Attribute Codes and Value
Representations (page 4 of 5)

Code Attribute TAL Value Representation

* indicates that this attribute is also a parameter of PROCESS_GETINFO_
+ indicates that this attribute can be used as search attributes
& indicates that this attribute applies only to OSS processes
^ indicates that this attribute cannot be specified as a return attribute
@ indicates that this attribute requires auxiliary data.The data lengthn in the high-order 4 bits is shown as n<<12

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-79

PROCESS_GETINFOLIST_ Procedure

Except for attributes 125 and 126, all file names that are specified as search
parameters are assumed to be sufficiently qualified and are not resolved against
defaults. They are interpreted relative to the node on which the search is to be
performed. For example, if a caller on node \A is inquiring about processes running on
\B that have a home terminal of \A.$TERM1, then the home terminal name in the
search list must be \A.$TERM1 rather than $TERM1.

File names that are in the returned values list are returned in fully qualified form.

• 1: creator access ID

116+ Native shared run-time library file-
name information (superseded by
121 and 125)

INT bytelength, STRING (as a search
attribute)
variable-length structure (as a return
attribute)

117 TNS/R native shared run-time
library: buffer size required for
attribute 118

INT

118 TNS/R native shared run-time
library name information (in a
variable-sized array)

INT number of names,
INT flags,
INT name length,
STRING name

119 process is TNS/R native INT

120 (reserved for privileged use)
121+(4<<12)@ program file and explicit library

information
variable-length structure

122+(4<<12)@ dynamically loaded library
information

variable-length structure

123 (reserved for future use)

123+(4<<12)@ implicit library variable-length structure

124+(4<<12)@ loadfile detail variable-length structure

125^+ processes that have loaded a
particular file, specified by
Guardian file name

INT bytelength, STRING

126^+ processes that have loaded a
particular file, specified by OSS
path name

INT bytelength, STRING

Table 12-2. PROCESS_GETINFOLIST_ Attribute Codes and Value
Representations (page 5 of 5)

Code Attribute TAL Value Representation

* indicates that this attribute is also a parameter of PROCESS_GETINFO_
+ indicates that this attribute can be used as search attributes
& indicates that this attribute applies only to OSS processes
^ indicates that this attribute cannot be specified as a return attribute
@ indicates that this attribute requires auxiliary data.The data lengthn in the high-order 4 bits is shown as n<<12

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-80

PROCESS_GETINFOLIST_ Procedure

See the creator-access-id parameter returned by the PROCESS_GETINFO_
procedure.

• 2: process access ID

See the process-access-id parameter returned by the
PROCESS_GETINFO_ procedure.

• 3: maximum priority

as a search attribute, specifies the maximum priority of interest. For example,
specifying a maximum priority of 199 includes all application processes in the
search.

Maximum priority cannot be specified as a return attribute code.

• 4: Guardian program file

See the program-file parameter returned by the PROCESS_GETINFO_
procedure.

• 5: home terminal

See the hometerm parameter returned by the PROCESS_GETINFO_ procedure.

• 6: gmom’s process handle

See the gmom's-processhandle parameter returned by the
PROCESS_GETINFO_ procedure.

• 7: job id

See the jobid parameter returned by the PROCESS_GETINFO_ procedure.

• 8: process subtype

as a search attribute, specifies the subtype of interest. On return, it contains the
subtype of the process.

For more information about process subtypes, see General Considerations on
page 12-43.

• 9: minimum priority

as a search attribute, specifies the minimum priority of interest. Minimum priority
cannot be specified as a return attribute code.

• 10: process state

as a search attribute, specifies the process state.

The bits are defined as follows:

<0:10> (reserved)

<11:15> The process state, where:

0 unallocated process

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-81

PROCESS_GETINFOLIST_ Procedure

1 starting
2 runnable (OSS process state equivalent is CONT)
3 suspended (OSS process state equivalent is STOP)
4 (reserved)
5 Debug breakpoint
6 Debug trap or signal
7 Debug request
8 Inspect memory-access breakpoint
9 Inspect breakpoint
10 Inspect trap or signal
11 Inspect request
12 saveabend
13 terminating
14 XIO initialization (not applicable on G-series RVUs)

The OSS zombie process state has no Guardian equivalent.

This attribute and the process state attribute (32) return the same information for
bits <11:15>.

• 11: system process type

as a search attribute, specifies a bit mask followed by a search value. The bit
mask indicates which flags are to be searched, and the search value indicates the
value of the flag to be searched. For example, to retrieve the I/O processes not
configured by Dynamic System Configuration (DSC) or the Subsystem Control
Facility (SCF), set bits 1 and 3 in the first word to 1, and in the second word, set bit
1 to 1 and bit 3 to 0.

The bits are defined as follows:

<0> System process: process is a system process.
<1> IOP. Process is an I/O process.
<2> (reserved)
<3> Device is dynamically configured.
<4> NONSTOPPROCESS: process is a privileged process that can be

stopped only by either process of the process pair.
<5:15> (reserved)

This attribute and the process state attribute (32) return the same information for
bit <0>.

• 12: earliest creation time

as a search attribute, specifies the earliest process-creation time (in Julian
timestamp format) of interest. This cannot be used as a search attribute if the
target system is running an operating system version earlier than D10.

Earliest creation time cannot be specified as a return attribute code.

• 13: latest creation time

as a search attribute, specifies the latest process-creation time (in Julian
timestamp format) of interest. This cannot be used as a search attribute if the
target system is running an operating system version earlier than D10.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-82

PROCESS_GETINFOLIST_ Procedure

Latest creation time cannot be specified as a return attribute code.

• 14: lowered priority

as a search attribute, specifies that only processes that are currently running at
reduced priority due to heavy processor use are of interest. This cannot be used
as a search attribute if the target system is running an operating system version
earlier than D10. Note that when this attribute is included in srch-attr-list,
there is no corresponding value in srch-values-list.

When used as a return attribute, lowered priority returns 0 if the process is not
currently running with its priority lowered or if the target system is running an
operating system version earlier than D10; it returns 1 if the process is currently
running at reduced priority due to heavy processor use.

• 15: process list

as a search attribute, specifies the process list that a process could be on. A
process cannot be on more than one process list at a time. The values are defined
as follows:

0 Process is not on any process list.
1 (reserved)
2 Process is on the ready list. The process is ready to run or is blocked from

running by a page fault. When used as a return attribute, this option returns
the same information as bit 2 of the process state attribute (32).

3 Privileged process is on the privileged semaphore list waiting for a system
semaphore.

4 Process is on the stop list waiting to be stopped.
5 Process is on the DMON list waiting for an Inspect request or waiting to create

a saveabend file.
6 Process is on the cleanup list waiting to clean up resources before deletion.
7 Process is on the binary semaphore list waiting for a binary semaphore.

• 21: real group ID

as a search attribute, specifies the real group ID.

When used as a return attribute, this attribute returns the real group ID of the
process.

The real group ID is a process attribute that, at the time of process creation,
identifies the group of the user who created the process. This value can change
during the process lifetime. The group ID is a nonnegative integer that is used to
identify a group of system users. Each system user is a member of at least one
group.

This attribute is undefined if the target system is running an operating system
version earlier than D30.

• 22: real user ID

as a search attribute, specifies the real user ID.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-83

PROCESS_GETINFOLIST_ Procedure

When used as a return attribute, this attribute returns the real user ID of the
process.

The real user ID is a process attribute that, at the time of process creation,
identifies the user who created the process. This value can change during the
process lifetime. The user ID is a nonnegative integer that is used to identify a
system user.

This attribute is undefined if the target system is running an operating system
version earlier than D30.

• 23: effective user ID

as a search attribute, specifies the effective user ID.

When used as a return attribute, this attribute returns the effective user ID of the
process.

The effective user ID is a process attribute used in determining access. This value
can change during the process lifetime. The user ID is a nonnegative integer that
is used to identify a system user. For logged-on processes, the effective user ID is
equivalent to the process access ID (PAID). For other processes, the effective
user ID is invalid and there is no PAID equivalent. The effective user ID
determines access to OSS disk files, and the PAID determines access to Guardian
disk files.

This attribute is undefined if the target system is running an operating system
version earlier than D30.

• 26: OSS process ID of the OSS session leader (OSS processes only)

as a search attribute, specifies the session leader.

When used as a return attribute, this attribute returns the session leader. The
session leader returned might identify a process that is no longer valid.

The session leader is an OSS process that has created a session. A session is a
collection of process groups established for job-control purposes. Each process
group is a member of a session. A process is considered to be a member of the
session of which its process group is a member. A newly created process joins the
session of its creator. A process can alter its session membership. There can be
multiple process groups in the same session.

This attribute is undefined if the target system is running an operating system
version earlier than D30.

• 27: OSS controlling terminal (OSS processes only)

as a search attribute, specifies the controlling terminal of an OSS process as an
OSS pathname. The controlling terminal is identified by a byte length followed by
a string. Unlike other attributes, the string must be null-terminated and the byte
length must not include the last null byte of the string. PROCESS_GETINFOLIST_
returns matching processes if the caller has the appropriate security. If the

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-84

PROCESS_GETINFOLIST_ Procedure

pathname is not fully qualified, it is resolved in the current working directory (cwd)
of the calling process. If it cannot be resolved, error 10 is returned.

When used as a return attribute, this attribute returns the controlling terminal of an
OSS process if the controlling terminal exists. The controlling terminal is returned
as a byte length followed by a string. Unlike the controlling terminal search
attribute, the return attribute string is not null-terminated. A byte length of 0 is
returned if either the controlling terminal does not exist, the calling process does
not have the appropriate security, or OSS is not running.

Each session can have at most one controlling terminal associated with it, and a
controlling terminal is associated with exactly one session.

This attribute applies only to OSS processes on the same node as the calling
process.

This attribute is undefined if the target system is running an operating system
version earlier than D30.

• 28: process type

as a search attribute, if 0, specifies a search for all matching processes. If 1, this
attribute specifies a search for matching OSS processes only. Note that attributes
26 and 27 search only for OSS processes regardless of the setting of this attribute.

When used as a return attribute, this attribute returns 0 if the process is a Guardian
process and 1 if the process is an OSS process. In this capacity, this attribute is
equivalent to the proc-type parameter of the PROCESS_GETINFO_ procedure.

This attribute is undefined if the target system is running an operating system
version earlier than D30.

• 30: process time

See the process-time parameter returned by the PROCESS_GETINFO_
procedure.

• 31: wait state

returns the wait field of the process indicating what, if anything, the process is
waiting on. The bits are defined as follows:

<0> Wait on LSIG staus
<1> Wait on LPIPE status
<2:7> (Reserved)
<8> Wait on PON (processor power on)
<9> Wait on IOPON (I/O power on)
<10> Wait on INTR (interrupt)
<11> Wait on LINSP (Inspect event)
<12> Wait on LCAN (message system: cancel)
<13> Wait on LDONE (message system: done)
<14> Wait on LTMF (TMF request)

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-85

PROCESS_GETINFOLIST_ Procedure

<15> Wait on LREQ (message system: request)

The bits in the wait field are numbered from left to right. Thus, if octal 3 (%003) is
returned, it means that bits 14 and 15 are equal to 1.

• 32: process state

returns the state of the process. The bits are defined as follows:

<0> Privileged process
<1> Process is waiting for memory manager service, probably for a page

fault.
<2> Process is on the ready list.
<3> System process
<4:5> (reserved)
<6> Memory access breakpoint in system code
<7> Process not accepting any messages
<8> Temporary system process
<9> Process has logged on (called USER_AUTHENTICATE_ or

VERIFYUSER).
<10> In a pending process state
<11:15> The process state, where:

0 unallocated process
1 starting
2 runnable (OSS process state equivalent is CONT)
3 suspended (OSS process state equivalent is STOP)
4 (reserved)
5 Debug breakpoint
6 Debug trap or signal
7 Debug request
8 Inspect memory-access breakpoint
9 Inspect breakpoint
10 Inspect trap or signal
11 Inspect request
12 saveabend
13 terminating
14 XIO initialization (not applicable on G-series RVUs)

The OSS zombie process state has no Guardian equivalent.

This attribute and the process list attribute (15) return the same information for bit
<2>. This attribute and the process state attribute (10) return the same information
for bits <11:15>.

• 33: library file

as a search attribute, specifies either a native user library file or a TNS user library
file, and searches for the processes that are using it as a library.

When used as a return attribute, the library file attribute returns the name of the
library file used by the process. If the process does not have an associated library
file, a length of 0 is returned.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-86

PROCESS_GETINFOLIST_ Procedure

Library file name length of 0 can also be returned if the process is in the starting or
terminating stage, or, if its program file or libraries are being loaded by RLD.

• 34: swap file

See the swap-file parameter returned by the PROCESS_GETINFO_
procedure.

• 35: context changes

returns the number of changes made to the DEFINE process context since
process creation, modulo 65536.

Each process has an associated count of the changes to its context. This count is
incremented each time the procedures DEFINEADD, DEFINEDELETE,
DEFINESETMODE, and DEFINEDELETEALL are invoked and a consequent
change to the process context occurs. In the case of DEFINEDELETE and
DEFINEDELETEALL, the count is incremented by one even if more than one
DEFINE is deleted. The count is also incremented if the DEFINE mode of the
process is changed. If a call to CHECKDEFINE causes a DEFINE in the backup
process to be altered, deleted, or added, the count for the backup process is
incremented. This count is 0 for newly created processes; new processes do not
inherit the count of their creators.

• 36: DEFINE mode

returns 0 in bits <14:15> if DEFINEs are disabled; returns 1 if DEFINEs are
enabled.

Bits <0:13> are reserved and should not be assumed to contain 0.

• 37: licenses

returns 0 in bit 15 if the program file of the process was not licensed when the
process was created; returns 1 if the program file of the process was licensed
when the process was created.

Bits <0:14> are reserved and should not be assumed to contain 0.

• 38: PIN

returns the PIN of the process whose attributes are being returned. This attribute
should be specified whenever srch-option is not 0.

• 39: file name

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-87

PROCESS_GETINFOLIST_ Procedure

See the proc-fname parameter returned by the PROCESS_GETINFO_
procedure.

• 40: mom’s process handle

See the mom's-processhandle parameter returned by the
PROCESS_GETINFO_ procedure.

• 41: process file security

returns the current default process file security setting. The security bits are as
follows:

<0:3> 0
<4:6> ID code allowed for read
<7:9> ID code allowed for write
<10:12> ID code allowed for execute
<13:15> ID code allowed for purge

ID code can be one of these:

0 Any user (local)
1 Member of owner's group (local)
2 Owner (local)
4 Any user (local or remote)
5 Member of owner's community (local or remote)
6 Owner (local or remote)
7 Super ID only (local)

• 42: current priority

See the priority parameter returned by the PROCESS_GETINFO_ procedure.

• 43: initial priority

returns the initial execution priority. If the priority has been changed by a call to
PROCESS_SETINFO_ , PRIORITY, or ALTERPRIORITY, this attribute returns the
new value.

• 44: remote creator

returns 1 if the creator of the process was remote, 0 if local.

• 45: logged-on state

returns 1 in bit <15> if the process is logged on, 0 if not.

Bits <0:14> are reserved and should not be assumed to contain 0.

• 46: extended swap file

returns the name of the swap file for the selectable segment that is currently in
use.

If the process is in the starting or terminating stage, or, if its program file or libraries
are being loaded by RLD, then a file name length of 0 is returned.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-88

PROCESS_GETINFOLIST_ Procedure

• 47: primary

returns 1 if the process is the current primary of a named process pair, 0 otherwise.

• 48: process handle

returns the process handle of the process of interest.

• 49: qualifier info available

returns 1 if the process has called PROCESS_SETINFO_ to declare that it
supports qualifier name searches by the file name inquiry procedures.

This always returns 0 if the process of interest is unnamed.

• 50: Safeguard-authenticated logon

returns 1 if a Safeguard-authenticated logon has taken place (that is, if the process
was started after successfully logging on a through terminal owned by
Safeguard), 0 otherwise.

• 51: force low

returns 1 if the process has the inherited force-low attribute set, 0 otherwise. See
the description of the create-options parameter of PROCESS_CREATE_ for
details.

• 53: creation timestamp

returns the Julian timestamp that identifies the time when the process was created.
If the target system is running an operating system version earlier than D10, 0F is
returned.

• 54: current pages

returns the number of memory pages that have been swapped in by the process
and are still resident.

• 55: messages sent

in G-series systems, returns the number of messages sent by this process since
the Measure product started collecting statistics on the process. If the Measure
product is not collecting statistics on the process, -1D is returned. In H-series
systems, returns the number of messages sent by this process, regardless of
whether or not you are using Measure.

• 56: messages received

in G-series systems, returns the number of messages received by this process
since the Measure product started collecting statistics on the process. If the
Measure product is not collecting statistics on the process, -1D is returned. In H-
series systems, returns the number of messages received by this process,
regardless of whether or not you are using Measure.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-89

PROCESS_GETINFOLIST_ Procedure

• 57: receive queue length

in G-series systems, returns the number of messages currently on the process
receive queue. In H-series systems, returns the number of messages currently on
the process receive queue, regardless of whether or not you are using Measure.

• 58: receive queue maximum length

returns the maximum number of messages that have been on the process receive
queue at any time since the Measure product started collecting statistics on the
process. If the Measure product is not collecting statistics on the process, -1 is
returned. This value is no longer valid in H-series systems.

• 59: page faults

in G-series systems, returns the number of page faults for this process since the
Measure product started collecting statistics on the process. If the Measure
product is not collecting statistics on the process, -1D is returned. In H-series
systems, returns the number of page faults for this process regardless of whether
or not you are using Measure.

• 62: named

returns 1 if the process is named, 0 otherwise.

• 63: stop mode

returns the stop mode. For more information on the stop mode, see SETSTOP
Procedure. The return values are defined as follows:

0 Any other process can stop the process.
1 Only qualified processes can stop the process.
2 No other process can stop the process.

• 64: stop request queue

returns the status of a stop request on the queue. For more information on the
stop request queue, see PROCESS_STOP_ Procedure. The return values are
defined as follows:

0 A stop request is not queued.

1 A stop request has not passed the security checks and the process is running
at stop mode 1 or 2. The stop request is queued pending the reduction of the
stop mode to 0.

2 A stop request has passed the security checks but the process is running at
stop mode 2. The stop request is queued pending the reduction of the stop
mode to 1.

• 65: mom’s file name

returns the program file name of the mom of the process.

• 66: gmom’s file name

returns the program file name of the job ancestor of the process.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-90

PROCESS_GETINFOLIST_ Procedure

• 67: Safeguard-authenticated logoff state

returns 1 in bit <15> if the Safeguard-authenticated logon flag is set but the
process has logged off, 0 otherwise.

Bits <0:14> are reserved and should not be assumed to contain 0.

• 68: inherited logon

returns 1 if the logon was inherited by the process, 0 otherwise.

• 69: stop on logoff

returns 1 if the process is to be stopped when it requests to be placed in the
logged-off state, 0 otherwise.

• 70: propagate logon

returns 1 if the process’s local descendants are to be created with the inherited-
logon flag set, 0 otherwise.

• 71: propagate stop-on-logoff

returns 1 if the process’s local descendants are to be created with the stop-on-
logoff flag set, 0 otherwise.

• 72: logon flags and states

returns current settings of all the logon flags and state indicators. The bits are
defined as follows:

<0:8> (reserved)
<9> Propagate stop-on-logoff
<10> Propagate logon
<11> Stop on logoff
<12> Inherited logon
<13> Safeguard-authenticated logoff
<14> Safeguard-authenticated logon
<15> Logged-on state

• 73: applicable attributes

returns the attribute types that are defined for the calling process. OSS attributes
are 26, 27, and 90 through 99. Guardian extended attributes are 21 through 23,
and 80 through 84. The return value of an undefined attribute is also undefined.
The bits are defined as follows:

<0:13> (reserved)
<14> The process type, where:

0 Guardian process. Return values for OSS attributes are
undefined.
1 OSS process. Return values for OSS attributes are defined.

<15> The Guardian extended attributes, where:

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-91

PROCESS_GETINFOLIST_ Procedure

0 No Guardian extended attributes. The target system is running an
operating system version earlier than D30. Return values for
Guardian extended attributes are undefined.

1 Guardian Extended attributes. The target system is running RVU
D30 or later. Return values for Guardian extended attributes are
defined.

• 76: process file segment (PFS) in use

returns the size of the process file segment (in bytes) that is being used when the
call was made.

• 77: maximum process file segment (PFS) used

returns the maximum size of the process file segment (in bytes) that had ever been
used at any time the call was made.

• 80: effective group ID

returns the effective group ID. The effective group ID is a process attribute used in
determining access. This value can change during the process lifetime. The
group ID is a nonnegative integer that is used to identify a group of system users.
Each system user is a member of at least one group.

This attribute is undefined if the target system is running an operating system
version earlier than D30.

• 81: saved set-group-ID

returns the saved set-group-ID. The saved set-group-ID is a process attribute that
allows some flexibility in the assignment of the effective group ID attribute.

This attribute is undefined if the target system is running an operating system
version earlier than D30.

• 82: login name

returns the login name. The login name is either the alias name if the user was
authenticated using an alias or <group>.<user> if the user was authenticated
using a user ID. A byte length of 0 is returned if the process (or the process that
created the target process) did not log in, or if the target process is created using
an operating system version earlier than D30.

This attribute is undefined if the target system is running an operating system
version earlier than D30.

• 83: group list

returns the number of groups the user belongs to followed by the group ID of each
group.

This attribute is undefined if the target system is running an operating system
version earlier than D30.

• 84: saved set-user-ID

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-92

PROCESS_GETINFOLIST_ Procedure

returns the saved set-user-ID. The saved set-user-ID is a process attribute that
allows some flexibility in the assignment of the effective user ID attribute.

This attribute is undefined if the target system is running an operating system
version earlier than D30.

• 90: OSS process ID (OSS processes only)

See the oss-pid parameter returned by the PROCESS_GETINFO_ procedure.

• 91: OSS command (OSS processes only)

returns the first 1024 bytes of the OSS command that created the process. A byte
length of 0 is returned if the process is not an OSS process.

This attribute is undefined if the target system is running an operating system
version earlier than D30.

• 92: OSS arguments (OSS processes only)

returns the first 1024 bytes of the arguments of the command that created the
process. Arguments in the returned string are separated by a space. A byte
length of 0 is returned if the process is not an OSS process.

This attribute is undefined if the target system is running an operating system
version earlier than D30.

• 93: OSS program pathname (OSS processes only)

Returns the fully qualified OSS program pathname of an OSS program. This OSS
attribute is the OSS equivalent of the Guardian program file attribute (4). A byte
length of 0 is returned if either the calling process does not have the appropriate
security, OSS is not running, or a program pathname on a remote node is
requested.

This attribute applies only to OSS processes on the same node as the calling
process.

This attribute is undefined if the target system is running an operating system
version earlier than D30.

• 94: OSS parent process ID (OSS processes only)

returns the OSS process ID of the OSS parent process; otherwise it returns the
null OSS process ID (a null OSS process ID is obtained by calling the
OSS_PID_NULL_ procedure). The OSS parent process ID might identify a
process that is no longer active.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-93

PROCESS_GETINFOLIST_ Procedure

The OSS parent process ID is an attribute of a new process identifying the parent
of the process. The parent process ID of a process is the process ID of its creator,
for the lifetime of the creator.

This attribute is undefined if the target system is running an operating system
version earlier than D30.

• 95: OSS elapsed time (OSS processes only)

returns the elapsed time in microseconds since the OSS process was created; it
returns 0 if the process is not an OSS process. This value is equal to the value
returned by the OSS times() function. Note that this value is not the same as
the value of the process-time parameter of the PROCESS_GETINFO_
procedure or the process time attribute (30) of this procedure.

This attribute is undefined if the target system is running an operating system
version earlier than D30.

• 96: OSS processor time (OSS processes only)

returns the processor time of the OSS process ID in microseconds; it returns 0 if
the process is not an OSS process. This value is equal to the system time
(tms_stime) plus the user time (tms_utime) returned by the OSS times()
function.

This attribute is undefined if the target system is running an operating system
version earlier than D30.

• 97: OSS start time (OSS processes only)

returns the time elapsed in microseconds between the value of the OSS TZ
environment variable and the time that the OSS process was started; it returns 0 if
the process is not an OSS process. The TZ environment variable is usually
equivalent to the system load time.

This attribute is undefined if the target system is running an operating system
version earlier than D30.

• 98: OSS process group leader process ID (OSS processes only)

returns the OSS process ID of the OSS process group leader; otherwise, it returns
the null OSS process ID (a null OSS process ID is obtained by calling the
OSS_PID_NULL_ procedure). The OSS group leader process ID might identify a
process that is no longer active.

This attribute is undefined if the target system is running an operating system
version earlier than D30.

• 99: process status (OSS processes only)

returns the state of the OSS process. The bits are defined as follows:

<0:29> (reserved)
<30> If 1, process is a session leader.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-94

PROCESS_GETINFOLIST_ Procedure

<31> If 1, process is a group leader.

This attribute is undefined if the target system is running an operating system
version earlier than D30.

• 100: process file segment (PFS) size

returns the size of the process file segment (PFS) in bytes.

• 101: server class name

this attribute currently does not return any valid value and should not be used.

• 102: origin of main stack

returns the address of the origin of the main stack.

NIL is returned if the target system is running an operating system version earlier
than D40.

• 103: current main stack size

returns the current main stack size in bytes.

0D is returned if the target system is running an operating system version earlier
than D40.

• 104: maximum main stack size

returns the maximum size, in bytes, to which the main stack can grow.

0D is returned if the target system is running an operating system version earlier
than D40.

• 105: origin of the privileged stack

returns the address of the origin of the privileged stack.

NIL is returned if the target system is running an operating system version earlier
than D40.

• 106: current privileged stack size

returns the current privileged stack size in bytes.

0D is returned if the target system is running an operating system version earlier
than D40.

• 107: maximum privileged stack size

returns the maximum privileged stack size in bytes.

0D is returned if the target system is running an operating system version earlier
than D40.

• 108: start of global data

returns the address of the start of global data.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-95

PROCESS_GETINFOLIST_ Procedure

NIL is returned if the target system is running an operating system version earlier
than D40.

• 109: size of global data

returns the size of global data in bytes.

0D is returned if the target system is running an operating system version earlier
than D40.

• 110: start of native heap area

returns the address of the start of the native heap area in bytes.

NIL is returned if the target system is running an operating system version earlier
than D40.

• 111: current size of native heap area

returns the current size of the native heap area in bytes.

0D is returned if the target system is running an operating system version earlier
than D40.

• 112: maximum size of native heap area

returns the maximum size, in bytes, to which the native heap area can grow.

0D is returned if the target system is running an operating system version earlier
than D40.

• 113: guaranteed swap space

returns the amount of swap space reserved for use by the process in bytes.

0D is returned if the target system is running an operating system version earlier
than D40.

• 115: Native shared run-time library: buffer size required for attribute 116

returns the size of the buffer, in bytes, for the array returned in attribute 116. 0 is
returned if the process does not use native shared run-time libraries.

• 116: Native shared run-time library file-name information

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-96

PROCESS_GETINFOLIST_ Procedure

returns information on native shared run-time library file names used by the
process in this variable-sized array:

Similar information about SRLs is returned, in a different format, by attribute 121,
which reports all the object files loaded in the process, not just SRLs.

As a search attribute, this attribute finds processes that have loaded a particular
SRL. The Guardian file name must be specified in srch-values-list.

Attribute 125 can perform the same search and is more efficient.

This attribute cannot be used in the same srch-attr-list as 125 or 126.

• 117: Native shared run-time library: buffer size required for attribute 118

returns the size of the buffer, in bytes, for the array returned in attribute 118. 0 is
returned if the process does not use native shared run-time libraries.

TAL Value
Representation Description

INT Number of file names returned. This value indicates how
many triplets of INT, INT, and STRING, as listed below,
follow this value.

INT Flag values indicate:
0 native private shared run-time library (SRL)
1 native public shared run-time library (SRL)
2 native user library shared run-time library (SRL)

INT Length of file name.

STRING File name. (The returned string is padded if necessary so
that the next attribute returned will begin on an even-byte
boundary. The padding is not counted in the reported file
name length.)

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-97

PROCESS_GETINFOLIST_ Procedure

• 118: Native shared run-time library name information

returns information about native shared run-time library names used by the
process in this variable-sized array:

• 119: process is native

returns 1 if the process is a native process; 0 otherwise.

• 121: program file and explicit library information

returns information about the program file, SRLs, DLLs, and any user library. It
does not report implicit libraries. This is an iterative attribute that requires auxiliary
data: ret-attr-list must specify the attribute code followed by an eight-byte
context value as auxiliary data. The attribute code must include the length
indication, so its value is 16505 or (4<<12)+121. This attribute code and its
auxiliary data must be the last elements in ret-attr-list. Initially, the context
value must be zero; on subsequent iterations, it must be a copy of the nonzero
context returned in ret-values-list by the previous iteration. See Auxiliary
Data and Iterative Attributes on page 12-73.

This attribute returns this information in a variable-length array:

TAL Value
Representation Description

INT Number of names returned. This value indicates how many
triplets of INT, INT, and STRING, as listed below, follow this
value.

INT Flag values indicate:
0 native private shared run-time library (SRL)
1 native public shared run-time library (SRL)
2 native user library shared run-time library (SRL)

INT Length of name.

STRING Name. (The returned string is padded if necessary so that
the next attribute returned begins on an even-byte boundary.
The padding is not counted in the reported file name length.)

TAL Value
Representation Description

INT Number of loadfiles reported

INT(64) Context value

Loadfile information array consisting of four values for each
loadfile reported (see following description)

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-98

PROCESS_GETINFOLIST_ Procedure

The loadfile information array contains these entries for each loadfile reported:

Result value for TAL programs:

For TAL programs, the result value is an instance of
ZSYS^PINF^LOADFILE^INFO^DEF, in which the final member
(Z^PARTIAL^INFO) is an array occurring the number of times specified in the first
member (Z^INFONUMRET). These structures are declared in ZSYSTAL section
PROCESS^GETINFOLIST^RETURN.

Result value for C programs:

For C programs, the result value is an instance of
zsys_pinf_loadfile_info_def, in which the final member
(z_partial_info, of type zsys_pinf_loadfile_partial_def_ is an array
occurring the number of times specified in the first member (z_infonumret).
These structures are declared in ZSYSC section
process_getinfolist_return.

This attribute cannot be specified with a srch-option of 1 or 2.

Additional information about individual loadfiles can be obtained by using attribute
124.

• 122: dynamically loaded library information

This attribute returns information about SRLs and DLLs that were loaded
dynamically into the process. This attribute returns a subset of the information
returned by attribute 121, in the same format and using the same interation
paradigm. The ret-attr-list must specify the attribute code followed by an
eight-byte context value as auxiliary data. The attribute code must include the
length indication, so its value is 16506 or (4<<12)+122.

This attribute cannot be specified with a srch-option of 1 or 2.

• 123: implicit library information

On a TNS/E system, this attribute returns information about the implicit DLLs. The
information is in the same format and use the same iteration paradigm as attribute
index 121 (but because the number of implict DLLs is limited, iteration is seldom
necessary). The _ret-attr-list_ must specify the attribute code followed by
an eight-byte context value as auxiliary data. The attribute code must include the
length indication, so its value is 16507 or (4<<12)+123.

TAL Value
Representation Description

INT(64) Address of text header

INT(64) Creation volume sequence number of loadfile

INT(32) Logical device number of loadfile

INT(32) Loadfile type indicator (see Loadfile Types on page 12-74)

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-99

PROCESS_GETINFOLIST_ Procedure

On a TNS/R system, this attribute returns ten bytes of zero, so the number of
loadfiles reported and the context are zero. On a TNS/R system, this attribute
returns ten bytes of zero, so the number of loadfiles reported and the context are
zero.

The attribute cannot be specified with a _srch-option_ of 1 or 2.

• 124: loadfile detail

This attribute returns information about a specified loadfile. This attribute requires
auxiliary data: ret-attr-list must specify the attribute code followed by an
eight-byte context value as auxiliary data. The attribute code must include the
length indication, so its value is 16508 or (4<<12)+124 (right-justified in 64 bits).
To retrieve information about any loadfile in the target process, specify an address
within the loadfile’s text segment as auxiliary data (see Auxiliary Data on
page 12-73).

This attribute can be used to retrieve information about individual loadfiles reported
by attributes 121 and 122, by specifying the reported text header address as
auxiliary data.

This information is returned:

Result value for TAL programs:

For TAL programs, the result value is an instance of
ZSYS^PINF^LOADFILE^DETAIL^DEF. This structure is declared in ZSYSTAL
section PROCESS^GETINFOLIST^RETURN.

TAL Value
Representation Description

INT(64) Address of text header (combined text segment on native
systems)

INT(64) Creation volume sequence number of loadfile

INT(32) Logical device number of loadfile

INT(32) Loadfile type indicator (see Loadfile Types on page 12-74)

INT(64) Address of text code segment (0 on native systems)

INT(64) Address of data constant segment (0 on native systems)

INT(64) Address of data variable segment (combined data segment
on native systems; 0 if the loadfile has no data)

INT File name length

STRING File name (Guardian name or, for OSS processes, full path
name)

The returned string is padded if necessary so that the next
attribute returned will begin on an even-byte boundary. The
padding is not counted in the reported file name length.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-100

PROCESS_GETINFOLIST_ Procedure

Result value for C programs:

For C programs, the result value is an instance of
zsys_pinf_loadfile_detail_def. This structure is declared in ZSYSC
section process_getinfolist_return.

This attribute cannot be specified with a srch-option of 1 or 2.

• 125: processes that have loaded the specified Guardian loadfile

This is a search-only attribute used to find processes that have loaded a particular
loadfile. The Guardian file name must be specified in srch-values-list. If the
file name is not fully qualified, the current =_DEFAULTS DEFINE is used to specify
the omitted system, volume, and subvolume. To search for a file on another
system, the resulting qualified file name and the nodename parameter must
specify the same system.

This attribute cannot be used in the same srch-attr-list as 116 or 126.

• 126: processes that have loaded the specified OSS loadfile

This is a search-only attribute used to find processes that have loaded a particular
loadfile. The OSS path name must be specified in srch-values-list. If the
path name is not absolute, it is applied to the current directory (CWD). To search
for a file on another system, either the specified path name or the CWD must
contain the system name (for example, /E/sierra), and the nodename
parameter must specify the same system.

This attribute cannot be used in the same srch-attr-list as 116 or 125.

OSS Considerations

• The PROCESS_GETINFOLIST_ procedure returns as many complete sets of
values as will fit in the ret-values-list buffer; it returns no partial sets. In
particular, the OSS attributes OSS controlling terminal (27) and OSS program
pathname (93) can return large amounts of information. The ret-values-list
buffer must be large enough to accommodate all the information requested.

• To retrieve the corresponding process handle of an OSS process ID, specify the
desired OSS process ID in the oss-pid parameter, specify the process handle
attribute code (48) in the ret-attr-list parameter, and search for only the
specified OSS process ID by setting the srch-option parameter to 3. Note that
an OSS process can use a number of process handles during its lifetime.

• The OSS CONT process state is equivalent to the Guardian runnable process
state. The OSS STOP process state is equivalent to the Guardian suspend
process state. The OSS zombie process state has no Guardian equivalent.

• The OSS attributes OSS controlling terminal (27) and OSS program pathname (93)
can be used only on the local node. For these attributes, either specify the local
node in the nodename:length parameter, set length to 0, or omit the
parameter.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-101

PROCESS_GETPAIRINFO_ Procedure

Example
attr^list := 8; ! get subdevice type only
attr^count := 1;
ret^vals^maxlen := 1;

error := PROCESS_GETINFOLIST_ (, , , prochandle, attr^list,
 attr^count, ret^vals^list,
 ret^val^maxlen, ret^val^length);

Related Programming Manual
For programming information about the PROCESS_GETINFOLIST_ procedure, see
the Guardian Programmer’s Guide.

PROCESS_GETPAIRINFO_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The PROCESS_GETPAIRINFO_ procedure obtains basic information about a named
process or process pair. You can specify the named process or process pair that you
want information about in one of several ways:

• Supply a process handle in the processhandle parameter. For a process pair,
supply the process handle of either the primary or backup process.

• Supply a process file name in the pair:maxlen parameter.

• Perform an indexed search of the named processes on a system by supplying an
initial value for the search-index parameter and making repeated calls. See
“Considerations” for details.

To obtain additional information about a named or unnamed process, call either the
PROCESS_GETINFO_ or PROCESS_GETINFOLIST_ procedure.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-102

PROCESS_GETPAIRINFO_ Procedure

Syntax for C Programmers

• The parameter maxlen specifies the maximum length in bytes of the character
string pointed to by pair, the actual length of which is returned by pair-length.
All three of these parameters must either be supplied or be absent.

• The parameter length specifies the length in bytes of the character string pointed
to by search-nodename. The parameters search-nodename and length
must either both be supplied or both be absent.

Note. In the TNS/E environment the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(PROCESS_GETPAIRINFO_)>

short PROCESS_GETPAIRINFO_ ([short *processhandle] /*i 1*/
 ,[char *pair] /* i,o:i 2*/
 ,[short maxlen] /* i,o:i 2*/
 ,[short *pair-length] /* o 3*/
 ,[short *primary-processhandle]/ * o 4*/
 ,[short *backup-processhandle] /* o 5*/
 ,[__int32_t *search-index] /* i, o 6*/
 ,[short *ancst-processhandle] /* o 7*/
 ,[const char *search-nodename /* i:i 8*/
 ,[short length] /* i:i 8*/
 ,[short options] /* i,i 9*/
 ,[char * ancst] /* i,o:i10*/
 ,[short maxlen] /*i,o:i 10*/
 ,[short * ancst-length] /* o 11*/
 ,[short * error-detail]); /*o 12*/

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-103

PROCESS_GETPAIRINFO_ Procedure

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the operation. It returns one of these values:

0 Information is returned for a process pair (not the calling process).

2 Parameter error; error-detail contains the number of the first parameter
found to be in error, where 1 designates the leftmost parameter.

3 Bounds error; error-detail contains the number of the first parameter
found to be in error, where 1 designates the leftmost parameter.

4 Information is returned for a single named process (can be the calling
process).

5 Information is returned for a process pair where the caller is the current
primary.

6 Information is returned for a process pair where the caller is the current
backup.

7 No information is returned; process is unnamed (can be the calling process).

8 No information is returned; search is complete.

9 Specified process does not exist.

10 Unable to communicate with the node where the process resides.

11 Process is an I/O process, but the option to allow I/O processes was not
selected.

error := PROCESS_GETPAIRINFO_ (
 [processhandle] !i 1 !
 ,[pair: maxlen] !i,o:i 2 !
 ,[pair-length] !o 3 !
 ,[primary-processhandle] !o 4 !
 ,[backup-processhandle] !o 5 !
 ,[search-index] !i,o 6 !
 ,[ancst-processhandle] !o 7 !
 ,[search-nodename: length] !i:i 8 !
 ,[options] !i 9 !
 ,[ancst: maxlen] !i,o:i10 !
 ,[ancst-length] !o 11 !
 ,[error-detail]); !o 12 !

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-104

PROCESS_GETPAIRINFO_ Procedure

13 Limited information is returned for a named process that is not started, but the
process name is reserved.

processhandle input

INT .EXT:ref:10

if supplied, is a process handle specifying the process of interest. You can specify
either the primary or backup process when seeking information about a process
pair. processhandle is ignored if the search-index parameter is present.

If processhandle is omitted or null and search-index is not present:

• If pair:maxlen is present, it specifies the process or process pair of interest.

• If pair:maxlen is not present, information is returned for the caller or the
process pair to which the caller belongs.

The null process handle is one which has -1 in each word (Refer to Guardian
procedure call, PROCESSHANLDE_NULLIT_). However,
PROCESS_GETPAIRINFO_ also treats a process handle with -1 in the first word
as a null process handle.

pair:maxlen input, output:input

STRING .EXT:ref:*, INT:value

if present and if maxlen is not 0, supplies or returns the process file name of the
process or process pair of interest.

The presence or absence of the parameters processhandle and search-
index determine whether pair is an output parameter or an input parameter as
follows:

If pair is an output parameter:

• maxlen specifies the length of the string variable pair.

• These table describes how pair is returned:

If pair is an input parameter:

• maxlen specifies the length in bytes of the value supplied in pair.

• If pair is a partially qualified process name, the process name is resolved
using the node name specified in the caller’s =_DEFAULTS DEFINE. To
resolve the process name using the caller’s node name, specify bit 14 of the
options parameter. To search for a process on a remote node, fully qualify
the process name.

named process that is not started name in the form
\node.$name
(no sequence number is
returned)

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-105

PROCESS_GETPAIRINFO_ Procedure

• If pair is the name of a named process that is not started, it cannot contain a
sequence number.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-106

PROCESS_GETPAIRINFO_ Procedure

pair-length output

INT .EXT:ref:1

if pair:maxlen is an output parameter, contains the length in bytes of the value
returned in pair.

primary-processhandle output

INT .EXT:ref:10

returns the process handle of the primary process of a named process pair or (if
the specified process is a single named process) the process handle of a single
named process.

If the process is a named process that is not started, a null process handle (-1 in
each word) is returned. This procedure can return information on named
processes that are not running if bit 13 of the options parameter is set to 1.

backup-processhandle output

INT .EXT:ref:10

returns the process handle of the backup process of a named process pair.

If there is no backup process, a null process handle (-1 in each word) is returned.

search-index input, output

INT(32) .EXT:ref:1

if present and not -1D, serves as an index for searching through the named
processes on a system. To use search-index, initialize it to 0D before issuing
the first call to PROCESS_GETPAIRINFO_ ; then issue repeated calls until an
error value of 8 (no more names) is returned. Do not alter search-index
between calls.

See “Considerations” for details.

ancst-processhandle output

INT .EXT:ref:10

returns the process handle of the ancestor of the specified process or process pair.

If the process or process pair does not have an ancestor, a null process handle (-1
in each word) is returned.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-107

PROCESS_GETPAIRINFO_ Procedure

search-nodename:length input:input

STRING .EXT:ref:*, INT:value

if length is not 0 and search-index is present, specifies the name of the node
on which the search is to take place. PROCESS_GETPAIRINFO_ uses search-
nodename to determine the node to search on each call, so its contents should not
be altered between calls. The value of search-nodename must be exactly
length bytes long and must be a valid node name.

options input

INT:value

specifies one or more options for the call as follows:

<0:12> Reserved (specify 0)

<13> 0 Return information only for running processes.

1 Also return information for named processes that are not started, but
the process names are reserved.

<14> 0 Resolve a partially qualified process name in pair using the caller’s
=_DEFAULTS DEFINE.

1 Resolve a partially qualified process name in pair using the caller’s
node.

<15> 0 Return information only for named processes.

1 Also return information for I/O processes (that is, processes controlling
devices or volumes). To return information on I/O processes that are
not started, also set options .<13> to 1.

If this parameter is omitted, 0 is used.

ancst:maxlen input,output:input

STRING .EXT:ref:*, INT:value

if present and if maxlen is not 0, returns the process file name of the ancestor of
the specified process or process pair. The maxlen parameter specifies the length
in bytes of the string variable ancst.

ancst-length output

INT .EXT:ref:1

if ancst is returned, contains its actual length in bytes.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-108

PROCESS_GETPAIRINFO_ Procedure

error-detail output

INT .EXT:ref:1

returns additional information about some classes of errors. See the list under
error for details.

Considerations

• To perform an indexed search, initialize search-index to 0D before issuing the
first call.

• Errors 11 and 12 are not returned during an indexed search. Excluded I/O
processes are skipped over with no error reported.

• If PROCESS_GETPAIRINFO_ returns any value of error that indicates that no
information is being returned, the contents of all output parameters are undefined.

• The values returned to identify the primary and backup processes reflect the
current view of the operating system at the time that PROCESS_GETPAIRINFO_
was called. When the members of a named process pair voluntarily switch
responsibilities, the new primary process should call the PROCESS_SETINFO_
procedure with the primary attribute to inform the operating system of the pair’s
new state.

• The pair parameter is the only output parameter of interest that is returned for a
named process that is not started. A named process that is not started does not
have any process handles (primary, backup, or ancestor) or ancestor program file
name associated with it.

• When certain error values are returned, a null process handle (-1 in each word)
or an undefined value is returned in one or more of the output process-handle
parameters. The error values and the affected output parameters are as follows:

error output process-handle parameters

2 all are undefined.

3 all are undefined.

4 backup-processhandle is null.

7 all are undefined.

8 all are undefined.

9 all are undefined.

10 all are undefined.

13 primary-processhandle, backup-processhandle, and
ancst-processhandle are null.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-109

PROCESS_LAUNCH_ Procedure

Example
error := PROCESS_GETPAIRINFO_ (prochandle, , , primary,
 backup);

PROCESS_LAUNCH_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Structure Definition for param-list
Structure Definition for output-list
General Considerations
Nowait Considerations
DEFINE Considerations
Batch Processing Considerations
Safeguard Considerations
OSS Considerations
Related Programming Manuals

Summary
The PROCESS_LAUNCH_ procedure creates a new process and, optionally, assigns
a number of process attributes.

You can use this procedure to create only Guardian processes, although you can call it
from a Guardian process or an OSS process. The program file must contain a
program for execution in the Guardian environment. The program file and any user
library file must reside in the Guardian name space; that is, they must not be OSS files.

You can specify that the new process be created in either a waited or nowait manner.
When it is created in a waited manner, identification for the new process is returned
directly to the caller. When it is created in a nowait manner, its identification is returned
in a system message sent to the caller’s $RECEIVE file.

DEFINEs can be propagated to a new process. The DEFINEs can come from the
caller’s context or from a buffer of DEFINEs saved by the DEFINESAVE procedure.

Any parameter that can specify a file name can contain a DEFINE.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-110

PROCESS_LAUNCH_ Procedure

Syntax for C Programmers

The parameter maxlen specifies the maximum length in bytes of the character string
pointed to by output-list, the actual length of which is returned by output-list-
len. These three parameters must either all be supplied or all be absent.

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the operation. Table 12-3 on page 12-111 summarizes
possible values for error.

param-list input

INT .EXT:ref:*

specifies the address of the ZSYS^DDL^PLAUNCH^PARMS structure that
contains all of the input fields for this procedure. For information on how to assign
field values to the structure, see Structure Definition for param-list on page 12-126.

error-detail output

INT .EXT:ref:*

returns additional information about some classes of errors. The sets of values for
error-detail vary according to the error value, as described in Table 12-4 on
page 12-120.

output-list:maxlen output:input

STRING .EXT:ref:*, INT:value

#include <cextdecs(PROCESS_LAUNCH_)>

short PROCESS_LAUNCH_ (void *param-list /* i 1*/
 ,[short *error-detail] /* o 2*/
 ,[void *output-list] /* o:i 3*/
 ,[short maxlen] /* o:i 3*/
 ,[short *output-list-len); /* o 4*/

error:= PROCESS_LAUNCH_
 (param-list ! i 1 !
 ,[error-detail] ! o 2 !
 ,[output-list:maxlen]! o:i 3 !
 ,[output-list-len]); ! o 4 !

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-111

PROCESS_LAUNCH_ Procedure

specifies the address of the ZSYS^DDL^SMSG^PROCCREATE structure that
contains the output fields for this procedure. The ZSYS^DDL^SMSG^PROCCREATE
structure is the same structure as the nowait PROCESS_LAUNCH_ and
PROCESS_CREATE_ completion message. For information on field values of
this structure, see “Structure Definition for output-list.”

The value of maxlen determines the number of bytes of the structure that are
returned to PROCESS_LAUNCH_. Note that the field,
ZSYS^DDL^SMSG^PROCCREATE.PROCID cannot be truncated. If the value of
maxlen would cause it to be truncated, fewer bytes of the structure are returned.
If maxlen is equal to or greater than the length of
ZSYS^DDL^SMSG^PROCCREATE, then the entire structure is returned.

output-list-len output

INT .EXT:ref:*

returns the length, in bytes, of the structure returned in output-list.

Table 12-3. Summary of Process Creation Errors (page 1 of 10)

error Description

0 No error; process created, or creation initiated if you are creating the process in a
nowait manner.

1 File-system error on program file; error-detail contains a file-system error
number*.

2 Parameter error; from PROCESS_LAUNCH_ and PROCESS_SPAWN_, error-
detail contains the literal for the first parameter to be found in error. See
Table 12-4 for possible values. From PROCESS_CREATE_, error-detail
contains the number of first parameter found to be in error, where 1 designates
the leftmost parameter.
Note: The PROCESS_CREATE_ parameters are counted as in TAL (see Syntax for TAL
Programmers on page 12-36) rather than C. Thus, program-file:length is parameter 1,
library-file:length is parameter 2, and so on; priority is reported as parameter 5
although it is the 9th parameter in the C calling sequence.

3 Bounds error; from PROCESS_LAUNCH_ and PROCESS_SPAWN_,error-
detail contains the literal for the first parameter to be found in error. See
Table 12-4 for possible values. From PROCESS_CREATE_,error-detail
contains the number of first parameter found to be in error, where 1 designates
the leftmost parameter.
Note: The PROCESS_CREATE_ parameters are counted as in TAL (see Syntax for TAL
Programmers on page 12-36) rather than C. Thus, program-file:length is parameter 1,
library-file:length is parameter 2, and so on; priority is reported as parameter 5
although it is the 9th parameter in the C calling sequence.

* See the Guardian Procedure Errors and Messages Manual for a list of all file-system and DEFINE errors.

**When error-detail indicates the number of a shared run-time library (SRL), the number represents either
the public SRL relative number, or 00 for a native user library. For more information on shared run-time libraries
(SRLs) see the nld and noft Manual.

Note: See Guardian Procedure Errors and Messages Manual for Cause, Effect, and Recovery of all the Process
Creation Errors.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-112

PROCESS_LAUNCH_ Procedure

4 File-system error occurred on user library file; error-detail contains a file-
system error number*.

5 File-system error occurred on swap file; error-detail contains a file-system
error number*.

6 File-system error occurred on extended swap file; error-detail contains a file-
system error number*.

7 File-system error occurred while creating the process file segment (PFS); error-
detail contains a file-system error number*.

8 Invalid home terminal (device either does not exist or is wrong device type);
error-detail contains a file-system error number*.

9 I/O error to home terminal; error-detail contains a file-system error number*.

10 Unable to communicate with system-monitor process; error-detail contains a
file-system error number*.

11 Process-name error; error-detail contains a file-system error number*. File-
system error 44 indicates that, when trying to create a named process, either the
DCT is full or there are no system-generated names available.

12 Invalid program-file format; error-detail subcodes are described in
Table 12-5, Error Subcodes for Process Creation Errors 12, 13, 70, 76, 84, and
3xx.

13 Invalid user-library-file format; error-detail subcodes are described in
Table 12-5, Error Subcodes for Process Creation Errors 12, 13, 70, 76, 84, and
3xx.

14 The process has undefined externals, but was started anyway (this is a warning).

15 No process control block available, or no PIN less than 255 is available.

16 Unable to allocate virtual address space.

17 Unlicensed privileged program or library.

18 Library conflict (see “General Considerations”).

19 Program file and library file specified are same file.

20 Program file has an invalid process device subtype. (See “General
Considerations.”)

21 Process device subtype specified in backup process is not the same as that in the
primary process.

22 Backup creation was specified, but caller is unnamed.

Table 12-3. Summary of Process Creation Errors (page 2 of 10)

error Description

* See the Guardian Procedure Errors and Messages Manual for a list of all file-system and DEFINE errors.

**When error-detail indicates the number of a shared run-time library (SRL), the number represents either
the public SRL relative number, or 00 for a native user library. For more information on shared run-time libraries
(SRLs) see the nld and noft Manual.

Note: See Guardian Procedure Errors and Messages Manual for Cause, Effect, and Recovery of all the Process
Creation Errors.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-113

PROCESS_LAUNCH_ Procedure

24 DEFINE error; error-detail contains either a file-system error number, a
DEFINE error number*, or this error subcode.

2 An excessive number of DEFINEs were to be propagated. See DEFINE
Considerations on page 12-46.

26 Dynamic IOP error. (This error is returned only to privileged callers or to
unprivileged callers attempting to use certain privileged features. On D-series
RVUs, it can be returned when an I/O process is incorrectly configured. On G-
series RVUs, it can be returned by an attempt to create a D-series I/O process.)

27 PFS size in program file is invalid (this error is not generated in G06.12 and later
RVUs).

28 An unrecognized error number was returned from a remote system (probably
running another level of software); error-detail contains the error number.

29 Unable to allocate a priv stack for the process.

30 Unable to lock the priv stack for the process.

31 Unable to allocate a main stack for the process.

32 Unable to lock the main stack of a native IOP. (This error is returned only to
privileged callers.)

33 Security inheritance failure.

35 Internal process creation error; error-detail is an internal code that localizes
the error.

36 Child’s PFS error; error-detail contains a file-system error number*.

37 Unable to allocate global data for the process. If error-detail is non-zero, it
indicates:

1

2

3

Insufficient swap space available from KMSF

Address range unavailable

Process memory-segment limit exceeded

38 Unable to lock IOP global data for the process. (This error is returned only to
privileged callers.)

40 The main stack maximum value, specified either by the procedure call or by the
object file, is too large.

41 The heap maximum value, specified either by the procedure call or by the object
file, is too large.

42 The space guarantee value, specified either by the procedure call or by the object
file, is too large.

Table 12-3. Summary of Process Creation Errors (page 3 of 10)

error Description

* See the Guardian Procedure Errors and Messages Manual for a list of all file-system and DEFINE errors.

**When error-detail indicates the number of a shared run-time library (SRL), the number represents either
the public SRL relative number, or 00 for a native user library. For more information on shared run-time libraries
(SRLs) see the nld and noft Manual.

Note: See Guardian Procedure Errors and Messages Manual for Cause, Effect, and Recovery of all the Process
Creation Errors.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-114

PROCESS_LAUNCH_ Procedure

43 The process creation request specifies two files that contain the same shared run-
time library (SRL) names; error-detail contains the numbers** of the
duplicate SRLs in the form xxyy (where xx is the first SRL and yy is the
duplicate SRL).

44 Unable to find a shared run-time library (SRL) specified by the program file;
error-detail contains the SRL number** that could not be found.

45 Unable to find a shared run-time library (SRL) specified by another SRL; error-
detail contains the SRL numbers** in the form xxyy (where xx is the SRL that
specifies the yy SRL).

46 The process creation request specifies too many shared run-time libraries (SRLs);
error-detail contains the maximum number of SRLs that can be used.

47 The program file requires fixups to a shared run-time library (SRL) but the
program file is currently running; error-detail contains the SRL number** of
the unavailable SRL.

48 A shared run-time library (SRL) requires fixups to another SRL; error-detail
contains the SRL numbers** of the two SRLs in the form xxyy (where xx is the
SRL that requires the fixup to the yy SRL).

49 Security violation. The program file is not licensed but a shared run-time library
(SRL) containing instance data is licensed; error-detail contains the licensed
SRL number**.

50 Security violation. Either the program file or shared run-time library (SRL) is
licensed but a shared run-time library (SRL) is not licensed; error-detail
contains the unlicensed SRL number**.

51 The program file requires a symbol from a shared run-time library (SRL) but the
SRL is not exporting it; error-detail contains the SRL number** that does not
export the required symbol. The program file specifies the shared run-time library
(SRL) in its SRLINFO table.

52 The specified version, Z^VERSION, of the ZSYS^DDL^PLAUNCH^PARMS
structure is not supported (PROCESS_LAUNCH_ only).

53 The specified version, Z^VERSION, of the ZSYS^DDL^PLAUNCH^PARMS
structure is incompatible with the specified length, Z^LENGTH,of the structure
(PROCESS_LAUNCH_ only).

54 An error occurred at an internal process creation interface.

55 The specified space guarantee, Z^SPACE^GUARANTEE
(PROCESS_LAUNCH_) or Z^SPACEGUARANTEE (PROCESS_SPAWN_),
cannot be allocated.

Table 12-3. Summary of Process Creation Errors (page 4 of 10)

error Description

* See the Guardian Procedure Errors and Messages Manual for a list of all file-system and DEFINE errors.

**When error-detail indicates the number of a shared run-time library (SRL), the number represents either
the public SRL relative number, or 00 for a native user library. For more information on shared run-time libraries
(SRLs) see the nld and noft Manual.

Note: See Guardian Procedure Errors and Messages Manual for Cause, Effect, and Recovery of all the Process
Creation Errors.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-115

PROCESS_LAUNCH_ Procedure

56 Internal error.

57 A shared run-time library (SRL) has undefined externals; error-detail
contains the SRL number** that has undefined externals

58 Internal error.

59 Internal error.

60 Security violation; a shared run-time library (SRL) containing callable procedures
must be licensed to be used by callable or privileged code.

61 Unable to allocate memory from system pool.

62 Mismatch between the symbolic reference in the importing module and the actual
type in the exporting module.

63 There was an unresolved external reference for data.

64 Unable to honor floattype attribute. In G06.20 and later RVUs, this code is
reported only for a program file; earlier RVUs use it also for librarles. error-
detail contains one of these subcodes:

1 IEEE floating point not supported by processor

2 Unrecognized floating-point specification in file

3 Conflicting floating-point specifications (only for user library, and only in
G06.19 and earlier RVUs)

65 Address references from one SRL to another require an adjustment that cannot
be made because the referencing SRL is already in use.

66 Unable to honor the floattype attribute of a user library; error-detail
contains one of these subcodes:

2 Unrecognized floating-point specification in file

4 User library specified Tandem floating-point, which mismatches the
program

5 User library specified IEEE floating-point, which mismatches the program

67 Unable to honor floattype attribute of a DLL; error-detail contains one of
these subcodes:

2 Unrecognized floating-point specification in file

4 DLL specified Tandem floating-point, which mismatches the program

5 DLL specified IEEE floating-point, which mismatches the program

68 A DEFINE named =_RLD is present but invalid; error-detail contains one of
these subcodes:

Table 12-3. Summary of Process Creation Errors (page 5 of 10)

error Description

* See the Guardian Procedure Errors and Messages Manual for a list of all file-system and DEFINE errors.

**When error-detail indicates the number of a shared run-time library (SRL), the number represents either
the public SRL relative number, or 00 for a native user library. For more information on shared run-time libraries
(SRLs) see the nld and noft Manual.

Note: See Guardian Procedure Errors and Messages Manual for Cause, Effect, and Recovery of all the Process
Creation Errors.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-116

PROCESS_LAUNCH_ Procedure

0 The DEFINE is not of class SEARCH

2055 An attribute other than CLASS or SUBVOL0 is specified

Any
other
value

As described for the DEFINEINFO function*.

69 A file-system error was encountered in the run-time loader (rld) library;
error-detail contains the file-system error number.

70 Invalid file format in the runtime loader (rld) library; error-detail subcodes
are described in Table 12-5.

71 An error occurred when loading or running the run-time loader (rld); error-
detail contains one of these subcodes:

9 The process abended while rld was running

10 The process stopped while rld was running

11 rld was licensed at the time the processor was loaded

12 rld returned an out-of-range error value to the operating system

16 The export digest of the file does not match the export digest of the
impImp file in memory.

19 The user attempted to use RLD as a user library. This use is not
supported.

22 RLD began processing, but did not complete the update of a loadfile.

Any
other
value

An internal code indicating a problem in the construction or installation of
rld

72 The run-time loader (rld) reported an internal error; error-detail is an
internal code that localizes the error.

74 The process contained an unresolved reference to a function and so was not
created. Contrast with error 14, which is a warning. (For DLLs and their client
programs, unresolved function references are disallowed by default, but other
options can be specified at link time or run time.)

75 A file-system error was encountered on a DLL; error-detail contains the
file-system error number.

76 Invalid file format in a DLL; error-detail subcodes are described in
Table 12-5.

77 An object file could not be loaded; error-detail contains one of these:

Table 12-3. Summary of Process Creation Errors (page 6 of 10)

error Description

* See the Guardian Procedure Errors and Messages Manual for a list of all file-system and DEFINE errors.

**When error-detail indicates the number of a shared run-time library (SRL), the number represents either
the public SRL relative number, or 00 for a native user library. For more information on shared run-time libraries
(SRLs) see the nld and noft Manual.

Note: See Guardian Procedure Errors and Messages Manual for Cause, Effect, and Recovery of all the Process
Creation Errors.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-117

PROCESS_LAUNCH_ Procedure

1 A DLL requires a PIN < 255 in a process with a higher PIN.

2

3 A public library requires fixed address space that is unavailable in this
process.

4 Insufficient address range is available to load the file.

5

6 The process has exceeded the maximum number of memory segments.

7

8 The C++ version of the specified library conflicts with one or more
loadfiles loaded for this process.

9 The loadfile is not licensed; license is required

10 A DLL for this process is licensed or privileged and has unprotected data
which requires that all loadfiles in the process be licensed. Atleast one
unlicensed loadfile exists in the process.

11 A licensed DLL or a privileged program refers to an unlicensed DLL.

12 A process that has a licensed, but unprivileged program attempted to load
an unlicensed non-public DLL.

13 A licensed or privileged loadfile has globalized symbols.

14 The loadfile was specified as dataResident and is not licensed, has no
callable functions, and is not a program that has a priv entry point.

15 This process can only be run by the local super ID.

16 RLD failed to pass to the operating system a function pointer necessary to
process the initialization functions, constructor callers, destructor callers,
or termination functions specified to the linker.

17 The specified loadfile was built with linker option -no_runtime_fixup, but it
is not preset to load with the symbol bindings available on this system or
in this process.

18 The loadfile was built to use an Application Binary Interface version that is
not supported.

78 An unsupported operation was attempted; error-detail contains one of these:

1 A PIC program attempted to load an SRL other than a public SRL.

2 A PIC program or DLL was licensed.

3 A user library supplied for a PIC program was not a DLL.

Table 12-3. Summary of Process Creation Errors (page 7 of 10)

error Description

* See the Guardian Procedure Errors and Messages Manual for a list of all file-system and DEFINE errors.

**When error-detail indicates the number of a shared run-time library (SRL), the number represents either
the public SRL relative number, or 00 for a native user library. For more information on shared run-time libraries
(SRLs) see the nld and noft Manual.

Note: See Guardian Procedure Errors and Messages Manual for Cause, Effect, and Recovery of all the Process
Creation Errors.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-118

PROCESS_LAUNCH_ Procedure

4 A public SRL requires another library that is not a public SRL.

5 A public SRL is not a hybrid DLL-SRL.

6 The specified library uses Version 1 C++, which is not supported with a
PIC program.

Values 4 and 5 imply an incorrect installation of the public SRLs.

7 RLD cannot be on the liblist of any file loaded when a) the program has a
priv entry point, or b) the program file is licensed.

79 A resource limitation was detected by the run-time loader (rld); error-detail
contains one of these:

1 The rld heap exceeded available KMSF space.

2 The rld heap exceeded its allocated address range.

3 The rld limit for handles was exceeded. (This error is reported for
dynamic loading, not at process creation.)

4 The process limit for keys was exceeded. (Keys are an operating system
resource used by the loader.)

80 A failure occurred while loading or running a program that must be “dropped in”
rather than run through RLD. Error details indicate that the dropped-in program is
not constructed or installed correctly.

16 The export digest of the file does not match the export digest of the
impImp file in memory.

81 A failure occurred while loading or running the TNS Emulator. Error details other
than these indicate that the TNS Emulator is not constructed or installed correctly.

16 The export digest of the file does not match the export digest of the
impImp file in memory.

82 A DEFINE is recognized by the systems, but it is not a valid DEFINE. Error details
are

0 The define is not class SEARCH

2055 An attribute other than CLASS or SUBVOL0 is specified

All other details are as reported by the DEFININFO function.

83 A file-system error occurred on the TNS Emulator while attempting process
creation. The error detail contains a file-system error number.

84 An error is detected in the file format of the TNS Emulator.

99 .A failure occurred while attempting to preload a public DLL specified in the zreg
file. Error details are:

Table 12-3. Summary of Process Creation Errors (page 8 of 10)

error Description

* See the Guardian Procedure Errors and Messages Manual for a list of all file-system and DEFINE errors.

**When error-detail indicates the number of a shared run-time library (SRL), the number represents either
the public SRL relative number, or 00 for a native user library. For more information on shared run-time libraries
(SRLs) see the nld and noft Manual.

Note: See Guardian Procedure Errors and Messages Manual for Cause, Effect, and Recovery of all the Process
Creation Errors.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-119

PROCESS_LAUNCH_ Procedure

1 The export digest of the public DLL does not a match to the export digest
found in the specified zreg file

2 The license value of the public DLL does not a match to the license value
found in the specified zreg file.

3 The public DLL is licensed and has unprotected data.

4 The public DLL is not preset.

5 The public DLL has a priv or callable Main procedure

6 The public DLL does not support highpin.

7 The public DLL is not owned by super ID.

8 The public DLL has callable procedures and is not licensed.

9 A public DLL with this name has already been preloaded (duplicate name
in zreg).

10 The text, data, or gateway of the public DLL overlaps that of another
public DLL

11 The export digest attribute for this public DLL is missing from the zreg file.

104 A process cannot be created because there are insufficient resources
(PROCESS_SPAWN_ only).

106 The oss-program-file parameter is an interpreter shell script that cannot be
started (PROCESS_SPAWN_ only).

107 An error occurred during the allocation of user data space for static variables
used by the system library. Z^TPCDETAIL contains the number of the file-system
error that occurred (PROCESS_SPAWN_ only).

108 The calling process is not OSS. (PROCESS_SPAWN_ only).

110 The current working directory for the new process could not be obtained
(PROCESS_SPAWN_ only).

111 One of the file descriptors specified to be duplicated with the OSS dup() function
in the fdinfo parameter could not be duplicated. Z^TPCDETAIL contains the
index into the ZSYS^DDL^FDINFO.Z^FDENTRY structure to identify which of the
file descriptors failed to be duplicated. Z^ERRNO contains an OSS dup()
function errno value (PROCESS_SPAWN_ only).

112 One of the file descriptors specified to be opened with the OSS open() function
in the fdinfo parameter could not be opened. Z^TPCDETAIL contains the index
into the ZSYS^DDL^FDINFO.Z^FDENTRY structure to identify which of the file
descriptors failed to be opened. Z^ERRNO contains an OSS open() function
errno value (PROCESS_SPAWN_ only).

Table 12-3. Summary of Process Creation Errors (page 9 of 10)

error Description

* See the Guardian Procedure Errors and Messages Manual for a list of all file-system and DEFINE errors.

**When error-detail indicates the number of a shared run-time library (SRL), the number represents either
the public SRL relative number, or 00 for a native user library. For more information on shared run-time libraries
(SRLs) see the nld and noft Manual.

Note: See Guardian Procedure Errors and Messages Manual for Cause, Effect, and Recovery of all the Process
Creation Errors.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-120

PROCESS_LAUNCH_ Procedure

113 The timeout value in the ZSYS^DDL^FDINFO.Z^TIMEOUT field of the fdinfo
parameter was reached before the file descriptors specified in the fdinfo
parameter could be opened. It is also possible that one of the file descriptors is
not responding (PROCESS_SPAWN_ only).

114 A process cannot be created because privileged OSS processes are not
supported (PROCESS_SPAWN_ only, before the G05 RVU.).

115 Unable to allocate global data or heap for the process (PROCESS_SPAWN_ only,
before the G05 RVU).

116 Unable to propagate shared run-time library (SRL) data (PROCESS_SPAWN_
only).

3xx Invalid file format on shared run-time library (SRL) number** xx; error-detail
subcodes are described in Table 12-5.

4xx 4xx Invalid SRL DEFINE on DEFINE number** xx; error-detail could be 0
(invalidClass or ATTR) or one of the DEFINEINFO errors. For details about error
values associated with DEFINEs, see the Guardian Procedure Errors and
Messages Manual.

5xx File-system error on shared run-time library (SRL) number** xx; error-detail
contains a file-system error number*.

1100
through
1499

An internal error was detected within a module of the operating system;
error-detail contains an internal code that localizes the error.

3505 Version incompatability of request between local and remote systems.

Table 12-4. error-detail Codes for PROCESS_LAUNCH_ and PROCESS_SPAWN_
Errors 2 and 3 (page 1 of 2)

error-
detail

PROCESS_LAUNCH_ Structure or
Parameter in Error

PROCESS_SPAWN_ Structure
or Parameter in Error

1 Z^PROGRAM^NAME oss-program-file

2 Z^LIBRARY^NAME Z^LIBRARYNAME

3 Z^SWAPFILE^NAME Z^SWAPFILENAME

4 Z^EXTSWAPFILE^NAME Z^EXTSWAPFILENAME

5 Z^PRIORITY Z^PRIORITY

6 Z^CPU Z^CPU

Table 12-3. Summary of Process Creation Errors (page 10 of 10)

error Description

* See the Guardian Procedure Errors and Messages Manual for a list of all file-system and DEFINE errors.

**When error-detail indicates the number of a shared run-time library (SRL), the number represents either
the public SRL relative number, or 00 for a native user library. For more information on shared run-time libraries
(SRLs) see the nld and noft Manual.

Note: See Guardian Procedure Errors and Messages Manual for Cause, Effect, and Recovery of all the Process
Creation Errors.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-121

PROCESS_LAUNCH_ Procedure

9 Z^NAME^OPTIONS Z^NAMEOPTIONS

10 Z^PROCESS^NAME Z^PROCESSNAME

13

14 Z^HOMETERM^NAME Z^HOMETERM

15 Z^MEMORY^PAGES Z^MEMORYPAGES

16 Z^JOBID Z^JOBID

17 Z^CREATE^OPTIONS Z^CREATEOPTIONS

18 Z^DEFINES^NAME Z^DEFINES

19 Z^DEBUG^OPTIONS Z^DEBUGOPTIONS

20 Z^PFS^SIZE Z^PFSSIZE

22 param-list not returned by PROCESS_SPAWN_

23 error-detail Z^TPCDETAIL

24 output-list not returned by PROCESS_SPAWN_

25 output-list-len not returned by PROCESS_SPAWN_

50 not returned by
PROCESS_LAUNCH_

process-extension

51 not returned by
PROCESS_LAUNCH_

Z^OSSOPTIONS

52 not returned by
PROCESS_LAUNCH_

argv

53 not returned by
PROCESS_LAUNCH_

envp

54 not returned by
PROCESS_LAUNCH_

envp contains an invalid address.

56 not returned by
PROCESS_LAUNCH_

inheritance

57 not returned by
PROCESS_LAUNCH_

an internal error

58 not returned by
PROCESS_LAUNCH_

fdinfo

59 not returned by
PROCESS_LAUNCH_

path

60 not returned by
PROCESS_LAUNCH_

inheritance-length

Table 12-4. error-detail Codes for PROCESS_LAUNCH_ and PROCESS_SPAWN_
Errors 2 and 3 (page 2 of 2)

error-
detail

PROCESS_LAUNCH_ Structure or
Parameter in Error

PROCESS_SPAWN_ Structure
or Parameter in Error

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-122

PROCESS_LAUNCH_ Procedure

Table 12-5 contains descriptions of the error subcodes for errors 12, 13, 70, 76, and
3xx.
Table 12-5. Error Subcodes for Process Creation Errors 12, 13, 70, 76, 84, and
3xx (page 1 of 4)

Subcode Meaning

1 The file is not a disk file.

2 For a program file designated in the process creation request:

This is a TNS/R file in the Guardian file system and does not have file code 100
or 700, or the file is in the OSS file system and is not recognizable as a shell
script or a TNS or ELF object file.

This is a TNS/E file in the Guardian file system and does not have file code 100
or 800.

For a file other than the one designated as the program file in the process
creation request:

A TNS library file was expected, but either the file is in the Guardian file system
and does not have file code 100 or the file is in the OSS file system and is not
recognizable as a TNS object file.

3 The file does not have the correct file structure.

4 The file requires a later RVU of the operating system.

5 Either a program lacks an entry point or an attempt was made to load a library
as a program. (An entry point is specified either by a TAL or pTAL procedure
having the MAIN attribute or by naming a native procedure in the -e linker
option.)

6 Either an attempt was made to load a program as a library or a TNS user library
has a MAIN procedure.

7 A TNS program file does not have data pages.

8 Either a native object file requires fixup to SRLs by the nld utility or a TNS
object file was not prepared by the Binder program.

9 The file header INITSEGS is not consistent with its size.

10 The file resident size is greater than the code area length.

11 The file was not prepared by the nld utility or the Binder program.

12 The file has undefined data blocks.

13 The file has data blocks with unresolved references.

14 The file has too many TNS code segments.

15 Accelerated code length in the file is invalid.

16 Accelerated code address in the file is invalid.

17 Accelerated data length in the file is invalid.

18 Accelerated data address in the file is invalid.

19 The file has too many accelerated code segments.

20 The file has invalid resident areas in accelerated code.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-123

PROCESS_LAUNCH_ Procedure

21 Accelerator header in the file is invalid.

22 Either UC (user code) or UL (user library) was accelerated with the wrong
virtual address.

23 File has entry in native fixup list with invalid external entry-point (XEP) index
value or invalid code address value.

24 Accelerated file has external procedure identifier list (EPIL), internal procedure
identifier list (IPIL), or external entry-point (XEP) table with incorrect format.

25 UC (user code) or UL (user library) was accelerated using the wrong
Accelerator option (UC, UL, SC, or SL).

26 The file was accelerated with an incompatible version of the Accelerator.

27 The file has an invalid callable gateway (GW) table.

28 The program file contains processor-specific code that cannot be run on the
current processor.

29 Fixup of accelerated code was attempted in an object file that was not
accelerated.

30 An internal structure of the file contains an error.

31 An internal structure of the file contains an error.

32 An internal structure of the file has an entry point value of 0.

33 An internal structure of the file contains an error.

34 The list of unresolved procedure names contains an error.

35 The fixup computed an invalid file offset to the code area.

36 The file has an invalid fixup item.

37 An internal structure of the file contains an error.

38 The instruction at a call site is not the type expected for its fixup item.

40 A virtual address specified in an ELF file is outside its allowed range. For
example, a text or data segment is specified at an address not valid for this type
of file.

42 The code area or data area is too large.

43 The file either has a gateway (GW) table but no callable procedures or has
gateways that are not in the (GW) area.

44 The file codes of the program file and library file do not match. (Not generated
in the G06.12 and later RVUs; see errors 5 and 6.)

45 The file being started can run only in the Guardian environment and it is being
started in the OSS environment, or vice versa.

46 Either the TNS program or the TNS user library (but not both) expected the
library to contain global data.

Table 12-5. Error Subcodes for Process Creation Errors 12, 13, 70, 76, 84, and
3xx (page 2 of 4)

Subcode Meaning

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-124

PROCESS_LAUNCH_ Procedure

47 Either the TNS program needs to import data from the TNS user library and the
library is not exporting any data, or the library needs global data space and the
program is not providing it.

48 A TNS program file uses a TNS shared run-time library (SRL) and is switching
to a new library, but the program was accelerated by an old version of the
Accelerator program that does not support SRL data relocation at fixup time.
Use a version of the Accelerator program provided with the D30.00 or later
RVU of the operating system.

49 A TNS object file has no code space.

50 The native object file is not loadable. Either it is a linkable file (such as unlinked
compiler output) or it is an incorrect type of loadable file (such as a DLL
encountered with a non-PIC program).

51 The program or library file does not have a valid ELF header for execution on
this NonStop operating system. The file either is not targeted for this system, is
not an ELF file, or has been corrupted.

52 An ELF file has a header specifying more than one instance of a segment that
should be unique. The file is corrupt or was not built by a valid linker.

53 An ELF file has a header specifying more than one instance of a segment that
should be unique. The file is corrupt or was not built by a valid linker.

54 The non-PIC ELF file is not loadable because it does not have a GINFO
information header. An error occurred during the linking of the file, or the file is
corrupt.

55 An ELF file is lacking a required segment.

56 The file specifies too many shared run-time libraries (SRLs).

57 The file specifies duplicate shared run-time libraries (SRLs).

58 The shared run-time library (SRL) does not export any procedures.

60 An ELF library file was expected, but the file either is in the Guardian file
system and does not have a file code of 700, or it is in the OSS file system and
is not recognizable as an ELF file.

61 Two related structures in the ELF file have inconsistent lengths.

62 An attempt was made to spawn a shell script on a remote node.

63 An inconsistency exists in the set of public SRLs.

64 Some value (other than an address) specified in an ELF file is outside its
legitimate and reasonable range. The file may be corrupted.

65 The current export digest index specified in an ELF SRL file is greater than the
count of export digests in that file. The file is probably corrupted.

66 The count of export digests in an ELF SRL exceeds 256. The file is probably
corrupted.

67 A public SRL is marked to require a PIN < 255; this is not allowed.

Table 12-5. Error Subcodes for Process Creation Errors 12, 13, 70, 76, 84, and
3xx (page 3 of 4)

Subcode Meaning

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-125

PROCESS_LAUNCH_ Procedure

68 One of the headers that is expected to be at the front of an ELF file did not fit
near enough to the front.

69 This PIC ELF file is not supported on TNS/R systems: It is licensed or it
contains callable functions.

70 The ELF file is too big (EOF > 2**31 bytes).

71 A value in the TNS object file header is out of range; the file may be corrupt.

72 The EF_TANDEM_INSTANCE_DATA value in the ELF header is not consistent
with the data program headers found; the file may be corrupt.

73 The p_flags in the ELF header for the resident text header are not as expected;
the file may be corrupt.

74 The loadfile has resident text, but no data constant segment, and is not marked
data_resident. This combination is not supported.

75 The DLL has callable functions but also has unprotected data. This is not
supported.

76 An address to be stored into a relocation site does not fit in 32 bits.

77 The loadfile uses the 64-bit data model. The 64-bit data model is not supported
on this system.

78 The loadfile is an import library or implicit DLL, not a program, ordinary DLL, or
public DLL.

Table 12-5. Error Subcodes for Process Creation Errors 12, 13, 70, 76, 84, and
3xx (page 4 of 4)

Subcode Meaning

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-126

PROCESS_LAUNCH_ Procedure

Structure Definition for param-list
The param-list parameter specifies the attributes of the new process.

In the TAL ZSYSTAL file, the structure for the param-list parameter is defined as:

STRUCT ZSYS^DDL^PLAUNCH^PARMS^DEF (*)
?IF PTAL
FIELDALIGN (SHARED2)
?ENDIF PTAL
;
 BEGIN
 INT Z^VERSION;
 INT Z^LENGTH;
 INT(32) Z^PROGRAM^NAME;
 INT(32) Z^PROGRAM^NAME^LEN;
 INT(32) Z^LIBRARY^NAME;
 INT(32 Z^LIBRARY^NAME^LEN;
 INT(32) Z^SWAPFILE^NAME;
 INT(32) Z^SWAPFILE^NAME^LEN;
 INT(32) Z^EXTSWAPFILE^NAME;
 INT(32) Z^EXTSWAPFILE^NAME^LEN;
 INT(32) Z^PROCESS^NAME;
 INT(32) Z^PROCESS^NAME^LEN;
 INT(32) Z^HOMETERM^NAME;
 INT(32) Z^HOMETERM^NAME^LEN;
 INT(32) Z^DEFINES^NAME;
 INT(32) Z^DEFINES^NAME^LEN;
 INT(32) Z^NOWAIT^TAG;
 INT(32) Z^PFS^SIZE;
 INT(32) Z^MAINSTACK^MAX;
 INT(32) Z^HEAP^MAX;
 INT(32) Z^SPACE^GUARANTEE;
 INT(32) Z^CREATE^OPTIONS;
 INT Z^NAME^OPTIONS;
 INT Z^DEBUG^OPTIONS;
 INT Z^PRIORITY;
 INT Z^CPU;
 INT Z^MEMORY^PAGES;
 INT Z^JOBID;
 INT END_NOV95[0:-1];!used only to determine length
 END;

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-127

PROCESS_LAUNCH_ Procedure

For TAL programs, these default values, defined in the P_L_DEFAULT_PARMS_
define in the SYSTEM.DLAUNCH file, must be specified when an option is not wanted:

Field Name Default Value

Z^VERSION 1

Z^LENGTH $OFFSET(PROCESS_LAUNCH_PARMS_.EN
D_NOV95)

Z^PROGRAM^NAME %HFFFC0000%D

Z^PROGRAM^NAME^LEN 0D

Z^LIBRARY^NAME %HFFFC0000%D

Z^LIBRARY^NAME^LEN 0D

Z^SWAPFILE^NAME %HFFFC0000%D

Z^SWAPFILE^NAME^LEN 0D

Z^EXTSWAPFILE^NAME %HFFFC0000%D

Z^EXTSWAPFILE^NAME^LEN 0D

Z^PROCESS^NAME %HFFFC0000%D

Z^PROCESS^NAME^LEN 0D

Z^HOMETERM^NAME %HFFFC0000%D

Z^HOMETERM^NAME^LEN 0D

Z^DEFINES^NAME %HFFFC0000%D

Z^DEFINES^NAME^LEN 0D

Z^NOWAIT^TAG -1D

Z^PFS^SIZE 0D

Z^MAINSTACK^MAX 0D

Z^HEAP^MAX 0D

Z^SPACE^GUARANTEE 0D

Z^CREATE^OPTIONS 0D

Z^NAME^OPTIONS 0

Z^DEBUG^OPTIONS %100000

Z^PRIORITY -1

Z^CPU -1

Z^MEMORY^PAGES 0

Z^JOBID -1

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-128

PROCESS_LAUNCH_ Procedure

In the C zsysc file, the structure for the param-list parameter is defined as:

Note that in the C zsysc file, the type zsys_ddl_char_extaddr_def is defined as
long. The type char_far* is the equivalent to the type zsys_ddl_char_extaddr_def
in DLAUNCHH. Therefore, do not use the structure definition from zsysc and the
default structure value from DLAUNCHH.

C programs should initialize the P_L_DEFAULT_PARMS_ define in the
$SYSTEM.SYSTEM.DLAUNCHH header file.

#pragma fieldalign shared2 __zsys_ddl_plaunch_parms
typedef struct __zsys_ddl_plaunch_parms
{
 short z_version;
 short z_length;
 zsys_ddl_char_extaddr_def z_program_name;
 long z_program_name_len;
 zsys_ddl_char_extaddr_def z_library_name;
 long z_library_name_len;
 zsys_ddl_char_extaddr_def z_swapfile_name;
 long z_swapfile_name_len;
 zsys_ddl_char_extaddr_def z_extswapfile_name;
 long z_extswapfile_name_len;
 zsys_ddl_char_extaddr_def z_process_name;
 long z_process_name_len;
 zsys_ddl_char_extaddr_def z_hometerm_name;
 long z_hometerm_name_len;
 zsys_ddl_char_extaddr_def z_defines_name;
 long z_defines_name_len;
 long z_nowait_tag;
 long z_pfs_size;
 long z_mainstack_max;
 long z_heap_max;
 long z_space_guarantee;
 long z_create_options;
 short z_name_options;
 short z_debug_options;
 short z_priority;
 short z_cpu;
 short z_memory_pages;
 short z_jobid;
} zsys_ddl_plaunch_parms_def;

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-129

PROCESS_LAUNCH_ Procedure

Z^VERSION

identifies the version of the ZSYS^DDL^PLAUNCH^PARMS structure.

This table summarizes the possible values for Z^VERSION. TAL literals are
defined in the ZSYSTAL file. Literals in the zsysc file, for C programs, are the
same as those for TAL except that they contain the underscore (_) character
instead of the circumflex (^) character.

This value must be supplied:

Z^LENGTH

is the length of the ZSYS^DDL^PLAUNCH^PARMS structure. Because the
structure is subject to change, Z^LENGTH is used by PROCESS_LAUNCH_ to
further identify the version of the structure.

Z^PROGRAM^NAME

if Z^PROGRAM^NAME^LEN is not 0, specifies the address of a string containing
the name of the program file to be run. If used, the value of Z^PROGRAM^NAME
must point to a valid file name and must be exactly Z^PROGRAM^NAME^LEN
bytes long. The file must reside in the Guardian name space and must contain a
program for execution in the Guardian environment.

The new process is created on the node where the program file resides. If the
program file name is partially qualified, it is resolved using the =_DEFAULTS
DEFINE. If you specify a file on the subvolume $SYSTEM.SYSTEM and the file is
not found, PROCESS_LAUNCH_ then searches on the subvolume
$SYSTEM.SYSnn.

For a description of file-name syntax, see Appendix D, File Names and Process
Identifiers.

This parameter must be supplied unless the caller is creating its backup process.

Z^PROGRAM^NAME^LEN

specifies the length, in bytes, of the Z^PROGRAM^NAME field.

Z^LIBRARY^NAME

if specified and if Z^LIBRARY^NAME^LEN is not 0 or -1, specifies the address of a
string containing the name of the user library file to be used by the process. If
used, the string must be exactly Z^LIBRARY^NAME^LEN bytes long. If the library
file name is partially qualified, it is resolved using the =_DEFAULTS DEFINE. The
user library file must be on the same node as the process being created and must
reside in the Guardian name space. For the program to create a linkage to the
library file, the caller must have write permission to the program file.

Name (ZSYS^VAL^) Value Description

PLAUNCH^PARMS^VER 1 The current version of the structure

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-130

PROCESS_LAUNCH_ Procedure

If Z^LIBRARY^NAME is specified, unresolved external references are resolved first
from the specified Z^LIBRARY^NAME, then from the system library.

If Z^LIBRARY^NAME is specified and Z^LIBRARY^NAME^LEN is -1, then the
linkage to the library file used by the process when it was last run is removed, and
the process runs with no library file. (The references that were previously resolved
from the user library are resolved from the system library.) For the program to
remove a linkage to a library file, the caller must have write permission to the
program file.

If the nil pointer is provided or if Z^LIBRARY^NAME^LEN is 0, then the program
runs with the same library file as it did the last time it was run (or with no file if that
was how it was run) or with the library file currently executing. Write permission to
the program file is not required. For more information about TNS user libraries,
see the Binder Manual. For more information about TNS/R native user libraries
and shared run-time libraries, see the nld and noft Manual. For more information
about dynamic-link libraries (including native user libraries used with PIC
programs), see the ld and rld Reference Manual.

If an external reference cannot be resolved, it is modified to invoke the debugger
when referenced. PROCESS_LAUNCH_ then returns a warning 14 and issues a
warning message to the home terminal the first time the program is run. (The
warning 14 and the terminal message are issued again the first time the program is
run following a system load.)

Z^LIBRARY^NAME^LEN

specifies the length, in bytes, of the Z^LIBRARY^NAME field.

Z^SWAPFILE^NAME

is not used, but you can provide it for informational purposes. If supplied, the
swap file must be on the same system as the process being created. If the
supplied name is in local form, the system where the process is created is
assumed. Processes swap to a file that is managed by the Kernel-Managed Swap
Facility. For more information on this facility, see the Kernel-Managed Swap
Facility (KMSF) Manual. To reserve swap space for the process, specify the
Z^SPACE^GUARANTEE field. Alternatively, use the nld utility to set native
process attributes.

For TNS processes on RVUs preceding the D42 RVU, if supplied and if
Z^SWAPFILE^NAME^LEN is not 0, this parameter specifies the address of a string
containing the name of a file to be used as the swap file for the user data stack
segment of the process. If used, the string must be exactly
Z^SWAPFILE^NAME^LEN bytes long. If the swap file name is partially qualified, it
is resolved using the =_DEFAULTS DEFINE. The swap file must be on the same
node as the process being created and must be an unstructured file.

See “Considerations” for more information about swap files.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-131

PROCESS_LAUNCH_ Procedure

Z^SWAPFILE^NAME^LEN

specifies the length, in bytes, of the Z^SWAPFILE^NAME field.

Z^EXTSWAPFILE^NAME

for TNS processes, if not specified or Z^EXTSWAPFILE^NAME^LEN is 0, the
Kernel-Managed Swap Facility (KMSF) allocates swap space for the default
extended data segment of the process. For more information on this facility, see
the Kernel-Managed Swap Facility (KMSF) Manual.

For TNS processes, if specified and if Z^EXTSWAPFILE^NAME^LEN is not 0, this
parameter specifies the address of a string containing the name of a file to be used
as the swap file for the default extended data segment of the process. If used, the
string must be exactly Z^EXTSWAPFILE^NAME^LEN bytes long. If the swap file
name is partially qualified, it is resolved using the =_DEFAULTS DEFINE. The
swap file must be on the same node as the process being created and must be an
unstructured file.

For native processes, this parameter is ignored, because native processes do not
need an extended swap file.

See “Considerations” for more information about swap files.

Z^EXTSWAPFILE^NAME^LEN

specifies the length, in bytes, of the Z^EXTSWAPFILE^NAME field.

Z^PROCESS^NAME

if Z^NAME^OPTIONS is 1 and Z^PROCESS^NAME^LEN is not 0, specifies the
address of a string containing the name to be assigned to the new process. If
used, the string must be exactly Z^PROCESS^NAME^LEN bytes long. The name
can include a node name, but the node must match that of the program file. For
information about reserved process names, see General Considerations on
page 12-140, and Appendix B, Reserved Process Names.

For other values of Z^NAME^OPTIONS, set Z^PROCESS^NAME^LEN to 0.

Z^PROCESS^NAME^LEN

specifies the length, in bytes, of the Z^PROCESS^NAME field.

Z^HOMETERM^NAME

if supplied and if Z^HOMETERM^NAME^LEN is not 0, specifies the address of a
string containing the file name that designates the home terminal for the new
process. If used, the string must be exactly Z^HOMETERM^NAME^LEN bytes
long. If Z^HOMETERM^NAME is partially qualified, it is resolved using the
=_DEFAULTS DEFINE.

Z^HOMETERM^NAME can be a named or unnamed process. The default value is
the home terminal of the caller.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-132

PROCESS_LAUNCH_ Procedure

Z^HOMETERM^NAME^LEN

specifies the length, in bytes, of the Z^HOMETERM^NAME field.

Z^DEFINES^NAME

if supplied and if Z^DEFINES^NAME^LEN is not 0, specifies the address of a
string containing a set of DEFINEs to be propagated to the new process. The
string must be exactly Z^DEFINES^NAME^LEN bytes long. The set of DEFINEs
should have been created through one or more calls to the DEFINESAVE
procedure. For all cases except backup creation, DEFINEs are propagated
according to the values specified in Z^CREATE^OPTIONS. For details, see
DEFINE Considerations on page 12-46.

When a process creates its backup, all the caller’s DEFINEs are propagated
regardless of Z^CREATE^OPTIONS. If Z^DEFINES^NAME is specified, it is
ignored.

Z^DEFINES^NAME^LEN

specifies the length, in bytes, of the Z^DEFINES^NAME field.

Z^NOWAIT^TAG

if specified and not -1D, indicates that the process is to be created in a nowait
manner; the procedure returns as soon as process creation is initiated. For details,
see Nowait Considerations on page 12-46.

If Z^NOWAIT^TAG is -1D, the process is created in a waited manner.

Z^PFS^SIZE

meaningful only if the process is being created on a pre-G06 RVU. On G06 and
later RVUs, this value is range checked, but is otherwise ignored.

If present and nonzero, this parameter specifies the size in bytes of the process file
segment (PFS) of the new process. In G-series RVUs, maximum PFS size is 8
MB. In H-series RVUs, maximum PFS size is 32 MB. A value in this range
overrides the nld or Binder value stored in the program file. If you omit pfs-size
or specify 0:

• the nld or Binder value is used if it is nonzero

• a default value is used otherwise

Z^MAINSTACK^MAX

specifies the maximum size, in bytes, of the process main stack. The specified
size cannot exceed 32 megabytes (MB).

The default value of 0D indicates that the main stack can grow to 1 MB in the
TNS/R enviroment and to 2 MB in the TNS/E environment. For most processes,
the default value is adequate.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-133

PROCESS_LAUNCH_ Procedure

Z^HEAP^MAX

for native processes only, specifies the maximum size, in bytes, of the process
heap. Note that the sum of the size of the heap and the size of global data cannot
exceed 1.1 gigabytes (GB).

The default value of 0D indicates that the heap can grow to the default value of 1.1
gigabytes (GB) less the size of the globals. The initial heap size of a process is
zero bytes. For most processes, the default value is adequate.

It is recommended that the value of Z^HEAP^MAX parameter should be set to zero.
The developer then sets an appropriate value for Z^HEAP^MAX in the object file of
the application depending on the kind of application, the maximum memory
required and the system configuration. Z^HEAP^MAX then defaults to the value
stored in the object file of the application to be launched.

An outline of existing limitations:

Native C and C++ programs can have up to 1.1 GB of heap. CISC objects can
have up to 127.5 megabytes (MB) of heap. However, other demands for memory
space can deplete the amount of memory available for heap.

Z^SPACE^GUARANTEE

specifies the minimum size, in bytes, of the amount of space that the process
reserves with the Kernel-Managed Swap Facility for swapping. For more
information on this facility, see the Kernel-Managed Swap Facility (KMSF) Manual.
The value provided is rounded up to a page size boundary of the processor. If the
requested amount of space is not available, PROCESS_LAUNCH_ returns error
55.

When the default value of 0D is used, the amount of space reserved is determined
by the value specified in the object file for a native process or by the operating
system for a TNS or accelerated process.

Z^CREATE^OPTIONS

provides information about the environment of the new process.

This table summarizes the possible values for Z^CREATE^OPTIONS. TAL literals
are defined in the ZSYSTAL file. Literals in the zsysc file, for C programs, are the
same as those for TAL except that they contain the underscore (_) character
instead of the circumflex (^) character.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-134

PROCESS_LAUNCH_ Procedure

Valid values for Z^CREATE^OPTIONS are one or more of these:

If you specify ZSYS^VAL^PCREATOPT^LOWPIN, the program is run at a low PIN.
If you do not specify ZSYS^VAL^PCREATOPT^LOWPIN, the program runs at a
PIN of 256 or higher if its program file and library file (if any) have the HIGHPIN
program-file flag set and if a high PIN is available. However, if the calling process
has the inherited force-low attribute set, the new process is forced into a low PIN
even if all the other conditions for running at a high PIN are met. For further
information on compatibility, see the Guardian Programmer’s Guide and the
Guardian Application Conversion Guide. See also DEFINE Considerations for
more information on DEFINEs.

Name (ZSYS^VAL^) Value Description

PCreatOpt^AllDefines 16 Propagate DEFINEs in Z^DEFINES and
DEFINEs in the caller’s context. In case of
name conflicts, use the ones in Z^DEFINES.
Otherwise, propagate DEFINEs as specified
by other values.

PCreatOpt^AnyAncesto
r

64 If the caller is named, the process deletion
message, if any, will go to whatever process
has the calling process’s name (regardless of
sequence number) at that time.

PCreatOpt^Default 0 The default value, which is described with
each of the other options.

PCreatOpt^DefEnabled 2 See PCreatOpt^DefOverride.

PCreatOpt^DefineList 8 Propagate DEFINEs in Z^DEFINES only.
Otherwise, propagate only the DEFINEs in the
caller’s context.

PCreatOpt^DefOverride 4 Enable DEFINEs if PCreatOpt^DefEnabled is
specified. Disable DEFINEs if
PCreatOpt^DefEnabled is not specified.
Otherwise, use caller's DEFINE mode.

PCreatOpt^FrcLowOver 32 Ignore the value of the caller’s inherited force-
low PIN attribute. Otherwise, use the value of
the caller’s inherited force-low PIN attribute.

PCreatOpt^LowPin 1 Require low PIN (in range 0 through 254).
Otherwise, assign any PIN.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-135

PROCESS_LAUNCH_ Procedure

Z^NAME^OPTIONS

specifies whether the process is to be named and, if so, whether the caller is
supplying the name or the system must generate it.

This table summarizes the possible values for Z^NAME^OPTIONS. TAL literals
are defined in the ZSYSTAL file. Literals in the zsysc file, for C programs, are the
same as those for TAL except that they contain the underscore (_) character
instead of the circumflex (^) character.

One of these values must be supplied:

If either the program file or the library file (if any) has the RUNNAMED program-file
flag set, the system generates a name. The generated name is four characters
long, unless Z^NAME^OPTIONS is ZSYS^VAL^PCREATOPT^NAMEDBYSYS5.
In which case, the name is five characters long.

To create a backup process, set Z^NAME^OPTIONS to 3,
Z^PROCESS^NAME^LEN to 0, and Z^PROGRAM^NAME^LEN to 0.

Z^DEBUG^OPTIONS

sets the debugging attributes for the new process.

This table summarizes the possible values for Z^DEBUG^OPTIONS. TAL literals
are defined in the ZSYSTAL file. Literals in the zsysc file, for C programs, are the
same as those for TAL except that they contain the underscore (_) character
instead of the circumflex (^) character.

Name (ZSYS^VAL^) Value Description

PCreatOpt^CallersName 3 Process is named; name is the same as
that of the caller. This option is used only
for the creation of the caller’s backup
process

PCreatOpt^NamedBySys 2 Process is named; the system must
generate a name. The generated name is
four characters long.

PCreatOpt^NamedBySys
5

4 Process is named; the system must
generate a name. The generated name is
five characters long.

PCreatOpt^NameInCall 1 Process is named; name is supplied in
Z^PROCESS^NAME.

PCreatOpt^NoName 0 Process is not named; it can be named if
the RUNNAMED program-file flag is set.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-136

PROCESS_LAUNCH_ Procedure

Valid values for Z^DEBUG^OPTIONS are as follows:

Z^PRIORITY

is the initial execution priority to be assigned to the new process. Execution priority
is a value in the range 1 through 199, where 199 is the highest possible priority.

If you specify the default value of -1, the priority of the caller is used. If you specify
either 0 or a value greater than 199, error 2 is returned.

Name (ZSYS^VAL^) Value Description

PCreatOpt^DbgOverride 2 Use the debugger and saveabend options
specified regardless of program-file flag
settings. Otherwise, use the program-file
flag settings. Debugger and saveabend
options are specified by
PCreatOpt^SaveAbend and
PCreatOpt^RUND described in this table.

PCreatOpt^Default 0 The debugger and saveabend default values
are set from the flags in the program file (set
either by compiler directives at compile time,
nld flag at link time, or Binder command at
bind time) after these options are ORed with
the corresponding states of the calling
process.

PCreatOpt^INSPECT 1 Use the Inspect debugger. Otherwise, use
the debugger specified by the program-file
flag settings.

PCreatOpt^RUND 8 Enter Debug or the Inspect debugger at the
first executable instruction of the program's
MAIN procedure. If this option is not
selected, begin normal program execution.

PCreatOpt^SaveAbend 4 If the process traps, create a saveabend file
and use the Inspect debugger (regardless of
whether PCreatOpt^INSPECT is selected).
If this option is not selected and the process
traps, do not create a saveabend file.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-137

PROCESS_LAUNCH_ Procedure

Z^CPU

specifies the processor in which the new process is to run. If you specify -1, the
processor is chosen as follows:

Backup process: determined by system
Other process on local system: same processor as caller
Process on remote system: determined by system

The processor number of the new process can be obtained by passing the
ZSYS^DDL^SMSG^PROCCREATE.Z^PHANDLE field of the output-list
parameter to the PROCESSHANDLE_DECOMPOSE_ procedure.

Z^MEMORY^PAGES

For TNS processes, specifies the minimum number of 2048-byte memory pages
allotted to the new process for user data. The actual amount of memory allocated
is processor-dependent. If Z^MEMORY^PAGES is either omitted or less than the
value previously assigned either by a compiler directive at compile time or by a
Binder command at bind time, the previously assigned value is used. In any case,
the maximum number of pages permitted is 64.

For native processes, this parameter is ignored. To specify the maximum size of
the main stack, specify the Z^MAINSTACK^MAX field. Alternatively, use the nld
utility to set the TNS/R process attributes or the eld utility to set the TNS/E
process attributes.

Z^JOBID

is an integer (job ID) that specifies the job to be created. The new process is the
first process of the job, and the caller is the job ancestor of the new process. This
value is used by the NetBatch scheduler. For information about how to use this
parameter, see Batch Processing Considerations on page 12-47.

The default value of -1 indicates that the new process is a member of the same
batch job as the creator. If the creator is not part of a batch job, then neither is the
new process.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-138

PROCESS_LAUNCH_ Procedure

Structure Definition for output-list
The output-list parameter provides information on the outcome of the
PROCESS_LAUNCH_ procedure call. The structure returned is the same structure as
the nowait PROCESS_LAUNCH_ and PROCESS_CREATE_ completion message.

In the TAL ZSYSTAL file, the structure for the output-list parameter is defined as:

STRUCT ZSYS^DDL^SMSG^PROCCREATE^DEF (*)
?IF PTAL
FIELDALIGN (SHARED2)
?ENDIF PTAL
;
 BEGIN
 INT Z^MSGNUMBER;
 INT(32) Z^TAG;
 STRUCT Z^PHANDLE;
 BEGIN
 STRUCT Z^DATA;
 BEGIN
 STRING ZTYPE;
 FILLER 19;
 END;
 INT Z^WORD[0:9] = Z^DATA;
 STRUCT Z^BYTE = Z^DATA;
 BEGIN STRING BYTE [0:19]; END;
 END;
 INT Z^ERROR;
 INT Z^ERROR^DETAIL;
 INT Z^PROCNAME^LEN;
 INT Z^RESERVED[0:3];
 STRUCT Z^DATA;
 BEGIN
 FILLER 50;
 END;
 STRUCT Z^PROCNAME = Z^DATA;
 BEGIN STRING BYTE [0:49]; END;
 END;

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-139

PROCESS_LAUNCH_ Procedure

In the C zsysc file, the structure for the output-list parameter is defined as:

Z^MSGNUMBER

if it contains the returned value of -102, indicates process creation.

Z^TAG

if it contains the returned value of -1D, indicates a waited request. Other values
indicate the value specified in the
ZSYS^DDL^PLAUNCH^PARMS.Z^NOWAIT^TAG of the param-list parameter.

Z^PHANDLE

for a waited request, returns the process handle of the new process. If an error
occurs (Z^ERROR or Z^ERROR^DETAIL is not 0), then the returned value is -1D.

If you created the process in a nowait manner, then the returned value is the null
process handle. You can retrieve the process handle from the completion
message sent to $RECEIVE.

Z^ERROR

indicates the outcome of the operation. Z^ERROR is the same value as the
returned value in error. Table 12-4 on page 12-120 summarizes the possible
values for Z^ERROR.

Z^ERROR^DETAIL

returns additional information about some classes of errors. Z^ERROR^DETAIL is
the same value as the error-detail parameter.

typedef struct __zsys_ddl_smsg_proccreate
{
 short z_msgnumber;
 long z_tag;
 zsys_ddl_phandle_def z_phandle;
 short z_error;
 short z_error_detail;
 short z_procname_len;
 short z_reserved[4];
 union
 {
 struct
 {
 signed char filler_0[50];
 } z_data;
 char z_procname[50];
 } u_z_data;
} zsys_ddl_smsg_proccreate_def;

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-140

PROCESS_LAUNCH_ Procedure

Z^PROCNAME^LEN

for a waited request, returns the length in bytes of the process descriptor of the
new process.

If you created the process in a nowait manner, then the returned value is 0. You
can retrieve the process descriptor length in the completion message sent to
$RECEIVE.

Z^PROCNAME

for a waited request, returns the process descriptor of the new process.

If you created the process in a nowait manner, then the returned value is an array
of zeroes. You can retrieve the process descriptor in the completion message sent
to $RECEIVE.

General Considerations

• Partially qualified file names are resolved using the contents of the caller’s
=_DEFAULTS DEFINE. If a node name is not present in either the file name or the
appropriate attribute of the DEFINE, the resolved name will include the caller’s
node.

See below for details on resolution of specific file-name parameters.

• For TNS and accelerated processes on RVUs preceding the D42 RVU, if
Z^SWAPFILE^NAME or Z^EXTSWAPFILE^NAME :

• is specified and a file with that name exists, that file is used for memory swaps
of the user data stack (swap file) or the default extended data segment
(extended swap file) during execution of the process; if no file of that name
exists, then a file of that name and of the necessary size is created and used
for swaps. If the file name is partially qualified, the system uses the
=_DEFAULTS DEFINE to resolve it.

• specifies the name of a temporary file that is already in use, an error is
returned.

• specifies only the disk volume name, then a temporary file is created on the
specified disk device.

• is not specified or Z^SWAPFILE^NAME^LEN is 0, then the SWAP volume
name in the =_DEFAULTS DEFINE is used if available. Otherwise, the system
chooses where to place the file.

• Creation of the backup of a named process pair

If the backup of a named process pair is created, the backup process becomes the
“creator” or mom of the primary (that is, of the caller to PROCESS_LAUNCH_) and
the primary becomes the mom of the newly created backup process. See the
discussions of “mom process” and “ancestor process” in the Guardian
Programmer’s Guide.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-141

PROCESS_LAUNCH_ Procedure

• Program file and user library file differences

A user library is an program file containing one or more procedures. The
difference between a program file and a library file is that the library file cannot
contain a MAIN procedure; a program file must contain a MAIN procedure.
Undefined external references in a program file are resolved from the user library,
if any, or the system library. Unresolved references in a library are resolved only
from the system library.

• Library conflict: PROCESS_LAUNCH_ error

The library file for a process can be shared by any number of processes.
However, when a program is shared by two or more processes, all non-PIC
processes must have the same user library configuration; that is, all non-PIC
processes sharing the program either have the same user library, or they have no
user library. A library conflict error occurs when there is already a copy of the
non-PIC program running with a library configuration different from that specified in
the call to PROCESS_LAUNCH_.

This error is also generated if a user library file is specified when running an older
TNS program containing an implicit user library. (Before the D30.00 RVU, a large
TNS program file could be created with 16 segments of user code and up to 16
additional segments mapped as a user library. Subsequently, the user code and
user library limits were raised to 32 segments each, and the binder stopped
creating programs with an implicit user library.)

• Device subtypes for named processes (process subtypes)

The device subtype (or process subtype) is a program file attribute that can be set
by either a TAL compiler directive at compile time, nld flag at link time, or Binder
command at bind time. You can obtain the device type and subtype of a named
process by calling FILE_GETINFO[BYNAME]_ , FILEINFO, or DEVICEINFO.

Note that a process with a device subtype other than 0 must always be named.

There are 64 process subtypes available, where 0 is the default subtype for
general use. The other subtypes are as follows:

1 — 47 are reserved for definition by HP. Currently, 1 is a CMI process, 2
is a security monitor process, 30 is a device simulation process,
and 31 is a spooler collector process. Also, for subtypes 1 to 15,
PROCESS_LAUNCH_ rejects the create request with an invalid
process subtype error unless the caller has a creator access ID of
the super ID, or the program file is licensed, or the program file has
the PROGID attribute set and an owner of the super ID.

48 — 63 are for general use. Any user can create a named process with a
device subtype in this range.

For a list of all device types and subtypes, see Appendix A, Device Types and
Subtypes.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-142

PROCESS_LAUNCH_ Procedure

• Reserved process names

The operating system reserved process name space includes these names:
$Xname, $Yname, and $Zname, where name is from 1 through 4 alphanumeric
characters. You should not use names of this form in any application. System-
generated process names (from PROCESS_LAUNCH_,
NEWPROCESS[NOWAIT], PROCESSNAME_CREATE_ ,
CREATEPROCESSNAME and CREATEREMOTENAME) are selected from this
set of names. For more information about reserved process names, see
Appendix B, Reserved Process Names.

• Creator access ID (CAID) and process access ID (PAID)

The creator access ID of the new process is always the same as the process
access ID of the creator process. The process access ID of the new process is the
same as that of the creator process unless the program file has the PROGID
attribute set; in that case the process access ID of the new process is the same as
the user ID of the program file’s owner and the new process is always local.

• I/O error to the home terminal

An I/O error to the home terminal can occur if there are undefined externals in the
program file and PROCESS_LAUNCH_ is unable to open or write to the home
terminal to display the undefined externals messages. The error-detail
parameter contains the file-system error number that resulted from the open or
write that failed.

Nowait Considerations

• If you call this procedure in a nowait manner, the results are returned in the nowait
PROCESS_LAUNCH_ or PROCESS_CREATE_ completion message (-102), not
the output parameters of the procedure. The format of this completion message is
described in the Guardian Procedure Errors and Messages Manual. If error is
not 0, no completion message is sent to $RECEIVE. Errors can be reported either
on return from the procedure, in which case error and error-detail might be
meaningful, or through the completion message sent to $RECEIVE.

DEFINE Considerations

• DEFINEs are propagated to the new process from the process context of the
caller, from a caller-supplied buffer containing DEFINEs collected by calls to
DEFINESAVE, or from both of these. DEFINEs are propagated to the new process
according to the DEFINE mode of the new process and the propagation option
specified in Z^CREATE^OPTIONS. If both sets of DEFINEs are propagated and
both sets contain a DEFINE with the same name, the DEFINE in the caller-
supplied buffer is used. When a caller is creating its backup, the caller’s DEFINEs
are always propagated, regardless of the options chosen.

The =_DEFAULTS DEFINE is always propagated, regardless of the options
chosen. If the DEFINE buffer contains a =_DEFAULTS DEFINE, that one is

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-143

PROCESS_LAUNCH_ Procedure

propagated; otherwise, the =_DEFAULTS DEFINE in the caller’s context is
propagated.

Buffer space for DEFINEs being propagated to a new process is limited to 2 MB
whether the process is local or remote. However, the caller can propagate only as
many DEFINEs as the child’s PFS can accommodate in the buffer space for the
DEFINEs themselves and in the operational buffer space needed to do the
propagation. The maximum number of DEFINEs that can be propagated varies
depending upon the size of the DEFINEs being passed.

• When a process is created, its DEFINE working set is initialized with the default
attributes of CLASS MAP.

• The Z^PROGRAM^NAME, Z^LIBRARY^NAME, Z^SWAPFILE^NAME, or
Z^EXTSWAPFILE^NAME fields can be DEFINE names; PROCESS_LAUNCH_
uses the disk volume or file given in the DEFINE. If Z^PROGRAM^NAME is a
DEFINE name but no such DEFINE exists, an error is returned. If any of the other
names is a DEFINE name but no such DEFINE exists, the procedure behaves as if
no name were specified. This feature of accepting names of nonexistent DEFINEs
as input gives the programmer a convenient mechanism that allows, but does not
require, user specification of the location of the library file, the swap file, or the
extended swap file.

• For each process, a count is kept of the changes to that process’s DEFINEs. This
count is always 0 for newly-created processes. The count is incremented each
time the procedures DEFINEADD, DEFINEDELETE, DEFINESETMODE, and
DEFINEDELETEALL are invoked and a consequent change to the process context
occurs. In the case of DEFINEDELETE and DEFINEDELETEALL, the count is
incremented by one even if more than one DEFINE is deleted. The count is also
incremented if the DEFINE mode of the process is changed. If a call to
CHECKDEFINE causes a DEFINE in the backup to be altered, deleted, or added,
then the count for the backup process is incremented.

Batch Processing Considerations

• When the process being created is part of a batch job, PROCESS_LAUNCH_
sends a job process creation message to the job ancestor of the batch job. (See
the discussion of “job ancestor” in the Guardian Programmer’s Guide.) The
message identifies the new process and contains the job ID as originally assigned
by the job ancestor. This enables the job ancestor to keep track of all the
processes belonging to a given job.

For the format of the job process creation message, see the Guardian Procedure
Errors and Messages Manual.

• PROCESS_LAUNCH_ can create a new process and establish that process as a
member of the caller’s batch job. In that case the caller’s job ID is propagated to

Note. The job ancestor facility is intended for use by the NetBatch product. Other applications
that use this facility might be incompatible with the NetBatch product.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-144

PROCESS_LAUNCH_ Procedure

the new process. If the caller is part of a batch job, to start a new process that is
part of the caller’s batch job, set Z^JOBID to -1.

• PROCESS_LAUNCH_ can create a new process separate from any batch job,
even if the caller is a process that belongs to a batch job. In that case the job ID of
the new process is 0. To start a new process that is not part of a batch job, specify
0 for Z^JOBID.

• PROCESS_LAUNCH_ can create a new batch job and establish the new process
as a member of the newly created batch job. In that case, the caller becomes the
job ancestor of the new job; the job ID supplied by the caller becomes the job ID of
the new process. To start a new batch job, specify a nonzero value (other than -1)
for Z^JOBID.

A job ancestor must not have a process name that is greater than four characters
(not counting the dollar sign). When the caller of PROCESS_LAUNCH_ is to
become a job ancestor, it must conform to this requirement.

• When Z^JOBID is set to -1:

• If the caller is not part of a batch job, neither is the newly created process; its
job ID is 0.

• If the caller is part of a batch job, the newly created process is part of the same
job because its job ID is propagated to the new process.

• Once a process belongs to a batch job, it remains part of the job.

Safeguard Considerations
For information on processes protected by Safeguard, see the Safeguard Reference
Manual.

OSS Considerations

• You cannot create an OSS process using the PROCESS_LAUNCH_ procedure.
PROCESS_LAUNCH_ returns error 12 if you try. Use the PROCESS_SPAWN_
procedure or OSS functions to create an OSS process.

• You can call PROCESS_LAUNCH_ from an OSS process to create a Guardian
process.

• Every Guardian process has these security-related attributes for accessing OSS
objects. These attributes are passed, unchanged, from the caller to the new
process, whether the caller is an OSS process or a Guardian process:

• Real, effective, and saved user ID

• Real, effective, and saved group ID

• Group list

• Login name

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-145

PROCESS_SETINFO_ Procedure

• Current working directory (cwd)

• Maximum file size

• Default OSS file security

• No other OSS process attribute is inherited by the new process.

• OSS file opens in the calling process are not propagated to the new process.

Related Programming Manuals
For programming information about the PROCESS_LAUNCH_ procedure, see the
Guardian Programmer’s Guide. For programming information on batch processing,
see the appropriate NetBatch manual.

PROCESS_SETINFO_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Safeguard Considerations
OSS Considerations
Example
Related Programming Manual

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-146

PROCESS_SETINFO_ Procedure

Summary
The PROCESS_SETINFO_ procedure alters a single nonstring attribute of a specified
process and optionally returns the prior value of the attribute.

You can use the PROCESS_SETSTRINGINFO_ procedure to alter string-form process
attributes such as home terminal.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error indicating the outcome of the operation.

processhandle input

INT .EXT:ref:10

is a process handle that specifies the process of interest. If this parameter is
omitted or null, the caller is the process of interest. The null process handle is one
which has -1 in each word (Refer to Guardian procedure call,
PROCESSHANDLE_NULLIT_). However, PROCESS_SETINFO_ also treats a
process handle with -1 in the first word as a null process handle.

#include <cextdecs(PROCESS_SETINFO_)>

short PROCESS_SETINFO_ ([short *processhandle]
 ,[short specifier]
 ,short set-attr-code
 ,[short *set-value]
 ,[short set-value-len]
 ,[short *old-value]
 ,[short old-value-maxlen]
 ,[short *old-value-len]);

error := PROCESS_SETINFO_ ([processhandle] ! i
 ,[specifier] ! i
 ,set-attr-code ! i
 ,[set-value] ! i
 ,[set-value-len] ! i
 ,[old-value] ! o
 ,[old-value-maxlen] ! i
 ,[old-value-len]); ! o

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-147

PROCESS_SETINFO_ Procedure

specifier input

INT:value

indicates whether the operation should affect both members of a named process
pair. Valid values are:

0 Act upon the specified process only.
1 Act upon both members of current instance of named process pair if

processhandle specifies a member of a named process pair.

The default is 0.

Priority is the only attribute that can be altered for either a single member or both
members of a named process pair. Changes to process file security and mom
affect only a single process (specifier is treated as 0). Changes to item 49
(qualifier-info-available) always affect the named process pair as a whole
(specifier is treated as 1).

set-attr-code input

INT:value

is the code specifying the process attribute to be altered. for more information
about process attributes, see “Considerations” under this procedure and General
Considerations on page 12-62.

set-value input

INT .EXT:ref:*

specifies the new value of the attribute to be altered.

set-value-len input

INT:value

specifies the length in words of set-value.

Both set-value and set-value-len must be present unless the attribute being
altered is item 40 (mom’s-processhandle). In that case, both parameters can be
omitted.

old-value output

INT .EXT:ref:*

if present and old-value-maxlen is not 0, returns the prior value of the attribute
being altered. When this parameter is present, old-value-maxlen and old-
value-len must be present; otherwise, all three parameters must be omitted.

If priority is being altered for both members of a process pair, the old priority of the
primary process is returned.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-148

PROCESS_SETINFO_ Procedure

old-value-maxlen input

INT:value

specifies the length in words of the variable old-value. This parameter must be
present when old-value is present; otherwise, it must be omitted.

old-value-len output

INT .EXT:ref:1

is the actual length in words of old-value. This parameter must be present
when old-value is present; otherwise, it must be omitted.

set-attr-code

set-attr-code and its associated value can be one of these attributes:

Attributes marked with an asterisk (*) can be altered only when the caller is the
target process. Attributes marked with a plus sign (+) can be altered only when the
caller is a privileged process.

• 40: mom's process handle

sets the process handle of the mom of the specified process. The process handle
to be used must only be the process handle of the calling process. If the calling
process attempts to specify a process handle other than itself as the mom process
handle, PROCESS_SETINFO_ ignores that parameter. See Considerations for
more information.

• 41: process file security

sets the current default process file security setting. The security bits are as
follows:

Attribute Code TAL Value Representation

40 mom's process handle INT (10 words)

* 41 process file security INT

42 priority INT

+* 45 logged-on state INT

* 47 primary INT

* 49 qualifier information available INT

+* 50 Safeguard-authenticated logon INT

+* 69 stop on logoff INT

+* 70 propagate logon INT

+* 71 propagate stop-on-logoff INT

75 nice() caller’s value INT(32)

*104 maximum size of the main stack INT(32)

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-149

PROCESS_SETINFO_ Procedure

<0:3> 0
<4:6> ID code allowed for read
<7:9> ID code allowed for write
<10:12> ID code allowed for execute
<13:15> ID code allowed for purge

ID code can be one of these:

0 Any user (local)
1 Member of owner's group (local)
2 Owner (local)
4 Any user (local or remote)
5 Member of owner's community (local or remote)
6 Owner (local or remote)
7 Super ID only (local)

• 42: current priority

sets execution priority to be assigned to the new process. Execution priority is a
value in the range of 1 to 199, where 199 is the highest possible priority.

• 45: logged-on state

sets information about the logged-on state of the process. The fields are:

 <0:14> Reserved (specify 0)

 <15> 0 Process is not logged on.
1 Process is logged on.

• 47: primary

specify 1 if the process is the current primary of a named process pair, 0 otherwise.

• 49: qualifier information available

specify 1 if the process is prepared to respond to the subordinate name inquiry
system message (-107). This message is received when another process calls the
FILENAME_FINDNEXT_ procedure to obtain qualifier names of the process. If the
process does not respond to the message, other processes calling the
FILENAME_FINDNEXT_ procedure on the system might be blocked.

Specify 0 to disable the receipt of the subordinate name inquiry system message
(-107).

For the format of the subordinate name inquiry message, see the Guardian
Procedure Errors and Messages Manual.

• 50: Safeguard-authenticated logon

specify 1 if a Safeguard-authenticated logon has taken place (that is, if the process
was started after successfully logging on a through terminal owned by
Safeguard), 0 otherwise. This information can be set for the caller only.

• 69: stop on logoff

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-150

PROCESS_SETINFO_ Procedure

specify 1 if the process is to be stopped when it requests to be placed in the
logged-off state, 0 otherwise.

• 70: propagate logon

specify 1 if the process’s local descendants are to be created with the inherited-
logon flag set, 0 otherwise.

• 71: propagate stop-on-logoff

specify 1 if the process’s local descendants are to be created with the stop-on-
logoff flag set, 0 otherwise.

• 75: nice() caller’s value

Because the nice() value is INT(32), set-value-len must be two words.

• 104: maximum size of the main stack

sets the maximum main stack size in bytes. You cannot specify a value that is less
than the current main stack size or greater than the system will allow (32
megabytes (MB)). To obtain the current main stack size, call the
PROCESS_GETINFOLIST_ procedure with the current main stack size attribute
(103).

Considerations

• The caller of PROCESS_SETINFO_

When PROCESS_SETINFO_ is called on a Guardian process, the caller must be
the super ID, the group manager of the process access ID, or a process with the
same process access ID as the process or process pair whose attribute is being
changed. For information about the process access ID, see the description under
“Considerations” for the PROCESS_GETINFO_ procedure and the Guardian
User’s Guide.

When PROCESS_SETINFO_ is called on an OSS process, the security rules that
apply are the same as those that apply when calling the OSS kill() function.
See the kill(2) function reference pages either online or in the Open System
Services System Calls Reference Manual for details.

The caller must be local to the same system as the specified process. A process
is considered to be local to the system on which its creator is local. A process is
considered to be remote, even if it is running on the local system, if its creator is
remote. (In the same manner, a process running on the local system whose
creator is also running on the local system might still be considered remote
because its creator’s creator is remote.)

A remote process running on the local system can become a local process by
successfully logging on to the local system using a call to the
USER_AUTHENTICATE_ procedure (or VERIFYUSER). After a process logs on
to the local system, any processes that it creates are considered local.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-151

PROCESS_SETINFO_ Procedure

• Attributes that can be set or cleared by privileged callers only

Several attributes can be set or cleared (set to 0) by privileged callers only, as
follows:

item 45 (logged-on state) must be priv to set, nonpriv can clear
item 50 (Safeguard-authenticated logon) must be priv to set or clear
item 70 (propagate logon) must be priv to set, nonpriv can clear
item 75 (nice() caller’s value) must be priv to set or clear

• Mom’s process handle

Specifying item 40 (mom’s process handle) is analogous to calling STEPMOM on a
process. The caller becomes the new mom of the specified process, and will
receive the process deletion system message when the process terminates. The
former mom will not receive a process deletion system message. specifier is
ignored, as this operation applies only to a single target process. set-value is
ignored, because the caller must be doing the adoption on its own behalf; no third-
party adoptions are permitted.

A process should not alter the mom of a member of a named process pair by
calling either PROCESS_SETINFO_ or STEPMOM. This causes errors and
interferes with operation, as correct operation depends upon each member of a
named process pair being the other member’s mom.

The creator of a named process should not adopt its named child process, even if
the child is a single named process rather than a named process pair. Doing so
establishes the creator as its mom as well as its ancestor. When the process
terminates, the creator will receive two system messages—one for the
disappearance of the named process as an entity, and one for the disappearance
of the adopted process.

If PROCESS_SETINFO_ is used to set the mom of an OSS process, the new mom
receives the Guardian process deletion message when the OSS process
terminates. The received message contains an indication that the terminated
process was an OSS process and also contains the OSS process ID; otherwise,
the message is the same as one received for a terminating Guardian process. For
more information on the Guardian parent of an OSS process, see Keeping Track of
OSS Child Processes on page 12-183.

If the OSS process successfully executes a function from the exec or tdm_exec
set of functions, a Guardian process deletion message is sent to the mom.
Although the process is still alive in the OSS environment (the OSS process ID still
exists), the process handle no longer exists, so the process has terminated in the
Guardian environment.

The OSS parent process (which is not necessarily the same process as the mom
process) also receives OSS process termination status if the OSS process ID no
longer exists. The order of delivery of the OSS process termination status and the
Guardian process deletion message is not guaranteed.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-152

PROCESS_SETINFO_ Procedure

See the Guardian Procedure Errors and Messages Manual for the format of the
Guardian process deletion message. See the wait(2) function reference pages
either online or in the or the Open System Services System Calls Reference
Manual for details on the OSS process termination status.

• Priority

A process has two priority values: the initial priority and the current priority.
Specifying item 42 (priority) causes the initial priority to be changed to the specified
new value. The current priority is updated to the initial priority when the process
waits for an external event to occur.

Although PROCESS_SETINFO_ supersedes PRIORITY, it does not return the
initial priority value. Initial priority can be obtained by calling
PROCESS_GETINFOLIST_.

• Primary

If a switch or a backup takeover occurs (causing the backup process to become
the new primary) through use of the checkpoint procedures, it is not necessary to
use PROCESS_SETINFO_ to set the primary attribute of the new primary. The
checkpoint procedures automatically identify the new primary process to the
operating system.

Safeguard Considerations
For information on processes protected by Safeguard, see the Safeguard Reference
Manual.

OSS Considerations
If PROCESS_SETINFO_ is used to change the priority of an OSS process, the same
security rules apply as for the OSS kill() function. See the kill(2) function
reference pages either online or in the Open System Services System Calls Reference
Manual for details.

Example
INT set^attribute^code := 42; ! set execution priority
 .
 .
err := PROCESS_SETINFO_ (proc^handle , ,
 set^attribute^code , new^priority ,
 set^value^length);

Related Programming Manual
For programming information about the PROCESS_SETINFO_ procedure, see the
Guardian Programmer’s Guide.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-153

PROCESS_SETSTRINGINFO_ Procedure

PROCESS_SETSTRINGINFO_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example
Considerations
Related Programming Manual

Summary
The PROCESS_SETSTRINGINFO_ procedure alters a single string-form attribute of a
specified process, and optionally returns the prior value of the attribute.

You can use the PROCESS_SETINFO_ procedure to alter nonstring process
attributes.

Figure 12-1. Effect of Adopting a Process

(A) Creates (B)
:

(A)

(A)

(A)

(B) Creates (C)
:

(C) calls PROCESS_SETINFO_ with item 40 and passes B's process ID

MOM = (A)

MOM = (A)

MOM = (B)

MOM = (C) MOM = (B)

(B)

(B)

(B)

(B) receives a process deletion message
 if (C) is deleted.

Likewise,
(C) receives a process deletion message
 if (B) is deleted.

(C)

(C)

VST003.VSD

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-154

PROCESS_SETSTRINGINFO_ Procedure

Syntax for C Programmers

• The parameter length specifies the length in bytes of the character string pointed
to by set-value. The parameters set-value and length must either both be
supplied or both be absent.

• The parameter maxlen specifies the maximum length in bytes of the character
string pointed to by old-value, the actual length of which is returned by old-
value-len. All three of these parameters must either be supplied or be absent.

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation.

processhandle input

INT .EXT:ref:10

is a process handle that specifies the process of interest. If this parameter is
omitted or null, the caller is the process of interest. The null process handle is one
which has -1 in each word (Refer to Guardian procedure call,
PROCESSHANDLE_NULLIT_). However, PROCESS_SETSTRINGINFO_ also
treats a process handle with -1 in the first word as a null process handle.

#include <cextdecs(PROCESS_SETSTRINGINFO_)>

short PROCESS_SETSTRINGINFO_ ([short *processhandle]
 ,[short specifier]
 ,short set-attr-code
 ,const char *set-value
 ,short length
 ,[char *old-value]
 ,[short maxlen]
 ,[short *old-value-len]);

error := PROCESS_SETSTRINGINFO_ ([processhandle] ! i
 ,[specifier] ! i
 ,set-attr-code ! i
 ,set-value:length !
i:i
 ,[old-value:maxlen] !
o:i
 ,[old-value-len]); ! o

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-155

PROCESS_SETSTRINGINFO_ Procedure

specifier input

INT:value

indicates whether the operation should affect both members of a named process
pair. Valid values are:

0 Act upon the specified process only.
1 Act upon both members of current instance of named process pair if

processhandle specifies a member of a named process pair.

The default is 0.

A change to the home terminal affects only a single process (specifier is
treated as 0).

set-attr-code input

INT:value

is the code specifying the process attribute to be altered. For more information
about process attributes, see “Considerations” under this procedure and under
PROCESS_GETINFO_ Procedure .

set-value:length input:input

STRING .EXT:ref:*, INT:value

is the new value for the attribute to be altered. The value of set-value must be
exactly length bytes long.

old-value:maxlen output:input

STRING .EXT:ref:*, INT:value

if present and maxlen is not 0, returns the prior value for the attribute being
altered.

old-value-len output

INT .EXT:ref:1

is the actual length in bytes of old-value. This parameter must be present when
old-value is present. Otherwise, both must be omitted.

Considerations

• The caller of PROCESS_SETSTRINGINFO_ must be the super ID, the group
manager of the process access ID, or a process with the same process access ID
as the process or process pair whose attribute is being changed. For information
about the process access ID, see General Considerations on page 12-62 and the
Guardian User’s Guide.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-156

PROCESS_SPAWN_ Procedure

The caller must be local to the same system as the specified process. A process
is considered to be local to the system on which its creator is local. A process is
considered to be remote, even if it is running on the local system, if its creator is
remote. (In the same manner, a process running on the local system whose
creator is also running on the local system might still be considered remote
because it’s creator’s creator is remote.)

A remote process running on the local system can become a local process by
successfully logging on to the local system by a call to USER_AUTHENTICATE_
(or VERIFYUSER). After a process logs on to the local system, processes that it
creates are considered local.

• set-attr-code

set-attr-code can be one of these attributes:

* 5 = home terminal

An asterisk (*) indicates that the attribute can be altered only when the caller is the
target process.

• home terminal

This is the only attribute that currently can be altered by
PROCESS_SETSTRINGINFO_. If a process alters this attribute, the new home
terminal becomes the home terminal for any process that it subsequently creates.

Example
attr^code := 5; ! alter home terminal name
error := PROCESS_SETSTRINGINFO_ (, , attr^code,
 new^termname:namelen);

Related Programming Manual
For programming information about the PROCESS_SETSTRINGINFO_ procedure,
see the Guardian Programmer’s Guide.

PROCESS_SPAWN_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Structure Definition for fdinfo
Structure Definition for inheritance
Structure Definition for process-extension
Structure Definition for process-results
Nowait Considerations

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-157

PROCESS_SPAWN_ Procedure

Considerations for Resolving File Names
Considerations for Resolving External References
Considerations for Reserved Names
Keeping Track of OSS Child Processes
Creator Access ID and Process Access ID
Compatibility Considerations
DEFINE Considerations
Batch Processing Considerations
Safeguard Considerations
Related Programming Manuals

Summary

The PROCESS_SPAWN_ procedure creates a new Open System Services (OSS)
process and, optionally, assigns a number of process attributes. You can use this
procedure to create only OSS processes, although you can call it from either a
Guardian process or an OSS process. To create a Guardian process, call the
PROCESS_LAUNCH_ procedure.

DEFINEs can be propagated to the new process. The DEFINEs can come from the
caller’s context or from a buffer of DEFINEs saved by the DEFINESAVE procedure.

PROCESS_SPAWN_ differs from the OSS functions that create OSS processes in
these ways:

• You can specify that the new process be created in either a waited or nowait
manner. When it is created in a waited manner, identification for the new process
is returned directly to the caller. When it is created in a nowait manner, its
identification is returned in a system message sent to the caller’s $RECEIVE file.

• You can obtain a level of fault tolerance in OSS processes by calling
PROCESS_SPAWN_ to create OSS processes from a monitor implemented as a
Guardian process pair. The monitor checks that the created OSS process
continues to run and restarts it if there is a failure. For more information on writing
fault-tolerant programs, see the Guardian Programmer’s Guide.

• You can call PROCESS_SPAWN_ from either a Guardian process or an OSS
process.

• The caller of PROCESS_SPAWN_ becomes the Guardian parent of the new OSS
process.

• Because the caller of PROCESS_SPAWN_ is the Guardian parent of the new OSS
process, when the new process is terminated, it receives a process deletion
system message (-101) through its $RECEIVE file rather than an OSS SIGCHLD
signal. The caller also receives this message (with a different completion code)
when the child process calls one of the OSS exec set of functions and migrates to

Note. The TAL or pTAL syntax for this procedure is declared only in the EXTDECS0 file.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-158

PROCESS_SPAWN_ Procedure

a new process handle. For more information on the process deletion message and
its completion codes, see the Guardian Procedure Errors and Messages Manual.

• The new process does not have an OSS caller; instead it is considered to be an
OSS orphan process with a caller process ID of 1.

• OSS file opens in the calling process are not propagated to the new process. The
file opens must be specified explicitly in the fdinfo parameter.

• The created OSS process is always the leader of its own session.

• The calling process is not required to be compliant with the Common Run-Time
Environment.

• PROCESS_SPAWN_ can create a process on local system or on a remote
system.

• These following OSS attributes are passed, unchanged, from the caller to the new
OSS process, whether the caller is an OSS process or a Guardian process:

• Real, effective, and saved OSS user ID

• Real, effective, and saved group ID

• Group list

• Login name

• Current working directory

• Maximum file size

• Default OSS file security

No other OSS process attribute is inherited by the new process.

For more information on creating an OSS process and for details on the parameters to
this procedure, see the tdm_spawn() function reference page either online or in the
Open System Services System Calls Reference Manual.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-159

PROCESS_SPAWN_ Procedure

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

Syntax for TAL Programmers

Parameters

oss-pid returned value

INT(32) .EXT:ref:1

returns the OSS process ID of the new process. If you created the process in a
nowait manner, then the returned value is 0D and the OSS process ID is returned
in the completion message sent to $RECEIVE. If an error occurs, the returned
value is -1D.

oss-program-file input

STRING .EXT:ref:*

specifies the null-terminated OSS pathname of the OSS program file to be run. If
the pathname is an absolute pathname, it is resolved relative to the root of the
caller. If the pathname is a relative pathname, it is resolved with respect to the

#include <cextdecs(PROCESS_SPAWN_)>

__int32_t PROCESS_SPAWN_ ([char *oss-program-file]
 ,[void *fdinfo]
 ,[char *argv]
 ,[char *envp]
 ,[void *inheritance]
 ,[__int32_t inheritance-length]
 ,[void *process-extension]
 ,[void *process-results]
 ,[__int32_t nowait-tag]
 ,[char *path]);

oss-pid:= PROCESS_SPAWN_ (oss-program-file ! i
 ,[fdinfo] ! i
 ,[argv] ! i
 ,[envp] ! i
 ,[inheritance] ! i
 ,[inheritance-length] ! i
 ,[process-extension] ! i
 ,[process-results] ! i:o
 ,[nowait-tag] ! i
 ,[path]); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-160

PROCESS_SPAWN_ Procedure

caller’s current working directory. If the pathname is the program name, the path
provided in the path parameter is searched for the program file.

Shell scripts that exist on nodes other than the caller’s node (remote shell scripts)
cannot be spawned (for more information, see Considerations for Resolving File
Names on page 12-182). Shell scripts that exist on the caller’s node (local shell
scripts) are supported, but security is ignored if an interpreter that exists on another
node is used. A shell script must contain this string syntax in the first line of the file
when the path parameter is not specified:

#! interpreter-name optional-arguments

If the Guardian caller does not already have a current working directory,
PROCESS_SPAWN_ attempts to establish the caller’s default subvolume as the
current working directory.

For a description of OSS pathname syntax, see Appendix D, File Names and
Process Identifiers.

fdinfo input

STRING .EXT:ref:(ZSYS^DDL^FDINFO)

specifies the file creation mask, current working directory, and file descriptors to be
opened or duplicated by the new process. This parameter also allows the caller to
limit the time allowed for the child process to open all of its files. If the pathnames
are absolute pathnames, they are resolved relative to the child’s root. If the
pathnames are relative pathnames, they are resolved relative to the child’s current
working directory. For information on how to assign field values to the structure,
see “Structure Definition for fdinfo.”

argv input

EXTADDR .EXT:ref:1

if present and not equal to 0D, specifies the address of an array of addresses that
point to null-terminated strings containing arguments to be passed to the main
function of the new process. The last member of this array must be a null pointer
(0D). Most programs expect argv[0] to point to a null-terminated string containing
the pathname of the OSS program file (use the address of the oss-program-
file parameter). The argument (argv) string is passed to the child unmodified by
PROCESS_SPAWN_.

The number of bytes available for the new process’s combined argument (argv)
and environment (envp) lists has a system-imposed limit. This limit, which
includes the pointers and the null terminators on the strings, is available by calling
the OSS sysconf(_SC_ARG_MAX) function.

envp input

EXTADDR .EXT:ref:1

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-161

PROCESS_SPAWN_ Procedure

if present and not equal to 0D, specifies the address of an array of addresses that
point to null-terminated strings that describe the environment of the new process.
The last member of this array must be a null pointer (0D). The environment (envp)
string is passed to the child unmodified by the PROCESS_SPAWN_ procedure.
Most programs expect these strings to have this syntax:

name = value

The number of bytes available for the new process’s combined argument (argv)
and environment (envp) lists has a system-imposed limit. This limit, which
includes the pointers and the null terminators on the strings, is available by calling
the OSS sysconf(_SC_ARG_MAX) function.

inheritance input

STRING .EXT:ref:(ZSYS^DDL^INHERITANCE)

if inheritance-length is not zero, specifies which signals are either blocked or
use default action for the new process. For information on how to assign field
values to the structure, see “Structure Definition for inheritance.”

inheritance-length input

INT(32):value

specifies the length in bytes of inheritance. This parameter is required if
inheritance is specified.

process-extension input

STRING .EXT:ref:(ZSYS^DDL^PROCESSEXTENSION)

specifies the Guardian attributes of the new process. For information on how to
set the field values of the structure, see “Structure Definition for
process-extension.”

process-results input:output

STRING .EXT:ref:(ZSYS^DDL^PROCESSRESULTS)

provides Guardian information on the outcome of the procedure call. For
information on the field values of the structure, see “Structure Definition for
process-results.”

The tdmext.h header file is not kept current when new error codes are defined for
process creation

functions. The list of _TPC_ macros described in this reference page is not
complete; for a current description of error macros and error codes, see the
Guardian header file $SYSTEM.ZSPIDEF.ZGRDC or Table 12-3, Summary of
Process Creation Errors .

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-162

PROCESS_SPAWN_ Procedure

nowait-tag input

INT(32):value

if present and not equal to -1D, indicates that the process is to be created in a
nowait manner; the PROCESS_SPAWN_ procedure returns as soon as process
creation is initiated. For details ,see Nowait Considerations on page 12-142. The
Z^TIMEOUT field of the fdinfo structure also contains nowait considerations.

If nowait-tag is equal to -1D, the process is created in a waited manner.

path input

STRING .EXT:ref:*

if present and not null (0D), and if the oss-program-file parameter does not
contain a slash character, specifies a null-terminated string of path prefixes
separated by colons to further identify the oss-program-file parameter. If the
resolved name is not the name of a program file, then the oss-program-file
parameter is treated as a shell script for the command interpreter. The path
parameter is equivalent to the OSS path environment variable.

If the path parameter is not specified, then a shell script must contain this string
syntax in the first line of the file:

#! interpreter-name optional-arguments

Specifically, if the path parameter is not specified or is null (0D), and a shell script
does not have the syntax shown above, PROCESS_SPAWN_ returns OSS errno
value 4008 (ENOEXEC) in the ZSYS-DDL-PROCESSRESULTS.Z-ERRNO field of
the process-results parameter.

Structure Definition for fdinfo
The fdinfo parameter specifies the file descriptors to be opened or duplicated by the
new process.

The structure for the fdinfo parameter can contain multiple occurrences of the
Z^FDENTRY substructure (fdentry for C programs).

Note. Use only the files specified in these pages to obtain the definitions for the structures and
literals. The definitions in other files may produce undesired results.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-163

PROCESS_SPAWN_ Procedure

In the TAL ZSYSTAL file, the structure for the fdinfo parameter is defined as:

For TAL programs, these default values must be specified when an option is not
wanted:

STRUCT ZSYS^DDL^FDINFO^DEF (*);
 BEGIN
 INT(32) Z^LEN;
 INT(32) Z^TIMEOUT;
 INT(32) Z^UMASK;
 INT(32) Z^CWD;
 INT(32) Z^FDCOUNT;
 STRUCT Z^FDENTRY;
 BEGIN
 INT(32) Z^FD;
 INT(32) Z^DUPFD;
 INT(32) Z^NAME;
 INT(32) Z^OFLAG;
 INT(32) Z^MODE;
 END;
 END;

Field Name Default Value

Z^LEN $OFFSET(ZSYS^DDL^FDINFO.FDENTRY.Z^MODE) +
$LEN(ZSYS^DDL^FDINFO.FDENTRY.Z^MODE)

Z^TIMEOUT -1D

Z^UMASK -1D

Z^CWD 0D

Z^FDCOUNT 0D

Z^FDENTRY.Z^FD 0D

Z^FDENTRY.Z^DUPF
D

0D

Z^FDENTRY.Z^NAME 0D

Z^FDENTRY.Z^OFLA
G

0D

Z^FDENTRY.Z^MODE 0D

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-164

PROCESS_SPAWN_ Procedure

In the C tdmext.h header file, the structures for the fdinfo parameter are defined as:

C programs should initialize the fdinfo structure by using the #define
DEFAULT_FDINFO in the tdmext.h header file.

Z^Len

is the length of the ZSYS^DDL^FDINFO structure including one occurrence of the
Z^FDENTRY substructure. Because the structure is subject to change, Z^LEN is
used by PROCESS_SPAWN_ to identify the version of the structure.

Z^Timeout

indicates how long the new process waits for the OSS open() and dup()
functions to complete opening and duplicating all files specified in Z^FDENTRY.
Z^TIMEOUT can have these values:

> 0D specifies a wait-for-completion. The value specifies the maximum time
(in 1-second units) that the new process can wait for completion of the
OSS open() and dup() functions. If PROCESS_SPAWN_ is called
in a nowait manner, the completion message is sent when the
Z^TIMEOUT value is reached or when all files are opened or
duplicated, whichever comes first.

= -1D specifies an indefinite wait. If PROCESS_SPAWN_ is called in a
nowait manner, the completion message is sent when all files are
opened or duplicated.

= 0D specifies a return after the new process is created. After the new
process is created, PROCESS_SPAWN_ returns immediately to the
caller, regardless of whether open or duplication completions occur. If
PROCESS_SPAWN_ is called in a nowait manner, the completion
message is sent when the new process is created.

typedef struct fdinfo {
 long z_len;
 long z_timeout;
 long z_umask;
 char *z_cwd;
 long z_fdcount;
 fdentry_def z_fdentry;
} fdinfo_def;

typedef struct fdentry {
 long z_fd;
 long z_dupfd;
 char *z_name;
 long z_oflag;
 long z_mode;
} fdentry_def;

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-165

PROCESS_SPAWN_ Procedure

Z^Umask

is the OSS file mode creation mask of the new process. A value of -1 indicates
that the OSS file mode creation mask of the calling process should be used. For
more information see the umask() function reference page either online or in the
Open System Services System Calls Reference Manual.

Z^Cwd

is the address of a string containing the null-terminated OSS pathname of the OSS
current working directory of the new process. A value of 0D indicates that the OSS
current working directory of the calling process should be used. If the caller does
not have a current working directory, then the caller’s default volume is used. An
absolute pathname should be specified, because relative file names are resolved
using the undefined environment of the new process.

Z^FdCount

is the number of Z^FDENTRY substructures occurring in the structure. Each
substructure specifies a file descriptor to be opened or duplicated by the new
process.

Z^FdEntry

describes a file descriptor in these fields.

Z^Fd

is the file descriptor to be opened. Z^FD can have these values:

0D standard input
1D standard output
2D standard error
other user-defined

Z^DUPFd

indicates whether the file descriptor specified in Z^FD is to be opened as a
duplicate with the OSS dup() function. Z^DUPFD can have these values:

> 0D This file descriptor is a duplicate of a file descriptor previously specified
in Z^FD.

= -1D This file descriptor is not a duplicate. Open the file descriptor with the
OSS open() function according to the values in these fields.

Z^Name

is the address of a string containing the null-terminated OSS pathname of the
file to be opened by the new process. It must be possible to open this file with
the OSS open() function. A relative pathname is resolved with the value for
the OSS current working directory in Z^CWD.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-166

PROCESS_SPAWN_ Procedure

To have the new process open a pipe, specify a named pipe (also known as a
FIFO) in the Z^NAME field. To create a FIFO, use the OSS mkfifo()
function.

Z^Oflag

is the file access flag and file status flag to be used by the OSS open()
function called by the new process. This field is ignored when the file is
opened as a duplicate. For more information on these flags, see the open()
reference page either online or in the Open System Services System Calls
Reference Manual.

These tables summarize the values for Z^OFLAG. TAL literals are defined in
the ZSYSTAL file. Literals in the zsysc file, for C programs, are the same as
those for TAL except that they contain the underscore (_) character instead of
the circumflex (^) character.

One of these file access flags must be supplied:

One of these file status flags can be supplied:

Name (ZSYS^VAL^) Value Description
Corresponding
open() Flag

OSSOPEN^RDONL
Y

0 Open only for reading O_RDONLY

OSSOPEN^RDWR 2 Open for reading and
writing

O_RDWR

OSSOPEN^WRONL
Y

1 Open only for writing O_WRONLY

Name (ZSYS^VAL^) Value Description
Corresponding
open() Flag

OSSOPEN^APPEND 4 Open only for append
access

O_APPEND

OSSOPEN^CREAT 8 Create and open the
file

O_CREAT

OSSOPEN^EXCL 32 Open in exclusive
access mode

O_EXCL

OSSOPEN^NOCTTY 3276
8

Do not open as
controlling terminal

O_NOCTTY

OSSOPEN^NONBLOC
K

1638
4

Open for nonblocked
access

O_NONBLOCK

OSSOPEN^SYNC 6553
6

Open for synchronized
update

O_SYNC

OSSOPEN^TRUNC 16 Open and empty the
file

O_TRUNC

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-167

PROCESS_SPAWN_ Procedure

Z^MODE

is the read, write, and execute permissions of the file to be created when
Z^OFLAG is set to ZSYS^VAL^OSSOPEN^CREAT. Otherwise, Z^MODE is
ignored. For more information on file permissions, see the OSS open()
reference page either online or in the Open System Services System Calls
Reference Manual.

Structure Definition for inheritance
The inheritance parameter specifies which signals are blocked or use default
action for the new process. For more information on OSS signals, see the signal(4)
reference page either online or in the Open System Services System Calls Reference
Manual.

In the TAL ZSYSTAL file, the structure for the inheritance parameter is defined as:

For TAL programs, this default value must be specified when this parameter is not
wanted:

In the C spawnh file, the structure for the inheritance parameter is defined as:

C programs should initialize the inheritance structure by setting the flags field to 0.

Z^Flags

specifies whether the Z^SIGMASK field or the Z^SIGDEFAULT field or both fields
are specified.

STRUCT ZSYS^DDL^INHERITANCE^DEF (*);
 BEGIN
 INT Z^FLAGS;
 INT Z^FILLER;
 INT(32) Z^PGROUP;
 INT(32) Z^SIGMASK;
 INT(32) Z^SIGDEFAULT;
 END;

Field Name Default Value

Z^FLAGS 0

typedef struct inheritance {
 short flags;
#define SPAWN_SETGROUP 0x01 /* not used by PROCESS_SPAWN_ */
#define SPAWN_SETSIGMASK 0x02/* controls child sigmask*/
#define SPAWN_SETSIGDEF 0x04 /* controls child sigmask*/
#define SPAWN_NOTDEFD 0xFFF8 /* undefined bit fields */
 char filler_1[2];
 pid_t pgroup;
 sigset_t sigmask;
 sigset_t sigdefault;
} inheritance;

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-168

PROCESS_SPAWN_ Procedure

These tables summarize the settings for Z^FLAGS. TAL literals are defined in the
ZSYSTAL file. Literals in the zsysc file, for C programs, are the same as those for
TAL except that they contain the underscore (_) character instead of the circumflex
(^) character.

Either one or both of these values can be supplied:

Z^Pgroup

is not used by PROCESS_SPAWN_. Specify 0D.

Z^SigMask

is a mask indicating which signals are to be blocked by the new process when
Z^FLAGS contains ZSYS^VAL^SPAWN^SETSIGMASK. When Z^SIGMASK.<n>
is set to 1, the signal represented by bit <n> is blocked.

Z^SigDefault

is a mask indicating which signals are to use default action for the new process
when Z^FLAGS contains ZSYS^VAL^SPAWN^SETSIGDEF. When
Z^SIGDEFAULT.<n> is set to 1, the signal represented by bit <n> is used.

Name (ZSYS^VAL^) Value Description

SPAWN^SETSIGDEF 4 indicates that Z^SIGDEFAULT is specified

SPAWN^SETSIGMASK 2 indicates that Z^SIGMASK is specified

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-169

PROCESS_SPAWN_ Procedure

Structure Definition for process-extension
The process-extension parameter specifies the Guardian attributes of the new
process.

In the TAL ZSYSTAL file, the structure for the process-extension parameter is
defined as:

STRUCT ZSYS^DDL^PROCESSEXTENSION^DEF (*);
 BEGIN
 INT(32) Z^LEN;
 INT(32) Z^LIBRARYNAME;
 INT(32) Z^SWAPFILENAME;
 INT(32) Z^EXTSWAPFILENAME;
 INT Z^PRIORITY;
 INT Z^CPU;
 INT Z^NAMEOPTIONS;
 INT Z^FILLER;
 INT(32) Z^PROCESSNAME;
 INT(32) Z^HOMETERM;
 INT Z^MEMORYPAGES;
 INT Z^JOBID;
 INT Z^CREATEOPTIONS;
 INT Z^FILLER1;
 INT(32) Z^DEFINES;
 INT Z^DEFINESLEN;
 INT Z^DEBUGOPTIONS;
 INT(32) Z^PFSSIZE;
 INT Z^OSSOPTIONS;
 INT Z^FILLER2;
 INT(32) Z^MAINSTACKMAX;
 INT(32) Z^HEAPMAX;
 INT(32) Z^SPACEGUARANTEE;
 END;

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-170

PROCESS_SPAWN_ Procedure

For TAL programs, these default values must be specified when an option is not
wanted:

Field Name Default Value

Z^LEN $OFFSET
(ZSYS^DDL^PROCESSEXTENSION.Z^OSSOPTIONS)
+
$LEN
(ZSYS^DDL^PROCESSEXTENSION.Z^OSSOPTIONS) +
2

Z^LIBRARYNAME 0D

Z^SWAPFILENAME 0D

Z^EXTSWAPFILENAM
E

0D

Z^PRIORITY -1

Z^CPU -1

Z^NAMEOPTIONS ZSYS^VAL^PCREATOPT^NONAME

Z^PROCESSNAME 0D

Z^HOMETERM 0D

Z^MEMORYPAGES -1

Z^JOBID -1

Z^CREATEOPTIONS ZSYS^VAL^PCREATOPT^DEFAULT

Z^DEFINES 0D

Z^DEFINESLEN 0

Z^DEBUGOPTIONS ZSYS^VAL^PCREATOPT^DEFAULT

Z^PFSSIZE 0

Z^OSSOPTIONS ZSYS^VAL^PSPAWNOPT^DEFAULT

Z^MAINSTACKMAX 0D

Z^HEAPMAX 0D

Z^SPACEGUARANTEE 0D

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-171

PROCESS_SPAWN_ Procedure

In the C tdmext.h header file, the structure for the process-extension parameter is
defined as:

C programs should initialize the process_extension structure by using the #define
DEFAULT_PROCESS_EXTENSION in the tdmext.h header file.

Z^Len

is the length of the ZSYS^DDL^PROCESSEXTENSION structure. Because the
structure is subject to change, Z^LEN is used by PROCESS_SPAWN_ to identify
the version of the structure.

Z^LibraryName

is the address of the null-terminated OSS pathname of the Guardian user library
file to be used by the new process. For the program to create a linkage to the
library file, the caller must have write permission to the program file. If the
pathname is relative, it is resolved using the OSS current working directory.

If the Z^LIBRARYNAME field of the process-extension parameter is specified,
external references are resolved first from the specified Z^LIBRARYNAME, then
from the system library.

If you specify the value -1D, the new process is to run with no user library file.
(The references that were previously resolved from the user library are resolved
from the system library.) For the program to remove a linkage to a library file, the
caller must have write permission to the program file.

typedef struct process_extension {
 long pe_len;
 char *pe_library_name;
 char *pe_swap_file_name;
 char *pe_extswap_file_name;
 short pe_priority;
 short pe_cpu;
 short pe_name_options;
 char filler_1[2];
 char *pe_process_name;
 char *pe_hometerm;
 short pe_memory_pages;
 short pe_jobid;
 short pe_create_options;
 char filler_2[2];
 char *pe_defines;
 short pe_defines_len;
 short pe_debug_options;
 long pe_pfs_size;
 short pe_OSS_options;
 char filler_3[2];
 long z_mainstackmax;
 long z_heapmax;
 long z_spaceguarantee;
} process_extension_def;

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-172

PROCESS_SPAWN_ Procedure

If you specify the default value 0D, the process uses the same user library file (if
any) as it did the last time it was run (or with no file if that was how it was run) or
with the library file currently executing. Write permission to the program file is not
required. For more information about TNS user libraries, see the Binder Manual.
For more information about TNS/R native user libraries and shared run-time
libraries, see the nld and noft Manual. For more information about dynamic-link
libraries (including native user libraries used with PIC programs), see the ld and rld
Reference Manual.

If an external reference cannot be resolved, it is modified to invoke the debugger
when referenced. PROCESS_SPAWN_ then returns a warning 14 in the
Z^TPCERROR field of the process-results parameter and issues a warning
message to the home terminal the first time the program is run. (The warning 14
and the terminal message are issued again the first time the program is run
following a system load).

Z^SwapFileName

is not used, but you can provide it for informational purposes. If supplied, the
swap file must be on the same system as the process being created. If the
supplied name is in local form, the system where the process is created is
assumed. Processes swap to a file that is managed by the Kernel-Managed Swap
Facility. For more information on this facility, see the Kernel-Managed Swap
Facility (KMSF) Manual. To reserve swap space for the process, specify the
Z^SPACEGUARANTEE field. Alternatively, use the nld utility to set TNS/R native
process attributes or the eld utility to set TNS/E native process attributes.

For TNS processes on RVUs preceding the D42 RVU, this parameter is the
address of the null-terminated OSS pathname of the Guardian swap file to be used
for the user data stack segment of the process. The swap file must be an
unstructured file. If the pathname is relative, it is resolved using the OSS current
working directory.

The default value is 0D.

For more information about the swap files, see Considerations for Resolving File
Names on page 12-182 and DEFINE Considerations on page 12-142.

Z^ExtSwapFileName

for TNS processes, if set to the default value, 0D, the Kernel-Managed Swap
Facility (KMSF) allocates swap space for the default extended data segment of the
process. For more information on this facility, see the Kernel-Managed Swap
Facility (KMSF) Manual.

for TNS processes, this parameter is the address of a null-terminated OSS
pathname of the Guardian swap file to be used for the default extended data
segment of the process. The swap file must be an unstructured file. If the
pathname is relative, it is resolved using the OSS current working directory.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-173

PROCESS_SPAWN_ Procedure

For native processes, this parameter is ignored because TNS/R native processes
do not need an extended swap file.

The default value is 0D.

For more information about the swap files, see Considerations for Resolving File
Names on page 12-182 and DEFINE Considerations on page 12-142.

Z^Priority

is the initial execution priority to be assigned to the new process. Execution priority
is a value in the range 1 through 199, where 199 is the highest possible priority.

If you specify the default value of -1, the priority of the caller is used. If you specify
0, a value less than -1, or a value greater than 199, error 2 is returned in
ZSYS^DDL^PROCESSRESULTS.Z^TPCERROR.

Z^CPU

specifies the processor in which the new process is to run. If you specify the
default value of -1, the caller’s processor is used.

Z^NameOptions

specifies whether the process is to be named and, if so, whether the caller is
supplying the name or the system must generate it.

This table summarizes the possible values for Z^NAMEOPTIONS. TAL literals are
defined in the ZSYSTAL file. Literals in the zsysc file, for C programs, are the
same as those for TAL except that they contain the underscore (_) character
instead of the circumflex (^) character.

One of these values must be supplied:

If either the program file or the library file (if any) has the RUNNAMED program-file
flag set, the system generates a name. The generated name is four characters
long, not including the /G/, unless Z^NAMEOPTIONS is
ZSYS^VAL^PCREATOPT^NAMEDBYSYS5. In which case, the name is five
characters long, not including the /G/.

Name (ZSYS^VAL^) Value Description

PCreatOpt^NamedBySy
s

2 Process is named; the system must generate
a name. The generated name is four
characters long, not including the /G/.

PCreatOpt^NamedBySy
s5

4 Process is named; the system must generate
a name. The generated name is five
characters long, not including the /G/.

PCreatOpt^NameInCall 1 Process is named; name is supplied in
Z^ProcessName.

PCreatOpt^NoName 0 Process is not named; it can be named if the
RUNNAMED program-file flag is set

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-174

PROCESS_SPAWN_ Procedure

Z^ProcessName

is the address of a null-terminated string that specifies the name to be assigned to
the new process. The name cannot include a node name. This parameter is
relevant only when Z^NAMEOPTIONS has the value
ZSYS^VAL^PCREATOPT^NAMEINCALL. For information about reserved process
names, see Nowait Considerations on page 12-142 and Appendix B, Reserved
Process Names.

For other values of Z^NAMEOPTIONS, this parameter should be set to the default
value of 0D, because the system will generate a name.

Z^HomeTerm

is the address of a null-terminated string that specifies a file name designating the
home terminal for the new process. If Z^HOMETERM is relative, it is resolved
using the OSS current working directory.

Z^HOMETERM can be a terminal device or a named or unnamed user process.
The default value of 0D indicates the home terminal of the caller. Note that the
default home terminal of the caller can be a remote terminal.

Z^MemoryPages

For TNS processes, specifies the minimum number of memory pages allocated to
the new process for user data. The actual amount of memory allocated is
processor-dependent. If Z^MEMORYPAGES is set to either the default value of -1
or a value less than the value previously assigned by a compiler directive at
compile time or by a Binder command at bind time, the previously assigned value
is used. In any case, the maximum number of pages permitted is 64.

For native processes, this parameter is ignored. To specify the maximum size of
the main stack, specify the Z^MAINSTACKMAX field. Alternatively, use the nld
utility to set the TNS/R process attributes or the eld utility to set the TNS/E
process attributes.

Z^JobID

is an integer (job ID) that specifies the job to be created. The new process is the
first process of the job, and the caller is the job ancestor of the new process. This
value is used by the NetBatch scheduler. For information about how to use this
parameter, see Batch Processing Considerations on page 12-143.

The default value of -1 indicates that the new process is not a batch job.

Z^CreateOptions

provides information about the environment of the new process.

This table summarizes the possible values for Z^CREATEOPTIONS. More than
one value can be specified. TAL literals are defined in the ZSYSTAL file. Literals

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-175

PROCESS_SPAWN_ Procedure

in the zsysc file, for C programs, are the same as those for TAL except that they
contain the underscore (_) character instead of the circumflex (^) character.

Valid values for Z^CREATEOPTIONS are one or more of these:

If you specify ZSYS^VAL^PCREATOPT^LOWPIN, the program is run at a low PIN.
If you do not specify ZSYS^VAL^PCREATOPT^LOWPIN, the program runs at a
PIN of 256 or higher if its program file and library file (if any) have the HIGHPIN
program-file flag set and if a high PIN is available. However, if the calling process
has the inherited force-low attribute set, the new process is forced into a low PIN
even if all the other conditions for running at a high PIN are met. For more
information, see Compatibility Considerations on page 12-46.

For more information on DEFINEs, see DEFINE Considerations on page 12-142.

Name (ZSYS^VAL^) Value Description

PCreatOpt^AllDefines 16 Propagate DEFINEs in Z^DEFINES and
DEFINEs in the caller’s context. In case of
name conflicts, use the ones in Z^DEFINES.
Otherwise, propagate DEFINEs as specified by
other values.

PCreatOpt^AnyAncest
or

64 If the caller is named, the process deletion
message, if any, will go to whatever process
has the calling process’s name (regardless of
sequence number) at that time.

PCreatOpt^Default 0 The default value, which is described with each
of the other options.

PCreatOpt^DefEnable
d

2 See PCREATOPT^DEFOVERRIDE.

PCreatOpt^DefineList 8 Propagate DEFINEs in Z^DEFINES only.
Otherwise, propagate only the DEFINEs in the
caller’s context.

PCreatOpt^DefOverrid
e

4 Enable DEFINEs if PCREATOPT^DEFENABLED
is specified. Disable DEFINEs if
PCREATOPT^DEFENABLED is not specified.
Otherwise, use caller's DEFINE mode.

PCreatOpt^FrcLowOv
er

32 Ignore the value of the caller’s inherited force-
low pin attribute. Otherwise, use the value of
the caller’s inherited force-low pin attribute.

PCreatOpt^LowPin 1 Require low PIN (in range 0 through 254).
Otherwise, assign any PIN.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-176

PROCESS_SPAWN_ Procedure

Z^Defines

is the address of a null-terminated string that specifies a set of DEFINEs to be
propagated to the new process. The value of Z^DEFINES must be exactly
Z^DEFINESLEN bytes long. The set of DEFINEs should have been created
through one or more calls to the DEFINESAVE procedure. DEFINEs are
propagated according to the values specified in Z^CREATEOPTIONS. For details,
see DEFINE Considerations on page 12-142.

The default value is 0D.

Z^DefinesLen

specifies the length of the Z^DEFINES field.

The default value is 0.

Z^DebugOptions

sets the debugging attributes for the new process.

This table summarizes the possible values for Z^DEBUGOPTIONS. TAL literals
are defined in the ZSYSTAL file. Literals in the zsysc file, for C programs, are the
same as those for TAL except that they contain the underscore (_) character
instead of the circumflex (^) character.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-177

PROCESS_SPAWN_ Procedure

Valid values for Z^DebugOptions are as follows:

Z^PFSSize

for RVUs before G06.00, specifies the size in bytes of the process file segment
(PFS) of the new process. In G-series RVUs, maximum PFS size is 8 MB. In H-
series RVUs, maximum PFS size is 32 MB. A value in this range overrides the
nld or Binder value stored in the program file.

If you specify 0, the nld or Binder value is used. If the nld or Binder value is to
be used and it is 0, a default value of 262,144 bytes (256 KB or 2 segments) is
used in most cases. For SQL programs, a default value of 393,216 bytes (384 KB
or 3 segments) is used instead.

In the G06.00 and subsequent G-series RVUs, you do not need to specify the PFS
size of a new process. If you do, the specification is ignored. Instead, all
processes have PFS size that can grow up to 8 MB.

Name (ZSYS^VAL^) Value Description

PCreatOpt^DbgOverrid
e

2 Use debugger and saveabend options
specified regardless of program-file flag
settings. Otherwise, use the program-file flag
settings. Debugger and saveabend options
are specified by
ZSYS^VAL^PCREATOPT^SAVEABEND and
ZSYS^VAL^PCREATOPT^RUND described in
this table.

PCreatOpt^Default 0 The debugger and saveabend default values
are set from the flags in the program file (set
either by compiler directives at compile
time, nld flag at link time, or Binder
command at bind time) after these options
are ORed with the corresponding states of the
calling process.

PCreatOpt^INSPECT 1 Use the Inspect debugger. Otherwise, use the
debugger set by the program-file flag settings.

PCreatOpt^RUND 8 Enter Debug or the Inspect debugger at the
first executable instruction of the program's
MAIN procedure. If this option is not selected,
begin normal program execution.

PCreatOpt^SaveAbend 4 If the process traps, create a saveabend file
and use the Inspect debugger (regardless of
whether ZSYS^VAL^PCREATOPT^INSPECT is
selected). If this option is not selected and the
process traps, do not create a saveabend file.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-178

PROCESS_SPAWN_ Procedure

Z^OSSOptions

The valid value for Z^OSSOPTIONS is as follows:

Z^MainStackMax

specifies the maximum size, in bytes, of the process main stack. The specified
size cannot exceed 32 MB.

The default value of 0D indicates that the main stack can grow to 1MB. For most
processes, the default value is adequate.

Z^HeapMax

for native processes only, specifies the maximum size, in bytes, of the process
heap. Note that the sum of the size of the heap and the size of global data cannot
exceed 384 MB.

The default value of 0D indicates that the heap can grow to the default value of 16
MB. The initial heap size of a process is zero bytes. For most processes, the
default value is adequate.

Z^SpaceGuarantee

specifies the minimum size, in bytes, of the amount of space that the process
reserves with the Kernel-Managed Swap Facility for swapping. For more
information on this facility, see the Kernel-Managed Swap Facility (KMSF) Manual.
The value provided is rounded up to a page size boundary of the processor. If the
requested amount of space is not available, PROCESS_SPAWN_ returns error 55.

When the default value of 0D is used, the amount of space reserved is determined
by the value specified in the object file for a native process or by the operating
system for a TNS or accelerated process.

Structure Definition for process-results
The process-results parameter provides Guardian information on the outcome of
the PROCESS_SPAWN_ procedure call.

Name (ZSYS^VAL^) Value Description

PSpawnOpt^OSSDefault 0 The default value is the only value available.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-179

PROCESS_SPAWN_ Procedure

In the TAL ZSYSTAL file, the structure for the process-results parameter is
defined as:

For TAL programs, this value must be specified:

In the C tdmext.h header file, the structure for the process-results parameter is
defined as:

The tdmext.h header file is not kept current when new error codes are defined for
process creation functions. The list of _TPC_ macros described in this reference page
is not complete; for a current description of error macros and error codes, see the
Guardian header file $SYSTEM.ZSPIDEF.ZGRDC or Table 12-3, Summary of Process
Creation Errors in the Guardian Procedure Calls Refrence Manual.

C programs should initialize the process_extension_results structure by using the
#define DEFAULT_PROCESS_EXTENSION_RESULTS in the tdmext.h header file.

STRUCT ZSYS^DDL^PROCESSRESULTS^DEF (*);
 BEGIN
 INT(32) Z^LEN;
 STRUCT Z^PHANDLE;
 BEGIN
 STRUCT Z^DATA;
 BEGIN
 STRING ZTYPE;
 FILLER 19;
 END;
 INT Z^WORD[0:9] = Z^DATA;
 STRUCT Z^BYTE = Z^DATA;
 BEGIN STRING BYTE [0:19]; END;
 END;
 INT(32) Z^PID;
 INT(32) Z^ERRNO;
 INT Z^TPCERROR;
 INT Z^TPCDETAIL;
 END;

Field Name Default Value

Z^LEN $OFFSET(ZSYS^DDL^PROCESSRESULTS.Z^TPCDETAIL) +
$LEN(ZSYS^DDL^PROCESSEXTENSION.Z^TPCDETAIL)

typedef struct process_extension_results {
 long pr_len;
 short pr_phandle[10];
 long pr_pid;
 long pr_errno;
 short pr_TPCerror;
 short pr_TPCdetail;
} process_extension_results_def;

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-180

PROCESS_SPAWN_ Procedure

Z^Len

is the length of the ZSYS^DDL^PROCESSRESULTS structure. Because the
structure is subject to change, Z^LEN is used by PROCESS_SPAWN_ to identify
the version of the structure.

Z^Phandle

returns the process handle of the new process. If you created the process in a
nowait manner, the process handle is returned in the completion message sent to
$RECEIVE rather than in this parameter.

Z^PID

returns the process ID of the new process. If you created the process in a nowait
manner, then the returned value is 0D and the process ID is returned in the
completion message sent to $RECEIVE. If an error occurs (Z^ERRNO or
Z^TPCERROR are not 0), then the returned value is -1D.

Z^Errno

indicates the outcome of the process creation.

The more common OSS errno values returned in Z^ERRNO are:

Z^ERRNO Description

0 No error. The corresponding OSS errno value is ENOERR.

4002 No such pathname exists. The corresponding OSS errno value is
ENOENT.

4005 A physical input or output error occurred. The corresponding OSS
errno value is EIO.

4007 The argument list, specified by the argv parameter, is too long.
The corresponding OSS errno value is E2BIG.

4008 The oss-program-file parameter has the appropriate
permissions, but is not in the format for executable files. The
corresponding OSS errno value is ENOEXEC.

4009 A file descriptor specified in the fdinfo parameter is either out of
range or does not exist. The corresponding OSS errno value is
EBADF.

4011 System resources are inadequate. The corresponding OSS errno
value is EAGAIN.

4012 There is insufficient user memory to create the process. The
corresponding OSS errno value is ENOMEM.

4013 Search permission is denied on a component of the pathname
prefix. The corresponding OSS errno value is EACCES.

4014 A specified parameter has an invalid address. The corresponding
OSS errno value is EFAULT.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-181

PROCESS_SPAWN_ Procedure

Z^TPCError

indicates the outcome of the Guardian process creation. This parameter is the
same as the error parameter reported by PROCESS_LAUNCH_. For details, see
Table 12-3 on page 12-111 and Table 12-4 on page 12-120. See also Nowait
Considerations on page 12-46.

Z^TPCDetail

returns additional information about some classes of Guardian errors. This
parameter is the same as the error-detail parameter reported by
PROCESS_LAUNCH_. For details, see Table 12-3 on page 12-111 and Table 12-4
on page 12-120.

Nowait Considerations
If you call this procedure in a nowait manner, the results are returned in the nowait
PROCESS_SPAWN_ completion message (-141), not the output parameters of the
procedure. The format of this completion message is described in the Kernel-
Managed Swap Facility (KMSF) Manual. If Z^TPCError is not 0, no completion
message is sent to $RECEIVE. Errors can be reported either on return from the
procedure, in which case the error output parameters might be meaningful, or
through the completion message sent to $RECEIVE.

4020 A prefix within a pathname refers to a file other than a directory.
The corresponding OSS errno value is ENOTDIR.

4022 Either a parameter in the parameter list is invalid or a required
parameter is omitted. The corresponding OSS errno value is
EINVAL.

4126 Operation timed out. The timeout value was reached before a
binary semaphore could be locked. The corresponding OSS errno
value is ETIMEDOUT.

4131 The pathname or a component of the pathname is longer than
PATH_MAX characters. (PATH_MAX is a symbolic constant that is
defined in the OSS limits.h header file.) See Appendix D, File Names
and Process Identifiers, for pathname syntax. The corresponding
OSS errno value is ENAMETOOLONG.

4203 OSS is not running or is not installed. The corresponding OSS
errno value is EOSSNOTRUNNING.

4212 An error occurred during the invocation of a Guardian DEFINE.
The corresponding OSS errno value is EDEFINEERR.

Z^ERRNO Description

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-182

PROCESS_SPAWN_ Procedure

Considerations for Resolving File Names

• All file names are specified using OSS pathname syntax and are resolved using
the caller’s OSS current working directory.

• For TNS and accelerated processes on RVUs preceding the D42 RVU, if the
Z^SWAPFILENAME or Z^EXTSWAPFILENAME field of the process-
extension parameter is specified and

• A file with that name exists, that file is used for memory swaps of the user data
stack (Z^SWAPFILENAME) or of the default extended data segment
(Z^EXTSWAPFILENAME) during execution of the process; if no file of that
name exists, then a file of that name and of the necessary size is created and
used for swapping.

• Contains the name of a temporary file that is already in use, an error is
returned.

• Contains only the disk volume name, then a temporary file is created on the
specified disk device.

• Is equal to 0D, then the SWAP volume name in the =_DEFAULTS DEFINE is
used if available. Otherwise, the system chooses where to place the file.

• Resolving the problem of spawning remote shell scripts

• Use PROCESS_SPAWN_ to spawn a remote shell and pass the name of the
script as one of its arguments. The shell will run the script.

• Spawn a local shell and use the Expand file system to read the remote shell
script.

Considerations for Resolving External References

• Program file and user library file differences

A user library is an program file containing one or more procedures. The
difference between a program file and the library file is that the library file cannot
contain a MAIN procedure but a program file must contain a MAIN procedure.
Undefined external references in a program file are resolved from the user library,
if any, or the system library. Unresolved references in a library are resolved only
from the system library.

• Library conflict PROCESS_SPAWN_ error

The library file for a process can be shared by any number of processes.
However, when a program is shared by two or more processes, all processes must
have the same user library configuration; that is, all processes sharing the program
either have the same user library or have no user library. A library conflict error
occurs when there is already a copy of the program running with a library
configuration different from that specified in the call to PROCESS_SPAWN_.

• I/O error to the home terminal

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-183

PROCESS_SPAWN_ Procedure

An I/O error to the home terminal can occur if there are undefined externals in the
program file and PROCESS_SPAWN_ is unable to open or write to the home
terminal to display the undefined externals messages. The Z^TPCDETAIL field of
the process-results parameter contains the file-system error number that
resulted from the open or write that failed.

Considerations for Reserved Names
The operating system reserved process name space includes these names: /G/Xname,
/G/Yname, /G/Zname, where name is from 1 through 4 alphanumeric character. You
should not use names of these forms in any application. System-generated process
names (from PROCESS_SPAWN_, PROCESS_CREATE_,
NEWPROCESS[NOWAIT], PROCESSNAME_CREATE_ , CREATEPROCESSNAME,
and CREATEREMOTENAME) are selected from this set of names. For more
information about reserved process names, see Appendix B, Reserved Process
Names.

Keeping Track of OSS Child Processes
Because OSS child processes can migrate from one processor to another, the caller
process of an OSS process should monitor all processors to determine whether its
child process is still alive if a processor goes down. these two examples show how a
caller process should handle a processor down message:

• A child process migrates from a processor that is about fail to a running processor:

1. The child process migrates from processor 5 to a new process handle on
processor 7 by calling one of the OSS tdm_exec set of functions.

2. processor 5 fails.

3. The caller process receives the processor down message from processor 5.
At this point, the caller process does not know whether its OSS child process
still exists, because the child process could have migrated to another
processor before the failure in processor 5. The caller process calls
PROCESS_GETINFOLIST_ with the OSS process ID of the child process and
obtains the new process handle of the OSS process indicating that it still
exists.

4. The caller process receives the process deletion message with a -12
completion code (indicating that the child process has migrated to a new
process handle by calling one of the OSS tdm_exec set of functions).

• A child process migrates from a processor that is running to a processor that fails:

1. The child process migrates from processor 2 to a new process handle on
processor 6 by calling one of the OSS tdm_exec set of functions.

2. processor 6 fails.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-184

PROCESS_SPAWN_ Procedure

3. The caller process receives the processor down message from processor 6.
At this point, the caller process does not know whether its OSS child process
still exists, because the child process could have migrated from processor 2 to
processor 6. The caller process calls PROCESS_GETINFOLIST_ with the
OSS process ID of the child process. PROCESS_GETINFOLIST_ returns
error 4 indicating that the specified process does not exist.

4. The caller process receives the process deletion message with a -12
completion code (indicating that the child process has migrated to a new
process handle by calling one of the OSS tdm_exec set of functions), but the
child process no longer exists.

Creator Access ID and Process Access ID
The creator access ID (CAID) of the new process is always the same as the process
access ID (PAID) of the creator process. The process access ID of the new process is
the same as that of the creator process unless the program file has the PROGID
attribute set; in that case, the process access ID of the new process is the same as the
NonStop opeating system user ID of the program file’s owner, and the new process is
always local.

Compatibility Considerations

• If the new process is unnamed, it must be run at a low PIN if it is to be accessible
to processes which cannot access high-PIN processes.

• If the new process has a high PIN and also has a name with up to five characters
(not counting the /G/), it is accessible to any process running on the same system.

• For further information on compatibility, see the Guardian Programmer’s Guide and
the Guardian Application Conversion Guide.

• If a client attempts a nontrithroughl call to the OSS chroot() function, the client
cannot create remote processes, because /E will not be visible.

DEFINE Considerations

• DEFINEs are propagated to the new process from either the process context of the
caller, from a caller-supplied buffer containing DEFINEs collected by calls to the
DEFINESAVE procedure, or from both of these. DEFINEs are propagated to the
new process according to the DEFINE mode of the new process and the
propagation option specified in the Z^CREATEOPTIONS field of the
process_extension parameter. If both sets of DEFINEs are propagated and
both sets contain a DEFINE with the same name, the DEFINE in the caller-
supplied buffer is used. When a caller is creating its backup, the caller’s DEFINEs
are always propagated, regardless of the options chosen.

The =_DEFAULTS DEFINE is always propagated, regardless of the options
chosen. If the DEFINE buffer contains a =_DEFAULTS DEFINE, that one is

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-185

PROCESS_SPAWN_ Procedure

propagated; otherwise, the =_DEFAULTS DEFINE in the caller’s context is
propagated.

Buffer space for DEFINEs being propagated to a new process is limited to 2 MB
whether the process is local or remote. However, the caller can propagate only as
many DEFINEs as the child’s PFS can accommodate in the buffer space for the
DEFINEs themselves and in the operational buffer space needed to do the
propagation. The maximum number of DEFINEs that can be propagated varies
depending upon the size of the DEFINEs being passed.

• When a process is created, its DEFINE working set is initialized with the default
attributes of CLASS MAP.

• For TNS processes, the Z^SWAPFILENAME and Z^EXTSWAPFILENAME fields
of the process_extension parameter can be DEFINE names;
PROCESS_SPAWN_ uses the disk volume or file given in the DEFINE. If either
Z^SWAPFILENAME or Z^EXTSWAPFILENAME contains a DEFINE name but no
such DEFINE exists, the procedure behaves as if no name were specified. This
feature of accepting names of nonexistent DEFINEs as input gives the
programmer a convenient mechanism that allows, but does not require, user
specification of the location of the swap file or extended swap file.

• For each process, a count is kept of the changes to that process’s DEFINEs. This
count is always 0 for newly created processes. The count is incremented each
time the procedures DEFINEADD, DEFINEDELETE, DEFINESETMODE, and
DEFINEDELETEALL are invoked and a consequent change to the process context
occurs. In the case of DEFINEDELETE and DEFINEDELETEALL, the count is
incremented by 1 even if more than one DEFINE is deleted. The count is also
incremented if the DEFINE mode of the process is changed. If a call to the
CHECKDEFINE procedure causes a DEFINE in the backup to be altered, deleted,
or added, then the count for the backup process is incremented.

Batch Processing Considerations

• When the process being created is part of a batch job, PROCESS_SPAWN_ sends
a job process creation message to the job ancestor of the batch job. (See the
discussion of “job ancestor” in the Guardian Programmer’s Guide.) The message
identifies the new process and contains the job ID as originally assigned by the job
ancestor. This enables the job ancestor to keep track of all the processes
belonging to a given job.

For the format of the job process creation message, see the Guardian Procedure
Errors and Messages Manual.

• PROCESS_SPAWN_ can create a new process and establish that process as a
member of the caller’s batch job. In that case, the caller’s job ID is propagated to
the new process. If the caller is part of a batch job, then to start a new process that

Note. The job ancestor facility is intended for use by the NetBatch product. Other applications
that use this facility might be incompatible with the NetBatch product.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-186

PROCESS_STOP_ Procedure

is part of the caller’s batch job, set the Z^JOBID field of the process-extension
parameter to -1.

• PROCESS_SPAWN_ can create a new process separate from any batch job, even
if the caller is a process that belongs to a batch job. In that case the job ID of the
new process is 0. To start a new process that is not part of a batch job, specify 0
for Z^JOBID.

• PROCESS_SPAWN_ can create a new batch job and establish the new process
as a member of the newly created batch job. In that case, the caller becomes the
job ancestor of the new job; the job ID supplied by the caller becomes the job ID of
the new process. To start a new batch job, specify a nonzero value (other than -1)
for the Z^JOBID field of the process-extension parameter.

A job ancestor must not have a process name that is longer than four characters
(not counting the dollar sign). When the caller of PROCESS_SPAWN_ is to
become a job ancestor, it must conform to this requirement.

• When the Z^JOBID field of the process-extension parameter is set to -1:

• If the caller is not part of a batch job, then neither is the newly created process;
its job ID is 0.

• If the caller is part of a batch job, then the newly created process is part of the
same job because its job ID is propagated to the new process.

• Once a process belongs to a batch job, it remains part of the job.

Safeguard Considerations
For information on processes protected by the Safeguard product, see the Safeguard
Reference Manual.

Related Programming Manuals
For programming information on batch processing, see the appropriate NetBatch
manual. For programming information on Open System Services and
PROCESS_SPAWN_ programming examples, see the Open System Services
Programmer’s Guide.

PROCESS_STOP_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations1
NetBatch Considerations
Safeguard Considerations
OSS Considerations

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-187

PROCESS_STOP_ Procedure

Examples
Related Programming Manual

Summary
The PROCESS_STOP_ procedure deletes a process or process pair. When this
procedure is used to delete a Guardian process or an OSS process, a process deletion
system message is sent to the mom of the process and to any other process that is
entitled to receive the message. When this procedure is used to delete an OSS
process, a SIGCHLD signal and the OSS process termination status are sent to the
OSS caller.

A process can use PROCESS_STOP_ to:

• Delete itself

• Delete its backup

• Delete another process

Syntax for C Programmers

The parameter length specifies the length in bytes of the character string pointed to
by text. The parameters text and length must either both be supplied or both be
absent.

#include <cextdecs(PROCESS_STOP_)>

short PROCESS_STOP_ ([short *processhandle]
 ,[short specifier]
 ,[short options]
 ,[short completion-code]
 ,[short termination-info]
 ,[short *spi-ssid]
 ,[const char *text]
 ,[short length]);

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-188

PROCESS_STOP_ Procedure

Syntax for TAL Programmers

Parameters

error returned value

INT

unless the caller successfully stops itself, returns a file-system error number that
indicates the outcome of the operation. See “Considerations” for information about
interpreting the error numbers that are returned.

processhandle input

INT .EXT:ref:10

specifies the process handle of the process to be stopped. If this parameter is
omitted or null, the caller is stopped. The null process handle is one which has -1
in each word (Refer to Guardian procedure call, PROCESSHANDLE_NULLIT_).
However, PROCESS_STOP also treats a process handle with -1 in the first word
as a null process handle.

specifier input

INT:value

for a named process pair, indicates whether both members should be stopped.
Valid values are:

0 Stop the specified process only.
1 Stop both members of current instance of named process pair if the specified

process is part of a named process pair; otherwise stop the specified process.
2 Stop the caller’s opposite member, but not the caller, if it is part of a named

process pair. processhandle is ignored.

The default is 0.

If processhandle is null or omitted, a specifier value of 0 constitutes a
request to stop the caller and a value of 1 constitutes a request to stop the caller’s
process pair (if the caller is a member of a process pair).

options input

INT:value

error := PROCESS_STOP_ [([processhandle] ! i
 ,[specifier] ! i
 ,[options] ! i
 ,[completion-code] ! i
 ,[termination-info] ! i
 ,[spi-ssid] ! i
 ,[text:length])]; ! i:i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-189

PROCESS_STOP_ Procedure

specifies whether the process is being stopped because of a normal or abnormal
condition. Valid values are:

<0:14> Reserved (specify 0)

 <15> 0 Normal termination (STOP)
1 Abnormal termination (ABEND)

The default is 0.

These parameters supply completion-code information, which consists of four
items: the completion code, a numeric field for additional termination information,
a subsystem identifier in SPI format, and an ASCII text string. These items apply
only when the caller is terminating itself.

completion-code input

INT:value

is the completion code to be returned in the process deletion system message and,
for a terminating OSS process, in the OSS process termination status. Specify this
parameter only if the calling process is terminating itself and you want to return a
completion code value other than the default value of 0 (STOP) or 5 (ABEND).

A nonprivileged caller cannot pass a negative value for completion-code.

For a list of completion codes, see Appendix C, Completion Codes.

termination-info input

INT:value

specifies the Subsystem Programmatic Interface (SPI) error number that identifies
what caused the process to stop itself. For more information on SPI error numbers
and subsystem IDs, see the SPI Programming Manual. If termination-info is
not specified, the default is 0.

If termination-info is specified, spi-ssid and text:length should be
supplied.

spi-ssid input

INT .EXT:ref:6

is a subsystem ID (SSID) that identifies the subsystem defining the
termination-info. The format and use of the SSID is described in the SPI
Programming Manual.

text:length input:input

STRING .EXT:ref:*, INT:value

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-190

PROCESS_STOP_ Procedure

if present and length is not 0, is a string of ASCII text to be sent as part of the
process deletion system message. If used, the value of text must be exactly
length bytes long. The maximum length is 80 bytes.

Considerations1

• When PROCESS_STOP_ executes, all open files associated with the deleted
process are closed. If a process had BREAK enabled, BREAK is disabled.

• Recipients of process deletion system messages

When a process is stopped, these processes receive a process deletion system
message:

° The mom of the stopped process (if any)

° The ancestor of the stopped process if the stopped process is a single named
process or part of a named process pair where both members of the pair are
stopped (only one message is received when both members of a named
process pair are stopped)

° The job ancestor (GMOM) of the stopped process if the stopped process is
part of a batch job

If the caller of PROCESS_STOP_ is also the mom, ancestor, or job ancestor of the
process being terminated, it receives a process deletion system message.

• Recipients of OSS process termination status

If the stopped process was an OSS process, then its OSS caller process receives
a SIGCHLD signal and the OSS process termination status.

See the wait(2) function reference pages either online or in the Open System
Services System Calls Reference Manual for details on interpreting the OSS
process termination status.

• Differences between ABEND and STOP options

When used to stop the calling process, the ABEND and STOP options
(options.<15>) operate almost identically; they differ in the system messages
that are sent and the default completion codes that are reported. In addition,
PROCESS_STOP_ with the ABEND option specified causes a saveabend file to
be created if the process’s SAVEABEND attribute is set to ON. See the Inspect
Manual for information about saveabend files.

For the exact formats of the process deletion system messages, see the Guardian
Procedure Errors and Messages Manual. Note that PROCESS_STOP_ can send
either a C-format message or a D-format message, depending on the recipient. (A
process can specify, when it opens $RECEIVE, that it wants to receive either C-
format messages or D-format messages. For details, see FILE_OPEN_
Procedure.)

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-191

PROCESS_STOP_ Procedure

PROCESS_STOP_ sends a default completion code of 0 when the STOP option is
specified; it sends a completion code of 5 when the ABEND option is specified.

• Rules for stopping a Guardian process: process access IDs and creator access
IDs

If the process is a local process and the request to stop it is also from a local
process, these user IDs or associated processes can stop the process:

° local super ID

° the process’s creator access ID (CAID) or the group manager of the CAID

° the process’s process access ID (PAID) or the group manager of the PAID

If the process is a local process, a remote process cannot stop it.

If the process is a remote process running on the local system and the request to
stop it is from a local process, these user IDs or associated processes can stop the
process:

° local super ID

° the process’s creator access ID (CAID) or the group manager of the CAID

° the process’s process access ID (PAID) or the group manager of the PAID

If the process is a remote process on the local system and the request to stop it is
from a remote process, these user IDs or associated processes can stop the
process:

° a network super ID

° the process’s network process access ID

° the process’s network process access ID group manager

° the process’s network creator access ID

° the process’s network creator access ID group manager

Being local on a system means either that the process has logged on by
successfully calling USER_AUTHENTICATE_ (or VERIFYUSER) on the system or
that the process was created by a process that had done so. A process is also
considered local if it is run from a program file that has the PROGID attribute set.

• Rules for stopping an OSS process

The same rules apply when stopping an OSS process with the PROCESS_STOP_
procedure as apply for the OSS kill() function. See the kill(2) function
reference page either online or in the Open System Services System Calls
Reference Manual.

• Rules for stopping any process: stop mode

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-192

PROCESS_STOP_ Procedure

When a process tries to stop another process, another item checked is the stop
mode of that process. The stop mode is a value associated with every process
that determines what other processes can stop it. The stop mode, set by the
SETSTOP procedure, is defined as follows:

0 Any other process can stop the process.
1 Only the process qualified by the above rules can stop the process.
2 No other process can stop the process.

The process can always stop itself.

• Errors other than 0 can be returned by PROCESS_STOP_ under these conditions:

° If the process (or process pair) does not exist, error 11 is returned.

° If the stop request passes the security checks but the process is running at
stop mode 2, the stop request is queued pending the reduction of the stop
mode to 1. Error 638 is returned.

° If the stop request does not pass the security checks and the process is
running at stop mode 1 or 2, the stop request is queued pending the reduction
of the stop mode to 0. Error 639 is returned.

° If it is not possible to communicate with the processor where the process is
running, error 201 is returned.

• Returning control to the caller before the process is stopped

When error is 0, 638, or 639, PROCESS_STOP_ returns control to the caller
before the specified process is actually stopped. If error is 0, the process does
not execute any more user code. However, you should make sure that the process
has terminated before you attempt to access a file that the process had open with
exclusive access or before you try to create a new process with the same name.
The best way to be sure that a process has terminated is to wait for the process
deletion message.

• Stopping a process that has the Inspect or saveabend attribute set

If the process being stopped has either the Inspect attribute or the saveabend
attribute set, and if DMON exists, PROCESS_STOP_ returns error 0 but deletion
of the process is delayed until DMON approves it. In the case of an abnormal
termination (ABEND), DMON creates a saveabend file if the saveabend attribute is
set.

• In response to the PROCESS_STOP_ procedure, the operating system supplies a
completion code in the process deletion message and, for OSS processes, in the
OSS process termination status as follows:

° If a process calls PROCESS_STOP_ on another process, the system supplies
a completion code value of 6.

° If a process calls PROCESS_STOP_ with the STOP option on itself but does
not supply a completion code, the system supplies a completion code value of
0.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-193

PROCESS_STOP_ Procedure

° If a process calls PROCESS_STOP_ with the ABEND option on itself but does
not supply a completion code, the system supplies a completion code value of
5.

For a list of completion codes, see Appendix C, Completion Codes.

• If PROCESS_STOP_ is issued by the backup process of a process pair, with a
specifier parameter value of 1, the intent is to stop the primary process and
itself. However, if the primary process is running in stop-mode 2, then only the
backup process is stopped because the primary process is running in stop-mode 2.
If the primary process continues to run in stop-mode 2 and tries to re-create the
backup process, process-creation error 11,45 is returned. This error also occurs
when a primary process issues PROCESS_STOP_ with the specifier
parameter set to 1 to stop an unstoppable backup process and itself.

NetBatch Considerations

• The PROCESS_STOP_ procedure supports NetBatch by:

• returning the completion code information in the process deletion system
message

• returning the process processor time in the process deletion system message

• sending a process deletion system message to the job ancestor (GMOM) of
the job, as well as to the mom and ancestor of the process, when any process
in the job is terminated

Safeguard Considerations
For information on processes protected by Safeguard, see the Safeguard Reference
Manual.

OSS Considerations

• When an OSS process is stopped by the PROCESS_STOP_ procedure, either by
calling the procedure to stop itself or when some other process calls the
procedure, the OSS caller process receives a SIGCHLD signal and the OSS
process termination status. See the wait(2) function reference page either
online or in the Open System Services System Calls Reference Manual for details
on the OSS process termination status.

In addition, a process deletion system message is sent to the MOM, GMOM, or
ancestor process according to the usual Guardian rules. The OSS process ID of
the terminated process is included in the process deletion message.

• When the PROCESS_STOP_ procedure is used to stop an OSS process other
than the caller, the process handle must be specified in the call. The effect is the
same as if the OSS kill() function was called with the input parameters as
follows:

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-194

PROCESS_STOP_ Procedure

• The signal parameter set to SIGKILL to stop the process or SIGABEND to
abend the process

• The pid parameter set to the OSS process ID of the process identified by
processhandle in the PROCESS_STOP_ call

• The security rules that apply to stopping an OSS process using
PROCESS_STOP_ are the same as those that apply to the OSS kill() function.
See the kill(2) function reference page either online or in the Open System
Services System Calls Reference Manual for details.

Examples
INT stop^option;
 .
 .
error := PROCESS_STOP_ (proc^handle); ! stop the identified
 ! process (normal
 ! termination)
stop^option := 1; ! set ABEND flag
error := PROCESS_STOP_ (, , stop^option); ! stop self
 ! (abnormal
 ! termination)

Related Programming Manual
For programming information about the PROCESS_STOP_ procedure, see the
Guardian Programmer’s Guide. For information on batch processing, see the
appropriate NetBatch manual.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-195

PROCESS_SUSPEND_ Procedure

PROCESS_SUSPEND_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Safeguard Considerations
OSS Considerations
Example
Related Programming Manual

Summary
The PROCESS_SUSPEND_ procedure places a process or process pair into the
suspended state, preventing that process from being active (that is, from executing
instructions). A process can also be suspended by a call to the SUSPENDPROCESS
procedure, or by a TACL SUSPEND command. The process or process pair can be
reactivated by a subsequent call to PROCESS_ACTIVATE_ or ACTIVATEPROCESS
or by a TACL ACTIVATE command.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the operation. It returns one of these file-system errors:

0 Process successfully suspended.
2 Process is already in the suspended state.
11 Process does not exist.
48 Security violation.
201 Unable to communicate with processor where the process is running.

#include <cextdecs(PROCESS_SUSPEND_)>

short PROCESS_SUSPEND_ (short *processhandle
 ,[short specifier]);

error := PROCESS_SUSPEND_ (processhandle ! i
 ,[specifier]); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-196

PROCESS_SUSPEND_ Procedure

processhandle input

INT .EXT:ref:10

specifies the process handle of the process to be suspended.

specifier input

INT:value

for a named process pair, indicates whether both members should be suspended.
Valid values are:

0 Suspend the specified process only.

1 Suspend both members of current instance of named process pair if the
specified process is part of a named process pair; otherwise suspend the
specified process.

The default is 0.

Considerations

• Reactivating a process

You can reactivate a suspended process or process pair by calling
PROCESS_ACTIVATE_. You can also reactivate it by calling
ACTIVATEPROCESS, but you must have a process ID to identify the process. A
process handle can be converted to a process ID by a call to
PROCESSHANDLE_TO_CRTPID_ , but the conversion will fail if the PIN of the
process is greater than 255.

• Security

When PROCESS_SUSPEND_ is called on a Guardian process, the caller must be
the super ID, the group manager of the process access ID, or a process with the
same process access ID as the process or process pair being suspended. For
information about the process access ID, see General Considerations on
page 12-62 and the Guardian User’s Guide.

The caller must be local to the same system as the specified process. A process
is considered to be local to the system on which its creator is local. A process is
considered to be remote, even if it is running on the local system, if its creator is
remote. (In the same manner, a process running on the local system whose
creator is also running on the local system might still be considered remote
because it’s creator’s creator is remote.)

A remote process running on the local system can become a local process by
successfully logging on to the local system using a call to the
USER_AUTHENTICATE_ (or VERIFYUSER) procedure. After a process logs on
to the local system, any processes that it creates are considered local.

When PROCESS_SUSPEND_ is called on an OSS process, the security rules that
apply are the same as those that apply when calling the OSS kill() function.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-197

PROCESS_WAIT_

See the kill(2) function reference page either online or in the Open System
Services System Calls Reference Manual for details.

Safeguard Considerations
For information on processes protected by Safeguard, see the Safeguard Reference
Manual.

OSS Considerations
When used on an OSS process, PROCESS_SUSPEND_ has the same effect as
calling the OSS kill() function with the input parameters as follows:

• The signal parameter set to SIGSTOP

• The pid parameter set to the OSS process ID of the process identified by
processhandle in the PROCESS_SUSPEND_ call

The SIGSTOP signal is delivered to the target process. The SIGCHLD signal is
delivered to the caller of the target process.

Example
error := PROCESS_SUSPEND_ (proc^handle);

Related Programming Manual
For programming information about the PROCESS_SUSPEND_ procedure, see the
Guardian Programmer’s Guide.

PROCESS_WAIT_

Summary
The PROCESS_WAIT_ procedure takes a 32-bit mask value and a timeout value as
parameters, and returns a 32-bit mask value.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-198

PROCESSACCESSID Procedure
(Superseded by PROCESS_GETINFOLIST_

PROCESSACCESSID Procedure
(Superseded by PROCESS_GETINFOLIST_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary

The PROCESSACCESSID procedure is used to obtain the process access ID (PAID)
of the calling process.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

access-id returned value

INT

returns the process access ID (PAID) of the caller in this form:

<0:7> group number

<8:15> member number

Considerations

• Process access ID (PAID) compared to creator access ID (CAID)

For a given process, an access ID is a word in the process control block (PCB) that
contains a group number in the left byte and a member number in the right byte.
There are two access IDs used in the operating system.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

access-id := PROCESSACCESSID;

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-199

PROCESSFILESECURITY Procedure
(Superseded by PROCESS_SETINFO_ Procedure

The process access ID (PAID) is returned from the PROCESSACCESSID
procedure and is normally used for security checks when a process attempts to
access a disk file.

The creator access ID (CAID) is returned from the CREATORACCESSID and
identifies the user who created the process. It is normally used, often with the
PAID, for security checks on interprocess operations such as stopping a process,
creating a backup for a process, and so on.

The PAID and the CAID usually differ only when a process is run from a program
file that has the PROGID attribute set. This attribute is usually set with the File
Utility Program (FUP) SECURE command and PROGID option. In such a case,
the process access ID returned by PROCESSACCESSID is the same as the user
ID of the program file’s owner.

Both the PAID and the CAID are returned from the PROCESS_GETINFO[LIST]_
procedures. See the Guardian User’s Guide for information about process access
IDs.

PROCESSFILESECURITY Procedure
(Superseded by PROCESS_SETINFO_
Procedure or PROCESS_GETINFOLIST_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example

Summary

The PROCESSFILESECURITY procedure is used to examine or set the file security
for the current process. This is the security used for any file creation attempts
following a call to PROCESSFILESECURITY.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-200

PROCESSHANDLE_COMPARE_ Procedure

Syntax for TAL Programmers

Parameters

old-security returned value

INT

is the old file security.

security input

INT:value

is the new file security. The security bits are:

<0:3> 0
<4:6> ID code allowed for read
<7:9> ID code allowed for write
<10:12> ID code allowed for execute
<13:15> ID code allowed for purge

ID code can be one of these:

0 Any user (local)
1 Member of owner’s group (local)
2 Owner (local)
4 Any user (local or remote)
5 Member of owner’s community (local or remote)
6 Owner (local or remote)
7 Super ID only (local)

If security is omitted, PROCESSFILESECURITY returns the current security
information in old-security without changing it.

Example
OLD^SECURITY := PROCESSFILESECURITY (SECURITY);

PROCESSHANDLE_COMPARE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

old-security := PROCESSFILESECURITY ([security]); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-201

PROCESSHANDLE_COMPARE_ Procedure

Summary
The PROCESSHANDLE_COMPARE_ procedure compares two process handles and
reports whether they are identical, represent different processes of the same process
pair, or different.

PROCESSHANDLE_COMPARE_ is primarily useful for determining whether
processes form a process pair. You can determine whether two process handles are
identical by doing a ten-word unsigned comparison.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

returns the result of the comparison. Valid values are:

0 Process handles are unrelated.
1 Process handles are not identical but designate a process pair.
2 Process handles are identical.

processhandle-1 input

INT .EXT:ref:10

is one of the process handles to be compared.

processhandle-2 input

INT .EXT:ref:10

is the other process handle to be compared.

Considerations

• PROCESSHANDLE_COMPARE_ considers two process handles to belong to the
same process pair if they contain the same sequence number.

#include <cextdecs(PROCESSHANDLE_COMPARE_)>

short PROCESSHANDLE_COMPARE_ (short *processhandle-1
 ,short *processhandle-2);

status := PROCESSHANDLE_COMPARE_ (processhandle-1 ! i
 ,processhandle-2); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-202

PROCESSHANDLE_DECOMPOSE_ Procedure

• PROCESSHANDLE_COMPARE_ compares only the contents of the input
parameters; it does not send any messages.

• If either of the parameter supplied to PROCESSHANDLE_COMPARE_ is missing,
the process terminates with instruction failure (trap 01).

PROCESSHANDLE_DECOMPOSE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary
The PROCESSHANDLE_DECOMPOSE_ procedure returns one or more parts of a
process handle.

Syntax for C Programmers

The character-string parameters nodename and procname are each followed by a
parameter maxlen that specifies the maximum length in bytes of the character string
and an additional parameter that returns the actual length of the string. In each case,
the character-string parameter and the two parameters that follow it must either all be
supplied or all be absent.

Note. In the TNS/E environment the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(PROCESSHANDLE_DECOMPOSE_)>

short PROCESSHANDLE_DECOMPOSE_ (
 short *processhandle
 ,[short *cpu]
 ,[short *pin]
 ,[__int32_t *nodenumber]
 ,[char *nodename]
 ,[short maxlen]
 ,[short *nodename-length]
 ,[char *procname]
 ,[short maxlen]
 ,[short *procname-length]
 ,[long long *sequence-number]);

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-203

PROCESSHANDLE_DECOMPOSE_ Procedure

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation.

processhandle input

INT .EXT:ref:10

is the process handle from which one or more parts is returned.

cpu output

INT .EXT:ref:1

if present, returns the processor number of the process designated by
processhandle.

pin output

INT .EXT:ref:1

if present, returns the process identification number of the process designated by
processhandle.

error := PROCESSHANDLE_DECOMPOSE_ (processhandle !
i
 ,[cpu] !
o
 ,[pin] !
o
 ,[nodenumber] !
o
 ,[nodename:maxlen] !
o:i
 ,[nodename-length] !
o
 ,[procname:maxlen] !
o:i
 ,[procname-length] !
o
 ,[sequence-number]); !
o

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-204

PROCESSHANDLE_DECOMPOSE_ Procedure

nodenumber output

INT(32) .EXT:ref:1

if present, returns the number of the node in which the process designated by
processhandle resides.

nodename:maxlen output:input

STRING .EXT:ref:*, INT:value

if present, returns the name of the node in which the process designated by
processhandle resides.

maxlen is the length in bytes of the string buffer nodename.

nodename-length output

INT .EXT:ref:1

is the actual length of the value returned in nodename, in bytes.

procname:maxlen output:input

STRING .EXT:ref:*, INT:value

if present, returns the name of the process designated by processhandle if the
process is named. The returned value is the simple name beginning with a dollar
sign; it does not include a node name or ASCII sequence number.

maxlen is the length in bytes of the string buffer procname.

procname-length output

INT .EXT:ref:1

is the actual length of the value returned in procname, in bytes. For unnamed
processes, procname-length is 0 and there is no error.

sequence-number output

FIXED .EXT:ref:1

if present, returns the sequence number from the specified process handle.

Considerations
If you specify procname or procname-length, and processhandle designates a
named process, PROCESSHANDLE_DECOMPOSE_ looks up the process by name.
If it does not exist, error 14 is returned.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-205

PROCESSHANDLE_GETMINE_ Procedure

Related Programming Manual
For programming information about the PROCESSHANDLE_DECOMPOSE_
procedure, see the Guardian Programmer’s Guide.

PROCESSHANDLE_GETMINE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Related Programming Manual

Summary
The PROCESSHANDLE_GETMINE_ procedure obtains the caller’s process handle.
For a caller that needs to obtain only its own process handle, a call to
PROCESSHANDLE_GETMINE_ is more efficient than a call to
PROCESS_GETINFO_.

For general information about process handles, see Appendix D, File Names and
Process Identifiers.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the operation. It returns one of these values:

0 Information returned successfully
3 Parameter address out of bounds

processhandle output

INT .EXT:ref:10

returns the caller’s process handle.

#include <cextdecs(PROCESSHANDLE_GETMINE_)>

short PROCESSHANDLE_GETMINE_ (short *processhandle);

error := PROCESSHANDLE_GETMINE_ (processhandle); ! o

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-206

PROCESSHANDLE_NULLIT_ Procedure

Related Programming Manual
For programming information about the PROCESSHANDLE_GETMINE_ procedure,
see the Guardian Programmer’s Guide.

PROCESSHANDLE_NULLIT_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters

Summary
The PROCESSHANDLE_NULLIT_ procedure initializes a process handle to a null
value. A process handle that has -1 in each word is recognized by the operating
system as being null.

For further information about process handles, see Appendix D, File Names and
Process Identifiers.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the operation. It returns one of these values:

0 Operation was successful.
22 Parameter is out of bounds.
29 Parameter is missing.

processhandle output

INT .EXT:ref:10

returns a null process handle (-1 in each word).

#include <cextdecs(PROCESSHANDLE_NULLIT_)>

short PROCESSHANDLE_NULLIT_ (short *processhandle);

error := PROCESSHANDLE_NULLIT_ (processhandle); ! o

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-207

PROCESSHANDLE_TO_CRTPID_ Procedure

PROCESSHANDLE_TO_CRTPID_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
The PROCESSHANDLE_TO_CRTPID_ procedure converts a process handle to the
corresponding process ID (CRTPID). For a description of process IDs, see
Appendix D, File Names and Process Identifiers.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation.

processhandle input

INT .EXT:ref:10

is the process handle to be converted. An error value of 590 is returned if
processhandle is null (-1 in each word) or has an invalid format.

#include <cextdecs(PROCESSHANDLE_TO_CRTPID_)>

short PROCESSHANDLE_TO_CRTPID_ (short *processhandle
 ,short *process-id
 ,[short pair-flag]
 ,[__int32_t node-number]);

error := PROCESSHANDLE_TO_CRTPID_ (processhandle ! i
 ,process-id ! o
 ,[pair-flag] ! i
 ,[node-number]); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-208

PROCESSHANDLE_TO_CRTPID_ Procedure

process-id output

INT .EXT:ref:4

returns the process ID (CRTPID) of the process designated by processhandle.
If the process is named and local to the node indicated by node-number, the
process ID is in local form. In all other cases the process ID is in network form.

pair-flag input

INT:value

specifies whether process-id should designate a process pair (1 if it should; 0 if
it should not). If pair-flag is set and the process is named, the cpu and pin
values in process-id are set to -1 instead of the cpu and pin of the process.
The default is 0.

node-number input

INT(32):value

if present and not -1D, identifies the node with respect to which process-id is
normalized. If this parameter is omitted or -1D, the caller’s node is used. See the
process-id parameter.

Considerations

• If the name is longer than four characters (or five characters for local process)
excluding the dollar sign, error 20 is returned.

• If the process is named, PROCESSHANDLE_TO_CRTPID_ looks up the process
name in the destination control table (DCT). If the name is not found, error 14 is
returned. However, it is sometimes possible for the name of a nonexistent process
to be found in the DCT, in which case error 0 is returned. Therefore, even for a
named process, error 0 (successful conversion of a process handle) does not
guarantee that the process exists.

• If the PIN of the process is larger than 255, a synthetic process ID is returned
along with an error 560. A synthetic process ID contains a PIN value of 255 in
place of a high-PIN value, which cannot be represented by 8 bits.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-209

PROCESSHANDLE_TO_FILENAME_ Procedure

PROCESSHANDLE_TO_FILENAME_
Procedure

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary
The PROCESSHANDLE_TO_FILENAME_ procedure converts a process handle to a
process file name.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation. If error 18
(unknown system) is returned, the process handle was converted except for the
system name; “\255” is used for the system name.

#include <cextdecs(PROCESSHANDLE_TO_FILENAME_)>

short PROCESSHANDLE_TO_FILENAME_ (short *processhandle
 ,char *filename
 ,short maxlen
 ,short *filename-length
 ,[short options]);

error := PROCESSHANDLE_TO_FILENAME_ (processhandle ! i
 ,filename:maxlen !
o:i
 ,filename-length ! o
 ,[options]); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-210

PROCESSHANDLE_TO_FILENAME_ Procedure

processhandle input

INT .EXT:ref:10

is the process handle to be converted. If a null process handle (-1 in each word) is
specified, the process handle of the calling process is used.

filename:maxlen output:input

STRING .EXT:ref:*, INT:value

returns the process file name of the process designated by processhandle.
filename includes the node name of the process; it does not include qualifiers.

maxlen is the length in bytes of the string variable filename.

filename-length output

INT .EXT:ref:1

is the actual length of the value returned in filename. If an error other than 18
(unknown system) is returned, 0 is returned for this parameter.

options input

INT:value

specifies options. The fields are:

<0:14> Not currently used (specify 0)
 <15> For named processes: if set, specifies that the sequence number not

be included in filename for a named process. If this bit is not set,
the sequence number is included. For unnamed processes: the
sequence number is always included in filename, regardless of the
value of this bit.

The default is 0.

Considerations
If the process is named, PROCESSHANDLE_TO_FILENAME_ looks up the process
name in the destination control table (DCT). If the name is not found, error 14 is
returned. However, it is sometimes possible for the name of a nonexistent process to
be found in the DCT, in which case error 0 is returned. Therefore, even for a named
process, error 0 (successful conversion of a process handle) does not guarantee that
the process exists.

Related Programming Manual
For programming information about the PROCESSHANDLE_TO_FILENAME_
procedure, see the Guardian Programmer’s Guide.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-211

PROCESSHANDLE_TO_STRING_ Procedure

PROCESSHANDLE_TO_STRING_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary
The PROCESSHANDLE_TO_STRING_ procedure converts a process handle to the
equivalent process string. See “Considerations,” below, for a description of process
strings.

Syntax for C Programmers

The parameter length specifies the length in bytes of the character string pointed to
by nodename. The parameters nodename and length must either both be supplied
or both be absent.

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation.

#include <cextdecs(PROCESSHANDLE_TO_STRING_)>

short PROCESSHANDLE_TO_STRING_(short *processhandle
 ,char *process-string
 ,short maxlen
 ,short *process-string-length
 ,[char *nodename]
 ,[short length]
 ,[short named-form]);

error := PROCESSHANDLE_TO_STRING_ (processhandle ! i
 ,process-string:maxlen !
o:i
 ,process-string-length ! o
 ,[nodename:length] !
i:i
 ,[named-form]); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-212

PROCESSHANDLE_TO_STRING_ Procedure

processhandle input

INT .EXT:ref:10

is the process handle to be converted.

process-string:maxlen output:input

STRING .EXT:ref:*, INT:value

returns a process string that represents the process designated by
processhandle. The node name is included in process-string, except as
described under node.

maxlen is the length in bytes of the string variable process-string.

process-string-length output

INT .EXT:ref

is the actual length of the value returned in process-string. If an error occurs,
0 is returned.

nodename:length input:input

STRING .EXT:ref:*, INT:value

if supplied and if length is not 0, specifies the node name that should be included
in process-string. If used, the value of nodename must be exactly length
bytes long.

If nodename designates the same node as indicated in processhandle, no node
name is included in process-string. If it does not match the node indicated in
processhandle, or if the parameter is omitted, or if length is 0, then the node
name indicated in processhandle is included in process-string.

named-form input

INT:value

specifies the form of process-string to be returned for named processes. The
named-form parameter is ignored for unnamed processes. Valid values are:

0 Return process name if possible; if it is unavailable, return cpu,pin form. See
“Considerations.”

1 Return process name; if it is unavailable, report the error. See
“Considerations.”

2 Return cpu,pin form in all cases.

A process name is unavailable if processhandle refers to a named process that
no longer exists.

The default is 0.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-213

PROCESSINFO Procedure
(Superseded by PROCESS_GETINFOLIST_

Considerations

• A process string is a string of characters that identifies a process or a set of
processes. Process strings are commonly used in command lines (for example, in
the TACL STATUS command). PROCESSHANDLE_TO_STRING_ returns a
process string in one of these forms:

[\node.]cpu,pin
[\node.]$process-name

• If you request the process name for a named process,
PROCESSHANDLE_TO_STRING_ looks up the process by name. If the process
does not exist and named-form is specified as 1, error 14 is returned.

• Conversion of the process handle does not necessarily include any check for the
existence of the process; error 0 might be returned for a nonexistent process.

Related Programming Manual
For programming information about the PROCESSHANDLE_TO_STRING_ procedure,
see the Guardian Programmer’s Guide.

PROCESSINFO Procedure
(Superseded by PROCESS_GETINFOLIST_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary

The PROCESSINFO procedure is used to obtain process status information.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-214

PROCESSINFO Procedure
(Superseded by PROCESS_GETINFOLIST_

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a value indicating the outcome of the call.

0 Status for process cpu,pin is returned.

1 Process cpu,pin does not exist or does not match specified criteria (see
search-mode). Status for next higher cpu,pin in the specified
processor is returned. The 4-word process ID of the process for which
status is being returned is returned, in the process-id parameter (if
present).

2 Process cpu,pin does not exist, and no higher cpu,pin in the
specified processor that matches the specified criteria exists (see
search-mode).

3 Unable to communicate with cpu.

5 The system specified by sysnum could not be accessed.

6 Internal error.

error := PROCESSINFO (cpu,pin ! i
 ,[process-id] ! i,o
 ,[creator-access-id] ! i,o
 ,[process-access-id] ! i,o
 ,[priority] ! i,o
 ,[program-filename] ! i,o
 ,[home-terminal] ! i,o
 ,[sysnum] ! i
 ,[search-mode] ! i
 ,[priv-only] ! o
 ,[process-time] ! o
 ,[waitstate] ! o
 ,[process-state] ! o
 ,[library-filename] ! o
 ,[swap-filename] ! o
 ,[context-changes] ! o
 ,[flag] ! o
 ,[licenses] ! o
 ,[jobid]); ! i,o

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-215

PROCESSINFO Procedure
(Superseded by PROCESS_GETINFOLIST_

7 Unable to process the D-series file name.

99 Parameter error.

cpu,pin input

INT:value

is the processor number (processor in bits <4:7> with <0:3> set to 0) and PIN (bits
<8:15>) number of the process whose status is being requested. The process
identification number (PIN) is a number used to uniquely identify the process
control block (PCB) in a processor for a process.

process-id input, output

INT:ref:4

is an array where PROCESSINFO returns the 4-word process ID of the process
whose status is actually being returned. This can be different from the process
whose status is requested through cpu,pin (see the error parameter).

On input, the process-id contents can be used as a search criterion (see the
search-mode parameter).

Note that process ID is a 4-word array where:

[0:2] Process name or creation timestamp

 [3].<0:3> Reserved

 .<4:7> Processor number where the process is executing

 .<8:15> PIN assigned by the operating system to identify the process in
the processor.

creator-access-id input, output

INT:ref:1

returns the creator access ID of process-id. The creator access ID identifies the
user who initiates the creation of the process. For information about the creator
access ID, see Considerations on page 3-151 and to the Guardian User’s Guide.

On input, the creator-access-id contents can be used as a search criterion
(see the search-mode parameter).

process-access-id input, output

INT:ref:1

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-216

PROCESSINFO Procedure
(Superseded by PROCESS_GETINFOLIST_

returns the process access ID of process-id. For procedure
PROCESSACCESSID, see the description under “Considerations” and to the
Guardian User’s Guide for information about the process access ID.

On input, the process-access-id contents can be used as a search criterion
(see the search-mode parameter).

priority input, output

INT:ref:1

returns the current execution priority of this process.

On input, the priority contents can be used as a search criterion (see the
search-mode parameter).

program-filename input, output

INT:ref:12

is an array where PROCESSINFO returns the internal-format file name of the
process-id’s program file.

On input, the contents of program-filename can be used as a search criterion
(see the search-mode parameter). To designate a file that resides on a remote
system designated by sysnum, you can simply specify the local form of the file
name; if you specify the network form of the file name, the system number must
match sysnum or an error is returned.

home-terminal input, output

INT:ref:12

is an array where PROCESSINFO returns the internal-format device name of the
process-id’s home terminal.

On input, the home-terminal contents can be used as a search criterion (see the
search-mode parameter).

sysnum input

INT:value

specifies the system (in a network) where the process for which information is to
be returned is running. If this parameter is omitted, the local system is assumed.

search-mode input

INT:value

is a bit mask that specifies one or more “search” conditions.

The input values of certain parameters to PROCESSINFO are used as the search
conditions; information is returned for the first process that matches the conditions.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-217

PROCESSINFO Procedure
(Superseded by PROCESS_GETINFOLIST_

The search is conducted on the processor specified in cpu,pin. The specified
PIN is searched first and if it does not match the conditions, the higher PINs are
progressively searched.

The bit fields in search-mode specify the conditions being searched for:

<0> = 1 must match process-id for 3 words
= 0 no search

<1> = 1 must match creator-access-id
= 0 no search

<2> = 1 must match process-access-id
= 0 no search

<3> = 1 must be <= priority
= 0 no search

<4> = 1 must match program-filename
= 0 no search

<5> = 1 must match home-terminal
= 0 no search

<6> = 1 must match jobid
= 0 no search

If multiple search conditions are specified, then all must be met.

If search-mode is omitted, the default value is 0.

priv-only output

INT:ref:*

This parameter can be used only by a privileged caller.

process-time output

FIXED:ref:1

returns the process time, in microseconds, for which the process has executed.

wait-state output

INT:ref:1

returns the wait field indicating what, if anything, the process is waiting on. It is
obtained from the wait field of the awake/wait word in the process’s process control
block. These bits are defined:

<8> wait on PON (processor power on)
<9> wait on IOPON (I/O power on)
<10> wait on INTR (interrupt)
<11> wait on LINSP (Inspect event)
<12> wait on LCAN (message system, cancel)

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-218

PROCESSINFO Procedure
(Superseded by PROCESS_GETINFOLIST_

<13> wait on LDONE (message system, done)
<14> wait on LTMF (TMF request)
<15> wait on LREQ (message system, request)

The bits in the wait field are numbered from left to right; thus, if octal 3 (%003)
appears, this means that bits 14 and 15 are equal to 1.

process-state output

INT:ref:1

returns the state of the process specified by cpu,pin. The bits are defined as
follows:
<0> privileged process
<1> page fault occurred
<2> process is on the ready list
<3> system process
<4:5> reserved
<6> memory access breakpoint in system code
<7> process not accepting any messages
<8> temporary system process
<9> process has logged on (called USER_AUTHENTICATE_ or

VERIFYUSER)
<10> in a pending process state
<11:15> the process state, where:

0 unallocated process
1 starting
2 runnable
3 suspended
4 Debug memory access breakpoint
5 Debug breakpoint
6 Debug trap or signal
7 Debug request
8 Inspect memory access breakpoint
9 Inspect breakpoint
10 Inspect trap or signal
11 Inspect request
12 saveabend
13 terminating
14 XIO initialization

library-filename output

INT:ref:12

returns the internal-format file name of the library file used by the process. If the
process does not have an associated library file, then library-filename is
blank-filled.

swap-filename output

INT:ref:12

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-219

PROCESSINFO Procedure
(Superseded by PROCESS_GETINFOLIST_

returns $volume.#0. Processes do not swap to $volume.#0; they swap to a swap
file managed by the Kernel-Managed Swap Facility. For more information on this
facility, see the Kernel-Managed Swap Facility (KMSF) Manual.

For TNS processes on RVUs preceding the D42 RVU, this parameter returns the
internal-format file name of the swap file for the process’s data segment. This is
often the name of a temporary file unless a specific swap file is supplied at run
time. It can also indicate the current swap volume.

context-changes output

INT:ref:1

gives the number of changes made to the DEFINE process context since process
creation modulo 65,536. See “Considerations.”

flag output

INT:ref:1

flag.<14:15> returns 0 if DEFINEs are disabled and returns 1 if DEFINEs are
enabled.

licenses output

INT:ref:1

licenses.<15> returns 0 if the program file of the process was not licensed at
process-creation time, and returns 1 if the program file of the process was licensed
at process-creation time.

jobid input, output

INT:ref:5

consists of the GMOM’s process ID plus the jobid. If this field is zero, the
process does not belong to a job. If this field is nonzero, the GMOM’s process ID
identifies the ancestor of the job.

Considerations

• Remote or local form of process-id

If sysnum specifies a remote system, process-id returns in network form;
otherwise, process-id returns in local form. The two forms differ only in the form
of the process name.

• A local process name consists of six bytes with the first byte being a dollar sign ($)
and the second being an alphabetic character. The remaining four characters can
be alphanumeric. Note that a full six character local process name cannot be
converted to a remote form.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-220

PROCESSNAME_CREATE_ Procedure

• A remote process name consists of six bytes with the first byte containing a
backslash character (\). The second byte contains the number of the node where
the process resides. The third must be an alphabetic character. The remaining
three characters can be alphanumeric.

• Remote system sysnum

If sysnum specifies a remote system, file names (such as home terminal) are
passed in and returned in a form relative to the remote system. Local names
(starting with $) are local to the remote system.

• Process DEFINE context changes

Each process has an associated count of the changes to its context. This count is
incremented each time the procedures DEFINEADD, DEFINEDELETE, and
DEFINEDELETEALL are invoked and a consequent change to the process context
occurs. In the case of DEFINEDELETE and DEFINEDELETEALL, the count is
incremented by one even if more than one DEFINE is deleted. The count is also
incremented if the DEFINE mode of the process is changed. If a call to
CHECKDEFINE causes a DEFINE in the backup process to be altered, deleted, or
added, then the count for the backup process is incremented. This count is 0 for
newly created processes, and new processes do not inherit the count of their
creators.

• High-PIN processes

You cannot use PROCESSINFO on high-PIN processes, because a high PIN
cannot fit into cpu,pin or process-id.

Example
CALL PROCESSINFO (PID , PROCESSID , CAID , PAID , PRI , PROG
 , HOMETERM , , MODE);

PROCESSNAME_CREATE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example
Related Programming Manual

Summary
The PROCESSNAME_CREATE_ procedure returns a unique process name that is
suitable for passing to the PROCESS_LAUNCH_, PROCESS_CREATE_, or
PROCESS_SPAWN_ procedure. This type of naming (as opposed to using a
predefined process name) is used when the name of a process pair does not need to
be known to other processes in the system or network.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-221

PROCESSNAME_CREATE_ Procedure

Syntax for C Programmers

The parameter length specifies the length in bytes of the character string pointed to
by nodename. The parameters nodename and length must either both be supplied
or both be absent.

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the operation. It returns one of these file-system errors:

0 Process name is returned successfully.
44 No names of the specified type are available.
201 Unable to communicate with the specified node.
563 Output buffer is too small.
590 Parameter or bounds error.

name:maxlen output:input

STRING .EXT:ref:*, INT:value

returns the process name.

maxlen is the length in bytes of the string variable name.

#include <cextdecs(PROCESSNAME_CREATE_)>

short PROCESSNAME_CREATE_ (char *name
 ,short maxlen
 ,short *namelen
 ,[short name-type]
 ,[const char *nodename]
 ,[short length]
 ,[short options]);

error := PROCESSNAME_CREATE_ (name:maxlen ! o:i
 ,namelen ! o
 ,[name-type] ! i
 ,[nodename:length] ! i:i
 ,[options]); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-222

PROCESSNAME_CREATE_ Procedure

namelen output

INT .EXT:ref:1

contains the actual length in bytes of the name being returned.

name-type input

INT:value

specifies the type of name desired. Values are:

0 4-character name
1 5-character name

If this parameter is omitted, 0 is used.

The local portion of the name is of the form $Xname, $Yname, or $Zname, where
name represents 1 to 4 alphanumeric character except “o” and “i.” This set of
names is part of the set of process names that are reserved by the operating
system. Applications should not use names of this form unless they have been
obtained through this procedure.

The operating system reserved process name space includes these names:
$Xname, $Yname, and $Zname, where name is 1 to 4 alphanumeric characters.
This set of names is also part of the set of process names that are reserved by the
operating system. Applications should not use names of this form unless they
have been obtained through this procedure.

nodename:length input:input

STRING .EXT:ref:*, INT:value

if supplied and if length is not 0, specifies the node name that is to be returned
as part of the process name if a node name is desired, as indicated by the
options parameter. If used, the value of nodename must be exactly length
bytes long. If this parameter is omitted or if length is 0, and if options.<15> = 0
(node name is desired), the name of the caller’s node is used. See the options
parameter.

options input

INT:value

can have these values:

<0:14> Reserved; must be 0.

 <15> 0 Include node name in the returned process name.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-223

PROCESSOR_GETINFOLIST_ Procedure

1 Return the process name in local form.

If this parameter is omitted, 0 is used.

Example
INT type := 1; ! return a 5-character name
INT form := 1; ! return name in local form
 .
 .
 .
err := PROCESSNAME_CREATE_ (name:max^length, actual^length,
 type, , form);
IF err THEN ...

Related Programming Manual
For programming information about the PROCESSNAME_CREATE_ procedure, see
the Guardian Programmer’s Guide.

PROCESSOR_GETINFOLIST_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
General Considerations
Attribute Codes and Value Representations
Example

Summary
The PROCESSOR_GETINFOLIST_ procedure obtains configuration information and
statistics about a processor. The processor of interest is specified by node name and
processor number.

For further information about supported processors, see Table 12-6, Summary of
Processor Types and Models.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-224

PROCESSOR_GETINFOLIST_ Procedure

Syntax for C Programmers

The parameter length specifies the length in bytes of the character string pointed to
by nodename. The parameters nodename and length must either both be supplied
or both be absent.

Syntax for TAL Programmers

#include <cextdecs(PROCESSOR_GETINFOLIST_)>

short PROCESSOR_GETINFOLIST_ ([const char *nodename]
 ,[short length]
 ,[short cpu]
 ,short *ret-attr-list
 ,short ret-attr-count
 ,short *ret-values-list
 ,short ret-values-maxlen
 ,short *ret-values-len
 ,[short *error-detail]);

error := PROCESSOR_GETINFOLIST_ ([nodename:length] ! i:i
 ,[cpu] ! i
 ,ret-attr-list ! i
 ,ret-attr-count ! i
 ,ret-values-list ! o
 ,ret-values-maxlen ! i
 ,ret-values-len ! o
 ,[error-detail]); ! o

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-225

PROCESSOR_GETINFOLIST_ Procedure

Parameters

error returned value

INT

indicates the outcome of the operation. It returns one of these values:

nodename:length input:input

STRING .EXT:ref:*, INT:value

if present and if length is not 0, specifies the name of the node that contains the
processor of interest. nodename must be exactly length bytes long. If
nodename:length is omitted or if length is 0, the name of the local node is
used.

cpu input

INT:value

if present and if not -1, is the number of the processor of interest. If cpu is omitted,
then the caller’s processor number is used. In that case, nodename:length must
be omitted.

ret-attr-list input

INT .EXT:ref:*

is an array of INTs indicating the attributes that are to have their values returned in
ret-values-list.

error Description

0 Information is returned for the specified process.

1 File-system error; error-detail contains the error number. Error
563 is returned if the ret-values-list buffer is too small to
contain all of the requested information.

2 Parameter error; error-detail contains the number of the first
parameter found to be in error, where 1 designates the first
parameter on the left.

3 Bounds error; error-detail contains the number of the first
parameter found to be in error, where 1 designates the first
parameter on the left.

4 (Reserved)

5 Unable to communicate with cpu. cpu might not exist.

6 Unable to communicate with nodename.

7 An invalid return attribute code was supplied.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-226

PROCESSOR_GETINFOLIST_ Procedure

ret-attr-count input

INT:value

indicates how many items the caller is supplying in ret-attr-list.

If the return values cannot fit into ret-values-list, the procedure returns an
error of 1 and an error-detail value of 563 (buffer too small). No processor
information is returned.

ret-values-list output

INT .EXT:ref:*

contains ret-values-len words of returned information. The values parallel the
items in ret-attr-list. For details, see Attribute Codes and Value
Representations on page 12-75. Each value begins on a word boundary. A value
that is returned in the form of an array begins with an INT giving the number of
elements in the array, followed by the actual array.

ret-values-maxlen input

INT:value

is the maximum length, in words, of ret-values-list.

ret-values-len output

INT .EXT:ref:1

is the actual length, in words, of ret-values-list.

error-detail output

INT .EXT:ref:1

for some returned errors, contains additional information. See error.

Note. Calls to this procedure are identical in their format and values to calls to
CPU_GETINFOLIST_.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-227

PROCESSOR_GETINFOLIST_ Procedure

General Considerations

• If PROCESSOR_GETINFOLIST_ returns a nonzero error value, the contents of
ret-values-list and ret-values-len are undefined.

Attribute Codes and Value Representations
The individual attribute codes and their associated TAL value representations are as
follows:

Code Attribute TAL Value Representation

2 processor type INT

3 software version INT

4 page size INT(32)

5 memory size INT(32)

6 first virtual page INT(32)

7 swappable pages INT(32)

8 free pages INT(32)

9 current locked memory INT(32)

10 maximum locked memory INT(32)

11 high locked memory INT(32)

12 page faults unsigned INT(32)

13 scans per memory manager call INT(32)

14 memory clock cycles unsigned INT(32)

15 memory pressure INT

16 memory queue length INT

17 system coldload time FIXED

18 elapsed time FIXED

19 busy time FIXED

20 idle time FIXED

21 interrupt time FIXED

22 processor queue length INT

23 dispatches unsigned INT(32)

24 PCBs in low PINs INT number of elements,
INT ARRAY

25 PCBs in high PINs INT number of elements,
INT ARRAY

26 time list elements INT number of elements,
INT(32) ARRAY

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-228

PROCESSOR_GETINFOLIST_ Procedure

27 process time list elements INT number of elements,
INT(32) ARRAY

28 breakpoints INT

29 send busy FIXED

35 interrupt count INT number of elements,
INT(32) ARRAY

36 disk cache hits FIXED

37 disk I/Os FIXED

38 processor queue state INT, INT, FIXED

39 memory queue state INT, INT, FIXED

40 sequenced sends unsigned INT(32)

41 unsequenced sends unsigned INT(32)

42 CME events unsigned INT(32)

43 pages created unsigned INT(32)

44 interpreter busy FIXED

45 interpreter transitions INT(32)

46 transactions unsigned INT(32)

47 processor model INT

48 processor name INT bytelength, STRING

49 processor full name INT bytelength, STRING

50 accelerated time FIXED

51 clock resolution FIXED

52 maximum clock adjustment FIXED

53 maximum clock drift FIXED

54 clock sets INT

55 system loads INT

56 base time FIXED

57 memory-management attributes INT(32)

58 segments in use INT(32)

59 maximum segments used INT(32)

60 updates part of the release ID (the two
digits that follow the period)

INT

61 internal use only

62 availability of IEEE floating point on
the current system

INT

Code Attribute TAL Value Representation

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-229

PROCESSOR_GETINFOLIST_ Procedure

If PROCESSOR_GETINFOLIST_ cannot obtain meaningful data for an attribute that
returns an array, it returns a value of 0 for the number of array elements and allocates
no space for the actual array. Except where otherwise noted,
PROCESSOR_GETINFOLIST_ returns a value of -1 (for an INT), -1D (for an INT(32)),
or -1F (for a FIXED) when it cannot obtain a meaningful value for an attribute that does
not return an array.

• 2: processor type

See Table 12-6 on page 12-237 for processor type values.

• 3: software version

the version of the operating system that is running. This value has the same
format as the value returned by the TOSVERSION procedure. See TOSVERSION
Procedure.

• 4: page size

the page size of physical memory, in bytes.

• 5: memory size

the size of physical memory, in pages. If the number of pages exceeds
2,147,483,647 (2**31 - 1), the returned value is -1D.

• 6: first virtual page

the page number of the first swappable page.

• 7: swappable pages

the current number of memory pages that can be swapped. If the number of pages
exceeds 2,147,483,647 (2**31 - 1), the returned value is -1D.

• 8: free pages

the current number of nonallocated memory pages. If the number of pages
exceeds 2,147,483,647 (2**31 - 1), the returned value is -1D.

• 9: current locked memory

the current amount of virtual memory, in pages, that is locked in physical memory.
If the number of pages exceeds 2,147,483,647 (2**31 - 1), the returned value is -
1D.

65 64-bit dispatch count unsigned INT(64)

72 system name INT bytelength, STRING

74 number of IPUs in a CPU INT

78 Is this a NEO CPU? INT

79 Current configured TLE limit INT(32)

Code Attribute TAL Value Representation

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-230

PROCESSOR_GETINFOLIST_ Procedure

• 10: maximum locked memory

the maximum amount of virtual memory, in pages, that can be locked in physical
memory. If the number of pages exceeds 2,147,483,647 (2**31 - 1), the returned
value is -1D.

• 11: high locked memory

the maximum amount of virtual memory, in pages, that has been locked in physical
memory at any one time since the processor was loaded. If the number of pages
exceeds 2,147,483,647 (2**31 - 1), the returned value is -1D.

• 12: page faults

the number of page-fault interrupts since the processor was loaded. This number
is returned as an unsigned value.

• 13: scans per memory manager call

during a call to the memory manager, the average number of pages, multiplied
by 100, examined before one is found that can be deallocated.

• 14: memory clock cycles

the number of times the memory manager has looked at all swappable pages of
memory since the processor was loaded. This number is returned as an unsigned
value.

• 15: memory pressure

an indicator of the frequency of page faults. This number is in the range of 0 (low
frequency) through 7 (high frequency).

• 16: memory queue length

the current number of processes waiting for a page fault to be serviced. The
returned value is an unsigned integer.

• 17: system coldload time

the time (Greenwich mean time, or Coordinated Universal Time) at which the
system was cold loaded.

• 18: elapsed time

the amount of time, in microseconds, since the processor was loaded.

• 19: busy time

the amount of time, in microseconds, that processes have been executing since
the processor was loaded.

• 20: idle time

the amount of time, in microseconds, that has not been spent in process execution
or interrupt handling since the processor was loaded.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-231

PROCESSOR_GETINFOLIST_ Procedure

• 21: interrupt time

the amount of time, in microseconds, that has been spent handling interrupts since
the processor was loaded.

• 22: processor queue length

the current number of processes that are ready to execute. The returned value is
an unsigned integer.

• 23: dispatches

the number of dispatch interrupts since the processor was loaded. This number is
returned as an unsigned value.

• 24: PCBs in low PINs

an array of counters that refer to the number of low-PIN process control blocks
(PCBs) in the processor. The number of array elements is always 4 and the
elements in the array are: maximum number used, current number in use, number
free, and number of allocation failures.

• 25: PCBs in high PINs

an array of counters that refer to the number of high-PIN process control blocks
(PCBs) in the processor. The number of array elements is always 4 and the
elements in the array are: maximum number used, current number in use, number
free, and number of allocation failures.

• 26: time list elements

an array of counters that refer to the number of time list elements (TLEs) for the
processor. The number of array elements is always 4 and the elements in the
array are: maximum number used, current number in use, number configured, and
number of allocation failures.

• 27: process time list elements

an array of counters that refer to the number of process time list elements (PTLEs)
for the processor. The number of array elements is always 4 and the elements in
the array are: maximum number used, current number in use, number configured,
and number of allocation failures.

• 28: breakpoints

the number of processor breakpoints currently set.

• 29: send busy

the amount of time, in microseconds, that has been spent performing message
sends since the processor was loaded.

• 35: interrupt count

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-232

PROCESSOR_GETINFOLIST_ Procedure

an array of counters for the various interrupts. The number of array elements is 24
and the elements in the array are:

[0] G-series: 0
[1] uncorrectable memory error
[2] memory access breakpoint
[3] instruction failure
[4] page fault
[5] (reserved)
[6] (reserved)
[7] G-series: 0
[8] power failure
[9] correctable memory error
[10] G-series: 0
[11] G-series: IPC traffic interrupts
[12] (reserved)
[13] time list
[14] G-series: IO traffic interrupts
[15] dispatcher
[16] power on
[17] memory stack overflow
[18] arithmetic overflow
[19] instruction breakpoint
[20] (reserved)
[21] (reserved)
[22] (reserved)
[23] (reserved)

If the interrupt structure of the processor of interest cannot be mapped onto the
T16 interrupt list, a value of 0 is returned for the number of array elements and no
space is allocated for the actual array.

• 36: disk cache hits

the number of times the disk processes have found desired disk blocks in memory
since the processor was loaded.

• 37: disk I/Os

the number of physical I/Os issued to the processor’s disks since the processor
was loaded.

• 38: processor queue state

an array of two integers and a FIXED. The first integer is the maximum number of
processes ready to run at any time since the Measure product started collecting
statistics on the processor. The second integer is the current number of processes
ready to run. The FIXED contains the total number of microseconds that all
processes have spent on the ready queue.

• 39: memory queue state

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-233

PROCESSOR_GETINFOLIST_ Procedure

an array of two integers and a FIXED. The first integer is the maximum number of
processes waiting for memory at any time since the Measure product started
collecting statistics on the processor. The second integer is the current number of
processes waiting for memory. The FIXED contains the total number of
microseconds that all processes have spent waiting

• 40: sequenced sends

the number of message packets containing interprocess messages that have been
sent since the processor was loaded. This number is returned as an unsigned
value.

• 41: unsequenced sends

the number of message packets containing low level control information that have
been sent since the processor was loaded. This number is returned as an
unsigned value.

• 42: CME events

the number of correctable memory errors that have been detected since the
processor was loaded. This number is returned as an unsigned value.

• 43: pages created

the number of pages of virtual memory created by the processor’s memory
manager since the processor was loaded. This number is returned as an unsigned
value.

• 44: interpreter busy

for NSR-L processors, the amount of processor time in microseconds that the
processor has spent in the interpreter since the Measure product started collecting
statistics on the processor. If the processor is not a NSR-L processor, 0F is
returned.

• 45: interpreter transitions

for NSR-L processors, the number of times that accelerated code has entered the
interpreter since the Measure product started collecting statistics on the processor.
If the processor is not a NSR-L processor, 0D is returned.

• 46: transactions

the number of transactions since the Measure product started collecting statistics
on the processor. If the Measure product is not collecting statistics on the
processor, 0D is returned. A transaction is defined as a read from a terminal
followed by a write to a terminal. This number is returned as an unsigned value.

• 47: processor model

the processor model number. Processor model numbers are defined only for
certain processors. The processor model number is set to 0 when it is unknown,

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-234

PROCESSOR_GETINFOLIST_ Procedure

undefined, or if the processor of interest is running on a RVU earlier than D20.
See Table 12-6 on page 12-237 for processor model values.

• 48: processor name

the processor name. See Table 12-6 on page 12-237 for processor name STRING
values.

• 49: processor full name

the processor full name. See Table 12-6 on page 12-237 for processor full name
STRING values.

• 50: accelerated time

the number of microseconds the processor spent in accelerated code since the
Measure product started collecting statistics on the processor. If the Measure
product is not collecting statistics on the processor or if the processor of interest is
running a RVU earlier than D20, -1F is returned. If the processor of interest is not
a native processor, then 0F is returned.

• 51: clock resolution

the resolution of the system clock in nanoseconds.

• 52: maximum clock adjustment

the maximum rate, in nanoseconds per second, that the system clock can be
adjusted. This rate can be exceeded when the system clock is moved forward.

• 53: maximum clock drift

the maximum rate, in nanoseconds per second, that the system clock can drift.

• 54: clock sets

the number of times the clock was set since the processor was loaded.

• 55: system loads

the number of system loads from the $SYSTEM disk.

• 56: base time

the timestamp of when the processor was loaded. For a description of this form of
the timestamp, see TIMESTAMP Procedure. The base time is set to -1F when the
processor of interest is running a RVU earlier than D30.

• 57: memory-management attributes

the memory-management attributes of the processor. These attributes are
returned as a bit mask defined as:

 <0:30> Reserved

 <31> 1 Flat segments supported
0 Flat segments not supported

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-235

PROCESSOR_GETINFOLIST_ Procedure

Flat segments are supported on native processors that use D30 or later RVUs of
the NonStop operating system.

• 58: segments in use

the number of absolute unitary segments currently in use. A unitary segment is a
virtual memory area consisting of 128 kilobytes. It is the unit of virtual space
allocation used by the NonStop operating system.

• 59: maximum segments used

the maximum segments used since the last system load.

• 60: update part of the release ID (the two digits that follow the period)

a binary number representing the two digits that follow the period (.) in the release
identifier.

• 61: for HP internal use only

• 62: availability of IEEE floating point on the current system

this attribute can be identified as CPUINFO_ATTR_FP_IEEE_VER, and can have
these values:

• 65: 64-bit dispatch count

the number of dispatch interrupts since the processor was loaded in a 64-bit
counter.

• 72: system name

the system name. See Table 12-6 on page 12-236 for system name STRING
values.

• 74: number of IPUs in a CPU

the number of IPUs in the specified CPU.

• 78: Is this a NEO CPU?

returns 1 if the CPU is a part of the NeoView “segment”, or else the value returned
is 0.

• 79: Current configured TLE limit

0 No IEEE floating point

1 First version of IEEE
floating-point support.

>1 Reserved for future
versions of IEEE floating-
point support.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-236

PROCESSOR_GETINFOLIST_ Procedure

returns the current configured TLE limit.

Example
In this example, the processor type and model of the caller’s processor are returned in
a structure.

Note. Attribute code 79 is available only for systems running J06.03 and later J-series
RVUs or H06.14 and later H-series RVUs.

LITERAL type = 2;
LITERAL model = 47;
INT attributes [0:1] := [type, model];
STRUCT processor^info;
 BEGIN
 INT processor^type;
 INT processor^model;
 END;
 .
 .
 .
error := PROCESSOR_GETINFOLIST_ (nodename:length
 ,! cpu parameter not
needed,!
 ! defaults to caller’s cpu
!
 ,attributes
 ,$OCCURS(attributes)
 ,processor^info
 ,$LEN (processor^info) / 2
 ,return^length);

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-237

PROCESSOR_GETINFOLIST_ Procedure

Table 12-6. Summary of Processor Types and Models (page 1 of 4)

Processor
type (Code
2)

Processor
Model Value
(Code 47)

Processor
Model
Name

Processor
Name
(Code 48)

Processor Full
Name (Code
49)

System
Name (Code
72)

0 0 0 NonStop 1+ HP NonStop 1+
CPU*

NonStop 1+

1 0 0 NonStop II HP NonStop II
CPU*

NonStop II

2 0 0 TXP HP NonStop
TXP CPU*

NonStop TXP

3 0 0 VLX HP NonStop
VLX CPU*

NonStop VLX

4 0 CLX CLX HP NonStop
CLX CPU*

NonStop CLX

4 1 CLX 600 CLX HP NonStop
CLX 600 CPU*

NonStop CLX

4 2 CLX 700 CLX HP NonStop
CLX 700 CPU*

NonStop CLX

4 3 CLX 800 CLX HP NonStop
CLX 800 CPU*

NonStop CLX

4 3 CLX 800 CLX HP NonStop
CLX 800 CPU*

NonStop
CO-CLX800

4 0 or 3 0 or
CLX 800

NSR-L or CLX HP NonStop
System RISC
Model L CPU or
HP NonStop
CLX 800 CPU

NonStop K100

5 0 0 Cyclone HP NonStop
Cyclone CPU*

NonStop
Cyclone

6 0 0 NSR-L HP NonStop
System RISC
Model L CPU*

NonStop
CLX/R

6 0 0 NSR-L HP NonStop
System RISC
Model L CPU*

NonStop CLX
2000

6 0 0 NSR-L HP NonStop
System RISC
Model L CPU*

NonStop
CO-Cyclone/R

6 0 0 NSR-L HP NonStop
System RISC
Model L CPU*

NonStop
Cyclone/R

* This system is no longer supported.

**Supported only on systems running H06.17 and later H-series RVUs and J06.06 and later J-series RVUs

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-238

PROCESSOR_GETINFOLIST_ Procedure

6 0 0 NSR-L HP NonStop
System RISC
Model L CPU*

NonStop K120

6 0 0 NSR-L HP NonStop
System RISC
Model L CPU*

NonStop
K1000

6 0 0 NSR-L HP NonStop
System RISC
Model L CPU*

NonStop
K1000SE

7 2 NSR-N NSR-N HP NonStop
System RISC
Model N CPU*

NonStop
K10000

7 3 NSR-P NSR-P HP NonStop
System RISC
Model P CPU*

NonStop
K20000

7 4 NSR-K NSR-K HP NonStop
System RISC
Model K CPU*

NonStop K200

7 4 NSR-K NSR-K HP NonStop
System RISC
Model K CPU*

NonStop
K2000

7 4 NSR-K NSR-K HP NonStop
System RISC
Model K CPU*

NonStop
K2000SE

8 0 NSR-W NSR-W HP NonStop
System RISC
Model W CPU

NonStop
S7000

9 0 NSR-G NSR-G HP NonStop
System RISC
Model G CPU

NonStop
S70000

9 1 NSR-T NSR-T HP NonStop
System RISC
Model T CPU

NonStop
S72000

9 2 NSR-V NSR-V HP NonStop
System RISC
Model V CPU

NonStop
S74000

Table 12-6. Summary of Processor Types and Models (page 2 of 4)

Processor
type (Code
2)

Processor
Model Value
(Code 47)

Processor
Model
Name

Processor
Name
(Code 48)

Processor Full
Name (Code
49)

System
Name (Code
72)

* This system is no longer supported.

**Supported only on systems running H06.17 and later H-series RVUs and J06.06 and later J-series RVUs

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-239

PROCESSOR_GETINFOLIST_ Procedure

9 3 NSR-X NSR-X HP NonStop
System RISC
Model X CPU

NonStop
S76000

9 4 NSR-Y NSR-Y HP NonStop
System RISC
Model Y CPU

NonStop
S86000

9 5 NSR-Z NSR-Z HP NonStop
System RISC
Model Z CPU

NonStop
S88000

9 6 NSR-R NSR-R HP NonStop
System RISC
Model R CPU

NonStop
S86100

9 7 NSR-S NSR-S HP NonStop
System RISC
Model S CPU

NonStop
S7800B

9 10(A) NSR-D NSR-D HP NonStop
System RISC
Model D CPU

NonStop
S7400

9 11(B) NSR-E NSR-E HP NonStop
System RISC
Model E CPU

NonStop
S7600

9 13(D) NSR-H NSR-H HP NonStop
System RISC
Model H CPU

NonStop
S78000

9 14(E) NSR-J NSR-J HP NonStop
System RISC
Model J CPU

NonStop
S7800

10 1 NSE-A NSE-A HP NonStop
System EPIC
Model A CPU

HP Integrity
NonStop
NS16000

10 2 NSE-D NSE-D HP NonStop
System EPIC
Model D CPU

HP Integrity
NonStop
NS14000

10 11 NSE-B NSE-B HP NonStop
System EPIC
Model B CPU

HP Integrity
NonStop
NS1000

Table 12-6. Summary of Processor Types and Models (page 3 of 4)

Processor
type (Code
2)

Processor
Model Value
(Code 47)

Processor
Model
Name

Processor
Name
(Code 48)

Processor Full
Name (Code
49)

System
Name (Code
72)

* This system is no longer supported.

**Supported only on systems running H06.17 and later H-series RVUs and J06.06 and later J-series RVUs

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-240

PROCESSOR_GETINFOLIST_ Procedure

10 12 NSE-C NSE-C HP NonStop
System EPIC
Model C CPU

HP Integrity
NonStop
NEOVIEW

10 51 NSE-I NSE-I HP NonStop
System EPIC
Model I CPU

HP Integrity
NonStop
NS5000

10 63 NSE-K NSE-K HP NonStop
System EPIC
Model K CPU

HP Integrity
NonStop
NS3000AC

10 64 NSE-O NSE-O HP NonStop
System EPIC
Model O CPU

HP Integrity
NonStop
NEOVIEW

10 66 NSE-X NSE-X HP NonStop
System EPIC
Model X CPU

HP Integrity
NonStop
NEOVIEW

10 67 NSE-W NSE-W HP NonStop
System EPIC
Model W CPU **

HP Integrity
NonStop
NS2000 **

10 71 NSE-M NSE-M HP NonStop
System EPIC
Model M CPU

HP Integrity
NonStop
NB50000c

10 82 NSE-S NSE-S HP NonStop
System EPIC
Model S CPU

HP Integrity
NonStop
NS14200

10 83 NSE-T NSE-T HP NonStop
System EPIC
Model T CPU

HP Integrity
NonStop
16200

10 91 NSE-Q NSE-Q HP NonStop
System EPIC
Model Q CPU

HP Integrity
NonStop
NS1200

10 92 NSE-R NSE-R HP NonStop
System EPIC
Model R CPU

HP Integrity
NonStop
NS3200AC

Table 12-6. Summary of Processor Types and Models (page 4 of 4)

Processor
type (Code
2)

Processor
Model Value
(Code 47)

Processor
Model
Name

Processor
Name
(Code 48)

Processor Full
Name (Code
49)

System
Name (Code
72)

* This system is no longer supported.

**Supported only on systems running H06.17 and later H-series RVUs and J06.06 and later J-series RVUs

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-241

PROCESSOR_GETNAME_ Procedure

PROCESSOR_GETNAME_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The PROCESSOR_GETNAME_ procedure returns a processor’s type and model. You
can designate the processor of interest either by supplying a processor number with a
node number or name, or by supplying a processor number alone. Alternatively, you
can supply just the numeric representation of the processor type. If none of these are
supplied, the procedure returns information about the caller’s processor.

For further information about supported processors, see Table 12-6, Summary of
Processor Types and Models.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

• The parameter length specifies the length in bytes of the character string pointed
to by node-name. The parameters node-name and length must either both be
supplied or both be absent.

#include <cextdecs(PROCESSOR_GETNAME_)>

short PROCESSOR_GETNAME_ (short cpu-number
 ,char *name
 ,short maxlen
 ,short *namelen
 ,[short *cpu-type-out]
 ,[const char *node-name]
 ,[short length]
 ,[__int32_t node-number]
 ,[short cpu-type-in]
 ,[short expand-name]
 ,[short *cpu-model-out]
 ,[short cpu-model-in]);

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-242

PROCESSOR_GETNAME_ Procedure

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation.
Possible values include:

0 Information returned successfully
22 Parameter or buffer out of bounds
29 Missing parameter
201 Unable to communicate over this path
590 Parameter value bad or inconsistent

cpu-number input

INT:value

is the number that identifies the processor of interest. This parameter is required
when either node-name or node-number is specified. If cpu-number is omitted
or equal to -1, and if neither node-name nor node-number is specified, then the
caller’s processor is used.

name:maxlen output:input

STRING .EXT:ref:*, INT:value

returns the processor type as a character string. maxlen specifies the length in
bytes of the string variable name and must be at least 3. If the name to be
returned is longer than maxlen, the returned value is truncated to maxlen bytes.
If the processor type is unknown, the procedure returns a blank string in name and
0 in namelen.

error := PROCESSOR_GETNAME_ ([cpu-number] ! i
 ,name:maxlen ! o:i
 ,namelen ! o
 ,[cpu-type-out] ! o
 ,[node-name:length] ! i:i
 ,[node-number] ! i
 ,[cpu-type-in] ! i
 ,[expand-name] ! i
 ,[cpu-model-out] ! o
 ,[cpu-model-in]); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-243

PROCESSOR_GETNAME_ Procedure

Possible return values for name are:

Processor types 0, 1, 2, 3, 4, and 5 are no longer supported.

namelen output

INT .EXT:ref:1

returns the actual length in bytes of the value returned in name. 0 is returned if an
error occurs.

cpu-type-out output

INT .EXT:ref:1

returns the processor type in numeric form. The possible values are shown earlier
under the description of the name parameter (see the column labeled “Processor

Processor Type name

0 “NonStop 1+”

1 “NonStop II”

2 “TXP”

3 “VLX”

4 “NSR-L” or “CLX”

5 “Cyclone”

6 “NSR-L”

7 “NSR-N”
“NSR-P”
“NSR-K”

8 “NSR-W”

9 “NSR-D”

9 “NSR-E”

9 “NSR-G”

9 “NSR-H”

9 “NSR-J”

9 "NSR-T"

9 “NSR-V”

9 “NSR-X”

9 “NSR-Y”

9 “NSR-Z”

10 “NSE-A”

otherwise maxlen blanks

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-244

PROCESSOR_GETNAME_ Procedure

Type”). These are the same values that are returned by the PROCESSORTYPE
procedure.

node-name:length input:input

STRING .EXT:ref:*, INT:value

if present and if length is not equal to 0, specifies the name of the node where
the processor of interest is located. The value of node-name must be exactly
length bytes long. If this parameter is omitted or if length is 0, and if node-
number does not specify a node, the local node is used.

node-number input

INT(32):value

if present and if not equal to -1D, specifies the number of the node where the
processor of interest is located. If this parameter is omitted or equal to -1D, and if
node-name does not specify the node, the local node is used.

cpu-type-in input

INT:value

if present and if not equal to -1, specifies the processor type in numeric form. This
value must be one of the numeric values shown earlier under the description of the
name parameter (see the column labeled “Processor Type”).

expand-name input

INT:value

if present and equal to 1, causes the returned value in name to be expanded. For
most processor types, the returned value becomes “HP NonStop name CPU.” For
the NonStop 1+ and the NonStop II processors, the word “NonStop” is not
repeated. For the NSR-L processor, the name is expanded to “HP NonStop RISC
Model L.”

cpu-model-out output

INT .EXT:ref:1

returns the processor model number of the processor returned in the
cpu-type-out parameter. For a list of model numbers, see Table 12-6 on
page 12-237.

cpu-model-in input

INT:value

specifies the processor model number of the processor specified in the
cpu-type-in parameter. For a list of model numbers, see Table 12-6 on
page 12-237.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-245

PROCESSOR_GETNAME_ Procedure

Considerations
If you supply more information than is necessary to identify the processor or the
processor type of interest (that is, if you specify both node-number and node-name,
or if you identify the processor and also specify cpu-type-in),
PROCESSOR_GETNAME_ uses the first sufficient set of parameters that it
encounters and ignores the rest.

Example
In this example, the processor of interest is identified by its processor number and
node number.

error := PROCESSOR_GETNAME_ (cpu^num, name:max^length,
 length, , , node^num);

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-246

PROCESSORSTATUS Procedure

PROCESSORSTATUS Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters

Summary
The PROCESSORSTATUS procedure returns the highest processor number plus 1 of
the configured processor modules in a system and the operational states of all the
processor modules.

For further information about supported processors, see Table 12-6, Summary of
Processor Types and Models, on page 12-237.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

Syntax for TAL Programmers

Parameters

processor-status returned value

INT(32)

returns two words indicating the highest processor number plus 1 of the configured
processor modules and the operational states of all the processor modules.

The most significant word contains the highest processor number plus one.

#include <cextdecs(PROCESSORSTATUS)>

__int32_t PROCESSORSTATUS ();

processor-status := PROCESSORSTATUS;

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-247

PROCESSORTYPE Procedure

The least significant word is a bit mask indicating the operational state of each
processor module:

For each bit:

1 up indicates that the corresponding processor module is up
(operational).

0 down indicates that the corresponding processor module is down or does
not exist.

PROCESSORTYPE Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example

Summary
The PROCESSORTYPE procedure returns the processor type of a specified system
and processor.

For further information about supported processors, see Table 12-6, Summary of
Processor Types and Models, on page 12-237.

Word[0] most significant word, highest processor
number + 1

 [1] least significant word, bit mask 1 or 0

ls word.<0> = processor module 0
ls word.<1> = processor module 1
 .
 .
 .
ls word.<14> = processor module 14
ls word.<15> = processor module 15

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-248

PROCESSORTYPE Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

type returned value

INT

returns one of these values:

-2 feature not supported for the system named in sysid
-1 unable to communicate with processor (either it does not exist or the network is

down)
 0 HP NonStop 1+ processor
 1 HP NonStop II processor
 2 HP NonStop TXP processor
 3 HP NonStop VLX processor
 4 HP NonStop CLX processor
 5 HP NonStop Cyclone processor
 6 HP NonStop NSR-L processor
 7 HP NonStop NSR-N processor,

HP NonStop NSR-P processor, or
HP NonStop NSR-K processor

8 HP NonStop NSR-W processor
9 HP NonStop NSR-D processor

HP NonStop NSR-E processor
HP NonStop NSR-G processor
HP NonStop NSR-H processor
HP NonStop NSR-J processor
HP NonStop NSR-T processor
HP NonStop NSR-V processor
HP NonStop NSR-X processor
HP NonStop NSR-Y processor
HP NonStop NSR-Z processor

10 HP NonStop NSE-A processor

If cpu is greater than 16 or less than 0, then -1 is returned. If sysid is invalid or
the system is unavailable across the network, then -1 is returned. Types 0, 1, 2,
and 3 are no longer supported.

cpu input

INT:value

#include <cextdecs(PROCESSORTYPE)>

short PROCESSORTYPE ();

type := PROCESSORTYPE ([cpu] ! i
 ,[sysid]); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-249

PROCESSSTRING_SCAN_ Procedure

is the processor number of the processor for the type returned.

If no value is specified for cpu, the processor from which the call is made is used
and the sysid parameter is ignored.

sysid input

INT:value

is the system number, identifying the system of the processor of which the type is
returned. If no value is specified for sysid the system from which the call is made
is used.

Example
TYPE^CPU := PROCESSORTYPE (PROCESSOR , SYSTEM^NUM);

PROCESSSTRING_SCAN_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
The PROCESSSTRING_SCAN_ procedure scans an input string for a process string
and returns the corresponding process handle or a single component of the process
string converted to internal form. Device names are optionally accepted in the input
string. See “Considerations” for the definition of process string.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-250

PROCESSSTRING_SCAN_ Procedure

Syntax for C Programmers

The parameter maxlen specifies the maximum length in bytes of the character string
pointed to by name, the actual length of which is returned by namelen. All three of
these parameters must either be supplied or be absent.

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system error number indicating the outcome of the operation.

string:length input:input

STRING .EXT:ref:*, INT:value

is a character string to be searched to find a valid process string. string must be
exactly length bytes long. A valid process string must begin at the first character
of string. It can occupy the entire length of string, or it can occupy the left-
hand portion and be followed by a character that is not valid in that part of a
process string. If a node name is not present in the process string, the current
default value in the =_DEFAULTS DEFINE is used for determining the process
handle.

#include <cextdecs(PROCESSSTRING_SCAN_)>

short PROCESSSTRING_SCAN_ (char *string
 ,[short length_of_searchString]
 ,[short *length-used]
 ,[short *processhandle]
 ,[short *stringtype]
 ,[char *name]
 ,[maxlen]
 ,[short *namelen]
 ,[short *cpu]
 ,[short *pin]
 ,[short options]);

error := PROCESSSTRING_SCAN_ (string:length ! i:i
 ,[length-used] ! o
 ,[processhandle] ! o
 ,[stringtype] ! o
 ,[name:maxlen] ! o:i
 ,[namelen] ! o
 ,[cpu] ! o
 ,[pin] ! o
 ,[options]); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-251

PROCESSSTRING_SCAN_ Procedure

length-used output

INT .EXT:ref:1

if present, returns the number of characters in string that are part of the process
string. If error 13 is returned, length-used is the number of characters that were
accepted as valid before the name was determined to be invalid.

processhandle output

INT .EXT:ref:10

if present, returns the process handle of the designated process. A null process
handle (-1 in each word) is returned if the designated process does not exist or if
the form of the process string does not designate a particular process (for
example, if only cpu is supplied).

stringtype output

INT .EXT:ref:1

if present, returns a value indicating the form of the process string contained in
string, and therefore which output parameters have significant values. Valid
values are:

0 Asterisk form (that is, “*”)
1 Single processor form (for example, “2”)
2 processor, PIN form (for example, “2,137”)
3 Name form (for example, “$PSRV”)

name:maxlen output:input

STRING .EXT:ref:*, INT:value

if present, returns the name of a node or process. If stringtype is less than 3,
name returns the node name that was contained in the process string (if no node
name was specified, the returned value of namelen is 0). If stringtype is 3, the
returned value is the specified process name, including the node name, if present.

maxlen is the length in bytes of the string variable name.

namelen output

INT .EXT:ref:1

if present, returns the actual length of the value returned in name. If an error
occurs, 0 is returned.

cpu output

INT .EXT:ref:1

if present, returns the processor value contained in the process string when
stringtype is 1 or 2; otherwise -1 is returned.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-252

PROCESSTIME Procedure
(Superseded by PROCESS_GETINFOLIST_

pin output

INT .EXT:ref:1

if present, returns the PIN value contained in the process string when
stringtype is 2; otherwise -1 is returned.

options input

INT:value

specifies desired options. The fields are:

<15> 0 Error 13 occurs if options <15> =0 and the input string name
exceeds 6 characters including the ‘$’ character.

1 Causes an input string exceeding 6 characters to be accepted
without error..

<0:14> Reserved (specify 0)

When options is omitted, 0 is used.

Considerations

• A process string is a string of characters that identifies a process or a set of
processes. Process strings are commonly used in command lines (for example, in
the TACL STATUS command). PROCESSSTRING_SCAN_ accepts process
strings in these forms:

[\node.]cpu,pin
[\node.]cpu
[\node.]$process-name
[\node.]*

• If you request the processhandle, PROCESSSTRING_SCAN_ verifies that the
process exists. If the process does not exist, a null process handle (-1 in each
word) is returned. If you supply a process name that represents an existing
process pair, the returned process handle is that of the current primary.

PROCESSTIME Procedure
(Superseded by PROCESS_GETINFOLIST_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-253

PROCESSTIME Procedure
(Superseded by PROCESS_GETINFOLIST_

Summary

The PROCESSTIME procedure returns the process execution time of any process in
the network. Process time is the processor time in microseconds that the process has
consumed; processor time used for Guardian procedures called is also included.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

process-time returned value

FIXED

is the process execution time, in microseconds, of the specified process in the
network.

-1F indicates that the process does not exist.

-2F indicates that the system is unavailable or does not exist; the procedure
cannot get resources (link control blocks).

> 0F indicates that PROCESSTIME was successful.

cpu,pin input

INT:value

is the processor (in bits <4:7> with <0:3> not used) and PIN (in bits <8:15>)
number of the process whose execution time is to be returned. If cpu,pin is
omitted, the cpu,pin of the current process (calling process) is used, even if
sysid is different than the current system.

sysid input

INT:value

is the system number. sysid defaults to the current system.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

process-time := PROCESSTIME ([cpu,pin] ! i
 ,[sysid]); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-254

PROGRAMFILENAME Procedure
(Superseded by PROCESS_GETINFOLIST_

Considerations
You cannot use PROCESSTIME for a high-PIN process except when omitting
cpu,pin. This is because a high-PIN cannot fit into cpu,pin.

Example
IF (PROCESS^TIME := PROCESSTIME (CPU^PIN , SYS^NUM)) >= 0F
 THEN ... ! successful.
 ELSE ... ! PROCESSTIME not available.

PROGRAMFILENAME Procedure
(Superseded by PROCESS_GETINFOLIST_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example

Summary

The PROGRAMFILENAME procedure is used to obtain the name of the calling
process’s program file.

The main use of this procedure is to allow a primary process to create its backup
process without having to hard code the program file name into the source program.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-255

PURGE Procedure (Superseded by FILE_PURGE_
Procedure)

Syntax for TAL Programmers

Parameters

program-file output

INT:ref:12

is an array where PROGRAMFILENAME returns the internal-format file name of
the process’s program file.

Example
CALL PROGRAMFILENAME (MYPROG);

PURGE Procedure
(Superseded by FILE_PURGE_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Safeguard Considerations
OSS Considerations
Example

Summary

The PURGE procedure is used to delete a disk file that is not open. When PURGE is
executed, the disk file name is deleted from the volume’s directory, and any disk space
previously allocated to that file is made available to other files.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

CALL PROGRAMFILENAME (program-file); ! o

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-256

PURGE Procedure (Superseded by FILE_PURGE_
Procedure)

Syntax for TAL Programmers

Parameters

file-name input

INT:ref:12

is an array containing the internal-format file name of the disk file to be purged. To
purge either a permanent or temporary disk file, file-name must be of the form:

Permanent Disk File

[0:3] $volname (blank-fill)
or

\sysnum volname (blank-fill)

[4:7] subvol-name (blank-fill)

[8:11] file-id (blank-fill)

Temporary Disk File

[0:3] $volname (blank-fill)
or

\sysnum volname (blank-fill)

[4:11] #temporary-file-id

Condition Code Settings
< (CCL) indicates that the PURGE failed (call FILEINFO or FILE_GETINFO_).

Note, however, that in the case of a disk free-space error (such as file-
system errors 52, 54, 58), the file is purged, and an error returns.

 = (CCE) indicates that the file purged successfully.

> (CCG) indicates that the device is not a disk.

Considerations

• Purge failure

If PURGE fails, the reason for the failure can be determined by calling FILEINFO
or FILE_GETINFO_, passing -1 as the filenum parameter.

• Purging a file audited by the Transaction Management Facility (TMF)

If the file is a file audited by TMF and there are pending transaction-mode record
locks or file locks, any attempt to purge that file fails with file error 12, whether or
not openers of the file still exist.

CALL PURGE (file-name); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-257

PURGE Procedure (Superseded by FILE_PURGE_
Procedure)

When an audited file is purged, all corresponding dump records are deleted from
the TMF catalog. If TMF is not active, attempts to purge an audited file fail with
file-system error 82.

• Purging a partitioned file

When you purge the primary partition of a partitioned file, the file system
automatically purges all the other partitions located anywhere in the network that
are marked as secondary partitions. A secondary partition is marked as such if it
created at the same time as the primary partition.

• Security consideration

File purging normally is performed in a logical fashion; the data is not necessarily
overwritten or erased, but rather pointers are changed to show the data to be
absent. For security reasons, you might want to set the CLEARONPURGE flag for
a file, using either function 1 of the SETMODE procedure or the File Utility
Program SECURE command. Either way, this option causes all data to be
physically erased (overwritten with zeros) when the file is purged.

• Expiration dates

PURGE checks the expiration date of a file before it purges the file. If the
expiration date is later than the current date, PURGE does not purge the file and
returns error code 1091.

Safeguard Considerations
For information on files protected by Safeguard, see the Safeguard Reference Manual.

OSS Considerations
This procedure operates only on Guardian objects. If an OSS file is specified, error
1163 occurs.

Example
CALL PURGE (OLD^FILE^NAME);

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-258

PUTPOOL Procedure
(Superseded by POOL_* Procedures)

PUTPOOL Procedure
(Superseded by POOL_* Procedures)

BOOKMARK
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Example
Related Programming Manual

Summary

The PUTPOOL procedure returns a block of memory to a buffer pool.

Syntax for C Programmers

The function value returned by PUTPOOL, which indicates the condition code, can be
interpreted by the _status_lt(), _status_eq(), or _status_gt() function
(defined in the file tal.h).

Syntax for TAL Programmers

Parameters

pool-head input, output

INT .EXT:ref:19

is the address of the pool head of the pool from which the block of memory was
obtained using GETPOOL.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development. *POOL procedures are replaced by POOL_* procedures. There is
no one-for-one replacement.

#include <cextdecs(PUTPOOL)>

_cc_status PUTPOOL(short *pool-head
 ,char *pool-block);

CALL PUTPOOL (pool-head ! i,o
 ,pool-block); ! i

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-259

PUTPOOL Procedure
(Superseded by POOL_* Procedures)

pool-block input

STRING .EXT:ref:*

is the address of the block to be returned to the pool.

Condition Code Settings

< (CCL) indicates that the data structures are invalid or that pool-block is not a
block in the buffer pool.

= (CCE) indicates that the operation is successful.

> (CCG) is not returned from PUTPOOL.

Considerations
GETPOOL and PUTPOOL do not check pool data structures on each call. A process
that destroys data structures can fail on a call to GETPOOL or PUTPOOL: a Guardian
TNS process can get an instruction failure trap (trap 1) or an invalid address reference
trap (trap 0); an OSS or native process can receive a SIGILL or SIGSEGV signal.

Example
CALL PUTPOOL (pool^head, pblock);

pool^head is the pool head of the pool from which the block of memory was obtained,
and PBLOCK is the block to be returned to the pool.

Related Programming Manual
For programming information about the PUTPOOL memory-management procedure,
see the Guardian Programmer’s Guide.

Guardian Procedure Calls (P)

Guardian Procedure Calls Reference Manual—522629-030
12-260

PUTPOOL Procedure
(Superseded by POOL_* Procedures)

Guardian Procedure Calls Reference Manual—522629-030
13-1

13 Guardian Procedure Calls (R)
This section contains detailed reference information for all user-accessible Guardian
procedure calls beginning with the letter R. Table 13-1 lists all the procedures in this
section.

Table 13-1. Procedures Beginning With the Letter R

RAISE_ Procedure

READ[X] Procedures

READ^FILE Procedure

READEDIT Procedure

READEDITP Procedure

READLOCK[X] Procedures

READUPDATE[X|XL] Procedures

READUPDATELOCK[X] Procedures

RECEIVEINFO Procedure (Superseded by FILE_GETRECEIVEINFO[L]_ Procedure)

REFPARAM_BOUNDSCHECK_ Procedure

REFRESH Procedure (Superseded by DISK_REFRESH_ Procedure)

REMOTEPROCESSORSTATUS Procedure

REMOTETOSVERSION Procedure

RENAME Procedure (Superseded by FILE_RENAME_ Procedure)

REPLY[X|XL] Procedures

REPOSITION Procedure (Superseded by FILE_RESTOREPOSITION_ Procedure)

RESETSYNC Procedure

RESIZEPOOL Procedure (Superseded by POOL_* Procedures)

RESIZESEGMENT Procedure

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-2

RAISE_ Procedure

RAISE_ Procedure

RAISE_ is the pTAL procedure name for the C raise() function. The C raise()
function complies with the POSIX.1 standard.

See the $SYSTEM.SYSTEM.HSIGNAL header file for the pTAL prototype definitions.
For a discussion of each parameter and other procedure considerations, see the
raise(3) function reference page either online or in the Open System Services
System Calls Reference Manual.

Considerations
When RAISE_ is used to stop a process, the operating system supplies a completion
code in the system message and, for OSS processes, in the OSS process termination
status as follows:

• If the signal is handled by SIG_DFL, a completion code of 9 is returned and the
signal number is returned in the termination information.

• If the signal is handled by the default CRE signal handler, a completion code of 3 is
returned with 0 in the termination information.

For a list of completion codes, see Appendix C, Completion Codes.

READ[X] Procedures
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Disk File Considerations
Errors for READX Only
Example
Related Programming Manuals

Summary
The READ[X] procedures return data from an open file to the application process’s
data area. READ is intended for use with 16-bit addresses, while READX is intended
for use with 32-bit extended addresses. Therefore, the data buffer for READX can be
either in the caller’s stack segment or any extended data segment.

The READ[X] procedures sequentially read a disk file. For key-sequenced, relative,
and entry-sequenced files, the READ[X] procedures read a subset of records in the

Note. This procedure can be called only from native processes.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-3

READ[X] Procedures

file. (A subset of records is defined by an access path, positioning mode, and
comparison length.)

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

• The function value returned by READ[X], which indicates the condition code, can
be interpreted by _status_lt(), _status_eq(), or _status_gt() (defined
in the file tal.h).

Syntax for TAL Programmers

Parameters

filenum input

INT:value (Use with both READ and READX)

is the number of an open file that identifies the file to be read.

buffer output

INT:ref:* (Use with READ)
STRING .EXT:ref:* (Use with READX)

#include <cextdecs(READ)>

_cc_status READ (short filenum
 ,short _near *buffer
 ,unsigned short read-count
 ,[unsigned short _near *count-read]
 ,[__int32_t tag]);

#include <cextdecs(READX)>

_cc_status READX (short filenum
 ,char _far *buffer
 ,unsigned short read-count
 ,[unsigned short _far *count-read]
 ,[__int32_t tag]);

CALL READ[X] (filenum ! i
 ,buffer ! o
 ,read-count ! i
 ,[count-read] ! o
 ,[tag]); ! i

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-4

READ[X] Procedures

is an array in the application process in which the information read from the file is
returned. The buffer for READ can be only in the user’s stack area, while the
buffer for READX can be in the caller’s stack segment or in any extended data
segment.

read-count input

INT:value (Use with both READ and READX)

is the number of bytes to be read:

{0:57344} for disk files (see Disk File Considerations on page 13-7 and
Appendix J, System Limits)

{0:32755} for terminal files
{0:57344} for other nondisk files (device dependent)
{0:57344} for $RECEIVE and process files
{0:80} for the operator console

count-read output

INT:ref:1 (Use with READ)
INT .EXT:ref:1 (Use with READX)

is for waited I/O only. It returns a count of the number of bytes returned from the
file into buffer.

tag input

INT(32):value (Use with both READ and READX)

is for nowait I/O only. tag is a value you define that uniquely identifies the
operation associated with this READ[X].

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

< (CCL) is also returned following a successful read with an insertion-ordered
alternate key path if the alternate key value of the current record is equal to
the alternate key value in this record along that path. A call to
FILE_GETINFO_ or FILEINFO shows that error 551 occurred; this error is
advisory only and does not indicate an unsuccessful read operation.

= (CCE) indicates that the READ[X] is successful.

> (CCG) for disk and nondisk devices, indicates that the end of file (EOF) is
encountered (no more records in this subset); for the $RECEIVE file, a
system message is received (call FILE_GETINFO_ or FILEINFO).

Note. The system stores the tag value until the I/O operation completes. The system then
returns the tag information to the program in the tag parameter of the call to AWAITIO[X],
thus indicating that the operation completed. If READX is used, the user must call the
AWAITIOX procedure to complete the I/O. If READ is used, the user may use either AWAITIO
or AWAITIOX to complete the I/O.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-5

READ[X] Procedures

Considerations

• READ versus READX

Use READ when the buffer has a 16-bit address, and use READX when the buffer
has a 32-bit extended address. Therefore, the data buffer for READX can be
either in the caller’s stack segment or any extended data segment.

• Waited READ[X]

If a waited READ[X] is executed, the count-read parameter indicates the
number of bytes actually read.

• Nowait READ[X]

If a nowait READ[X] is executed, count-read has no meaning and can be
omitted. The count of the number of bytes read is obtained through the count-
transferred parameter of the AWAITIO[X] procedures when the I/O operation
completes.

The READ[X] procedure must complete with a call to the AWAITIO[X] procedure
when it is used with a file that is opened nowait. If READX is used, you must call
AWAITIOX to complete the I/O. If READ is used, you may use either AWAITIO or
AWAITIOX to complete the I/O.

It is possible to initiate concurrent nowait read operations that share the same data
buffer. To do this successfully with files opened by FILE_OPEN_, you must use
SETMODE function 72 to cause the system to use an intermediate buffer in the
process file segment (PFS) for I/O transfers. With files opened by OPEN, a PFS
buffer is used by default.

• READ[X] from process files

The action for a READ of a process file is the same as that for a WRITEREAD with
zero write-count.

• READ[X] call when default locking mode is in effect

If the default locking mode is in effect when a call to READ[X] is made to a locked
file, but the filenum of the locked file differs from the filenum in the call, the
caller of READ[X] is suspended and queued in the “locking” queue behind other
processes attempting to lock or read the file or record.

• Read call when alternate locking mode is in effect

WARNING. When using nowait file I/O, data corruption might occur if the READ buffer
is modified before the AWAITIOX that completes the call.

Note. A deadlock condition occurs if a call to READ[X] is made by a process having multiple
opens on the same file and the filenum used to lock the file differs from the filenum
supplied to READ[X].

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-6

READ[X] Procedures

If the alternate locking mode is in effect when READ[X] is called, and the file or
record is locked through a file number other than that supplied in the call, the call is
rejected with file-system error 73 (file is locked).

• Locking mode for read

The locking mode is specified by the SETMODE procedure, function 4. If you
encounter error 73 (file is locked), you do not need to call SETMODE for every
READ[X]. SETMODE stays in effect indefinitely (for example, until another
SETMODE is performed or the file is closed), and there is no additional overhead
involved.

• Considerations for READX only

• buffer and count-transferred can be in the user stack or in an
extended data segment. buffer and count-transferred cannot be in the
user code space.

• The buffer address and count-transferred address must be relative;
they cannot be an absolute extended address.

• If buffer or count-transferred is in a selectable extended data segment,
the segment must be in use at the time of the call. Flat segments allocated by
a process are always accessible to the process.

• The size of the transfer is subject to current restrictions for the type of file.

• If the file is opened for nowait I/O, and the buffer is in an extended data
segment, you must not deallocate or reduce the size of the extended data
segment before the I/O finishes with a call to AWAITIOX or is canceled by a
call to CANCEL or CANCELREQ.

• If the file is opened for nowait I/O, you must not modify the buffer before the I/O
finishes with a call to AWAITIOX. This also applies to other processes that
might be sharing the segment. It is the application’s responsibility to ensure
this.

• If the file is opened for nowait I/O and the I/O has been initiated with these
routines, the I/O must be completed with a call to AWAITIOX (not AWAITIO).

• If the file is opened for nowait I/O, a selectable extended data segment
containing the buffer need not be in use at the time of the call to AWAITIOX.

• Nowait I/O initiated with these routines can be canceled with a call to CANCEL
or CANCELREQ. The I/O is canceled if the file is closed before the I/O
finishes or AWAITIOX is called with a positive time limit and specific file
number, and the request times out.

• A file opened by FILE_OPEN_ uses direct I/O transfers by default; you can use
SETMODE 72 to force the system to use an intermediate buffer in the process
file segment (PFS) for I/O transfers. A file opened by OPEN uses a PFS buffer
for I/O transfers, except for large transfers to DP2 disks.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-7

READ[X] Procedures

• If the extended address of the buffer is odd, bounds checking rounds the
address to the next lower word boundary and checks an extra byte as well.
The odd address is used for the transfer.

• Queue files

READ[X] can be used to perform a nondestructive read of a queue file record. If
KEYPOSITION[X] is used to position to the beginning of the file, the first READ[X]
performed returns a record with a length of 8 bytes and contents of all zeroes.
Subsequent READ[X] calls will return data from records written to the file.

Disk File Considerations

• Large data transfers for unstructured files using default mode

For the read procedures (READ[UPDATE] [LOCK] [X]), using default mode allows
I/O sizes for unstructured files to be as large as 56 kilobytes (57,344), if the
unstructured buffer size is 4 KB (4096). Default mode here refers to the mode of
the file if SETMODE function 141 is not invoked.

For an unstructured file with an unstructured buffer size other than 4 KB, DP2
automatically adjusts the unstructured buffer size to 4 KB, if possible, when an I/O
larger than 4KB is attempted. However, this adjustment is not possible for files that
have extents with an odd number of pages; in such cases an I/O over 4 KB is not
possible. Note that the switch to a different unstructured buffer size will have a
transient performance impact, so it is recommended that the size be initially set to
4 KB, which is the default. Transfer sizes over 4 KB are not supported in default
mode for unstructured access to structured files.

• Large data transfers using SETMODE 141

For READX only, large data transfers (more than 4096 bytes) can be done for
unstructured access to structured or unstructured files, regardless of unstructured
buffer size, by using SETMODE function 141. When SETMODE 141 is used to
enable large data transfers, it is permitted to specify up to 56K (57344) bytes for
the read-count parameter. See Table 14-4 on page 14-63 for use of SETMODE
function 141.

• Structured files

• a subset of records for sequential READ[X]s

The subset of records read by a series of calls to READ[X] is specified through
the POSITION or KEYPOSITION procedures.

• reading of an approximate subset of records

If an approximate subset is being read, the first record returned is the one
whose key field, as indicated by the current key specifier, contains a value
equal to or greater than the current key. Subsequent reading of the subset
returns successive records until the last record in the file is read (an EOF
indication is then returned).

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-8

READ[X] Procedures

• reading of a generic subset of records

If a generic subset is being read, the first record returned is the one whose key
field, as designated by the current-key specifier, contains a value equal to the
current key for comparison-length bytes. Subsequent reading of the file
returns successive records whose key matches the current key (for
comparison-length bytes). When the current key no longer matches, an
EOF indication returns.

For relative and entry-sequenced files, a generic subset of the primary key is
equivalent to an exact subset.

• reading of an exact subset of records

If an exact subset is being read, the only records returned are those whose key
field, as designated by the current-key specifier, contains a value of exactly the
comparison length bytes (see KEYPOSITION[X] Procedures
(Superseded by FILE_SETKEY_ Procedure)) and is equal to the key. When
the current key no longer matches, an EOF indication returns. The exact
subset for a key field having a unique value is at most one record.

• indicators after READ[X]

After a successful READ[X], the current-state indicators have these values:

Current position record just read
Positioning mode unchanged
Comparison length unchanged
Current primary-key value set to the value of the primary-key field in the

record

• Read-reverse action on current and next record pointers

Following a call to READ when reverse-positioning mode is in effect, the
next-record-pointer contains the record number or address which
precedes the current record number or address.

Following a read of the first record in a file (where current-record-
pointer = 0) with reverse positioning, the next-record-pointer will
contain an invalid record number or address since no previous record exists. A
subsequent call to READ would return an “end-of-file” error, whereas a call to
WRITE would return an “illegal position” error (error 550) since an attempt was
made to write beyond the beginning of the file.

• Unstructured files

• READ[X]s

Data transfer begins from an unstructured disk file at the position indicated by
the next-record pointer.

The READ[X] procedure reads records sequentially on the basis of a beginning
relative byte address (RBA) and the length of the records read.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-9

READ[X] Procedures

• odd unstructured

If the unstructured file is created with the odd unstructured attribute (also
known as ODDUNSTR) set, the number of bytes read is exactly the number of
bytes specified with read-count. If the odd unstructured attribute is not set
when the file is created, the value of read-count is rounded up to an even
number before the READ[X] is executed.

You set the odd unstructured attribute with the FILE_CREATE_,
FILE_CREATELIST_, or CREATE procedure, or with the File Utility Program
(FUP) SET and CREATE commands.

• READ[X] count

Unstructured files are transparently blocked. The BUFFERSIZE file attribute
value, if not set by the user, defaults to 4096 bytes. The BUFFERSIZE
attribute value (which is set by specifying SETMODE function 93) does not
constrain the allowable read-count in any way. However, there is a
performance penalty if the READ[X] does not start on a BUFFERSIZE
boundary and does not have a read-count that is an integral multiple of the
BUFFERSIZE. The DP2 disk process executes your requested I/O in (possibly
multiple) units of BUFFERSIZE blocks starting on a block boundary.

• of count-read for unstructured READ[X]s

After a successful call to READ[X] for an unstructured file, the value returned in
count-read is determined by:

count-read := $MIN(read-count &
 eof-pointer - next-record pointer)

• pointers after READ[X]

After a successful READ[X] to an unstructured file, the file pointers are:

CCG = 1 if the next-record pointer = EOF pointer; otherwise CCG = 0

current-record pointer = old next-record pointer

next-record pointer = old next-record pointer + count-read

Errors for READX Only
In addition to the errors currently returned from READ, error 22 is returned from
READX when:

• The address of a parameter refers to the selectable segment area but no
selectable segment is in use at the time of the call.

• The address of a parameter is extended, but it is an absolute address and the
caller is not privileged.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-10

READ[X] Procedures

Example
CALL READ (FILE^NUM , IN^BUFFER , 72 , NUM^XFERRED);

! The READ permits up to 72 bytes to be read into IN^BUFFER,
! and the count actually read returns into NUM^XFERRED.

Related Programming Manuals
For programming information about the READ file-system procedure, see the Guardian
Programmer’s Guide, the Enscribe Programmer’s Guide, and the data communication
manuals.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-11

READ^FILE Procedure

READ^FILE Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example
Related Programming Manual

Summary
The READ^FILE procedure is used to read a file sequentially. The file must be open
with read or read/write access.

READ^FILE is a sequential I/O (SIO) procedure and should be used only with files that
have been opened by OPEN^FILE.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system or SIO procedure error indicating the outcome of the read.

If abort-on-error mode is in effect, the only possible values for error are:

0 No error

1 End of file

#include <cextdecs(READ_FILE)>

short READ_FILE (short _near *file-fcb
 ,short _near *buffer
 ,[short _near *count-returned]
 ,[short prompt-count]
 ,[short max-read-count]
 ,[short nowait]);

error := READ^FILE (file-fcb ! i
 ,buffer ! o
 ,[count-returned] ! o
 ,[prompt-count] ! i
 ,[max-read-count] ! i
 ,[nowait]); ! i

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-12

READ^FILE Procedure

6 System message (only if user requested system messages through
SET^SYSTEMMESSAGES or SET^SYSTEMMESSAGESMANY)

111 Operation aborted because of BREAK (if BREAK is enabled). If nowait
is not zero, and if abort-on-error is in effect, the only possible value for
error is 0.

file-fcb input

INT:ref:*

identifies the file to be read.

buffer output

INT:ref:*

is where the data is returned. The buffer must be located within ‘G’[0:32767]
process data area.

count-returned output

INT:ref:1

returns the number of bytes returned to buffer. If I/O is nowait, this parameter
has no meaning and can be omitted. The count is then obtained in the call to
WAIT^FILE.

prompt-count input

INT:value

is a count of the number of bytes in buffer, starting with element zero, to be used
as an interactive prompt for terminals or interprocess files. If omitted, the
interactive prompt character defined in OPEN^FILE is used.

max-read-count input

INT:value

specifies the maximum number of bytes to be returned to buffer. If omitted or if it
exceeds the file’s logical record length, the logical record length is used for this file.

nowait input

INT:value

indicates whether or not to wait for the I/O operation to complete in this call. If
omitted or zero, then “wait” is indicated. If not zero, the I/O operation must be
completed in a call to WAIT^FILE.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-13

READEDIT Procedure

Considerations

• Terminal or Process File

If the file is a terminal or process, a WRITEREAD operation is performed using the
interactive prompt character or prompt-count character from buffer. For
$RECEIVE, READ^FILE does a READUPDATE instead of a READ.

Example
ERROR := READ^FILE (IN^FILE , BUFFER , COUNT);

Related Programming Manual
For programming information about the READ^FILE procedure, see the Guardian
Programmer’s Guide.

READEDIT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example
Related Programming Manual

Summary
The READEDIT procedure reads one line from a specified EDIT file and returns it to
the caller in unpacked format.

READEDIT is an IOEdit procedure and can only be used with files that have been
opened by OPENEDIT or OPENEDIT_.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-14

READEDIT Procedure

Syntax for C Programmers

• The sixth parameter to READEDIT is reserved for internal use. You must supply a
placeholder comma for this parameter when using the parameters that follow it.

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation.

filenum input

INT:value

specifies the file number of the open file that is to be read.

record-number input, output

INT(32):ref:1

Note. In the TNS/E environment the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(READEDIT)>

short READEDIT (short filenum
 ,[__int32_t *record-number]
 ,char *unpacked-line
 ,short unpacked-limit
 ,short *unpacked-length
 ,[reserved parameter]
 ,short prompt-count
 ,[short spacefill]
 ,[short full-length]);

error := READEDIT (filenum ! i
 ,[record-number] ! i,o
 ,unpacked-line ! o
 ,unpacked-limit ! i
 ,unpacked-length ! o
 ,[reserved parameter]
 ,[spacefill] ! i
 ,[full-length]); ! i

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-15

READEDIT Procedure

if present, specifies the record number of the line to be read. If record-number:

• is greater than or equal to 0, READEDIT reads the line (if any) with the
smallest EDIT line number that is greater than or equal to the value of 1000
times record-number.

• is -1, READEDIT reads the lowest-numbered line (if any) in the file.

• is -2, READEDIT reads the highest-numbered line (if any) in the file.

• is -3 or omitted, READEDIT reads the line (if any) with the smallest record
number that is greater than or equal to the next record number.

record-number returns the value of the file’s new current record number after
the read has been performed. This is equal to the record number of the line that
was read, or it is -2 (end of file) if no line was read.

unpacked-line output

STRING .EXT:ref:*

is a string array that contains the line in unpacked format that is the outcome of the
operation. The length of the unpacked line is returned in the unpacked-length
parameter.

unpacked-limit input

INT:value

specifies the length in bytes of the string variable unpacked-line.

unpacked-length output

INT .EXT:ref:1

returns the actual length in bytes of the value returned in unpacked-line. If
unpacked-line is not large enough to contain the value that is the output of the
operation, unpacked-length returns a negative value.

[reserved parameter]

is reserved for internal use. When using the parameters that follow, you must
supply a placeholder comma for the reserved parameter.

spacefill input

INT:value

if present and not equal to 0, specifies that if the value returned in unpacked-
line is shorter than unpacked-limit, READEDIT should fill the unused part of
unpacked-line with space characters. Otherwise, READEDIT does nothing to
the unused part of unpacked-line.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-16

READEDITP Procedure

full-length input

INT:value

if present and not equal to 0, specifies that all trailing space characters (if any) in
the line being processed should be retained in the output line and should be
counted in the value returned in unpacked-length. Otherwise, trailing space
characters are discarded and not counted in unpacked-length.

Example
error := READEDIT (filenumber, record^num, line^image,
 line^maxlength, line^actual^length, ,
 space^fill);
IF error THEN ... ! handle error
IF line^actual^length < 0 THEN ... ! buffer (line^image)
 ! too small for return
 ! value

Related Programming Manual
For programming information about the READEDIT procedure, see the Guardian
Programmer’s Guide.

READEDITP Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example
Related Programming Manual

Summary
The READEDITP procedure reads one line from a specified EDIT file and returns it to
the caller in EDIT packed line format.

READEDITP is an IOEdit procedure and can only be used with files that have been
opened by OPENEDIT or OPENEDIT_.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-17

READEDITP Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation.

filenum input

INT:value

specifies the file number of the open file that is to be read.

record-number input, output

INT(32):ref:1

if present, specifies the record number of the line to be read. If record-number:

• is greater than or equal to 0, READEDITP reads the line (if any) with the
smallest EDIT line number that is greater than or equal to the value of 1000
times record-number.

• is -1, READEDITP reads the lowest-numbered line (if any) in the file.

• is -2, READEDITP reads the highest-numbered line (if any) in the file.

Note. In the TNS/E environment the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(READEDITP)>

short READEDITP (short filenum
 ,[__int32_t *record-number]
 ,char *packed-line
 ,short packed-limit
 ,short *packed-length);

error := READEDITP (filenum ! i
 ,[record-number] ! i,o
 ,packed-line ! o
 ,packed-limit ! i
 ,packed-length); ! o

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-18

READEDITP Procedure

• is -3 or omitted, READEDITP reads the line (if any) with the smallest record
number that is greater than or equal to the next record number.

record-number returns the value of the file’s new current record number after
the read has been performed. This is equal to the record number of the line that
was read, or it is -2 (end of file) if no line was read.

packed-line output

STRING .EXT:ref:*

is a string array that contains the line in unpacked format that is the outcome of the
operation. The length of the unpacked line is returned in the packed-length
parameter.

packed-limit input

INT:value

specifies the length in bytes of the string variable packed-line.

packed-length output

INT .EXT:ref:1

returns the actual length in bytes of the value returned in packed-line. If
packed-line is not large enough to contain the value that is the output of the
operation, packed-length returns a negative value.

Example
error := READEDITP (filenumber, record^num, line^image,
 line^maxlength, line^actual^length);
IF error THEN ... ! handle error
IF line^actual^length < 0 THEN ... ! buffer (line^image)
 ! too small for return
 ! value

Related Programming Manual
For programming information about the READEDITP procedure, see the Guardian
Programmer’s Guide.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-19

READLOCK[X] Procedures

READLOCK[X] Procedures
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Errors for READLOCKX Only
Considerations for READLOCKX Only
OSS Considerations
Related Programming Manuals

Summary
The READLOCK and READLOCKX procedures sequentially lock and read records in a
disk file, exactly like the combination of LOCKREC and READ[X]. READLOCK is
intended for use with 16-bit addresses, while READLOCKX is intended for use with 32-
bit extended addresses. Therefore, the data buffer for READLOCKX can be either in
the caller’s stack segment or any extended data segment.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

• The function value returned by READLOCK[X], which indicates the condition code,
can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

#include <cextdecs(READLOCK)>

_cc_status READLOCK (short filenum
 ,short _near *buffer
 ,unsigned short read-count
 ,[unsigned short _near *count-read]
 ,[__int32_t tag]);

#include <cextdecs(READLOCKX)>

_cc_status READLOCKX (short filenum
 ,char _far *buffer
 ,unsigned short read-count
 ,[unsigned short _far *count-read]
 ,[__int32_t tag]);

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-20

READLOCK[X] Procedures

Syntax for TAL Programmers

Parameters

filenum input

INT:value (Use with both READLOCK and READLOCKX)

is the number of an open file that identifies the file to be read.

buffer output

INT:ref:* (Use with READLOCK)
STRING .EXT:ref:* (Use with READLOCKX)

is an array in the application process where the information read from the file
returns.

read-count input

INT:value (Use with both READLOCK and READLOCKX)

is the number of bytes to be read: {0:4096}.

count-read output

INT:ref:1 (Use with READLOCK)
INT .EXT:ref:1 (Use with READLOCKX)

is for wait I/O only. count-read returns a count of the number of bytes returned
from the file into buffer.

tag input

INT(32):value (Use with both READLOCK and READLOCKX)

is for nowait I/O only. tag is a value you define that uniquely identifies the
operation associated with this READLOCK[X].

CALL READLOCK[X] (filenum ! i
 ,buffer ! o
 ,read-count ! i
 ,[count-read] ! o
 ,[tag]); ! i

Note. The system stores the tag value until the I/O operation completes. The system then
returns the tag information to the program in the tag parameter of the call to AWAITIO[X],
thus indicating that the operation completed. If READLOCKX is used, you must call
AWAITIOX to complete the I/O. If READLOCK is used, you may use either AWAITIO or
AWAITIOX to complete the I/O.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-21

READLOCK[X] Procedures

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

< (CCL) is also returned following a successful read with an insertion-ordered
alternate key path if the alternate key value of the current record is equal to
the alternate key value in this record along that path. A call to
FILE_GETINFO_ or FILEINFO shows that an error 551 occurred; this error
is advisory only and does not indicate an unsuccessful read operation.

= (CCE) indicates that the READLOCK[X] is successful.

> (CCG) indicates end of file (EOF). There are no more records in this subset.

Considerations

• READLOCK versus READLOCKX

Use READLOCK if the buffer has a 16-bit address and use READLOCKX if the
buffer has a 32-bit extended address. Therefore, the data buffer for READLOCKX
can be either in the caller’s stack segment or any extended data segment.

• Nowait I/O and READLOCK[X]

If the READLOCK[X] procedure is used to initiate an operation with a file-opened
nowait, it must complete with a corresponding call to the AWAITIO[X] procedure. If
READLOCKX is used, you must call AWAITIOX to complete the I/O. If
READLOCK is used, you may use either AWAITIO or AWAITIOX to complete the
I/O.

• READLOCK[X] for key-sequenced, relative, and entry-sequenced files

For key-sequenced, relative, and entry-sequenced files, a subset of the file
(defined by the current access path, positioning mode, and comparison length) is
locked and read with successive calls to READLOCK[X].

For key-sequenced, relative, and entry-sequenced files, the first call to
READLOCK[X] after a positioning (or open) locks and then returns the first record
of the subset. Subsequent calls to READLOCK[X] without intermediate positioning
locks, returns successive records in the subset. After each of the subset’s records
are read, the position of the record just read becomes the file’s current position.
An attempt to read a record following the last record in a subset returns an EOF
indication.

• Locking records in an unstructured file

READLOCK[X] can be used to lock record positions, represented by a relative byte
address (RBA), in an unstructured file. When sequentially reading an unstructured
file with READLOCK[X], each call to READLOCK[X] first locks the RBA stored in
the current next-record pointer and then returns record data beginning at that

WARNING. When using nowait file I/O, data corruption might occur if the READ buffer
is modified before the AWAITIOX that completes the call.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-22

READLOCK[X] Procedures

pointer for read-count bytes. After a successful READLOCK[X], the current-
record pointer is set to the previous next-record pointer, and the next-record
pointer is set to the previous next-record pointer plus read-count. This process
repeats for each subsequent call to READLOCK[X].

• See Considerations on page 13-5.

Considerations for READLOCKX Only

• The buffer and count transferred may be in the user stack or in an extended data
segment. The buffer and count transferred cannot be in the user code space.

• If the buffer or count transferred is in a selectable extended data segment, the
segment must be in use at the time of the call. Flat segments allocated by a
process are always accessible to the process.

• The size of the transfer is subject to current restrictions for the type of file.

• If the file is opened for nowait I/O, and the buffer is in an extended data segment,
you cannot deallocate or reduce the size of the extended data segment before the
I/O completes with a call to AWAITIOX or is canceled by a call to CANCEL or
CANCELREQ.

• If the file is opened for nowait I/O, you must not modify the buffer before the I/O
completes with a call to AWAITIOX. This also applies to other processes that may
be sharing the segment. It is the application’s responsibility to ensure this.

• If the file is opened for nowait I/O, and the I/O has been initiated with these
routines, the I/O must be completed with a call to AWAITIOX (not AWAITIO).

• If the file is opened for nowait I/O, a selectable extended data segment containing
the buffer need not be in use at the time of the call to AWAITIOX.

• Nowait I/O initiated with these routines may be canceled with a call to CANCEL or
CANCELREQ. The I/O is canceled if the file is closed before the I/O completes or
AWAITIOX is called with a positive time limit and specific file number and the
request times out.

• A file opened by FILE_OPEN_ uses direct I/O transfers by default; you can use
SETMODE 72 to force the system to use an intermediate buffer in the process file
segment (PFS) for I/O transfers. A file opened by OPEN uses a PFS buffer for I/O
transfers, except for large transfers to DP2 disks.

• If the extended address of the buffer is odd, bounds checking rounds the address
to the next lower word boundary and checks an extra byte as well. The odd
address is used for the transfer.

Errors for READLOCKX Only
In addition to the errors currently returned from READLOCK, error 22 is returned from
READLOCKX when:

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-23

READUPDATE[X|XL] Procedures

• The address of a parameter is extended, but either the extended data segment is
invalid or the address is for a selectable segment that is not in use at the time of
the call.

• The address of a parameter is extended, but it is an absolute address and the
caller is not privileged.

OSS Considerations

• This procedure operates only on Guardian objects. If an OSS file is specified,
error 2 is returned.

Related Programming Manuals
For programming information about the READLOCK file-system procedure, see the
Enscribe Programmer’s Guide.

READUPDATE[X|XL] Procedures
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Disk File Considerations
Interprocess Communication Considerations
Considerations for READUPDATEX and READUPDATEXL
Errors for READUPDATEX and READUPDATEXL
Related Programming Manuals

Summary
The READUPDATE[X|XL] procedures read data from a disk or process file in
anticipation of a subsequent write to the file. READUPDATE is intended for use with
16-bit addresses, READUPDATEX[L] is intended for use with 32-bit extended
addresses. Therefore, the data buffer for READUPDATEX or READUPDATEXL can
be either in the caller’s stack segment or any extended data segment.

• Disk files

READUPDATE[X|XL] is used for random processing. Data is read from the file at
the position of the current-record pointer. A call to this procedure typically follows a
corresponding call to POSITION or KEYPOSITION. The values of the current- and
next-record pointers do not change with the call to READUPDATE[X|XL].

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-24

READUPDATE[X|XL] Procedures

• Queue Files

READUPDATE[X|XL] is not supported on queue files. An attempt to use
READUPDATE[X|XL] will be rejected with error 2.

• Interprocess communication

READUPDATE[X|XL] reads a message from the $RECEIVE file that is answered in
a later call to REPLY[X|XL]. Each message read by READUPDATE[X|XL] must be
replied to in a corresponding call to REPLY[X|XL].

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

• The function value returned by READUPDATE[X], which indicates the condition
code, can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

#include <cextdecs(READUPDATE)>

_cc_status READUPDATE (short filenum
 ,short _near *buffer
 ,unsigned short read-count
 ,[unsigned short _near *count-read]
 ,[__int32_t tag]);

#include <cextdecs(READUPDATEX)>

_cc_status READUPDATEX (short filenum
 ,char _far *buffer
 ,unsigned short read-count
 ,[unsigned short _far *count-read]
 ,[__int32_t tag]);

#include <cextdecs(READUPDATEXL)>

short READUPDATEXL (short filenum
 ,char _far *buffer
 ,__int32_t read-count
 ,[__int32_t _far *count-read]
 ,[long long tag]);

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-25

READUPDATE[X|XL] Procedures

Syntax for TAL Programmers

Parameters

error returned value

INT (Use with READUPDATEXL)

is a file-system error number indicating the outcome of the operation.

0 (FEOK)

indicates a successful operation.

6 (FESYSMESSAGE)

indicates a successful operation that reads a system message. Valid only if
filenum is $RECEIVE.

filenum input

INT:value (Use with READUPDATE, READUPDATEX, and
READUPDATEXL)

is the number of an open file that identifies the file to be read.

buffer output

INT:ref:* (Use with READUPDATE)
STRING .EXT:ref:* (Use with READUPDATEX and READUPDATEXL)

is an array where the information read from the file returns.

read-count input

INT:value (Use with READUPDATE and READUPDATEX)
INT(32):value (Use with READUPDATEXL)

is the number of bytes to be read.

CALL READUPDATE[X] (filenum ! i
 ,buffer ! o
 ,read-count ! i
 ,[count-read] ! o
 ,[tag]); ! i

error:= READUPDATEXL (filenum ! i
 ,buffer ! o
 ,read-count ! i
 ,[count-read] ! o
 ,[tag]); ! i

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-26

READUPDATE[X|XL] Procedures

{0:4096} for disk files (see Disk File Considerations on page 13-7)
{0:57344} for $RECEIVE (Use with READUPDATE and READUPDATEX)
{0:2097152} for $RECEIVE (Use with READUPDATEXL)

count-read output

INT:ref:1 (Use with READUPDATE)
INT .EXT:ref:1 (Use with READUPDATEX)
INT(32).EXT:ref:1 (Use with READUPDATEXL)

is for wait I/O only. count-read returns a count of the number of bytes returned
from the file into buffer.

tag input

INT(32):value (Use with READUPDATE and READUPDATEX)
INT(64):value (Use with READUPDATEXL)

is for nowait I/O only. tag is a value you define that uniquely identifies the
operation associated with this READUPDATE[X|XL]. If the completed I/O
operation has a 32-bit tag, the 64-bit tag is in the sign-extended value of the 32-bit
tag.

Condition Code Settings

< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO, with
filenum of 0).

< (CCL) is also returned following a successful read with an insertion-ordered
alternate key path if the alternate key value of the current record is equal to
the alternate key value in this record along that path. A call to
FILE_GETINFO_ or FILEINFO shows that an error 551 occurred; this error
is advisory only and does not indicate an unsuccessful read operation.

= (CCE) indicates that the READUPDATE[X] is successful.

> (CCG) indicates that a system message is received through $RECEIVE. (CCG is
not returned by READUPDATE[X] for disk files.)

Note. The system stores the tag value until the I/O operation completes. The system then
returns the tag information to the program in the tag parameter of the call to AWAITIO[X|XL],
thus indicating that the operation completed. If READUPDATEX or READUPDATEXL is used,
you must call AWAITIOX or AWAITIOXL to complete the I/O. If READUPDATE is used, you
may use either AWAITIO or AWAITIOX or AWAITIOXL to complete the I/O.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-27

READUPDATE[X|XL] Procedures

Considerations

• READUPDATE versus READUPDATEX[L]

Use READUPDATE when the buffer has a 16-bit address; use READUPDATEX[L]
when the buffer has a 32-bit extended address. Therefore, the data buffer for
READUPDATEX[L] can be either in the caller’s stack segment or any extended
data segment.

• Random processing and positioning

A call to READUPDATE[X|XL] returns the record from the current position in the
file. Because READUPDATE[X|XL] is designed for random processing, it cannot
be used for successive positioning through a subset of records as the READ[X]
procedure does. Rather, READUPDATE[X|XL] reads a record after a call to
POSITION or KEYPOSITION, possibly in anticipation of a subsequent update
through a call to the WRITEUPDATE[X] procedure.

• Calling READUPDATE[X|XL] after READ[X]

A call to READUPDATE[X|XL] after a call to READ[X], without intermediate
positioning, returns the same record as the call to READ[X].

• Waited READUPDATE[X|XL]

If a waited READUPDATE[X|XL] is executed, the count-read parameter
indicates the number of bytes actually read.

• Nowait I/O and READUPDATE[X|XL]

If a nowait READUPDATE[X|XL] is executed, count-read has no meaning and
can be omitted. The count of the number of bytes read is obtained when the I/O
operation completes through the count-transferred parameter of the
AWAITIO[X|XL] procedure.

The READUPDATE[X|XL] procedure call must complete with a corresponding call
to the AWAITIO[X|XL] procedure when used with a file that is OPENed nowait. If
READUPDATEXL is used, you must call AWAITIOXL to complete the I/O. If
READUPDATEX is used, you must call AWAITIOX or AWAITIOXL to complete the
I/O. If READUPDATE is used, you may use AWAITIO or AWAITIOX or
AWAITIOXL to complete the I/O.

• Default locking mode action

If the default locking mode is in effect when a call to READUPDATE[X|XL] is made
to a locked file or record, but the filenum of the locked file differs from the
filenum in the call, the caller of READUPDATE[X|XL] is suspended and queued

WARNING. When using nowait file I/O, data corruption might occur if the READ buffer
is modified before the AWAITIOX that completes the call..

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-28

READUPDATE[X|XL] Procedures

in the “locking” queue behind other processes attempting to access the file or
record.

• Alternate locking mode action

If the alternate locking mode is in effect when READUPDATE[X|XL] is called and
the file is locked but not through the file number supplied in the call, the call is
rejected with error 73 (“file is locked”).

• Lock mode by SETMODE

The locking mode is specified by the SETMODE procedure, function 4.

• Value of the current key and current-key specifier

For key-sequenced, relative, and entry-sequenced files, random processing
implies that a designated record must exist. Therefore, positioning for
READUPDATE[X|XL] is always to the record described by the exact value of the
current key and current-key specifier. If such a record does not exist, the call to
READUPDATE[X|XL] is rejected with a file-system error 11 (“record does not
exist”). This is unlike sequential processing through READ[X] where positioning
can be by approximate, generic, or exact key value.

Disk File Considerations

• Large data transfers

For READUPDATEX only, large data transfers (more than 4096 bytes), can be
enabled by using SETMODE function 141. See Table 14-4 on page 14-63.

• Record does not exist

If the position specified for the READUPDATE[X|XL] operation does not exist, the
call is rejected with error 11. (The positioning is specified by the exact value of the
current key and current-key specifier.)

• Structured files

• READUPDATE[X|XL] without selecting a specific record

If the call to READUPDATE[X|XL] immediately follows a call to KEYPOSITION,
the call to KEYPOSITION must specify exact positioning mode in the
positioning-mode parameter and the length of the entire key in the
length-word parameter.

If the call to READUPDATE[X|XL] immediately follows a call to KEYPOSITION
where a nonunique alternate key is specified, the READUPDATE[X|XL] fails. A
subsequent call to FILE_GETINFOL_ or FILE_GETINFO_ or FILEINFO shows
that an error 46 (invalid key) occurred. However, if an intermediate call to

Note. A deadlock condition occurs if a call to READUPDATE[X|XL] is made by a process
having multiple opens on the same file and the filenum used to lock the file differs from
the filenum supplied to READUPDATE[X|XL].

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-29

READUPDATE[X|XL] Procedures

READ or READLOCK is made, the call to READUPDATE[X|XL] is permitted
because a unique record is identified.

• indicators after READUPDATE[X|XL]

After a successful READUPDATE[X|XL], the current-state indicators are
unchanged (current- and next-record pointers).

• Unstructured disk files

• unstructured files

For a READ[X] from an unstructured disk file, data transfer begins at the
position indicated by the current-record pointer. A call to READUPDATE[X|XL]
typically follows a call to POSITION that sets the current-record pointer to the
desired relative byte address.

• pointer action for unstructured files is unaffected.

• of count-read for unstructured files

After a successful call to READUPDATE[X|XL] to an unstructured file, the
value returned in count-read is determined by:

count-read := $MIN(read-count,EOF - next-record
 - next-record pointer)

• number of bytes read

If the unstructured file is created with the odd unstructured attribute (also
known as ODDUNSTR) set, the number of bytes read is exactly the number
specified with read-count. If the odd unstructured attribute is not set when
the file is created, the value of read-count is rounded up to an even value
before the READUPDATE[X|XL] is executed.

You set the odd unstructured attribute with the FILE_CREATE_ ,
FILE_CREATELIST_ , or CREATE procedure, or with the File Utility Program
(FUP) SET and CREATE commands.

Interprocess Communication Considerations

• Replying to messages

Each message read in a call to READUPDATE[X|XL], including system messages,
must be replied to in a corresponding call to the REPLY[X|XL] procedure.

• Queuing several messages before replying

Several interprocess messages can be read and queued by the application
process before a reply must be made. The maximum number of messages that
the application process expects to read before a corresponding reply is made must
be specified in the receive-depth parameter to the FILE_OPEN_ or OPEN
procedure.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-30

READUPDATE[X|XL] Procedures

• If $RECEIVE is opened with receive-depth = 0, only READ[X]s can be
performed, and READUPDATE[X|XL] and REPLY[X|XL] fail with error 2 (“operation
not allowed on this type of file”).

• Message tags when replying to queued messages

If more than one message is to be queued by the application process (that is,
receive-depth > 1), a message tag that is associated with each incoming
message must be obtained in a call to the FILE_GETRECEIVEINFOL_ (or
FILE_GETRECEIVEINFO_ or LASTRECEIVE or RECEIVEINFO) procedure
following each call to READUPDATE[X|XL]. To direct a reply back to the originator
of the message, the message tag associated with the incoming message is passed
to the system in a parameter to the REPLY[X|XL] procedure. If messages are not
to be queued, it is not necessary to call FILE_GETRECEIVEINFOL_ or
FILE_GETRECEIVEINFO_.

Considerations for READUPDATEX and READUPDATEXL

• The buffer and count transferred may be in the user stack or in an extended data
segment. The buffer and count transferred cannot be in the user code space.

• If the buffer or count transferred is in a selectable extended data segment, the
segment must be in use at the time of the call. Flat segments allocated by a
process are always accessible to the process.

• The size of the transfer is subject to current restrictions for the type of file.

• If the file is opened for nowait I/O, and the buffer is in an extended data segment,
you cannot deallocate or reduce the size of the extended data segment before the
I/O completes with a call to AWAITIOX or AWAITIOXL or is canceled by a call to
CANCEL or CANCELREQ or CANCELREQL.

• If the file is opened for nowait I/O, you must not modify the buffer before the I/O
completes with a call to AWAITIOX or AWAITIOXL. This also applies to other
processes that may be sharing the segment. It is the application’s responsibility to
ensure this.

• If the file is opened for nowait I/O, and the I/O has been initiated with these
routines, the I/O must be completed with a call to AWAITIOX or AWAITIOXL (not
AWAITIO).

• If the file is opened for nowait I/O, a selectable extended data segment containing
the buffer need not be in use at the time of the call to AWAITIOX or AWAITIOXL.

• Nowait I/O initiated with these routines may be canceled with a call to CANCEL or
CANCELREQ or CANCELREQL. The I/O is canceled if the file is closed before
the I/O completes or AWAITIOX or AWAITIOXL is called with a positive time limit
and specific file number and the request times out.

• A file opened by FILE_OPEN_ uses direct I/O transfers by default except on NSAA
systems; you can use SETMODE 72 to force the system to use an intermediate
buffer in the process file segment (PFS—also known as system buffers) for I/O

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-31

READUPDATE[X|XL] Procedures

transfers. A file opened by OPEN uses a PFS buffer for I/O transfers, except for
large transfers to DP2 disks.

• If the extended address of the buffer is odd, bounds checking rounds the address
to the next lower word boundary and checks an extra byte as well. The odd
address is used for the transfer.

Errors for READUPDATEX and READUPDATEXL
In addition to the errors currently returned from READUPDATE, error 22 is returned
from READUPDATEX and READUPDATEXL when:

• The address of a parameter is extended, but either the extended data segment is
invalid or the address is for a selectable segment that is not in use at the time of
the call.

• The address of a parameter is extended, but it is an absolute address and the
caller is not privileged.

Related Programming Manuals
For programming information about the READUPDATE[X] file-system procedure, see
the Guardian Programmer’s Guide and the Enscribe Programmer’s Guide.

Note. The READUPDATEXL procedure is supported on systems running J06.07 and later J-
series RVUs and H06.18 and later H-series RVUs.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-32

READUPDATELOCK[X] Procedures

READUPDATELOCK[X] Procedures
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Considerations for READUPDATELOCKX Only
Errors for READUPDATELOCKX Only
OSS Considerations
Example
Related Programming Manuals

Summary
The READUPDATELOCK[X] procedures are used for random processing of records in
a disk file. READUPDATELOCK is intended for use with 16-bit addresses, while
READUPDATELOCKX is intended for use with 32-bit extended addresses. Therefore,
the data buffer for READUPDATELOCKX can be either in the caller’s stack segment or
any extended data segment.

READUPDATELOCK[X] locks, then reads the record from the current position in the
file in the same manner as the combination of LOCKREC and READUPDATE[X].
READUPDATELOCK[X] is intended for reading a record after calling POSITION or
KEYPOSITION, possibly in anticipation of a subsequent call to the WRITEUPDATE[X]
or WRITEUPDATEUNLOCK[X] procedure.

A call to READUPDATELOCK[X] is functionally equivalent to a call to LOCKREC
followed by a call to READUPDATE[X]. However, less system processing is incurred
when one call is made to READUPDATELOCK[X] rather than two separate calls to
LOCKREC and READUPDATE[X].

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-33

READUPDATELOCK[X] Procedures

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

• The function value returned by READUPDATELOCK[X], which indicates the
condition code, can be interpreted by _status_lt(), _status_eq(), or
_status_gt() (defined in the file tal.h).

Syntax for TAL Programmers

Parameters

filenum input

INT:value (Use with READUPDATELOCK and READUPDATELOCKX)

is the number of an open file that identifies the file to be read.

buffer output

INT:ref:* (Use with READUPDATELOCK)
STRING .EXT:ref:* (Use with READUPDATELOCKX)

is an array where the information read from the file returns.

#include <cextdecs(READUPDATELOCK)>

_cc_status READUPDATELOCK (short filenum
 ,short _near *buffer
 ,unsigned short read-count
 ,[unsigned short _near *count-read]
 ,[__int32_t tag]);

#include <cextdecs(READUPDATELOCKX)>

_cc_status READUPDATELOCKX (short filenum
 ,char _far *buffer
 ,unsigned short read-count
 ,[unsigned short _far *count-read]
 ,[__int32_t tag]);

CALL READUPDATELOCK[X] (filenum ! i
 ,buffer ! o
 ,read-count ! i
 ,[count-read] ! o
 ,[tag]); ! i

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-34

READUPDATELOCK[X] Procedures

read-count input

INT:value (Use with READUPDATELOCK and READUPDATELOCKX)

is the number of bytes to be read {0:4096}.

count-read output

INT:ref:1 (Use with READUPDATELOCK)

INT .EXT:ref:1 (Use with READUPDATELOCKX)

is for wait I/O only. count-read returns a count of the number of bytes returned
from the file into buffer.

tag input

INT(32):value (Use with READUPDATELOCK and READUPDATELOCKX)

is for nowait I/O only. tag is a value you define that uniquely identifies the
operation associated with this READUPDATELOCK[X].

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

< (CCL) is also returned following a successful read with an insertion-ordered
alternate key path if the alternate key value of the current record is equal to
the alternate key value in this record along that path. A call to
FILE_GETINFO_ or FILEINFO shows that an error 551 occurred; this error
is advisory only and does not indicate an unsuccessful read operation.

= (CCE) indicates that the READUPDATELOCK[X] is successful.

> (CCG) does not return from READUPDATELOCK[X] for disk files.

Considerations

• READUPDATELOCK versus READUPDATELOCKX

Use READUPDATELOCK when the buffer has a 16-bit address, and use
READUPDATELOCKX when the buffer has a 32-bit extended address. Therefore,
the data buffer for READUPDATELOCKX can be either in the caller’s stack
segment or any extended data segment.

• Nowait I/O and READUPDATELOCK[X]

The READUPDATELOCK[X] procedure must complete with a corresponding call to
the AWAITIO[X] procedure when used with a file that is opened nowait. If

Note. The system stores the tag value until the I/O operation completes. The system then
returns the tag information to the program in the tag parameter of the call to AWAITIO[X],
thus indicating that the operation completed. If READUPDATELOCKX is used, you must call
AWAITIOX to complete the I/O. If READUPDATELOCK is used, you may use either AWAITIO
or AWAITIOX to complete the I/O.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-35

READUPDATELOCK[X] Procedures

READUPDATELOCKX is used, the user must call the AWAITIOX procedure to
complete the I/O. If READUPDATELOCK is used, the user may use either
AWAITIO or AWAITIOX to complete the I/O.

• If READUPDATELOCK[X] is performed on nondisk files, an error is returned.

• Random processing

For key-sequenced, relative, and entry-sequenced files, random processing
implies that a designated record must exist. Therefore, positioning for
READUPDATELOCK[X] is always to the record described by the exact value of the
current key and current-key specifier. If such a record does not exist, the call to
READUPDATELOCK[X] is rejected with file-system error 11.

• See Considerations on page 8-20.

• See Considerations on page 13-27.

• Queue files

To use READUPDATELOCK[X], a queue file must be opened with write access
and with a sync-or-receive-depth of 0.

Considerations for READUPDATELOCKX Only

• The buffer and count transferred may be in the user stack or in an extended data
segment. The buffer and count transferred cannot be in the user code space.

• If the buffer or count transferred is in a selectable extended data segment, the
segment must be in use at the time of the call. Flat segments allocated by a
process are always accessible to the process.

• If the file is opened for nowait I/O, and the buffer is in an extended data segment,
you cannot deallocate or reduce the size of the extended data segment before the
I/O completes with a call to AWAITIOX or is canceled by a call to CANCEL or
CANCELREQ.

• If the file is opened for nowait I/O, you must not modify the buffer before the I/O
completes with a call to AWAITIOX. This also applies to other processes that may
be sharing the segment. It is the application’s responsibility to ensure this.

• If the file is opened for nowait I/O, and the I/O has been initiated with these
routines, the I/O must be completed with a call to AWAITIOX (not AWAITIO).

• If the file is opened for nowait I/O, a selectable extended data segment containing
the buffer need not be in use at the time of the call to AWAITIOX.

• Nowait I/O initiated with these routines may be canceled with a call to CANCEL or
CANCELREQ. The I/O is canceled if the file is closed before the I/O completes or

WARNING. When using nowait file I/O, data corruption might occur if the READ buffer
is modified before the AWAITIOX that completes the call.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-36

READUPDATELOCK[X] Procedures

AWAITIOX is called with a positive time limit and specific file number and the
request times out.

• A file opened by FILE_OPEN_ uses direct I/O transfers by default; you can use
SETMODE 72 to force the system to use an intermediate buffer in the process file
segment (PFS) for I/O transfers. A file opened by OPEN uses a PFS buffer for I/O
transfers, except for large transfers to DP2 disks.

• If the extended address of the buffer is odd, bounds checking rounds the address
to the next lower word boundary and checks an extra byte as well. The odd
address is used for the transfer.

Errors for READUPDATELOCKX Only
In addition to the errors returned from READUPDATELOCK, error 22 is returned from
READUPDATELOCKX when:

• The address of a parameter is extended, but either the extended data segment is
invalid or the address is for a selectable segment that is not in use at the time of
the call.

• The address of a parameter is extended, but it is an absolute address and the
caller is not privileged.

OSS Considerations

• This procedure operates only on Guardian objects. If an OSS file is specified,
error 2 is returned.

Example
CALL READUPDATELOCK (IN^FILE , INBUFFER , 72 , NUM^READ);

Related Programming Manuals
For programming information about the READUPDATELOCK file-system procedure,
see the Enscribe Programmer’s Guide.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-37

RECEIVEINFO Procedure
(Superseded by FILE_GETRECEIVEINFO[L]_

RECEIVEINFO Procedure
(Superseded by FILE_GETRECEIVEINFO[L]_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Example
Related Programming Manual

Summary

The RECEIVEINFO procedure is used to obtain the 4-word process ID, message tag,
error recovery (sync ID), and request-related (file number, read count, and I/O type)
information associated with the last message read from the $RECEIVE file. Because
this information is contained in the file’s main-memory resident access control block
(ACB), the application process is not suspended by a call to RECEIVEINFO.

Note that the first two parameters to RECEIVEINFO (process-id and message-
tag) duplicate the parameters to the LASTRECEIVE procedure.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Note. To ensure that you receive valid information about the last message, call RECEIVEINFO
before you perform another READUPDATE on $RECEIVE. If you received an error condition
on the last message, call FILEINFO or FILE_GETINFO_ to obtain the error value before you
call RECEIVEINFO.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-38

RECEIVEINFO Procedure
(Superseded by FILE_GETRECEIVEINFO[L]_

Syntax for TAL Programmers

Parameters

process-id output

INT:ref:4

returns the 4-word process ID of the process that sent the last message read
through the $RECEIVE file. If the process is of the named form, and thus is in the
destination control table (DCT), the information returned consists of:

[0:2] $process-name
 [3].<0:3> Reserved
 .<4:7> Processor number where the process is executing
 .<8:15> PIN assigned by the operating system to identify the process

in the processor

If the process is of the unnamed form, and thus is not in the destination control
table (DCT), the information returned consists of:

[0:2] creation-time-stamp
 [3].<0:3> Reserved
 .<4:7> Processor number where the process is executing
 .<8:15> PIN assigned by the operating system to identify the process

in the processor

process-id (continued)

If the process ID is of the network form, the information returned consists of:

[0] .<0:7> “\” (ASCII backslash)
[0] .<8:15> System number
[1:2] Process name
[3] .<0:3> Reserved
 .<4:7> Processor number where the process is executing
 .<8:15> PIN assigned by the operating system to identify the process

in the processor

message-tag output

INT:ref:1

is used when the application process performs message queuing. message-tag
returns a value that identifies the request message just read among other requests

CALL RECEIVEINFO ([process-id] ! o
 ,[message-tag] ! o
 ,[sync-id] ! o
 ,[filenum] ! o
 ,[read-count] ! o
 ,[iotype]); ! o

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-39

RECEIVEINFO Procedure
(Superseded by FILE_GETRECEIVEINFO[L]_

currently queued. To associate a reply with a given request, message-tag is
passed in a parameter to the REPLY procedure. The returned value of message-
tag is an integer between zero and receive depth -1, inclusive, that is not
currently used as a message tag. When a reply is made, its associated message
tag value is made available for use as a message tag for a subsequent request
message.

sync-id output

INT(32):ref:1

returns the sync ID associated with this message. If the received message is a
system message, this parameter is valid only if the message is associated with a
specific file open; otherwise this parameter is not applicable and should be
ignored.

filenum output

INT:ref:1

returns the file number of the file in the requesting process associated with this
message. If the received message is a system message that is not associated
with a specific file open, this parameter contains -1.

read-count output

INT:ref:1

returns the number of bytes requested in reply to the message. If the message is
the result of a request made in a call to WRITE[X], read-count will be 0. If the
message is the result of a request made in a call to WRITEREAD[X], read-count
is the same as the read count value passed by the requester to WRITEREAD[X].

iotype output

INT:ref:1

returns a value indicating the data operation last performed by the message
sender:

0 Not a data message (system message)
1 Sender called WRITE
2 Sender called READ
3 Sender called WRITEREAD

Condition Code Settings
< (CCL) indicates that $RECEIVE is not open.

= (CCE) indicates that RECEIVEINFO is successful.

> (CCG) does not return from RECEIVEINFO.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-40

RECEIVEINFO Procedure
(Superseded by FILE_GETRECEIVEINFO[L]_

Considerations

• Process ID and RECEIVEINFO

The 4-word process ID returned by RECEIVEINFO following receipt of a process
open, close, CONTROL, SETMODE, SETPARAM, RESETSYNC, or
CONTROLBUF system message, or a data message, identifies the process
associated with the operation.

• When the high-order three words of process ID are zero

The high-order three words of the process ID are zero following the receipt of
system messages other than process open, close, CONTROL, SETMODE,
RESETSYNC, and CONTROLBUF.

• Synthetic process ID

If HIGHREQUESTERS is enabled for the calling process (either because the
?HIGHREQUESTERS flag is set in the program file or because the caller used
FILE_OPEN_ to open $RECEIVE) and the last message was sent by a high-PIN
process, then the returned process ID is as described above except that the value
of the PIN is 255. This form of the process ID is referred to as a synthetic
process ID. It is not a full identification of the process but it is normally sufficient
for distinguishing, for example, one requester from another requester. For further
details, see the Guardian Programmer’s Guide.

• Remote opener with a long process file name

If the calling process used FILE_OPEN_ to open $RECEIVE and did not request to
receive C-series format messages, and if the last message read from $RECEIVE
is from a remote process that has a process name consisting of more than five
characters, then the value of process-id returned by RECEIVEINFO is
undefined.

• Sync ID definition

A sync ID is a doubleword, unsigned integer. Each process file that is open has its
own sync ID. Sync IDs are not part of the message data; rather, the sync ID value
associated with a particular message is obtained by the receiver of a message by
calling the RECEIVEINFO procedure. A file’s sync ID is set to zero at file open
and when the RESETSYNC procedure is called for that file (RESETSYNC can be
called directly or indirectly through the CHECKMONITOR procedure). For
information about checkpointing, see the Guardian Programmer’s Guide.

When a request is sent to a process (that is, CONTROL, CONTROLBUF, close,
open, SETMODE, WRITE, or WRITEREAD to a process file), the requestor’s sync
ID is incremented by 1 just before to the request is sent. (Therefore, a process’s
first sync ID subsequent to an open has a value of 0.)

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-41

REFPARAM_BOUNDSCHECK_ Procedure

• Duplicate requests

The sync-id parameter allows the server process (that is, the process reading
$RECEIVE) to detect duplicate requests from requester processes. Such
duplicate requests are caused by a backup requester process reexecuting the
latest request of a failed primary requester process.

• Server process identifying separate opens by the same requester

The filenum parameter allows the server process to identify separate opens by
the same requester process. The value returned in filenum is the same as the
file number used by the requester to make this request.

Example
CALL RECEIVEINFO (PROCID , , , REQ^FNUM , REQ^READCOUNT);

Related Programming Manual
For programming information about the RECEIVEINFO file-system procedure, see the
Guardian Programmer’s Guide.

REFPARAM_BOUNDSCHECK_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary

The REFPARAM_BOUNDSCHECK_ procedure checks the validity of parameter
addresses passed to the procedure that calls it. Bounds checking performed by the
system is enough for most applications. This procedure, however, provides additional
checks for those few applications that might need it.

Primarily, REFPARAM_BOUNDSCHECK_ verifies that a specified memory area is
valid for a specified type of access (read only or read/write). Optionally, it also verifies

Note. Neither a CANCELREQ or AWAITIO timeout completion have any affect on the sync ID
(that is, it will be an ever-increasing value).

Also, the sync ID is independent of the sync-depth parameter to OPEN.

Note. This procedure is declared only in the EXTDECS0 file.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-42

REFPARAM_BOUNDSCHECK_ Procedure

that the specified memory area does not overlap the part of the process stack occupied
by the calling procedure and any of the procedures it calls.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

To exclude the stack area from the area that REFPARAM_BOUNDSCHECK_ accepts
as valid in a C or C++ program, you pass the _frame_edge(first,last) function
as the frame-start parameter to REFPARAM_BOUNDSCHECK_. The first and
last parameters are the names of the first and last parameters to the calling function.
For example:

#include <cextdecs(REFPARAM_BOUNDSCHECK_)>

short tstbnd (short *alpha, long long omega)
{
 if (REFPARAM_BOUNDSCHECK_(alpha,2,
 _frame_edge(alpha,omega),0))
 return -1;
 return 0;
}

A function with no parameters cannot use _frame_edge(), nor can a C++ function
whose first parameter is a reference (that is, not a value or a pointer).

Syntax for TAL Programmers

Parameters

error returned value

INT

returns one of these values:

#include <cextdecs(REFPARAM_BOUNDSCHECK_)>

short REFPARAM_BOUNDSCHECK_ (void _far *start-address
 ,__int32_t area-len
 ,void _far *framestart
 ,short flags)

error := REFPARAM_BOUNDSCHECK_ (start-address ! i
 ,area-length ! i
 ,framestart ! i
 ,flags); ! i

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-43

REFPARAM_BOUNDSCHECK_ Procedure

0 No error. The procedure successfully executed; the specified memory area is
in bounds. For a discussion of what it means to be in bounds, see
“Considerations”.

1 The specified memory area is out of bounds. Accessing the area might cause
an addressing trap or system-generated nondeferrable signal.

2 The address is in a read-only area and the check was made for read/write
access. The effect of attempting to write to the area depends on whether your
process is a native process or a TNS process: for a native process, the system
might deliver a nondeferrable signal to the process; for a TNS process, the
write operation might not take effect.

3 The address area is in bounds in an extensible segment, but disk space for the
extensible segment could not be allocated. If you try to write to this area, the
effect depends on whether your process is a TNS process or a native process:
a TNS process might terminate with a “no memory available” trap (trap 12); a
native process might receive a SIGNOMEM signal.

4 The start-address parameter points to a location on the TOSSTACK but
the calling procedure is not executing on the TOSSTACK. This error can occur
only on a TNS processor.

5 An absolute address was supplied in start-address for a native process
but flags.<14> was not set to allow an absolute address.

start-address input

STRING .EXT:ref:*

identifies the start of the data area to be bounds checked.

When REFPARAM_BOUNDSCHECK_ is called from a native process, start-
address cannot be a relative segment 1 or 2 address. Neither can it be an
absolute address unless flags.<14> is set to allow this.

When REFPARAM_BOUNDSCHECK_ is called from a TNS process, start-
address can be an absolute address that points to the TNS stack.

area-length input

INT(32):value

is the length of the area to be checked. It is a 31-bit value. On a native processor,
the area must not span separately allocated logical areas even if the areas are
contiguous in virtual memory.

If area-length is zero (0D), start-address is not checked and
REFPARAM_BOUNDSCHECK_ returns without error.

framestart input

EXTADDR:value

excludes the stack area of the calling procedure from the area that
REFPARAM_BOUNDSCHECK_ accepts as valid.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-44

REFPARAM_BOUNDSCHECK_ Procedure

If framestart is zero, REFPARAM_BOUNDSCHECK_ verifies only that the
specified memory area is valid. It makes no attempt to verify that the specified
memory area does not overlap the part of the stack used by the calling process.

If framestart is nonzero, it specifies one edge of a region to be excluded from
the valid area. For a TNS process, the excluded area begins at the address in
framestart and extends 600 bytes past the L-register setting of the procedure
that calls REFPARAM_BOUNDSCHECK_. For a native process, the excluded
area begins at the start of the stack area and extends to (but does not include) the
address specified by framestart. Stack-frame overlap detection is possible only
for procedures running on the default stack of the process; it is not performed if
framestart designates an address on a user thread stack.

In pTAL, the correct value to pass in framestart is obtained using the
$PARAMSTART function. In TAL, you use the $XADR function. A set of
DEFINEs are available to mask the differences between pTAL and TAL. See
“Considerations” for details.

flags input

INT:value

specifies options. The bits indicate:

<0:13> must be zero.

<14> = 0 specifies that absolute addressing is not allowed for native processes.

= 1 allows absolute addressing even if REFPARAM_BOUNDSCHECK_ is
called from a native process. No checking is performed and
REFPARAM_BOUNDSCHECK_ returns without error.

<15> = 0 checks the area for read/write access.

= 1 checks the area for read-only access.

Considerations

• To pass the tests performed by REFPARAM_BOUNDSCHECK_, a correct
reference parameter must meet this criteria:

• The reference address must start within a range that is mapped into the user’s
logical address space.

• The entire referenced area specified by start-address and area-length
is within the same logical addressing space as the start-address. That is,
it must be entirely within one of these: the TNS data stack, the main stack, or a
single selectable extended data segment. In the case of TNS code segments,
the address must be within a single code space if the TNS code segment
spans multiple code spaces.

• The reference parameter must be within an unprotected logical addressing
space. For TNS processors, this addressing space is either the TNS data

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-45

REFPARAM_BOUNDSCHECK_ Procedure

stack, an unprivileged selectable extended data segment, or certain relative
code segments. On native processors, this area can be the TNS data stack,
the main stack, an unprivileged selectable extended data segment, or any of
the code areas mapped into KUSEG.

• For CALLABLE procedures running on the TNS data stack, no part of the
reference parameter can be within an area that starts at the base of the
CALLABLE procedure’s stack and extends to 0 locations beyond the L register
of the CALLABLE procedure. This is true only for procedures that run on a
TNS processor and are not running on the TOSSSTACK, or for TAL
procedures running on a native processor.

• For CALLABLE procedures with parameters within a valid code area, the
parameter address is valid only if the CALLABLE procedure is making a read-
only reference.

• If the address area is in bounds in an extensible segment and disk space for the
extensible segment needs to be allocated, REFPARAM_BOUNDSCHECK_
allocates more space for the segment. If no space is available,
REFPARAM_BOUNDSCHECK_ returns error 3.

• To exclude address references from the stack area used by the calling procedure,
use DEFINES with the framestart parameter as follows:

1. Invoke the _FRAME_EDGE_DEF DEFINE among the declarations in the
procedure.

2. Pass the names of the first and last parameters of the procedure to the
_FRAME_EDGE_DEF DEFINE. If the procedure has no parameters, invoke
_FRAME_EDGE_DEF (‘L’ - 2).

3. Pass _FRAME_EDGE as the framestart parameter to
REFPARAM_BOUNDSCHECK_.

• In a multithreaded process that uses multiple stack areas, checking is performed
only for the thread that calls REFPARAM_BOUNDSCHECK_.

Example
INT PROC TSTBND (alpha,omega);
 INT .EXT alpha;
 FIXED omega;
BEGIN
 _FRAME_EDGE_DEF (alpha,omega);
 IF REFPARAM_BOUNDSCHECK_(alpha,2D,_FRAME_EDGE,0) THEN
 RETURN -1;
 RETURN 0;
END;

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-46

REFRESH Procedure
(Superseded by DISK_REFRESH_ Procedure)

REFRESH Procedure
(Superseded by DISK_REFRESH_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary

The REFRESH procedure is used to write control information to the associated disk
volume. REFRESH always writes out the control information contained in file control
blocks (FCBs), such as end-of-file (EOF) pointers. Only the data and control
information that is not already on disk is written.

REFRESH also writes all dirty (that is, modified) cache blocks to disk. The writing of
cache blocks takes priority over all other disk activity and can severely impact
response time on the disk volume. For this reason, the REFRESH procedure should
not be used when performance of other programs is critical.

On RVUs preceding G00,The REFRESH procedure can be used when a volume is
brought down (for example, immediately before a system load or PUP DOWN !
command) but should not be used at other times. On these RVUs,The REFRESH
procedure or the equivalent Peripheral Utility Program (PUP) REFRESH command
should be performed on all volumes before a total system shutdown. On G-series
RVUs, the REFRESH procedure is not needed because the system performs the
equivalent operation automatically for each disk volume when it is brought down and at
system shutdown.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development. On G-series RVUs, the function provided by both the REFRESH
and DISK_REFRESH_ procedures is no longer needed.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-47

REFRESH Procedure
(Superseded by DISK_REFRESH_ Procedure)

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the call. (For a list of
all file-system errors, see the Guardian Procedure Errors and Messages Manual.)

volname input

INT:ref:12

specifies a volume whose associated FCBs should be written to disk. $volname
must be specified as a full 12-word internal form file-name, blank filled.
volname can be either:

$volname

or

\sysnumvolname

If omitted, all FCBs for all volumes are written to their respective disks.

Considerations

• When REFRESH is called without a volname, the error return is always 0.

• Because calling the REFRESH procedure can severely impact response time on
the specified disk volume, these actions might be considered as alternatives:

• When creating a file using FILE_CREATE_ , FILE_CREATELIST_ , or
CREATE, select the option that causes the file label to be written immediately
to disk whenever the EOF value changes.

• Use SETMODE function 95 to cause the dirty cache buffers of a specified file
to be written to disk.

Example
ERROR := REFRESH; ! refresh FCBs for all volumes.

error := REFRESH ([volname]); ! i

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-48

REMOTEPROCESSORSTATUS Procedure

REMOTEPROCESSORSTATUS Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
The REMOTEPROCESSORSTATUS procedure supplies the status of processor
modules in a particular system in a network.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

status returned value

INT(32)

returns two words indicating the processor status.

The most significant word (MSW) is the highest processor number in the remote
system plus one. The least significant word (LSW) is a bit mask for processor
availability. If LSW is all zeros, the number of processors is not available and you
should ignore any value in MSW.

#include <cextdecs(REMOTEPROCESSORSTATUS)>

__int32_t REMOTEPROCESSORSTATUS (short sysnum);

status := REMOTEPROCESSORSTATUS (sysnum); ! i

Word [0] MSW 0D if the remote system is nonexistent or
unavailable

Word [1] LSW, bit mask:
1 the processor is up
0 the processor is down or nonexistent

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-49

REMOTEPROCESSORSTATUS Procedure

sysnum input

INT:value

is the number of a particular system in a network whose processor modules’ status
is returned.

Considerations

• Where to find the system number

The system number for a particular system whose name is known can be obtained
from the LOCATESYSTEM procedure.

• Equivalencing the two words of status

The two words of status can be separated by the usual technique of
equivalencing INT variables to the high- and low-order words. For example, a
Tandem Application Language procedure that calls
REMOTEPROCESSORSTATUS might contain these declarations:

INT(32) STATUS;
INT NUM^PROCESSORS = STATUS; ! high-order word.
INT BIT^MASK = NUM^PROCESSORS + 1; ! low-order word.

For an explanation of equivalenced variables, see the TAL Reference Manual.

• Low-order word of status

The bits in the low-order word are ordered from 0 to 15, from left to right (the
processor number corresponds to the bit number):

• Using status for local processors

REMOTEPROCESSORSTATUS can also be used to obtain the status of local
processors:

INT(32) MY^PROCESSOR^STATUS;
MY^PROCESSOR^STATUS := REMOTEPROCESSORSTATUS
 (MYSYSTEMNUMBER);

• Caution using status for network process recovery

Using REMOTEPROCESSORSTATUS for network process recovery can lead to
peculiar timing problems. This procedure relies on Expand’s NCP table for
processor status. This table is not updated immediately with current processor
status, so there is a window of time during which a check of
REMOTEPROCESSORSTATUS indicates an erroneous processor UP condition.
A subsequent call to PROCESS_CREATE_ goes directly to the downed processor
and fails. You must take care to avoid this possible window problem when writing
code to handle retries and other related problems.

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Low-order word Word[1]

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-50

REMOTETOSVERSION Procedure

REMOTETOSVERSION Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example
Related Programming Manual

Summary
The REMOTETOSVERSION procedure identifies which version of the operating
system is running on a remote system.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

tos-version returned value

INT

returns a value of the form:

<0:7> an uppercase ASCII letter indicating the version of the operating
system

<8:15> a binary number specifying the release number of the version

Zero is returned if the system sysid does not exist or is inaccessible.

#include <cextdecs(REMOTETOSVERSION)>

short REMOTETOSVERSION ([short sysid]);

tos-version := REMOTETOSVERSION [(sysid)]; ! i

ASCII Letter Operating-System Version

N Dnn

P Fnn

Q Gnn

R Hnn

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-51

RENAME Procedure
(Superseded by FILE_RENAME_ Procedure)

sysid input

INT:value

is the system number that identifies the system for which the operating system
version is returned. If sysid is omitted, it defaults to the local system.

Example
REMOTE^VERSION := REMOTETOSVERSION (SYSTEM^NUM);

For example, if the operating-system version is D10, the returned value contains “N” in
bits <0:7> and binary 10 in bits <8:15>.

Related Programming Manual
For programming information about the REMOTETOSVERSION procedure, see the
Guardian Programmer’s Guide.

RENAME Procedure
(Superseded by FILE_RENAME_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Safeguard Considerations
OSS Considerations

Summary

The RENAME procedure is used to change the name of a disk file that is open. If the
file is temporary, assigning a name causes the file to be made permanent.

A call to the RENAME procedure is rejected with an error indication if there are
incomplete nowait operations pending on the specified file.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-52

RENAME Procedure
(Superseded by FILE_RENAME_ Procedure)

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is the number of an open file that identifies the file to be renamed.

new-name input

INT:ref:12

is an array containing the internal-format file name to be assigned to the disk file,
as follows:

[0:3] $volname (blank-fill)

or

\sysnum volname (blank-fill)

[4:7] subvolname (blank-fill)

[8:11] file-id (blank-fill)

Condition Code Settings
< (CCL) indicates that an error occurred (call FILEINFO or FILE_GETINFO_).

= (CCE) indicates that the rename operation is successful.

> (CCG) indicates that the file is not a disk file.

Considerations

• Purge access for RENAME

The caller must have purge access to the file for the RENAME to be successful.
Otherwise, the RENAME is rejected with file-system error 48, “security violation.”

• Volume specification for new-name

The volume specified in new-name must be the same as the volume specified
when opening the file. Neither the volume name nor the system name can be
changed by RENAME.

• sysnum specification for new-name

CALL RENAME (filenum ! i
 ,new-name); ! i

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-53

REPLY[X|XL] Procedures

If sysnum is specified as part of new-name, it must be the same as the system
number used when the file was initially opened.

• Partitioned files

When the primary partition of a partitioned file is renamed, the file system
automatically renames all other partitions located anywhere in the network.

• Renaming a file audited by the Transaction Management Facility (TMF)

The file to be renamed cannot be a file audited by TMF. An attempt to rename
such a file fails with file-system error 80 (invalid operation attempted on audited file
or nonaudited disk volume).

• Structured files with alternate keys

If the primary-key file is renamed, it is linked with the alternate-key file. If you
rename the alternate-key file and then try to access the primary-key file, file-
system error 4 occurs, because the primary-key file is still linked with the old name
for the alternate-key file. You can use the FUP ALTER command to correct this
problem.

Safeguard Considerations
For information on files protected by Safeguard, see the Safeguard Reference Manual.

OSS Considerations

• An OSS file cannot be renamed. Error 564 (operation not supported on this file
type) occurs when an attempt is made to rename an OSS file.

REPLY[X|XL] Procedures
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Considerations for REPLYX and REPLYXL
Errors for REPLYX and REPLYXL
Example
Related Programming Manual

Summary
The REPLY[X|XL] procedures are used to send a reply message to a message
received earlier in a corresponding call to READUPDATE[X|XL] on the $RECEIVE file.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-54

REPLY[X|XL] Procedures

The REPLY[X|XL] procedures can be called even if there are incomplete nowait I/O
operations pending on $RECEIVE.

Syntax for C Programmers

• The function value returned by REPLY[X], which indicates the condition code, can
be interpreted by _status_lt(), _status_eq(), or _status_gt() (defined
in the file tal.h).

#include <cextdecs(REPLY)>

_cc_status REPLY ([short _near *buffer]
 ,[unsigned short write-count]
 ,[unsigned short _near *count-written]
 ,[short message-tag]
 ,[short error-return]);

#include <cextdecs(REPLYX)>

_cc_status REPLYX ([const char _far *buffer]
 ,[unsigned short write-count]
 ,[unsigned short _far *count-written]
 ,[short message-tag]
 ,[short error-return]);

#include <cextdecs(REPLYXL)>

short REPLYXL ([const char _far *buffer]
 ,[__int32_t write-count]
 ,[__int32_t _far *count-written]
 ,[short message-tag]
 ,[short error-return]);

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-55

REPLY[X|XL] Procedures

Syntax for TAL Programmers

Parameters

error returned value

INT (Use with REPLYXL)

is a file-system error number indicating the outcome of the operation.

0 (FEOK)

indicates a successful operation.

buffer input

INT:ref:* (Use with REPLY)
STRING .EXT:ref:* (Use with REPLYX and REPLYXL)

is an array containing the reply message.

write-count input

INT:value (Use with REPLY and REPLYX)

is the number of bytes to be written ({0:57344}). If omitted, no data is transferred.

INT(32):value (Use with REPLYXL)

is the number of bytes to be written ({0:2097152}). If omitted or 0, no data is
returned.

count-written output

INT:ref:1 (Use with REPLY)
INT .EXT:ref:1 (Use with REPLYX)
INT(32):ref:1 (Use with REPLYXL)

returns a count of the number of bytes written to the file.

CALL REPLY[X] ([buffer] ! i
 ,[write-count] ! i
 ,[count-written] ! o
 ,[message-tag] ! i
 ,[error-return]); ! i

error:= REPLYXL ([buffer] ! i
 ,[write-count] ! i
 ,[count-written] ! o
 ,[message-tag] ! i
 ,[error-return]); ! i

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-56

REPLY[X|XL] Procedures

message-tag input

INT:value (Use with REPLY, REPLYX, and REPLYXL)

is the message-tag returned from FILE_GETRECEIVEINFOL_ (or
FILE_GETRECEIVEINFO_ or LASTRECEIVE or RECEIVEINFO) that associates
this reply with a message previously received. This parameter can be omitted if
message queuing is not performed by the application process (that is,
FILE_OPEN_ or OPEN procedure receive-depth = 1).

error-return input

INT:value (Use with REPLY, REPLYX, and REPLYXL)

is an error indication that is returned, when the originator’s I/O operation
completes, to the originator associated with this reply. This indication appears to
the originator as a normal file-system error return. The originator’s condition code
is set according to the relative value of error-return.

(Error numbers 300-511 are reserved for user applications; errors numbers 10-255
and 512-32767 are HP errors.)

The error-return value is returned in the last-error parameter of
FILE_GETINFO[L]_ , or in the error parameter of FILEINFO, when the originator
calls one of these procedures for the associated completion.

If error-return is omitted, a value of 0 (no error) is returned to the message
originator.

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates the REPLY[X] is successful.

> (CCG) does not return from REPLY[X].

Considerations

• Replying to queued messages

Several interprocess messages can be read and queued by the application
process before a reply must be made. The maximum number of messages that
the application process expects to read before a corresponding reply must be
specified in the receive-depth parameter to the FILE_OPEN_ or OPEN
procedure.

File-system Error Condition Code Setting

10-32767 CCL (error)

0 CCE (no error)

1-9 CCG (warning)

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-57

REPLY[X|XL] Procedures

If $RECEIVE is opened with receive-depth = 0, only READ[X] can be called;
READUPDATE[X|XL] and REPLY[X] fail with error 2 (“operation not allowed on this
type of file”).

• Using the message-tag

If more than one message is queued by the application process (that is, receive-
depth > 1), a message tag associated with each incoming message must be
obtained in a call to the FILE_GETRECEIVEINFOL_ (or
FILE_GETRECEIVEINFO_ or LASTRECEIVE or RECEIVEINFO) procedure
immediately following each call to READUPDATE[X|XL]. To direct a reply back to
the originator of the message, the message tag associated with the incoming
message returns to the system in the message-tag parameter to the
REPLY[X|XL] procedure. If messages are not queued (that is, sync-or-
receive-depth = 1), the message tag is not needed.

• Error handling

The error-return parameter can be used to return an error indication to the
requester in response to the open, CONTROL, SETMODE, and CONTROLBUF,
system messages. The error returns to the requester when the associated I/O
procedure finishes.

Considerations for REPLYX and REPLYXL

• The buffer and count written may be in the user stack segment or in an extended
data segment. They cannot be in the user’s code space.

• If the buffer or count transferred is in a selectable extended data segment, the
segment must be in use at the time of the call. Flat segments allocated by a
process are always accessible to the process.

• The transfer size is the same as for procedure REPLY.

• If the extended address of the buffer is odd, bounds checking rounds the address
to the next lower word boundary and checks an extra byte. The odd address is
used for the transfer.

Errors for REPLYX and REPLYXL
In addition to the errors currently returned from REPLY, error 22 is returned from
REPLYX and REPLYXL in these cases:

• The address of a parameter is extended, but either the extended data segment is
invalid or the address is for a selectable segment that is not in use at the time of
the call.

• The address of a parameter is extended, but it is an absolute address and the
caller is not privileged.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-58

REPOSITION Procedure
(Superseded by FILE_RESTOREPOSITION_

Example
CALL REPLY (OUT^BUFFER , 512);

Related Programming Manual
For programming information about the REPLY[X] file-system procedure, see the
Guardian Programmer’s Guide.

REPOSITION Procedure
(Superseded by FILE_RESTOREPOSITION_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations

Summary
The REPOSITION procedure is used to position a disk file to a saved position (the
positioning information having been saved by a call to the SAVEPOSITION procedure).
The REPOSITION procedure passes the positioning block obtained by
SAVEPOSITION back to the file system. Following a call to REPOSITION, the disk file
is positioned to the point where it was when SAVEPOSITION was called.

A call to the REPOSITION procedure is rejected with an error if any incomplete nowait
operations are pending on the specified file.

Syntax for C Programmers

• The function value returned by REPOSITION, which indicates the condition code,
can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

Note. The REPLYXL procedure is supported on systems running J06.07 and later J-series
RVUs and H06.18 and later H-series RVUs.

#include <cextdecs(REPOSITION)>

_cc_status REPOSITION (short filenum
 ,short _near *positioning-block);

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-59

RESETSYNC Procedure

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is the number of an open file that identifies the file to be positioned to a saved
position.

positioning-block input

INT:ref:*

indicates a saved position to be repositioned to. This should not be altered by the
user.

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that REPOSITION is successful.

> (CCG) indicates that the file is not a disk file.

Considerations

• The REPOSITION procedure cannot be used with Enscribe format 2 files or OSS
files larger than approximately 2 gigabytes. If an attempt is made to use the
REPOSITION procedure with these files, error 581 is returned. For information on
how to perform the equivalent task with Enscribe format 2 files or OSS files larger
than approximately 2 gigabytes, see the FILE_RESTOREPOSITION_ Procedure.

RESETSYNC Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Example

CALL REPOSITION (filenum ! i
 ,positioning-block); ! i

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-60

RESETSYNC Procedure

Summary
The RESETSYNC procedure is used by the backup process of a process pair after a
failure of the primary process. With this procedure, a different series of operations
might be performed from those performed by the primary before its failure.

The RESETSYNC procedure clears a process pair’s file synchronization block so that
the operations performed by the backup are not erroneously related to the operations
just completed by the primary process. It is typically used for open files whose file
synchronization blocks are not checkpointed after the most recent stack checkpoint.

Syntax for C Programmers

• The function value returned by RESETSYNC, which indicates the condition code,
can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

 Syntax for TAL Programmers

Parameters

filenum input

INT:value

is the number of an open file whose synchronization block is to be cleared.

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that RESETSYNC is successful.

> (CCG) indicates that the file is not a disk file.

Considerations

• File number has not been opened

Note. Typically, RESETSYNC is not called directly by application programs. Instead, it is
called indirectly by CHECKMONITOR.

#include <cextdecs(RESETSYNC)>

_cc_status RESETSYNC (short filenum);

CALL RESETSYNC (filenum); ! i

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-61

RESIZEPOOL Procedure
(Superseded by POOL_* Procedures)

If the RESETSYNC file number does not match the file number of the open file that
you are trying to access, the call to RESETSYNC is rejected with file-system error
16.

• Not receiving messages

If filenum designates a process, and if the $RECEIVE file of that process is not
opened with receipt of RESETSYNC messages enabled, then the RESETSYNC
procedure fails with file-system error 7.

Example
CALL RESETSYNC(FILE^NUMBER);

RESIZEPOOL Procedure
(Superseded by POOL_* Procedures)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary

RESIZEPOOL changes the size of a pool that was initialized by the DEFINEPOOL
procedure.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development. *POOL procedures are replaced by POOL_* procedures. There is
no one-for-one replacement.

#include <cextdecs(RESIZEPOOL)>

short RESIZEPOOL (short *pool-head
 ,__int32_t new-pool-size);

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-62

RESIZEPOOL Procedure
(Superseded by POOL_* Procedures)

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error code indicating the outcome of the call:

0 Successful call; the size of the specified pool had been changed to new-
pool-size.

12 The call would shrink the pool too much, leaving less area than that reserved
by GETPOOL; the reserved blocks must be returned by a PUTPOOL.

21 An invalid new-pool-size was specified.

22 One of the parameters specifies an address that is out of bounds.

29 A required parameter was not supplied.

59 The pool is invalid and cannot be resized.

pool-head input, output

INT .EXT:ref:19

is a 19-word pool header previously initialized through a call to the DEFINEPOOL
procedure. RESIZEPOOL updates this header to reflect the new pool size.

new-pool-size input

INT(32):value

is the new size for the pool, in bytes. This number must be a multiple of 4 bytes
and cannot be less than 32 bytes or greater than 127.5 megabytes (133,693,440
bytes). The address of the end of the pool is equal to the address of the beginning
of the pool plus new-pool-size. Pool space overhead and adjustments for
alignment do not cause the pool to extend past this boundary.

Considerations
See Considerations on page 4-26.

Related Programming Manual
For programming information about the RESIZEPOOL procedure, see the Guardian
Programmer’s Guide.

error := RESIZEPOOL (pool-head ! i,o
 ,new-pool-size); ! i

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-63

RESIZESEGMENT Procedure

RESIZESEGMENT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Considerations for Privileged Callers
Example
Related Programming Manual

Summary
RESIZESEGMENT alters the size of an existing extended data segment (for example,
a segment created by SEGMENT_ALLOCATE_).

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error code indicating the outcome of the call, one of:

-2 Unable to allocate page table space (not returned for unaliased segments).

-1 Unable to allocate segment space.

0 Successful call; the size of the specified extended data segment has been
changed to new-segment-size.

2 seg-id specified a nonexistent extended data segment, or the segment is of
a type that cannot be resized (see “Considerations”).

#include <cextdecs(RESIZESEGMENT)>

short RESIZESEGMENT (short segment-id
 ,__int32_t new-segment-size);

error := RESIZESEGMENT (segment-id ! i
 ,new-segment-size); ! i

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-64

RESIZESEGMENT Procedure

12 Indicates one of these conditions.

• Because the extended data segment is a shared segment, the segment
cannot be reduced (see “Considerations”).

• Because an I/O to the segment is in progress, the segment cannot be
reduced.

• The segment is being resized.

• There is a lockmemory request on the segment.

21 An invalid new-segment-size was specified (see new-segment-size,
below).

24 seg-id specified a privileged segment ID (greater than 2047) and the caller
was not privileged.

29 A required parameter was not supplied.

43 Disk space could not be allocated to accommodate the new-segment-size
specified.

45 Either the existing permanent swap file or temporary swap file for the extended
data segment is not large enough for the requested new-segment-size or
the Kernel-Managed Swap Facility (KMSF) has insufficient resources in the
processor. This error was caused by a wrong calculation of the primary and
secondary extent sizes. For more information on KMSF, see the Kernel-
Managed Swap Facility (KMSF) Manual.

segment-id input

INT:value

is the segment ID of the extended data segment to be resized (for example, as
specified in a call to SEGMENT_ALLOCATE_).

new-segment-size input

INT(32):value

is the new size for the extended data segment, in bytes.

For a flat segment, the value must be in the range 1 byte through the maximum
size defined by the max-size parameter of the SEGMENT_ALLOCATE_
procedure.

For a selectable segment, the value must be in the range 1 byte through the
maximum size defined by the max-size parameter of the
SEGMENT_ALLOCATE_ procedure. For a selectable segment allocated by the
ALLOCATESEGMENT procedure, the maximum new-segment-size is 127.5
megabytes (133,693,440 bytes).

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-65

RESIZESEGMENT Procedure

Considerations

• These extended data segment types cannot be resized (an attempt to do so results
in an error 2):

• An extended data segment allocated in the I/O space (IOS)
(a segment with a segment ID greater than or equal to 3072).

• A read-only extended data segment (created by calling
SEGMENT_ALLOCATE_ with a segment-type parameter of %060000 or by
calling ALLOCATESEGMENT with a pin-and-flags parameter of
%060000).

These types of public absolute references are adjusted by RESIZESEGMENT if
required:

• The message buffer pointers in message system control blocks (except for
resident cache segments)

• The lock addresses in LOCKWAIT elements

• The dump, comparison, and memory access breakpoint (MAB) addresses in
breakpoint (BPT) entries

• Memory access breakpoints (MABs) set in the deallocated portion of the
extended data segment are removed.

• A call to RESIZESEGMENT that shrinks an extended data segment causes the
area beyond the new-segment-size to be deallocated. Dirty pages are not
written back to a permanent swap file.

• A call to RESIZESEGMENT causes disk extents to be allocated or deallocated (for
file-backed segments), or page reservations to be increased or decreased (for
KMSF-backed segments) in these ways:

Type of
segment

At segment
allocate

At memory
access

At segment resize

File-backed
non-
extensible
segment

File extents
are
completely
allocated.

Number of
allocated
extents does
not change.

Growing: additional
extents are allocated.

Shrinking: old extents
are deallocated
(subject to change).

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-66

RESIZESEGMENT Procedure

• Because segment resizing is an extremely resource intensive operation, users
should design their applications so that RESIZESEGMENT is not frequently called.
A good rule of thumb is to call RESIZESEGMENT only when changing the size of
an extended data segment by more than 128 KB. Changes that resize an
extended data segment by less that 20% should also be avoided.

• A shared extended data segment may be resized to a larger size.
RESIZESEGMENT does not permit a currently shared extended data segment to
be made smaller.

Considerations for Privileged Callers

• Following a call to RESIZESEGMENT, any underlying absolute segments allocated
to the specified extended data segment might change if the resize causes the
segment to be extended. Privileged users must not use absolute addresses to
reference locations in any extended data segment that could be resized.

• Resident cache segments (segment IDs in the range of 2817 through 3071) are
not checked for message system buffers. Resident cache segments should only
be allocated by the disk process.

File-backed
extensible
segment

One file
extent is
allocated
(subject to
change).

Additional
extents are
allocated.

Growing: no additional
extents are allocated.

Shrinking: old extents
are deallocated
(subject to change).

KMSF-
backed non-
extensible
segment

All pages are
reserved at
the maximum
size.

Number of
allocated
pages does
not change.

Growing: the number of
pages reserved is
adjusted to the new
size.

Shrinking: the number
of pages reserved is
reduced (subject to
change).

KMSF-
backed
extensible
segment

One page is
reserved at
the maximum
size (subject
to change).

Additional
pages are
reserved.

Growing: no additional
pages are reserved.

Shrinking: the number
of pages reserved is
reduced if the new size
is less than the highest
address of accessed
memory (subject to
change).

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-67

RESIZESEGMENT Procedure

Example
INT ERROR;

ERROR := SEGMENT_ALLOCATE_ (0, 2048D): ! 1 page extended
 ! segment
 .
 .
 .
! extend segment to 65 pages
IF (ERROR := RESIZESEGMENT(0, 65D * 2048D)) THEN...
 ! an error occurred, ERROR has the error code

Related Programming Manual
For programming information about the RESIZESEGMENT procedure, see the
Guardian Programmer’s Guide.

Guardian Procedure Calls (R)

Guardian Procedure Calls Reference Manual—522629-030
13-68

RESIZESEGMENT Procedure

Guardian Procedure Calls Reference Manual—522629-030
14-1

14 Guardian Procedure Calls (S)
This section contains detailed reference information for all user-accessible Guardian
procedure calls beginning with the letter S. Table 14-1 lists all the procedures in this
section.

Table 14-1. Procedures Beginning With the Letter S (page 1 of 2)

SAVEPOSITION Procedure (Superseded by FILE_SAVEPOSITION_ Procedure)

SEGMENT_ALLOCATE_ Procedure

SEGMENT_ALLOCATE_CHKPT_ Procedure

SEGMENT_DEALLOCATE_ Procedure

SEGMENT_DEALLOCATE_CHKPT_ Procedure

SEGMENT_GETBACKUPINFO_ Procedure

SEGMENT_GETINFO_ Procedure

SEGMENT_USE_ Procedure

SEGMENTSIZE Procedure (Superseded by SEGMENT_GETBACKUPINFO_ Procedure)

SENDBREAKMESSAGE Procedure (Superseded by BREAKMESSAGE_SEND_
Procedure)

SET^FILE Procedure

SETJMP_ Procedure

SETLOOPTIMER Procedure

SETMODE Procedure

SETMODENOWAIT Procedure

SETMYTERM Procedure (Superseded by PROCESS_SETSTRINGINFO_ Procedure)

SETPARAM Procedure

SETSTOP Procedure

SETSYNCINFO Procedure (Superseded by FILE_SETSYNCINFO_ Procedure)

SETSYSTEMCLOCK Procedure

SHIFTSTRING Procedure (Superseded by STRING_UPSHIFT_ Procedure)

SIGACTION_ Procedure

SIGACTION_INIT_ Procedure

SIGACTION_RESTORE_ Procedure

SIGACTION_SUPPLANT_ Procedure

SIGADDSET_ Procedure

SIGDELSET_ Procedure

SIGEMPTYSET_ Procedure

SIGFILLSET_ Procedure

SIGISMEMBER_ Procedure

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-2

SIGJMP_MASKSET_ Procedure

SIGLONGJMP_ Procedure

SIGNAL_ Procedure

SIGNALPROCESSTIMEOUT Procedure

SIGNALTIMEOUT Procedure

SIGPENDING_ Procedure

SIGPROCMASK_ Procedure

SIGSETJMP_ Procedure

SIGSUSPEND_ Procedure

SSIDTOTEXT Procedure

STACK_ALLOCATE_ Procedure

STACK_DEALLOCATE_ Procedure

STEPMOM Procedure (Superseded by PROCESS_SETINFO_ Procedure)

STOP Procedure (Superseded by PROCESS_STOP_ Procedure)

STRING_UPSHIFT_ Procedure

SUSPENDPROCESS Procedure (Superseded by PROCESS_SUSPEND_ Procedure)

SYSTEMENTRYPOINT_RISC_ Procedure

SYSTEMENTRYPOINTLABEL Procedure

Table 14-1. Procedures Beginning With the Letter S (page 2 of 2)

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-3

SAVEPOSITION Procedure
(Superseded by FILE_SAVEPOSITION_ Procedure)

SAVEPOSITION Procedure
(Superseded by FILE_SAVEPOSITION_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Example

Summary
The SAVEPOSITION procedure is used to save a disk file’s current file positioning
information in anticipation of a need to return to that position. The positioning
information is returned to the file system in a call to the REPOSITION procedure when
you want to return to the saved position.

Syntax for C Programmers

• The function value returned by SAVEPOSITION, which indicates the condition
code, can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

Syntax for TAL Programmers

#include <cextdecs(SAVEPOSITION)>

_cc_status SAVEPOSITION (short filenum
 ,short _near *positioning-block
 ,[short _near *positioning-blksize]
);

CALL SAVEPOSITION (filenum ! i
 ,positioning-block ! o
 ,[positioning-blksize]); ! o

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-4

SAVEPOSITION Procedure
(Superseded by FILE_SAVEPOSITION_ Procedure)

Parameters

filenum input

INT:value

is a number of an open file, identifying the file whose positioning block is to be
obtained.

positioning-block output

INT:ref:*

returns the positioning information for the file’s current position. The buffer must
be large enough to hold the entire block of information. These shows how to
calculate the required buffer size in words. (The maximum value for alternate key
length is used to assure that the buffer is always large enough, although the
system might return shorter blocks in specific cases.)

For key-sequenced files where positioning is performed by:

• Primary key, the count is calculated by

7 + (primary-keylen + 1) / 2

• An alternate key, the count is calculated by

7 + (max-alternate-keylen + primary-keylen + 1) / 2

For unstructured files and for entry-sequenced and relative files where no alternate
keys exist, the count is 4. For entry-sequenced and relative files with alternate
keys, where positioning is performed by:

• Primary key, the count is 7

• An alternate key, the count is calculated by

7 + (max-alternate-keylen + 4 + 1) / 2

positioning-blksize output

INT:ref:1

returns the actual number of words in the positioning block.

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that SAVEPOSITION is successful.

> (CCG) indicates that the file is not a disk file.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-5

SEGMENT_ALLOCATE_ Procedure

Considerations

• For relative and entry-sequence files that have no alternate keys. SAVEPOSITION
requires a 7-word positioning-block if read-reverse is the current reading
mode (see KEYPOSITION[X] Procedures (Superseded by FILE_SETKEY_
Procedure)).

• The SAVEPOSITION procedure cannot be used with Enscribe format 2 files or
OSS files larger than approximately 2 gigabytes. If an attempt is made to use the
SAVEPOSITION procedure with these files, error 581 is returned. For information
on how to perform the equivalent task with Enscribe format 2 files or OSS files
larger than approximately 2 gigabytes, see the FILE_SAVEPOSITION_ Procedure.

• In files that support insertion-ordered duplicate alternate keys, each alternate key
includes four additional words for a timestamp.

Example
CALL SAVEPOSITION (FILE^NUM , POSITION^BLOCK);

SEGMENT_ALLOCATE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Examples
Related Programming Manual

Summary
The SEGMENT_ALLOCATE_ procedure allocates an extended data segment for use
by the calling process. This procedure can create read/write segments, read-only
segments, and extensible segments.

The SEGMENT_ALLOCATE_ procedure can also be used to share selectable
extended data segments or flat extended data segments allocated by other processes
(subject to the normal security requirements).

For selectable segments, the call to SEGMENT_ALLOCATE_ must be followed by a
call to the SEGMENT_USE_ procedure to make the selectable extended data segment
accessible. Although you can allocate multiple selectable segments, you can access
only one at a time. For flat segments, the call to SEGMENT_ALLOCATE_ can be
followed by a call to SEGMENT_USE_, but calling SEGMENT_USE_ is unnecessary

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-6

SEGMENT_ALLOCATE_ Procedure

because all the flat segments allocated by a process are always accessible to the
process.

Flat segments and selectable segments are supported on native processors that use
D30 or later versions of the HP NonStop operating system. Selectable segments are
supported on all systems.

Syntax for C Programmers

• The parameter length specifies the length in bytes of the character string pointed
to by filename. The parameters filename and length must either both be
supplied or both be absent.

Syntax for TAL Programmers

Parameters

error returned value

INT

Note. In the TNS/E environment the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(SEGMENT_ALLOCATE_)>

short SEGMENT_ALLOCATE_ (short segment-id /* i 1 */
 ,[__int32_t segment-size] /* i 2 */
 ,[char *filename] /* i:i 3 */
 ,[short length] /* i:i 3 */
 ,[short *error-detail] /* o 4 */
 ,[short pin] /* i 5 */
 ,[short segment-type] /* i 6 */
 ,[__int32_t *base-address]] /* i,o 7 */
 ,[__int32_t max-size] /* i 8 */
 ,[short alloc-options]););/*i 9*/

error := SEGMENT_ALLOCATE_ (segment-id ! i 1 !
 ,[segment-size] ! i 2 !
 ,[filename:length] ! i:i 3 !
 ,[error-detail] ! o 4 !
 ,[pin] ! i 5 !
 ,[segment-type] ! i 6 !
 ,[base-address] ! i,o,7 !
 ,[max-size] ! i 8 !
 ,[alloc-options]); ! i 9 !

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-7

SEGMENT_ALLOCATE_ Procedure

indicates the outcome of the operation. It contains one of these values:

0 No error
1 File-system error related to the creation or open of filename; error-

detail contains the file-system error number.
2 Parameter error; error-detail contains the number of the first parameter

found to be in error, where 1 designates the first parameter on the left.
3 Bounds error; error-detail contains the number of the first parameter

found to be in error, where 1 designates the first parameter on the left.
4 Invalid segment-id
5 Invalid segment-size
6 Unable to allocate segment space
7 Unable to allocate segment page table space
8 Security violation when attempting to share segment
9 pin does not exist.
10 pin does not have the segment allocated.
11 Caller is trying to share segment with self.
12 Indicates one of three conditions: (1) The requested segment is a shared

selectable segment, but the allocated segment is a flat segment. (2) The
requested segment is a shared flat segment, but the allocated segment is a
selectable segment. (3) The segment is being resized.

13 The segment-id parameter is already allocated by this process.
14 Unable to allocate process segment table (PST); error-detail contains

the file-system error number.
15 Part or all of the requested address range has already been allocated. This

error is returned if bit 15 of the alloc-options parameter is set to 1 and a
flat segment cannot be allocated. This error can also occur when bit 15 is not
set, but either a flat segment cannot be shared due to address-range overlap
with another segment or a flat segment cannot be allocated as there is no
unallocated address range large enough to hold the requested size. This error
is returned only on native processors.

segment-id input

INT:value

is the number by which the process chooses to refer to the segment. Segment IDs
are in the range 0 through 1023 for user processes; other values are reserved for
processes supplied by HP. A nonprivileged process cannot supply a segment ID
greater than 2047. Nonprivileged segment IDs are allocated as unaliased
segments.

segment-size input

INT(32):value

specifies the size in bytes of the segment to be allocated.

• Flat segment size:

° For G04.00 and earlier G-series RVUs, the value must be in the range 1
byte through 128 megabytes (134,217,728 bytes). A flat segment is
allocated beginning on a 32-megabyte region boundary and is allocated

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-8

SEGMENT_ALLOCATE_ Procedure

from a total virtual space of 480 megabytes (15 regions * 32
megabytes/region).

° For G05.00 and later G-series RVUs, the flat segment size limit is 1120
megabytes, theoretically. However, in a native mode process, the address
space used for flat segments in C / C++ applications is also used for the
heap. Flat segments, when allocated by Guardian, are assigned starting at
the highest address and going downward, whereas the heap starts at the
lowest address and grows upward. Therefore, for native mode programs,
the maximum segment size is not actually 1120 MB. The maximum
allowed depends on how much heap space the program uses. At best, a
native mode program has 1119 MB available for flat segments, and it could
have less available if the heap has grown to greater than 1 MB. An
attempt to allocate an 1120 MB segment in a native program results in an
error 15.

° The 32-megabyte region boundary does not apply in the G05.00 and later
G-series RVUs.

• For a selectable segment, the value must be in the range 1 byte through 127.5
megabytes (133,693,440 bytes).

The system might round the size up to the next segment-size increment, where
the increment is both processor-dependent and subject to change. The only effect
this has on the program is that an address reference that falls outside the specified
segment size but within the actual size does not cause an invalid address
reference (trap 0 for a Guardian TNS process, a SIGSEGV signal for an OSS or
any native process and a subsequent fetch might not retrieve the value previously
stored).

For methods of sharing segments, see the pin and segment-type parameters.

Upon initial allocation of the segment:

• The segment-size parameter is required if the swap file does not exist.

• The segment-size parameter is optional if the swap file already exists. If the
segment is a read-only segment, the default size is the end-of-file value of the
swap file (EOF). If the segment is a read-write segment, the default segment
size is the allocated size of the swap file.

• For a read-only segment, segment-size must not be greater than the end-of-
file value of the file; otherwise, an error occurs. For a read-write segment, if
segment-size is greater than the allocated size of the swap file, the system
attempts to allocate additional space.

If a segment is being shared by the PIN method (see pin), this rule applies to the
sharers:

• The segment-size parameter must be omitted, and the size of the segment
is the same as that from the initial SEGMENT_ALLOCATE_ call.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-9

SEGMENT_ALLOCATE_ Procedure

If a segment is being shared by the file name method (see segment-type), these
rules apply to the sharers:

• If the swap file supplied in the filename parameter does not exist at the time of
the call, the segment-size parameter must be supplied.

• If the swap file supplied in the filename parameter exists, then:

° The segment-size parameter can be omitted.

° If the segment is a read-write segment, the default size is the allocated
size of the swap file.

° If the segment is a read-only segment, then:

• If the swap file has not been opened in this processor by a previous
call to SEGMENT_ALLOCATE_, the size of the segment will be set to
segment-size, if supplied. If segment-size was not supplied, the size
defaults to the size of the existing swap file.

• If the swap file has already been opened in this processor by a prior
call to SEGMENT_ALLOCATE_, the size of the segment will be set to
the same size as the initally opened swap file, whether segment-size is
supplied or not. (However, if segment-size is larger than the size
specified in the original call to SEGMENT_ALLOCATE_, an error is
returned.)

filename:length input:input

STRING .EXT:ref:*, INT:value

indicates several types of swap files: temporary swap space using KMSF,
temporary swap file, existing permanent swap file, new permanent swap file, and
segment sharing by the file-name method. If filename is specified, pin must be
omitted.

• Temporary swap space using KMSF

If you do not specify filename or if you specify length as 0 (and if a
segment is not being shared using the PIN method), SEGMENT_ALLOCATE_
uses the Kernel-Managed Swap Facility (KMSF) to allocate swap space.

Applications that share segments by the file-name method cannot be put under
KMSF unless the sharing is changed to use the PIN. If you need to share by
the file-name method, it will be necessary to use a temporary swap file (see
“Temporary swap file” below) or to pass a volume name where the swap file
should be created.

Performance is increased by using KMSF. However, if you want to save the
data in the segment after the process terminates, specify a permanent swap
file name. KMSF swap files have the clear-on-purge attribute, which provides
a level of security for swapped data.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-10

SEGMENT_ALLOCATE_ Procedure

For more information on KMSF, see the Kernel-Managed Swap Facility
(KMSF) Manual.

• Temporary swap file

If supplied, if length is not 0, and if filename is a volume name without a
subvolume or file identifier, SEGMENT_ALLOCATE_ creates a temporary
swap file on the indicated volume. If you specify a system name, it must be the
system name of the local node. You can convert a temporary file to a
permanent file by renaming it with the FILE_RENAME_ procedure.

If you do not specify filename and bit 13 of the alloc-options parameter
is set to 1, SEGMENT_ALLOCATE_ creates a temporary swap file on a
volume that it chooses.

• Existing permanent swap file

If supplied and if length is not 0, specifies the name of a swap file to be
associated with the segment. If used, the value of filename must be exactly
length bytes long. If the file name is partially qualified (for example, without
the volume name), it is resolved using the contents of the =_DEFAULTS
DEFINE. All data in the file is used as initial data for the segment. Remote file
names, structured files, audited files, and files with the refresh attribute are not
accepted.

There are two advantages of using an existing swap file. First, if the file is the
required size, segment allocation cannot fail due to lack of disk space.
Second, the segment becomes a permanent repository of data.

If the process terminates without deallocating the segment, any data still in
memory is written back out to the file. Unless the segment is extensible,
SEGMENT_ALLOCATE_ must be able to allocate a sufficient number of file
extents to contain all memory in the segment.

• New permanent swap file

If supplied, if length is not 0, and if filename does not exist, specifies the
name of a swap file to be created. If used, the value of filename must be
exactly length bytes long. Remote file names are not accepted.

The advantage of using a permanent swap file is that the segment becomes a
permanent repository of data.

If the process terminates without deallocating the segment, any data still in
memory is written back out to the file. Unless the segment is extensible,
SEGMENT_ALLOCATE_ must be able to allocate a sufficient number of file
extents to contain all memory in the segment.

• Segment sharing by the file name method

By specifying filename, you can share the segment associated with this
swap file with another process using the same swap file (provided that both
processes have appropriate permission to the file). This is referred to as

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-11

SEGMENT_ALLOCATE_ Procedure

segment sharing by the file-name method. Two processes sharing a segment
by the file-name method must be in the same processor, unless the segment is
a read-only segment. (See Considerations on page 14-14).

error-detail output

INT .EXT:ref:1

for some returned errors, contains additional information. See error.

pin input

INT:value

if present and not equal to -1, requests allocation of a segment that is shared by
the PIN method. pin specifies the process identification number (PIN) of the
process that has previously allocated the segment and with which the caller wants
to share the segment. The process designated by pin must be in the same
processor as the caller. Processes sharing a segment by this method must
reference the segment by the same segment-id.

If pin is specified, filename must be omitted.

segment-type input

INT:value

describes the attributes of the segment to be allocated:

• Read-only

A read-only segment is an extended data segment that is initialized from a
preexisting swap file and used only for read access. A read-only segment can
be shared by either the PIN or file-name method. It can also be shared by file
name between processes in different processors. Note that the filename
parameter must specify the name of an existing swap file that is not empty.
Extensible read-only segments are not supported.

• Shared by file name

The filename parameter must be supplied when this type of shared segment
is allocated. Processes sharing segments by the file-name method can refer to
the address space by different segment IDs and can supply different values for
the segment size to SEGMENT_ALLOCATE_. The segment size supplied by
the first allocator of a particular shared segment (as identified by the swap file
name) establishes the upper limit for the segment size that can be set by
processes subsequently attempting to share the segment.

Callers that request sharing by file name must not supply the pin parameter.

• Extensible

An extensible segment is an extended data segment for which the underlying
swap file disk space is not allocated until needed. In this case, segment-

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-12

SEGMENT_ALLOCATE_ Procedure

size is taken as a maximum size and the underlying virtual memory is
expanded dynamically as the user accesses addresses within the extended
data segment. When the user first accesses a portion of an extensible
segment for which the corresponding swap file extent has not been allocated,
the operating system allocates the extent. If the extent cannot be allocated,
the user process terminates: a TNS Guardian process terminates with a “no
memory available” trap (trap 12); an OSS or native process receives a
SIGNOMEM signal.

If segment-type is omitted, the default value is 0. Valid values are:

0 Allocate a segment; sharing by the PIN method can be specified.
1 Allocate an extensible segment; sharing by the PIN method can be

specified.
2 Allocate a segment with sharing by the file name method.
3 Allocate an extensible segment with sharing by the file name method.
4, 6Allocate a read-only segment; sharing by either the PIN method or the file

name method can be specified.

base-address input,output

EXTADDR .EXT:ref:1

if used as an output parameter, returns the base address of the segment being
allocated. The base-address parameter can be used to determine whether the
segment allocated is a flat segment or a selectable segment. The base address of
a segment also can be obtained by calling the SEGMENT_GETINFO_ procedure.

• For a flat segment, the base-address output parameter value is different for
each allocated segment. A flat segment is requested by setting bit 14 of the
alloc-options parameter to 1.

• For a selectable segment, the base-address output parameter value is
always %2000000D (%H00080000%D).

If base-address is used as an input parameter, it specifies the base address of
the flat segment being allocated. This parameter is not updated on output. Bits 14
and 15 of the alloc-options parameter must be 1; otherwise, the value in the
base-address parameter is ignored.

A program should usually allow the SEGMENT_ALLOCATE_ procedure to
designate the address where a flat segment should start. In particular, library
procedures that allocate flat segments should not specify a base address, because
this allocation may be incompatible with other library-allocated or user-allocated
segments within the same process. This feature can be useful for process pairs.
For example, the primary process uses the base-address parameter as an
output parameter and supplies the address to its backup process. The backup
process, in turn, uses the base-address parameter as an input parameter to
allocate the segment in the same place.

• For a flat segment, use the base-address input parameter only if it is
necessary to force segment allocation to begin at a specific address. For

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-13

SEGMENT_ALLOCATE_ Procedure

existing systems that support flat segments, the specified address must be a
multiple of 32 kilobytes at or above %H30000000. Avoid hard-coding the
address, because the valid range of addresses can change from RVU to RVU.
An error is returned if the address is out of range, if the address is not a
multiple of 32 kilobytes, or if the allocated segment would overlap a previously
allocated segment.

• For a shared flat segment, the base-address input parameter maps the
shared segment starting at the base specified address. If base-address is
omitted, SEGMENT_ALLOCATE_ attempts to map the segment at the same
base address as in the process that first allocated the segment. If that process
no longer shares the segment, the default address is taken from one of the
processes that still shares the segment. The SEGMENT_ALLOCATE_ call in
the sharer will fail with error 15 in these cases:

1. Another segment in the sharer is already mapped at this base-address, OR
2. The address range of the segment to be shared overlaps with that of

another segment in the sharer.

• For a selectable segment, the base-address input parameter is ignored,
because the base address assigned to a selectable segment is always the
same.

max-size input

INT(32):value

defines the upper limit of the new-segment-size parameter of the
RESIZESEGMENT procedure. The value for max-size must be greater than or
equal to the segment-size parameter and must be within the same range as the
segment-size parameter.

alloc-options input

INT:value

provides information about the segment to be allocated. The bits are defined as
follows:

 <0:8> Reserved (specify 0).

 <9> = 0 Map the segment at the same base address as the process
that first allocated the segment.

= 1 Same as for 0, but also, if the range of the requested segment
is partially or completely overlapped in the current process,
allocate the segment at any address within the flat segment
space.

 <10:12> Reserved

<13> = 0 If you do not specify filename, manage the swap space
using the Kernel-Managed Swap Facility (KMSF).

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-14

SEGMENT_ALLOCATE_ Procedure

= 1 If you do not specify filename, create a temporary swap
file.

 <14> = 0 Allocate a selectable segment.

= 1 Allocate a flat segment.

 <15> = 0 Return the base address in the base-address parameter.

= 1 Allocate a flat segment starting at the address specified in the
base-address parameter. Bit 14 must also be set to 1.

The default value of alloc-options is all bits equal to 0, which means that a
selectable segment is allocated and the base address is returned in the base-
address parameter.

Considerations

• Preventing automatic temporary file purge

SEGMENT_ALLOCATE_ opens the swap file for read/write/protected access. A
process can prevent the automatic file purge of a temporary swap file by opening
the file for read-only/shared access before the segment is deallocated.

• Nonexisting temporary swap file

A caller requesting allocation of a temporary swap file can obtain the actual file
name returned by making a subsequent call to SEGMENT_GETINFO_.

• Swap file extent allocation

If an extensible segment is being created, then only one extent of the swap file is
allocated when SEGMENT_ALLOCATE_ returns.

• Segment sharing

Subject to security requirements, a process can share a segment with another
process running on the same processor. For example, process $X can share a
segment with any of these processes on the same processor:

• Any process that has the same process access ID (PAID)

• Any process that has the same group ID, if $X is the group manager (that is, if
$X has a PAID of group,255)

• Any process, if $X has a PAID of the super ID (255,255)

If processes are running in different processors, they can share a segment only if
the security requirements are met and the segment is a read-only segment. To
specify a read-only segment, set bit 2 of the segment-type parameter.

Note. There are additional considerations for privileged callers.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-15

SEGMENT_ALLOCATE_ Procedure

Callers of ALLOCATESEGMENT can share segments with callers of
SEGMENT_ALLOCATE_. High-PIN callers can share segments with low-PIN
callers.

• Segment sharing by the file-name method

In segment sharing by the file-name method, a read-write segment cannot be
shared with read-only access.

• Sharing flat segments

A process cannot share a flat segment with a process that allocated a selectable
segment, because the segments reside in different parts of memory. (Similarly, a
process cannot share a selectable segment with a process that allocated a flat
segment.)

• Flat segments and increased performance

Although the SEGMENT_USE_ and MOVEX procedures can be used with flat
segments, you can improve performance by eliminating SEGMENT_USE_ calls
and replacing MOVEX calls with direct assignment statements. Programs can
determine the type of segment allocated and take advantage of the flat segment
features whenever a flat segment is allocated.

• Selectable segments and performance

If you have more than one selectable segment, you might face performance
degradation, because time is wasted when switching between the selectable
segments. This is because only one selectable segment is visible at a time.
Instead, use flat segments, which are always visible.

• Determining whether a flat segment is allocated

Use these techniques to determine whether a segment obtained is a flat segment:

• Check the value returned in the base-address parameter. If the segment is
a selectable segment, the base address is always %2000000D
(%H00080000); otherwise, the segment is a flat segment. The
base-address parameter of the SEGMENT_USE_ procedure also returns
the base address of a segment.

• Use the usage-flags parameter of the SEGMENT_GETINFO_ procedure.

In addition, you can use the PROCESSOR_GETINFOLIST_ procedure (memory
management attribute 57) to determine whether flat segments are supported on
the processor. Flat segments are supported on native processors that use D30 or
later versions of the NonStop operating system.

• Flat segments and user libraries

A user library cannot maintain its own private global variables, so it has no way to
retain the address of a flat segment allocated for its private use. A library can use
a fixed segment ID when allocating a segment and then determine the base
address in subsequent invocations by passing the same segment ID to the

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-16

SEGMENT_ALLOCATE_ Procedure

SEGMENT_USE_ procedure. Alternatively, a library can return the base address
to its client and have this address returned as a parameter in each library call.

• How segment space is divided

To satisfy various hardware and software constraints and requirements for finding
addresses within the virtual memory space, the space is divided into regions,
segments, and pages.

Examples
error := SEGMENT_ALLOCATE_ (segment^id, seg^size);
 ! standard call to create a user segment

error := SEGMENT_ALLOCATE_ (segment^id, , , error^detail,
 pin);
 ! allocates a shared segment, using the PIN
 ! method, which is shared with the segment given by
 ! segment^id in the process identified by pin.

error := SEGMENT_ALLOCATE_ (segment^id, , filename:length,
 error^detail, , 2);
 ! allocates a shared segment using the filename
 ! method

Related Programming Manual
For programming information about the SEGMENT_ALLOCATE_ procedure, see the
Guardian Programmer’s Guide.

Unit Contains Size of Unit

1 TNS page 2048 bytes 2048 bytes

1 unitary segment 64 TNS
pages

64*2048 bytes = 128 kilobytes

1 Native page process
dependent

4096 or 16384 bytes

1 Native region 256
segments

256*128 kilobytes = 32 megabytes

1 gigabyte 32 regions 32*32 megabytes = 1024
megabytes

2 gigabytes 64 regions 64*32 megabytes = 2048
megabytes

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-17

SEGMENT_ALLOCATE_CHKPT_ Procedure

SEGMENT_ALLOCATE_CHKPT_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
The SEGMENT_ALLOCATE_CHKPT_ procedure is called by a primary process to
allocate an extended data segment for use by its backup process.

Syntax for C Programmers
This passive backup procedure is not supported in C programs. For a comparison of
active backup and passive backup, see the Guardian Programmer’s Guide.

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the backup process’s call to SEGMENT_ALLOCATE_.
Any error returned to the backup by SEGMENT_ALLOCATE_ is returned here.
For a list of possible values, see the definition of error under
SEGMENT_ALLOCATE_.

segment-id input

INT:value

is the number by which the process chooses to refer to the segment. Segment IDs
are in the range of 0 to 1023 for user processes; other values are reserved for
processes supplied by HP. A nonprivileged process cannot supply a segment ID
greater than 2047.

error:= SEGMENT_ALLOCATE_CHKPT_ (segment-id ! i
 ,[filename:length] !
i:i
 ,[error-detail] ! o
 ,[pin]); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-18

SEGMENT_ALLOCATE_CHKPT_ Procedure

filename:length input:input

STRING .EXT:ref:*, INT:value

indicates several types of swap files: temporary swap space using KMSF,
temporary swap file, existing permanent swap file, new permanent swap file, and
segment sharing by the file-name method

If filename is specified, pin must be omitted.

• Temporary swap space using KMSF

If you do not specify filename or if you specify length as 0 (and if a
segment is not being shared using the PIN method),
SEGMENT_ALLOCATE_CHKPT_ uses the Kernel-Managed Swap Facility
(KMSF) to allocate swap space.

To share this segment, use the PIN method; you cannot use the file-name
method.

Performance is increased by using KMSF. However, if you want to save the
data in the segment after the process terminates, specify a permanent swap
file name. KMSF swap files have the clear-on-purge attribute, which provides
a level of security for swapped data.

For more information on this facility, see the Kernel-Managed Swap Facility
(KMSF) Manual.

• Temporary swap file

If supplied, if length is not 0, and if filename is a volume name without a
subvolume or file identifier, SEGMENT_ALLOCATE_CHKPT_ creates a
temporary swap file on the indicated volume. If you specify a system name, it
must be the system name of the local node. You can convert a temporary file
to a permanent file by renaming it with the FILE_RENAME_ procedure.

If you do not specify filename and bit 13 of the alloc-options parameter
is set to 1, SEGMENT_ALLOCATE_CHKPT_ creates a temporary swap file on
a volume that it chooses.

• Existing permanent swap file

If supplied and if length is not 0, specifies the name of a swap file to be
associated with the segment. If used, the value of filename must be exactly
length bytes long. If the file name is partially qualified (for example, without
the volume name), it is resolved using the contents of the =_DEFAULTS
DEFINE. All data in the file is used as initial data for the segment. Remote file
names, structured files, audited files, and files with the refresh attribute are not
accepted.

There are two advantages of using an existing swap file. First, if the file is the
required size, segment allocation cannot fail due to lack of disk space.
Second, the segment becomes a permanent repository of data.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-19

SEGMENT_ALLOCATE_CHKPT_ Procedure

If the process terminates without deallocating the segment, any data still in
memory is written back out to the file. Unless the segment is extensible,
SEGMENT_ALLOCATE_CHKPT_ must be able to allocate a sufficient number
of file extents to contain all memory in the segment.

• New permanent swap file

If supplied, if length is not 0, and if filename does not exist, specifies the
name of a swap file to be created. If used, the value of filename must be
exactly length bytes long. Remote file names are not accepted.

The advantage of using a permanent swap file is that the segment becomes a
permanent repository of data.

If the process terminates without deallocating the segment, any data still in
memory is written back out to the file. Unless the segment is extensible,
SEGMENT_ALLOCATE_CHKPT_ must be able to allocate a sufficient number
of file extents to contain all memory in the segment.

• Segment sharing by the file name method

By specifying filename, you can share the segment associated with this
swap file with another process using the same swap file (provided that both
processes have appropriate permission to the file). This is referred to as
segment sharing by the file-name method. Two processes sharing a segment
by the file-name method must be in the same processor, unless the segment is
a read-only segment. (For SEGMENT_ALLOCATE_, see Considerations on
page 14-14.)

error-detail output

INT .EXT:ref:1

returns the error detail information returned from the backup process’s call to
SEGMENT_ALLOCATE_, or one of these file-system errors:

 2 = Segment is not allocated by the primary or the segment ID is
invalid.

 30 = No message-system control blocks are available.

 31 = There is no room in the process file segment (PFS) for a message
buffer in either the backup or the primary.

201 = Unable to send to the backup

For information about the error values for which detail information can be
returned here, see the description of the error parameter under the
SEGMENT_ALLOCATE_ procedure.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-20

SEGMENT_ALLOCATE_CHKPT_ Procedure

pin input

INT:value

if present and not -1, requests allocation of a segment that is shared by the PIN
method. pin specifies the process identification number of the process that has
previously allocated the segment and with which the caller wishes to share the
segment. The process designated by pin must be in the same processor as the
caller. Processes sharing a segment by this method must reference the segment
by the same segment-id.

If pin is specified, filename must be omitted.

Considerations

• The segment-size, segment-type, max-size and alloc-options
parameters of SEGMENT_ALLOCATE_ are not supported in
SEGMENT_ALLOCATE_CHKPT_ because the values for the primary process’s
segment are used.

• A segment with the same segment ID must be allocated in the primary process
before the call to SEGMENT_ALLOCATE_CHKPT_.

• If the filename parameter is provided, that file name is used by
SEGMENT_ALLOCATE_ in the backup process; otherwise, no file name
parameter is passed to SEGMENT_ALLOCATE_ in the backup process.

• If you use the pin parameter, set it carefully because the PIN might not be the
same on the backup processor. You must determine the correct PIN for the
backup processor.

• If the segment is not read-only, the swap file name must be different on the backup
and primary processors. If the same file name is given, allocation in the backup
fails because swap files cannot be shared between processors.

• Nonexisting temporary swap file

If a shared segment is being allocated and only a volume name is supplied in the
filename parameter, then the complete file name of the temporary file created by
SEGMENT_ALLOCATE_CHKPT_ can be obtained from a subsequent call to
SEGMENT_GETBACKUPINFO_.

• Swap file extent allocation

If an extensible segment is being created, then only one extent of the swap file is
allocated when SEGMENT_ALLOCATE_CHKPT_ returns.

• Segment sharing

Subject to security requirements, a process can share a segment with another
process running on the same processor. For example, process $X can share a
segment with any of these processes on the same processor:

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-21

SEGMENT_DEALLOCATE_ Procedure

• Any process that has the same process access ID (PAID)

• Any process that has the same group ID, if $X is the group manager (that is, if
$X has a PAID of group,255)

• Any process, if $X has a PAID of the super ID (255,255)

If processes are running in different processors, they can share a segment only if
the security requirements are met and the segment is a read-only segment.

Callers of [CHECK]ALLOCATESEGMENT can share segments with callers of
SEGMENT_ALLOCATE_[CHKPT_]. High-PIN callers can share segments with
low-PIN callers.

• Sharing flat segments

A process cannot share a flat segment with a process that allocated a selectable
segment, because the segments reside in different parts of memory. (Similarly, a
process cannot share a selectable segment with a process that allocated a flat
segment.)

SEGMENT_DEALLOCATE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The SEGMENT_DEALLOCATE_ procedure deallocates an extended data segment.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-22

SEGMENT_DEALLOCATE_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the operation. It returns one of these values:

0 Segment successfully deallocated.

1 Segment deallocated, but an I/O error occurred when writing to the segment's
permanent swap file; error-detail contains the file-system error number.

2 Parameter error; error-detail contains the number of the first parameter
found to be in error, where 1 designates the first parameter on the left.

3 Bounds error

4 Segment not deallocated; error-detail contains the reason for failure.

segment-id input

INT:value

specifies the segment ID of the segment to be deallocated. The segment ID was
assigned by the program in the call to SEGMENT_ALLOCATE_ that allocated the
segment.

flags input

INT:value

specifies whether dirty pages must be written to the swap file. A dirty page is a
page in memory that has been updated but not written to the swap file. Valid
values are:

<0:14> Reserved (specify 0)

#include <cextdecs(SEGMENT_DEALLOCATE_)>

short SEGMENT_DEALLOCATE_ (short segment-id
 ,[short flags]
 ,[short *error-detail]);

error := SEGMENT_DEALLOCATE_ (segment-id ! i
 ,[flags] ! i
 ,[error-detail]); ! o

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-23

SEGMENT_DEALLOCATE_ Procedure

 <15> 1 Indicates that dirty pages in memory are not to be written to the swap
file.

0 Indicates that dirty pages in memory are to be written to the swap file.

This parameter is ignored if the swap space was allocated using the Kernel-
Managed Swap Facility (KMSF).

The default is 0.

error-detail output

INT .EXT:ref:1

returns additional information associated with some errors. For details, see
error.

If error is 4, error-detail returns one of these values:

1 segment-id is out of range.

2 segment-id is in range but not allocated by the caller.

3 Segment is currently in use by the system. It might be in this state
because an outstanding nowait I/O operation using a buffer within the
segment has not been completed by a call to AWAITIOX.

30 No message-system control blocks are available.

Considerations

• flags parameter

If the swap file associated with an extended data segment is neither a temporary
file nor managed by the Kernel-Managed Swap Facility (KMSF), all of the modified
pages of the segment are written to the file before it is closed by the last process
using it. This is also true for a swap file that was created as a temporary file but
was later renamed. (A program might use this method to keep its temporary file.)
However, if the extended segment is large and if there are a large number of
modified (“dirty”) pages, it might take a long time to deallocate the segment. If
flags.<15> is set to 1, the modified pages are not written to the swap file, even if
it is a permanent file. This option is recommended when the swap file has been
made permanent to reserve the swap file space, or when the file contents are
unimportant for any reason.

• Breakpoints

Before deallocating a segment, SEGMENT_DEALLOCATE_ removes all memory
access breakpoints set in that segment.

• Segment deallocation

When a segment is deallocated, the swap file end of file (EOF) is set to the larger
of these values:

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-24

SEGMENT_DEALLOCATE_CHKPT_ Procedure

• the EOF when the file was opened by SEGMENT_ALLOCATE_

• the end of the highest numbered page that is written to the swap file

• Shared segments

A shared segment remains in existence until it has been deallocated by all the
processes that allocated it.

Example
error := SEGMENT_DEALLOCATE_ (segment^id, , error^detail);

Related Programming Manual
For programming information about the SEGMENT_DEALLOCATE_ memory
management procedure, see the Guardian Programmer’s Guide.

SEGMENT_DEALLOCATE_CHKPT_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
The SEGMENT_DEALLOCATE_CHKPT_ procedure is called by a primary process to
deallocate an extended data segment in its backup process.

Syntax for C Programmers
This passive backup procedure is not supported in C programs. For a comparison of
active backup and passive backup, see the Guardian Programmer’s Guide.

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the operation. It returns one of these values:

error := SEGMENT_DEALLOCATE_CHKPT_ (segment-id ! i
 ,[flags] ! i
 ,[error-detail]); ! o

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-25

SEGMENT_DEALLOCATE_CHKPT_ Procedure

0 Segment successfully deallocated.

1 Segment deallocated, but an I/O error occurred when writing to the segment's
permanent swap file; error-detail contains the file-system error number.

2 Parameter error; error-detail contains the number of the first parameter
found to be in error, where 1 designates the first parameter on the left.

3 Bounds error

4 Segment not deallocated; error-detail contains the reason for failure.

segment-id input

INT:value

specifies the segment ID of the segment to be deallocated. The segment ID was
assigned by the program in the call to SEGMENT_ALLOCATE_ that allocated the
segment.

flags input

INT:value

specifies whether dirty pages must be written to the swap file. A dirty page is a
page in memory that has been updated but not written to the swap file. Valid
values are:

<0:14> Reserved (specify 0)

 <15> 1 Indicates that dirty pages in memory are not to be written to the swap
file.

0 Indicates that dirty pages in memory are to be written to the swap file.

The default is 0.

error-detail output

INT .EXT:ref:1

returns additional information associated with some errors. For details, see error
.

If error is 4, error-detail returns one of these values:

1 segment-id is out of range.

2 segment-id is in range but not allocated by the caller.

3 Segment is currently in use by the system. It might be in this state
because an outstanding nowait I/O operation using a buffer within the
segment has not been completed by a call to AWAITIOX.

30 No message-system control blocks are available.

31 There is no room in the process file segment (PFS) for a message buffer in
either the backup or the primary.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-26

SEGMENT_GETBACKUPINFO_ Procedure

201 Unable to send to the backup.

Considerations

• The segment need not be allocated by the primary process at the time of the call to
SEGMENT_DEALLOCATE_CHKPT_.

• flags parameter

If the swap file associated with an extended data segment is not a temporary file,
all of the modified pages of the segment are written to the file before it is closed by
the last process using it. This is also true for a swap file that was created as a
temporary file but was later renamed. (A program might use this method to keep
its temporary file.) However, if the extended segment is large and if there are a
large number of modified (“dirty”) pages, it might take a long time to deallocate the
file. If flags.<15> is set to 1, the modified pages are not written to the swap file,
even if it is a permanent file. This option is recommended when the swap file has
been made permanent to reserve the swap file space, or when the file contents are
unimportant for any reason.

• Breakpoints

Before deallocating a segment, SEGMENT_DEALLOCATE_CHKPT_ removes all
memory access breakpoints set in that segment.

• Segment deallocation

When a segment is deallocated, the swap file end of file (EOF) is set to the larger
of these values:

• the EOF when the file was opened by SEGMENT_ALLOCATE_

• the end of the highest numbered page that is written to the swap file

• Shared segments

A shared segment remains in existence until it has been deallocated by all the
processes that allocated it.

SEGMENT_GETBACKUPINFO_ Procedure
Summary
Syntax for TAL Programmers
Parameters

Summary
The SEGMENT_GETBACKUPINFO_ procedure retrieves information about an
extended segment that is allocated by the backup process in a named process pair.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-27

SEGMENT_GETBACKUPINFO_ Procedure

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the operation. Returns one of these values:

0 No error

1 Error occurred when attempting to obtain filename; error-detail
contains the file-system error number.

2 Parameter error; error-detail contains the number of the first parameter
found to be in error, where 1 designates the first parameter on the left.

3 Bounds error; error-detail contains the number of the first parameter
found to be in error, where 1 designates the first parameter on the left.

4 segment-id is out of range.

5 segment-id is in range but not allocated by caller.

6 Information not obtained; error-detail contains the reason for failure.

segment-id input

INT:value

specifies the segment ID of the extended segment for which information is to be
returned.

error := SEGMENT_GETBACKUPINFO_ (segment-id ! i
 ,[segment-size] ! o
 ,[filename:maxlen] ! o:i
 ,[filename-len] ! o
 ,[error-detail] ! o
 ,[base-address]); ! o

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-28

SEGMENT_GETBACKUPINFO_ Procedure

segment-size output

INT(32) .EXT:ref:1

returns the current size in bytes of the specified segment. The size might be
rounded up from what was specified when the segment was allocated. For details,
see the description of segment-size under SEGMENT_ALLOCATE_ Procedure.

filename:maxlen output:input

STRING .EXT:ref:*, INT:value

if present and maxlen is not 0, returns the fully qualified name of the segment’s
swap file.

If the segment is managed by the Kernel-Managed Swap Facility (KMSF),
filename is undefined. For more information on KMSF, see the Kernel-Managed
Swap Facility (KMSF) Manual.

maxlen specifies the length in bytes of the string variable filename.

filename-len output

INT .EXT:ref:1

returns the length in bytes of the swap-file name being returned.

If the segment is managed by the Kernel-Managed Swap Facility (KMSF),
filename-len is set to 0. For more information on KMSF see the Kernel-
Managed Swap Facility (KMSF) Manual.

error-detail output

INT .EXT:ref:1

returns additional information associated with some errors.

if error is 6, one of these values is returned:

30 No message-system control blocks available

31 The process file segment (PFS) has no room for a message buffer in either
the backup or the primary.

201 Unable to send to the backup

For other uses of error-detail., see information under error.

base-address output

INT(32) .EXT:ref:1

returns the base address of the segment :

• For a flat segment, base-address is different for each allocated segment.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-29

SEGMENT_GETINFO_ Procedure

• For a selectable segment, base-address is always %2000000D
(%H00080000).

SEGMENT_GETINFO_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The SEGMENT_GETINFO_ procedure retrieves information about a currently
allocated extended data segment.

Syntax for C Programmers

• The parameter maxlen specifies the maximum length in bytes of the character
string pointed to by filename, the actual length of which is returned by

Note. In the TNS/E environment the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(SEGMENT_GETINFO_)>

short SEGMENT_GETINFO_ (short segment-id
 ,[__int32_t *segment-size]
 ,[char *filename]
 ,[short maxlen]
 ,[short *filename-len]
 ,[short *error-detail]
 ,[__int32_t *base-address]
 ,[short *usage-flags]);

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-30

SEGMENT_GETINFO_ Procedure

filename-len. All three of these parameters must either be supplied or be
absent.

Syntax for TAL Programmers

Parameters

error returned value

INT

Indicates the outcome of the operation. Returns one of these values:

0 No error

1 Error occurred when attempting to obtain filename; error-detail
contains the file-system error number.

2 Parameter error; error-detail contains the number of the first parameter
found to be in error, where 1 designates the first parameter on the left.

3 Bounds error; error-detail contains the number of the first parameter
found to be in error, where 1 designates the first parameter on the left.

4 segment-id is out of range.

5 segment-id is in range but not allocated by caller.

segment-id input

INT:value

specifies the segment ID of the extended data segment for which information is to
be returned.

segment-size output

INT(32) .EXT:ref:1

returns the current size in bytes of the specified extended data segment. The size
might be rounded up from what was specified when the segment was allocated.
For details, see the description of the segment-size parameter of
SEGMENT_ALLOCATE_ Procedure.

filename:maxlen output:input

error := SEGMENT_GETINFO_ (segment-id ! i
 ,[segment-size] ! o
 ,[filename:maxlen] ! o:i
 ,[filename-len] ! o
 ,[error-detail] ! o
 ,[base-address] ! o
 ,[usage-flags]); ! o

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-31

SEGMENT_GETINFO_ Procedure

STRING .EXT:ref:*, INT:value

if present and maxlen is not 0, returns the fully qualified name of the segment’s
swap file.

If the segment is managed by the Kernel-Managed Swap Facility (KMSF),
filename is undefined. For more information on KMSF see the Kernel-Managed
Swap Facility (KMSF) Manual.

maxlen specifies the length in bytes of the string variable filename.

filename-len output

INT .EXT:ref:1

returns the length in bytes of the swap-file name being returned.

If the segment is managed by the Kernel-Managed Swap Facility (KMSF),
filename-len is set to 0. For more information on KMSF see the Kernel-
Managed Swap Facility (KMSF) Manual.

error-detail output

INT .EXT:ref:1

returns additional information associated with some errors. For details, see error.

base-address output

EXTADDR .EXT:ref:1

returns the base address of the segment:

• For a flat segment, base-address is different for each allocated segment.

• For a selectable segment, base-address is always %2000000D
(%H00080000).

usage-flags output

INT .EXT:ref:1

returns additional information about the extended data segment. The bits, when set
to 1, indicate:

<0:5> (Bits are reserved; 0 is returned)

<6> Segment is managed by the Kernel-Managed Swap Facility (KMSF).

<7> Segment is an OSS shared memory segment.

<8> Segment is an unaliased segment. An unaliased segment does not have a
corresponding absolute segment address.

<9> Segment is a flat segment.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-32

SEGMENT_USE_ Procedure

<10> Segment is a resident cache segment.

<11> Segment can be shared.

<12> Segment is the currently in-use selectable segment for the process.

<13> Segment is read-only.

<14> Segment is extensible.

<15> Segment is resident.

Considerations
For the SEGMENT_ALLOCATE_ procedure, see Considerations on page 14-14.

Example
error := SEGMENT_GETINFO_ (segment^id, seg^size,
 swap^file:length);

Related Programming Manual
For programming information about the SEGMENT_GETINFO_ procedure, see the
Guardian Programmer’s Guide.

SEGMENT_USE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The SEGMENT_USE_ procedure selects a particular extended data segment to be
currently addressable by the calling process.

For selectable segments, the call to SEGMENT_USE_ must follow a call to
SEGMENT_ALLOCATE_ to make the selectable extended data segment accessible.
Although you can allocate multiple selectable extended data segments, you can
access only one at a time.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-33

SEGMENT_USE_ Procedure

For flat segments, the call to SEGMENT_USE_ can follow a call to
SEGMENT_ALLOCATE_, but calling SEGMENT_USE_ is unnecessary because all of
the flat segments allocated by a process are always accessible to the process.

Flat segments and selectable segments are supported on native processors that use
D30 or later versions of the NonStop operating system. Selectable segments are
supported on all systems.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the operation. It returns one of these values:

0 No error; the requested values are returned.

2 Parameter error; new-segment-id parameter is missing.

3 Bounds error; error-detail contains the number of the first parameter
found to be in error, where 1 designates the first parameter on the left. This
error is returned only to nonprivileged callers.

4 new-segment-id is not allocated.

5 new-segment-id is out of range.

Note. In the TNS/E environment the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(SEGMENT_USE_)>

short SEGMENT_USE_ (short new-segment-id
 ,[short *old-segment-id]
 ,[__int32_t *base-address]
 ,[short *error-detail]);

error := SEGMENT_USE_ (new-segment-id ! i
 ,[old-segment-id] ! o
 ,[base-address] ! o
 ,[error-detail]); ! o

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-34

SEGMENT_USE_ Procedure

new-segment-id input

INT:value

if not -1, specifies the segment ID of the selectable extended data segment to be
put into use. A value of -1 indicates that the current selectable extended data
segment should be taken out of use and that no new segment should be put into
use.

If new-segment-id specifies a flat segment, old-segment-id returns the
segment ID of the current in-use selectable segment. The flat segment and the
selectable segment remain addressable by the calling process.

old-segment-id output

INT .EXT:ref:1

returns the segment ID of the selectable extended data segment that was
previously in use. If no selectable segment was in use, a value of -1 is returned.

If new-segment-id specifies a flat segment, old-segment-id returns the
segment ID of the current in-use selectable segment. The flat segment and the
selectable segment remain addressable by the calling process.

base-address output

EXTADDR .EXT:ref:1

returns the base address of the segment specified by new-segment-id:

• For a flat segment, base-address is different for each allocated segment.

• For a selectable segment, base-address is always %2000000D
(%H00080000).

error-detail output

INT .EXT:ref:1

returns additional error information when an error value of 3 (bounds error) is
returned. For details, see error.

Considerations
For the SEGMENT_ALLOCATE_ procedure, see Considerations on page 14-14.

Example
error := SEGMENT_USE_ (new^seg^id, old^seg^id,
 base^address, error^detail);

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-35

SEGMENTSIZE Procedure (Superseded by
SEGMENT_GETBACKUPINFO_ Procedure)

Related Programming Manual
For programming information about the SEGMENT_USE_ procedure, see the
Guardian Programmer’s Guide.

SEGMENTSIZE Procedure (Superseded by
SEGMENT_GETBACKUPINFO_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example

Summary

The SEGMENTSIZE procedure returns the size of the specified segment in bytes.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

seg-size returned value

INT(32)

is the size of segment segment-id in bytes, or -1D as an error indication if
segment-id is an invalid segment number or is a segment not accessible by the
caller.

segment-id input

INT:value

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

seg-size := SEGMENTSIZE (segment-id); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-36

SENDBREAKMESSAGE Procedure
(Superseded by BREAKMESSAGE_SEND_

is the segment ID number of a segment accessible by the calling process. If
segment-id is an invalid segment number or is a segment not accessible by the
caller, then SEGMENTSIZE returns -1D as an error indication.

Example
INT(32) seglen := 0D;
INT segid := 2; ! pass to SEGMENTSIZE later
 .
 .
seglen := SEGMENTSIZE (segid);
IF seglen = -1D THEN ...

SENDBREAKMESSAGE Procedure
(Superseded by BREAKMESSAGE_SEND_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary

SENDBREAKMESSAGE allows user processes to send break-on-device messages to
other processes.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-37

SENDBREAKMESSAGE Procedure
(Superseded by BREAKMESSAGE_SEND_

Syntax for TAL Programmers

Parameters

error returned value

INT

is the file-system error number indicating the outcome of the call.

process-id input

INT .EXT:ref:4

identifies the process to which the break-on-device message is to be sent. The
format of the 4-word process ID is:

[0:2] Process name or creation timestamp
[3].<0:3> Reserved
 .<4:7> Processor number where the process is executing
 .<8:15> PIN assigned by the operating system to identify the process

in the processor

breaktag input

INT .EXT:ref:2

if present, is a user-defined value to be delivered in the fourth and fifth words of the
break-on-device message. This value corresponds to the break tag value that can
be supplied to an access method with SETPARAM function 3.

Considerations

• A successful status indication from SENDBREAKMESSAGE does not imply that
the process has received the message, only that it has been sent.

• If the process-id designates a member of a named process pair, the break-on-
device message delivery will automatically be retried to the backup process if a
failure or path switch occurs.

• A break-on-device system message is delivered to the $RECEIVE file of the target
process. For the format of the interprocess system messages, see the Guardian
Procedure Errors and Messages Manual.

• SENDBREAKMESSAGE cannot be used for a high-PIN unnamed process
because a high PIN cannot fit into process-id; BREAKMESSAGE_SEND_
should be used instead. However, it can use SENDBREAKMESSAGE for a high-
PIN named process.

error := SENDBREAKMESSAGE(process-id ! i
 [,breaktag]); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-38

SET^FILE Procedure

SET^FILE Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The SET^FILE procedure alters file characteristics and checks the old values of those
characteristics being altered.

SET^FILE is a sequential I/O (SIO) procedure and should be used only with files that
have been opened by OPEN^FILE.

Syntax for C Programmers
For Native C programs:

For C programs:

#include <cextdecs(SET_FILE)>

short SET_FILE (short { *common-fcb }
 { *file-fcb }
 ,short operation
 ,[short new-value]
 ,[short *old-value]
 ,[short setaddr-value]);

#include <cextdecs(SET_FILE)>

short SET_FILE (short { *common-fcb }
 { *file-fcb }
 ,short operation
 ,[short new-value]
 ,[short *old-value]);

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-39

SET^FILE Procedure

Syntax for TAL Programmers
For pTAL callers, the procedure definition is:

 For other callers, the procedure definition is:

Parameters

error returned value

INT

returns a file-system or sequential I/O (SIO) procedure error number indicating the
outcome of the SET^FILE.

If abort-on-error mode is in effect, the only possible value for error is 0.

common-fcb input

INT:ref:*

identifies those files whose characteristics are to be altered.

The SET^FILE operations that make sense only for the common-fcb are the
SET^BREAKHIT, SET^ERRORFILE, and SET^TRACEBACK.

When using INIT^FILEFCB, INIT^FILEFCB^D00, FILE^FWDLINKFCB,
FILE^BWDLINKFCB, and SET^TRACEBACK the FCB can be specified as the
common-fcb or the file-fcb.

If an improper FCB is specified or the FCB is not initialized, an error is indicated.

file-fcb input

INT:ref:*

identifies the file whose characteristics are to be altered. In most cases, the FCB
must be associated with a file or $RECEIVE.

error := SET^FILE ({ common-fcb } ! i
 { file-fcb } ! i
 ,operation ! i
 ,[new-value] ! i
 ,[old-value] ! o
 ,[setaddr-value]); ! i

error := SET^FILE ({ common-fcb } ! i
 { file-fcb } ! i
 ,operation ! i
 ,[new-value] ! i
 ,[old-value]); ! o

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-40

SET^FILE Procedure

When using INIT^FILEFCB, INIT^FILEFCB^D00, FILE^FWDLINKFCB,
FILE^BWDLINKFCB, and SET^TRACEBACK, the FCB can be specified as the
common-fcb or the file-fcb.

If an improper FCB is specified or the FCB is not initialized, an error is indicated.

operation input

INT:value

specifies the file characteristic to be altered. (See Table 14-2 on page 14-41 and
Table 14-3 on page 14-51.)

new-value input

INT:value

specifies a new value for the specified operation. This parameter is optional,
depending on the operation desired. For pTAL callers, some operations require
that the setaddr-value parameter be used.

old-value output

INT:ref:*

is a variable in which the current value for the specified operation returns. This
can vary from 1 to 12 words and is useful in saving this value for reset later. If
old-value is omitted, the current value is not returned.

setaddr-value input

WADDR:ref:*

for pTAL callers only, specifies a new address for the specified operation. This
parameter is optional, depending on the operation desired.

Considerations

• Table 14-2 on page 14-41 contains operations that set values in the new-value
parameter.

• Table 14-3 on page 14-51 contains operations that set addresses. For pTAL
callers, addresses are set in the setaddr-value parameter. For other callers,
addresses are set in the new-value parameter

• In Table 14-2 on page 14-41 and Table 14-3 on page 14-51, the column labeled
“State of File” is flagged with:

Open The file must be opened to alter the file’s characteristics.

Closed The file must be closed to alter the file’s characteristics.

Any The file can either be open or closed to alter the file’s characteristics.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-41

SET^FILE Procedure

• The ASSIGN^SECEXT operation comes into effect only when an
ASSIGN^PRIEXT (or ASSIGN^PRIMARYEXTENTSIZE) operation is specified. If
the primary extent (ASSIGN^PRIEXT) has not been set explicitly, any command to
set the secondary extent (ASSIGN^SECEXT) will be ignored, and the secondary
extent will have the default value. This table describes operations that set values in
the new-value parameter.

.
Table 14-2. SET^FILE Operations That Set Values (page 1 of 10)

operation
Description of
Operation Requested new-value old-value

Stat
e
of
File

ASSIGN^
BLOCKBUFLEN
(or ASSIGN^
BLOCKLENGTH)

Specifies the block
length, in bytes, for the
file.

<new-
blocklen>

<blocklen> C
losed

ASSIGN^FILECODE Specifies the file code
for the file.

<new-file-
code>

<file-code> C
losed

ASSIGN^
OPENACCESS

Specifies the open
access for the file.
These literals are
provided for <open-
access>:

READWRITE^ACCES
S
(
0
)

READ^ACCESS (1)

WRITE^ACCESS(2)

Even if
WRITE^ACCESS is
specified, SIO actually
opens the file with
READWRITE^ACCESS
to facilitate interactive
I/O.

<new-open-
access>

<open-
access>

C
losed

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-42

SET^FILE Procedure

ASSIGN^
OPENEXCLUSION

Specifies the open
exclusion for the file.
These literals are
provided for <open-
exclusion>:

SHARE(0)

EXCLUSIVE (1)

PROTECTED(3)

<new-open-
exclusion>

<open-
exclusion>

C
losed

ASSIGN^PRIEXT
(or ASSIGN^
PRIMARY
EXTENTSIZE)

Specifies the primary
extent size (in units of
2048-byte blocks) for the
file.

<new-pret-
ext-size>

<pri-ext-
size>

C
losed

ASSIGN^RECORDLEN
(or ASSIGN^
RECORDLENGTH)

Specifies the logical
record length (in bytes)
for the file. ASSIGN^
RECORDLENGTH gives
the default read or write
count. For default
values, see the
Guardian Programmer’s
Guide.

<new-
recordlen>

<recordlen> C
losed

ASSIGN^SECEXT
(or ASSIGN^
SECONDARY
EXTENTSIZE)

Specifies the secondary
extent size (in units of
2048-byte blocks) for the
file.

When set alone without
ASSIGN^PRIEXT, this
operation sets only the
default values; it comes
into effect only when a
ASSIGN^PRIEXT is set.

<new-sec-
ext-
size>

<sec-ext-
size>

C
losed

Table 14-2. SET^FILE Operations That Set Values (page 2 of 10)

operation
Description of
Operation Requested new-value old-value

Stat
e
of
File

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-43

SET^FILE Procedure

INIT^FILEFCB Specifies that the file
FCB be initialized. This
operation is not used
when the INITIALIZER
procedure is called to
initialize the FCBs. It is
valid only for C-series
format FCBs. For
example:

CALL SET^FILE
(common^fcb,
INIT^FILEFCB);

CALL SET^FILE
(in^file,INIT^FILEFCB);

must be
omitted

must be
omitted

C
losed

INIT^FILEFCB^D00 Specifies that the file
FCB be initialized. This
operation is not used
when the INITIALIZER
procedure is called to
initialize the FCB. It is
valid only for D-series
format FCBs. For
example:

CALL SET^FILE
(common^fcb,
INIT^FILEFCB^D00);

CALL SET^FILE (in^file,
INIT^FILEFCB^D00);

must be
omitted

must be
omitted

C
losed

Table 14-2. SET^FILE Operations That Set Values (page 3 of 10)

operation
Description of
Operation Requested new-value old-value

Stat
e
of
File

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-44

SET^FILE Procedure

SET^ABORT^
XFERERR

Sets or clears abort-on-
transfer error for the file.
If on, and a fatal error
occurs during a data-
transfer operation (such
as a call to any SIO
procedure except
OPEN^FILE), all files
are closed and the
process abnormally
ends. If off, the file-
system or SIO
procedure error number
returns to the caller.

<new-state> <state> O
pen

SET^BREAKHIT Sets or clears break hit
for the file. This is used
only if the user is
handling BREAK
independently of the SIO
procedures, or if the
user has requested
BREAK system
messages through
SET^SYSTEMMESSAG
ES or
SET^SYSTEMMESSAG
ES
MANY.

<new-state> <state> A
ny

SET^CHECKSUM Sets or clears the
checksum word in the
FCB. This is useful after
modifying an FCB
directly (that is, without
using the SIO
procedures).

<new-
checksum-
word>

<checksum-
word-in-fcb>

A
ny

Table 14-2. SET^FILE Operations That Set Values (page 4 of 10)

operation
Description of
Operation Requested new-value old-value

Stat
e
of
File

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-45

SET^FILE Procedure

SET^COUNTXFERRED Sets the physical I/O
count, in bytes,
transferred for the file.
This is used only if
nowait I/O is in effect
and the user is making
the call to AWAITIO for
the file. This is the
<count-transferred>
parameter value
returned from AWAITIO.

<new-
count>

<count> O
pen

SET^CRLF^BREAK Sets or clears carriage
return/line feed (CR/LF)
on BREAK for the file. If
on, a CR/LF is executed
on the terminal when the
BREAK key is pressed.

<new-state> <state> O
pen

SET^EDITLINE^
INCREMENT

Specifies the EDIT line
increment to be added to
successive line numbers
for lines that will be
added to the file. The
value should be
specified as 1000 times
the line number
increment value. The
default value is 1000,
which corresponds to an
increment of 1. The
possible EDIT line
numbers are from 0 to
99999.999

<new-
increment>

<increment> O
pen

Table 14-2. SET^FILE Operations That Set Values (page 5 of 10)

operation
Description of
Operation Requested new-value old-value

Stat
e
of
File

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-46

SET^FILE Procedure

SET^EDITREAD^
REPOSITION

Specifies that this
READ^FILE is to begin
at the position set in the
sequential block buffer
(second through fourth
words). For example:

CALL
SET^FILE(EDIT^FCB,
SET^EDITREAD^
REPOSITION);

See discussion of the
SET^EDITREAD^REPO
SITION operation in the
Guardian Programmer’s
Guide.

must be
omitted

must be
omitted

O
pen

SET^ERROR Sets file-system error
code value for the file.
This is used only if
nowait I/O is in effect
and the user makes the
call to AWAITIO for the
file. This is the <error>
parameter value
returned from FILEINFO.

<new-error> <error> O
pen

SET^PHYSIOOUT Sets or clears physical
I/O outstanding for the
file specified by <file-
fcb>. This is used only if
nowait I/O is in effect
and the user makes the
call to AWAITIO for the
file.

<new-state> <state> O
pen

SET^PRINT^ERR^MSG Sets or clears print error
message for the file. If
on and a fatal error
occurs, an error
message is displayed on
the error file. This is the
home terminal unless
otherwise specified.

<new-state> <state> O
pen

Table 14-2. SET^FILE Operations That Set Values (page 6 of 10)

operation
Description of
Operation Requested new-value old-value

Stat
e
of
File

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-47

SET^FILE Procedure

SET^PROMPT Sets interactive prompt
for the file. See the
OPEN^FILE procedure.

<new-
prompt-
char>

<prompt-
char>

O
pen

SET^RCVEOF Sets return end of file
(EOF) on process close
for $RECEIVE file. This
causes an EOF
indication to be returned
from READ^FILE when
the receive open count
goes from 1 to 0. The
setting for return EOF
has no meaning if the
user is monitoring open
and close messages.

If the file is opened with
read-only access, the
setting defaults to on for
return EOF.

<new-state> <state> O
pen

SET^RCVOPENCNT Sets receive open count
for the $RECEIVE file.
This operation is
intended to clear the
count of openers when
an open already
accepted by the SIO
procedures is
subsequently rejected by
the user. See SET^
RCVUSEROPENREPLY
.

<new-
receive-
open-count>

<receive-
open-count>

O
pen

Table 14-2. SET^FILE Operations That Set Values (page 7 of 10)

operation
Description of
Operation Requested new-value old-value

Stat
e
of
File

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-48

SET^FILE Procedure

SET^
RCVUSEROPENREPLY
(continued)

If <state> is 0, a return
from READ^FILE is
made only when data is
received.

Note: If open message
= 1 is specified to
SET^SYSTEMMESSAG
ES or
SET^SYSTEMMESSAG
ESMANY, the setting of
SET^
RCVUSEROPENREPLY
has no meaning.

An <error> of 6 returns
from READ^FILE if an
open message is
accepted by the SIO
procedures.

<new-state> <state> O
pen

SET^READ^TRIM Sets or clears read-
trailing-blank-trim for the
file. If on, the <count-
read> parameter does
not account for trailing
blanks.

<new-state> <state> O
pen

Table 14-2. SET^FILE Operations That Set Values (page 8 of 10)

operation
Description of
Operation Requested new-value old-value

Stat
e
of
File

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-49

SET^FILE Procedure

SET^
SYSTEMMESSAGES
(continued)

.<15> = unused

The user replies to the
system messages
designated by this
operation by using
WRITE^FILE. If no
WRITE^FILE is
encountered before the
next READ^FILE, a
<reply-error-code> = 0 is
made automatically.
Note that this operation
cannot set some of the
newer system
messages; for these,
use
SET^SYSTEMMESSAG
ESMANY.

<new-sys-
msg-mask>

<sys-msg-
mask>

O
pen

SET^TRACEBACK Sets or clears the
traceback feature.
When traceback is
active, the SIO facility
appends the caller's P-
relative address to all
error messages.

<new-state> <old-state> A
ny

SET^USERFLAG Sets user flag for the file.
The user flag is a one-
word value in the FCB
that the user can
manipulate to maintain
information about the
file.

<new-user-
flag>

<user-flag-
in-
fcb>

O
pen

Table 14-2. SET^FILE Operations That Set Values (page 9 of 10)

operation
Description of
Operation Requested new-value old-value

Stat
e
of
File

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-50

SET^FILE Procedure

This table describes operations that set addresses. For pTAL callers, addresses are
set in the setaddr-value parameter. For other callers, addresses are set in the
new-value parameter.

SET^WRITE^FOLD Sets or clears write-fold
for the file. If on,
write^file operations
exceeding the record
length cause multiple
logical records to be
written. If off, write^file
operations exceeding
the record length are
truncated to record-
length bytes; no error
message or warning is
given.

<new-state> <state> A
ny

SET^WRITE^PAD Sets or clears write-
blank-pad for the file. If
on, write^file operations
of less than record-
length bytes, including
the last record if
WRITE^FOLD is in
effect, are padded with
trailing blanks to fill out
the logical record.

<new-state> <state> O
pen

SET^WRITE^TRIM Sets or clears write-
trailing-blank-trim for the
file. If on, trailing blanks
are trimmed from the
output record before
being written to the line.

<new-state> <state> O
pen

Table 14-2. SET^FILE Operations That Set Values (page 10 of 10)

operation
Description of
Operation Requested new-value old-value

Stat
e
of
File

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-51

SET^FILE Procedure

Table 14-3. SET^FILE Operations That Set Addresses (page 1 of 5)

operation
Description of
Operation Requested

setaddr-
value or
new-value old-value

State
of
File

SET^
SYSTEMMESSAGES
MANY

Sets system message
reception for the
$RECEIVE file. <sys-msg-
mask-words> is a four-
word mask. Setting a bit in
<sys-msg-mask-words>
indicates that the
corresponding message is
to pass back to the user.
Default action is for the
SIO procedures to handle
all system messages.

@<new-sys-
msg-mask-
word>

<sys-msg-
mask-
words>

O
pen

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-52

SET^FILE Procedure

SET^
SYSTEMMESSAGES
MANY
(word 0)

<sys-msg-mask-words>[0]

.<0:1>= unused

.<2> = processor down
message

.<3> = processor up
message

.<4> = unused

.<5> = process deletion
message if
D-series format;
STOP message
if C-series format

.<6> = unused if D-
series format;
ABEND
message if C-
series format

.<7> = unused

.<8> = unused if D-
series format;
MONITORNET
message if C-
series format

.<9> = job creation

.<10> = SETTIME
message

.<11> = power on
message

.<12> = NEWPROCESS
NOWAIT
message

.<13:15>=unused

Table 14-3. SET^FILE Operations That Set Addresses (page 2 of 5)

operation
Description of
Operation Requested

setaddr-
value or
new-value old-value

State
of
File

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-53

SET^FILE Procedure

SET^
SYSTEMMESSAGES
MANY
(continued: word 1)

 <sys-msg-mask-words>[1]

.<0:3>= unused

.<4> = BREAK
message

.<5> = unused

.<6> = time signal
message
(NonStop II
systems only)

.<7> = memory lock
completion
message
(NonStop II
systems only)

.<8> = memory lock
failure message
(NonStop II
systems only)

.<9:13>= unused

.<14> = open message

.<15> = close message

@<new-sys-
msg-mask-
word>

<sys-msg-
mask-
words>

Table 14-3. SET^FILE Operations That Set Addresses (page 3 of 5)

operation
Description of
Operation Requested

setaddr-
value or
new-value old-value

State
of
File

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-54

SET^FILE Procedure

SET^
SYSTEMMESSAGES
MANY
(continued: word 2)

<sys-msg-mask-words>[2]

.<0> = CONTROL
message

.<1> = SETMODE
message

.<2> = RESETSYNC
message

.<3> = CONTROLBUF
message

.<4:7>= unused

.<8> = device-type
inquiry if
D-series format;
unused if C-
series format

.<9:15>= unused

Table 14-3. SET^FILE Operations That Set Addresses (page 4 of 5)

operation
Description of
Operation Requested

setaddr-
value or
new-value old-value

State
of
File

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-55

SET^FILE Procedure

Example
For pTAL callers:
CALL SET^FILE (IN^FILE , ASSIGN^FILENAME ,,, INFILE^ADDR);

For other callers:
CALL SET^FILE (IN^FILE , ASSIGN^FILENAME , @IN^FILENAME);

Related Programming Manual
For programming information about the SET^FILE procedure, see the Guardian
Programmer’s Guide.

SET^
SYSTEMMESSAGES
MANY
(continued: word 3)

<sys-msg-mask-words>[3]

.<0> = nowait
PROCESS_CRE
ATE_ completion

.<1> = subordinate
name inquiry

.<2> = nowait get info
by name
completion

.<3> = nowait
FILENAME_FIN
DNEXT_
completion

.<4> = loss of
communication
with node

.<5> = establishment of
communication
with node

.<6> = remote
processor down

.<7> = remote
processor up

.<8:15>= unused

Table 14-3. SET^FILE Operations That Set Addresses (page 5 of 5)

operation
Description of
Operation Requested

setaddr-
value or
new-value old-value

State
of
File

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-56

SETJMP_ Procedure

SETJMP_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The SETJMP_ procedure saves process context in a jump buffer. This context is used
when a nonlocal goto is performed by a corresponding call to the LONGJMP_
procedure.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

retval returned value

INT(32)

indicates the outcome of the call:

0D indicates that the SETJMP_ procedure was called directly.

<>0D indicates that the SETJMP_ procedure is returning as a result of a call to
the LONGJMP_ procedure. The returned value is specified by
LONGJMP_.

#include <setjmp.h>

jmp_buf env;

int setjmp (jmp_buf env);

?SOURCE $SYSTEM.ZGUARD.HSETJMP

retval := SETJMP_ (env); ! o

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-57

SETJMP_ Procedure

env output

INT .EXT:ref:(JMP_BUF_TEMPLATE)

specifies the address of a previously allocated jump buffer in which the process
context of the caller is returned. The jump buffer is allocated using the
JMP_BUF_DEF DEFINE.

Considerations

• SETJMP_ is the TAL or pTAL procedure name for the C setjmp() function. The
C setjmp() function complies with the POSIX.1 standard.

• Calling SETJMP_ is the functional equivalent of calling the SIGSETJMP_
procedure with mask = 0D.

• You can allocate the jump buffer for SETJMP_ using the JMP_BUF_DEF DEFINE
as follows:

JMP_BUF_DEF (env);

where env is a valid variable name.

Alternatively, you can allocate the buffer by declaring a structure if type
JMP_BUF_TEMPLATE.

In either case, the buffer must be accessible to both the SETJMP_ procedure call
and the associated LONGJMP_ procedure call.

• The jump buffer saved by the SETJMP_ procedure is normally used by a call to the
LONGJMP_ procedure. The jump buffer can be used by a call to the
SIGLONGJMP_ procedure only if the signal mask is not required.

• The buffer pointer is assumed to be valid. An invalid address passed to SETJMP_
will cause unpredictable results and could cause the system to deliver a
nondeferrable signal to the process.

• Do not change the contents of the jump buffer. The results of a corresponding
LONGJMP_ procedure call are undefined if the contents of the jump buffer are
changed.

Example
jmp_buf env;

JMP_BUF_DEF_ (env);
retval := SETJMP_ (env);

Related Programming Manual
For programming information about the SETJMP_ procedure, see the Guardian
Programmer’s Guide.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-58

SETLOOPTIMER Procedure

SETLOOPTIMER Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
OSS Considerations
Example

Summary
A call to the SETLOOPTIMER procedure sets the caller’s “process loop-timer” value.
A positive loop-timer value enables process loop timing by the operating system and
specifies a limit on the total amount of processor time the calling process is allowed. If
loop timing is enabled, the operating system decrements the loop-timer value as the
process executes (that is, is in the active state). If the loop timer is decremented to 0
(indicating that the time limit is reached), then the timer expires. For a Guardian TNS
process, a “process loop-timer timeout” trap occurs (trap number 4). For an OSS
process or native process, a SIGTIMEOUT signal is generated. Loop timing is disabled
by specifying a loop-timer value of 0.

Syntax for C Programmers

• The function value returned by SETLOOPTIMER, which indicates the condition
code, can be interpreted by the _status_lt(), _status_eq(), or
_status_gt() function (defined in the file tal.h).

Syntax for TAL Programmers

Parameters

new-time-limit input

INT:value

specifies the new time-limit value, in 0.01-second units, to be set into the process’s
loop timer. new-time-limit must be a positive value.

#include <cextdecs(SETLOOPTIMER)>

_cc_status SETLOOPTIMER (short new-time-limit
 ,[short _near *old-time-limit]);

CALL SETLOOPTIMER (new-time-limit ! i
 ,[old-time-limit]); ! o

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-59

SETLOOPTIMER Procedure

If the value of new-time-limit is 0, process loop timing is disabled.

old-time-limit output

INT:ref:1

returns the current setting of the process’s loop timer (in 0.01-second units).

Condition Code Settings

< (CCL) indicates that the new-time-limit parameter is omitted or is specified
as a negative value. The state of process loop timing and the setting of the
process’s loop timer are unchanged.

= (CCE) indicates that the new-time-limit value is set into the process’s loop
timer and that loop timing is enabled.

> (CCG) is not returned from SETLOOPTIMER.

Considerations

• Process processor time

Using SETLOOPTIMER to measure process processor time is not recommended.
Use the MYPROCESSTIME procedure for this purpose.

• Timed asynchronous interrupts

SETLOOPTIMER is not practical for generating timed asynchronous interrupts for
most users.

• Process loop timeout in system code

If a process loop-timer expires in protected code, the trap (for a Guardian TNS
process) or signal (for an OSS process or native process) is delayed until control
enters unprotected code.

• Detection of process looping

To detect whether it is looping, a process can call SETLOOPTIMER (resetting the
time limit) at a given point each time through its main execution loop. If the
process fails to finish executing its main loop, SETLOOPTIMER is not called and
the time limit is not reset. Consequently, the time limit is reached, and a trap or
signal occurs. (When the trap handler or signal handler completes execution, the
process resumes its normal instruction path.)

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-60

SETMODE Procedure

For example, a process’s main execution loop can be written as follows:

 -->
| |
| start:
| CALL SETLOOPTIMER (1000);
| IF < THEN ... ;
| | .
| | . ! enable loop timing.
| | . ! Time-limit value is 10 seconds.
| | .
| CALL WRITEREAD (termfnum ,...);
| | .
| | . ! process executes when terminal input is made.
| | . ! Loop-timer value is not decremented while
| | . ! process is suspended waiting for I/O.
| |
terminal input is processed.

OSS Considerations
When the process loop-timer expires for an OSS process, a SIGTIMEOUT signal is
generated.

Example
CALL SETLOOPTIMER (NEW^TIME);

SETMODE Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
SETMODE Functions
Considerations
Disk File Consideration
Interprocess Communication Considerations
Messages
Examples
Related Programming Manuals

Summary
The SETMODE procedure is used to set device-dependent functions.

A call to the SETMODE procedure is rejected with an error indication if incomplete
nowait operations are pending on the specified file.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-61

SETMODE Procedure

Syntax for C Programmers

• The function value returned by SETMODE, which indicates the condition code, can
be interpreted by _status_lt(), _status_eq(), or _status_gt() (defined
in the file tal.h).

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is a number of an open file that identifies the file to receive the SETMODE
function.

function input

INT:value

is one of the device-dependent functions listed in Table 14-4 on page 14-63.

param1 input

INT:value

is one of the parameters listed in Table 14-4 on page 14-63. If omitted, for a disk
file the present value is retained. For SETMODEs on other devices, this value
depends on the device and the value supplied in the function parameter.

param2 input

INT:value

#include <cextdecs(SETMODE)>

_cc_status SETMODE (short filenum
 ,short function
 ,[short param1
 ,[short param2
 ,[short _near *last-params);

CALL SETMODE (filenum ! i
 ,function ! i
 ,[param1] ! i
 ,[param2] ! i
 ,[last-params]); ! o

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-62

SETMODE Procedure

is one of the parameters listed in Table 14-4 on page 14-63. If omitted, the present
value is retained for disk files; for SETMODEs on other devices, this value
depends on the device and the value supplied in the function parameter.

last-params output

INT:ref:2

returns the previous settings of param1 and param2 associated with the current
function. The format is:

last-params[0] = old param1
last-params[1] = old param2 (if applicable)

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that the SETMODE is successful.

> (CCG) indicates that the SETMODE function is not allowed for this device type.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-63

SETMODE Procedure

SETMODE Functions
Table 14-4 on page 14-63 lists the SETMODE functions that can be used with the I/O
devices discussed in this manual for NonStop servers.

Table 14-4. SETMODE Functions (page 1 of 37)

function Parameters and Effect
1 Disk: Set file security

param1

<0> = 1 for program files only, sets accessor's ID to program file's ID
when program file is run (PROGID option).

<1> = 1 sets CLEARONPURGE option on. This means all data in the
file is physically erased from the disk (set to zeros) when the
file is purged. If this option is not on, the disk space is only
logically deallocated on a purge; the data is not destroyed, and
another user might be able to examine the "purged" data when
the space is reallocated to another file.

<4:6> = ID allowed for reading

<7:9> = ID allowed for writing

<10:12> = ID allowed for execution

<13:15> = ID allowed for purging

For each of the fields from <4:6> through <13:15>, the value can be any one
of these:

0 = member local ID

1 = member of owner's group (local)

2 = owner (local)

4 = any network user (local or remote)

5 = member of owner's community

6 = local or remote user having same user ID as owner

7 = local super ID only

For an explanation of local and remote users, communities, and so forth, see
the Guardian Programmer’s Guide or the File Utility Program (FUP)
Reference Manual .

param2 is not used with function 1.

If this SETMODE function is used on a file that is protected by a Safeguard
disk-file authorization record, and if the user is not logged on with the super
ID on the system where the file is located, error 199 is returned.

This function operates only on Guardian objects. If an OSS file is specified,
file-system error 2 occurs.

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-64

SETMODE Procedure

2 Disk: Set file owner

param1.<0:7> = group ID
.<8:15> = member ID

param2 is not used with function 2.

If this SETMODE function is used on a file that is protected by a Safeguard
disk-file authorization record, and if the user is not logged on with the super
ID on the system where the file is located, error 199 is returned.

2,
continued

This function operates only on Guardian objects. If an OSS file is specified,
file-system error 2 occurs.

3 Disk: Set write verification

param1.<15> = 0 verified writes off (default).

= 1 verified writes on.

param2 is used with DP2 disk files only.

param2 = 0 change the open option setting of the verify writes
option (default).

= 1 change the file label default value of the verify writes
option.

Table 14-4. SETMODE Functions (page 2 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-65

SETMODE Procedure

4 Disk: Set lock mode. Note that this operation is not supported for queue
files.

param1 = 0 normal mode (default): request is suspended when a
read or lock is attempted and an established record lock
or file lock is encountered.

= 1 reject mode: request is rejected with file-system error 73
when a read or lock is attempted and an established
record lock or file lock is encountered. No data is
returned for the rejected request.

= 2 read-through/normal mode: READ or READUPDATE
ignores record locks and file locks; encountering a lock
does not delay or prevent reading of a record. The
locking response of LOCKFILE, LOCKREC,
READLOCK, and READUPDATELOCK is the same as
in normal mode (mode 0).

= 3 read-through/reject mode: READ or READUPDATE
ignores record locks and file locks; encountering a lock
does not delay or prevent reading of a record. The
locking response of LOCKFILE, LOCKREC,
READLOCK, and READUPDATELOCK is the same as
in reject mode (mode 1).

= 6 read-warn/normal mode: READ or READUPDATE
returns data without regard to record and file locks;
however, encountering a lock causes warning code 9 to
be returned with the data. The locking response of
LOCKFILE, LOCKREC, READLOCK, and
READUPDATELOCK is the same as in normal mode
(mode 0).

param1 = 7 read-warn/reject mode: READ or READUPDATE
returns data without regard to record and file locks;
however, encountering a lock causes warning code 9 to
be returned with the data. The locking response of
LOCKFILE, LOCKREC, READLOCK, and
READUPDATELOCK is the same as in reject mode
(mode 1).

param2 must be 0, if supplied.

Table 14-4. SETMODE Functions (page 3 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-66

SETMODE Procedure

5 Line printer: Set system automatic perforation skip mode (assumes standard
VFU function in channel 2)

param1.<15> = 0 off, 66 lines per page

= 1 on, 60 lines per page (default)

For the 5530 line printer:

param1 = 0 disable automatic perforation skip.

= 1 enable automatic perforation skip (default).

param2 is not used with function 5.

6 Line printer or terminal: Set system spacing control

param1.<15> = 0 no space

= 1 single space (default setting)

If param1<15> is 0, then
param2 = 0 adds CR
param2 = 1 adds nothing (invalid for device subtypes 1, 3, 4, 5, and

6; disables DEV COMPRESS attribute in spooler)

If param1<15> is 1, then
param2 = 0 adds CR/LF
param2 = 1 is invalid (might return error)

7 Terminal: Set system auto line feed after receipt of carriage return line
termination

(default mode is configured)

param1.<15> = 0 LFTERM line feed from terminal or network (default)

= 1 LFSYS system provides line feed after line termination
by carriage return

param2 sets the number of retries of I/O operations.

8 Terminal: Set system transfer mode (default mode is configured)

param1.<15> = 0 conversational mode

= 1 page mode

param2 sets the number of retries of I/O operations

Note: param2 is used only with 6530 terminals.

Table 14-4. SETMODE Functions (page 4 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-67

SETMODE Procedure

9 Terminal: Set interrupt characters

param1.<0:7> = character 1
.<8:15> = character 2

param2.<0:7> = character 3
.<8:15> = character 4

(Default for conversational mode is backspace, line cancel, end of file, and
line termination. Default for page mode is page termination.) See
discussion of “interrupt characters” in the Guardian Programmer’s Guide.

10 Terminal: Set parity checking by system (default is configured)

param1.<15> = 0 no checking

= 1 checking

param2 is not used with function 10.

11 Terminal: Set break ownership

param1 = 0 means BREAK disabled (default setting).

= any positive value means enable BREAK.

= an internally defined negative value, previously returned
in
last-params, means return BREAK to previous owner.

Terminal access mode after BREAK is typed:

param2 = 0 normal mode (any type file access is permitted)

= 1 BREAK mode (only BREAK-type file access is
permitted)

See Section 10, “Communicating With Terminals,” and Section 24, “Writing a
Terminal Simulator,” in the Guardian Programmer’s Guide.

12 Terminal: Set terminal access mode

param1.<15> = 0 normal mode (any type file access is permitted)

= 1 BREAK mode (only BREAK-type file access is
permitted)

File access type:

param2.<15> = 0 normal access to terminal

= 1 BREAK access to terminal

See the discussion of “Communicating With Terminals” in the Guardian
Programmer’s Guide.

Table 14-4. SETMODE Functions (page 5 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-68

SETMODE Procedure

13 Terminal: Set system read termination on ETX character (default is
configured)

param1 = 0 no termination on ETX

= 1 termination on first character after ETX

= 3 termination on second character after ETX

param2 is used, with ATP6100 only, to specify the value of the ETX
character. No changes occur to the read termination on ETX as specified by
param1 if you do not specify an ETX character or if you set param2 to 0
(setting the ETX character to 0 is not allowed).

14 Terminal: Set system read terminal on interrupt characters (default is
configured)

param1.<15> = 0 no termination on interrupt characters (that is,
transparency mode)

= 1 termination on any interrupt character

param2 is not used with function 14.

SETMODEs 15, 16, 17, 18 and 19 are described in the EnvoyACP/XF Reference Manual.

15 Terminal: Set retry parameters

16 Terminal: Set line parameters

17 Terminal: Set maximum frame size and secondary addresses

18 Terminal: Set statistics threshold, flag fill, and window size

19 Terminal: Set translation parameters and set extended control field size

20 Terminal: Set system echo mode (default is configured)

param1.<15> = 0 system does not echo characters as read.

= 1 system echoes characters as read.

param2 is not used with function 20.

Table 14-4. SETMODE Functions (page 6 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-69

SETMODE Procedure

22 Line printer (subtype 3, 4, 6, and 32) or terminal: Set baud rate

param1 = 0 baud rate = 50

1 baud rate = 75

2 baud rate = 110

3 baud rate = 134.5

4 baud rate = 150

5 baud rate = 300

6 baud rate = 600

7 baud rate = 1200

8 baud rate = 1800

9 baud rate = 2000

10 baud rate = 2400

11 baud rate = 3600

12 baud rate = 4800

13 baud rate = 7200

14 baud rate = 9600

15 baud rate = 19200

16 baud rate = 200

17 baud rate = 38400 (5577 printer only)

param2 is not used with function 22 except when specifying split baud rates
with the LIU-4 controller (see below).

Note:

The 5520 line printer supports only the 110, 150, 300, 600, 1200, 2400,
4800, and 9600 baud rates.

The 5530 line printer supports only the 75,150, 300, 600, 1200, 2400, 4800,
and 9600 baud rates.

If no baud rate is specified at configuration time, then 9600 baud is used.
The default rate is what was specified at configuration time.

The asynchronous controller supports only the 150, 300, 600, 1200, and
1800 baud rates.

An ATP6100 line configured on an LIU-4 controller allows an application to
set different transmission (TX) and receiving (RX) baud rates with function
22. You have the option of setting split rates by specifying the TX rate in
param1 and the RX rate in param2. You can set nonsplit rates by the normal
method (that is, by specifying values for param1 as listed at the beginning of
the description of function 22. The LIU-4 does not support 3600 or 38400
baud rates.)

Table 14-4. SETMODE Functions (page 7 of 37)

function Parameters and Effect

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-70

SETMODE Procedure

22,
continued

You can specify split baud rates with the LIU-4 controller as follows. Note
that the values for param1 all have bit 0 set to 1:

param1 = 128 TX baud rate = 50

129 TX baud rate = 75

130 TX baud rate = 110

131 TX baud rate = 134.5

132 TX baud rate = 150

133 TX baud rate = 300

134 TX baud rate = 600

135 TX baud rate = 1200

136 TX baud rate = 1800

137 TX baud rate = 2000

138 TX baud rate = 2400

140 TX baud rate = 4800

141 TX baud rate = 7200

142 TX baud rate = 9600

143 TX baud rate = 19200

144 TX baud rate = 200

param2 = 0 RX baud rate = 50

1 RX baud rate = 75

2 RX baud rate = 110

3 RX baud rate = 134.5

4 RX baud rate = 150

5 RX baud rate = 300

6 RX baud rate = 600

7 RX baud rate = 1200

8 RX baud rate = 1800

9 RX baud rate = 2000

10 RX baud rate = 2400

12 RX baud rate = 4800

13 RX baud rate = 7200

14 RX baud rate = 9600

15 RX baud rate = 19200

16 RX baud rate = 200

Table 14-4. SETMODE Functions (page 8 of 37)

function Parameters and Effect

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-71

SETMODE Procedure

22,
continued

If you specify split baud rates with the LIU-4 controller, the last-params
parameter returns these values:

last-params[0] .<0:7>param1 value (TX)

.<8:15>param2 value (RX)

last-params[1]undefined

23 Terminal: Set character size

param1 = 0 character size = 5 bits

1 character size = 6 bits

2 character size = 7 bits

3 character size = 8 bits

param2 is not used with function 23.

24 Terminal: Set parity generation by system

param1 = 0 parity = odd

1 parity = even

2 parity = none

param2 is not used with function 24.

25 Line printer (subtype 3): Set form length

param1 = length of form in lines

param2 is not used with function 25.

26 Line printer (subtype 3): Set or clear vertical tabs

param1 = 0 is (line#-1) of where tab is to be set.

= -1 clear all tabs (except line 1).

Note: A vertical tab stop always exists at line 1 (top of form).

param2 is not used with function 26.

27 Line printer or terminal: Set system spacing mode

param1.<15> = 0 postspace (default setting)

= 1 prespace

param2 is not used with function 27.

Table 14-4. SETMODE Functions (page 9 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-72

SETMODE Procedure

28 Line printer or terminal: Reset to configured values

param1 = 0 (default) resets printer to its configured values

= 1 resets only soft parameters

= 2 resets only hard parameters

param2 is not used with function 28.

For the 5530 line printer, SETMODE 28 resets all the SETMODE parameters
back to their configuration values and also reinitializes the printer.

Note:

SETMODE 29 (set auto answer or control answer mode) is the only
SETMODE function not affected by a SETMODE 28.

29 Line printer (subtype 3, 4, 6, or 32): Set automatic answer mode or control
answer mode.

param1.<15> = 0 CTRLANSWER

= 1 AUTOANSWER (default)

The default mode is what was specified at configuration time; if no mode is
specified at SYSGEN, then AUTOANSWER is used.

param2 is not used with function 29.

Note:

SETMODE function 29 remains in effect even after the file is closed.
SETMODE 29 is the only SETMODE function not affected by a SETMODE
28.

SETMODE 29 is not reset at the beginning of each new job. Therefore, you
should always issue a SETMODE 29 at the beginning of your job to ensure
that you are in the desired mode (rather than in the mode left by the previous
job).

Table 14-4. SETMODE Functions (page 10 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-73

SETMODE Procedure

30 Allow nowait I/O operations to finish in any order

param1 = 0 complete operations in the order they were originally
requested (default).

= 1 complete operations in any order, except that if more
than one
operation is ready to finish at the time of the
AWAITIO[X]
call, then complete them in the order they were
requested.

= 3 complete operations in any order (that is, in the order
chosen by the system).

param2 is not used with function 30 and should be zero if supplied.

31 Set packet mode

param1.<0> = 0 ignore param2.

= 1 param2 specifies leading packet size.

param2 = 0 use default packet size for transmission (default).

> 0 is size of first outgoing packet in each WRITE or
WRITEREAD request. It must be smaller than the
configured packet size.

32 Set X.25 call setup parameters

param1.<0> = 0 do not accept charge.
= 1 accept charge.

.<1> = 0 do not request charge.
= 1 request charge.

.<2> = 0 is normal outgoing call.
= 1 is priority outgoing call.

.<8:15> = port number (0-99)

To determine the actual value for port number, see specifications on your
own network.

33 Seven-track tape drive: Set conversion mode

param1 = 0 ASCIIBCD (even parity) (default)

= 1 BINARY3TO4 (odd parity)

= 2 BINARY2TO3 (odd parity)

= 3 BINARY1TO1 (odd parity)

Table 14-4. SETMODE Functions (page 11 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-74

SETMODE Procedure

36 Allow requests to be queued on $RECEIVE based on process priority

param1.<15> = 0 use first-in-first-out (FIFO) ordering (default).

= 1 use process priority ordering.

param2 is not used with function 36.

37 Line printer (subtype 1, 4, 5, or 6): Get device status

param1 is not used with function 37.

param2 is not used with function 37.

last-params = status of device. Status values are:
last-params for printer (subtype 1 or 5) (only last-params[0] is used)

.<5> = DOV, data overrun 0 = no overrun

1 = overrun occurred

.<7> = CLO, connector loop open0 = not open

1 = open (device unplugged)

.<8> = CID, cable identification 0 = old cable

1 = new cable

.<10> = PMO, paper motion 0 = not moving

1 = paper moving

.<11> = BOF, bottom of form 0 = not at bottom

1 = at bottom

.<12> = TOF, top of form 0 = not at top

1 = at top

.<13> = DPE, device parity error 0 = parity OK

1 = parity error

.<14> = NOL, not on line 0 = on line

1 = not on line

.<15> = NRY, not ready 0 = ready

1 = not ready

All other bits are undefined.

Note:

Ownership, Interrupt Pending, Controller Busy, and Channel Parity errors are
not returned in last-params; your application program "sees" them as
normal file errors. Also, CID must be checked when PMO, BOF, and TOF
are tested, because the old cable version does not return any of these
states.

Table 14-4. SETMODE Functions (page 12 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-75

SETMODE Procedure

37,
continued

last-params for printer (subtype 4)

last-params [0] = primary status returned from printer:

.<9:11> = full status field 0 = partial status

1 = full status

2 = full status / VFU fault

3 = reserved for future use

4 = full status / data parity error

5 = full status / buffer overflow

6 = full status / bail open

7 = full status / auxiliary status
available

.<12> = buffer full 0 = not full

1 = full

.<13> = paper out 0 = OK

1 = paper out

.<14> = device power on 0 = OK

1 = POWER ON error

.<15> = device not ready 0 = ready

1 = not ready

All other bits are undefined.

last-params[1] = auxiliary status word if last-
params[0].<9:11> = 7; auxiliary
status word is as follows:

.<9:13>= auxiliary status0= no errors this
field

1= no shuttle motion

2= character generator absent

3= VFU channel error

4-31= reserved for future use

.<14:15> = always 3

All other bits are undefined.

last-params for printer (subtype 6)
last-params [0] contains the primary status.

[1] contains the auxiliary status.

Table 14-4. SETMODE Functions (page 13 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-76

SETMODE Procedure

37,
continued

Primary status bits are:
[0].<0:8> = 0 undefined
.<9> = 1 reserved
.<10:12> = 0 no faults

= 1 printer idle
= 2 paper out
= 3 end of ribbon
= 4 data parity error
= 5 buffer overflow
= 6 cover open
= 7 auxiliary status available

.<13> = 0 buffer not full
= 1 buffer full

.<14> = 0 OK
= 1 device power on error

.<15> = 0 OK
= 1 device not ready

If primary status last-params[0].<10:12> = 7, auxiliary status word is:
[1].<0:7> = undefined
.<8:11> = fault display status (most significant hex digit)
.<12:15> = fault display status (least significant hex digit)

Fault display status summary:

Operator Aux Status Aux Status Problem
Display .<8:11> .<12:15> Description
None 0 0 No faults
E01 0 1 Paper out
E03 0 3 Cover open
E06 0 6 End of ribbon
E07 0 7 Break
E11 1 1 Parity error
E12 1 2 Unprintable character
E22 2 2 Carrier loss
E23 2 3 Buffer overflow
E30 3 0 Printwheel motor fault
E31 3 1 Carriage fault
E32 3 2 Software fault
E34 3 4 Hardware fault

Table 14-4. SETMODE Functions (page 14 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-77

SETMODE Procedure

38 Terminal: Set special line-termination mode and character

param1 = 0 sets special line-termination mode. param2 is the new
line-termination character. The line-termination
character is not counted in the length of a read. No
system-supplied carriage return or line feed is issued at
the end of a read (see note on cursor movement
below).

= 1 sets special line-termination mode. param2 is the new
line-termination interrupt character. The line-
termination character is counted in the length of a read.
No system-supplied carriage return or line feed is
issued at the end of a read (see note on cursor
movement below).

38,
continued

= 2 resets special line-termination mode. The line-
termination interrupt character is restored to its
configured value. param2 must be present but is not
used.

param2 = the new line-termination interrupt character (passed in
bits <8:15>) if param1 = 0 or 1.

last-params if present, returns the current mode in last-params[0]
and the current line-termination interrupt character in
last-params [1].

Note:

Although the cursor typically will not move when 0 or 1 is specified for
param1, these options do not turn off ECHO. Therefore, if the termination
character is one which would normally cause cursor movement (such as a
LF or CR) and ECHO is enabled, cursor movement will occur.

SETMODEs 40-49 are reserved for the Exchange products. For details, see the
Exchange reference manuals.

50 Enable/disable 3270 COPY

param1 = 0 suppress COPY

= 1 allow COPY

51 Get/set 3270 status

param1 status flags mask to set

param2 is not used with function 51

For the flags mask information, see the Device-Specific Access Methods -
AM3270/TR3271 manual.

Table 14-4. SETMODE Functions (page 15 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-78

SETMODE Procedure

52 Tape drive: Set short write mode

param1 = 0 allow writes shorter than 24 bytes; a record shorter than
24 bytes is padded with zeros to a length of 24 bytes
(default).

= 1 disallow writes shorter than 24 bytes.

= 2 allow writes shorter than 24 bytes; no padding is done
on records shorter than 24 bytes.

param2 is not used with function 52.

Note:

When short writes are disallowed, an attempt to WRITE or WRITEUPDATE
a record that is shorter than 24 bytes causes error 21 (bad count) to be
issued.

53 Enable/disable receipt of status

param1 = 0 disable status receive

= 1 enable status receive

param2 = the response ID

54 Return control unit and device assigned to subdevice

param1 is not used with function 54.

param2 is not used with function 54.

last-params [0] .<0:7>= 0

.<8:15>= subdevice number known by AM3270

[1] .<0:7>= standard 3270 control-unit address

.<8:15>= standard 3270 device address

57 Disk: Set serial writes option

param1 = 0 system automatically selects serial or parallel writes
(default).

= 1 use serial writes unconditionally.

param2 is used with DP2 disk files only.

param2 = 0 The setting of Param1 will affect this open only. Other
opens of the file are not affected

= 1 The setting of Param1 will affect this open and all future
opens of the file. Other existing opens are not affected.

59 Return count of bytes read

param1 = count of actual bytes read

param2 = 0

Table 14-4. SETMODE Functions (page 16 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-79

SETMODE Procedure

66 Tape drive: Set density

param1 = 0 800 bpi (NRZI)

= 1 1600 bpi (PE)

= 2 6250 bpi (GCR)

= 3 as indicated by switches on tape drive

= 8 38000 bpi

param2 is not used with function 66.

67 AUTODCONNECT for full-duplex modems: Monitor carrier detect or data set
ready

param1 = 0 disable AUTODCONNECT (default setting).

= 1 enable AUTODCONNECT.

param2 is not used with function 67.

68 Line printer (subtype 4): Set horizontal pitch

param1 = 0 normal print (default)

= 1 condensed print

= 2 expanded print

param2 is not used with function 68.

71 Set transmission priority. Transmission authority is used by an Expand
process to determine the ordering of messages for transmission on an
Expand path. This operation indirectly invokes the network utility process,
$ZNUP, on a remote system to get information before the request can be
serviced.

param1 is not used with function 71.
param2 .<0:7> = 0 (reserved)

.<8:15> = transmission priority

The transmission priority value can range from 0 through 255. A value of 0
(the default) causes the processor priority of the process to be used as the
transmission authority. 1 is the lowest priority; 255 is the highest priority.
Once a path is selected, the Expand process processes the highest-priority
message first.

Table 14-4. SETMODE Functions (page 17 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-80

SETMODE Procedure

72 Force system buffering for nowait files

param1 = 0 allow the system to make transfers directly from user
buffers. This is applicable for systems running G-series
RVUs.
For systems running H-series RVUs, if the
USERIOBUFFER_ALLOW_ procedure has been called
or if the user_buffers flag is set to ON in the object file,
user buffers are allowed. Otherwise, only PFS buffers
are used for the file.

= 1 force use of intermediate buffer in PFS.

(Some nowaited write operations on the file with alternate keys will be forced
to wait. Nowait write operations always require the data to remain
unchanged until the information is completed.)
The default value for files opened by FILE_OPEN_ is 0. For files opened by
OPEN, the default value is 1.

= 2 user buffers are allowed for this file after this call
regardless of the previous setting. User buffers being
allowed does not guarantee that the user buffers will be
used; the system is still free to select the
most efficient buffers to use. In practice, I/O less than
4096 bytes will use PFS buffers.

param2 is not used and should be zero if supplied.

last-params reflects the current effective SETMODE 72 value for this file,
which is either 1 or 2, and not 0. This is applicable for systems running
J06.05 and later J-series RVUs and H06.16 and later H-series RVUs. For
example, if the USERIOBUFFER_ALLOW_ procedure is called before the
file is opened, the last-params will return 2.

Table 14-4. SETMODE Functions (page 18 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-81

SETMODE Procedure

80 ($RECEIVE): Set system message modes
param1 .<0:12> should be zero.

.<13> = 0 disable reception of -38 messages (default).

= 1 enable reception of cancellation (-38) messages.
.<14> = 0 disallow reception of SETPARAM (-37) messages,

returning error 2 to processes attempting SETPARAM
calls (default).

= 1 allow reception of SETPARAM (-37) messages.
.<15> = 0 disallow return of <last-param> values for SETMODE

(-33) messages, returning error 2 to processes
attempting to obtain them (default).

= 1 allow <last-param> values to be returned for SETMODE
(-33) messages. The extended form of the -33 message
will be delivered under this mode.

param2 is not used and should be zero if supplied.

90 Disk: Set buffered option defaults same as CREATE

param1 = 0 buffered

= 1 write-through

param2 is used with DP2 disk files only.

param2 = 0 change the open option setting of the buffered option
(default).

= 1 change the file label default value of the buffered
option.

90,
continued

This function operates only on Guardian objects. If an OSS file is specified,
file-system error 2 occurs.

Table 14-4. SETMODE Functions (page 19 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-82

SETMODE Procedure

91 Disk: Set cache and sequential option (function 91 is not applicable for
alternate-key
 files).

param1 = 0 system managed (default). DP2 will detect sequential
access;
when detected, it will set LRU access to sequential and
perform key-sequenced sequential splits.

= 1 direct I/O, bypass disk cache

= 2 random access, LRU-chain buffer

= 3 sequential access, reuse buffer. Directs DP2 to set
cache

LRU access to sequential and perform key-sequenced
sequential splits.

param2 is not used with function 91.

Sequential LRU access results in “random” LRU chaining that provides an
approximate half-life within the LRU cache chain.

Key-sequenced sequential splits attempt to leave the inserted record as the
last in the old block, in contrast to a 50/50 split. This helps to ensure a
compact key-sequenced structure when multiple sequential records are
inserted.

92 Disk: Set maximum number of extents for a nonpartitioned file. (Function 92
is invalid for audit-trail files and for partitioned non-key-sequenced files.)

param1 = new maximum number of extents value. There is no
guarantee of success if you specify a value greater than
500. The default is 16 extents.

param2 is not used with function 92.

This SETMODE operation returns ERROR 12 (file in use) if:

• the file is a format 2 file, non-keysequenced and non-partitioned

• the new values for maxextents would cause the maximum size of the file
to exceed 4 GB

• the maximum size of the file before the SETMODE is less than 4 GB

• the file is currently opened by the process issuing the SETMODE and the
open did not specify the "use 64-bit primary keys" election to
FILE_OPEN_

Table 14-4. SETMODE Functions (page 20 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-83

SETMODE Procedure

93 Disk: Set buffer length for an unstructured file

param1 = new BUFFERSIZE value, must be valid DP2 block size.
Valid DP2 block sizes are 512,1024, 2048, 4096 bytes
(the default is 4096 bytes).

param2 is not used with function 93.

This function operates only on Guardian objects. If an OSS file is specified
or if the specified Guardian file is opened by an OSS function, file-system
error 2 occurs.

94 Disk: Set audit-checkpoint compression option for an Enscribe file.

param1 = 0 no audit-checkpoint compression (default)

= 1 audit-checkpoint compression enabled

param2 = 0 change the open option setting of the audit-checkpoint
compression option (default).

= 1 change the file label default value of the audit-
checkpoint compression option.

95 Disk: Flush dirty cache buffers

param1 is not used with function 95.

param2 is not used with function 95.

If last-params is specified, SETMODE returns:

0 = broken file flag off after dirty cache blocks were written
to disk

1 = broken file flag on, indicating some part of file is bad,
possibly due to failed write of a dirty cache block

97 License program to use privileged procedures

param1 = 0 disallow privilege (revoke license)

= 1 allow privilege (license)

param2 is not used with function 97.

To use this SETMODE function on a Guardian object, the user must be
logged on as the super ID on the system where the file is located. To use
this SETMODE function on an OSS object, the user must have appropriate
privilege; that is, the user must be locally authenticated as the super ID on
the system where the target object resides.

Table 14-4. SETMODE Functions (page 21 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-84

SETMODE Procedure

99 TAPEPROCESS error recovery method

param1

= 0 record level recovery (default)
The record is written to tape as soon as it is received.

= 1 file level recovery
Data is buffered at the drive until an end-of-file mark is
received. The data is then flushed from the drive buffer
to the tape media.

= 2 volume level recovery
Data and end-of-file marks are buffered until the device
sees two consecutive end-of-file marks or a
tape_synch. The device buffer is then flushed from the
drive buffer to the tape media.

Once set, the buffering method remains set until changed or until the
application issues a FILE_CLOSE_ on the device corresponding to a
previous FILE_OPEN_. At that time the buffering is reset to record-level at
the device.

param2 is not used with function 99.

SETMODEs 100-109 are reserved for customer use.

110 Set Shift In/Shift Out (SISO) code extension technique for an individual
subdevice

Note:

SETMODE 110 is supported in AM6520 for CRT protocol when used for
6530 terminals, ITI protocol for 6530 terminals, and PRT protocol for 5520
printers.

param1 = 0 disable SISO (default setting)

= 1 enable SISO

param2 is not used with function 110.

112 Session in Between Brackets (BETB) state

Places SNAX LU-LU session in BETB state so that either the first speaker or
the bidder can bid to open a new bracket.

param1 = 0 disable

= 1 enable placing session in the BETB state

Table 14-4. SETMODE Functions (page 22 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-85

SETMODE Procedure

113 Set screen size

param1 = the screen width (40, 66, 80, or 132)

param2 = the screen length (25 or 28)

last-params is an integer reference parameter containing two elements:

last-params [0] = old param1

[1] = old param2

115 SNA Control Request Notification

param1 = 0 disable

= 1 enable control request notification

Users of CRT protocol can receive notification that a CINIT or CTERM
request has been sent by the SSCP to the PLU.

116 Terminal: Establish extended address field for ADCCP (ABM only) combined
stations.

See the EnvoyACP/XF Reference Manual.

117 Process files: Set TRANSID forwarding

param1 = 0 normal mode (default for process subtypes other than
30 and 31): If a transaction identifier is in effect at the
time of a write, read, or writeread on the process file, it
is sent with the request so that the receiver will operate
under the transaction.

= 1 suppress mode (default for process subtypes 30 and
31): A transaction identifier is never associated with a
message on the process file, whether or not one is in
effect for the sending process.

The SETMODE action is local to the program that calls SETMODE; no
SETMODE message is sent to the destination process. If this SETMODE
function is invoked in a process pair, provision should be made to either call
CHECKSETMODE or to reexecute the SETMODE call at the time of a
takeover.

119 Tape drive: Set mode

param1 = 0 set start/stop mode

= 1 set streaming mode

param2 is not used with function 119.

Only the 5120 tape drive supports both options of SETMODE 119. The 5130
tape drive supports this SETMODE function only when param1 = 0. The rest
of the supported tape drives support this SETMODE function only when
param1 = 1.

Table 14-4. SETMODE Functions (page 23 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-86

SETMODE Procedure

120 Return end-of-tape (EOT) message when writing labeled tapes

param1 = 0 volume switching is transparent

= 1 notify user of volume switch by sending error 150
(EOT). COBOL applications do not receive error 150
(EOT); the COBOL run-time library (RTL) handles this
error transparently.

param2 is not used with function 120.

123 Disk: Set the generic lock key length of a key-sequenced file (DP2 only).
Note that this operation is not supported for queue files.

param1 = lock key length. The generic lock key length
determines the grouping of records that will share a
single lock. This value must be between 0 and the key
length of the file. If locks are in force at the time of the
call, this SETMODE function is rejected with error 73.
The key length value applies to all partitions of a file.
Alternate keys are not affected. If the lock key length is
nonzero and less than the key length of the file, the
keys are not affected. If the lock key length is nonzero
and less than the key length of the file, generic locking
is activated and calls to UNLOCKREC are thus ignored.
Generic locking is turned off by giving a lock key length
of 0 or equal to the key length of the file (which is
equivalent to 0).

param2 is not used and should be zero if supplied.

Note that when generic locking is activated, any write is rejected with error
73 if it attempts to insert a record having the same generic lock key as an
existing lock owned by another user, whether for audited or nonaudited files.

Table 14-4. SETMODE Functions (page 24 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-87

SETMODE Procedure

128 Queue files: Specifing timeout periods.

param1 = the higher order word of the timeout value (in 0.01
second).

param2 = the lower order word of the timeout value (in 0.01
second).

The two words are combined to form a 32-bit integer for the timeout value.
These values are reserved:

-2D = system default period (60 seconds)

-1D = infinite timeout period (timeout error is not returned)

 0D = no timeout period (error is returned immediately if
record cannot be read)

All other negative values are invalid. Note that SETMODE function 128 is
valid for queue files only.

The purpose of the timeout period is to limit the time spent on dequeue
operations, especially for audited files. If the read operation is not completed
within the timeout period, an error 162 (operation timed out) is returned.

Table 14-4. SETMODE Functions (page 25 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-88

SETMODE Procedure

141 DP2 disk file: Enable/disable large transfers

param1 = 1 enable large transfers

= 0 disable large transfers (this is the default value when
the file is opened.)

param2 is not used with function 141.

last-params[0] contains the previous setting of the large transfer mode
flag.

last-params[1] if param1 is 1, this contains the value of the file's broken
flag after the cache has been flushed. if param1 is 0,
this contains a 0.

SETMODE 141 is valid only for DP2 disk files. When enabled by a
SETMODE 141 (or SETMODENOWAIT 141), a read or write operation can
transfer up to 56K bytes of data to a DP2 disk file. This setmode is in most
cases now unnecessary for unstructured files (see READ or WRITE
Considerations).

If this SETMODE function is waited and any nowait I/O operations are
outstanding at the time SETMODE is called, the SETMODE is not done.
The condition code is set to CCL and error 27 is returned.

When this SETMODE function is issued with param1 set to 1, DP2 flushes
and removes all blocks for the file from its cache. This ensures that any
updates done by the user before the SETMODE are written to disk.

The file must have been opened with the unstructured access option
specified, even if the file is unstructured. There is no support for alternate-
key files or partitions. Because the file is opened for unstructured access,
secondary partitions and alternate-key files are not opened.

Table 14-4. SETMODE Functions (page 26 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-89

SETMODE Procedure

141,
continued

If the file is audited and structured, the file must be opened with an access
mode of read-only. The exclusion mode can be shared, protected, or
exclusive. If the exclusion mode is shared, updates done by other openers
of the file might not be seen by this opener.

If the file is audited and unstructured, only read operations can be performed
on the file after this SETMODE is issued with param1 set to 1. Write
operations must not be issued until the SETMODE is reissued with param1
set to 0.

If the file is not audited, the file can be opened with any access mode and
any exclusion mode. If the exclusion mode is shared, updates done by other
openers of the file might not be seen by this opener. To issue write requests
after the SETMODE is issued with param1 set to 1, the exclusion mode must
be exclusive.

Once the large transfer mode is enabled, only the data transfer operations of
READ[X], READUPDATE[X], WRITE[X], and WRITEUPDATE[X] are
allowed. No record locks are supported. READ[X] and WRITE[X] use the
record address in NEXTREC. READUPDATE[X] and WRITEUPDATE[X]
use the record address in CURREC. POSITION can be used to set
CURREC and NEXTREC. Relative byte addressing is used for positioning.

The operation is done nowait if the file is opened for nowait I/O. The
operation must then be completed by a call to AWAITIOX. The operation
can be canceled by CANCEL or CANCELREQ.

With the large transfer mode enabled, data is read or written directly from the
user's buffer. The user's buffer is locked in memory until completion of the
operation. The data is not moved to or from the PFS (regardless of the
setting of SETMODE 72). If the I/O is done nowait, the user should not
modify or examine the data in the buffer until the I/O has finished. This also
applies to other processes sharing the segment containing the buffer. If the
I/O is done in a nowait manner and the buffer is in the stack, the buffer must
be in the high end of the stack.

The record address (in NEXTREC or CURREC) must be on a page
boundary (a multiple of 2K bytes) or error 550, "invalid position," will be
returned. Note that, as usual, when performing successive READ[X]s without
intervening POSITIONs, NEXTREC is incremented by the count actually
read, and that just before the EOF, the count read will probably not be a
multiple of 2K bytes, hence violating the record address constraint for the
next READ[X] call. A POSITION before each READX call ensures that the
record address meets the page boundary constraint.

Table 14-4. SETMODE Functions (page 27 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-90

SETMODE Procedure

141,
continued

f -1D positioning is used, the current EOF must be on a page boundary,
otherwise the disk process returns an error. If -1D positioning is used or
writes are done that change the EOF, some performance gains are lost.
When the EOF is changed, DP2 must do extra checkpoints. To avoid the
extra checkpoints, issue a CONTROL 2 to set the EOF to a high value
before starting a series of large writes. When the writes are complete,
another CONTROL 2 can be issued to set EOF to the correct value.

The length of the transfer cannot be more than 57344 bytes. The length
must be a multiple of 2K bytes. Also, some older Expand connections do not
support transfers of more than 30K bytes and return an error if a larger
transfer is attempted.

Large transfer requests are considered repeatable, so no sync ID is passed
to the disk process. If the file is opened with a positive sync depth, normal
retries occur after path failures.

A positive sync depth should not be used with -1D positioning, because
writes to the end of a file are not repeatable. If a path failure occurs,
determine whether the data was written before the path failure. If the data
was not written, issue a retry.

Since DP2's cache is bypassed by these operations and the data is read
from or written to the disk file directly, records or blocks modified by other
openers might not be seen by these requests. The user might see "dirty"
data if access mode and exclusion mode are not set carefully.

142 Select Character Set

param1 = 1 select IBM PC character set.

= 0 select default character set.

param2 is not used with function 142. If supplied, it must be 0.

For 5512, 5515/5516, and 5573 printers, the I/O process sends these ESC
sequences to select the character set:

ESC(1OU select IBM PC character set.

ESC(1O@ select default character set.

Note:

These printers do not come equipped with the IBM PC character set; it can
be installed later. To use this operation, the printer must have the IBM PC
character set installed on the printer. If the printer does not have the IBM PC
character set installed, the printer ignores the SETMODE 142.

Table 14-4. SETMODE Functions (page 28 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-91

SETMODE Procedure

144 Sets LU character set and double-byte character code

param1 must be omitted for function 144.

param2 must be omitted for function 144.

last-params[0].<0> = 0 no translation

= 1 SNAX does EBCDIC/ASCII translation

last-params[0].<1:7> = IBM device type

1=IBM-3277

2=not 3277 or 3276

3=IBM-3276

last-params[0].<8:15> = value of LU attribute ALLOWEDMIX

last-params[1].<0:7> = LU character set

0=ASCII (USASCII)

9=EBCDIC (IBM EBCDIC)

14 =KATAKANA EBCDIC

last-params[1].<8:15> = double-byte character set

0=No DBCS

2=IBMKANJI

3=IBMMIXED

5=JEFKANJI

146 Queue waiters for disk file write. Note that this operation is not supported for
queue files.

param1 = 0 disables the effect of param1

= 1 causes CONTROL 27 requests to be queued and
completed one at a time; otherwise all are completed by
the first write.

param2 is not used with function 146.

SETMODE 146 remains in effect until the file has no more openers. When
there are no more openers, the effect of SETMODE 146 is lost and the next
open must repeat this SETMODE function.

Table 14-4. SETMODE Functions (page 29 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-92

SETMODE Procedure

148 Disk: Wait for insert to locked file.

param1 = 0 normal mode (default). Request is rejected with file-
system error 73 when insert is attempted and an
established file lock is encountered.

= 1 wait mode. Request is suspended when insert is
attempted and an established file lock is encountered.

149 Disk: Alternate key insertion locking. Note that this operation is not
supported for queue files.

param1 = 0 no automatic locking (default): locking and unlocking
during insertion is not automatically performed.

= 1 automatic locking: writes of record with alternate keys
are locked at the beginning of insertion and unlocked
after all associated alternate key record insertions are
complete. This prevents interference from programs
attempting concurrent update of the same record.

param2 must be zero if supplied.

SETMODE 149 is not valid (nor needed) for audited files. For process pairs,
the mode needs to be set in the backup by CHECKSETMODE. If the file is a
key-sequenced file using the generic locks feature, the lock established by
automatic locking might not be released automatically at the end of the write
processing.

Table 14-4. SETMODE Functions (page 30 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-93

SETMODE Procedure

152 Disk: Reduce the overhead of multiple closes of a file that has multiple
openers by flushing the cache on the last close of the file.

param1.<15> = 1 for nonaudited disk files, causes the cache not to be
flushed unless the file is closed by the last opener with
either write access or a nonzero sync-depth value. To
be effective, SETMODE 152 with param1.<15> = 1
should be performed for each open of a file.

= 0 causes the cache to be flushed when this opener closes
the file, if the file is opened for write access. The
default action is to flush the cache only when the last
write-access opener closes the file. param1.<15> = 1
disables the effect of SETMODE 152 with param1.<15>
= 0.

param2 is not used with function 152. If it is supplied, it must be 0.

SETMODE 152 with param1.<15> = 1 postpones the flush of the cache until
the last opener with either write access or a nonzero sync-depth value closes
the file. For example, an application can control cache flushing by creating a
persistent opener and closing the file when more system resources are
available.

For optimal performance, do not use SETMODE 152 with param1.<15> = 1 if
the file is closed by all openers at about the same time, because all buffers in
the cache are closed serially by the last opener rather than in parallel by
each opener.

Table 14-4. SETMODE Functions (page 31 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-94

SETMODE Procedure

153 Disk: Variable-length audit compression. (D10 and later RVUs. This
function should be avoided if a fallback to a RVU earlier than D10 is
possible.)
Enable or disable variable-length audit compression for any structured
Enscribe file.

param1 = 1 enables variable-length audit compression.

= 0 disables variable-length audit compression.

param2 is not used with function 153. If supplied, it must be 0.

CAUTION: Since this feature generates undo and redo that cannot be
processed correctly by earlier RVUs of the disk process, a fallback to a RVU
earlier than D10 can result in problems.

If a fallback to a RVU earlier than D10 is possible, this function should be
avoided. If this function is used and a fallback becomes necessary, these
steps should be taken:

1) TMF should be stopped while the affected volumes are
brought up. TMF can subsequently be restarted.

2) Once the earlier version of operating system is running,
new TMF online dumps should be acquired for any
TMF-protected files on which SETMODE function 153
was used if TMF rollforward protection is required.

158 Disk: Makes the validation of sector and block checksums optional for read
opeartions.

param1 = 0 Validate sector and block checksums on subsequent
read operations.

= 1 Omit sector and block checksum validation on
subsequent read operations.

param2 is not used with function 158. If supplied, it must be 0.

last-params[0] contains the checksum setting.

SETMODE 158 does not validate the param1 argument and does not
generate an error message if the argument is not valid.

By default, checksums are validated from disk I/O operations. SETMODE
function 158 request is ignored for outstanding read operations. The file must
be opened with unstrusctured-access option specified, even if the file is
unstructured. Function 158 does not support alternate-key files or partitions.

Table 14-4. SETMODE Functions (page 32 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-95

SETMODE Procedure

162 Override System Compression Default on 5190 Cartridge Tape

param1 = 1 No data compression

= 2 Data compression (IDRC)

param2 is not used with function 162.

Users of unlabeled tapes who do not want to use the default compression
setting can use SETMODE 162 to override the default setting. BACKUP and
FUP do not support this operation. This operation is allowed only at the
beginning of tape (BOT). For more information about the 5190 Cartridge
Tape Subsystem, see the 5190 Cartridge Tape Subsystem Manual

163 SNAX:Enhanced CDI mode

param1 = 0 enables normal mode (disables all enhanced CDI
support).

= 1 enables enhanced CDI mode.

= 2 enables special WRITEREAD mode (allows
applications to determine the setting of CDI by using the
WRITEREAD procedure; using WRITEREAD causes
the outbound data buffer to be sent with CDI enabled).

param2 is not used with function 163.

A SETMODE 163 call applies only to the opener, not to the device that is
opened; another SETMODE 163 call must be made if the file is closed.

Enhanced CDI mode is supported only by the SNAX/XF and SNAX/CDF
products. For more information about enhanced CDI mode, see the
SNAX/XF Application Programming Manual and the SNAX/CDF Application
Programming Manual.

Table 14-4. SETMODE Functions (page 33 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-96

SETMODE Procedure

165 SNAX:Exception response (ER) mode

param1 = 0 disables ER mode. The LU sends outbound LU-LU
FMD requests in definite response (DR) mode. This is
the default value if SCF or SPI has not been used
previously to configure ER mode; otherwise, the SCF or
SPI configuration value is used.

= 1 enables ER mode for applications existing before the
introduction of ER mode. The LU sends outbound LU-
LU FMD requests in ER mode. However, error 122 is
sent on a negative response instead of error 951.

= 2 enables ER mode for applications using the ER mode
features. The LU sends outbound LU-LU FMD requests
in ER mode. Error 951 is sent on a negative response.

param2 is not used with function 165.

last-params[0] contains the previous value of param1.

last-params[1] contains the number of outbound requests required per
device before an ER mode sync point is automatically
generated on behalf of the user.

ER mode is supported only by the SNAX/XF product. Specifying this
function for SNALU causes an error 2 (invalid operation) to be returned.
Passing a value other than one of those listed above causes an error 590
(invalid parameter value) to be returned. A SETMODE 165 call applies only
to the opener, not to the device that is opened; another SETMODE 165 call
must be made if the file is closed.

For more information about ER mode, see the SNAX/XF Application
Programming Manual.

258 Telserv: Transfers data in either half duplex mode or full duplex mode.
param1 .<15> = 0 Normal half duplex mode (default).

.<15> = 1 Full duplex mode.

param2 is not used with function 258.

In the full duplex mode,write requests are not queued behind read requests;
they are processed immediately. Writeread requests are allowed only if there
are no pending requests; otherwise, error 160 is returned.

Cause. For more information, see the Telserv Guide.

Table 14-4. SETMODE Functions (page 34 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-97

SETMODE Procedure

260 Printer: Enables PostScript printing for the FASTP print process and FASTP-
based print processes.

param1 = 2 The FASTP print process sends the PCL command to
switch the printer to PostScript mode. At the end of
each line, a system-generated carriage return is issued.
At the end of the job and before the next job prints, the
printer is returned to PCL mode.

=1 The FASTP print process sends the PCL command to
switch the printer to PostScript mode. At the end of the
job and before the next job prints, the printer is returned
to PCL mode. (No system-generated carriage return is
issued at the end of each line.)

= 0 The FASTP print process sends the PCL command to
switch the printer back to PCL mode.

param2 is not used with function 260.

Function 260 applies only to 5577 printers. When PostScript mode is in
effect, SETMODE 142 and CONTROL 1 are ignored and FASTP inhibits the
sending of other PCL sequences such as page eject and job offset.

For programming information about SETMODE function 260, see the
Guardian Programmer’s Guide.

261 Telserv: Enables/Disables expand tabs (09 hex); applies to echo and output.

param1 = 1 enables TAB to blank expansion.
Equivalent startup option is -XTABS (default).

= 0 disables conversion.
Equivalent startup option is -NOXTABS.

param2 is not used with function 261.

For more information about -XTABS and -NOXTABS, see the Telserv Guide.

262 Telserv: Enables/Disables the conversion of nonprinting characters.

param1 = 1 enables conversion of nonprinting characters.
Equivalent startup option is -CTRLECHO (default).

= 0 disables this conversion.
Equivalent startup option is -NOCTRLECHO.

param2 is not used with function 262.

For more information about -CTRLECHO and -NOCTRLECHO, see the
Telserv Guide.

Table 14-4. SETMODE Functions (page 35 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-98

SETMODE Procedure

263 Telserv: Enables/Disables processing of CTRL-C (03 hex) as break
character.

param1 = 1 enables processing of CTRL-C (03 hex) as break
character. Equivalent startup option is -BREAKDATA
(default).

= 0 disables processing of CTRL-C (03 hex) as break
character.
Equivalent startup option is -NOBREAKDATA.

param2 is not used with function 263.

Note that IAC BREAK will still be processed.

For more information about -BREAKDATA and -NOBREAKDATA, see the
Telserv Guide.

264 Telserv: Enables/Disbles processing of CTRL-S and CTRL-Q characters as
XON and XOFF.

param1 = 1 enables the processing of CTRL-S and CTRL-Q
characters as flow control characters(XON and XOFF
respectively).
The equivalent startup option is -FLOWCTRL (default).

= 0 disables the processing of CTRL-S and CTRL-Q
characters as flow control characters. Instead they are
interpreted as normal data characters.
The equivalent startup option is -NOFLOWCTRL.

param2 is not used with function 264.

For more information about -FLOWCTRL and -NOFLOWCTRL, see the
Telserv Guide.

2651 Disk: Set the TRUST flag that controls the direct I/O access permission to
user buffers when the process is running.

param1 = 0 disables the TRUST flag.

= 1 enables the TRUST flag, allowing private access to the
process.

= 3 enables the TRUST flag, allowing shared access to the
process.

param2 is not used with function 265.

To use the SETMODE function on a Guardian file, the user must log on as
the super ID on the system. To use the SETMODE function on an OSS file,
the user must have the appropriate privilege. That is, the user must be
locally authenticated as the super ID on the system.

Table 14-4. SETMODE Functions (page 36 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-99

SETMODE Procedure

Considerations

• Default SETMODE settings

The SETMODE settings designated as “default” are the values that apply when a
file is opened (not if a particular function is omitted when SETMODE is called).

• Waited SETMODE

The SETMODE procedure is used on a file as a waited operation even if filenum
has been opened for nowait. Use the SETMODENOWAIT procedure for nowait
operations.

• No SETMODEs on Telserv are allowed before doing a CONTROL 11.

Disk File Consideration

• Ownership and security of file

“Set disk file security” and “set disk file owner” are rejected unless the requester is
the owner of the file or the super ID.

Interprocess Communication Considerations

• Nonstandard parameter values

266 Specify whether to defer the flush of a file's dirty blocks after all the openers
have closed the file. The setting of param1 determines
the behavior. If multiple concurrent openers issue
SETMODE 266 for the same file, the value of param1
specified by the most recent request takes effect.

param1 = 0 Possibly flush the specified file's dirty blocks during file
close processing. This is the default behavior.

= 1 Do not flush the specified file's dirty blocks during file
close processing.

Using SETMODE 266 with nonzero sync-depth might have unexpected
consequences if the file is also opened with sync-depth = 0. If the open with
nonzero sync-depth is closed while a sync-depth = 0 open remains, the
checkpointed buffers will be discarded by the Backup Disk Process. A
subsequent failure of the primary CPU, disk process, or primary disk paths
could result in data being lost for buffers that are not yet written.

SETMODE 266 can be done only on structured, nonaudited files. This
operation on unstructured or audited files will fail with the error EINVALOP.

Table 14-4. SETMODE Functions (page 37 of 37)

function Parameters and Effect

1 Function 265 is supported only on systems running H-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-100

SETMODE Procedure

Any value can be specified for the function, param1, and param2 parameters.
An application-defined protocol should be established for interpreting nonstandard
parameter values.

• User-defined SETMODEs

Use of function code numbers 100 to 109 avoids any potential conflict with
SETMODE codes defined by HP.

• Incorrect use of last-params

Error 2 is returned when the last-params parameter has been supplied but the
target process does not correctly return values for this parameter.

Messages

• Process SETMODE message

Issuing a SETMODE to a file representing another process causes a system
message -33 (process SETMODE) to be sent to that process.

The identification of the process that called SETMODE can be obtained in a
subsequent call to FILE_GETRECEIVEINFO_ (or LASTRECEIVE or
RECEIVEINFO). (For a list of all system messages sent to processes, see the
Guardian Procedure Errors and Messages Manual.)

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-101

SETMODENOWAIT Procedure

Examples
1. LITERAL SECURITY = %0222;
 .
 .
 .
 CALL SETMODE (FNUM , 1 , SECURITY);

 The LITERAL above sets the file's security to:

 read = any local user
 write = owner only
 execute = owner only
 purge = owner only

2. LITERAL PROG^SEC = %102202;
 .
 .
 .
 CALL SETMODE (PFNUM , 1 , PROG^SEC);

This LITERAL specifies that the file’s owner ID should be used by the calling
process as its process access ID when the program file is run. This is done by
setting the file’s security to:

set process access ID to owner's ID when file is run

read owner only
write owner only
execute any local user
purge owner only

Related Programming Manuals
For programming information about the SETMODE file-system procedure, see the
Guardian Programmer’s Guide and the data communication manuals.

SETMODENOWAIT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Example
Related Programming Manuals

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-102

SETMODENOWAIT Procedure

Summary
The SETMODENOWAIT procedure is used to set device-dependent functions in a
nowait manner on nowait files.

Whereas the SETMODE procedure is a waited operation and suspends the caller while
waiting for a request to complete, the SETMODENOWAIT procedure returns to the
caller after initiating a request. A call to SETMODENOWAIT completes in a call to
AWAITIO[X]. The count-transferred parameter to AWAITIO[X] has no meaning
for SETMODENOWAIT completions. The buffer-addr parameter is set to the
address of last-params parameter of SETMODENOWAIT.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

• The function value returned by SETMODENOWAIT, which indicates the condition
code, can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is a number of an open file, identifying the file to receive the SETMODENOWAIT
function.

#include <cextdecs(SETMODENOWAIT)>

_cc_status SETMODENOWAIT (short filenum
 ,short function
 ,[short param1]
 ,[short param2]
 ,[short _near *last-params]
 ,[__int32_t tag]);

CALL SETMODENOWAIT (filenum ! i
 ,function ! i
 ,[param1] ! i
 ,[param2] ! i
 ,[last-params] ! o
 ,[tag]); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-103

SETMODENOWAIT Procedure

function input

INT:value

is one of the device-dependent functions listed in Table 14-4 on page 14-63 (see
SETMODE Procedure on page 14-60).

param1 input

INT:value

is one of the param1 values listed in Table 14-4 on page 14-63 (see SETMODE
Procedure on page 14-60). If omitted, for a disk file the present value is retained.
For SETMODEs on other devices, this value depends on the device and the value
supplied in the function parameter.

param2 input

INT:value

is one of the param2 values listed in Table 14-4 on page 14-63 (see SETMODE
Procedure on page 14-60). If omitted, for a disk file the present value is retained.
For SETMODEs on other devices this value depends on the device and the value
supplied in the function parameter.

last-params output

INT:ref:2

returns the previous settings of param1 and param2 associated with the current
function. The format is:

last-params[0] = old param1
last-params[1] = old param2 (if applicable)

tag input

INT(32):value

is for nowait I/O only. tag is a value you define that uniquely identifies the
operation associated with this SETMODENOWAIT.

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that the SETMODENOWAIT is successful.

> (CCG) indicates that the SETMODENOWAIT function is not allowed for this
device type.

Note. The system stores the tag value until the I/O operation completes. The system then
returns the tag information to the program in the tag parameter of the call to AWAITIO[X],
thus indicating that the operation completed.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-104

SETMYTERM Procedure
(Superseded by PROCESS_SETSTRINGINFO_

Considerations

• File opened with wait depth > 0

AWAITIO[X] must be called to complete the call when filenum is opened with a
wait depth greater than 0. For files with wait depth equal to 0, a call to
SETMODENOWAIT is a waited operation and performs in the same way as a call
to SETMODE.

• last-params and AWAITIO[X]

AWAITIO returns @last-params in the buffer parameter (AWAITIOX returns
the extended address of last-params). The count is undefined.

• For disk files, a call to SETMODENOWAIT is a waited operation and it is
performed in the same way as a call to SETMODE.

Example
LITERAL SET^SPACE = 6,
 NO^SPACE = 0,
 SPACE = 1;
 .
 .
CALL SETMODENOWAIT (FILE^NUM , SET^SPACE , SPACE);
 ! turns off single spacing for a line printer.

Related Programming Manuals
For programming information about the SETMODENOWAIT file-system procedure,
see the Guardian Programmer’s Guide and the data communication manuals.

SETMYTERM Procedure
(Superseded by PROCESS_SETSTRINGINFO_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-105

SETPARAM Procedure

Summary

The SETMYTERM procedure permits a process to change the terminal that is used as
its home terminal (the default home terminal is the home terminal of a process’s
creator).

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

terminal-name input

INT:ref:12

contains the internal-format file name of the terminal or the process that is to
function as the caller’s home terminal.

Condition Code Settings

< (CCL) indicates that the terminal cannot be reassigned, terminal-name is
invalid, terminal-name is not a terminal or a named process, or
terminal-name has a second level qualifier (as in the example,
$TERM.#Q1.Q2).

= (CCE) indicates that the SETMYTERM is successful.

> (CCG) does not return from SETMYTERM.

Considerations
If the caller to SETMYTERM creates any processes after the call to SETMYTERM, the
new home terminal is the home terminal for those processes. SETMYTERM has no
effect on any existing process created by the caller.

SETPARAM Procedure
Summary
Syntax for C Programmers

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

CALL SETMYTERM (terminal-name); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-106

SETPARAM Procedure

Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Example
Related Programming Manuals

Summary
The SETPARAM procedure is used to set and fetch various values such as the station
characteristics of network addresses. The operation can be performed in a nowait
manner by use of the nowait-tag parameter and in that case is completed by a call
to AWAITIO[X].

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

• The function value returned by SETPARAM, which indicates the condition code,
can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

Syntax for TAL Programmers

#include <cextdecs(SETPARAM)>

_cc_status SETPARAM (short filenum
 ,short function
 ,[short _near *param-array]
 ,[short param-count]
 ,[short _near *last-param-array]
 ,[short _near *last-param-count]
 ,[short last-param-max]
 ,[__int32_t nowait-tag]);

CALL SETPARAM (filenum ! i
 ,function ! i
 ,[param-array] ! i
 ,[param-count] ! i
 ,[last-param-array] ! o
 ,[last-param-count] ! o
 ,[last-param-max] ! i
 ,[nowait-tag]); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-107

SETPARAM Procedure

Parameters

filenum input

INT:value

is the number of an open file for which special information is sent.

function input

INT:value

is one of these SETPARAM function codes:

1 Set or fetch a remote data terminal equipment address (use with X.25
Access Method (X25AM) only).

2 Set or fetch the clear cause or diagnostic bytes
(use with X25AM only).

3 Set or fetch parameters for BREAK handling.

4 Set or fetch the reset cause or diagnostic bytes
(use with X25AM only).

5 Fetch the restart cause or diagnostic bytes
(use with X25AM only).

6 Set or fetch the 6520 and 6530 block mode terminal error counters (use
with interactive terminal interface (ITI) protocol in X25AM only).

7 Set or override the closed user’s group (CUG) number to be used in next
call request packet.

8 Set or fetch the protocol ID field in the outgoing call request packet (use
with process-to-process protocol in X25AM only).

9 Fetch the reason why circuit disconnected and learn the current link status
(use with X25AM only).

20 Reset and retrieve the called data terminal equipment (DTE) address
buffer.

21 Provide a count of the number of 64-byte segments that can be sent and
received by a subdevice.

22 Access the Level 4 ITI protocol block mode timer.

153 Fetch the 4-byte SNA sense code and the 4-byte exception response
identification number (use only when SNAX exception response mode is
enabled).

For a detailed description of function 3, see the Device-Specific Access Methods -
AM3270/TR3271 and the Device-Specific Access Method - AM6520 manuals, and
the Asynchronous Terminal and Printer Processes Programming Manual. For a
detailed description of functions 1, 2, 4, 5, 6, 8, and 9, see the X.25 Access Method
(X25AM) Manual. For a detailed description of function 153, see the SNAX/XF
Application Programming Manual.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-108

SETPARAM Procedure

param-array input

INT:ref:*

is a list or string as required by function.

param-count input

INT:value

is the number of bytes contained in param-array.

last-param-array output

INT:ref:*

returns previous parameter settings associated with function.

last-param-count output

INT:ref:1

returns the length in bytes of the data placed into last-param-array.

last-param-max input

INT:value

is the maximum number of bytes that can be placed in last-param-array. The
default is 256.

nowait-tag input

INT(32):value

if present and not -1D, specifies that the operation is to be performed in a nowait
manner and specifies the value to be returned in the tag parameter of
AWAITIO[X] at completion. If nowait-tag is omitted, or is -1D, or the file has a
nowait depth of 0, the operation is waited and is complete when the procedure
returns. See Considerations.

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that the SETPARAM is successful.

> (CCG) indicates that the SETPARAM function is not allowed for this device type.

Considerations

• param-array and last-param-array (applies only for function 3).

These are integer arrays containing:

word [0] equivalent to parameter 1 of SETMODE 11

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-109

SETPARAM Procedure

 [1] equivalent to parameter 2 of SETMODE 11
 [2] most significant word of the break tag
 [3] least significant word of the break tag

where:

 [0] 0, disable BREAK (default setting)
 1, enable BREAK and take ownership
 value from last-param-array[1], return BREAK

ownership to previous owner

 [1] Terminal access mode after BREAK is typed.
 0, normal mode (any file-type access is permitted)
 1, break mode (only break-type file access permitted)

 [2:3] are the two words of the 32-bit tag. This is saved by the I/O
process handling the terminal. Whenever the I/O process
detects that BREAK has been typed, a break-on-device
message is sent to the owner of the BREAK for that terminal.
(The owner of BREAK is specified by the parameter in
buf[0].) For details, see the descriptions of the break-on-
device messages in the Guardian Procedure Errors and
Messages Manual.

• Processes

The SETPARAM procedure can be called on an opened process if the receiving
process has indicated (by the system messages flag of the FILE_OPEN_ or OPEN
call and by setmode 80) that it is willing to accept messages for such calls. The
system message that is delivered and used for reply is the process SETPARAM
message (-37). For the format of this message, see the Guardian Procedure
Errors and Messages Manual.

• SETPARAM in a nowait manner

When the SETPARAM operation is performed in a nowait manner (a value other
than -1D is supplied for the nowait-tag parameter), it must be completed by a
call to AWAITIO[X]. The buffer-addr parameter of AWAITIO[X] is set to the
address of the last-param-array parameter of SETPARAM; the count-
transferred parameter of AWAITIO[X] returns the number of bytes returned in
last-param-array.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-110

SETPARAM Procedure

Example
CALL SETPARAM (FNUM , 8 , , , OLD^PARAMS , OLD^SIZE);

The above example fetches the protocol ID field in the outgoing call request packet.
Four bytes of data return.

Related Programming Manuals
For programming information about the SETPARAM procedure, see the data
communication manuals.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-111

SETSTOP Procedure

SETSTOP Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
OSS Considerations
Example
Related Programming Manual

Summary
The SETSTOP procedure permits a process to protect itself from being deleted by any
process other than itself or its creator.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

last-stop-mode returned value

INT

returns a value that is either the preceding value of stop-mode or -1 if an invalid
mode was specified.

stop-mode input

INT:value

is a value specifying a new stop mode. The modes are:

0 Stoppable by any process. This mode is never set by any system software; it
must be set by the user with this procedure specifically for an application. This
mode cannot be set by an OSS process.

1 stoppable only by (normal system default value)

• The super ID

#include <cextdecs(SETSTOP)>

short SETSTOP (short stop-mode);

last-stop-mode := SETSTOP (stop-mode); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-112

SETSTOP Procedure

• A process whose process access ID = this process’s creator access ID
(CAID) or the CAID group manager

• A process whose process access ID = this process’s process access ID
(PAID) or the PAID group manager (this includes the caller to STEPMOM)

2 unstoppable by any other process. This mode is available only when the caller
of SETSTOP is privileged.

For additional information about the super ID and process access ID, see the
description of the PROCESS_GETINFO_ procedure for information on the two
access IDs, as well as to the Guardian User’s Guide. For additional information on
stopping a process, see the description of the PROCESS_STOP_ Procedure or
STOP Procedure (Superseded by PROCESS_STOP_ Procedure) procedure.

Considerations

• The default stop mode is 1 when a process is created.

• If a process’s stop mode is 1 when a PROCESS_STOP_ or STOP procedure call
is issued against it by a process without the authority to stop it, the process does
not stop; the process is deleted, however, if and when the stop mode is changed to
0.

• If a process’s stop mode is 2 when a PROCESS_STOP_ or STOP procedure call
is issued against it by another process, the stop is queued until the process is in a
stoppable mode.

• If a process’s stop mode is 2 when an unhandled trap or signal occurs, it causes a
processor halt. Such a halt occurs, for example, if an unmirrored disk volume that
the process is using as a swap volume goes down.

OSS Considerations
An OSS process can be stopped only according to the rules specified for the OSS
kill() function. Stop mode 0 is therefore not allowed for OSS processes. For
details, see the kill(2) function reference pages either online or in the Open System
Services System Calls Reference Manual.

Example
LAST^MODE := SETSTOP (NEW^MODE);

Related Programming Manual
For programming information about the SETSTOP procedure, see the Guardian
Programmer’s Guide.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-113

SETSYNCINFO Procedure
(Superseded by FILE_SETSYNCINFO_ Procedure)

SETSYNCINFO Procedure
(Superseded by FILE_SETSYNCINFO_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Example

Summary
The SETSYNCINFO procedure is used by the backup process of a process pair after a
failure of the primary process.

The SETSYNCINFO procedure passes a process pair’s latest synchronization block
(received in a checkpoint message from the primary) to the file system. Following a
call to the SETSYNCINFO procedure, the backup process can retry the same series of
write operations started by the primary before its failure. The use of the sync block
ensures that operations which might have been completed by the primary before its
failure are not duplicated by the backup.

Syntax for C Programmers

• The function value returned by SETSYNCINFO, which indicates the condition
code, can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

Syntax for TAL Programmers

Note. Typically, SETSYNCINFO is not called directly by application programs. Instead, it is
called indirectly by CHECKMONITOR.

#include <cextdecs(SETSYNCINFO)>

_cc_status SETSYNCINFO (short filenum
 ,short _near *sync-block);

CALL SETSYNCINFO (filenum ! i
 ,sync-block); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-114

SETSYNCINFO Procedure
(Superseded by FILE_SETSYNCINFO_ Procedure)

Parameters

filenum input

INT:value

is the number of an open file that identifies the file whose synchronization block is
being passed.

sync-block input

INT:ref:*

is the latest synchronization block received from the primary process.

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that SETSYNCINFO is successful.

> (CCG) indicates that the file is not a disk file.

Considerations

• The SETSYNCINFO procedure cannot be used with Enscribe format 2 files or
OSS files larger than approximately 2 gigabytes. If an attempt is made to use the
SETSYNCINFO procedure with these files, error 581 is returned. For information
on how to perform the equivalent task with Enscribe format 2 files or OSS files
larger than approximately 2 gigabytes, see the FILE_SETSYNCINFO_ Procedure.

• File number has not been opened

If the SETSYNCINFO file number does not match the file number of the open file,
then the call to SETSYNCINFO is rejected with file-system error 16.

• Application parameter or buffer address out of bounds

If an out-of-bounds application buffer address parameter is specified in the
SETSYNCINFO call (that is, a pointer to the buffer has an address that is outside
of the data area of the process), then the call is rejected with file-system error 22.

• Checksum error on file sync block

If an attempt is made to modify the file-system sync buffer area, the
SETSYNCINFO call is rejected with file-system error 41.

Example
CALL SETSYNCINFO (F1 , SYNC);

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-115

SETSYSTEMCLOCK Procedure

SETSYSTEMCLOCK Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Automatically Adjusting the Clock Using Modes 0,1,2,3,6
Setting the Clock Using Modes 5 and 7
Stopping Clock Adjustment
Types of Timestamps
Condition Code Settings
Timing and Processes
System Clock System Message
Example
Related Programming Manual

Summary
The SETSYSTEMCLOCK procedure allows you to change the system clock if you are
a member of the super group.

Syntax for C Programmers

• The function value returned by SETSYSTEMCLOCK, which indicates the condition
code, can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

Syntax for TAL Programmers

#include <cextdecs(SETSYSTEMCLOCK)>

_cc_status SETSYSTEMCLOCK (long long julian-gmt
 ,short mode
 ,short tuid);

CALL SETSYSTEMCLOCK (julian-gmt ! i
 ,mode ! i
 ,[tuid]); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-116

SETSYSTEMCLOCK Procedure

Parameters

julian-gmt input

FIXED:value

is the Julian timestamp.

mode input

INT:value

specifies the mode and source as follows:

Absolute mode means that the julian-gmt parameter contains the actual time to
which you want to set the system clock.

Relative mode means that the julian-gmt parameter contains the microsecond
correction by which you want to change the system clock; it is not an actual

Mode Source Action

0 Conditionally
adjust to absolute
Greenwich mean
time (GMT)

operator
input

If the clock error is less than or
equal to two minutes, the system
adjusts the clock. Otherwise the
system sets the clock.

1 Conditionally
adjust to absolute
GMT

hardware
clock

If the clock error is less than or
equal to two minutes, the system
adjusts the clock. Otherwise the
system sets the clock.

2 Conditionally
adjust to relative
GMT

operator
input

If the clock error is less than or
equal to two minutes, the system
adjusts the clock. Otherwise the
system sets the clock.

3 Conditionally
adjust to relative
GMT

hardware
clock

If the clock error is less than or
equal to two minutes, the system
adjusts the clock. Otherwise the
system sets the clock.

5 Set relative GMT operator
input

Regardless of the clock error, the
system sets the clock.

6 Adjust to relative
GMT regardless
of clock error

operator
input

Regardless of the clock error, the
system adjusts the clock.

7 Set absolute
GMT

operator
input

Regardless of the clock error, the
system sets the clock.

8 Stop adjustment not
applicable

Any clock adjustments are
stopped.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-117

SETSYSTEMCLOCK Procedure

timestamp. This mode is used for precise time synchronization with a hardware
clock or for a moderately precise method of operator time adjustment.

tuid input

INT:value

is a time update ID obtained from the JULIANTIMESTAMP procedure. It should be
used with mode 2 and 3 to avoid conflicting changes.

Condition Code Settings
< (CCL) indicates one of these:

• insufficient capability

• time specified by user is out of range (01 JAN 1975 0:00:00.000000 to
31 DEC 10000 23:59:59.999999)

• julian-gmt is not supplied; invalid mode; or tuid does not match.

• requested adjustment exceeds one hour and mode specified is 6

= (CCE) indicates that the SETSYSTEMCLOCK was successful.

> (CCG) is not returned by SETSYSTEMCLOCK.

Automatically Adjusting the Clock Using Modes 0,1,2,3,6

• If the value of the mode parameter is 0 through 3 and the clock error is two minutes
or less (as determined from the user input), the system adjusts the clock rather
than sets it. If the value of the mode parameter is 6, then regardless of the clock
error, the system adjusts the clock rather than sets it. The system adjusts the
clock by very small amounts. For example, if the clock is slow, making a change of
two minutes takes about 33 hours; if the clock is fast, making a change of two
minutes takes about 14 days.

• When making an adjustment, SETSYSTEMCLOCK tries to determine the clock
rate error by relating the clock error to the time elapsed since the clock was last
set.

• If you call SETSYSTEMCLOCK, if the mode parameter is not 6, and if the clock
error is greater than two minutes, then the system stops any ongoing adjustment
and sets the clock.

• If you call SETSYSTEMCLOCK with a mode parameter value of 6, and the
requested adjustment exceeds one hour, CCL is returned.

Setting the Clock Using Modes 5 and 7

• If the value of the mode parameter is 5 or 7, regardless of the clock error, the
system sets the clock.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-118

SETSYSTEMCLOCK Procedure

Stopping Clock Adjustment

• If you call SETSYSTEMCLOCK with the mode parameter set to 8, the system
stops any ongoing adjustment.

• If you call SETSYSTEMCLOCK twice in less than ten seconds, the system stops
any ongoing adjustment and sets the clock.

• HP reserves the right to change, with proper customer notification, the
characteristics of system clock setting and adjustment. The only guaranteed
feature is that calling SETSYSTEMCLOCK twice in ten seconds causes the clock
to be set. The only exception is when the mode parameter has the value 6. In this
case, the clock will not be set under any circumstances.

Types of Timestamps

• A 48-bit timestamp is a quantity equal to the number of 10-millisecond units since
00:00, 31 December 1974. The 48-bit timestamp always represents local civil
time.

• Procedures that work with the 48-bit timestamp are CONTIME, TIME, and
TIMESTAMP.

• A 64-bit Julian timestamp is based on the Julian Date. It is a quantity equal to the
number of microseconds since January 1, 4713 B.C., 12:00 (noon) Greenwich
mean time (Julian proleptic calendar). This timestamp can represent either
Greenwich mean time, local standard time, or local civil time. There is no way to
examine a Julian timestamp and determine which of the three times it represents.

• Procedures that work with the 64-bit Julian timestamp are
COMPUTETIMESTAMP, CONVERTTIMESTAMP, INTERPRETTIMESTAMP,
JULIANTIMESTAMP, and SETSYSTEMCLOCK.

• All time and calendar units in this discussion are defined in The Astronomical
Almanac published annually by the U.S.þNaval Observatory and the Royal
Greenwich Observatory.

Timing and Processes

• Process creation time is initialized by calling TIMESTAMP, which returns the local
civil time in centiseconds (0.01 second = 10 milliseconds) since midnight (00:00)
on 31 December 1974 in an array of three words. Only the two low-order words
are saved in the process control block (PCB); this is sufficient to make the
unnamed process ID unique.

• Process timing uses 64-bit elapsed time counters with microsecond resolution;
these are not Julian timestamps either.

• There is no way to generalize about internal timing using 64-bit Julian timestamps
or 48-bit timestamps. Each section of the operating system manages time using
the method most appropriate for its application.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-119

SHIFTSTRING Procedure
(Superseded by STRING_UPSHIFT_ Procedure)

System Clock System Message

• The SETTIME system message (-10) is delivered to the calling process if the
MONITORNEW procedure has enabled it.

Example
CALL SETSYSTEMCLOCK (JULIAN^GMT , MODE , TUID);

Related Programming Manual
For programming information about the SETSYSTEMCLOCK procedure, see the
Guardian Programmer’s Guide.

SHIFTSTRING Procedure
(Superseded by STRING_UPSHIFT_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example
Related Programming Manual

Summary

The SHIFTSTRING procedure upshifts or downshifts all alphabetic characters in a
string. Nonalphabetic characters remain unchanged.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-120

SHIFTSTRING Procedure
(Superseded by STRING_UPSHIFT_ Procedure)

Syntax for TAL Programmers

Parameters

string input, output

STRING:ref:*

is the character string to be shifted.

count input

INT:value

is the length of the string in bytes.

casebit input

INT:value

specifies a value indicating whether to upshift or downshift the string:

<15> 0 the procedure upshifts the string indicated, making all alphabetic
characters uppercase.

<15> 1 the procedure downshifts the string indicated, making all alphabetic
characters lowercase.

Example
CALL SHIFTSTRING (COMMAND , COMMAND^LEN , CASE^BIT);
 ! upshift

Related Programming Manual
For programming information about the SHIFTSTRING utility procedure, see the
Guardian Programmer’s Guide.

CALL SHIFTSTRING (string ! i, o
 ,count ! i
 ,casebit); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-121

SIGACTION_ Procedure

SIGACTION_ Procedure

SIGACTION_ is the pTAL procedure name for the C sigaction() function. The C
sigaction() function complies with the POSIX.1 standard.

For the pTAL prototype definitions, see the $SYSTEM.SYSTEM.HSIGNAL header file.
For a discussion of each parameter and procedure considerations, see the
sigaction(2) function reference page either online or in the Open System Services
System Calls Reference Manual.

SIGACTION_INIT_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
General Considerations
Handler Considerations
Examples
Related Programming Manual

Summary

The SIGACTION_INIT_ procedure establishes the caller’s initial state of signal
handling if default handling is not desired.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Note. This procedure can be called only from native processes.

Note. This procedure can be called only from native processes.

#include <tdmsig.h>

_int32_t SIGACTION_INIT_ (void (* handler) (int signum
 ,siginfo_t *
 ,void *));

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-122

SIGACTION_INIT_ Procedure

Syntax for TAL Programmers

Parameters

error returned value

INT(32)

indicates the outcome of the call:

0D indicates a successful outcome.

-1D indicates an error. The reason for the error is given in the errno variable.
Use the ERRNO_GET_ procedure to obtain the value of errno in a pTAL
program.

handler input

PROCADDR:ref:1

specifies the action to be invoked when a signal occurs. Its value can be:

• The address of a native procedure to perform the signal handling

• SIG_DFL to install the default action

• SIG_ABORT to abnormally terminate the process

• SIG_DEBUG to enter debugging state

For details, see Handler Considerations on page 14-124.

General Considerations

• This procedure is the functional equivalent the TNS ARMTRAP procedure for
native processes.

• POSIX.1 compliance

This procedure is an extension to the POSIX.1 standard. The same effect can be
achieved while maintaining compliance with the POSIX.1 standard by calling the
SIGPROCMASK_ procedure and a loop of SIGACTION_ procedure calls.

• Calling considerations

The SIGACTION_INIT_ procedure is designed to be called once, typically from the
main procedure of a program. Although it is not an error to call this procedure
twice, native Guardian C programmers should be aware that the CRE makes this
call before invoking the program’s main function.

?SOURCE $SYSTEM.SYSTEM.HTDMSIG

error := SIGACTION_INIT_ (handler); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-123

SIGACTION_INIT_ Procedure

SIGACTION_INIT_ sets the signal mask to unblock all signals. Pending signals
are discarded.

The specified handler (or action) is installed for all signals whose default action is
not SIG_IGN and for which it is valid to specify the associated action. (You cannot
specify an action for the OSS SIGKILL, SIGABEND, or SIGSTOP signal.) The
action for any signal that is ignored by default is set to SIG_IGN. If the action
specified is not applicable to a specific signal, then the existing action for that
signal remains unchanged.

If SIGACTION_INIT_ returns an error, the signal-handling state is not changed.

• Deferrable and nondeferrable signals

Deferrable signals that occur while the process is executing privileged code are
deferred until the process exits privileged execution mode. If these signals are not
blocked, they are then delivered to the handler, which is activated at the tip of the
main stack.

Nondeferrable signals are immediately delivered to the specified handler. The
handler executes on the main stack or privileged stack of the calling process
depending on whether the signal occurs in nonprivileged code or privileged code
and on whether the signal handler for that signal is installed by a nonprivileged
caller or privileged caller of SIGACTION_INIT_ as follows:

• Signal mask and nondeferrable signals

Before a signal handler is entered, a new signal mask is installed. This mask is
formed from the union of the current signal mask and the signal being delivered. If
a nondeferrable signal occurs and is blocked, the process abnormally terminates.

If a
nondeferrable
signal occurs
in...

And the signal handler for
that signal was installed by...

Then the specified handler is
activated at...

nonprivileged
code

a nonprivileged or
privileged caller of
SIGACTION_INIT_

the tip of the main stack
(when the signal was
generated)

privileged code a nonprivileged caller of
SIGACTION_INIT_

the tip of the main stack
(when the process entered
privileged mode)

privileged code a privileged caller of
SIGACTION_INIT_

the tip of the privileged
stack

Note. Abnormally terminating a process when a nondeferrable signal is blocked is an
extension to the POSIX.1 standard. According to the POSIX.1 standard, a blocked
nondeferrable signal has an undefined outcome.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-124

SIGACTION_INIT_ Procedure

Handler Considerations

• handler must be one of these:

• The address of an untyped native procedure that accepts these three
parameters. These parameters are passed to the handler by the system when
the handler is invoked to catch a signal:

• SIGNUM

An INT(32) numeric value indicating the signal that caused the handler to
be invoked.

• SIGINFO

A pointer whose value is currently NULL.

• UCONTEXT

A pointer to a structure of type UCONTEXT_T. It contains information
regarding the process context when the signal occurred. You can pass
this pointer to the HIST_INIT_ procedure to get diagnostic information.

• SIG_DFL

Causes default signal handling to be installed.

• SIG_ABORT

Causes the process to be abnormally terminated when a signal occurs.

• SIG_DEBUG

Causes the process to enter debug mode when a signal occurs.

• If the signal was generated as a nondeferrable signal, the signal handler should
not execute a simple return; otherwise, process termination results. You must exit
the signal handler using either the SIGLONGJMP_ or LONGJMP_ procedure.
SIGLONGJMP_ is preferred, because it allows you to restore the signal mask that
was saved by the corresponding SIGSETJMP_ procedure, so your process can
receive multiple occurrences of the same nondeferrable signal. LONGJMP_ does
not restore the signal mask; therefore the signal that was handled remains
blocked.

For a deferrable signal, the signal handler can simply return, causing process
execution to resume where it was preempted by the signal.

Note. This action is similar to calling ARMTRAP(-1,-1) for a TNS Guardian process.

Note. The SIG_ABORT and SIG_DEBUG options are HP extensions to the POSIX.1
standard.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-125

SIGACTION_RESTORE_ Procedure

Examples
TAL example:

error := SIGACTION_INIT_ (@SIG_HANDLER);
IF error = <>0 THEN
 errnoval := ERRNO_GET_;

C example:

if (SIGACTION_INIT_ (myhandler) != 0)
 /* handle error */

Related Programming Manual
For programming information about the SIGACTION_INIT_ procedure, see the
Guardian Programmer’s Guide.

SIGACTION_RESTORE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary

The SIGACTION_RESTORE_ procedure restores the signal-handling state saved by a
previous call to the SIGACTION_SUPPLANT_ procedure. SIGACTION_SUPPLANT_
allows a subsystem (such as a shared run-time library) to take over signal handling
temporarily. SIGACTION_RESTORE_ restores the signal-handling state of the
process before the subsystem exits.

Note. This procedure can be called only from native processes.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-126

SIGACTION_RESTORE_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT(32)

indicates the outcome of the call:

0D indicates a successful outcome.

-1D indicates an error. The reason for the error is given in the errno variable:

FE_EFAULT The address in signal-buffer is invalid.

FE_EINVAL the content of the signal-buffer contains invalid data
or SIGACTION_SUPPLANT_ was not called.

Use the ERRNO_GET_ procedure to obtain the value of errno in a
Guardian process.

signal-buffer input

INT .EXT:ref:(SIG_SAVE_TEMPLATE)

specifies the address of a buffer in which the previous signal-handling state is
saved.

Considerations

• The SIGACTION_RESTORE_ procedure validates the buffer indicated by
signal-buffer and returns an error if the buffer is invalid. It is assumed that the
buffer has been initialized by the SIGACTION_SUPPLANT_ procedure and that it
has not been modified by the caller.

• The signal-handling state previously saved in the buffer indicated by signal-
buffer is atomically restored.

#include <tdmsig.h>

int SIGACTION_RESTORE_ (sig_save_template *signal-buffer);

?SOURCE $SYSTEM.SYSTEM.HTDMSIG

error := SIGACTION_RESTORE_ (signal-buffer); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-127

SIGACTION_SUPPLANT_ Procedure

• Any pending signal that is unblocked by restoring the saved signal mask will be
delivered to the restored signal handler after exiting this procedure or returning to
user code.

• A privileged caller is allowed to restore nonprivileged signal-handling
specifications. If the caller is nonprivileged, however, the restored signal handling
state is marked as nonprivileged.

Example
error := SIGACTION_RESTORE_ (buffer);
IF error <> 0 THEN
 errnoval := ERRNO_GET_;

Related Programming Manual
For programming information about the SIGACTION_RESTORE_ procedure, see the
Guardian Programmer’s Guide.

SIGACTION_SUPPLANT_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
General Considerations
Handler Considerations
Example
Related Programming Manual

Summary

The SIGACTION_SUPPLANT_ procedure allows a subsystem (such as a shared run-
time library) to take over signal handling temporarily. Before exiting, the same
subsystem calls the SIGACTION_RESTORE_ restore to restore the signal-handling
state established by the process before entering the subsystem.

Note. This procedure can be called only from native processes.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-128

SIGACTION_SUPPLANT_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT(32)

indicates the outcome of the call:

0D indicates a successful outcome

-1D indicates an error. The reason for the error is given in the errno variable:

FE_EFAULT The address in signal-buffer is out of bounds.

FE_EINVAL SIG_IGN or SIG_ERR is passed to
the handler.

FE_ERANGE length is less than the minimum required.

Use the ERRNO_GET_ procedure to obtain the value of errno in a
Guardian process.

handler input

PROCADDR:value

specifies the action to be invoked when a signal occurs. Its value can be:

• The address of a native procedure to perform the signal handling

• SIG_DFL to accept the default action

• SIG_ABORT to abnormally terminate the process

• SIG_DEBUG to enter debug mode

#include <tdmsig.h>

int SIGACTION_SUPPLANT_ (void (* handler) (int signum
 ,siginfo_t *
 ,void *)
 ,sig_save_template *signal-buffer
 ,short length);

?SOURCE $SYSTEM.SYSTEM.HTDMSIG

error := SIGACTION_SUPPLANT_ (handler ! i
 ,signal-buffer ! o
 ,length); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-129

SIGACTION_SUPPLANT_ Procedure

For details, see Handler Considerations on page 14-131.

signal-buffer output

INT .EXT:ref:*

returns the address of a buffer in which the previous signal-handling state is saved.
The buffer is allocated using the SIGSAVE_DEF_ DEFINE.

length input

INT:value

specifies the size in bytes of the buffer indicated by signal-buffer.

General Considerations

• POSIX.1 compliance

This procedure is an extension to the POSIX.1 standard. A similar same effect can
be achieved while maintaining compliance with the POSIX.1 standard by calling
the SIGPROCMASK_ procedure and the SIGACTION_ procedure for each signal.
However, SIGACTION_SUPPLANT_ also establishes a state in which a deferrable
signal can be blocked but the same signal will invoke the handler if generated as
nondeferrable.

• Calling considerations

You must allocate the buffer for SIGACTION_SUPPLANT_ using the
SIGSAVE_DEF DEFINE as follows:

SIGSAVE_DEF (signal-buffer);

where signal-buffer is a valid variable name. This buffer must be accessible
to the callers of both SIGACTION_SUPPLANT_ and the associated
SIGACTION_RESTORE_ procedure.

The specified handler is installed as the action for only those nondeferrable signals
that are system generated in response to run-time events. These signals are:

SIGILL
SIGFPE
SIGSEGV
SIGMEMERR
SIGNOMEM
SIGMEMMGR
SIGSTK
SIGLIMIT

The signal handling for other signals remains unchanged.

All parameters are validated. The SIGACTION_SUPPLANT_ procedure returns an
error if any parameter has an invalid value.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-130

SIGACTION_SUPPLANT_ Procedure

If SIGACTION_SUPPLANT_ returns an error, the signal-handling state is not
changed.

• All signals, except those for which you cannot install a handler, are blocked.

Deferrable signals that occur while the process is executing privileged code are
deferred until the process exits privileged execution mode. If these signals are not
blocked, they are then delivered to the handler, which is activated at the tip of the
main stack.

Nondeferrable signals are immediately delivered to the specified handler. The
handler executes on the main stack or privileged stack of the calling process
depending on whether the signal occurs in nonprivileged code or privileged code
and on whether the signal handler for that signal is installed by a nonprivileged
caller or privileged caller of SIGACTION_SUPPLANT_ as follows:

• Nested signals

Signals can be nested. If a different signal occurs during execution of a signal
handler—or any procedure called directly or indirectly from the signal handler—the
handler for that signal is invoked at the current tip of the stack.

• Signal mask

SIGACTION_SUPPLANT_ sets the signal mask to block all signals from delivery.
All signals that can be deferred are kept pending. Any nondeferrable signal is
delivered to the handler.

If a
nondeferrable
signal occurs
in...

And the signal handler for
that signal was installed by...

Then the specified handler is
activated at...

nonprivileged
code

a nonprivileged or privileged
caller of
SIGACTION_SUPPLANT_

the tip of the main stack (when
the signal was generated)

privileged code a nonprivileged caller of
SIGACTION_SUPPLANT_

the tip of the main stack (when
the process entered privileged
mode)

privileged code a privileged caller of
SIGACTION_SUPPLANT_

the tip of the privileged stack

Note. This action differs from the corresponding action on a TNS Guardian process; a trap
that occurs during execution of a trap handler is fatal to the process.

Note. This response to a nondeferrable signal is an extension to the POSIX.1 standard;
according to the POSIX.1 standard, the response to a nondeferrable signal is undefined.
This response also differs from the OSS implementation, which abnormally terminates the
process if a nondeferrable signal is blocked.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-131

SIGACTION_SUPPLANT_ Procedure

Handler Considerations

• handler must be one of these:

• The address of an untyped native procedure that accepts these three
parameters. These parameters are passed to the handler by the system when
the handler is invoked to catch a signal:

• SIGNUM

An INT(32) numeric value indicating the signal that caused the handler to
be invoked.

• SIGINFO

A pointer whose value is currently NULL.

• UCONTEXT

A pointer to a structure of type UCONTEXT_T. It contains information
regarding the process context when the signal occurred. You can pass
this pointer to the HIST_INIT_ procedure to get diagnostic information.

• SIG_DFL

Causes default signal handling to be installed for all signals.

• SIG_ABORT

Causes the process to be abnormally terminated when a signal occurs.

• SIG_DEBUG

Causes the process to enter debug mode when a signal occurs.

• If the signal was generated as a nondeferrable signal, the signal handler should
not execute a simple return; otherwise, process termination results. You must exit
the signal handler using either the SIGLONGJMP_ or LONGJMP_ procedure; the
effect is the same for either procedure, because the signal mask is set to block all
signals regardless of whether the original mask is restored.

For a deferrable signal, the signal handler can simply return, causing process
execution to resume where it was preempted by the signal.

Example
SIGSAVE_DEF (buffer);
error := SIGACTION_SUPPLANT_ (handler, buffer, length);

Note. This action is similar to calling ARMTRAP(-1,-1) for a TNS process.

Note. The SIG_ABORT and SIG_DEBUG options are HP extensions to the POSIX.1
standard.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-132

SIGADDSET_ Procedure

IF error <> 0 THEN
 errnoval := ERRNO_GET_;

Related Programming Manual
For programming information about the SIGACTION_SUPPLANT_ procedure, see the
Guardian Programmer’s Guide.

SIGADDSET_ Procedure

SIGDELSET_ Procedure

SIGEMPTYSET_ Procedure

SIGFILLSET_ Procedure

SIGISMEMBER_ Procedure

These procedure names are the pTAL names for the corresponding C functions:

These functions comply with the POSIX.1 standard.

For the pTAL prototype definitions, see the $SYSTEM.SYSTEM.HSIGNAL header file.
For a discussion of each parameter and procedure considerations, see the
corresponding sigaddset(3), sigdelset(3), sigemptyset(3),
sigfillset(3), and sigismember(3) function reference pages either online or in
the Open System Services Library Calls Reference Manual.

Note. These procedures can be called only from native processes.

Procedure Name Corresponding C Function

SIGADDSET_ sigaddset()

SIGDELSET_ sigdelset()

SIGEMPTYSET_ sigemptyset()

SIGFILLSET_ sigfillset()

SIGISMEMBER_ sigismember()

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-133

SIGJMP_MASKSET_ Procedure

SIGJMP_MASKSET_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Examples
Related Programming Manual

Summary

The SIGJMP_MASKSET_ procedure saves a signal mask in a jump buffer that has
already been initialized by the SIGSETJMP_ procedure. Thus, you can avoid the
overhead of saving the signal mask when you call SIGSETJMP_ and instead apply
the mask at a later time before performing a nonlocal goto with the SIGLONGJMP_
procedure. This technique saves setting the signal mask in applications that have
many calls to SIGSETJMP_ and few calls to SIGLONGJMP_.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT(32)

indicates the outcome of the call:

0D indicates a successful outcome.

-1D indicates an error. The reason for the error is given in the errno variable:

FE_EINVAL The jump buffer has not been initialized.

Note. This procedure can be called only from native processes.

#include <tdmsig.h>

long sigjmp_maskset (jmp_buf *env
 ,sigset_t *signal-mask);

?SOURCE $SYSTEM.SYSTEM.HTDMSIG

error := SIGJMP_MASKSET_ (env ! i,o
 ,signal-mask); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-134

SIGJMP_MASKSET_ Procedure

Use the ERRNO_GET_ procedure to obtain the value of errno in a
Guardian process.

env input,output

INT .EXT:ref:(SIGJMP_BUF_TEMPLATE)

contains the address of a jump buffer containing context saved by the SETJMP_ or
SIGSETJMP_ procedure to be restored by a subsequent call to the
SIGLONGJMP_ procedure.

signal-mask input

INT .EXT:ref:(SIGSET_T)

If not NULL, points to a valid signal mask that is added to the jump buffer indicated
by env. A subsequent call to the SIGLONGJMP_ procedure restores the context
contained in the jump buffer, including the indicated signal mask.

If NULL, causes the signal mask in the jump buffer indicated by env to be cleared.
A subsequent call to the SIGLONGJMP_ procedure restores the context contained
in the jump buffer, including the clear signal mask that unblocks all signals.

Considerations

• This procedure is an extension to the POSIX.1 standard.

• SIGJMP_MASKSET_ is typically called from a signal handler before a
SIGLONGJMP_ procedure is executed. Using SIGJMP_MASKSET_ can avoid the
overhead of setting the signal mask in the jump buffer in an application with many
calls to SIGSETJMP_ and fewer calls to SIGLONGJMP_.

• The buffer pointer env is assumed to be valid and initialized by an earlier
SETJMP_ or SIGSETJMP_ call. Otherwise, SIGJMP_MASKSET_ returns -1D and
errno is set to FE_EINVAL.

• This procedure overwrites any signal mask that is already in the jump buffer.

• Any invalid address passed to this procedure will cause the system to deliver a
nondeferrable system-generated signal to the process.

• Only the SIGLONGJMP_ procedure, not the LONGJMP_ procedure, can be used
with a jump buffer modified by SIGJMP_MASKSET_.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-135

SIGLONGJMP_ Procedure

Examples
error := SIGJMP_MASKSET_ (env, mask);

or

INT .EXT NULL := 0D;
 ...
error := SIGJMP_MASKSET_ (env, NULL);

Related Programming Manual
For programming information about the SIGJMP_MASKSET_ procedure, see the
Guardian Programmer’s Guide.

SIGLONGJMP_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary

The SIGLONGJMP_ procedure performs a nonlocal goto. It restores the state of the
calling process using context saved in a jump buffer by the SIGSETJMP_ procedure.
Control returns to the location of the corresponding SIGSETJMP_ procedure call. The
signal mask is also restored if it was saved; all other signal-handling specifications
remain unchanged.

Note. This procedure can be called only from native processes.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-136

SIGLONGJMP_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

env input

INT .EXT:ref:(SIGJMP_BUF_TEMPLATE)

indicates the address of a previously allocated and initialized jump buffer
containing the process context to be restored by this procedure.

value input

INT(32):value

specifies the value to be returned at the destination of the long jump; that is, at the
location of the corresponding SIGSETJMP_ call. If this value is set to 0D, then 1D
is returned; otherwise value is returned.

Considerations

• SIGLONGJMP_ is the TAL or pTAL procedure name for the C siglongjmp()
function. The C siglongjmp() function complies with the POSIX.1 standard.

• SIGLONGJMP_ does not return. Normally, return is made through the
corresponding SIGSETJMP_ procedure.

• Restoring the signal mask with this procedure enables a native process to receive
multiple occurrences of the same nondeferrable signal when this procedure is used
to exit a signal handler. If the signal mask is not restored and the same
nondeferrable signal occurs a second time, then the process terminates.

For details on deferrable and nondeferrable signals, see SIGACTION_INIT_
Procedure.

• The buffer pointed to by env is assumed to be valid and initialized by an earlier call
to SIGSETJMP_. If an invalid address is passed or if the caller modifies the jump

#include <setjmp.h>

void siglongjmp (sigjmp_buf env
 ,int value);

?SOURCE $SYSTEM.ZGUARD.HSETJMP

SIGLONGJMP_ (env ! i
 ,value); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-137

SIGNAL_ Procedure

buffer, the result is undefined and could cause the system to deliver a
nondeferrable signal to the process.

• If SIGLONGJMP_ detects an error, a SIGABRT or SIGILL signal is raised.

• If SIGLONGJMP_ is passed a jump buffer initialized by SETJMP_, then a simple
long jump (without restoring the signal mask) is executed.

• The jump buffer must be accessible to both the long jump procedure call and the
associated set jump procedure call.

• The procedure that invoked the corresponding call to SIGSETJMP_ must still be
active. That is, the activation record of the procedure that called SIGSETJMP_
must still be on the stack.

• A long jump across a transition boundary between the TNS and native mode
environments, in either direction, is not permitted. Any attempt to do so will be
fatal to the process.

• A nonprivileged caller cannot jump to a privileged area. Any attempt to do so will
be fatal to the process. A privileged caller, however, can execute a long jump
across the privilege boundary; privileges are automatically turned off before control
returns to the SIGSETJMP_ procedure.

• As a result of optimization, the values of nonvolatile local variables in the
procedure that calls SIGSETJMP_ might not be the same as they were when
SIGLONGJMP_ was called if the variables are modified between the calls to
SIGSETJMP_ and SIGLONGJMP_. C and pTAL programs can declare variables
with the volatile type qualifier; this is the only safe way of preserving local variables
between calls to SIGSETJMP_ and SIGLONGJMP_. Alternatively, you can make
the variables global.

Example
SIGLONGJMP_ (env, value);

Related Programming Manual
For programming information about the SIGLONGJMP_ procedure, see the Guardian
Programmer’s Guide.

SIGNAL_ Procedure

SIGNAL_ is the pTAL procedure name for the C signal() function. The C
signal() function complies with the POSIX.1 standard.

For the pTAL prototype definitions, see the $SYSTEM.SYSTEM.HSIGNAL header file.
For a discussion of each parameter and procedure considerations, see the

Note. This procedure can be called only from native processes.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-138

SIGNALPROCESSTIMEOUT Procedure

signal(3) function reference page either online or in the Open System Services
Library Calls Reference Manual.

SIGNALPROCESSTIMEOUT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Message
OSS Considerations
Example
Related Programming Manual

Summary
The SIGNALPROCESSTIMEOUT procedure sets a timer based on process execution
time, as measured by the processor clock. When the time expires, the calling process
receives an indication in the form of a system message on $RECEIVE.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

• The function value returned by SIGNALPROCESSTIMEOUT, which indicates the
condition code, can be interpreted by the _status_lt(), _status_eq(), or
_status_gt() function (defined in the file tal.h).

#include <cextdecs(SIGNALPROCESSTIMEOUT)>

_cc_status SIGNALPROCESSTIMEOUT (__int32_t timeout-value
 ,[short param1]
 ,[__int32_t param2]
 ,[short _near *tag]);

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-139

SIGNALPROCESSTIMEOUT Procedure

Syntax for TAL Programmers

Parameters

timeout-value input

INT(32):value

specifies the time period, in 0.01-second units, after which a timeout message
should be queued on $RECEIVE. This value must be greater than 0D.

param1 input

INT:value

identifies the timeout message read from $RECEIVE.

param2 input

INT(32):value

identifies the timeout message read from $RECEIVE (same purpose as param1).

tag output

INT:ref:1

returns an identifier associated with the timer. This tag should be used only to call
the CANCELPROCESSTIMEOUT procedure.

Condition Code Settings
< (CCL) indicates that SIGNALPROCESSTIMEOUT is unable to allocate a time-list

element (TLE).

= (CCE) indicates that SIGNALPROCESSTIMEOUT is successful.

> (CCG) indicates that the given timeout value is invalid or that there is a bounds
error on tag.

Considerations

• SIGNALPROCESSTIMEOUT and CANCELPROCESSTIMEOUT

A process can use the SIGNALPROCESSTIMEOUT procedure with the
CANCELPROCESSTIMEOUT procedure to verify that some programmatic
operation finishes within a certain process execution time. The process calls
SIGNALPROCESSTIMEOUT before initiating the operation and then periodically

CALL SIGNALPROCESSTIMEOUT (timeout-value ! i
 ,[param1] ! i
 ,[param2] ! i
 ,[tag]); ! o

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-140

SIGNALPROCESSTIMEOUT Procedure

reads $RECEIVE to watch for timer expiration. The process calls
CANCELPROCESSTIMEOUT after completion of the timed operation if the
process has not been signaled on $RECEIVE.

• Measuring the time that a process is executing

The SIGNALPROCESSTIMEOUT procedure measures the time that the process is
executing user code and system code. This procedure excludes the time spent by
the processor processing interrupts while the process is running.

• Deadlock possibility

Consider this:

CALL SIGNALPROCESSTIMEOUT (10000D,,,TAG);
CALL READ (REC^NUM, BUFFER, 4);
 .
 . ! open number of $RECEIVE.

The read causes the process to stop and wait for the system message to be
generated by timeout (assuming no other messages are expected). Timeout does
not occur because process time does not advance while the read is waiting, so a
deadlock occurs.

Message

• Timeout message

When a time-list element (TLE) set by a call to the SIGNALPROCESSTIMEOUT
procedure times out, a system message -26 (process time timeout) is placed on
the $RECEIVE queue to be read by the caller. (This message is identical to the
message generated by SIGNALTIMEOUT except that the message number is
different.)

OSS Considerations
OSS processes can use this procedure and generate a system message. An OSS
signal is not generated.

Example
CALL SIGNALPROCESSTIMEOUT(VALUE , MSG, , TIMERTAG);

Related Programming Manual
For programming information about the SIGNALPROCESSTIMEOUT procedure, see
the Guardian Programmer’s Guide.

Note. This deadlock does not happen with the SIGNALTIMEOUT procedure, which measures
elapsed time (as measured by the processor clock) rather than process execution time.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-141

SIGNALTIMEOUT Procedure

SIGNALTIMEOUT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Message
OSS Considerations
Example
Related Programming Manual

Summary
The SIGNALTIMEOUT procedure sets a timer to a given number of units of elapsed
time, as measured by the processor clock. When the time expires, the calling process
receives an indication in the form of a system message on $RECEIVE.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

• The function value returned by SIGNALTIMEOUT, which indicates the condition
code, can be interpreted by the _status_lt(), _status_eq(), or
_status_gt() function (defined in the file tal.h).

Syntax for TAL Programmers

Parameters

timeout-value input

INT(32):value

#include <cextdecs(SIGNALTIMEOUT)>

_cc_status SIGNALTIMEOUT (__int32_t time-out-value
 ,[short param1]
 ,[__int32_t param2]
 ,[short _near *tag]);

CALL SIGNALTIMEOUT (timeout-value ! i
 ,[param1] ! i
 ,[param2] ! i
 ,[tag]); ! o

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-142

SIGNALTIMEOUT Procedure

specifies the time period, in 0.01-second units, after which a timeout message
should be queued on $RECEIVE. This value must be greater than 0D.

param1 input

INT:value

identifies the timeout message read from $RECEIVE.

param2 input

INT(32):value

identifies the timeout message read from $RECEIVE (same purpose as param1).

tag output

INT:ref:1

returns an identifier associated with the timer. This tag should be used only to call
the CANCELTIMEOUT procedure.

Condition Code Settings
< (CCL) indicates that SIGNALTIMEOUT is unable to allocate a time list element

(TLE). This can occur if fewer than one-fourth of the TLEs are free.

= (CCE) indicates that SIGNALTIMEOUT completed successfully.

> (CCG) indicates that the given timeout value is invalid.

Considerations

• SIGNALTIMEOUT and CANCELTIMEOUT

A process can use the SIGNALTIMEOUT procedure with the CANCELTIMEOUT
procedure to verify that some programmatic operation finishes within a certain
elapsed time. The process calls SIGNALTIMEOUT before initiating the operation
and then periodically reads $RECEIVE to watch for timer expiration. The process
calls CANCELTIMEOUT after completion of the timed operation if the process has
not been signaled on $RECEIVE.

• Measuring elapsed time that a process executes

The SIGNALTIMEOUT procedure measures elapsed time (according to the
processor clock) that this process executes. This includes the time spent by the
processor in process code, in system code, processing interrupts that occur while
the process is running, and any time that the process is waiting.

• Using SIGNALTIMEOUT to measure long time intervals

The SIGNALTIMEOUT procedure measures time according to the internal clock of
the processor in which the calling process is executing. Typically, processor time
(that is, time as measured by a particular processor) is slightly different from

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-143

SIGNALTIMEOUT Procedure

system time; it also varies slightly from processor to processor, because all the
processor clocks typically run at slightly different speeds. System time is
determined by taking the average of all the processor times in the system.

When measuring short intervals of time, the difference between processor time
and system time is negligible. However, when measuring long intervals of time
(such as several hours or more), the difference can be noticeable. For this reason,
it is not recommended that you make just one call to the SIGNALTIMEOUT
procedure to measure a long interval of time when you need a precise
measurement that is synchronized with system time. Instead, you should use a
sequence of two or more calls. (The same applies to other procedures, such as
DELAY, that also measure time by a processor clock.)

For example, if you want your application to be notified at a specific system time
after a long interval, you can use the SIGNALTIMEOUT procedure to set a timer to
expire shortly before the desired time. When the timer expires (that is, when a
timeout message is delivered to $RECEIVE), your application can compute the
remaining time and set another timer for the short interval that remains.

However, because the possibility of clock discrepancy becomes greater as the
interval being timed becomes longer, it would be even safer to measure a long
time interval by dividing it into a series of relatively short intervals. One method is
to compute the interval between the current time and the desired time and set a
timer to expire after half that interval. When the timer expires, compute the
remaining time and set another timer to expire after half that interval, and so on,
approaching the desired time by progressively smaller steps.

Message

• Timeout message

When a time-list element (TLE) set by a call to the SIGNALTIMEOUT procedure
times out, a system message -22 (elapsed time timeout) is sent to the caller’s
$RECEIVE.

OSS Considerations
OSS processes can use this procedure and generate a system message. An OSS
signal is not generated.

Example
CALL SIGNALTIMEOUT(1000D , , , TIMERTAG); ! 10 seconds.

Note. Because a process must read $RECEIVE to be notified when a timer expires, there can
be a significant amount of delay before seeing the notification. For example, if a process is
waiting for an I/O operation to finish, or if a process has low priority and is waiting to execute, a
significant amount of time might pass before the process can read $RECEIVE. The
SIGNALTIMEOUT procedure should not be used in situations where such delays cannot be
tolerated.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-144

SIGPENDING_ Procedure

Related Programming Manual
For programming information about the SIGNALTIMEOUT procedure, see the
Guardian Programmer’s Guide.

SIGPENDING_ Procedure

SIGPENDING_ is the pTAL procedure name for the C sigpending() function. The
C sigpending() function complies with the POSIX.1 standard.

For the pTAL prototype definitions, see the $SYSTEM.SYSTEM.HSIGNAL header file.
For a discussion of each parameter and procedure considerations, see the
sigpending(2) function reference page either online or in the Open System
Services System Calls Reference Manual.

SIGPROCMASK_ Procedure

SIGPROCMASK_ is the pTAL procedure name for the C sigprocmask() function.
The C sigprocmask() function complies with the POSIX.1 standard.

For the pTAL prototype definitions, see the $SYSTEM.SYSTEM.HSIGNAL header file.
For a discussion of each parameter and procedure considerations, see the
sigprocmask(2) function reference page either online or in the Open System
Services System Calls Reference Manual.

SIGSETJMP_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary

The SIGSETJMP_ procedure saves process context in a jump buffer. This context is
used when a nonlocal goto is performed by a corresponding call to the SIGLONGJMP_
procedure. Optionally, this procedure also saves the current signal mask.

Note. This procedure can be called only from native processes.

Note. This procedure can be called only from native processes.

Note. This procedure can be called only from native processes.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-145

SIGSETJMP_ Procedure

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

retval returned value

INT(32)

indicates the outcome of the call:

0D indicates that the SIGSETJMP_ procedure was called directly.

< > 0D indicates that SIGSETJMP_ is returning as a result of a call to the
SIGLONGJMP_ procedure. The returned value is specified by
SIGLONGJMP_.

env output

INT .EXT:ref:(SIGJMP_BUF_TEMPLATE)

indicates the address of a previously allocated jump buffer in which the process
context of the caller is returned. The jump buffer is allocated by the
SIGJMP_BUF_DEF DEFINE.

mask input

INT(32):value

specifies whether the current signal mask is also saved in the jump buffer indicated
by env:

#include <setjmp.h>

sigjmp_buf env;

__int32_t sigsetjmp (sigjmp_buf *env
 ,int mask);

?SOURCE $SYSTEM.ZGUARD.HSETJMP

retval := SIGSETJMP_ (env ! o
 ,mask); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-146

SIGSETJMP_ Procedure

0D specifies that the current signal mask is not to be saved.

< > 0D specifies that the current signal mask is to be saved. This mask is
reinstated by a corresponding call to the SIGLONGJMP_ procedure.

Considerations

• SIGSETJMP_ is the TAL or pTAL procedure name for the C sigsetjmp()
function. The C sigsetjmp() function conforms to the POSIX.1 standard.

• You can allocate the jump buffer for SIGSETJMP_ using the SIGJMP_BUF_DEF
DEFINE as follows:

SIGJMP_BUF_DEF (env);

where env is a valid variable name.

Alternatively, you can allocate the buffer by declaring a structure if type
SIGJMP_BUF_TEMPLATE.

In either case, the buffer must be accessible to both the SIGSETJMP_ procedure
call and the associated SIGLONGJMP_ procedure call.

• The jump buffer saved by the SIGSETJMP_ procedure is normally used by a call
to the SIGLONGJMP_ procedure. The jump buffer can be used by a call to the
LONGJMP_ procedure only if the signal mask is not saved.

• The buffer pointer is assumed to be valid. An invalid address passed to
SISETJMP_ will cause unpredictable results and could cause the system to deliver
a nondeferrable signal to the process.

• Do not change the contents of the jump buffer. The results of a corresponding
SIGLONGJMP_ call are undefined if the contents of the jump buffer are changed.

Example
sigjmp_buf env;

SIGJMP_BUF_DEF_ (env);
retval := SIGSETJMP_ (env, value);

Related Programming Manual
For programming information about the SIGSETJMP_ procedure, see the Guardian
Programmer’s Guide.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-147

SIGSUSPEND_ Procedure

SIGSUSPEND_ Procedure

SIGSUSPEND_ is the pTAL procedure name for the C sigsuspend() function. The
C sigsuspend() function complies with the POSIX.1 standard.

For the pTAL prototype definitions, see the $SYSTEM.SYSTEM.HSIGNAL header file.
For a discussion of each parameter and procedure considerations, see the
sigsuspend(2) function reference page either online or in the Open System
Services System Calls Reference Manual.

SSIDTOTEXT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
Converts internal format subsystem ID to external representation.

Syntax for C Programmers

Note. This procedure can be called only from native processes.

Note. In the TNS/E environment the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(SSIDTOTEXT)>

short SSIDTOTEXT (short ssid
 ,char *chars
 ,[__int32_t *status]);

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-148

SSIDTOTEXT Procedure

Syntax for TAL Programmers

Parameters

len

INT

contains the number of characters placed into chars. Zero is returned if one of the
errors (0,29), (4,0), or (8,0) occurs. Other errors may prevent obtaining the
subsystem name, in which case the subsystem ID is still produced but contains the
subsystem number rather than the subsystem name.

ssid

INT .EXT:ref:6

contains the subsystem ID to be converted to displayable form.

chars

STRING .EXT:ref:*

contains the resulting displayable representation of ssid. The length of the string is
returned in len. The string will not be longer than 23 characters.

status

INT(32) .EXT:ref:1

contains a status code describing any problem encountered. The codes in this list
are obtained by examining the two halves of the INT(32) value.

(0,0) - No error.
(0,x) - problem with calling sequence.

x: 29 - required parameter missing
632 - insufficient stack space

(1,x) - error allocating private segment; x is the ALLOCATESEGMENT error code.
(2,x) - problem opening nonresident template file.
 x: >0 - file-system error code
 -1 - file code not 844
 -2 - file not disk file
 -3 - file not key-sequenced
 -4 - file has wrong record size
 -5 - file has wrong primary key definition.

 len := SSIDTOTEXT (ssid !i
 ,chars !o
 [,status]); !o

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-149

SSIDTOTEXT Procedure

(3,x) - error reading nonresident template file; x is the file-system error.
(4,0) - invalid value in internal subsystem ID.
(7,x) - error accessing private segment; x is the MOVEX error code.
(8,0) - internal error.

Considerations
The external form of a subsystem ID is:

owner.ss.version or 0.0.0

owner is 1 to 8 letters, digits, or hyphens, the first of which must be a
letter; letters are not upshifted so the end user must enter owner
in the proper case.

ss is either the subsystem number or the subsystem name.

A subsystem number is a string of digits which may be preceded
by a minus sign. The value of the number must be between
-32767 and 32767.

A subsystem name is 1 to 8 letters, digits, or hyphens, the first of
which must be a letter. Letters are not upshifted; the end user
must enter the subsystem name in the proper case.

version is either a string of digits which represents a TOSVERSION-format
version (Ann) or a value from 0 to 65535.

Examples: HP.PATHWAY.C00
HP.52.0
0.0.0

The 0.0.0 form is used to represent the “null” subsystem ID. Its internal representation
is binary zero. The number of zeros in each field may vary; for example, 000.0.000 is
equivalent to 0.0.0.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-150

STACK_ALLOCATE_ Procedure

STACK_ALLOCATE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Examples

Summary
The STACK_ALLOCATE_ procedure allocates a user stack segment for use as a
thread or alternate signal stack.

A user stack consists of three components in the following consecutive areas:

• a memory stack, growing downward from the highest-address end

• a guard area (one or more unmapped pages) that provides protection against
overflow of the stack pointer

• a register stack (supporting the Register Stack Engine (RSE) of the Itanium
processor), growing upward from the base (lowest address) of the segment

The size of each component, and therefore the overall segment, is a multiple of the
memory page size of 16 KB. The caller can specify the minimum overall size of the
stack segment, the minimum size of the guard area, allowance for growth, and the
relative size of the RSE and memory areas.

If growth is enabled and the unmapped area exceeds the minimum size of the guard
area, both the memory stack and the register stack areas can grow by mapping
additional pages to them. Upon occurrence of a page fault for attempting to go beyond
the currently mapped memory-stack area, that area is extended downward by
consuming an available guard page. Upon occurrence of a page fault for attempting to
go beyond the currently mapped RSE area, that area is extended upward by
consuming an available guard page.

All pages within the stack described by stackaddr and stacksize have read and
write permissions for the user.

The STACK_ALLOCATE_ procedure is a callable routine and is declared in kmem.h
and KMEM.

Note. The STACK_ALLOCATE_ procedure is supported on systems running J06.10
and later J-series RVUs and H06.21 and later H-series RVUs. This procedure is not
supported on G-series RVUs.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-151

STACK_ALLOCATE_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

• The STACK_ALLOCATE_ procedure is only supported in pTAL; it is not supported
in TAL.

Parameters

error returned value

INT

indicates the outcome of the operation. Returns one of these values:

0 Operation was successful; stackaddr contains base address of the stack,
and stacksize contains the rounded stack size.

1 Cannot allocate Kernel-Managed Swap space.

2 An invalid option value was specified.

3 A bounds violation on parameter.

5 Requested stacksize or guardsize is too large to handle; overall stack
size limit is USERSTACK_MAX (16MB, defined in kmem.h).

15 Address space is unavailable.

If an error other than 0 is returned, the output parameter values are not set.

stacksize input, output

INT(32) .EXT:ref:1

specifies the overall stack size in bytes (which includes all the components of the
stack) and returns the size actually allocated. The unsigned integer input value is

#include <kmem.h>

short STACK_ALLOCATE_(
 unsigned int *stacksize /* i,o */
 ,unsigned int guardsize /* i */
 ,void **stackaddr /* o */
 ,unsigned int stackoptions); /* i */

?SOURCE KMEM
error := STACK_ALLOCATE_(
 stacksize ! i,o
 ,guardsize ! i
 ,stackaddr ! o
 ,stackoptions); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-152

STACK_ALLOCATE_ Procedure

rounded up to a multiple of the memory page size (16 KB) and may be adjusted
further as needed to satisfy the minimum size of each component. If any error is
returned, stacksize is unchanged.

guardsize input

INT(32):value

specifies the minimum size of the guard area in bytes. The unsigned integer input
value is rounded up to a multiple of the page size, with a minimum of one memory
page. The size of the guard area is greater than its minimum when the stack has
room for growth, because the guard area is the portion of the overall stack that has
not been mapped.

stackaddr output

EXTADDR .EXT:ref:1

if the operation was successful, this output parameter contains the base address of
the newly allocated stack and is always 16KB-page aligned. If any error other than
0 is returned, stackaddr is unchanged.

stackoptions input

INT(32):value

specifies special actions to be performed on the stack. This parameter is
composed of multiple unsigned integer values, specifying attributes of the stack
components and whether a special action is to be taken. Literals are defined in
KMEM and kmem.h.

ST_NONE specifies no bit set: all options default.

ST_COF specifies that this stack segment is to be copied to a child
process upon fork(), even if the stack is not currently active. By
default, a thread stack is copied only if a thread running on this
stack calls fork(). Stacks are not copied across exec().

ST_GROWTH*g where g is a constant in the range 0 to 100. This value
specifies the percentage of the stack pages (excluding the
minimum guard pages) to be reserved for growth (by remaining
unmapped initially), subject to the constraint that the minimum
size and granularity of each component is one page. The
ST_GROWTH*g percentage is applied to the total pages
excluding the specified or default minimum guard pages; it is
rounded down to whole pages (and can round to zero). The
remaining pages are mapped as the segment is initialized, and
have KMSF backing store reserved. When growth occurs,
additional page(s) are mapped and backing store reserved. A
value of 0 results in all pages (excluding the minimum
number of guard pages) being initially mapped, with none
reserved for growth. A value of 100 results in initially mapping
just one page to the memory area and one page to the RSE
area, with any remaining pages reserved for growth. A value

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-153

STACK_ALLOCATE_ Procedure

greater than 100 is erroneous; it will be rejected if less than
4096 but otherwise has undefined effect.

ST_RSE*r where r is a constant in the range 0 to 100. This value specifies
the percentage of all initially mapped pages to be mapped to the
register stack rather than the memory stack area. A value of 0
defaults to 50. A value greater than 100 is erroneous; it will be
rejected if less than 4096 but otherwise has undefined effect.
The ST_GROWTH*g percentage is applied first; the pages not
reserved for guard pages and growth are then apportioned to
the memory and register stack areas. Any fractional page is
rounded in favor of the memory stack area, subject to the
constraint that each area has at least one page.

Examples
(1) Allocate one guard page, one memory-stack page, and one register-stack page:

stacksize = 0;
error = STACK_ALLOCATE_(&stacksize, 0, &stackaddr, ST_NONE);

Output stacksize is 48 KB (3 pages).

(2) Allocate one guard page, four memory-stack pages, and three register stack
pages:

stacksize = 0x20000; /* 128 KB */;
error = STACK_ALLOCATE_(&stacksize, 0, &stackaddr, ST_NONE);

Output stacksize is 128 K (8 pages).

(3) Allocate one guard page (minimum), four pages reserved for growth, three
memory-stack pages, and two register-stack pages initially:

stacksize = 160000;
error = STACK_ALLOCATE_(&stacksize, 0, &stackaddr,
 ST_GROWTH*50);

Output stacksize is 160 K (10 pages).

(4) Allocate two guard pages, two memory-stack pages, and one register-stack page
initially:

stacksize = 75000;
error = STACK_ALLOCATE_(&stacksize, 20000, &stackaddr,
 ST_NONE);

Output stacksize is 80 K (5 pages).

(5) Allocate one guard page, five memory-stack pages, and ten register-stack pages:

stacksize = 250000;
error = STACK_ALLOCATE_(&stacksize, 16384, &stackaddr,
 ST_RSE*70);

Output stacksize is 256 K (16 pages).

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-154

STACK_DEALLOCATE_ Procedure

(6) Allocate two guard pages (minimum), five pages reserved for growth, seven
memory-stack pages, and two register-stack pages initially:

stacksize = 250000;
error = STACK_ALLOCATE_(&stacksize, 32000, &stackaddr,
 ST_GROWTH*40 | ST_RSE*30);

Output stacksize is 256 K (16 pages).

STACK_DEALLOCATE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example

Summary
The STACK_DEALLOCATE_ procedure releases memory resources for a user stack
that was allocated using the STACK_ALLOCATE_ procedure. The stack specified by
the stackaddr parameter must have been allocated as a user stack in an earlier call
to the STACK_ALLOCATE_ procedure or an error is returned.

If the specified stack is used as a signal stack, it must be de-registered prior to calling
the STACK_DEALLOCATE_ procedure.

The STACK_DEALLOCATE_ procedure is a callable routine and is declared in
kmem.h and KMEM.

Syntax for C Programmers

Syntax for TAL Programmers

• The STACK_DEALLOCATE_ procedure is only supported in pTAL; it is not
supported in TAL.

Note. The STACK_DEALLOCATE_ procedure is supported on systems running J06.10
and later J-series RVUs and H06.21 and later H-series RVUs. This procedure is not
supported on G-series RVUs.

#include <kmem.h>

short STACK_DEALLOCATE_(
 void *stackaddr); /* i */

?SOURCE KMEM
error := STACK_DEALLOCATE_(stackaddr); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-155

STEPMOM Procedure
(Superseded by PROCESS_SETINFO_ Procedure)

Parameters

error returned value

INT

indicates the outcome of the operation. Returns one of these values:

0 Operation was successful.

2 The input parameter specified is not a valid user stack address.

4 Failed to deallocate user stack; either the stack is currently in use, or the
stack is an active signal stack.

stackaddr input

EXTADDR:value

this input parameter specifies the base address of the user stack to be deallocated.

Example
error = STACK_DEALLOCATE_(stackaddr);

STEPMOM Procedure
(Superseded by PROCESS_SETINFO_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Messages
OSS Considerations
Example

Summary

The STEPMOM procedure is called by a process when it wants to receive process
deletion (STOP or ABEND) messages for a process it did not create. Note that the
caller of STEPMOM becomes the new “mom” of the designated process. (That is,
STEPMOM replaces the mom field in the designated process’s process control block

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-156

STEPMOM Procedure
(Superseded by PROCESS_SETINFO_ Procedure)

extension with the 4-word process ID of its caller.) Therefore, only the caller receives
the process deletion notification.

STEPMOM is typically used by the backup process of an unnamed process pair to
monitor its primary process. (This monitoring is automatic between members of
named process pairs.)

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

process-id input

INT:ref:4

is a 4-word array containing the process ID of an already executing process, for
which the calling process wants to receive the process deletion message.

The process ID is a 4-word array, where:

[0:2] Process name or creation timestamp
 [3].<0:3> Reserved
 .<4:7> Processor number where the process is executing
 .<8:15> PIN assigned by the operating system to identify the process

in the processor

Condition Code Settings

< (CCL) indicates that STEPMOM failed, or that no process designated process-
id exists.

= (CCE) indicates that the caller is now the creator (mom) of process-id.

> (CCG) is not returned from STEPMOM.

Considerations

• Process access ID and the caller of STEPMOM

If STEPMOM is called from a Guardian process, the caller must either have the
same process access ID as the process it is attempting to adopt, be the group
manager of the process access ID, or be the super ID. For a description of the

CALL STEPMOM (process-id); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-157

STEPMOM Procedure
(Superseded by PROCESS_SETINFO_ Procedure)

process access ID, see Considerations on page 12-198 and to the Guardian
User’s Guide.

• OSS security

If STEPMOM is called from an OSS process, the security rules that apply to calling
STEPMOM are the same as those that apply to calling the OSS kill() function.
For details, see the reference pages either online or in the Open System Services
System Calls Reference Manual.

• Why STEPMOM should not be called for a process pair

A process should not call STEPMOM for either member of a process pair.
Adoption of a process pair by a third process causes errors and interferes with
operation, because the operation depends upon each member of the process pair
being the mom of the other.

• Adopting a single named process is not recommended

If a single named process is adopted, the caller becomes both the mom and the
ancestor and will receive two process termination messages when the process
dies.

• STEPMOM and high-PIN processes

You cannot use STEPMOM to adopt a high-PIN process because a high PIN
cannot fit into process-id.

Figure 14-1 illustrates the effect of STEPMOM.

Messages

• Process deletion (STOP) message

The caller of STEPMOM receives the process deletion (STOP) system message if
the process-id is being deleted normally because of a call to STOP.

• Process deletion (ABEND) message

The caller of STEPMOM receives the process deletion (ABEND) system message
if the process-id is being deleted abnormally because of a call to ABEND, or
because the process encountered a trap condition or received a process-
terminating signal and is being deleted by the operating system.

OSS Considerations
If STEPMOM is used to set the mom of an OSS process, the new mom receives the
Guardian process deletion message when the OSS process terminates. The message
indicates that the terminated process was an OSS process and contains the OSS
process ID; otherwise, the message is the same as one received for a terminating
Guardian process.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-158

STEPMOM Procedure
(Superseded by PROCESS_SETINFO_ Procedure)

If the OSS process successfully executes one of the OSS exec or tdm_exec set of
functions, a Guardian process deletion message is sent to the mom. Although the
process is still alive in the OSS environment (the OSS process ID still exists), the
process handle no longer exists, so the process has terminated in the Guardian
environment.

The OSS parent process (which is not necessarily the same process as the mom
process) also receives OSS process termination status if the OSS process ID no
longer exists. The order of delivery of the OSS process termination status and the
Guardian process deletion message is not guaranteed.

For the format of the Guardian process deletion message, see the Guardian Procedure
Errors and Messages Manual. For details on the OSS process termination status, see
the wait(2) function reference page either online or in the Open System Services
System Calls Reference Manual.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-159

STOP Procedure
(Superseded by PROCESS_STOP_ Procedure)

Example
CALL STEPMOM (STEP^SON);

STOP Procedure
(Superseded by PROCESS_STOP_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
NetBatch Considerations
Messages
OSS Considerations
Examples
Related Programming Manual

Figure 14-1. Effect of STEPMOM

(A) Creates (B)
:

(A)

(A)

(A)

(B) Creates (C)
:

(C) Calls STEPMOM and passes (B)'s process ID

MOM = (A)

MOM = (A)

MOM = (B)

MOM = (C) MOM = (B)

(B)

(B)

(B)

(B) receives a process deletion message
 if (C) is deleted.

Likewise,
(C) receives a process deletion message
 if (B) is deleted.

(C)

(C)

VST004.VSD

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-160

STOP Procedure
(Superseded by PROCESS_STOP_ Procedure)

Summary

The STOP procedure deletes a process or process pair and indicates that the deletion
was caused by a normal condition. When this procedure is used to delete a Guardian
process or an OSS process, a STOP system message is sent to the deleted process’s
creator. When this procedure is used to delete an OSS process, a SIGCHLD signal
and the OSS process termination status are sent to the OSS parent.

STOP can be used by a process to:

• Delete itself

• Delete its own backup

• Delete another process

When the STOP procedure is used to delete a Guardian process, the caller must either
have the same process access ID as the process it is attempting to stop, be the group
manager of the process access ID, or be the super ID. For a description of the
process access ID, see Considerations on page 12-198 and to the Guardian User’s
Guide.

When STOP is used on an OSS process, the same security rules apply as when using
the OSS kill() function.

When STOP executes, all open files associated with the deleted process are
automatically closed. If a process had BREAK enabled, BREAK is disabled.

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-161

STOP Procedure
(Superseded by PROCESS_STOP_ Procedure)

Syntax for TAL Programmers

Parameters

process-id input

INT:ref:4

indicates the process that is to be stopped. At this point, you have two options.
The value you enter can be either:

• omitted (or zero), meaning “stop myself,” or

• the 4-word array containing the process ID of the process to be stopped,
where:

[0:2] Process name or creation timestamp
 [3].<0:3> Reserved
 [3].<4:7> Processor number where the process is executing
 [3].<8:15> PIN assigned by the operating system to identify the

process in the processor

If process-id[0:2] references a process pair and process-id[3] is
specified as -1, then both members of the process pair are stopped.

stop-backup input

INT:value

if specified as 1, the current process’s backup is stopped and STOP is returned to
the caller. The process-id is not used.

If zero, this parameter is ignored, and the process-id parameter is used as
described.

error output

INT:ref:1

returns a file-system error number. STOP returns a nonzero value for this
parameter only when it cannot successfully make the request to stop the
designated process. If it makes the request successfully (error is 0), the
designated process might or might not be stopped depending on the stopmode of

CALL STOP ([process-id] ! i
 ,[stop-backup] ! i
 ,[error] ! o
 ,[compl-code] ! i
 ,[termination-info] ! i
 ,[spi-ssid] ! i
 ,[length] ! i
 ,[text]); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-162

STOP Procedure
(Superseded by PROCESS_STOP_ Procedure)

the process and the authority of the caller. (The stopmode of the process can be
changed; hence, a stop request that has inadequate authority to stop the process
is saved by the system and might succeed at a later time.) See Considerations on
page 14-163.

These parameters supply completion-code information which consists of four
items: the completion code, a numeric field for additional termination information,
a subsystem identifier in SPI format, and an ASCII text string. These items have
meaning in the call to STOP only when a process is stopping itself.

compl-code input

INT:value

compl-code is the completion code to be returned to the creator process in the
STOP system message and, for a terminating OSS process, in the OSS
termination status. Specify this parameter only if the calling process is abending
itself and you want to return a completion code value other than the default value
of 0. For a list of completion codes, see Appendix C, Completion Codes.

termination-info input

INT:value

Can be provided as an option by the calling process if it is a subsystem process
that defines Subsystem Programmatic Interface (SPI) error numbers. If supplied,
this parameter should be the SPI error number that identifies the error that caused
the process to stop itself. For more information on the SPI error numbers and
subsystem IDs, see the SPI Programming Manual. If termination-info is not
specified, this field is zero.

These parameters should be supplied to identify the subsystem ID that defines the
SPI error number.

spi-ssid input

INT .EXT:ref:6

is a subsystem ID (SSID) that identifies the subsystem defining the
termination-info. The format and use of the SSID is described in the SPI
Programming Manual.

length input

INT:value

is the text length in bytes. Maximum is 80 bytes.

text input

STRING .EXT:ref:length

is an optional string of ASCII text to be sent in the STOP system message.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-163

STOP Procedure
(Superseded by PROCESS_STOP_ Procedure)

Condition Code Settings
A condition code value is returned only when a process is calling STOP on another
process and that other process could not be stopped.

< (CCL) the process-id parameter is invalid, or an error occurred while stopping
the process.

= (CCE) indicates that the STOP was successful.

> (CCG) does not return from STOP.

Considerations

• Differences between STOP and ABEND procedures

When used to stop the calling process, the ABEND and STOP procedures operate
almost identically; they differ in the system messages that are sent and the default
completion codes that are reported. In addition, ABEND, but not STOP, causes a
saveabend file to be created if the process’s SAVEABEND attribute is set to ON.
For information about saveabend files, see the Inspect Manual.

• Creator of the process and the caller of STOP

If the caller of STOP is also the creator of the process being deleted, the caller
receives the STOP system message.

• Rules for stopping a Guardian process: process access IDs and creator access
IDs

If the process is a local process and the request to stop it is also from a local
process, these user IDs or associated processes may stop the process:

• local super ID

• the process’s creator access ID (CAID) or the group manager of the CAID

• the process’s process access ID (PAID) or the group manager of the PAID

If the process is a local process, a remote process cannot stop it.

If the process is a remote process running on this node and the request to stop
it is from a local process on this node, then these user IDs or associated
processes may stop the process:

• local super ID

• the process’s creator access ID (CAID) or the group manager of the CAID

• the process’s process access ID (PAID) or the group manager of the PAID

If the process is a remote process on this node and the request to stop it is
from a remote process, these user IDs or associated processes may stop the
process:

• a network super ID

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-164

STOP Procedure
(Superseded by PROCESS_STOP_ Procedure)

• the process’s network process access ID

• the process’s network process access ID group manager

• the process’s network creator access ID

• the process’s network creator access ID group manager

where network ID implies that the user IDs or associated process creators
have matching remote passwords.

Being local on a system means that the process has logged on by successfully
calling VERIFYUSER on the system or that the process was created by a
process that had done so. A process is also considered local if it is run from a
program file that has the PROGID attribute set.

• Rules for stopping an OSS process

The same rules apply when stopping an OSS process with the STOP
procedure as apply for the OSS kill() function. See the kill(2) function
reference page either online or in the Open System Services System Calls
Reference Manual.

• Rules for stopping any process; stop mode

When one process attempts to stop another process, another item checked is
the stopmode of the process. Stopmode is a value associated with every
process that determines which other processes can stop the process. The
stopmode, set by procedure SETSTOP, is defined as follows:

0 ANY other process can stop the process.
1 ONLY the process qualified by the above rules can stop the process.
2 NO other process can stop the process.

• Returning control to the caller before the process is stopped

When error is 0, STOP returns control to the caller before the specified process
is actually stopped. Although the process does not execute any more user code,
you should make sure that it has terminated before you attempt to access a file
that it had open with exclusive access or before you try to create a new process
with the same name. The best way to be sure that a process has terminated is to
wait for the process deletion message.

• Stopping a process that has the Inspect or saveabend attribute set

If the process being stopped has either the Inspect attribute or the saveabend
attribute set, and if DMON exists, STOP returns error 0 but deletion of the process
is delayed until DMON approves it.

• Completion codes

In response to the STOP procedure, the operating system supplies a completion
code in the system message and, for OSS processes, in the OSS process
termination status as follows:

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-165

STOP Procedure
(Superseded by PROCESS_STOP_ Procedure)

• If a process calls STOP on another process, the system supplies a completion
code value of 6.

• If a process calls STOP on itself but does not supply a completion code, the
system supplies a completion code value of 0.

For a list of completion codes, see Appendix C, Completion Codes.

• Deleting high-PIN processes

STOP cannot be used to delete a high-PIN unnamed process, but it can be used to
delete a high-PIN named process or process pair.

A high-PIN caller (named or unnamed) can delete itself by omitting process-id.

NetBatch Considerations

• The STOP procedure supports NetBatch processing by:

• returning completion code information in the STOP system message

• returning the process processor times in the STOP system message

• sending a STOP system message to the ancestor of a job (GMOM) as well as
the ancestor of a process

Messages

• Process deletion (STOP) message

The creator of the stopped process is sent a system message -5 (process deletion:
STOP), indicating that the deletion occurred. For the format of the interprocess
system messages, see the Guardian Procedure Errors and Messages Manual

OSS Considerations

• When an OSS process is stopped by the STOP procedure, either by calling the
procedure to stop itself or when some other process calls the procedure, the OSS
parent process receives a SIGCHLD signal and the OSS process termination
status. For details on the OSS process termination status, see the wait(2)
function reference page either online or in the Open System Services System Calls
Reference Manual.

In addition, a STOP system message is sent to the mom, GMOM, or ancestor
process according to the usual Guardian rules.

• When the STOP procedure is used to stop an OSS process other than the caller,
the Guardian process ID must be specified in the call. The effect is the same as if
the OSS kill() function was called with the input parameters as follows:

• The signal parameter set to SIGKILL

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-166

STRING_UPSHIFT_ Procedure

• The pid parameter set to the OSS process ID of the process identified by
process-id in the STOP call

• The security rules that apply to stopping an OSS process using STOP are the
same as those that apply to the OSS kill() function. See the kill(2) function
reference page either online or in the Open System Services System Calls
Reference Manual for details.

Examples
CALL STOP; ! stop me.
CALL STOP (ProcID); ! stop the process that has
 ! this process ID.

Related Programming Manual
For programming information on batch processing, see the NetBatch User’s Guide.

STRING_UPSHIFT_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example
Related Programming Manual

Summary
The STRING_UPSHIFT_ procedure changes all the alphabetic characters in a string to
upper case. Nonalphabetic characters remain unchanged.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-167

STRING_UPSHIFT_ Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

indicates the outcome of the operation. Possible values are:

0 = Operation successful
1 = (reserved)
2 = Parameter error
3 = Bounds error
4 = String too large to fit in out-string

in-string:length input:input

STRING .EXT:ref:*, INT:value

is the character string which is to have all alphabetic characters changed to upper
case. in-string must be exactly length bytes long. The maximum acceptable
value of length is 32,767.

out-string:maxlen output:input

STRING .EXT:ref:*, INT:value

returns the resultant string. The same buffer can be used for in-string and
out-string.

maxlen is the length in bytes of the string variable out-string. maxlen must
be at least as large as the length of the input string.

Example
err := STRING_UPSHIFT_ (in^string:len, out^string:maxlen);

#include <cextdecs(STRING_UPSHIFT_)>

short STRING_UPSHIFT_ (char *in-string
 ,short length
 ,char *out-string
 ,short maxlen);

error := STRING_UPSHIFT_ (in-string:length ! i:i
 ,out-string:maxlen); ! o:i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-168

SUSPENDPROCESS Procedure
(Superseded by PROCESS_SUSPEND_

Related Programming Manual
For programming information about the STRING_UPSHIFT_ procedure, see the
Guardian Programmer’s Guide.

SUSPENDPROCESS Procedure
(Superseded by PROCESS_SUSPEND_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
OSS Considerations
Example

Summary

The SUSPENDPROCESS procedure puts a process or process pair into the
suspended state, preventing that process from being active (that is, executing
instructions). (A process is removed from the suspended state and put back into the
ready state if it is the object of a call to the ACTIVATEPROCESS procedure.)

Syntax for C Programmers
This procedure does not have a C syntax, because it is superseded and should not be
used for new development. This procedure is supported only for compatibility with
previous software.

Syntax for TAL Programmers

Parameters

process-id input

INT:ref:4

is a 4-word array containing the process ID of the process to be suspended,
where:

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

CALL SUSPENDPROCESS (process-id); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-169

SUSPENDPROCESS Procedure
(Superseded by PROCESS_SUSPEND_

[0:2] Process name or creation timestamp
 [3].<0:3> Reserved
 .<4:7> Processor number where the process is executing
 .<8:15> PIN assigned by the operating system to identify the process

in the processor

If process-id[0:2] references a process pair and process-id[3] is specified as
-1, then both members of the process pair are suspended.

Condition Code Settings

< (CCL) indicates that SUSPENDPROCESS failed, or no process designated
process-id exists.

= (CCE) indicates that process-id is suspended.

> (CCG) does not return from SUSPENDPROCESS.

Considerations

• When SUSPENDPROCESS is called on a Guardian process, the caller must either
have the same process access ID as the process or process pair it is attempting to
suspend, have super ID, or be the group manager of the process access ID. For
information about system security, specifically the process access ID and super ID,
see and the Guardian User’s Guide.

• When SUSPENDPROCESS is called on an OSS process, the security rules that
apply are the same as those that apply when calling the OSS kill() function.
See the kill(2) function reference page either online or in the Open System
Services System Calls Reference Manual for details.

• SUSPENDPROCESS cannot be used to suspend a high-PIN unnamed process.
However, it can be used to suspend a high-PIN named process or process pair;
process-id [3] must contain either -1 or two blanks.

To suspend a high-PIN unnamed process, use the PROCESS_SUSPEND_
procedure. See the Guardian Programmer’s Guide.

OSS Considerations
When used on an OSS process, SUSPENDPROCESS has the same effect as calling
the OSS kill() function with the input parameters as follows:

• The signal parameter set to SIGSTOP

• The pid parameter set to the OSS process ID of the process identified by
process-id in the SUSPENDPROCESS call

The SIGSTOP signal is delivered to the target process. The SIGCHLD signal is
delivered to the parent of the target process.

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-170

SYSTEMENTRYPOINT_RISC_ Procedure

Example
CALL SUSPENDPROCESS (PROC^ID); ! suspend process

SYSTEMENTRYPOINT_RISC_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example

Summary

The SYSTEMENTRYPOINT_RISC_ procedure, which is defined only for native
processes, returns either the 32-bit RISC address of the named entry point or, if not
found, the value zero.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

Syntax for TAL Programmers

Parameters

risc-addr returned value

EXTADDR

is the 32-bit RISC address.

name input

STRING .EXT:ref:*

Note. pTAL syntax for this procedure is declared only in the EXTDECS0 file.

#include <cextdecs(SYSTEMENTRYPOINT_RISC_)>

__int32_t SYSTEMENTRYPOINT_RISC_ (char *name
 ,short len);

risc-addr := SYSTEMENTRYPOINT_RISC_ (name ! i
 ,len); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-171

SYSTEMENTRYPOINTLABEL Procedure

is the case-sensitive entry point name.

len input

INT:value

is the length, in bytes, of name.

Example
EPNAME ':=' "HEADROOM_ENSURE_";
RISC^ADDR := SYSTEMENTRYPOINT_RISC_ (EPNAME , LEN);

SYSTEMENTRYPOINTLABEL Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example

Summary
The SYSTEMENTRYPOINTLABEL procedure returns either the procedure label of the
named entry point or, if not found, a zero.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

label returned value

INT

is the procedure label.

name input

STRING:ref:*

#include <cextdecs(SYSTEMENTRYPOINTLABEL)>

short SYSTEMENTRYPOINTLABEL (char *name
 ,short len);

label := SYSTEMENTRYPOINTLABEL (name ! i
 ,len); ! i

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-172

SYSTEMENTRYPOINTLABEL Procedure

is the entry point name and must be specified in upper-case letters.

len input

INT:value

is the length, in bytes, of name.

Example
EPNAME ':=' "FILEINFO";
EPLABEL := SYSTEMENTRYPOINTLABEL (EPNAME , LEN);

Guardian Procedure Calls (S)

Guardian Procedure Calls Reference Manual—522629-030
14-173

SYSTEMENTRYPOINTLABEL Procedure

Guardian Procedure Calls Reference Manual—522629-030
15-1

15 Guardian Procedure Calls (T-V)
This section contains detailed reference information for all user-accessible Guardian
procedure calls beginning with the letters T through V. Table 15-1 lists all the
procedures in this section.

Table 15-1. Procedures Beginning With the Letters T Through V

TAKE^BREAK Procedure

TEXTTOSSID Procedure

TIME Procedure

TIMER_START_ Procedure (H-Series RVUs Only)

TIMER_STOP_ Procedure (H-Series RVUs Only)

TIMESTAMP Procedure

TOSVERSION Procedure

TS_NANOSECS_ Procedure (H-Series RVUs Only)

TS_UNIQUE_COMPARE_ Procedure (H-Series RVUs Only)

TS_UNIQUE_CONVERT_TO_JULIAN_ Procedure (H-Series RVUs Only)

TS_UNIQUE_CREATE_ Procedure (H-Series RVUs Only)

UNLOCKFILE Procedure

UNLOCKREC Procedure

UNPACKEDIT Procedure

USER_AUTHENTICATE_ Procedure

USER_GETINFO_ Procedure

USER_GETNEXT_ Procedure

USERDEFAULTS Procedure (Superseded by USER_GETINFO_ Procedure)

USERIDTOUSERNAME Procedure (Superseded by USER_GETINFO_ Procedure)

USERIOBUFFER_ALLOW_ Procedure

USERNAMETOUSERID Procedure (Superseded by USER_GETINFO_ Procedure)

USESEGMENT Procedure (Superseded by SEGMENT_USE_ Procedure)

VRO_SET_ Procedure (H-Series RVUs Only)

VERIFYUSER Procedure (Superseded by USER_AUTHENTICATE_ Procedure and
USER_GETINFO_ Procedure)

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-2

TAKE^BREAK Procedure

TAKE^BREAK Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The TAKE^BREAK procedure enables BREAK monitoring for a file.

TAKE^BREAK is a sequential I/O (SIO) procedure and should be used only with files
that have been opened by OPEN^FILE.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system or sequential I/O (SIO) procedure error indicating the outcome of
the operation.

file-fcb input

INT:ref:*

identifies the file for which BREAK is enabled. If the file is not a terminal, or if
BREAK is already owned for this file, the call is ignored.

Considerations

• BREAK ownership and one terminal

#include <cextdecs(TAKE_BREAK)>

short TAKE_BREAK (short _near *file-fcb);

error := TAKE^BREAK (file-fcb); ! i

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-3

TEXTTOSSID Procedure

Although the operating system allows a process to own BREAK on an arbitrary
number of terminals, SIO supports BREAK ownership for only one terminal at a
time.

• SIO does not support “break access”; SIO always issues SETMODE 11 with
parameter 2 = 0.

• Taking BREAK ownership back

If a process launches an offspring process that takes BREAK ownership, and the
parent process then calls CHECK^BREAK, SIO takes BREAK ownership back.
This can affect anticipated handling of BREAK.

Example
CALL TAKE^BREAK (OUT^FILE);

Related Programming Manual
For programming information about the TAKE^BREAK procedure, see the Guardian
Programmer’s Guide.

TEXTTOSSID Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary
TEXTTOSSID scans a character string, expecting to find the external representation of
a subsystem ID starting in the first byte (no leading spaces accepted). It returns the
internal representation of the subsystem ID it finds.

Syntax for C Programmers

Note. In the TNS/E environment the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(TEXTTOSSID)>

short TEXTTOSSID (char *chars
 ,short *ssid
 ,[__int32_t *status]);

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-4

TEXTTOSSID Procedure

Syntax for TAL Programmers

Parameters

len returned value

INT

returns the number of characters scanned from chars.
Zero is returned if an error occurs.

chars input

STRING .EXT:ref:*

is the string containing the external representation of a subsystem ID. The number
of characters scanned is returned as len. For the description of the external form
of a subsystem ID, see “Considerations”.

ssid output

INT .EXT:ref:6

receives the internal form of the subsystem ID contained in chars.

status output

INT(32) .EXT:ref:1

a status code which indicates any problems encountered (the two numbers
describe the two halves of the INT(32) value):

(0,0)no error

(0,x)something was wrong with the calling sequence

 x: 29) a required parameter is missing
 632not enough stack space

(1,x)error allocating the private segment; x is the error code from
ALLOCATESEGMENT

(2,x)problem opening the template file.

x: > 0file-system error code
 -1file code not 839 or 844
 -2file not disk file
 -3file not key sequenced

len := TEXTTOSSID (chars ! i
 ,ssid ! o
 ,[status]); ! o

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-5

TEXTTOSSID Procedure

 -4file has wrong record size
 -5file has wrong primary key definition

(3,x)error reading the template file; x is the file-system error code.

(4,0)syntax error on the external form subsystem ID

(5,0)the subsystem ID had a subsystem name rather than a subsystem number
and no match could be found for that name.

(6,0)the subsystem ID had a subsystem name rather than a subsystem number
and more than one match was found for that name.

(7,x)error accessing the private segment; x is the error code returned from
MOVEX.

(8,0)internal error

Considerations
The external form of a subsystem ID is:

owner.ss.version or 0.0.0

owner is 1 to 8 letters, digits, or hyphens, the first of which must be a
letter; letters are not upshifted so the end user must enter owner
in the proper case.

ss is either the subsystem number or the subsystem name.

A subsystem number is a string of digits which may be preceded
by a minus sign. The value of the number must be between
-32767 and 32767.

A subsystem name is 1 to 8 letters, digits, or hyphens, the first of
which must be a letter. Letters are not upshifted; the end user
must enter the subsystem name in the proper case.

version is either a string of digits which represents a TOSVERSION-format
version (Ann) or a value from 0 to 65535.

Examples: HP.PATHWAY.C00
HP.52.0
0.0.0

The 0.0.0 form is used to represent the “null” subsystem ID. Its internal representation
is binary zero. The number of zeros in each field may vary; for example, 000.0.000 is
equivalent to 0.0.0.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-6

TIME Procedure

TIME Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Related Programming Manual

Summary
The TIME procedure provides the current date and time in integer form.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

date-and-time output

INT:ref:7

returns an array with the current date and time in this form:

date-and-time[0] year (1983, 1984, ...)
[1] month (1-12)
[2] day (1-31)
[3] hour (0-23)
[4] minute (0-59)
[5] second (0-59)
[6] .01 sec (0-99)

Considerations
This procedure uses the 48-bit timestamp as the basis for determining the date and
time. For a description of this form of timestamp, see TIMESTAMP Procedure.

Related Programming Manual
For programming information about the TIME utility procedure, see the Guardian
Programmer’s Guide.

#include <cextdecs(TIME)>

void TIME (short _near *date-and-time);

CALL TIME (date-and-time); ! o

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-7

TIMER_START_ Procedure (H-Series RVUs Only)

TIMER_START_ Procedure (H-Series RVUs
Only)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The TIMER_START_ procedure sets a timer to a given number of units of elapsed
time, as measured by the processor clock. When the time expires, the calling process
receives an indication in the form of a system message on $RECEIVE.
TIMER_START_ measures the timeout value in microseconds. The process that calls
this procedure becomes the owner of the underlying Time List element (TLE).

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error return value

INT32

indicates the outcome of the call:

error=TIMER_START_(timeoutValue, param1, param2, TLEid)

INT(32) TIMER_START_ (TOV, PARAM1, PARAM2, TLEID)
 CALLABLE, RESIDENT;
 EXTERNAL;

Value Definition

0 Indicates the call is successful and the time has
been started

590 Indicates the parameter values are invalid or
inconsistent

3600 Indicates that TIMER_START_cannot allocate a
TLE. This occurs when all available TLEs are
used.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-8

TIMER_STOP_ Procedure (H-Series RVUs Only)

timeoutValue or TOV input

long long

a value greater than zero that specifies the time period (in microseconds) after
which a timeout message should be queued on $RECIEVE. One second equals
1,000,000 microseconds.

param1 or PARAM1 input

UINT64

is part of the timeout message read from $RECEIVE

param2 or PARAM2 input

UINT64

is part of the timeout message read from $RECEIVE

TLEid or TLEID input

*INT32

 the identifier associated with the timer. TLEid should only be used to call the
TIMER_STOP_ procedure.

Considerations

• Param1 is delivered to the user process in the SIGNAL TIMEOUT message as an
INT(16); it is truncated. Param2 is delivered in the SIGNALTIMEOUT message as
an INT(32); it is also truncated.

Example
An example of how to set a 60 second timer is:

INT(32) TLEID;

ERR := TIMER_START_(60000000F, 10F, 32F, TLEID);

IF ERR THEN -- Timer was not started

TIMER_STOP_ Procedure (H-Series RVUs
Only)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-9

TIMER_STOP_ Procedure (H-Series RVUs Only)

Summary
The TIMER_STOP_ procedure stops a timer started using the TIMER_START_
procedure. When called this procedure ensures that:

• the TLEid is valid

• the TLE owner is referred by the same TLEid

• the process that calls TIMER_STOP_ is the owner of the TLE

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error return value

INT32

indicates the outcome of the call:

TLEid or TLEID input

INT32

is the identifier associated with the timer. and returned by TIMER_START_.

error=TIMER_STOP_(TLEid)

INT(32) TIMER_STOP_ (TLEID) CALLABLE, RESIDENT;
 EXTERNAL;

Value Definition

0 Indicates the call is successful and the time has
been stopped

<>0 Indicates the TLEid is invalid

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-10

TIMESTAMP Procedure

TIMESTAMP Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example
Related Programming Manual

Summary
The TIMESTAMP procedure provides the internal form of the processor interval clock
where the application is running.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

interval-clock output

INT:ref:3

returns the current value of the interval clock in a three-word array. A processor’s
interval clock is incremented every 0.01 second. The interval-clock
parameter returns in this form:

Considerations

• A 48-bit timestamp is a quantity equal to the number of 10-millisecond units since
00:00, 31 December 1974. The 48-bit timestamp always represents local civil
time.

#include <cextdecs(TIMESTAMP)>

void TIMESTAMP (short _near *interval-clock);

CALL TIMESTAMP (interval-clock); ! o

[0] most significant word, interval
clock

[1] interval clock

[2] least significant word, interval
clock

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-11

TIMESTAMP Procedure

Procedures that work with the 48-bit timestamp are CONTIME, TIME, and
TIMESTAMP.

• A 64-bit Julian timestamp is based on the Julian date. It is a quantity equal to the
number of microseconds since January 1, 4713 B.C., 12:00 (noon) Greenwich
mean time (Julian proleptic calendar). This timestamp can represent either
Greenwich mean time, local standard time, or local civil time. There is no way to
examine a Julian timestamp and determine which of the three times it represents.

Procedures that work with the 64-bit Julian timestamp are COMPUTETIMESTAMP,
CONVERTTIMESTAMP, INTERPRETTIMESTAMP, JULIANTIMESTAMP, and
SETSYSTEMCLOCK.

• Process creation time is initialized by calling TIMESTAMP, which returns the local
civil time in centiseconds (0.01 second = 10 milliseconds) since midnight (00:00)
on 31 December 1974, in an array of three words. Only the two low-order words
are saved in the process control block (PCB); this is sufficient to make the
unnamed process ID unique.

• The RCLK instruction ($READCLOCK in TAL) is another source of timestamps. It
returns a 64-bit timestamp representing the local civil time in microseconds since
midnight (00:00) on 31 December 1974. Note that this is not a Julian timestamp.

• Process timing uses 64-bit elapsed time counters with microsecond resolution;
these are not Julian timestamps either.

• There is no way to generalize about internal timing using 64-bit Julian timestamps
or 48-bit timestamps. Each section of the operating system manages time using
the method most appropriate for its application.

• All time and calendar units in this discussion are defined in The Astronomical
Almanac published annually by the U.S. Naval Observatory and the Royal
Greenwich Observatory.

Example
CALL TIMESTAMP (TIMESTAMP^BUF);

Related Programming Manual
For programming information about the TIMESTAMP utility procedure, see the
Guardian Programmer’s Guide.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-12

TOSVERSION Procedure

TOSVERSION Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameter
Example

Summary
The TOSVERSION procedure identifies which version of the operating system is
running.

Syntax for C Programmers

Syntax for TAL Programmers

Parameter

version returned value

INT

returns a value of the form:

<0:7> an uppercase ASCII letter indicating the version of the operating
system

<8:15> a binary number specifying the release number of the version

Example
VERSION := TOSVERSION;

#include <cextdecs(TOSVERSION)>

short TOSVERSION ();

version := TOSVERSION;

ASCII Letter Operating-System Version

N Dnn

P Fnn

Q Gnn

R Hnn

T Jnn

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-13

TS_NANOSECS_ Procedure (H-Series RVUs Only)

For example, if the operating-system version is D10, the returned value contains “N” in
bits <0:7> and binary 10 in bits <8:15>.

TS_NANOSECS_ Procedure (H-Series RVUs
Only)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Consideration

Summary
The TS_NANOSECS_ procedure returns a value that represents the time (in
nanoseconds) since the last coldload. Because this procedure measures time in such
fine detail, it may take a little longer to obtain timestamp information. The header files
for this procedure can be found in cextdecs for C/C++ programs and in extdecs0 for
pTAL programs.

Syntax for C Programmers

Syntax for TAL Programmers

Consideration

• This procedure returns a value that represents time since cold-load in
nanoseconds. As the resolution is in nanoseconds, the accuracy may be less
depending upon the processor and the release of NonStop software.

TS_UNIQUE_COMPARE_ Procedure (H-Series
RVUs Only)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Consideration

uint64 TS_NANOSECS_(void) ;

FIXED PROC TS_NANOSECS_;
 EXTERNAL;

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-14

TS_UNIQUE_COMPARE_ Procedure (H-Series
RVUs Only)

Summary
The TS_UNIQUE_COMPARE_ procedure compares two unique timestamps created
using TS_UNIQUE_CREATE_ Procedure (H-Series RVUs Only) and returns a value
indicating their relationship. The header files for this procedure can be found in
cextdecs for C/C++ programs and in extdecs0 for pTAL programs.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

TS1 fixed

is a 16-byte unique timestamp returned by TS_UNIQUE_CREATE_ Procedure (H-
Series RVUs Only).

TS2 fixed

is the second 16-byte unique timestamp returned by TS_UNIQUE_CREATE_
Procedure (H-Series RVUs Only)

TS_UNIQUE_COMPARE returns these values:

TS_UNIQUE_COMPARE_ (short *TS1,
 short *TS2);

INT(32) PROC TS_UNIQUE_COMPARE_(TS1, TS2);
 EXTERNAL;

Return Value Definition

TS_LESS_THAN [0] The value of TS1 is less than the value of TS2.
This value is returned only if TS1 and TS2 are
created on the same CPU.

TS_IDENTICAL [1] The value of TS1 is identical to the value of TS2.
This value is returned only if TS1 and TS2 are
created on the same CPU.

TS_GREATER_THAN [2] The value of TS1 is greater than the value of
TS2. This value is returned only if TS1 and TS2
are created on the same CPU.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-15

TS_UNIQUE_COMPARE_ Procedure (H-Series
RVUs Only)

Consideration

• When timestamps are generated in different CPUs or on different systems in the
same EXPAND network you can use the TS_UNIQUE_CONVERT_TO_JULIAN_
procedure to compare timestamps and obtain a close-to-exact result.
TS_UNIQUE_CONVERT_TO_JULIAN_ allows you to extract the Julian
timestamps from the Unique Timestamp and compare them using the normal
compare operations. When using this method, the results are only as accurate as
the time synchronization between the CPUs. This method does not allow you to
determine which timestamp was created first when derived Julian timestamps are
equal.

TS_AMBIGUOUS [3] The values for TS1 and TS2 are nearly identical.
This value is returned when TS1 and TS2 are
created on the same system, but not the same
CPU. If TS1 and TS2 are created on different
systems, the difference in their creation time is
less than one minute.

TS_PROBABLY_LESS_THAN [4] The value of TS1 is probably less than the value
of TS2. This value is returned when TS1 and
TS2:

• Are created on the same system, but not the
same CPU. The difference in their creation
time is greater than one second. TS1 was
probably created before TS2.

 -or-

• Are created on different systems. The
difference in their creation time is probably
more than one minute. TS1 was probably
created before TS2.

TS_PROBABLY_GREATER_THAN
[5]

The value of TS1 is probably greater than the
value of TS2.This value is returned when TS1
and TS2:

• Are created on the same system, but not the
same CPU. The difference in their creation
time is greater than one second. TS1 was
probably created before TS2.

 -or-

• Are created on different systems. The
difference in their creation time is probably
more than one minute. TS1 was probably
created after TS2.

Return Value Definition

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-16

TS_UNIQUE_CONVERT_TO_JULIAN_ Procedure
(H-Series RVUs Only)

TS_UNIQUE_CONVERT_TO_JULIAN_
Procedure (H-Series RVUs Only)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameter

Summary
The TS_UNIQUE_CONVERT_TO_JULIAN_ procedure converts a Unique Timestamp
into a Julian timestamp. The header files for this procedure can be found in cextdecs
for C/C++ programs and in extdecs0 for pTAL programs.

Syntax for C Programmers

Syntax for TAL Programmers

Parameter

TS input

is a 16-byte unique timestamp returned by TS_UNIQUE_CREATE_ Procedure (H-
Series RVUs Only). The timestamp is returned for use with the
INTERPRETTIMESTAMP Procedure

JULIAN output

is a Julian timestamp.

TS_UNIQUE_CREATE_ Procedure (H-Series
RVUs Only)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example

TS_UNIQUE_CONVERT_TO_JULIAN_(short *TS,
 uint64 * Julian);

PROC TS_UNIQUE_CONVERT_TO_JULIAN_(TS, JULIAN);
 EXTERNAL;

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-17

TS_UNIQUE_CREATE_ Procedure (H-Series RVUs
Only)

Summary
The TS_UNIQUE_CREATE_ procedure returns a 128-bit timestamp that is unique to
the system it is generated on and any system in the same EXPAND network. The
header files for this procedure can be found in cextdecs for C/C++ programs and in
extdecs0 for pTAL programs.

The template definition of the unique 128-bit timestamp is:

STRUCT NSK_UNIQUETIMESTAMP128 (*);

 begin

 int(64) NS[0:1];

 end;

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

TS output

is a unique timestamp returned.

TS_UNIQUE_CREATE returns these values:

Note. The procedure calls, TS_UNIQUE_CONVERT_TO_JULIAN_ and
TS_UNIQUE_COMPARE_, also use the NSK_UNIQUETIMESTAMP128 structure template.

TS_UNIQUE_CREATE_(short *TS);

INT PROC TS_UNIQUE_CREATE_(TS) RESIDENT CALLABLE;
EXTERNAL;

Return Value Definition

FEOK [0] No error: The operation executed
successfully.

FEBOUNDSERR [22] One of the parameters specifies an address
that is out of bounds.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-18

UNLOCKFILE Procedure

Example
STRUCT TIMESTAMP(NSK_UniqueTimeStamp128);

ERR := TS_UNIQUE_CREATE_(TIMESTAMP);

IF ERR THEN

UNLOCKFILE Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
OSS Considerations
Example
Related Programming Manual

Summary
The UNLOCKFILE procedure unlocks a disk file and any records in that file currently
locked by the user. The “user” is defined either as the opener of the file (identified by
filenum) if the file is not audited—or the transaction (identified by the TRANSID) if
the file is audited. Unlocking a file allows other processes to access the file. It has no
effect on an audited file that has been modified by the current transaction.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

• The function value returned by UNLOCKFILE, which indicates the condition code,
can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

#include <cextdecs(UNLOCKFILE)>

_cc_status UNLOCKFILE (short filenum
 ,__int32_t tag);

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-19

UNLOCKFILE Procedure

Syntax for TAL Programmers

Parameters

filenum input

INT:value

is a number of an open file that identifies the file to be unlocked.

tag input

INT(32):value

is for nowait I/O only. tag is a value you define that uniquely identifies the
operation associated with this UNLOCKFILE.

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that the UNLOCKFILE was successful.

> (CCG) indicates that the file is not a disk file.

Considerations

• Nowait and UNLOCKFILE

The UNLOCKFILE procedure must complete with a corresponding call to the
AWAITIO[X] procedure when used with a file that is opened nowait.

• Locking queue

If any users are queued in the locking queue for the file, the process at the head of
the locking queue is granted access and is removed from the queue (the next read
or lock request moves to the head of the queue).

• If the next user in the locking queue is waiting to:

• lock the file or lock a record in the file, it is granted the lock (which excludes
other users from accessing the file) and resumes processing.

• read the file, its read is processed.

• Transaction Management Facility (TMF) and UNLOCKFILE

CALL UNLOCKFILE (filenum ! i
 ,[tag]); ! i

Note. The system stores the tag value until the I/O operation completes. The system then
returns the tag information to the program in the tag parameter of the call to AWAITIO[X],
thus indicating that the operation completed.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-20

UNLOCKREC Procedure

Locks on a file audited by TMF which has been modified by the current transaction
are released only when the transaction is ended or aborted by TMF; in other
words, a locked audited file which has been modified by the current transaction is
unlocked during an ENDTRANSACTION or ABORTTRANSACTION processing for
that file. An unmodified audited file is unlocked by UNLOCKFILE.

OSS Considerations

• This procedure operates only on Guardian objects. If an OSS file is specified,
error 2 is returned

Example
CALL UNLOCKFILE (SAVE^FILENUM);

Related Programming Manual
For programming information about the UNLOCKFILE file-system procedure, see the
Enscribe Programmer’s Guide and the Guardian Programmer’s Guide.

UNLOCKREC Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
OSS Considerations
Example
Related Programming Manual

Summary
The UNLOCKREC procedure unlocks a record currently locked by the user. The
“user” is defined either as the opener of the file (identified by filenum) if the file is not
audited—or the transaction (identified by the TRANSID) if the file is audited.
UNLOCKREC unlocks the record at the current position, allowing other users to
access that record. UNLOCKREC has no effect on a record of an audited file if that
record has been modified by the current transaction.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-21

UNLOCKREC Procedure

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

• The function value returned by UNLOCKREC, which indicates the condition code,
can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

Syntax for TAL Programmers

#include <cextdecs(UNLOCKREC)>

_cc_status UNLOCKREC (short filenum
 ,__int32_t tag);

CALL UNLOCKREC (filenum ! i
 ,[tag]); ! i

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-22

UNLOCKREC Procedure

Parameters

filenum input

INT:value

is the number of an open file that identifies the file containing the record to be
unlocked.

tag input

INT(32):value

is for nowait I/O only. tag is a value you define that uniquely identifies the
operation associated with this UNLOCKREC.

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates that the UNLOCKREC is successful.

> (CCG) indicates that the file is not a disk file.

Considerations

• File-opened nowait and UNLOCKREC

The UNLOCKREC procedure must complete with a corresponding call to the
AWAITIO[X] procedure when used with a file that is opened nowait.

• Queuing processes and UNLOCKREC

If any users are queued in the locking queue for the record, the user at the head of
the locking queue is granted access and is removed from the queue (the next read
or lock request moves to the head of the queue).

If the user granted access is waiting to lock the record, it is granted the lock (which
excludes other process from accessing the record) and resumes processing.

If the user granted access is waiting to read the record, its read is processed.

• Calling UNLOCKREC after KEYPOSITION

If the call to UNLOCKREC immediately follows a call to KEYPOSITION where a
nonunique alternate key is specified, the UNLOCKREC fails. A subsequent call to
FILE_GETINFO_ or FILEINFO shows that error 46 (invalid key) occurred.
However, if an intermediate call to READ or READLOCK is performed, the call to
UNLOCKREC is permitted.

Note. The system stores this tag value until the I/O operation completes. The system then
returns the tag information to the program in the tag parameter of the call to AWAITIO[X],
thus indicating that the operation completed.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-23

UNPACKEDIT Procedure

• Unlocking several records

If several records need to be unlocked, the UNLOCKFILE procedure can be called
to unlock all records currently locked by the user (rather than unlocking the records
through individual calls to UNLOCKREC).

• Current-state indicators after UNLOCKREC

For key-sequenced, relative, and entry-sequenced files, the current-state indicators
after an UNLOCKREC remain unchanged.

• File pointers after UNLOCKREC

For unstructured files, the current-record pointer and the next-record pointer
remain unchanged.

• Transaction Management Facility (TMF) and UNLOCKREC

A record that is locked in a file audited by TMF and has been modified by the
current transaction is unlocked when an ABORTTRANSACTION or
ENDTRANSACTION procedure is called for that file. Locks on modified records of
audited files are released only when the transaction is ended or aborted by TMF.
An unmodified audited record is unlocked by UNLOCKREC.

OSS Considerations

• This procedure operates only on Guardian objects. If an OSS file is specified,
error 2 is returned

Example
CALL UNLOCKREC (FILE^NUM);

Related Programming Manual
For programming information about the UNLOCKREC file-system procedure, see the
Enscribe Programmer’s Guide and the Guardian Programmer’s Guide.

UNPACKEDIT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Consideration

Summary
The UNPACKEDIT procedure converts a line image from EDIT packed line format into
unpacked format. The input value is a text string in packed format, which includes

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-24

UNPACKEDIT Procedure

blank compression codes; the returned value is the same text in unpacked format,
which can include sequences of blank characters.

UNPACKEDIT is an IOEdit procedure and is intended for use with files that have been
opened by OPENEDIT or OPENEDIT_.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

packed-line input

STRING .EXT:ref:*

is a string array that contains the line in packed format that is to be converted. The
length of packed-line is specified by the packed-length parameter.

packed-length input

INT:value

specifies the length in bytes of packed-line. The packed-length must be in
the range 1 through 256.

unpacked-line output

STRING .EXT:ref:*

is a string array that contains the line in unpacked format that is the outcome of the
conversion. The length of the unpacked line is returned in the unpacked-length
parameter.

#include <cextdecs(UNPACKEDIT)>

void UNPACKEDIT (const char *packed-line
 ,short packed-length
 ,char *unpacked-line
 ,short unpacked-limit
 ,short *unpacked-length
 ,[short spacefill]
 ,[short full-length]);

UNPACKEDIT (packed-line ! i
 ,packed-length ! i
 ,unpacked-line ! o
 ,unpacked-limit ! i
 ,unpacked-length ! o
 ,[spacefill] ! i
 ,[full-length]); ! i

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-25

USER_AUTHENTICATE_ Procedure

unpacked-limit input

INT:value

specifies the length in bytes of the string variable unpacked-line.

unpacked-length output

INT .EXT:ref:1

returns the actual length in bytes of the value returned in unpacked-line. If
unpacked-line is not large enough to contain the value that is the outcome of
the conversion, unpacked-length returns a value of -1.

spacefill input

INT:value

if present and not equal to 0, specifies that if the value returned in unpacked-
line is shorter than unpacked-limit, UNPACKEDIT should fill the unused part
of unpacked-line with space characters. Otherwise, UNPACKEDIT does
nothing to the unused part of unpacked-line.

full-length input

INT:value

if present and not equal to 0, specifies that all trailing space characters (if any) in
the line being processed should be retained in the output line and should be
counted in the value returned in unpacked-length. Otherwise, trailing space
characters are discarded and not counted in unpacked-length.

Consideration
If it contains many blank characters, it is possible that the unpacked line might require
much more memory than the packed line. To provide for this, you should specify a
value for unpacked-limit that is at least fifteen times the value of than packed-
length.

USER_AUTHENTICATE_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Safeguard Considerations
OSS Considerations
Example
Related Programming Manuals

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-26

USER_AUTHENTICATE_ Procedure

Summary
The USER_AUTHENTICATE_ procedure verifies that a user exists and optionally logs
on the user. This procedure should be called in a dialog mode to allow a dialog
between the security mechanism and the application.

Syntax for C Programmers

• CEXTDECS (via the included file TNSINTH) defines 32-bit values as the typedef
__int32_t which for TNS and TNS/R compiles is defined as long and for TNS/E
compiles is defined as int.

#include <cextdecs(USER_AUTHENTICATE_)>

short USER_AUTHENTICATE_
 (char *inputtext
 ,short inputtext-len
 ,[short options]
 ,[__int32_t *dialog-id]
 ,[short *status]
 ,[short *status-flags]
 ,[char *displaytext]
 ,[short displaytext-maxlen]
 ,[short *displaytext-len]
 ,[short cmon-timeout]
 ,[char *termname]
 ,[short termname-len]
 ,[char *volsubvol]
 ,[short volsubvol-maxlen]
 ,[short *volsubvol-len]
 ,[char *initdir]
 ,[short initdir-maxlen]
 ,[short *initdir-len]
 ,[char *initprog]
 ,[short initprog-maxlen]
 ,[short *initprog-len]
 ,[short *initprog-type]
 ,[__int32_t *last-logon-time]
 ,[__int32_t *time-password-expires]);

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-27

USER_AUTHENTICATE_ Procedure

Syntax for TAL Programmers

Parameters

error returned value

INT

returns an error number indicating the outcome of the call. Common errors
returned are:

0 No error.

13 Invalid termname parameter.

22 Parameter out of bounds. An input parameter is not within the valid range,
or return information does not fit into the length of the space provided, or
an output parameter overlays the stack marker that was created by calling
this procedure.

29 Missing parameter. Either this procedure is called without specifying
inputtext:inputtext-len, or a parameter required by another
parameter is not specified.

48 Security violation. The user specified in inputtext:inputtext-len is
undefined, or an error occurred during a dialog with the Safeguard product.
For detailed error information, see the status parameter.

70 Continue dialog. For detailed information on how to set the inputtext
parameter in the next call to USER_AUTHENTICATE_, see the status
parameter.

160 Invalid dialog-id parameter, invalid protocol, or dialog has exceeded
two minutes.

error := USER_AUTHENTICATE_
 (inputtext:inputtext-len ! i:i
 ,[options] ! i
 ,[dialog-id] ! i,o
 ,[status] ! o
 ,[status-flags] ! o
 ,[displaytext:displaytext-maxlen] ! o:i
 ,[displaytext-len] ! o
 ,[cmon-timeout] ! i
 ,[termname:termname-len] ! i:i
 ,[volsubvol:volsubvol-maxlen] ! o:i
 ,[volsubvol-len] ! o
 ,[initdir:initdir-maxlen] ! o:i
 ,[initdir-len] ! o
 ,[initprog:initprog-maxlen] ! o:i
 ,[initprog-len] ! o
 ,[initprog-type] ! o
 ,[last-logon-time] ! o
 ,[time-password-expires]); ! o

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-28

USER_AUTHENTICATE_ Procedure

563 The text to be returned in the displaytext parameter is longer than the
length specified by the displaytext-maxlen parameter.

590 Two or more parameters provided are incompatible.

1554 Exceeded the maximum number of allowed concurrent requests.

For more information on file-system error messages, see the Guardian Procedure
Errors and Messages Manual.

inputtext:inputtext-len input:input

STRING .EXT:ref:*, INT:value

specifies a user and password command string. If a dialog is not desired,
inputtext must contain all the information necessary to complete the user
authentication in a single call to the procedure.

inputtext-len specifies the length of the string variable inputtext in bytes.
Only the first 256 characters of the string are used. This procedure does not return
an error if the string exceeds 256 bytes in length.

For information on how to set inputtext to authenticate a user, log on, or change a
password, see Considerations.

options input

INT:value

specifies additional requests of the USER_AUTHENTICATE_ procedure.

The bits, when set to 1, are defined as follows:

<0:1> Reserved (to be specified as 0).

<2> Enable PRIV-LOGON for users or aliases. It allows the programfile to
logon as a user or alias when password is not supplied. No time delay is
enforced on failure of USER_AUTHENTICATE_ to verify the user or alias
with an invalid password.

<3> Reserved (specify 0).

<4> This bit is applicable only while setting and changing the long password
(contains more than eight characters) using the USER_AUTHENTICATE_
procedure call. On all other events, this bit is ignored.

<5:6> Reserved (specify 0).

<7> Require password for all users (including the super ID).

<8> This bit must be set if USER_AUTHENTICATE_ is not being used in dialog
mode (that is, only a single call to USER_AUTHENTICATE_ is being done)
and either the blind logon bit is set or Safeguard is configured for blind
logon. Otherwise, USER_AUTHENTICATE_ returns with error equal to
48 (security violation) and status equal to 4.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-29

USER_AUTHENTICATE_ Procedure

<9> Send $CMON the Prelogon^msg message (-59). This bit is valid either
when Safeguard software is running and configured with CMON ON or
when Safeguard software is not running.

<10> Send $CMON the Logon^msg message (-50). This bit is valid either when
Safeguard software is running and configured with CMON ON or when
Safeguard software is not running.

<11> Do not allow the super ID to log on.

<12> Do not allow a logon with a NonStop operating system user ID. When
Safeguard software is running, the user can log on specifying either a
member name or an alias. When Safeguard software is not running, the
user can log on specifying a member name.

<13> Require blind logon. Setting this bit has the same effect as configuring
BLINDLOGON using the Safeguard product. Passwords in inputtext are
ignored unless bit 8 is set to assert that password echoing did not occur.
Setting this bit is effective only on the first call of a dialog; it is ignored on
the second or subsequent call.

If blind logon is set in bit 13 or configured using the Safeguard product, and
a password is provided in inputtext, and bit 8 is set, authentication
finishes in one call to USER_AUTHENTICATE_. If bit 8 is not set, then
the outcome depends on dialog-id:

• If dialog-ID is supplied, then even if a password is provided in
inputtext, USER_AUTHENTICATE_ returns with error equal to 70
and status equal to 4 to indicate that the password must be supplied
in the next call to USER_AUTHENTICATE.

• If dialog-id is not supplied and a password is supplied in inputtext,
then the USER_AUTHENTICATE_ returns with error equal to 48 and
status equal to 4 to indicate a security violation.

<14> Do not log on if $CMON has an error or timeout. Setting this bit has the
same effect as configuring Safeguard software with CMON ON and
CMONERROR DENY. This bit has meaning only if CMON communication
is attempted (either bit 9 or bit 10 is set, or the Safeguard software is
configured with CMON ON).

<15> Log on and update the process’s attributes to reflect the user’s attributes.
Following a successful logon with this procedure, the calling process is
considered local with respect to the system on which it is running. Note
that authentication occurs without logon when this bit is set to 0.

The default value is 0, which requests that the specified user be authenticated
without logon, additional restrictions, or requests.

dialog-id input,output

FIXED .EXT:ref:1

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-30

USER_AUTHENTICATE_ Procedure

specifies the identifier of the dialog and allows an authentication to take place over
multiple calls to the procedure. To begin a dialog with USER_AUTHENTICATE_,
set dialog-id to 0F. Use the dialog-id returned on each subsequent call to
USER_AUTHENTICATE_ to continue the dialog. Error 70 (continue authentication
dialog) is returned on each such call along with a status value that indicates the
next required piece of information. The default value is 0F.

If dialog-id is not passed to USER_AUTHENTICATE_, then dialogs that require
more than one call to USER_AUTHENTICATE_ are not possible. Error 48
(security violation) is returned instead of error 70. On return, status contains the
same value as would have been returned with error 70.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-31

USER_AUTHENTICATE_ Procedure

status output

INT .EXT:ref:1

returns a value providing more information when error is 0, 48, or 70. status
values are described in these three tables:

Values returned for error = 0 (no error):

Values returned for error = 48 (security violation):

status Description

0 No status.

8 Password is valid but it is about to expire. Caller should return
caution message.

22 The password is about to expire, and the caller has sent the new
password (oldpassword, newpassword, newpassword).
USER_AUTHENTICATE_ successfully changes the password to
newpassword.

23 Long password is specified when the PASSWORD-COMPATIBILITY-
MODE is set to ON. First eight characters of the specified password
are accepted as the new password.

status Description

1 User does not exist or password is incorrect.

2 Cannot authenticate with user ID because (1) options bit <12> is set
to 1 and a Guardian user-id is passed, or (2) options bit <12> is set
to 0 and a numeric Guardian user-id is passed and the SAFEGUARD
NAMELOGON option is set to ON.

3 $CMON rejected the logon.

4 Conditions for a blind logon are not satisfied. This status bit is set
when blind logon is configured (either through Safeguard software or
using options.<13>), dialog-id is not provided, and options.<8>
is not set.

5 Authentication record frozen.

6 Authentication record expired.

9 dialog-id was not provided. Caller should set dialog-id correctly
and call USER_AUTHENTICATE_ again, with the same parameters.

10 dialog-id was not provided. Caller should set dialog-id correctly
and call USER_AUTHENTICATE_ again, with the same parameters.

11 dialog-id was not provided. Caller should set dialog-id correctly
and call USER_AUTHENTICATE_ again, with the same parameters.

12 dialog-id was not provided. Caller should set dialog-id correctly
and call USER_AUTHENTICATE_ again, with the same parameters.

13 Password change request: new password is too short. New
password is rejected.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-32

USER_AUTHENTICATE_ Procedure

Values returned for error = 70 (continue dialog):

status-flags output

INT .EXT:ref:1

The bits, when set to 1, are defined as follows:

<0:14> Reserved.

14 Password change request: new password is too long. New
password is rejected.

15 Password change request: new password does not conform to
password history (password cannot be reused). New password is
rejected.

16 Password change request: new password does not conform to
password quality. New password is rejected.

17 Password change request: new password contains blank characters.
New password is rejected.

18 Password change request: new password is not verified. The first
new password provided is not the same as the second new password
provided.

19 Password change request: change cannot made during the allowed
time period. Password change request is rejected.

20 Password change request: change is denied due to a system error.
Retry later.

21 Cannot authenticate the super ID because options bit <11> is set to
1.

22 Cannot authenticate user because options bit <8> is not set,
password is not present in the inputtext and dialog-id is not
provided to USER_AUTHENTICATE_ when safeguard is not running.

status Description

4 Caller should set inputtext to a password in the next call to
USER_AUTHENTICATE_ to either log on or begin a password
change.

9 Caller should set inputtext to a new password in the next call to
USER_AUTHENTICATE_ to change the password.

11 Caller must set inputtext to a new password in the next call to
USER_AUTHENTICATE_ to change the password, because the
password has expired but the grace period is in effect. If the
password is not changed, the user is not authenticated or logged on.

12 Caller should set inputtext to a new password in the next call to
USER_AUTHENTICATE_ to verify the new password.

status Description

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-33

USER_AUTHENTICATE_ Procedure

<15> Caller should disable echo (with a SETMODE 20) for password input
before the next call during this dialog with USER_AUTHENTICATE_.

displaytext:displaytext-maxlen output:input

STRING .EXT:ref:*, INT:value

if present and if displaytext-maxlen is not 0, returns a string, up to
displaytext-maxlen bytes in length, representing one or more lines of logon
dialog display text. Each line of text is preceded by a 16-bit length that is 16-bit
aligned. The last line of text is followed by a byte length of 0 to indicate that there
are no more display lines. Display text, generated by $CMON or Safeguard
software, can be returned anytime during a dialog.

displaytext-maxlen is a value in the range 0 through 2048.

This parameter pair is required if displaytext-len is specified.

displaytext-len output

INT .EXT:ref:1

if displaytext is returned, contains its actual length in bytes.

This parameter is required if displaytext:displaytext-maxlen is specified.

cmon-timeout input

INT:value

specifies how many seconds the procedure should wait for $CMON to respond
with pre-logon and logon messages. A value of 0 causes the procedure to wait
indefinitely. The default value is 30 seconds. This parameter is ignored when
Safeguard software is running.

termname:termname-len input:input

STRING .EXT:ref:*, INT:value

if supplied and if termname-len is not 0, is a file name that specifies the terminal
for interaction with the security mechanism. If used, the value of termname must
be exactly termname-len bytes long. If termname is partially qualified, it is
resolved using the =_DEFAULTS DEFINE.

The default value is the home terminal of the caller.

volsubvol:volsubvol-maxlen output:input

STRING .EXT:ref:*, INT:value

if present and if volsubvol-maxlen is not 0, returns the name of the default
volume and subvolume inherited by the specified user when a logon session is
initiated. This information is returned in external form.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-34

USER_AUTHENTICATE_ Procedure

volsubvol-maxlen specifies the length of the string variable volsubvol in
bytes.

This parameter pair is required if volsubvol-len is specified.

volsubvol-len output

INT .EXT:ref:1

if volsubvol is returned, contains its actual length in bytes.

This parameter is required if volsubvol:volsubvol-maxlen is specified.

initdir:initdir-maxlen output:input

STRING .EXT:ref:*, INT:value

if present and if initdir-maxlen is not 0, returns the OSS pathname for the
initial working directory for the specified user in an OSS environment.

initdir-maxlen specifies the length of the string variable initdir in bytes.

This parameter pair is required if initdir-len is specified.

initdir-len output

INT .EXT:ref:1

if initdir is returned, contains its actual length in bytes.

This parameter is required if initdir:initdir-maxlen is specified.

initprog:initprog-maxlen output:input

STRING .EXT:ref:*, INT:value

if present and if initprog-maxlen is not 0, returns the OSS pathname for the
initial program of the specified user in an OSS environment.

initprog-maxlen specifies the length of the string variable initprog in bytes.

You must either specify all of these parameters or specify none of them:
initprog:initprog-maxlen, initprog-len, and initprog-type.

initprog-len output

INT .EXT:ref:1

if initprog is returned, contains its actual length in bytes.

You must either specify all of these parameters or specify none of them:
initprog:initprog-maxlen, initprog-len, and initprog-type.

initprog-type output

INT .EXT:ref:1

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-35

USER_AUTHENTICATE_ Procedure

returns 1 to indicate that the initial program type for the specified user in an OSS
environment is an OSS program. Other values might be added in future RVUs.

You must either specify all of these parameters or specify none of them:
initprog:initprog-maxlen, initprog-len, and initprog-type.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-36

USER_AUTHENTICATE_ Procedure

last-logon-time output

FIXED .EXT:ref:1

returns the Julian timestamp of when the specified user last logged on. If the
specified user has never logged on, 0F is returned.

time-password-expires output

FIXED .EXT:ref:1

returns the Julian timestamp of when the password of the specified user expires. If
either the password cannot be changed at the time USER_AUTHENTICATE_ is
called or the password has no expiration date, 0F is returned.

Considerations

• Conducting a dialog

A dialog allows the application to interact with the security mechanism. To initiate
a dialog, set dialog-id to 0F and set inputtext to user name.
USER_AUTHENTICATE_ returns a new dialog-id to identify the next
interaction with the procedure, returns error 70 to indicate a dialog, and a
status value indicating the type of information that inputtext should have in the
next call.

• Setting inputtext to authenticate a user and optionally log on

To authenticate a user and to optionally log on, the call to
USER_AUTHENTICATE_ must provide a user and usually a password. In this
RVU, the user and password can be specified in inputtext as follows:

"user, password"

user is specified in inputtext by user name, user ID, or alias. A user ID cannot
be specified when options bit <12> is set to 1. An alias cannot be specified
when Safeguard software is not running.

During a dialog, for example, inputtext can specify the user in the first call and
the password in the second call.

• Setting inputtext to authenticate a user, log on, and change the password

In this RVU, to log on a user and change a password, the call to
USER_AUTHENTICATE_ must provide a user, a password, and two matching new
passwords. A password can be changed only if Safeguard software is running.
This information is specified in inputtext as follows:

"user, password, newpassword, newpassword"

Note. An application should conduct a dialog with the security mechanism and determine the
content of inputtext by the returned value of status when error is 70. The content of
inputtext can change from RVU to RVU, so authentication in a single call to
USER_AUTHENTICATE_ cannot be guaranteed.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-37

USER_AUTHENTICATE_ Procedure

During a dialog, inputtext can specify the information in multiple calls. This
example shows how inputtext could be set in three successive calls:

1. inputtext = “user”
2. inputtext = “password,”
3. inputtext = “newpassword, newpassword”

• Spaces in passwords

Blank spaces are not allowed in password. For example,

“ This is NOT a valid password” Invalid

“This password has too many embedded spaces” Invalid

“This password is not valid “ Invalid

• Authenticating a user

If authentication without logon is requested (options bit <15> is 0),
USER_AUTHENTICATE_ authenticates the user, but you cannot assume that
user’s identity and you cannot log on. You must supply a password even if you do
not request a logon unless:

• You are the super ID (and options.<7> is not set to 1).

• You are the group manager (*,255) (and options.<7> is not set to 1).

• You are a user inquiring about yourself (and options.<7> is not set to 1).

• Logging on

If authentication with logon is requested (options bit <15> is set to 1) and
Safeguard software is running, and if the Safeguard parameter PASSWORD-
REQUIRED is set to ON, you can assume that user’s ID if:

• You know the user’s password.

Alternatively, if authentication with logon is requested (options bit <15> is set to
1) and either Safeguard software is running, and the Safeguard parameter
PASSWORD-REQUIRED is set to OFF or Safeguard software is not running, you
can assume that user’s ID if:

• You are the super ID (and options.<7> is not set to 1).

• You are the group manager (*,255) (and options.<7> is not set to 1).

• You know the user’s password.

If any of these conditions are met, then your process access ID and creator access
ID changes, you become a local user, and your default file security changes to
what is established for the specified user.

• Disabling special authentication and logon privileges of the super ID and the group
manager

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-38

USER_AUTHENTICATE_ Procedure

If authentication is required regardless of who is executing the calling process, set
options.<7> to 1. Setting this option overrides the special rules that otherwise
allow the super ID or group manager to perform authentication or logon without
providing the correct password. The effects of this option are enforced irrespective
of whether Safeguard software is active and irrespective of whether
options.<15> is set.

This bit enables server processes running as the super ID to check a requester’s
password without being able logon.

• Incorrect password timeout

When Safeguard software is running, the number of times that a process can pass
an invalid password to USER_AUTHENTICATE_ before the process is suspended
and the length of time that the process is suspended are set during Safeguard
configuration.

When Safeguard software is not running, any process that passes an invalid
password to USER_AUTHENTICATE_ for the third time is suspended for 60
seconds.

Following are the additional considerations:

• Setting the options bit 2 enables the privlogon functionality. This bit in
conjunction with the value specified by bit 15 denotes the nature of privlogon
requested. In systems where Safeguard is running a program file that invokes the
USER_AUTHENTICATE_() with options bit 2 and 15 set to 1, and whose
Safeguard disk-file attribute, PRIV-LOGON, is set to ON, may request for a
successful logon without supplying a password. Similarly, a program file that
invokes the USER_AUTHENTICATE_() with options bit 2 set to 1 and 15 set to
0, and whose Safeguard disk-file attribute, PRIV-LOGON, is set to ON, is not
subjected to a time delay on supplying an incorrect password during
authentication. The table below summarizes the functionalities:

Bit 2 Bit 15 Functionality

1 1 Privlogon (logon without
passwords)

1 0 Privlogon (authenticate-only
with no delay imposed on
supplying incorrect password
when Safeguard is up)

0 1 Regular logon (password
necessary for logon)

0 0 Regular authenticate-only
(time delay imposed on failure
of successive password
verification attempts)

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-39

USER_AUTHENTICATE_ Procedure

• If a privlogon is requested through setting the options bit 2 and 15 to 1, when
Safeguard software is running, and the PRIV-LOGON disk-file attribute of the
programfile that invokes the USER_AUTHENTICATE_() is set to ON, the setting
of bits 4, 7, 8, 9, 10, 12, 13 or 14 to ON is ignored.

• In systems where Safeguard is not running, a licensed program file that invokes
USER_AUTHENTICATE_ () with options bit 2 and 15 set to 1, may request for a
successful logon without supplying a password. However, a licensed program file
invoking USER_AUTHENTICATE_ () with options bit 2 set to 1 and bit 15 set to
0, is subjected to a time delay on supplying a wrong password.

• A password change request should not be specified during a privlogon request.
The password change request is ignored and the password is not changed, when
privlogon is requested through setting the options bit 2 and 15 to 1, when
Safeguard software is running and the PRIV-LOGON disk-file attribute of the
programfile that invokes the USER_AUTHENTICATE_() is set to ON.

Safeguard Considerations
If the Safeguard software has BLINDLOGON configured, USER_AUTHENTICATE_
enforces blind logon regardless of the setting of options bit <13> for blind logon.

OSS Considerations

• The initdir parameter indicates the OSS pathname for the initial working
directory for the specified user in an OSS environment.

• The initprog parameter returns the OSS pathname for the initial program for the
specified user in an OSS environment.

Example
This example shows how a user can be logged on and how to handle errors.

1. Set these parameters and call USER_AUTHENTICATE_:

inputtext = user name
options = bit <15> is set to 1
dialog-id = 0F

2. If error = 70 and status = 4, then prompt the user for a password, disable echo
with SETMODE 20, set these parameters, and call USER_AUTHENTICATE_:

inputtext = password
dialog-id = value of dialog-id returned from the previous call

3. Check error and status return values and enable echo with SETMODE 20.

Note. This information is supported only on systems running H06.19 and later H-series
RVUs.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-40

USER_GETINFO_ Procedure

• If error = 0 and status = 0, then the specified user is logged on.

• If error = 0 and status = 8, then the specified user is logged on but the
password is about to expire. The caller displays a message telling the user to
change the password by the time-password-expires value.

• If error = 0 and status = 22, then the specified user is logged on. The
password was about to expire, and since the caller already passed in the new
password along with the current password (password, newpassword,
newpassword), the password was successfully changed to newpassword.

• If error = 0 and status = 23, then the specified password is long and the
PASSWORD-COMPATIBILITY-MODE is set to ON. The first 8 characters of
the specified password have been accepted as the new password. If the longer
password contains the embedded blank spaces and invalid characters even
after the 8th place, the password will be rejected though the PASSWORD-
COMPATIBILITY-MODE is set to ON.

• If error = 70 and status = 11, then the specified user is not logged on
because the password has expired. The caller displays a message telling the
user that logon is denied due to password expiration. Another application could
continue the dialog and prompt for a new password sequence.

Related Programming Manuals
For programming information on the command-interpreter monitor process ($CMON),
see the Guardian Programmer’s Guide. For more information on the Safeguard
product, see the Safeguard Reference Manual.

USER_GETINFO_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
OSS Considerations
Example

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-41

USER_GETINFO_ Procedure

Summary
The USER_GETINFO_ procedure returns the default attributes of the specified user.
The user can be identified by user name, by user ID, or if Safeguard software is
running, by alias.

Syntax for C Programmers

Note. In the TNS/E environment the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(USER_GETINFO_)>

short USER_GETINFO_
 ([char *user-name]
 ,[short user-maxlen]
 ,[short *user-curlen]
 ,[__int32_t *user-id]
 ,[short *is-alias]
 ,[short *group-count]
 ,[__int32_t *group-list]
 ,[__int32_t *primary-group]
 ,[char *volsubvol]
 ,[short volsubvol-maxlen]
 ,[short *volsubvol-len]
 ,[char *initdir]
 ,[short initdir-maxlen]
 ,[short *initdir-len]
 ,[char *initprog]
 ,[short initprog-maxlen]
 ,[short *initprog-len]
 ,[short *default-security])
 ,[char *desc-field-text]
 ,[short desctxtfld-maxlen]
 ,[short *desctxt-len]
 ,[char *desc-field-bin]
 ,[short descbinfld-maxlen]
 ,[short *descbin-len]);

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-42

USER_GETINFO_ Procedure

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the call. Common
errors returned are:

0 No error. Default user information is returned as requested.

11 Record not in file. The specified user name or user ID is undefined.

22 Parameter out of bounds. An input parameter is not within the valid range,
or return information does not fit into the length of the space provided, or
an output parameter supplied overlays the stack marker that was created
by calling this procedure.

29 Missing parameter. This procedure was called without specifying a
required parameter.

590 Bad parameter value. The value specified in user-curlen is greater
than the value specified in user-maxlen, or the value specified in
user-curlen is not within the valid range, or the value specified in
user-id is not within the valid range.

For more information on file-system error messages, see the Guardian Procedure
Errors and Messages Manual.

error := USER_GETINFO_
 ([user-name:user-maxlen] !
i,o:i
 ,[user-curlen] ! i,o
 ,[user-id] ! i,o
 ,[is-alias] ! o
 ,[group-count] ! o
 ,[group-list] ! o
 ,[primary-group] ! o
 ,[volsubvol:volsubvol-maxlen] ! o:i
 ,[volsubvol-len] ! o
 ,[initdir:initdir-maxlen] ! o:i
 ,[initdir-len] ! o
 ,[initprog:initprog-maxlen] ! o:i
 ,[initprog-len] ! o
 ,[default-security]); ! o
 ,[desc-field-text:desctxtfld-maxlen]!o:i
 ,[desctxt-len] !o
 ,[desc-field-bin:descbinfld-maxlen] !o:i
 ,[descbin-len]) !o

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-43

USER_GETINFO_ Procedure

user-name:user-maxlen input, output:input

STRING .EXT:ref:*, INT:value

on input, if present and if user-curlen is not 0, specifies the user name or alias
for which the default information is to be returned.

On output, if user-id is specified, this parameter returns the corresponding user
name; otherwise, it remains unchanged from input.

user-name is passed, and returned, in one of two forms:

groupname.membername

The group name and member name are each up to 8 alphanumeric
characters long, and the first character must be a letter. The group
name and member name are separated by a period (.).

alias

The alias is a case-sensitive string made up of 1 through 32
alphanumeric characters, periods (.), hyphens (-), or underscores (_).
The first character must be alphanumeric.

The user-maxlen parameter specifies the length of the string variable user-
name in bytes.

This parameter pair is required if user-curlen is specified.

user-curlen input, output

INT .EXT:ref:1

on input, if user-name is specified, contains the actual length of user-name in
bytes. A value of 0 indicates that user-name is treated as an output parameter
and user-id is treated as an input parameter. The default value is 0.

On output, if user-name is returned, this parameter contains the actual length in
bytes.

This parameter is required if user-name:user-maxlen is specified.

user-id input, output

INT(32) .EXT:ref:1

on input, if user-curlen is 0 or omitted, specifies the user ID for which the
default information is to be returned.

On output, this parameter returns the user ID corresponding to the specified
user-name.

The user ID is a value in the range 0 through 65,535, where the low-order two
bytes, that is, the third and fourth bytes from the left, identify the group and the
member respectively.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-44

USER_GETINFO_ Procedure

is-alias output

INT .EXT:ref:1

indicates whether a user name or an alias is supplied in user-name. This
parameter returns these values:

-1 user-name is an alias.

 0 user-name is a user name.

group-count output

INT .EXT:ref:1

returns the number of groups to which the specified user belongs. group-count
is the number of valid elements in group-list.

group-list output

INT(32) .EXT:ref:32

returns a 32-element list containing the group IDs of the groups to which the
specified user belongs. A user can belong to a minimum of one group, the primary
group, and to a maximum of 32 groups. group-list contains group-count
group IDs.

primary-group output

INT(32) .EXT:ref:1

returns the user’s primary group ID.

volsubvol:volsubvol-maxlen output:input

STRING .EXT:ref:*, INT:value

if present and if volsubvol-maxlen is not 0, returns the name of the default
volume and subvolume inherited by the specified user when a logon session is
initiated. This information is returned in external form.

volsubvol-maxlen specifies the length of the string variable volsubvol in
bytes.

This parameter pair is required if volsubvol-len is specified.

volsubvol-len output

INT .EXT:ref:1

if volsubvol is returned, contains its actual length in bytes.

This parameter is required if volsubvol:volsubvol-maxlen is specified.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-45

USER_GETINFO_ Procedure

initdir:initdir-maxlen output:input

STRING .EXT:ref:*, INT:value

if present and if initdir-maxlen is not 0, returns the OSS pathname for the
initial working directory for the specified user in an OSS environment.

initdir-maxlen specifies the length of the string variable initdir in bytes.

This parameter pair is required if initdir-len is specified.

initdir-len output

INT .EXT:ref:1

if initdir is returned, contains its actual length in bytes.

This parameter is required if initdir:initdir-maxlen is specified.

initprog:initprog-maxlen output:input

STRING .EXT:ref:*, INT:value

if present and if initprog-maxlen is not 0, returns the OSS pathname for the
initial program for the specified user in an OSS environment.

initprog-maxlen specifies the length of the string variable initprog in bytes.

This parameter pair is required if initprog-len is specified.

initprog-len output

INT .EXT:ref:1

if initprog is returned, contains its actual length in bytes.

This parameter is required if initprog:initprog-maxlen is specified.

default-security output

INT .EXT:ref:1

if present, returns the default file security to be used when a new file is created
under the specified user ID. This information is returned in the form:

<0:3> reserved
<4:6> read
<7:9> write
<10:12> execute
<13:15> purge

where the legitimate fields are encoded with numbers that represent this
information:

0 A (any local user)
1 G (any local group member)
2 O (only the local owner)

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-46

USER_GETINFO_ Procedure

3 not used
4 N (any network user)
5 C (any network group/community user)
6 U (only the network owner)
7 - (only the local super ID)

These parameters are supported in G06.27 and all subsequent G-series RVUs.

 desc-field-text:desctxtfld-maxlen output:input

STRING .EXT:ref:*, INT:value

If present and when desctxtfld-maxlen is not zero, returns the contents of the
textual description field of the specified user/alias.

 desctxt-len output

 INT .EXT:ref:*

Returns the actual length of the specified user’s textual description field. This
parameter is required when desc-field-text:desctxtfld-maxlen is specified.

desc-field-bin:descbinfld-maxlen output:input

STRING .EXT:ref:*, INT:value

If present and when descbinfld-maxlen is not zero, returns the contents\of
binary description field of the specified user/alias.

 descbin-len output

INT .EXT:ref:*

Returns the actual length of the specified user’s binary description field. This
parameter is required, when desc-field-bin:descbinfld-maxlen is
specified.

Considerations

• Either user-id or user-name must be supplied. If both parameters are supplied
and user-curlen is greater than zero, then user-name is used and user-id is
treated as an output parameter. In this case, no attention is paid to the current
contents of the user-id parameter.

• For information on aliases or groups other than the primary group, or for OSS
information, Safeguard software must be installed. For more information on the
Safeguard product, see the Safeguard Reference Manual.

OSS Considerations

• The initdir parameter indicates the OSS pathname for the initial working
directory for the specified user in an OSS environment.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-47

USER_GETNEXT_ Procedure

• The initprog parameter returns the OSS pathname for the initial program for the
specified user in an OSS environment.

Example
REALLEN := 0;
ERROR := USER_GETINFO_ (USERNAME:MAXLEN, REAL^LEN, USER^ID);
 ! Get the username corresponding to a user ID

USER_GETNEXT_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations
Example

Summary
The USER_GETNEXT_ procedure returns the next user name or alias in the order in
which it is stored by the security mechanism in effect. On successive calls, all user
names and aliases can be obtained.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the call. Common
errors returned are:

#include <cextdecs(USER_GETNEXT_)>

short USER_GETNEXT_ ([char *user-name]
 ,[short user-maxlen]
 ,[short *user-curlen]
 ,[short *is-alias]);

error := USER_GETNEXT_ (user-name:user-maxlen ! i,o:i
 ,user-curlen ! i,o
 ,is-alias); ! i,o

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-48

USER_GETNEXT_ Procedure

0 No error.

11 Record not in file. The specified user-name is undefined.

22 Parameter out of bounds. An input parameter is not within the valid range,
or return information does not fit into the length of the space provided, or
an output parameter overlays the stack marker that was created by calling
this procedure.

29 Missing parameter. This procedure was called without specifying all
parameters.

590 Bad parameter value. Either the value specified in user-curlen is
greater than the value specified in user-maxlen or the value specified in
user-curlen is not within the valid range.

For more information on file-system error messages, see the Guardian Procedure
Errors and Messages Manual .

user-name:user-maxlen input, output:input

STRING .EXT:ref:*, INT:value

on input, specifies a character string that precedes the next user-name to be
returned. user-maxlen specifies the length of the string variable user-name in
bytes. To obtain the first user name or alias, set user-curlen to 0.

On output, this parameter returns the user name or alias that follows the user-
name specified as the input parameter.

user-curlen input, output

INT .EXT:ref:1

on input, if user-name is specified, contains the actual length of user-name in
bytes. To obtain the first user name or alias, set user-curlen to 0.

on output, returns the actual length of user-name in bytes.

is-alias input, output

INT .EXT:ref:1

on input, indicates whether the user-name input parameter contains a user name
or an alias. This parameter can be set to these values:

 0 user-name is a user name.

non-zero user-name is an alias.

On output, indicates whether the user-name output parameter contains a user
name or an alias. This parameter returns these values:

 -1 user-name is an alias.

 0 user-name is a user name.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-49

USER_GETNEXT_ Procedure

Considerations

• Aliases are defined only when Safeguard software is installed.

• This procedure returns a user name when is-alias is set to 0 on input and when
is-alias returns 0 on output.

• This procedure returns an alias when is-alias is not set to 0.

• When the names are returned, user names are returned first and aliases are
returned last. Furthermore, the return sequence is not circular: a user name never
follows an alias. User names are not returned in any particular order, and the
order can change from one RVU to the next. Similarly, aliases are not returned in
any particular order and the order can change from one RVU to the next.

Example
! put all user names on a system into name^list and
! put all aliases on a system into alias^list
error := 0;
is^alias := 0;
name^entry := 0;
search^len := 0;
WHILE (error <> 0 and NOT is^alias) DO
 BEGIN
 error := USER_GETNEXT_
 (search^name:32, search^len, is^alias);
 name^list[name^entry].name ‘:=‘
 search^name FOR search^len BYTES;
 name^list[name^entry].len := search^len;
 name^entry := name^entry + 1;
 END;

IF is^alias THEN
 BEGIN
 alias^entry := 0;
 search^len := 0;
 ! decrement name^entry, because it was an alias
 name^entry := name^entry - 1;
 WHILE (error <> 0) DO
 BEGIN
 error := USER_GETNEXT_
 (search^name:32, search^len, is^alias);
 alias^list[alias^entry].alias ‘:=‘
 search^name FOR search^len BYTES;
 alias^list[alias^entry].len := search^len;
 alias^entry := alias^entry + 1;
 END;
 END;

IF error THEN
 BEGIN
 ! do error handling
 END

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-50

USERDEFAULTS Procedure
(Superseded by USER_GETINFO_ Procedure)

USERDEFAULTS Procedure
(Superseded by USER_GETINFO_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Example

Summary

USERDEFAULTS returns the default attributes of the specified user, such as the user’s
default volume/subvolume and default file security. This same information is also
available through VERIFYUSER; however, USERDEFAULTS is not restricted by
security or password-validation considerations.

Syntax for C Programmers
USERDEFAULTS does not return condition codes when called from a C program.

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the call. Common
errors returned are:

0 No error. Default user information is returned as requested.

1 End-of-file. The specified user ID or user name is undefined.

22 Parameter out of bounds. One of the parameters supplied overlays the
stack marker that was created by calling this procedure.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development. This procedure does not support aliases or groups.

error := USERDEFAULTS ([user-id] ! i
 ,[user-name] ! i,o
 ,[volsubvol] ! o
 ,[filesecur]); ! o

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-51

USERDEFAULTS Procedure
(Superseded by USER_GETINFO_ Procedure)

29 Missing parameter. This procedure was called without specifying one of
the required parameters (either user-id or user-name).

For more information on file-system error messages, see the Guardian Procedure
Errors and Messages Manual .

user-id input

STRING .EXT:ref:2

specifies the user ID for which the default information is to be retrieved. Either
user-id or user-name must be specified; if both are supplied, then user-name
returns the user name corresponding to user-id. The user ID is passed in the
form:

<0:7> group ID {0:255}
<8:15> member ID {0:255}

user-name input, output

STRING .EXT:ref:16

specifies the user name for which the default information will be retrieved. Either
user-id or user-name must be specified; if both are supplied, user-name
returns the user name corresponding to user-id. The user-name is passed,
and returned, in the form:

[0:3] group name, blank-filled
[4:7] member name, blank-filled

The group name and member name must both be input in uppercase.

volsubvol output

STRING .EXT:ref:16

if present, returns the name of the default volume and subvolume inherited by the
specified user when a logon session is initiated. This information is returned in the
form:

[0:3] default volume, blank-filled
[4:7] default subvolume, blank-filled

filesecur output

STRING .EXT:ref:2

if present, returns the default file security to be used when a new file is created
under the specified user ID. This information is returned in the form:

<0:3> reserved
<4:6> read
<7:9> write

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-52

USERDEFAULTS Procedure
(Superseded by USER_GETINFO_ Procedure)

<10:12> execute
<13:15> purge

where the legitimate fields are encoded with numbers that represent this
information:

0 A (any local user)
1 G (any local group member)
2 O (only the local owner)
3 not used
4 N (any network user)
5 C (any network group/community user)
6 U (only the network owner)
7 - (only the local super ID)

Condition Code Settings
= (CCE) indicates that the default information is returned for the specified user.

> (CCG) indicates that the specified user ID or user name is undefined.

< (CCL) indicates that a required parameter is missing, that a buffer is out of
bounds, or that an I/O error occurred on the user ID file
($SYSTEM.SYSTEM.USERID).

Considerations
Either user-id or user-name must be supplied. When both parameters are
supplied, then user-id is used and user-name is treated as an output parameter; in
this case, no attention is paid to the current contents of the user-name parameter.

Example
Suppose that a process needs to acquire default user information about its actual
creator (process access id). Code similar to this example might be used to obtain such
information:

INT ERROR;
INT USERID;
INT .USERNAME[0:7];
INT USERFILESEC;
INT .USERVOLSVOL[0:7];
.
.
.
USERID := CREATORACCESSID;
ERROR := USERDEFAULTS (USERID, USERNAME,
 USERVOLSVOL, USERFILESEC);
IF ERROR THEN
 BEGIN ! error !
 .
 .
 END
ELSE

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-53

USERIDTOUSERNAME Procedure
(Superseded by USER_GETINFO_ Procedure)

 BEGIN ! successful !
 .
 .
 END;

USERIDTOUSERNAME Procedure
(Superseded by USER_GETINFO_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings

Summary

The USERIDTOUSERNAME procedure returns the user name, from the file
$SYSTEM.SYSTEM.USERID, that is associated with a designated user ID.

Syntax for C Programmers

• The function value returned by USERIDTOUSERNAME, which indicates the
condition code, can be interpreted by _status_lt(), _status_eq(), or
_status_gt() (defined in the file tal.h).

Syntax for TAL Programmers

Parameters

id-name input, output

INT:ref:8

on input, contains the user ID to be converted to a user name. The user ID is
passed in the form:

id-name.<0:7> group ID {0:255}
 .<8:15> member ID {0:255}

Note. This procedure is supported for compatibility with previous software and should not be
used for new development. This procedure does not support aliases or groups.

#include <cextdecs(USERIDTOUSERNAME)>

_cc_status USERIDTOUSERNAME (short _near *id-name);

CALL USERIDTOUSERNAME (id-name); ! i,o

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-54

USERIOBUFFER_ALLOW_ Procedure

on the return, contains the user name associated with the specified user ID in the
form:

id-name FOR 4 group name, blank-filled
id-name[4] FOR 4 member name, blank-filled

Condition Code Settings

< (CCL) indicates that id-name is out of bounds or that an I/O error occurred with
the $SYSTEM.SYSTEM.USERID file.

= (CCE) indicates that the designated user name returned.

> (CCG) indicates that the specified user ID is undefined.

USERIOBUFFER_ALLOW_ Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers

Summary
The USERIOBUFFER_ALLOW_ procedure dynamically sets the process behavior to
be the same as if the objectfile flag "allow_user_buffers" in eld, provided it is called
before opening any files. Its impact is limited to files opened by FILE_OPEN_ after the
procedure is called. It has no impact on I/O operations initiated on files opened before
the call or files opened by OPEN.

Syntax for C Programmers

Syntax for TAL Programmers

For NSAA systems, the default is system buffers for I/O operation on all files. Calling
the USERIOBUFFER_ALLOW_ procedure enables user buffers for I/O operations (for
example READX or WRITEX) on all subsequent files opened by FILE_OPEN_
procedure.
The USERIOBUFFER_ALLOW_ procedure does not affect the buffer status of files
opened by the OPEN procedure, which uses system buffers for its I/O buffers.
SETMODE 72 can enable user buffers on the files that are already opened.

The USERIOBUFFER_ALLOW_ procedure is useful on NSAA systems and can be
called on any system (H-series or J-series). Once the procedure is called, the
USERIOBUFFER_ALLOW_ setting cannot be turned off.

void USERIOBUFFER_ALLOW_(void)

PROC USERIOBUFFER_ALLOW_ ;

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-55

USERNAMETOUSERID Procedure
(Superseded by USER_GETINFO_ Procedure)

The user buffers being enabled does not guarantee that the user buffers will be used;
the system is still free to select the most efficient buffers to use. In practice, I/O less
than 4096 bytes will system buffers.

The user buffers should be in multiples of page size and page aligned for optimal
performance. They must have at least 8-byte alignment.

When using user buffers, read or write operations must not be performed on nowait
user buffers until the AWAITIO procedure is called.

USERNAMETOUSERID Procedure
(Superseded by USER_GETINFO_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings

Summary

The USERNAMETOUSERID procedure returns the user ID, from the file
$SYSTEM.SYSTEM.USERID, that is associated with a designated user name.

Syntax for C Programmers

• The function value returned by USERNAMETOUSERID, which indicates the
condition code, can be interpreted by _status_lt(), _status_eq(), or
_status_gt() (defined in the file tal.h).

Syntax for TAL Programmers

Parameters

name-id input, output

INT:ref:8

Note. This procedure is supported for compatibility with previous software and should not be
used for new development. This procedure does not support aliases or groups.

#include <cextdecs(USERNAMETOUSERID)>

_cc_status USERNAMETOUSERID (short _near *name-id);

CALL USERNAMETOUSERID (name-id); ! i,o

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-56

USERNAMETOUSERID Procedure
(Superseded by USER_GETINFO_ Procedure)

on input, contains the user name to be converted to a user ID. The user name is
passed in the form:

name-id FOR 4 group name, blank-filled
name-id[4] FOR 4 member name, blank-filled

The group name and member name must both be input in uppercase.

on the return, contains the user ID associated with the specified user name in the
form:

name-id.<0:7> group ID {0:255}
name-id.<8:15> member ID {0:255}

Condition Code Settings

< (CCL) indicates that name-id is out of bounds or that an I/O error occurred with
the $SYSTEM.SYSTEM.USERID file.

= (CCE) indicates that the designated user ID returned.

> (CCG) indicates that the specified user name is undefined.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-57

USESEGMENT Procedure
(Superseded by SEGMENT_USE_ Procedure)

USESEGMENT Procedure
(Superseded by SEGMENT_USE_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Example

Summary

The USESEGMENT procedure selects a particular extended data segment to be
currently addressable by the calling process.

For selectable segments, a call to USESEGMENT must follow a call to
ALLOCATESEGMENT to make the selectable extended data segment accessible.
Although you can allocate multiple selectable extended data segments, you can
access only one at a time.

For shared flat segments, a call to USESEGMENT can follow a call to
ALLOCATESEGMENT, but calling USESEGMENT is unnecessary because all of the
flat segments allocated by a process are always accessible to the process.

Flat segments and selectable segments are supported on native processors that use
D30 or later versions of the HP NonStop operating system. Selectable segments are
supported on all systems.

Syntax for C Programmers

• You cannot call USESEGMENT directly from a C program, because it returns a
value and also sets the condition-code register. To access this procedure, you
must write a “jacket” procedure in TAL that is directly callable by your C program.
For information on how to do this, see the discussion of procedures that return a
value and a condition code in the C/C++ Programmer’s Guide. Note that the
SEGMENT_USE_ procedure, which should be used in new development, does not
require a “jacket” procedure in TAL to be called from a C program.

Note. This procedure is supported for compatibility with previous software and should not be
used for new development.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-58

USESEGMENT Procedure
(Superseded by SEGMENT_USE_ Procedure)

Syntax for TAL Programmers

Parameters

old-segment-id returned value

INT

returns the segment ID of the previously used selectable segment, if any;
otherwise, it returns -1.

If segment-id specifies a flat segment, old-segment-id returns the segment
ID of the current in-use selectable segment. The flat segment and the selectable
segment remain addressable by the calling process.

segment-id input

INT:value

if present, is the segment ID of the segment is to be used or -1 if no segment is
used. If this parameter is not supplied, the current in-use selectable segment
remains unchanged and old-segment-id returns the current in-use selectable
segment ID. Note that old-segment-id is returned even if segment-id is not
valid, in which case the old-segment-id parameter continues to remain the in-
use segment.

Condition Code Settings

< (CCL) indicates that segment-id is not allocated, or that the segment cannot
be used by a nonprivileged caller.

= (CCE) indicates that the operation is successful.

> (CCG) does not return from USESEGMENT.

Considerations

• Because segment relocation is done, the first byte of any selectable extended data
segment has the address %2000000D (%H00080000).

• Selectable segments and performance

If you have more than one selectable segment, you might face performance
degradation, because time is wasted when switching between the selectable
segments. This is because only one selectable segment is visible at a time.
Instead, use flat segments, which are always visible.

• See Considerations on page 2-25.

old-segment-id := USESEGMENT [(segment-id)]; ! i

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-59

VRO_SET_ Procedure (H-Series RVUs Only)

Example
INT seg^id1 := 0;
INT seg^id2 := 1;
INT old^seg^id;
INT status;
INT(32) seg^len := %177777D; ! 64K - 1 bytes

status := ALLOCATESEGMENT (seg^id1, seg^len);
IF status <> 0 THEN ...
status := ALLOCATESEGMENT (seg^id2, seg^len);
IF status <> 0 THEN ...

old^seg^id := USESEGMENT (seg^id1); ! use first segment
IF <> THEN ...

old^seg^id := USESEGMENT (seg^id2); ! change segments
IF <> THEN ...

VRO_SET_ Procedure (H-Series RVUs Only)
Summary
Syntax for C Programmers
Syntax for TAL Programmers

Summary
VRO_SET_ causes a voluntary rendezvous opportunity to take place.

Syntax for C Programmers

Syntax for TAL Programmers

void VRO_SET_(void);

proc VRO_SET_;

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-60

VERIFYUSER Procedure
(Superseded by USER_AUTHENTICATE_

VERIFYUSER Procedure
(Superseded by USER_AUTHENTICATE_
Procedure and USER_GETINFO_ Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Example

Summary

VERIFYUSER has three different functions. It is used to control logons, to verify that a
user exists, and to return user-default information. Logon control and user verification
is also available through the USER_AUTHENTICATE_ procedure. User-default
information is also available through USER_GETINFO_ without the security restrictions
and password validation required by VERIFYUSER.

Syntax for C Programmers

• The function value returned by VERIFYUSER, which indicates the condition code,
can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

Syntax for TAL Programmers

Note. This procedure is supported for compatibility with previous software and should not be
used for new development. This procedure does not support aliases or groups.

#include <cextdecs(VERIFYUSER)>

_cc_status VERIFYUSER (short _near *user-name-or-id
 ,[short logon]
 ,[short _near *default]
 ,short default-len);

CALL VERIFYUSER (user-name-or-id ! i
 ,[logon] ! i
 ,[default ! o
 ,[default-len]); ! i

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-61

VERIFYUSER Procedure
(Superseded by USER_AUTHENTICATE_

Parameters

user-name-or-id input

INT:ref:12

is an array containing the name or user ID of the user to be verified or logged on,
as follows:

[0:3] group name, blank-filled
[4:7] member name, blank-filled

The group name and member name must both be input in uppercase.

or

[0].<0:7> group ID
[0].<8:15> member ID
[1:7] zeros (ASCII nulls)

In either case:

[8:11] password, blank-filled (see “Considerations”)

logon input

INT:value

if present, has this meaning:

 0 verify user but do not log on
<> 0 verify user and log on

if omitted, is assumed to have a value of 0.

default output

INT:ref:18

if present, returns information regarding the user specified in user-name-or-id:

[0:3] group name, blank-filled
[4:7] member name, blank-filled
[8].<0:7> group ID
 .<8:15> member ID
[9:12] default volume, blank-filled
[13:16] default subvolume, blank-filled
[17].<0:15> default file security, as follows:

<0:3> reserved
<4:6> read
<7:9> write
<10:12> execute
<13:15> purge

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-62

VERIFYUSER Procedure
(Superseded by USER_AUTHENTICATE_

where the legitimate fields are encoded with numbers that
represent this information:

0 A (any local user)
1 G (any local group member)
2 O (only the local owner)
3 not used
4 N (any network user)
5 C (any network group/community user)
6 U (only the network owner)
7 - (only the local super ID)

default-len input

INT:value

is the length, in bytes, of the default array. default-len is required if default
is specified. This number should always be specified as 36; in the future, new
fields can be added to default, requiring default-len to become larger.

Condition Code Settings
< (CCL) indicates that a buffer is out of bounds, or that an I/O error occurred on the

user ID file ($SYSTEM.SYSTEM.USERID).

= (CCE) indicates a successful verification or logon.

> (CCG) indicates that there is no such user or that the password is invalid.

Considerations
Condition code CCE returns under these conditions:

• Specifying 0 for the logon parameter verifies that there is a user with that name
on the system, but you cannot assume that user’s identity and you cannot log on.
You must supply a password even if you specify 0 for the logon parameter,
unless:

• You are the super ID.

• You are the group manager (*,255).

• You are a user inquiring about yourself.

• If the logon parameter is a value other than 0 and the Safeguard parameter
PASSWORD-REQUIRED is set to OFF, you can assume that user’s ID if:

• You are the super ID.

• You are the group manager (*,255).

• You know the user’s password.

If you assume one of the above IDs, then your process access ID and creator
access ID changes, you become a local user, and your default file security
changes to what is established in the local USERID file.

Guardian Procedure Calls (T-V)

Guardian Procedure Calls Reference Manual—522629-030
15-63

VERIFYUSER Procedure
(Superseded by USER_AUTHENTICATE_

• Following a successful logon with this procedure, the calling process is considered
local with respect to the system on which it is running.

• A process that passes an invalid password to VERIFYUSER for the third time is
suspended for 60 seconds.

• Note that each call to VERIFYUSER always results in an open, KEYPOSITION,
READUPDATEUNLOCK, WRITEUPDATEUNLOCK, and close operation on the
USERID file.

• System users are defined through the TACL ADDUSER command. All TACL
commands are described in the TACL Reference Manual.

Example
USER := 3 '<' 8 + 17; ! user ID 3,17.
USER[1] ':=' 0 & USER[1] FOR 6; ! all zeros.
USER[8] ':=' password FOR 8;
LOGON := 1; ! log this user on.

CALL VERIFYUSER (USER , LOGON , DEFAULT , DEFAULT^LEN);

IF < THEN ... ! buffer or I/O error,
ELSE IF > THEN ... ! no such user, or bad
 ! password.
ELSE ... ! successful. .

The array “USER” is prepared with the member and group ID and then passed to
VERIFYUSER. VERIFYUSER logs on the process with the member ID 17 and group
ID 3.

Guardian Procedure Calls Reference Manual—522629-030
16-1

16
Guardian Procedure Calls (W-Z)

This section contains detailed reference information for all user-accessible Guardian
procedure calls beginning with the letters W through Z. Table 16-1 lists all the
procedures in this section.

Table 16-1. Procedures Beginning With the Letters W Through Z

WAIT^FILE Procedure

WRITE[X] Procedures

WRITE^FILE Procedure

WRITEEDIT Procedure

WRITEEDITP Procedure

WRITEREAD[X] Procedures

WRITEUPDATE[X] Procedures

WRITEUPDATEUNLOCK[X] Procedures

XBNDSTEST Procedure (Superseded by REFPARAM_BOUNDSCHECK_ Procedure)

XSTACKTEST Procedure (Superseded by HEADROOM_ENSURE_ Procedure)

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-2

WAIT^FILE Procedure

WAIT^FILE Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example
Related Programming Manual

Summary
The WAIT^FILE procedure is used to wait or check for the completion of an
outstanding I/O operation.

WAIT^FILE is a sequential I/O (SIO) procedure and should be used only with files that
have been opened by OPEN^FILE.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

#include <cextdecs(WAIT_FILE)>

short WAIT_FILE (short _near *file-fcb
 ,[short _near *count-read]
 ,[__int32_t time-limit]);

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-3

WAIT^FILE Procedure

Syntax for TAL Programmers

Parameters

error returned value

INT

If abort-on-error mode is in effect, the only possible values for error are:

0 No error
1 End of file
6 System message (only if user requested system messages through

SET^SYSTEMMESSAGES or SET^SYSTEMMESSAGESMANY)
40 Operation timed out (only if time-limit is supplied and is not -1D)
111 Operation aborts because of BREAK (if BREAK is enabled)
532 Operation restarted

file-fcb input

INT:ref:*

identifies the file for which there is an outstanding I/O operation.

count-read output

INT:ref*

if present, is the count of the number of bytes returned due to the requested read
operation. The value returned to the parameter has no meaning when waiting for a
write operation to complete.

time-limit input

INT(32):value

if present, indicates whether the caller waits for completion or checks for
completion. If omitted, the time limit is set to -1D.

time-limit <> 0D indicates a wait for completion. The time limit then
specifies the maximum time, in 0.01-second units, the
caller waits for a completion.

 0D indicates a check for completion. WAIT^FILE
immediately returns to the caller regardless of whether

error := WAIT^FILE (file-fcb ! i
 ,[count-read] ! o
 ,[time-limit]); ! i

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-4

WRITE[X] Procedures

there is a completion. If no completion occurs the I/O
operation is still outstanding; an error 40 and an
“operation timed out” message are returned.

 0D There is no completion. Therefore, READ^FILE or

(and error = 40) WRITE^FILE cannot be called for the file until the
operation completes by WAIT^FILE.

 -1D indicates a willingness to wait forever.

Example
ERROR := WAIT^FILE (IN^FILE , COUNT);

Related Programming Manual
For programming information about the WAIT^FILE procedure, see the Guardian
Programmer’s Guide.

WRITE[X] Procedures
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Disk File Considerations
Interprocess Communication Consideration
Considerations for WRITEX Only
Errors for WRITEX Only
Example
Related Programming Manuals

Summary
The WRITE[X] procedures write data from an array in the application program to an
open file (see “Considerations”).

The WRITE procedure is intended for use with 16-bit addresses, while WRITEX is
intended for use with 32-bit extended addresses. Therefore, the data buffer for
WRITEX can be either in the caller’s stack segment or any extended data segment.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-5

WRITE[X] Procedures

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

• The function value returned by WRITE[X], which indicates the condition code, can
be interpreted by _status_lt(), _status_eq(), or _status_gt() (defined
in the file tal.h).

Syntax for TAL Programmers

Parameters

filenum input

INT:value (Use with WRITE and WRITEX)

is the number of an open file that identifies the file to be written.

buffer input

INT:ref:* (Use with WRITE)
STRING .EXT:ref:* (Use with WRITEX)

is an array containing the information to be written to the file.

#include <cextdecs(WRITE)>

_cc_status WRITE (short filenum
 ,short _near *buffer
 ,unsigned short write-count
 ,[unsigned short _near *count-written]
 ,[__int32_t tag]);

#include <cextdecs(WRITEX)>

_cc_status WRITEX (short filenum
 ,const char _far *buffer
 ,unsigned short write-count
 ,[unsigned short _far *count-written]
 ,[__int32_t tag]);

CALL WRITE[X] (filenum ! i
 ,buffer ! i
 ,write-count ! i
 ,[count-written] ! o
 ,[tag]); ! i

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-6

WRITE[X] Procedures

write-count input

INT:value (Use with WRITE and WRITEX)

is the number of bytes to be written:

{0:57344} for disk files (see Disk File Considerations on page 16-8 and
Appendix J, System Limits)

{0:32755} for terminal files
{0:57344} for other nondisk files (device-dependent)
{0:57344} for interprocess files
{0:80} for the operator console

For key-sequenced and relative files, 0 is invalid. For entry-sequenced files, 0
indicates an empty record.

count-written output

INT:ref:1 (Use with WRITE)
INT .EXT:ref:1 (Use with WRITEX)

is for wait I/O only. count-written returns a count of the number of bytes
written to the file.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-7

WRITE[X] Procedures

tag input

INT(32):value (Use with WRITE and WRITEX)

is for nowait I/O only. tag is a value you define that uniquely identifies the
operation associated with this WRITE[X].

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

< (CCL) is returned following successful insertion or update of a record in a
file with one or more insertion-ordered alternate keys if a duplicate key
value was created for at least one insertion-ordered alternate key. A call to
FILE_GETINFO_ or FILEINFO shows that error 551 occurred; this error is
advisory only and does not indicate an unsuccessful write operation.

= (CCE) indicates that the WRITE[X] is successful.

> (CCG) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

Considerations

• WRITE versus WRITEX

Use WRITE when the buffer has a 16-bit address, and use WRITEX when the
buffer has a 32-bit extended address. Therefore, the data buffer for WRITEX can
be either in the caller’s stack segment or any extended data segment.

• Waited I/O and WRITE[X]

If a waited WRITE[X] is executed, the count-written parameter indicates the
number of bytes actually written.

• Nowait I/O and WRITE[X]

If a nowait WRITE[X] is executed, count-written has no meaning and can be
omitted. The count of the number of bytes written is obtained when the I/O
operation completes through the count-transferred parameter of the
AWAITIO[X] procedure.

The WRITE[X] procedure must complete with a corresponding call to the
AWAITIO[X] procedure when used with a file that is opened nowait. If WRITEX is
used, you must call AWAITIOX to complete the I/O. If WRITE is used, you can use

Note. The system stores this tag value until the I/O operation completes. The system then
returns the tag information to the program in the tag parameter of the call to AWAITIO[X],
thus indicating that the operation completed. If WRITEX is used, you must call AWAITIOX to
complete the I/O. If WRITE is used, you can use either AWAITIO or AWAITIOX to complete
the I/O.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-8

WRITE[X] Procedures

either AWAITIO or AWAITIOX to complete the I/O.

You should not change the contents of the data buffer between the initiation and
completion of a nowait write operation. This is because a retry can copy the data
again from the user buffer and cause the wrong data to be written. You should
avoid sharing a buffer between a write and another I/O operation because this
creates the possibility of changing the contents of the write buffer before the write
is completed.

Disk File Considerations

• Large data transfers for unstructured files using default mode

For the write procedures (WRITE[LOCK] [UNLOCK]), default mode allows I/O
sizes for unstructured files to be as large as 56 KB (57,344), excepting writes to
audited files, if the unstructured buffer size (or block size) is 4 KB (4096). Default
mode here refers to the mode of the file if SETMODE function 141 is not invoked.

For an unstructured file with an unstructured buffer size other than 4 KB, DP2
automatically adjusts the unstructured buffer size to 4 KB, if possible, when an I/O
larger than 4KB is attempted. However, this adjustment is not possible for files that
have extents with an odd number of pages; in such cases an I/O over 4 KB is not
possible. Note that the switch to a different unstructured buffer size will have a
transient performance impact, so it is recommended that the size be initially set to
4 KB, which is the default. Transfer sizes over 4 KB are not supported in default
mode for unstructured access to structured files.

• Large data transfers using SETMODE 141

For WRITEX only, large data transfers (more than 4096 bytes) can be done for files
opened with unstructured access, regardless of unstructured buffer size, by using
SETMODE function 141. When SETMODE 141 is used to enable large data
transfers, it is permitted to specify up to 56K (57344) bytes for the write-count
parameter. For use of SETMODE function 141, see Table 14-4 on page 14-63.

• File is locked

If a call to WRITE[X] is made and the file is locked through a file number other than
that supplied in the call, the call is rejected with file-system error 73 (file is locked).

• Inserting a new record into a file

The WRITE[X] procedure inserts a new record into a file in the position designated
by the file’s primary key:

Key-Sequenced Files The record is inserted in the position indicated by the
value in its primary-key field.

WARNING. When using nowait file I/O, data corruption might occur if the WRITE buffer
is modified before the AWAITIOX that completes the call.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-9

WRITE[X] Procedures

Queue Files The record is inserted into a file at a unique location.
The disk process sets the timestamp field in the key,
which causes the record to be positioned after the
other existing records that have the same high-order
user key.

If the file is audited, the record is available for read
operations when the transaction associated with the
write operation commits. If the transaction aborts, the
record is never available to read operations.

If the file is not audited, the record is available as soon
as the write operation finishes successfully.

Unlike other key-sequenced files, a write operation to a
queue file will never encounters an error 10 (duplicate
record) because all queue file records have unique
keys generated for them.

Relative Files After an open or an explicit positioning by its primary
key, the record is inserted in the designated position.
Subsequent WRITE[X]s without intermediate
positioning insert records in successive record
positions. If -2D is specified in a preceding positioning,
the record is inserted in an available record position in
the file.

If -1D is specified in a preceding positioning, the record
is inserted following the last position used in the file.
There does not have to be an existing record in that
position at the time of the WRITE[X].

Entry-Sequenced Files The record is inserted following the last record
currently existing in the file.

Unstructured Files The record is inserted at the position indicated by the
current value of the next-record pointer.

• Structured files

• Inserting records into relative and entry-sequenced files

If the insertion is to a relative or entry-sequenced file, the file must be
positioned currently through its primary key. Otherwise, the WRITE[X] fails,
and a subsequent call to FILE_GETINFO_ or FILEINFO shows that error 46
(invalid key) occurred.

• Current-state indicators after WRITE[X]

Note. If the insert is to be made to a key-sequenced or relative file and the record already
exists, the WRITE[X] fails, and a subsequent call to FILE_GETINFO_ or FILEINFO shows that
error 10 occurred.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-10

WRITE[X] Procedures

After a successful WRITE[X], the current-state indicators for positioning mode
and comparison length remain unchanged.

For key-sequenced files, the current position and the current primary-key value
remain unchanged.

For relative and entry-sequenced files, the current position is that of the record
just inserted and the current primary-key value is set to the value of the
record’s primary key.

• Duplicate record found on insertion request

When attempting to insert a record into a key-sequenced file, if a duplicate
record is found, the WRITE[X] procedure returns error 10 (record already
exists) or error 71 (duplicate record). If the operation is part of a TMF
transaction, the record is locked for the duration of the transaction.

• Unstructured files

• DP2 BUFFERSIZE rules

DP2 unstructured files are transparently blocked using one of the four valid
DP2 blocksizes (512, 1024, 2048, or 4096 bytes; 4096 is the default). This
transparent blocksize, known as BUFFERSIZE, is the transfer size used
against an unstructured file. While BUFFERSIZE does not change the
maximum unstructured transfer (4096 bytes), multiple I/Os may be performed
to satisfy a user request depending on the BUFFERSIZE chosen. For
example, if BUFFERSIZE is 512 bytes, and a request is made to write 4096
bytes, at least eight transfers, each 512 bytes long, will be made. More than
eight transfers happen, in this case, if the requested transfer does not start on
a BUFFERSIZE boundary.

DP2 performance with unstructured files is best when requested transfers
begin on BUFFERSIZE boundaries and are integral multiples of BUFFERSIZE.

• If the WRITE[X] is to an unstructured disk file, data is transferred to the record
location specified by the next-record pointer. The next-record pointer is
updated to point to the record following the record written.

• The number of bytes written

If an unstructured file is created with the odd unstructured attribute (also known
as ODDUNSTR) set, the number of bytes written is exactly the number
specified in write-count. If the odd unstructured attribute is not set when

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-11

WRITE[X] Procedures

the file is created, the value of write-count is rounded up to an even value
before the WRITE[X] is executed.

You set the odd unstructured attribute with the FILE_CREATE_,
FILE_CREATELIST_, or CREATE procedure, or with the File Utility Program
(FUP) SET and CREATE commands.

• File pointers after WRITE[X]

After a successful WRITE[X] to an unstructured file, the file pointers have these
values:

current-record pointer := next-record pointer; next-record pointer := next-record
pointer + count written; end-of-file (EOF) pointer := max (EOF pointer,
next-record pointer);

Interprocess Communication Consideration

• Indication that the destination process is running

If the WRITE[X] is to another process, successful completion of the WRITE[X] (or
AWAITIO[X] if nowait) indicates that the destination process is running.

Considerations for WRITEX Only

• The buffer and count transferred may be in the user stack or in an extended data
segment. The buffer and count transferred cannot be in the user code space.

• If the buffer or count transferred is in a selectable extended data segment, the
segment must be in use at the time of the call. Flat segments allocated by a
process are always accessible to the process.

• If the file is opened for nowait I/O, the extended segment containing the buffer
need not be in use at the time of the call to AWAITIOX.

• If the file is opened for nowait I/O, and the buffer is in an extended data segment,
you cannot deallocate or reduce the size of the extended data segment before the
I/O completes with a call to AWAITIOX or is canceled by a call to CANCEL or
CANCELREQ.

• If the file is opened for nowait I/O, you must not modify the buffer before the I/O
completes with a call to AWAITIOX. This also applies to other processes that may
be sharing the segment. It is the application’s responsibility to ensure this.

• If the file is opened for nowait I/O, and the I/O has been initiated with these
routines, the I/O must be completed with a call to AWAITIOX (not AWAITIO).

• Nowait I/O initiated with these routines may be canceled with a call to CANCEL or
CANCELREQ. The I/O is canceled if the file is closed before the I/O completes or

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-12

WRITE^FILE Procedure

AWAITIOX is called with a positive time limit and specific file number and the
request times out.

• If the extended address of the buffer is odd, bounds checking rounds the address
to the next lower word boundary and checks an extra byte as well. The odd
address is used for the transfer.

Errors for WRITEX Only
In addition to the errors returned from the WRITE procedure, file-system error 22 is
returned when:

• The address of a parameter refers to the selectable segment area but no
selectable segment is in use at the time of the call.

• The address of a parameter is extended, but it is an absolute address and the
caller is not privileged.

• The file system cannot use the user's segment when needed.

Example
CALL WRITE (OUT^FILE , OUT^BUFFER , 72);

Related Programming Manuals
For programming information about the WRITE file-system procedure, see the
Guardian Programmer’s Guide, the Enscribe Programmer’s Guide, and the data
communication manuals.

WRITE^FILE Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example
Related Programming Manual

Summary
The WRITE^FILE procedure writes a file sequentially. The file must be open with write
or read/write access.

WRITE^FILE is a sequential I/O (SIO) procedure and should be used only with files
that have been opened by OPEN^FILE.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-13

WRITE^FILE Procedure

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

is a file-system or sequential I/O (SIO) error indicating the outcome of the write.

If abort-on-error mode, the default case, is in effect, the only possible values for
error are:

0 No error

111 Operation aborted because of BREAK (if BREAK is enabled)

If nowait is not 0, the only possible value for error is 0, when abort-on-error
mode is in effect.

file-fcb input

INT:ref:*

identifies the file to which data is written.

buffer input

INT:ref:*

is the data to be written. buffer must be located within
‘G’[0:32767], the process data area.

#include <cextdecs(WRITE_FILE)>

short WRITE_FILE (short _near *file-fcb
 ,short _near *buffer
 ,short write-count
 ,[short reply-error-code]
 ,[short forms-control-code]
 ,[short nowait]);

error := WRITE^FILE (file-fcb ! i
 ,buffer ! i
 ,write-count ! i
 ,[reply-error-code] ! i
 ,[forms-control-code] ! i
 ,[nowait]); ! i

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-14

WRITE^FILE Procedure

write-count input

INT:value

is the count of the number of bytes of buffer to be written. A write-count
value of -1 causes SIO to flush the block buffer associated with the file-fcb
passed.

reply-error-code input

INT:value

(for $RECEIVE file only) if present, is a file-system error to return to the requesting
process by REPLY. If omitted, 0 is returned.

forms-control-code input

INT:value

(optional) indicates a forms-control operation to be performed before executing the
actual WRITE when the file is a process or a line printer. The forms-control
paramater corresponds to parameter of the file-system CONTROL procedure for
operation equal to 1. No forms control is performed if forms-control is
omitted, if it is -1, or if the file is not a process or a line printer.

nowait input

INT:value

if present, indicates whether to wait in this call for the I/O to complete. If omitted or
zero, then wait is indicated. If nowait is not zero, the I/O must be completed in a
call to WAIT^FILE.

Example
CALL WRITE^FILE (OUT^FILE, BUFFER, COUNT);

Related Programming Manual
For programming information about the WRITE^FILE procedure, see the Guardian
Programmer’s Guide.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-15

WRITEEDIT Procedure

WRITEEDIT Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example
Related Programming Manual

Summary
The WRITEEDIT procedure accepts a line in unpacked format, converts it into EDIT
packed line format, and writes it to the specified file.

WRITEEDIT is an IOEdit procedure and can only be used with files that have been
opened by OPENEDIT or OPENEDIT_.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

error returned value

INT

Note. In the TNS/E environment, the CEXTDECS file uses the int data type for 32-bit values.
This is a change from the TNS and TNS/R environments where CEXTDECS uses the long
data type for 32-bit values.

#include <cextdecs(WRITEEDIT)>

short WRITEEDIT (short filenum
 ,[__int32_t record-number]
 ,char *unpacked-line
 ,short unpacked-length
 ,[short full-length]
 ,[__int32_t *new-record-number]);

error := WRITEEDIT (filenum ! i
 ,[record-number] ! i
 ,unpacked-line ! i
 ,unpacked-length ! i
 ,[full-length] ! i
 ,[new-record-number]); ! o

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-16

WRITEEDIT Procedure

returns a file-system error number indicating the outcome of the operation.
Possible values include:

10 File already includes a line with the specified record number.
21 Specified record is too long to fit into EDIT packed line format. (The maximum

is 255 bytes of packed text.)
45 All of the file’s possible extents are allocated and full. You can use

EXTENDEDIT to increase the file’s extent size and call WRITEEDIT again.

filenum input

INT:value

specifies the file number of the open file to which the line is to be written.

record-number input

INT(32):value

if present, specifies the record number of the line to be written. If record-
number:

• is greater than or equal to 0, it specifies 1000 times the EDIT line number of
the line to be written.

• is -1, the line is written at the beginning of the file.

• is -2, the line is written at the end of the file.

• is -3, the line is written to the line represented by the file’s current record
number.

If this parameter is omitted, -3 is used.

unpacked-line input

STRING .EXT:ref:*

is a string array that contains the line in unpacked format that is to be written. The
length of unpacked-line is specified by the unpacked-length parameter.

unpacked-length input

INT:value

specifies the length in bytes of unpacked-line. The minimum value is 0 bytes
and the maximum value is the equivalent of 255 bytes of packed text. The
maximum value of unpacked-length is variable because the packing algorithm
depends on the number of sequences of blank characters.

full-length input

INT:value

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-17

WRITEEDITP Procedure

if present and not equal to 0, specifies that all trailing space characters (if any) in
the line being processed should be retained in the output line image. Otherwise,
trailing space characters are discarded.

new-record-number output

INT(32) .EXT:ref:1

returns the record number of the newly written line. This value is 1000 times the
EDIT line number of the line.

Example
INT(32) record^num := -2D; ! write to end of file
 .
 .
error := WRITEEDIT (filenumber, record^num, line^image,
 line^length);

Related Programming Manual
For programming information about the WRITEEDIT procedure, see the Guardian
Programmer’s Guide.

WRITEEDITP Procedure
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Example
Related Programming Manual

Summary
The WRITEEDITP procedure accepts a line in EDIT packed line format and writes it to
the specified file.

WRITEEDITP is an IOEdit procedure and can only be used with files that have been
opened by OPENEDIT or OPENEDIT_.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-18

WRITEEDITP Procedure

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

Syntax for TAL Programmers

Parameters

error returned value

INT

returns a file-system error number indicating the outcome of the operation.
Possible values include:

10 File already includes a line with the specified record number.
21 Invalid length specified in the packed-length parameter.
45 All of the file’s possible extents are allocated and full. You can use

EXTENDEDIT to increase the file’s extent size and call WRITEEDITP again.

filenum input

INT:value

specifies the file number of the open file to which the line is to be written.

record-number input

INT(32):value

if present, specifies the record number of the line to be written. If record-
number:

• is greater than or equal to 0, it specifies 1000 times the EDIT line number of
the line to be written.

• is -1, the line is written at the beginning of the file.

#include <cextdecs(WRITEEDITP)>

short WRITEEDITP (short filenum
 ,[__int32_t record-number]
 ,const char *packed-line
 ,short packed-length);

error := WRITEEDITP (filenum ! i
 ,[record-number] ! i
 ,packed-line ! i
 ,packed-length); ! i

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-19

WRITEREAD[X] Procedures

• is -2, the line is written at the end of the file.

• is -3 or omitted, the line is written to the line represented by the file’s current
record number.

packed-line input

STRING .EXT:ref:*

is a string array that contains the line in packed format that is to be written. The
length of packed-line is specified by the packed-length parameter.

packed-length input

INT:value

specifies the length in bytes of packed-line. The packed-length must be in
the range 1 through 256.

Example
INT(32) record^num := -2D; ! write to end of file
 .
 .
error := WRITEEDITP (filenumber, record^num, line^image,
 line^length);

Related Programming Manual
For programming information about the WRITEEDITP procedure, see the Guardian
Programmer’s Guide.

WRITEREAD[X] Procedures
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Considerations for WRITEREADX Only
Errors for WRITEREADX Only
Example
Related Programming Manuals

Summary
The WRITEREAD[X] procedures write data to a file from an array in the application
process, then waits for data to be transferred back from the file. The data from the
read portion returns in the same array used for the write portion.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-20

WRITEREAD[X] Procedures

WRITEREAD is intended for use with 16-bit addresses, while WRITEREADX is
intended for use with 32-bit extended addresses. Therefore, the data buffer for
WRITEREADX can be either in the caller’s stack segment or any extended data
segment.

If the file is opened for nowait I/O, you must not modify the buffer before the I/O
completes with a call to AWAITIOX. This condition also applies to other processes that
may be sharing the segment. The application must ensure that the buffer used in the
call to WRITEREADX is not reused before the I/O completes with a call to AWAITIOX.

Terminals A special hardware feature is incorporated in the asynchronous multiplexer
controller, which ensures that the system is ready to read from the terminal
as soon as the write is completed.

Interprocess Communication
The WRITEREAD[X] procedure is used to originate a message to another
process which was previously opened, then waits for a reply from that
process.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

• The function value returned by WRITEREAD[X], which indicates the condition
code, can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

#include <cextdecs(WRITEREAD)>

_cc_status WRITEREAD (short filenum
 ,short _near *buffer
 ,unsigned short write-count
 ,unsigned short read-count
 ,[unsigned short _near *count-read]
 ,[__int32_t tag]);

#include <cextdecs(WRITEREADX)>

_cc_status WRITEREADX (short filenum
 ,char _far *buffer
 ,unsigned short write-count
 ,unsigned short read-count
 ,[unsigned short _far *count-read]
 ,[__int32_t tag]);

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-21

WRITEREAD[X] Procedures

Syntax for TAL Programmers

Parameters

filenum input

INT:value (Use with WRITEREAD and WRITEREADX)

is the number of an open file that identifies the file where the WRITE/READ is to
occur.

buffer input, output

INT:ref:* (Use with WRITEREAD)
STRING .EXT:ref:* (Use with WRITEREADX)

is an array containing information to be written to the file.

On return, buffer contains the information read from the file.

write-count input

INT:value (Use with WRITEREAD and WRITEREADX)

is the number of bytes to be written:

{0:32755} for terminals
{0:57344} for interprocess files

read-count input

INT:value (Use with WRITEREAD and WRITEREADX)

returns the number of bytes to be read:

{0:32755} for terminals
{0:57344} for interprocess files

count-read output

INT:ref:1 (Use with WRITEREAD)
INT .EXT:ref:1 (Use with WRITEREADX)

is for wait I/O only. It returns a count of the number of bytes returned from the file
into buffer.

CALL WRITEREAD[X] (filenum ! i
 ,buffer ! i,o
 ,write-count ! i
 ,read-count ! i
 ,[count-read] ! o
 ,[tag]); ! i

Note. When using terminals in block mode, an error 21 occurs if write-count exceeds 256
bytes.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-22

WRITEREAD[X] Procedures

tag input

INT(32):value (Use with WRITEREAD and WRITEREADX)

is for nowait I/O only. tag must uniquely identify the operation associated with this
WRITEREAD[X].

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

= (CCE) indicates the WRITEREAD[X] is successful.

> (CCG) indicates that CTRL-Y is pressed on the terminal.

Considerations

• WRITEREAD versus WRITEREADX

Use WRITEREAD when the buffer has a 16-bit address, and use WRITEREADX
when the buffer has a 32-bit extended address. Therefore, the data buffer for
WRITEREADX can be either in the caller’s stack segment or any extended data
segment.

• Waited I/O READ

If a waited I/O WRITEREAD[X] is executed, the count-read parameter indicates
the number of bytes actually read.

• Nowait I/O READ

If a nowait I/O WRITEREAD[X] is executed, count-read has no meaning and
can be omitted. The count of the number of bytes read is obtained when the I/O
operation completes through the count-transferred parameter of the
AWAITIO[X] procedure.

The WRITEREAD[X] procedure must complete with a corresponding call to the
AWAITIO[X] procedure when used with a file that is opened nowait. If
WRITEREADX is used, you must call AWAITIOX to complete the I/O. If
WRITEREAD is used, you can use either AWAITIO or AWAITIOX to complete the
I/O.

You should not change the contents of the data buffer between the initiation and
completion of a nowait WRITEREAD operation. This is because a retry can copy

Note. The system stores this tag value until the I/O operation completes. The system then
returns the tag information to the program in the tag parameter of the call to AWAITIO[X],
thus indicating that the operation completed. If WRITEREADX is used, you must call
AWAITIOX to complete the I/O. If WRITEREAD is used, you can use either AWAITIO or
AWAITIOX to complete the I/O.

WARNING. When using nowait file I/O, data corruption might occur if the READ or
WRITE buffers are modified before the AWAITIOX that completes the call.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-23

WRITEREAD[X] Procedures

the data again from the user buffer and cause the wrong data to be written. You
should avoid sharing a buffer between a WRITEREAD and another I/O operation
because this creates the possibility of changing the contents of the data buffer
before the write is completed.

• Carriage return/line feed sequence after the write

There is no carriage return/line feed sequence sent to the terminal after the write
part of the operation.

Considerations for WRITEREADX Only

• The buffer and count transferred may be in the user stack or in an extended data
segment. The buffer and count transferred cannot be in the user code space.

• If the buffer or count transferred is in a selectable extended data segment, the
segment must be in use at the time of the call. Flat segments allocated by a
process are always accessible to the process.

• If the file is opened for nowait I/O, and the buffer is in an extended data segment,
you cannot deallocate or reduce the size of the extended data segment before the
I/O completes with a call to AWAITIOX or is canceled by a call to CANCEL or
CANCELREQ.

• If the file is opened for nowait I/O, and the I/O has been initiated with these
routines, the I/O must be completed with a call to AWAITIOX (not AWAITIO).

• If the file is opened for nowait I/O, the extended segment containing the buffer
need not be in use at the time of the call to AWAITIOX.

• Nowait I/O initiated with these routines may be canceled with a call to CANCEL or
CANCELREQ. The I/O is canceled if the file is closed before the I/O completes or
AWAITIOX is called with a positive time limit and specific file number and the
request times out.

• If the extended address of the buffer is odd, bounds checking rounds the address
to the next lower word boundary and checks an extra byte as well. The odd
address is used for the transfer.

Errors for WRITEREADX Only
In addition to the errors currently returned from the WRITEREAD procedure, file-
system error 22 is returned when:

• The address of a parameter refers to the selectable segment area but no
selectable segment is in use at the time of the call.

• The address of a parameter is extended, but it is an absolute address and the
caller is not privileged.

• The file system cannot use the user's segment when needed.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-24

WRITEUPDATE[X] Procedures

Example
CALL WRITEREAD (FILE^NUM, INOUT^BUFFER, 1, 72, NUM^READ);

The INOUT^BUFFER contains the information to be written, and after the write it
contains information that was read. In this case, 1 byte is to be written, and 72 bytes
are to be read. NUM^READ indicates how many bytes are read into the
INOUT^BUFFER.

Related Programming Manuals
For programming information about the WRITEREAD file-system procedure, see the
Guardian Programmer’s Guide, the Enscribe Programmer’s Guide, and the data
communication manuals.

WRITEUPDATE[X] Procedures
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Disk File Considerations
Magnetic Tape Considerations
Considerations for WRITEUPDATEX Only
Errors for WRITEUPDATEX Only
Example
Related Programming Manuals

Summary
The WRITEUPDATE[X] procedures transfer data from an array in the application
program to a file.

WRITEUPDATE is intended for use with 16-bit addresses, while WRITEUPDATEX is
intended for use with 32-bit extended addresses. Therefore, the data buffer for
WRITEUPDATEX can be either in the caller’s stack segment or any extended data
segment.

For disk files, WRITEUPDATE[X] has two functions:

1. To alter the contents of the record at the current position

2. To delete the record at the current position in a key-sequenced or relative file

WRITEUPDATE[X] is used for processing data at random. Data from the application
process’s array is written in the position indicated by the setting of the current-record
pointer. A call to this procedure typically follows a corresponding call to the READ[X]

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-25

WRITEUPDATE[X] Procedures

or READUPDATE[X] procedure. The current-record and next-record pointers are not
affected by the WRITEUPDATE[X] procedure.

For magnetic tapes, WRITEUPDATE[X] is used to replace a record in an already
written tape. The tape is backspaced one record; the data from the application
process’s array is written in that area.

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

• The function value returned by WRITEUPDATE[X], which indicates the condition
code, can be interpreted by _status_lt(), _status_eq(), or _status_gt()
(defined in the file tal.h).

Syntax for TAL Programmers

Parameters

filenum input

INT:value (Use with WRITEUPDATE and WRITEUPDATEX)

is a number of an open file that identifies the file to be written.

#include <cextdecs(WRITEUPDATE)>

_cc_status WRITEUPDATE (short filenum
 ,short _near *buffer
 ,unsigned short write-count
 ,[unsigned short _near *count-written]
 ,[__int32_t tag]);

#include <cextdecs(WRITEUPDATEX)>

_cc_status WRITEUPDATEX (short filenum
 ,const char *buffer
 ,unsigned short write-count
 ,[unsigned short _far *count-written]
 ,[__int32_t tag]);

CALL WRITEUPDATE[X] (filenum ! i
 ,buffer ! i
 ,write-count ! i
 ,[count-written] ! o
 ,[tag]); ! i

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-26

WRITEUPDATE[X] Procedures

buffer input

INT:ref:* (Use with WRITEUPDATE)
STRING .EXT:ref:* (Use with WRITEUPDATEX)

is an array containing the information to be written to the file.

write-count input

INT:value (Use with WRITEUPDATE and WRITEUPDATEX)

is the number of bytes to be written to the file:

{0:4096} for disk files (see Disk File Considerations on page 16-8)
{0:32767} for magnetic tapes

For key-sequenced and relative files: 0 means delete the record.
For entry-sequenced files: 0 means anything <> the record’s length is

invalid.

count-written output

INT:ref:1 (Use with WRITEUPDATE)
INT .EXT:ref:1 (Use with WRITEUPDATEX)

is for wait I/O only. It returns a count of the number of bytes written to the file.

tag input

INT(32):value (Use with WRITEUPDATE and WRITEUPDATEX)

is for nowait I/O only. tag is a value you define that uniquely identifies the
operation associated with this WRITEUPDATE[X].

The system stores this tag value until the I/O operation completes. The system
returns the tag information back to the program in the tag parameter of the call to
AWAITIO[X], thus indicating that the operation completed. If WRITEUPDATEX is
used, you must call AWAITIOX to complete the I/O. If WRITEUPDATE is used,
you can use either AWAITIO or AWAITIOX to complete the I/O.

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

< (CCL) is returned following successful insertion or update of a record in a file with
one or more insertion-ordered alternate keys if a duplicate key value was
created for at least one insertion-ordered alternate key. A call to
FILE_GETINFO_ or FILEINFO shows that error 551 occurred; this error is
advisory only and does not indicate an unsuccessful write operation.

= (CCE) indicates the WRITEUPDATE[X] was successful.

> (CCG) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

Considerations

• WRITEUPDATE versus WRITEUPDATEX

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-27

WRITEUPDATE[X] Procedures

Use WRITEUPDATE when the buffer has a 16-bit address, and use
WRITEUPDATEX when the buffer has a 32-bit extended address. Therefore, the
data buffer for WRITEUPDATEX can be either in the caller’s stack segment or any
extended data segment.

• I/O counts with unstructured files

Unstructured files are transparently blocked using one of the four valid blocksizes
(512, 1024, 2048, or 4096 bytes; 4096 is the default). This transparent blocksize,
known as BUFFERSIZE, is the transfer size used against an unstructured file.
While BUFFERSIZE does not change the maximum unstructured transfer (4096
bytes), multiple I/O operations might be performed to satisfy a user’s request
depending on the BUFFERSIZE chosen. For example, if BUFFERSIZE is 512
bytes, and a request is made to write 4096 bytes, at least eight transfers, each 512
bytes long, will be made. More than eight transfers happen, in this case, if the
requested transfer does not start on a BUFFERSIZE boundary.

DP2 performance with unstructured files is best when requested transfers begin on
BUFFERSIZE boundaries and are integral multiples of BUFFERSIZE.

Because the maximum blocksize for DP2 structured files is also 4096 bytes, this is
also the maximum structured transfer size for DP2.

• Deleting locked records

Deleting a locked record implicitly unlocks that record unless the file is audited, in
which case the lock is not removed until the transaction terminates.

• Waited WRITEUPDATE[X]

If a waited WRITEUPDATE[X] is executed, the count-written parameter
indicates the number of bytes actually written.

• Nowait WRITEUPDATE[X]

If a nowait WRITEUPDATE[X] is executed, count-written has no meaning and
can be omitted. The count of the number of bytes written is obtained through the
count-transferred parameter of the AWAITIO[X] procedure when the I/O
completes.

The WRITEUPDATE[X] procedure must finish with a corresponding call to the
AWAITIO[X] procedure when used with a file that is opened nowait. For files
audited by the Transaction Management Facility (TMF), the AWAITIO[X] procedure
must be called before the ENDTRANSACTION or ABORTTRANSACTION
procedure is called.

You should not change the contents of the data buffer between the initiation and
completion of a nowait write operation. This is because a retry can copy the data
again from the user buffer and cause the wrong data to be written. You should

WARNING. When using nowait file I/O, data corruption might occur if the READ or
WRITE buffers are modified before the AWAITIOX that completes the call.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-28

WRITEUPDATE[X] Procedures

avoid sharing a buffer between a write and another I/O operation because this
creates the possibility of changing the contents of the write buffer before the write
is completed.

• Invalid write operations to queue files

Attempts to perform WRITEUPDATE[X] operations are rejected with an error 2.

Disk File Considerations

• Large data transfers

For WRITEUPDATEX only, large data transfers (more than 4096 bytes), can be
enabled by using SETMODE function 141. See Table 14-4 on page 14-63.

• Random processing and WRITEUPDATE[X]

For key-sequenced, relative, and entry-sequenced files, random processing
implies that a designated record must exist. This means that positioning for
WRITEUPDATE[X] is always to the record described by the exact value of the
current key and current-key specifier. If such a record does not exist, the call to
WRITEUPDATE[X] is rejected with file-system error 11 (record does not exist).

• File is locked

If a call to WRITEUPDATE[X] is made and the file is locked through a file number
other than that supplied in the call, the call is rejected with file-system error 73 (file
is locked).

• When the just-read record is updated

A call to WRITEUPDATE[X] following a call to READ[X], without intermediate
positioning, updates the record just read.

• Unstructured files

• Unstructured disk file: transferring data

If the WRITEUPDATE[X] is to an unstructured disk file, data is transferred to
the record location specified by the current-record pointer.

• File pointers after a successful WRITEUPDATE[X]

After a successful WRITEUPDATE[X] to an unstructured file, the current-record
and next-record pointers are unchanged.

• The number of bytes written

If the unstructured file is created with the odd unstructured attribute (also
known as ODDUNSTR) set, the number of bytes written is exactly the number
specified in write-count. If the odd unstructured attribute is not set when
the file is created, the value of write-count is rounded up to an even value
before the WRITEUPDATE[X] is executed.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-29

WRITEUPDATE[X] Procedures

You set the odd unstructured attribute with the FILE_CREATE_,
FILE_CREATELIST_, or CREATE procedure, or with the File Utility Program
(FUP) SET and CREATE commands.

• Structured files

• Calling WRITEUPDATE[X] after KEYPOSITION

If the call to WRITEUPDATE[X] immediately follows a call to KEYPOSITION in
which a nonunique alternate key is specified as the access path, the
WRITEUPDATE[X] fails. A subsequent call to FILE_GETINFO_ or FILEINFO
shows that error 46 (invalid key) occurred. However, if an intermediate call to
READ[X] or READLOCK[X] is performed, the call to WRITEUPDATE[X] is
permitted because a unique record is identified.

• Specifying write-count for entry-sequenced files

For entry-sequenced files, the value of write-count must match exactly the
write-count value specified when the record was originally inserted into the
file.

• Changing the primary-key of a key-sequenced record

An update to a record in a key-sequenced file cannot alter the value of the
primary-key field. Changing the primary-key field must be done by
deleting the old record (WRITEUPDATE[X] with write-count = 0) and
inserting a new record with the key field changed (WRITE).

• Current-state indicators after WRITEUPDATE[X]

After a successful WRITEUPDATE[X], the current-state indicators remain
unchanged.

Magnetic Tape Considerations

• WRITEUPDATE[X] is permitted only on the 3202 Controller for the 5103 or 5104
Tape Drives. This command is not supported on any other controller/tape drive
combination.

WRITEUPDATE[X] is specifically not permitted on these controller/tape drive pairs:

3206 Controller and the 5106 Tri-Density Tape Drive
3207 Controller and the 5103 & 5104 Tape Drives
3208 Controller and the 5130 & 5131 Tape Drives

• Specifying the correct number of bytes written

When WRITEUPDATE[X] is used with magnetic tape the number of bytes to be
written must fit exactly; otherwise, information on the tape can be lost. However,
no error indication is given.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-30

WRITEUPDATE[X] Procedures

• Limitation of WRITEUPDATE[X] to the same record

Five is the maximum number of times a WRITEUPDATE[X] can be executed to the
same record on tape.

Considerations for WRITEUPDATEX Only

• The buffer and count transferred may be in the user stack or in an extended data
segment. The buffer and count transferred cannot be in the user code space.

• If the buffer or count transferred is in a selectable extended data segment, the
segment must be in use at the time of the call. Flat segments allocated by a
process are always accessible to the process.

• If the file is opened for nowait I/O, and the buffer is in an extended data segment,
you cannot deallocate or reduce the size of the extended data segment before the
I/O completes with a call to AWAITIOX or is canceled by a call to CANCEL or
CANCELREQ.

• If the file is opened for nowait I/O, you must not modify the buffer before the I/O
completes with a call to AWAITIOX. This also applies to other processes that may
be sharing the segment. It is the application’s responsibility to ensure this.

• If the file is opened for nowait I/O, and the I/O has been initiated with these
routines, the I/O must be completed with a call to AWAITIOX (not AWAITIO).

• If the file is opened for nowait I/O, the extended segment containing the buffer
need not be in use at the time of the call to AWAITIOX.

• Nowait I/O initiated with these routines may be canceled with a call to CANCEL or
CANCELREQ. The I/O is canceled if the file is closed before the I/O completes or
AWAITIOX is called with a positive time limit and specific file number and the
request times out.

• If the extended address of the buffer is odd, bounds checking rounds the address
to the next lower word boundary and checks an extra byte as well. The odd
address is used for the transfer.

Errors for WRITEUPDATEX Only
In addition to the errors returned from the WRITEUPDATE procedure, file-system error
22 is returned when:

• The segment is in use at the time of the call or the segment in use is invalid.

• The address of a parameter is extended, but it is an absolute address and the
caller is not privileged.

• The file system cannot use the user's segment when needed.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-31

WRITEUPDATEUNLOCK[X] Procedures

Example
CALL WRITEUPDATE (TAPE^NUM , TAPE^BUF , NUM^READ , NUM^WRITTEN
);

The application makes the necessary changes to the record in TAPE^BUF, then edits
the tape by calling WRITEUPDATE. The tape is backspaced over the record just read,
then updated by writing the new record in its place. NUM^READ indicates the number
of bytes to be written (ensuring that the same number of bytes just read are also
written).

Related Programming Manuals
For programming information about the WRITEUPDATE file-system procedure, see the
Enscribe Programmer’s Guide and the Guardian Programmer’s Guide.

WRITEUPDATEUNLOCK[X] Procedures
Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Condition Code Settings
Considerations
Considerations for WRITEUPDATEUNLOCKX Only
Errors for WRITEUPDATEUNLOCKX Only
OSS Considerations
Example
Related Programming Manuals

Summary
The WRITEUPDATEUNLOCK[X] procedures perform random processing of records in
a disk file.

WRITEUPDATEUNLOCK is intended for use with 16-bit addresses, while
WRITEUPDATEUNLOCKX is intended for use with 32-bit addresses. Therefore, the
data buffer for WRITEUPDATELOCKX can be either in the caller’s stack segment or
any extended data segment.

WRITEUPDATEUNLOCK[X] has two functions:

1. To alter, then unlock, the contents of the record at the current position

2. To delete the record at the current position in a key-sequenced or relative file

A call to WRITEUPDATEUNLOCK[X] is equivalent to a call to WRITEUPDATE[X]
followed by a call to UNLOCKREC. However, the WRITEUPDATEUNLOCK[X]
procedure requires less system processing than do the separate calls to
WRITEUPDATE[X] and UNLOCKREC.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-32

WRITEUPDATEUNLOCK[X] Procedures

Syntax for C Programmers

• CEXTDECS (through the included file TNSINTH) defines 32-bit values as the
typedef __int32_t which for TNS and TNS/R compiles is defined as long and for
TNS/E compiles is defined as int.

• The function value returned by WRITEUPDATEUNLOCK[X], which indicates the
condition code, can be interpreted by _status_lt(), _status_eq(), or
_status_gt() (defined in the file tal.h).

Syntax for TAL Programmers

Parameters

filenum input

INT:value (Use with WRITEUPDATEUNLOCK and
WRITEUPDATEUNLOCKX)

is a number of an open file that identifies the file to be written.

buffer input

INT:ref:* (Use with WRITEUPDATEUNLOCK)
STRING .EXT:ref:* (Use with WRITEUPDATEUNLOCKX)

is an array containing the data to be written to the file.

#include <cextdecs(WRITEUPDATEUNLOCK)>

_cc_status WRITEUPDATEUNLOCK (short filenum
 ,short _near *buffer
 ,unsigned short write-count
 ,[unsigned short _near *count-written]
 ,[__int32_t tag]);

#include <cextdecs(WRITEUPDATEUNLOCKX)>

_cc_status WRITEUPDATEUNLOCKX (short filenum
 ,const char _far *buffer
 ,unsigned short write-count
 ,[unsigned short _far *count-written]
 ,[__int32_t tag]);

CALL WRITEUPDATEUNLOCK[X] (filenum ! i
 ,buffer ! i
 ,write-count ! i
 ,[count-written] ! o
 ,[tag]); ! i

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-33

WRITEUPDATEUNLOCK[X] Procedures

write-count input

INT:value (Use with WRITEUPDATEUNLOCK and
WRITEUPDATEUNLOCKX)

is the number of bytes to be written to the file: {0:4096}.

For key-sequenced and relative files 0 deletes the record
For entry-sequenced files 0 is invalid (error 21)

count-written output

INT:ref:1 (Use with WRITEUPDATEUNLOCK)
INT .EXT:ref:1 (Use with WRITEUPDATEUNLOCKX)

is for wait I/O only. It returns an integer indicating the number of bytes written to
the file.

tag input

INT(32):value (Use with WRITEUPDATEUNLOCK and
WRITEUPDATEUNLOCKX)

is for nowait I/O only. tag is a value you define that uniquely identifies the
operation associated with this WRITEUPDATEUNLOCK[X].

Condition Code Settings
< (CCL) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

< (CCL) is returned following successful insertion or update of a record in a file with
one or more insertion-ordered alternate keys if a duplicate key value was
created for at least one insertion-ordered alternate key. A call to
FILE_GETINFO_ or FILEINFO shows that error 551 occurred; this error is
advisory only and does not indicate an unsuccessful write operation.

= (CCE) indicates that the WRITEUPDATEUNLOCK[X] was successful.

> (CCG) indicates that an error occurred (call FILE_GETINFO_ or FILEINFO).

Note. The system stores this tag value until the I/O operation completes. The system then
returns the tag information to the program in the tag parameter of the call to AWAITIO[X],
thus indicating that the operation completed. If WRITEUPDATEUNLOCKX is used, you must
call AWAITIOX to complete the I/O. If WRITEUPDATEUNLOCK is used, you can use either
AWAITIO or AWAITIOX to complete the I/O.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-34

WRITEUPDATEUNLOCK[X] Procedures

Considerations

• WRITEUPDATEUNLOCK versus WRITEUPDATEUNLOCKX

Use WRITEUPDATEUNLOCK when the buffer has a 16-bit address, and use
WRITEUPDATEUNLOCKX when the buffer has a 32-bit extended address.
Therefore, the data buffer for WRITEUPDATEUNLOCKX can be either in the
caller’s stack segment or any extended data segment.

• Nowait I/O and WRITEUPDATEUNLOCK[X]

The WRITEUPDATEUNLOCK[X] procedure must complete with a corresponding
call to the AWAITIO[X] procedure when used with a file that is opened nowait. If
WRITEUPDATEUNLOCKX is used, you must call AWAITIOX to complete the I/O.
If WRITEUPDATEUNLOCK is used, you can use either AWAITIO or AWAITIOX to
complete the I/O.

For files audited by the Transaction Management Facility (TMF), AWAITIO[X] must
be called to complete the WRITEUPDATEUNLOCK[X] operation before
ENDTRANSACTION or ABORTTRANSACTION is called.

You should not change the contents of the data buffer between the initiation and
completion of a nowait write operation. This is because a retry can copy the data
again from the user buffer and cause the wrong data to be written. You should
avoid sharing a buffer between a write and another I/O operation because this
creates the possibility of changing the contents of the write buffer before the write
is completed.

• Random processing and WRITEUPDATEUNLOCK[X]

For key-sequenced, relative, and entry-sequenced files, random processing
implies that a designated record must exist. This means positioning for
WRITEUPDATEUNLOCK[X] is always to the record described by the exact value
of the current key and current-key specifier. If such a record does not exist, the
call to WRITEUPDATEUNLOCK[X] is rejected with file-system error 11 (record
does not exist).

• Unstructured files—pointers unchanged

For unstructured files, data is written in the position indicated by the current-record
pointer. A call to WRITEUPDATEUNLOCK[X] for an unstructured file typically
follows a call to POSITION or READUPDATE[X]. The current-record and next-
record pointers are not changed by a call to WRITEUPDATEUNLOCK[X].

• How WRITEUPDATEUNLOCK[X] works

The record unlocking performed by WRITEUPDATEUNLOCK[X] functions in the
same manner as UNLOCKREC.

• Record does not exist

WARNING. When using nowait file I/O, data corruption might occur if the READ or
WRITE buffers are modified before the AWAITIOX that completes the call.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-35

WRITEUPDATEUNLOCK[X] Procedures

Positioning for WRITEUPDATEUNLOCK[X] is always to the record described by
the exact value of the current key and current-key specifier. Therefore, if such a
record does not exist, the call to WRITEUPDATEUNLOCK[X] is rejected with file-
system error 11.

See Considerations on page 16-26.

• Invalid write operations to queue files

DP2 rejects WRITEUPDATEUNLOCK[X] operations with an error 2.

Considerations for WRITEUPDATEUNLOCKX Only

• The buffer and count transferred may be in the user stack or in an extended data
segment. The buffer and count transferred cannot be in the user code space.

• If the buffer or count transferred is in a selectable extended data segment, the
segment must be in use at the time of the call. Flat segments allocated by a
process are always accessible to the process.

• If the file is opened for nowait I/O, and the buffer is in an extended data segment,
you cannot deallocate or reduce the size of the extended data segment before the
I/O completes with a call to AWAITIOX or is canceled by a call to CANCEL or
CANCELREQ.

• If the file is opened for nowait I/O, you must not modify the buffer before the I/O
completes with a call to AWAITIOX. This also applies to other processes that may
be sharing the segment. It is the application’s responsibility to ensure this.

• If the file is opened for nowait I/O, and the I/O has been initiated with these
routines, the I/O must be completed with a call to AWAITIOX (not AWAITIO).

• If the file is opened for nowait I/O, the extended segment containing the buffer
need not be in use at the time of the call to AWAITIOX.

• Nowait I/O initiated with these routines may be canceled with a call to CANCEL or
CANCELREQ. The I/O is canceled if the file is closed before the I/O completes or
AWAITIOX is called with a positive time limit and specific file number and the
request times out.

• If the extended address of the buffer is odd, bounds checking rounds the address
to the next lower word boundary and checks an extra byte as well. The odd
address is used for the transfer.

Errors for WRITEUPDATEUNLOCKX Only
In addition to the errors returned from the WRITEUPDATEUNLOCK procedure, file-
system error 22 is returned when:

• The address of a parameter is extended, but no segment is in use at the time of
the call or the segment in use is invalid.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-36

WRITEUPDATEUNLOCK[X] Procedures

• The address of a parameter is extended, but it is an absolute address and the
caller is not privileged.

• The file system cannot use the user's segment when needed.

OSS Considerations

• This procedure operates only on Guardian objects. If an OSS file is specified,
error 2 is returned.

Example
CALL WRITEUPDATEUNLOCK (OUT^FILE , OUT^BUFFER , 72 &
 , NUM^WRITTEN);

Related Programming Manuals
For programming information about the WRITEUPDATEUNLOCK file-system
procedure, see the Enscribe Programmer’s Guide and the Guardian Programmer’s
Guide.

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-37

XBNDSTEST Procedure
(Superseded by REFPARAM_BOUNDSCHECK_

XBNDSTEST Procedure
(Superseded by REFPARAM_BOUNDSCHECK_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary

XBNDSTEST aids user programs in checking stack limits or parameter addresses.
(LASTADDRX provides a similar function.) XBNDSTEST uses constants obtained
from another procedure, XSTACKTEST, to check a specified address and its length for
potential bounds violations.

Syntax for C Programmers

Syntax for TAL Programmers

Parameters

status returned value

INT

returns one of these values:

1 In bounds, but in a read-only segment or (on native systems only) in the
system library

0 In bounds and writable

Note. This procedure cannot be called by native processes. Although this procedure is
supported for TNS processes, it should not be used for new development.

#include <cextdecs(XBNDSTEST)>

short XBNDSTEST (char *param
 ,short bytelen
 ,short flags
 ,long long constants);

status := XBNDSTEST (param ! i
 ,bytelen ! i
 ,flags ! i
 ,constants); ! i

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-38

XBNDSTEST Procedure
(Superseded by REFPARAM_BOUNDSCHECK_

-1 Out of bounds or invalid address
-2 Incorrectly aligned on word boundary
-3 Undefined flag value
-4 In bounds, but in an extensible extended data segment that cannot be

extended (usually due to lack of additional disk space for the swap file)

param input

STRING .EXT:ref:*

is the parameter to be bounds-checked.

bytelen input

INT:value

is the unsigned length of the parameter, in bytes {0:65535}.

flags input

INT:value

is defined as:

<0:12> must be zero
<13> use extended address limits from constants
<14> parameter must be word-aligned
<15> skip the bounds test and return 0

constants input

FIXED:value

is a set of constant values generated by XSTACKTEST.

Considerations

• XBNDSTEST can perform extended address checking against either the current
extended address limit or the limit in effect at the time XSTACKTEST was called.
The latter may be specified by setting bit <13> of the flags parameter.

• XBNDSTEST will normally reject all relative extended address references to the
system data segment (segment 1) as well as all absolute extended addresses.
Procedures that support privileged callers may disable these checks by either:

• setting bit <15> of the flags parameter, which will disable all address
checking.

• calling XSTACKTEST with bit <14> of the flags parameter set, which will
generate a constants value that permits privileged mode addressing but still
performs the normal checks on other addresses.

• Before the D20 RVU, these status conditions were handled differently:

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-39

XSTACKTEST Procedure
(Superseded by HEADROOM_ENSURE_

• An address falling in the system library area on a native system, which now
causes a status value of 1 to be returned, previously caused a status value
of -1 (invalid address) to be returned.

• The condition that now causes a status value of -4 to be returned (address is
in an extensible extended data segment that cannot be extended) previously
caused a status value of -1 (invalid address) to be returned.

XSTACKTEST Procedure
(Superseded by HEADROOM_ENSURE_
Procedure)

Summary
Syntax for C Programmers
Syntax for TAL Programmers
Parameters
Considerations

Summary

XSTACKTEST, used with LASTADDRX and XBNDSTEST checks stack limits.
XSTACKTEST ensures that adequate stack space is available and returns a set of
constants to be used with the XBNDSTEST procedure.

Syntax for C Programmers

Syntax for TAL Programmers

Note. This procedure cannot be called by native processes. Although this procedure is
supported for TNS processes, it should not be used for new development.

#include <cextdecs(XSTACKTEST)>

short XSTACKTEST (short _near *firstparam
 ,short stackwords
 ,short flags
 ,long long *constants);

status := XSTACKTEST (firstparm ! i
 ,stackwords ! i
 ,flags ! i
 ,constants); ! o

Guardian Procedure Calls (W-Z)

Guardian Procedure Calls Reference Manual—522629-030
16-40

XSTACKTEST Procedure
(Superseded by HEADROOM_ENSURE_

Parameters

status returned value

INT

returns one of these file-system error numbers:

0 Adequate stack space available
2 Undefined flags value
21 stackwords is less than 1
22 Bounds error on firstparm or constants
632 Insufficient stack space available

firstparm input

INT:ref:*

points to the first parameter word of the first called procedure.

stackwords input

INT:value

is the number of words required for the stack, starting from the firstparm
location.

flags input

INT:value

is defined as:

<0:13> must be zero
<14> allow parameters that use privileged addresses
<15> skip the stack test and return 0

constants output

FIXED:ref:1

is a returned set of constant values that may be used when calling XBNDSTEST.

Considerations

• If bit <14> of the flags parameter is set, the constants value generated by
XSTACKTEST causes XBNDSTEST to accept extended addresses that refer to
the system data segment or that use absolute extended addressing.

• If bit <15> of the flags parameter is set, XSTACKTEST immediately returns 0 and
the constants parameter is NOT modified.

Guardian Procedure Calls Reference Manual—522629-030
A-1

A Device Types and Subtypes

Table A-1. Device Types and Subtypes (page 1 of 9)

Type Device
Sub
type G-Series and H-Series Descriptions

0 Process 0 Default subtype for general use

1-49 Reserved for definition by HP. These subtypes are
defined:

1 = CMI process
2 = Security monitor process
30 = Device simulation process
31 = Spooler collector process
48 = TFTP server process
49 = SNMP trap multiplexor

50-63 For general use

1 Operator
console

0 $0 (operator process) or alternate collector

1 $0.#ZSPI ($0 opened to receive SPI commands)

2 $Z0 (compatibility distributor)

2 $RECEIVE 0

3 Disk 2 N.A.

3 N.A.

4 N.A.

5 N.A.

6 N.A.

7 N.A.

8 N.A.

N.A.

9 N.A.

10 N.A.

16 N.A.

17 N.A.

18 N.A.

19 N.A.

20 N.A.

21 N.A.

22 N.A.

23 N.A.

26 N.A.

Device Types and Subtypes

Guardian Procedure Calls Reference Manual—522629-030
A-2

29 N.A.

31 N.A.

33 N.A.

34 N.A.

36 NonStop™ Storage Management Foundation
(SMF) virtual disk process

38 4560 (2 GB formatted capacity per spindle) with
ServerNet/DA

39 4570 (4 GB) with ServerNet DA

41 4604 (4 GB)

42 4608 (8 GB)

4609 (8 GB)

43 4618 (18 GB)

43 4619 (18 GB) (15,000 rpm)

44 4636 (36 GB)
4637 (36 GB)

45 4672 (72 GB)

46 46144 (144 GB) SCSI disk for an S-series system

48 4590 (18 GB) with ServerNet/DA

52 ESS attached disk of dynamic variable size

53 JBOD attached disk of variable size

56 N.A.

4 Magnetic tape
unit

0 N.A.

1 N.A.

2 N.A.

3 N.A.

4 N.A.

5 N.A.

6 5170 tape unit (1600, 6250 bpi) PMF/IOMF or
ServerNet/DA

7 N.A.

8 N.A.

9 5190 tape unit (18 track, 38000 bpi) or 5194 tape
unit (36 tracks, 38000 bpi) with PMF, IOMF, or
ServerNet/DA

Table A-1. Device Types and Subtypes (page 2 of 9)

Type Device
Sub
type G-Series and H-Series Descriptions

Device Types and Subtypes

Guardian Procedure Calls Reference Manual—522629-030
A-3

10 N.A.

11 5142 DAT with PMF or IOMF

4 Magnetic 14 521A, 524A, 525A (LTO) tape units
(512 tracks, 7.32kb/mm) with PMF or IO

5 Printer 0

1 N.A.

3

4

5 N.A.

6

7

8

9

10

32

6 Terminal 0 Conversational mode (P/N 6401/6402) or
PATPTERM (non-HP) device

1 Page mode (P/N 6511, 6512)

2 Page mode (P/N 6520, 6524)

3 N.A.

4 Page mode (P/N 6526, 6528, 653x)

5 N.A.

6-10 Conversational mode

6 = 3277 (screen size 12x40)

7 = 3277 (screen size 24x80)

8 = 3277 (screen size 32x80)

9 = 3277 (screen size 43x80)

10 = 3277 (screen size 12x80)

11 6340 FaxLink

16

SNAX
Interactive
Terminal
Interface (ITI)
Protocol

20 3275-11, 3276-1 & -11,
3277-1, 3278-1

Table A-1. Device Types and Subtypes (page 3 of 9)

Type Device
Sub
type G-Series and H-Series Descriptions

Device Types and Subtypes

Guardian Procedure Calls Reference Manual—522629-030
A-4

21 3275-12, 3276-2 & -12,
3277-2, 3278-2,
3178-C10, -C20, -C3, & -C4,
3191-A1K & -A2K,
3279-2A, -2B, -S2A, -S2B, & -02X,
5578-001, -002, F-6652-A, & -C

22 3276-3, 3278-3, 3277-3,
3279-3A, -3B, -S3G, & -03X

23 3276-4 & -14, 3278-4,
3277-4, 6580-A04, -A06, -A08, & -A10

24 3278-5

30 3262, 3284, 3286, 3282, 3289

32 6603/6604 terminal

7 Envoy data
communications
line

0 BISYNC, point-to-point, nonswitched

1 BISYNC, point-to-point, switched

2 BISYNC, multipoint, tributary

3 BISYNC, multipoint, supervisor

8 ADM-2, multipoint, supervisor

9 TINET, multipoint, supervisor

10 Burroughs, multipoint, supervisor

11 Burroughs, point-to-point, contention

13 Burroughs, point-to-point, contention

30 Full duplex (FDX), out line

31 Full duplex (FDX), in line

32 NASDAQ, Full duplex (FDX), out line

33 NASDAQ, Full duplex (FDX), in line

40 Asynchronous line supervisor

50 N.A.

56 N.A.

8 Open SCSI

9 Process-to-
process
interface

0 X25AM process

Table A-1. Device Types and Subtypes (page 4 of 9)

Type Device
Sub
type G-Series and H-Series Descriptions

Device Types and Subtypes

Guardian Procedure Calls Reference Manual—522629-030
A-5

10 Terminal SNAX
Cathode-Ray
Tube (CRT)
protocol

0 327x CRT mode Interface

20 3275-11, 3276-1 & -11,
3277-1, 3278-1

 21 3275-12, 3276-2 & -12,
3277-2, 3278-2,
3178-C10, -C20, -C3, & -C4,
3279-2A, -2B, -S2A, -S2B, & -02X

22 3276-3, 3278-3, 3277-3,
3279-3A, -3B, -S3G, & -03X

23 3276-4 & -14, 3278-4,
3277-4, 6580-A04, -A06, -A08, & -A10

24 3278-5, 3276-5, 3277-5

30 3262, 3284, 3286, 3287, 3289

11 EnvoyACP/XF 40 FRMEXF or SDLCXF (synchronous data-link
control) line

41 HDLCXF (high-level data-link control) line

42 ADCCP (advanced data communications control
procedures) line

43 Frame protocol

12 Tandem-to-IBM
Link (TIL)

0

13 SNAX/XF or
SNAX/APN

5 SNASVM (Service Manager Process)

14 SNALU 0 SNA Application Logical Unit (SNALU)

15 SNAX/3501 0 3501 Data Encryption Devices

1 Key manager (ZKEY)

3 High performance security modules

NSP 4 Atalla A6000 Network Security Processor

19 IPX/SPX 0 Manager process

1 Protocol process

20-
23

NTM/MP 0 NonStop Transaction Management Facility (TMF)

24 OSS Open System Services

25 SMF pool 0 Storage pool process

Table A-1. Device Types and Subtypes (page 5 of 9)

Type Device
Sub
type G-Series and H-Series Descriptions

Device Types and Subtypes

Guardian Procedure Calls Reference Manual—522629-030
A-6

26 Tandem
HyperLink (THL)

0

27 IPBMON 0 Interprocessor bus monitor for Fiber Optic
Extension (FOX) or TorusNet vertical subsystem in
FOX-compatibility mode

5 $IPB1 (TorusNet vertical subsystem master
service manager in multiple-link mode)

6 Service manager for additional TorusNet vertical
links

28 $ZNUP 0 Network Utility Process

29 $ZMIOP 1 Subsystem manager

30 Optical disk unit 0 N.A.

1 N.A.

2 N.A.

3 N.A.

31 SNMP 0 NonStop SNMP Agent

36 TandemTalk 1 N.A.

2 N.A.

3 N.A.

4 N.A.

37 ISDN 0 Integrated Services Digital Network Subsystem
Manager

43 SLSA 0 ServerNet LAN Systems Access (SLSA) manager
process

1 ServerNet LAN Systems Access (SLSA) monitor
process (LAN MON)

44 any device type
> 63

0 44 is displayed as the type for any device with a
device type greater than 63. The program is
unable to return information on device types
greater than 63. Use the newer Guardian
procedures (those that are not superseded) to
obtain information on device types that are greater
than 63.

45 QIO 0 Queue I/O Monitor Process

46 TELNET 0 TELNET Server Process

48 TCP/IP 0

49 SNAX/CDF 0 N.A.

Table A-1. Device Types and Subtypes (page 6 of 9)

Type Device
Sub
type G-Series and H-Series Descriptions

Device Types and Subtypes

Guardian Procedure Calls Reference Manual—522629-030
A-7

50 CSM 0 N.A.

1 N.A.

2 SWAN concentrator manager (CONMGR)

3 $ZZWAN WAN manager process

4 WANBOOT process

63 Subsystem Control Point (SCP)

51 CP6100 0 Line interface unit (LIU)

1 Bisynchronous (BISYNC) point-to-point line

2 ADCCP line

3 N.A.

4 MPSB Burroughs multipoint

52 SMF master 0 SMF master process

53 ATP6100 0

1

2

54 DDNAM 0

63

55 Open Systems
Interconnection
(OSI)

1 OSI/Application Services (OSI/AS) Manager

4 Transport service provider (TSP)

5 HP application, presentation, and session (TAPS)
processes

11 OSI/Message Handling System (OSI/MHS)

12 OSI/Message Handling System (OSI/MHS)

20 OSI/FTAM Application Manager

21 OSI/FTAM Services

24 OSI/CMIP

25 OSI/FTAM Services

56 Multilan 0 N.A.

1 N.A.

2 N.A.

3 N.A.

4 N.A.

Table A-1. Device Types and Subtypes (page 7 of 9)

Type Device
Sub
type G-Series and H-Series Descriptions

Device Types and Subtypes

Guardian Procedure Calls Reference Manual—522629-030
A-8

5 N.A.

6 N.A.

57 GDS 0 General Device Support

58 SNAX/XF or
SNAX/APN

0

1

2 N.A.

3

4

59 AM6520 0 N.A.

 10 N.A.

60 AM3270 0

10 Line attached to SWAN concentrator

TR3271 1

11 Line attached to SWAN concentrator

61 X.25 0-61 N.A.

62 N.A.

63 Line attached to SWAN concentrator

62 Expand NCP 6 $NCP Network Control Process

63 Expand Line
Handler

0 Single-line handler over X.25, SNA, IP, ATM

1 Multiline path handler

 2 Multiline line handler over X.25, SNA, IP, ATM

 3 Single-line handler over FOX (ServerNet/FX)

4 Single-Line handler over ServerNet/Cluster

5 Single-line handler SWAN_DIRECT or
SWAN_SATELLITE

6 Multiline line handler SWAN_DIRECT or
SWAN_SATELLITE

63 Expand
Manager

30 Expand Manager process $ZEXP

64 ServerNet
Monitor

0 ServerNet/Cluster Monitor process $ZZSCL

1 ServerNet/Cluster SANMAN process $ZZSMN

2 ServerNet/Cluster MSGMON processes

Table A-1. Device Types and Subtypes (page 8 of 9)

Type Device
Sub
type G-Series and H-Series Descriptions

Device Types and Subtypes

Guardian Procedure Calls Reference Manual—522629-030
A-9

65 Storage
Subsystem
Manager

0 Configures and controls storage I/O processes

66 NonStop Kernel
Management

0 Configures and controls system-wide attributes
and generic processes

67 SCSI Lock
Management

0 Coordinates resource sharing SCSI I/O subsystem
components across processors

Table A-1. Device Types and Subtypes (page 9 of 9)

Type Device
Sub
type G-Series and H-Series Descriptions

Device Types and Subtypes

Guardian Procedure Calls Reference Manual—522629-030
A-10

Guardian Procedure Calls Reference Manual—522629-030
B-1

B Reserved Process Names
This appendix contains the names that should be avoided when choosing process
names. The names listed here are reserved for HP use:

$AOPR
$CMON
$CMP
$C9341
$DMnn
$IMON
$IPB
$KEYS
$MLOK
$NCP
$NULL
$OSP
$PM
$S
$SIMnn
$SPLS
$SSCP
$SYSTEM
$T
$TICS
$TMP
$Xname
$Yname
$Zname

nn is any two digits (00 through 99).
name is any combination of 1 through 4 letters or digits (A through Z, 0

through 9).

These names are not reserved, but should be used with caution because they are
commonly used for a specific purpose:

$DISC $LP $TAPE
$DISK $SPLP

Guardian Procedure Calls Reference Manual—522629-030
C-1

C Completion Codes
This appendix lists the completion codes returned after execution of a process or, in
some instances, a job step. These codes indicate the degree of success of a program
in a standard manner, thus making it possible to create or build further steps based on
these codes.

Completion codes -32768 through -1 are reserved for HP use. The caller must be
privileged to have a negative completion code returned to its ancestor. Completion
codes 0 through 999 are reserved and are shared by the customer and HP.

Completion codes from 1000 through +32767 are reserved for customers. HP
subsystems will not use these completion codes.

These completion codes are defined and should be used according to these definitions
for uniformity:

Completion
Code Definition

0 Normal, voluntary termination with no errors. This code is the default
code for PROCESS_STOP_ (if abnormal termination is not specified)
and STOP if no completion code is specified, and for the OSS exit()
function if the exit status is 0.

1 Normal, voluntary termination with WARNING diagnostics. For
example, if the process is a compiler, the compilation terminated with
WARNING diagnostics after building a complete object file.

2 Abnormal, voluntary termination with FATAL errors or diagnostics. For
example, if the process is a compiler, the compilation terminated with
FATAL diagnostics and either an object file was not built or, if built,
might be incomplete. A complete listing is generated.

3 Abnormal, voluntary, but premature termination with FATAL errors or
diagnostics. For example, if the process is a compiler, the compilation
terminated with FATAL diagnostics, with either no object file or an
incomplete object file being built and an incomplete listing generated
(the compiler quit compiling prematurely).

4 Process never got started. This completion code exists primarily for
the use of the command interpreter or other command language
interpreters that can act as the executor process of a batch job. This
code allows the executor process to detect that a process associated
with a RUN statement never got started. In that sense, this completion
code is a “fake” completion code. The command interpreter acts as
though it received a termination message from the process that it tried
to create, when in fact it received an error returned by the procedure
or OSS function that launched the process. The command interpreter
then makes the completion code and the error returned by the
procedure or OSS function that launched the process available for
evaluation, for example, by a batch job executor process.

Completion Codes

Guardian Procedure Calls Reference Manual—522629-030
C-2

5 Process calls PROCESS_STOP_ (with abnormal termination
specified) or ABEND on itself. This code is the default completion
code for the PROCESS_STOP_ procedure (when abnormal
termination is specified) and the ABEND procedure.

6 PROCESS_STOP_, STOP, or ABEND was called to delete a process
by an external, but authorized, process. The system includes this
completion code in the process deletion message. If the process
cannot be stopped, the request is saved so that when the process
calls SETSTOP this completion code is sent with the process deletion
message. The user ID, the PCBCRAID (CAID) and the process ID of
the process that caused the termination, are included in the
termination message.

7 Restart this job. This completion code is used by the NetBatch
scheduler and an executor process. The executor process sets its
completion code to this value upon termination; the scheduler
interprets this completion code and restarts a “restartable” job.

8 Code 8 is the same as code 1, normal termination, except that the
user must examine the listing file to determine whether the results are
acceptable. Completion code 8 is typically used by compilers.

9 The kill() or raise() function generated a signal that stopped the
process. The termination information provides the signal number.

Note. If a signal is delivered to a signal handler that stops the process, the completion code
will be determined by the handler. For example, when a signal stops a native C program, a
different completion code is returned as set by the signal handler installed by the Common
Run-Time Environment (CRE).

Completion
Code Definition

Completion Codes

Guardian Procedure Calls Reference Manual—522629-030
C-3

These completion codes are reserved for HP use:

Completion
Code Definition

-1 A trap was detected in a Guardian TNS process. If the system detects
the absence of a trap handler routine or encounters another trap in a
trap handler, then in addition to an abnormal termination, this
completion code is returned automatically in the process deletion
(ABEND) message. The contents of the text string vary with the state
of the process. The first nine characters are "TRAPNO=nn" with nn
representing the trap number in decimal. Then the text identifies the
code space, including the TNS code segment index when appropriate,
and indicates whether the process was privileged. Finally, the text
displays key registers, depending upon the execution mode of the
process at the time of its termination: P or pc, L, and S for TNS or
accelerated mode; pc and sp for native mode.

Examples:

Invalid address in TNS mode:
TRAPNO=00: (UC.00) P=%000012 L=%000001 S=%000003

Arithmetic overflow (division by zero) in accelerated mode, privileged:
TRAPNO=02: (acc UC, Priv) pc=%h7042370C L=%023520
S=%023526

Limits-exceeded in native mode, privileged:
TRAPNO=05: (SCr, Priv) pc=0x808E2EDC sp=0x5FFFFF00

-2 This code is returned by the system when a process has terminated
itself but the system is unable to pass along the requested completion
code and the associated termination information due to a resource
problem in the system.

-3 This code is returned by the system when a process terminating itself
passed bad parameters to PROCESS_DELETE_, STOP, or ABEND.
In this case, some or all of the information requested in the completion
code message may not be present. Because the process is stopping
itself, it is stopped.

-4 This code is returned by the system when a processor failure caused
the name of a process to be deleted (that is, the only process running
under that name was in the processor that failed).

-5 A communications or resource failure occurred during the execution of
one of the functions in the OSS exec or tdm_exec set of functions; or
an initialization failure of the new process occurred when it was too
late for the exec or tdm_exec function to return an error to its caller.

Completion Codes

Guardian Procedure Calls Reference Manual—522629-030
C-4

-6 An OSS process or native process terminated when it caused a
hardware exception. The termination information field of the message
contains the signal number.

The termination text is in the message for all processes. However,
while the TACL command interpreter displays the termination text
when it is present in the message for a process created by TACL,
OSS utilities such as osh typically do not.

The text shows the signal number and name, identifies the code
space, and indicates whether the process was privileged. For a native
process, the text displays the pc and sp registers. For an OSS
process, it shows registers appropriate to the mode, as for completion
code -1.

Examples:

Invalid address in native mode:

Arithmetic overflow (division by zero) in native mode, privileged:
Signal 8, SIGFPE: (UCr, Priv) pc=0x70002D48 sp=0x5FFFFEB8

-7 An OSS process or native process terminated as a result of a
corrupted stack frame or register state.

-8 An OSS process or native process terminated because of insufficient
user stack space for signal delivery. Stack overflow generates
completion code -8, which is otherwise like completion code -6.

Example:

Stack overflow in native mode:
Signal 25, SIGSTK: (UCr) pc=0x70000394 sp=0x4FEFFE18

-9 An OSS process or native process terminated because of insufficient
PRIV stack space for signal delivery. The termination information field
of the message contains the signal number.

-10 An OSS process or native process terminated because it was unable
to obtain resources for signal delivery. The termination information
field of the message contains the signal number.

Completion
Code Definition

Completion Codes

Guardian Procedure Calls Reference Manual—522629-030
C-5

-11 An OSS process or native process terminated because it attempted to
resume from a nonresumable signal. The termination information field
of the message contains the signal number.

-12 One of the functions in the OSS exec or tdm_exec set of functions
executed successfully. The OSS process ID continues to exist as it
migrates to another process handle, but the original process handle is
deleted. Call PROCESS_GETINFOLIST_ to obtain the new process
handle of the OSS process.

-13 The OSS open() or dup() function performed by the
PROCESS_SPAWN_ procedure failed. The termination information in
sysmsg[17] contains the OSS errno for the error that occurred. The
subsystem ID in sysmsg[18] contains the null value. The termination
text in sysmsg[41] can contain additional information.

Completion
Code Definition

Completion Codes

Guardian Procedure Calls Reference Manual—522629-030
C-6

Guardian Procedure Calls Reference Manual—522629-030
D-1

D
File Names and Process Identifiers

This appendix summarizes the syntax for file names and process identifiers. It is in
four principal subsections.

The first subsection specifies reserved file names.

The second subsection describes the syntax that HP recommends for all new
development. Any system procedure that has a name ending with an underscore (_)
expects this syntax when you specify a file name or a process identifier as a
parameter.

The third subsection describes the syntax that is supported in C-series software and is
still supported in some system procedures in subsequent RVUs. Most of the
procedure calls that support C-series file name syntax are marked in this manual as
“superseded” and are listed in Appendix G, Superseded Guardian Procedure Calls and
Their Replacements .

The fourth subsection describes the syntax for OSS pathnames.

Reserved File Names
Subvolume names and file names beginning with the letter “Z” are reserved. You
should not choose such names in your application.

Syntax
This subsection summarizes the syntax for file names and process identifiers. It
describes the syntax for four categories of file names along with file-name patterns and
process handles. The four categories of file names are:

• Names that identify disk files

• Names that identify nondisk devices

• Names that identify unnamed processes

• Names that identify named processes

There is no distinction between external and internal file names. The system does not
distinguish between uppercase and lowercase alphabetic characters in a file name. If
all the optional left-hand parts of a file name are present, it is called a fully qualified
file name; if any of the optional left-hand parts are missing, it is called a partially
qualified file name.

File Names and Process Identifiers

Guardian Procedure Calls Reference Manual—522629-030
D-2

Disk File Names

Disk File Names
The syntax for a file name that identifies a disk file is:

node

specifies the name of the node on which the file resides. A node name consists of
a backslash (\) followed by one to seven alphanumeric characters; the first
alphanumeric character must be a letter.

volume

specifies the name of the volume on which the file resides. A volume name
consists of a dollar sign ($) followed by one to seven alphanumeric characters; the
first alphanumeric character must be a letter.

subvol

specifies the name of the subvolume on which the file resides. A subvolume name
has one to eight alphanumeric characters; the first character must be a letter.

file-id

specifies the file identifier (or name) of a permanent disk file. A permanent-file
identifier has one to eight alphanumeric characters; the first character must be a
letter.

temp-file-id

specifies the file identifier (or name) of a temporary disk file. A temporary-file
identifier consists of a pound sign (#) followed by four to seven numeric characters.
The operating system assigns file identifiers to temporary files.

Example
This is an example of a fully qualified disk file name:

\hdq.$mkt.reports.finance

[node.][[volume.]subvol.]file-id

or

[node.][volume.]temp-file-id

File Names and Process Identifiers

Guardian Procedure Calls Reference Manual—522629-030
D-3

Nondisk Device Names

Nondisk Device Names
The syntax for a file name that identifies a nondisk device is:

node

specifies the name of the node on which the device resides. A node name
consists of a backslash (\) followed by one to seven alphanumeric characters; the
first alphanumeric character must be a letter.

device-name

specifies the name of a device. A device name consists of a dollar sign ($)
followed by one to seven alphanumeric characters; the first alphanumeric
character must be a letter.

qualifier

is an optional qualifier. It consists of a pound sign (#) followed by one to seven
alphanumeric characters; the first alphanumeric character must be a letter.

ldev-number

specifies a logical device number. A logical device number is represented by a
dollar sign ($) followed by a maximum of five digits. The logical device number 0
(represented “$0”) is reserved for the Event Management Service (EMS) collector
process.

It is recommended that, wherever possible, the device-name form of a nondisk
device name be used instead of the ldev-number form. This is especially true
when referring to devices that are dynamically configured.

Examples
These are examples of file names that identify nondisk devices.

\ny.$ctlr.#term22
$s.#lp
$tape4
$10

[node.]device-name[.qualifier]

or

[node.]ldev-number

File Names and Process Identifiers

Guardian Procedure Calls Reference Manual—522629-030
D-4

Process File Names for Unnamed Processes

Process File Names for Unnamed Processes
The syntax for a process file name that identifies an unnamed process is:

node

specifies the name of the node on which the process is running. A node name
consists of a backslash (\) followed by one to seven alphanumeric characters; the
first alphanumeric character must be a letter.

cpu

specifies the processor number of the processor in which the process is running.
cpu is one or two digits representing a value in the range 0 through 15. A leading
zero must be suppressed. A colon (:) separates the dollar sign ($) from cpu.

pin

specifies the process identification number of the process. pin is one to five digits
representing a value in the range 0 through the maximum value allowed for the
processor. Leading zeros must be suppressed. A colon separates cpu from pin.

seq-no

specifies the system-assigned sequence number of the process. seq-no has a
maximum of 13 digits. Leading zeros must be suppressed. A colon separates pin
from seq-no

Example
These are examples of process file names that identify unnamed processes:

$:2:850:5237743650
\la.$:6:210:2876350012
\west.$:6:138:3547235420

[node.]$:cpu:pin:seq-no

Note. The sequence number is mandatory for unnamed processes. The sequence
number cannot be removed from an unnamed process file name because a fatal error will
result.

File Names and Process Identifiers

Guardian Procedure Calls Reference Manual—522629-030
D-5

Process File Names for Named Processes

Process File Names for Named Processes
The syntax for a process file name that identifies a named process is:

node

specifies the name of the node on which the process is running. A node name
consists of a backslash (\) followed by one to seven alphanumeric characters; the
first alphanumeric character must be a letter.

process-name

specifies the name of the process. A process name consists of a dollar sign ($)
followed by one to five alphanumeric characters; the first alphanumeric character
must be a letter.

seq-no

specifies the system-assigned sequence number of the process. seq-no has a
maximum of 13 digits. Leading zeros must be suppressed. A colon (:) separates
process-name from seq-no.

qual-1 and qual-2

are optional qualifiers. qual-1 consists of a pound sign (#) followed by one to
seven alphanumeric characters; the first alphanumeric character must be a letter.

qual-2 contains one to eight alphanumeric characters; the first character must be
a letter.

Examples
These are examples of process file names that identify named processes.

\sw.$zab2:4300411433
$zsvr
\sf.$app2.#a001.z1

[node.]process-name[:seq-no][.qual-1[.qual-2]]

File Names and Process Identifiers

Guardian Procedure Calls Reference Manual—522629-030
D-6

Process Descriptors

Process Descriptors
A process descriptor is a form of process file name that always includes the node and
seq-no sections of the name; when identifying a named process, it never includes the
optional qualifiers qual-1 or qual-2. Guardian 90 procedures always return a
process descriptor as the external-form representation of a process or process pair.

These are examples of process descriptors:

\node5.$zproc:1622091078
\east.$:5:131:436612

File-Name Patterns
A file-name pattern resembles a file name but designates a set of entities (that is, a set
of disk files, devices, processes, or systems) through the use of pattern-matching
characters. The pattern-matching characters are:

* An asterisk matches zero or more letters, digits, dollar signs, pound signs,
or a combination of these.

? A question mark matches exactly one letter, digit, dollar sign, or pound
sign.

The syntax for a file-name pattern is:

pattern

consists of one or more characters. Allowable characters are letters, digits, pound
signs (#), asterisks (*), and question marks (?). The maximum length of a
pattern is twice that of the corresponding portion of a file name. (For example,
16 characters is allowed for a pattern that corresponds to a subvolume portion.
This allows you to interleave multiple asterisks with a set of fixed characters.)

The all-numeric portions of a file name (that is, the seq-no, cpu, and pin portions
of process file names) cannot be represented by pattern.

This syntax allows combinations of characters that are not permitted in file names,
such as the use of pound signs anywhere in any portion. However, using such a
combination of characters means that the pattern cannot designate any entity.

Note that the dollar sign is allowed only in the second form of the file-name pattern, as
shown in the diagram above. The presence or absence of the dollar sign determines

\pattern

or

[\pattern.]$pattern[.pattern[.pattern]]

or

[\pattern.][[pattern.]pattern.]pattern

File Names and Process Identifiers

Guardian Procedure Calls Reference Manual—522629-030
D-7

Process Handles

whether the system interprets the file-name pattern according to the rules of the
second or third form. As a result, the file-name pattern “$*.*” cannot match a
permanent disk file name, but “*.*” can match a permanent disk file name (in the form
subvol.file-id).

Examples

z matches all files in the current subvolume that have names (file IDs)
containing the letter "z."

$TERM?? matches all devices on the current node that have 7-character names
starting with “$TERM,” such as “$TERM12.”

P*.* matches all disk files on the current volume that are in subvolumes whose
names begin with the letter “P.”

Process Handles
A process handle is a 10-word structure that identifies a single named or unnamed
process.

A process handle contains this information about a process:

• The PIN, which identifies the process within a processor.

• The processor number, which identifies the processor in which the process is
running.

• The node number, which identifies the node within a network.

• The sequence (or verifier) number, which allows the system to uniquely identify a
process over its lifetime.

• The process pair index, which allows the system to locate the other member of a
named process pair and to look up the process’s name.

• The type field, which indicates characteristics of the process (for example, whether
the process is named or unnamed).

A process handle that contains -1 in each word is called a null process handle.

Caution. The format of a process handle is defined by HP and is subject to change in future
RVUs. Applications should not try to extract information (such as processor or PIN) from a
process handle except by using a system procedure such as
PROCESSHANDLE_DECOMPOSE_.

File Names and Process Identifiers

Guardian Procedure Calls Reference Manual—522629-030
D-8

C-Series Syntax

C-Series Syntax
This subsection summarizes the file name syntax that is supported in C-series RVUs
and is still supported in the system procedures carried over from the C series. It
describes both the external and internal forms of disk file names and nondisk file
names. It also includes the syntax for process file names and process IDs.

Most of the procedure calls that support C-series file name syntax are marked in this
manual as “superseded” and are listed in Appendix G.

External File Names
The external form of a file name is typically used when the user specifies a file name to
a command interpreter or when the system displays a file name to the user. Both disk
files and nondisk files can be represented by external file names.

An external file name consists of one or more parts, where adjacent parts are
separated by a period. The system does not distinguish between uppercase and
lowercase alphabetic characters in a file name. If all the optional left-hand parts of an
external file name are present, it is called a fully qualified file name; if any of the
optional left-hand parts are missing, it is called a partially qualified file name.

Disk File Names
The syntax for the external form of a disk file name is:

system

specifies the name of the system on which the file resides. A system name
consists of a backslash (\) followed by one to seven alphanumeric characters; the
first alphanumeric character must be a letter.

When system is included in a file name, it is called a network file name; when
system is not included, it is called a local file name.

volume

specifies the name of the volume on which the file resides. A volume name
consists of a dollar sign ($) followed by one to seven alphanumeric characters (one
to six if you also specify system); the first alphanumeric character must be a letter.

[system.][volume.][subvol.]file-id

or

[system.][volume.]temp-file-id

File Names and Process Identifiers

Guardian Procedure Calls Reference Manual—522629-030
D-9

External File Names

subvol

specifies the name of the subvolume on which the file resides. A subvolume name
has one to eight alphanumeric characters; the first character must be a letter.

file-id

specifies the file identifier (or name) of a permanent disk file. A permanent-file
identifier has one to eight alphanumeric characters; the first character must be a
letter.

temp-file-id

specifies the file identifier (or name) of a temporary disk file. A temporary-file
identifier consists of a pound sign (#) followed by four digits. The operating system
assigns file identifiers to temporary files.

Thsi is an example of a fully qualified external disk file name:

\hdq.$mkt.reports.finance

Nondisk File Names
A nondisk file name can identify a device or a process. The syntax for the external
form of a nondisk file name is:

system

specifies the name of the system on which the process or device resides. A
system name consists of a backslash (\) followed by one to seven alphanumeric
characters; the first alphanumeric character must be a letter.

When system is included in a file name, it is called a network file name; when
system is not included, it is called a local file name.

process-name

specifies the name of a process. A process name consists of a dollar sign ($)
followed by one to five alphanumeric characters (one to four if you also specify
system); the first alphanumeric character must be a letter.

device-name

specifies the name of a device. A device name consists of a dollar sign ($)
followed by one to seven alphanumeric characters (one to six if you also specify
system); the first alphanumeric character must be a letter.

[system.]{ process-name }[.qual-1[.qual-2]]
 { device-name }
 { ldev-number }

File Names and Process Identifiers

Guardian Procedure Calls Reference Manual—522629-030
D-10

Internal File Names

ldev-number

specifies a logical device number. A logical device number consists of a dollar sign
($) followed by one to four digits. The logical device number 0 (represented “$0”)
is reserved for the Event Management Service (EMS) collector process.

qual-1 and qual-2

are optional qualifiers. qual-2 cannot be used in combination with device-
name; neither qualifier can be used in combination with ldev-number.

qual-1 consists of a pound sign (#) followed by one to seven alphanumeric
characters; the first alphanumeric character must be a letter.

qual-2 contains one to eight alphanumeric characters; the first character must be
a letter.

These are examples of external nondisk file names:

\sw.$proc.#out.default
\sw.$drvr.#term
$s.#lp
$tape4
$10

Internal File Names
An internal file name is a 12-word array in which the different file name parts begin at
fixed locations in the array. The internal form of a file name is typically used within the
system, as when a file name is passed between an application process and the
operating system.

Except where noted, italicized syntax elements in these diagrams have the same
definitions as they do for external file names.

Local File Names
The internal form of a local file name is as follows:

To access a permanent disk file, use

[0:3]volume (blank fill)
[4:7]subvol (blank fill)
[8:11]file-id (blank fill)

To access a temporary disk file, use

[0:3]volume (blank fill)
[4:11]temp-file-id (blank fill)

To access a nondisk device, use

[0:3]device-name or
ldev-number (blank fill)

File Names and Process Identifiers

Guardian Procedure Calls Reference Manual—522629-030
D-11

Process File Names

[4:11][qual-1] (with device-name only) (blank fill)

To access $RECEIVE, use

[0:11]“$RECEIVE” (blank fill)

To access another process, if it is named, use

[0:3]process-name (blank fill)
[4:7][qual-1] (blank fill)
[8:11][qual-2] (blank fill)

Network File Names
The internal form of a network file name is:

[0].<0:7> “\”

[0].<8:15> System number (0 through 254)

[1:3] volume (up to six characters), device-name (up to six
characters), or process-name (up to four characters);
no leading dollar sign (blank fill)

[4:11] Same as local file name

Process File Names
A process file name is a 12-word array that uniquely identifies a process. There are
three forms of the process file name: the timestamp form, local name form, and
network form. Note that these forms cannot be used to designate a process that has a
PIN greater than 255.

Timestamp Form of Process File Name
The timestamp form of the process file name is:

[0].<0:1> 2
[0].<2:7> Reserved
[0].<8:15> System number (0 through 254)
[1:2] Low-order 32 bits of creation timestamp
[3].<0:3> Reserved
[3].<4:7> Processor in which the process resides
[3].<8:15> PIN assigned by the system to identify the process in the

processor
[4:11] Blank-filled

Local Name Form of Process File Name
The local name form of the process file name is:

[0:2] process-name (up to five characters plus leading “$”) (blank fill)
[3].<0:3> Reserved

File Names and Process Identifiers

Guardian Procedure Calls Reference Manual—522629-030
D-12

Process IDs

[3].<4:7> Processor in which the process resides; optional
[3].<8:15> PIN assigned by the system to identify the process in the

processor; optional
[4:7] [qual-1] (blank fill)
[8:11] [qual-2] (blank fill)

Network Form of Process File Name
The network form of a process file name is:

[0].<0:7> “\”
[0].<8:15> System number (0 through 254)
[1:2] process-name (up to four characters; no leading “$”) (blank fill)
[3].<4:7> Processor in which the process resides; optional
[3].<8:15> PIN assigned by the system to identify the process in the

processor; optional
[4:7] [qual-1] (blank fill)
[8:11] [qual-2] (blank fill)

Process IDs
A process ID is a four-word array that uniquely identifies a process within a system.
There are three forms of the process ID: the timestamp form, local name form, and
network form. These forms of the process ID are identical to the first four words of the
equivalent forms of the process file name, except that the processor and PIN fields are
not optional (seeProcess File Names on page D-11). In other words, for any form of
the process file name, words [0:3] of the process file name are identical to the process
ID.

The process ID is sometimes called a CRTPID.

OSS Pathname Syntax
OSS pathnames can be up to PATH_MAX characters long, including a null termination
character. PATH_MAX is a symbolic constant defined in the limitsh header file.

The syntax for an OSS pathname is:

/

specifies the root directory when it appears at the beginning of a pathname.
Otherwise, it separates directory names and filenames.

directory

specifies the name of a directory. All characters are valid except slash (/) and the
ASCII NULL character. A hyphen (-) cannot be the first character of a directory

[[/][directory/]...]filename

File Names and Process Identifiers

Guardian Procedure Calls Reference Manual—522629-030
D-13

Examples

name. The maximum length is NAME_MAX characters, as defined in the limitsh
header file (this value is 248). This directory names have special meaning:

. is the OSS current working directory

. . is the parent directory of the OSS current working directory

G

always appears under the root directory and identifies files in the Guardian file
system.

E

always appears under the root directory and identifies files visible through
Expand.

nodename

specifies the name of the node without a backslash (\) and it always resides
after the E directory.

vol

specifies the name of the volume without a $ and it always resides after the G
directory.

subvol

specifies the name of the subvolume and always resides after volume name.

filename

specifies the name of the file. All characters are valid except slash (/) and the
ASCII NULL character. A hyphen (-) cannot be the first character of a
filename. The maximum length is NAME_MAX characters, as defined in the
limitsh header file (this value is 248).

Examples
OSS pathnames can be absolute or relative. Absolute pathnames begin with a slash
(/), which indicates the root directory. This is an example of an absolute OSS
pathname:

/usr/ccomp/prog1.c

Relative pathnames (which do not begin with a slash) are relative to the OSS current
working directory. Examples of relative OSS pathnames follow:

refman/ch1 Refers to a file (ch1) in a subdirectory (refman) of the
current working directory.

./refman/ch1 Refers to the same file as the previous example.

File Names and Process Identifiers

Guardian Procedure Calls Reference Manual—522629-030
D-14

Examples

../yourfiles/oldmail Refers to a file (oldmail) in a subdirectory
(yourfiles) of the parent directory of the current
working directory.

/E/forty/usr/ccom/prog1.c Refers to a OSS file name (prog1.c) in a
subdirectory (ccom) in a subdirectory (usr) in a
subdirectory (forty) after the E root directory.

/E/forty/G/books/donl/text180 Refers to a Guardian file name (text180) in
a subvolume (donl) in a volume (books) on the HP
node (forty).

For details on OSS pathnames and the OSS file system, see the Open System
Services Programmer’s Guide and the filename(5) reference page either online or
in the Open System Services System Calls Reference Manual.

Guardian Procedure Calls Reference Manual—522629-030
E-1

E DEFINEs
This appendix describes DEFINEs and the attributes of the different classes of
DEFINEs. For information about using DEFINEs programmatically, see the Guardian
Programmer’s Guide. For information about using DEFINEs interactively with a TACL
process, see the Guardian User’s Guide.

What Is a DEFINE?
A DEFINE is a named set of attributes and associated values. In a DEFINE (as with
an ASSIGN command) you can specify information that is to be communicated to
processes you start. The operating system (file system or I/O processes) usually
process DEFINES, while application programs or run-time libraries process ASSIGNS.

There are eight classes of DEFINEs. You can use the classes of DEFINEs in these
ways:

• Use a CLASS CATALOG DEFINE to specify a substitute name for an SQL catalog
name.

• Use a CLASS DEFAULTS DEFINE to specify process defaults, such as default
volume and subvolume.

• Use a CLASS MAP DEFINE to specify a substitute name for a file name.

• Use a CLASS SEARCH DEFINE to specify a list of subvolumes for resolving file
names with a search list.

• Use CLASS SORT and SUBSORT DEFINEs to specify defaults for the
FASTSORT utility and for parallel sorts running under FASTSORT.

• Use a CLASS SPOOL DEFINE to specify the attributes of a spooler job.

• Use a CLASS TAPE DEFINE to specify the attributes of a file on labeled tape.

• Use a CLASS TAPECATALOG DEFINE to use the tape cataloging facilities of the
DSM/TC product.

DEFINE Names
A DEFINE is identified by a name, which you specify when creating the DEFINE. The
name must conform to these rules:

• The name must be 2 to 24 characters long.

• The first character must be an equal sign (=).

• The second character must be a letter. (DEFINE names whose second character
is an underscore are reserved for use by HP.)

• The remaining characters can be letters, numbers, hyphens, underscores, or
circumflexes(^).

DEFINEs

Guardian Procedure Calls Reference Manual—522629-030
E-2

DEFINE Attributes

• When specified as the value of a procedure parameter that has a fixed length of
24 characters, a DEFINE name must be left-justified in the DEFINE name buffer
and padded on the right with blanks.

Uppercase and lowercase letters in a DEFINE name are equivalent. For example, the
name =MY^DEFINE is equivalent to =My^Define.

DEFINE Attributes
A set of attributes is associated with each DEFINE. One attribute that is associated
with every DEFINE is the CLASS attribute. The CLASS attribute determines which
other attributes can be associated with the DEFINE.

Each attribute has:

• An attribute name that you cannot change.

• A data type that determines the kind of value that you can assign to the attribute.

• A value that you assign programmatically by a call to the DEFINESETATTR
procedure, or interactively by the TACL SET DEFINE command. Some attributes
have default values.

Attribute Data Types
When you assign a value to an attribute, you specify the value as a parameter to a
procedure call. This parameter must be declared type STRING.

The string values that you can specify for a particular DEFINE attribute is determined
by the data type of the DEFINE attribute. The available attribute data types are:

String The attribute can contain a string of from 1 to a maximum of 512 ASCII
characters, depending on the particular attribute.

Number The attribute can contain an integer consisting of from 1 to a maximum
of 18 digits, depending on the particular attribute. This integer can be
preceded by a plus or minus sign and must not contain a decimal point.
On output, the integer is left-justified with leading zeros suppressed.

Filename The attribute can contain a file name. The file name can be fully or
partially qualified. A partially qualified file name is expanded using the
default-names value that you specify to the DEFINESETATTR
procedure. On output, the file name is always fully qualified.

Subvolname The attribute can contain a subvolume name. The subvolume name
can be fully or partially qualified. A partially qualified subvolume name
is expanded using the default-names value that you specify to the
DEFINESETATTR procedure. On output, the subvolume name is
always fully qualified, except when it is obtained from the VOLUME
attribute of a CLASS DEFAULTS DEFINE.

Keyword The attribute can contain one of a predefined set of keywords. These
keywords are specific to the particular DEFINE attribute.

DEFINEs

Guardian Procedure Calls Reference Manual—522629-030
E-3

Available DEFINE Classes

CLASS Attribute
All DEFINEs have a special attribute called the CLASS attribute. The CLASS attribute
determines which other attributes are associated with the DEFINE.

The value of the CLASS attribute is a keyword; the CLASS attribute can be CATALOG,
DEFAULTS, MAP, SEARCH, SORT, SPOOL, SUBSORT, TAPE, or TAPECATALOG.
When assigning values to DEFINE attributes, you must assign one of these values to
the CLASS attribute first. Assigning a value to the CLASS attribute causes default
values to be assigned to other attributes in that DEFINE class.

The attributes of a particular DEFINE are distinct from attributes of other DEFINE
classes, even when the attributes have the same names.

Available DEFINE Classes
The DEFINE classes that are currently available are described in these paragraphs.

CLASS CATALOG DEFINEs
A CLASS CATALOG DEFINE substitutes an SQL catalog name for the DEFINE name
in a program.

The attribute of a CLASS CATALOG DEFINE is SUBVOL, which specifies the SQL
catalog subvolume name to be substituted for the DEFINE name. For detailed
information about the CLASS CATALOG DEFINE and its attributes, see the Guardian
User’s Guide and the SQL/MP Reference Manual.

CLASS DEFAULTS DEFINEs
A CLASS DEFAULTS DEFINE contains standard defaults such as the default volume
and subvolume to be used by a process. For detailed information about the CLASS
DEFAULTS DEFINE and its attributes, see the Guardian User’s Guide and the TACL
Reference Manual.

CLASS MAP DEFINEs
A CLASS MAP DEFINE allows you to substitute a logical DEFINE name for an actual
file name in a program.

The attribute of a CLASS MAP DEFINE is FILE, which specifies the file name to be
substituted for the DEFINE name. For detailed information about the CLASS MAP
DEFINE and its attributes, see the Guardian User’s Guide and the TACL Reference
Manual.

DEFINEs

Guardian Procedure Calls Reference Manual—522629-030
E-4

CLASS SEARCH DEFINEs

CLASS SEARCH DEFINEs
A CLASS SEARCH DEFINE contains information to be used for resolving file names
with a search list.

A CLASS SEARCH DEFINE has 21 attributes named SUBVOL0 through SUBVOL20
and another 21 attributes named RELSUBVOL0 through RELSUBVOL20. Each of
these attributes takes the same form and is optional. The value of one attribute is
either a single subvolume specification or a list of them enclosed in parentheses and
separated by commas. A subvolume specification can be a fully or partially qualified
subvolume name, or the name of a CLASS DEFAULTS DEFINE.

With the SUBVOLnn attributes, subvolume name resolution takes place when the
attribute is added; with the RELSUBVOLnn attributes, subvolume name resolution
takes place when the DEFINE is used. The search order for a CLASS SEARCH
DEFINE is as follows:

 SUBVOL0
 RELSUBVOL0
 SUBVOL1
 RELSUBVOL1
 . . .
 SUBVOL20
 RELSUBVOL20

If any attribute is a list, the search order is from left to right within the list.

CLASS SEARCH DEFINEs are used by the FILENAME_RESOLVE_ procedure. For
detailed information about the CLASS SEARCH DEFINEs and their attributes, see the
Guardian Programmer’s Guide.

CLASS SORT DEFINEs
A CLASS SORT DEFINE passes information to the FASTSORT utility. All SORT
attributes (other than CLASS) are optional.

FASTSORT always checks for the presence of a DEFINE named
=_SORT_DEFAULTS. If this DEFINE exists and is of CLASS SORT, FASTSORT
reads the attributes from it and uses them to set the sort parameters.
=_SORT_DEFAULTS is reserved for use as the name for a default CLASS SORT
DEFINE. For detailed information about the CLASS SORT DEFINE and its attributes,
see the FastSort Manual.

CLASS SUBSORT DEFINEs
A CLASS SUBSORT DEFINE passes information that applies to parallel sorts running
under the FASTSORT utility. The only required attribute (other than CLASS) is
SCRATCH. For detailed information about the CLASS SUBSORT DEFINE and its
attributes, see the FastSort Manual.

DEFINEs

Guardian Procedure Calls Reference Manual—522629-030
E-5

CLASS SPOOL DEFINEs

CLASS SPOOL DEFINEs
A CLASS SPOOL DEFINE passes information to the spooler collector process to
assign values to spooler job attributes. For detailed information about the CLASS
SPOOL DEFINE and its attributes, see the Spooler Utilities Reference Manual and the
Spooler Plus Utilities Reference Manual.

CLASS TAPE DEFINEs
A CLASS TAPE DEFINE passes information to the tape process when using labeled
magnetic tapes. One CLASS TAPE DEFINE must be used for each labeled tape file
that is accessed by your application. CLASS TAPE DEFINEs are processed by the
tape process and by the FILE_OPEN_ and OPEN procedures. For detailed
information about the CLASS TAPE DEFINEs and their attributes, see the Guardian
Disk and Tape Utilities Reference Manual.

CLASS TAPECATALOG DEFINEs
A CLASS TAPECATALOG DEFINE is used to invoke the services of the DSM/TC
product. It is used in place of a CLASS TAPE DEFINE, adding several attributes for
control of cataloging files that are read from and written to tape.

One CLASS TAPECATALOG DEFINE must be used for each labeled tape file that you
want to read or write. CLASS TAPECATALOG DEFINEs are processed by the
FILE_OPEN_ and OPEN procedures. The DSM/TC facility automatically selects tape
volumes and catalogs the files written to tape by applications using CLASS
TAPECATALOG DEFINEs. For detailed information about the CLASS TAPECATALOG
DEFINEs and their attributes, see the DSM/Tape Catalog User's Guide.

DEFINEs

Guardian Procedure Calls Reference Manual—522629-030
E-6

CLASS TAPECATALOG DEFINEs

Guardian Procedure Calls Reference Manual—522629-030
F-1

F Formatter Edit Descriptors
This appendix describes edit descriptors, which are specified as input values to the
FORMATCONVERT procedure.

Edit descriptors are of two types: those that specify the conversion of data values
(repeatable) and those that do not (nonrepeatable). The effect of repeatable edit
descriptors can be altered through the use of modifiers or decorations, which are
enclosed in brackets ([]), preceding the edit descriptors to which they refer. Within a
format, all edit descriptors except buffer control descriptors must be separated by
commas. Buffer control descriptors have the dual function of edit descriptors and
format separators, and need not be set off by commas.

Summary of Edit Descriptors
All the descriptors, modifiers, and decorations are summarized here and fully explained
following this summary.

Summary of Nonrepeatable Edit Descriptors
The edit descriptors that are not associated with data items are of six subtypes:

• Tabulation

Tn Tab absolute to nth character position
TRn Tab right
TLn Tab left
nX Tab right (same as TR)

• Literals

Alphanumeric string enclosed in apostrophes (’) or quotation marks (”)

Hollerith descriptor (nH followed by n characters)

• Scale factor specification

P Implied decimal point in a number

• Optional plus control

These descriptors provide control of the appearance of an optional plus sign for
output formatting. They have no effect on input.

S Do not supply a plus
SP Supply a plus
SS Do not supply a plus

• Blank interpretation control

BN Blanks ignored (unless entire field is blank)
BZ Blanks treated as zeros

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-2

Summary of Repeatable Edit Descriptors

• Buffer control

/ Terminate the current buffer, and then obtain a new one

: Terminate formatting if no data elements remain

Summary of Repeatable Edit Descriptors
Repeatable edit descriptors direct the formatter to obtain the next data list element and
perform a conversion between internal and external representation. They can be
preceded by modifiers or decorations that alter the interpretation of the basic edit
descriptor. Modifiers and decorations apply only to output conversion. They are
allowed but ignored for input.

The repeatable edit descriptors are:

A Alphanumeric (ASCII)

B Binary (base 2) integer

D,E Exponential form

F Fixed form

G General (E or F format depending on magnitude of data)

I Integer (base b)

L Logical

M Mask formatting

O Octal (base 8) integer

Z Hexadecimal (base 16) integer

Summary of Modifiers
Modifiers are codes that are used to alter the results of the formatting prescribed by the
edit descriptors to which they are attached. They are:

BN, BZ Field blanking (if null, or zero)

FL Fill-character specification

LJ, RJ Left and right justification

OC Overflow-character modifier

SS Symbol substitution

Summary of Decorations
Decorations specify alphanumeric strings that can be added to a field either before
basic formatting is begun or after it is finished. A decoration consists of one or more
codes that specify the conditions under which the string is to be added (based on the
value of the data element or the occurrence overflow of the external field):

M Minus

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-3

Nonrepeatable Edit Descriptors

N Null

O Overflow

P Plus

Z Zero

followed by a code that describes the position of the special editing:

A (absolute) At a specific character position within the field

F (floating) At the position the basic formatting finished

P (prior) At the position the basic formatting would have started

followed by the character string that is to be included in the field if the stated conditions
are met.

Nonrepeatable Edit Descriptors
These descriptions show the form, function, and requirements for each of the
nonrepeatable edit descriptors.

Tabulation Descriptors
The tabulation descriptors specify the position at which the next character is
transmitted to or from the buffer. This allows portions of a buffer to be processed in an
order other than strictly left to right, and permits processing of the same portion of a
buffer more than once.

The forms of the tabulation descriptors are as follows (n is an unsigned integer
constant):

Tn TLn TRn nX

Tn Indicates that the transmission of the next character to or from a buffer is to
occur at the nth character position. The first character of the buffer is
numbered 1.

TLn Indicates that the transmission of the next character to or from the buffer is
to occur n positions to the left of the current position

TRn Indicates that the transmission of the next character to or from the buffer is
to occur n positions to the right of the current position

nX Is identical to TRn

Each of these edit descriptors alters the current position but has no other effect.

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-4

Literal Descriptors

The current position can be moved beyond the limits of the current buffer (that is,
become less than or equal to zero, or greater than bufferlen) without an error
resulting, provided that no attempt is made by a subsequent edit descriptor to transmit
data to or from a position outside the current buffer. Tab descriptors cannot be used to
advance to later buffers or to return to previous ones. These examples illustrate
tabulation descriptors:

Data List Values

 100
 1000.49F
 "HELLO"

 Format Results

No tabs I3,E12.4,A5 100 0.1000E+04HELLO
 /\ /\ /\ /\

X I3,E12.4,1X,A5 100 0.1000E+04 HELLO
 /\ /\ /\ /\

TL I3,E12.4,TL3,A5 100 0.1000EHELLO
 /\ /\ /\ /\

TR I3,E12.4,TR5,A5 100 0.1000E+04 HELLO
 /\ /\ /\ /\

T I3,E12.4,T3,A5 10HELLO1000E+04
 /\ /\ /\ /\

The “/\” marker denotes the boundaries of the output field.

Literal Descriptors
Literal descriptors are alphanumeric strings in either form:

dc c c ... c d OR nHc c c ... c
 1 2 3 n 1 2 3 n

d either an apostrophe (') or a quotation mark ("); the same character must be
used for both the opening and closing delimiters.

c any ASCII character.

n an unsigned nonzero integer constant specifying the number of characters in
the string; n cannot exceed 255.

On input, a literal descriptor is treated as nX.

A literal edit descriptor causes the specified character string to be inserted in the
current buffer beginning at the current position. It advances the current position n
characters.

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-5

Scale-Factor Descriptor (P)

In a quoted literal form, if the character string to be represented contains the same
character that is used as the delimiter, two consecutive characters are used to
distinguish the data character from the delimiter; for example:

In the Hollerith constant form, the number of characters in the string (including blanks)
must be exactly equal to the number preceding the letter H. There are no delimiter
characters, so the characters are supplied exactly as they should appear in the buffer;
for example:

Scale-Factor Descriptor (P)
The form of a scale-factor descriptor is:

nP

n = optionally signed integer in the range of -128 to 127.

The value of the scale factor is zero at the beginning of execution of the
FORMATDATA procedure. Any scale-factor specification remains in effect until a
subsequent scale specification is processed. The scale factor applies to the D, E, F,
and G edit descriptors, affecting them in this manner:

1. On input, with D, E, F, and G edit descriptors (provided no exponent exists in the
external field), the scale-factor effect is that the externally represented number
equals the internally represented number multiplied by 10**n.

2. On input, with D, E, F, and G edit descriptors, the scale factor has no effect if there
is an exponent in the external field.

3. On output, with D and E edit descriptors, the mantissa of the quantity to be
produced is multiplied by 10**n, and the exponent is reduced by n.

4. On output, with the F edit descriptor, the scale-factor effect is that the externally
represented number equals the internally represented number multiplied by 10**n.

5. On output, with the G edit descriptor, the effect of the scale factor is suspended
unless the magnitude of the data to be processed is outside the range that permits
the use of an F edit descriptor. If the use of the E edit descriptor is required, the
scale factor has the same effect as with the E output processing.

To represent: Use:

can't 'can''t' or "can't"

"can't" '"can''t"' or """can't"""

To represent: Use:

can't 5Hcan't

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-6

Optional Plus Descriptors (S, SP, SS)

Optional Plus Descriptors (S, SP, SS)
Optional plus descriptors can be used to control whether optional plus characters
appear in numeric output fields. In the absence of explicit control, the formatter does
not produce any optional plus characters.

The forms of the optional plus descriptors are:

S SP SS

These descriptors have no effect upon input.

If the S descriptor is encountered in the format, the formatter does not produce a plus
in any subsequent position that normally contains an optional plus.

If the SP descriptor is encountered in the format, the formatter produces a plus in any
subsequent position that normally contains an optional plus.

The SS descriptor is the same as S (above).

An optional plus is any plus except those appearing in an exponent.

Blank Interpretation Descriptors (BN, BZ)
The blank interpretation descriptors have this form:

BN BZ

These descriptors have no effect on output.

The BN and BZ descriptors can be used to specify the interpretation of blanks, other
than leading blanks, in numeric input fields. At the beginning of execution of the
FORMATDATA procedure, nonleading blank characters are ignored.

If a BZ descriptor is encountered in a format, all nonleading blank characters in
succeeding numeric input fields are treated as zeros.

If a BN descriptor is encountered in a format, all blank characters in succeeding
numeric input fields are ignored. The effect of ignoring blanks is to treat the input field
as if all blanks had been removed, the remaining portion of the field right-justified, and
the blanks reinserted as leading blanks. However, a field of all blanks has the value
zero.

The BN and BZ descriptors affect the B, D, E, F, G, I O, and Z edit descriptors only.

Buffer Control Descriptors (/, :)
There are two edit descriptors used for buffer control:

/ indicates the end of data list item transfer on the current buffer and obtains the next
buffer. The current position is moved to 1 in preparation for processing the next
buffer.

: indicates termination of the formatting provided there are no remaining data
elements.

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-7

Buffer Control Descriptors (/, :)

• To clarify, the operation of the slash (/) is as follows for any positive integer n:

• If n consecutive slashes appear at the end of a format, this causes n buffers to
be skipped.

• If n consecutive slashes appear within the format, this causes n-1 buffers to be
skipped.

• The colon (:) is used to conditionally terminate the formatting. If there are
additional data list items, the colon has no effect. The colon can be of use when
data items are preceded by labels, as in this example:

10(' NUMBER ',I1,:/)

This group of edit descriptors is preceded by a repeat factor that specifies the
formatting of ten data items, each one to be preceded by the label NUMBER. If there
are fewer than ten data items in the data list, formatting terminates immediately after
the last value is processed. If the colon is not present, formatting continues until the I
edit descriptor is encountered for the fourth time. This means the fourth label is added
before the formatting is terminated.

These example illustrates this usage:

Data Items:

1
2
3

Format:

Results:

The “|” character is used to denote the boundaries of the output field.

With colon Without colon

10('NUMBER
',I1,:/)

10('NUMBER
',I1,/)

With colon Without colon

|NUMBER 1| |NUMBER 1|

|NUMBER 2| |NUMBER 2|

|NUMBER 3| |NUMBER 3|

|NUMBER |

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-8

Repeatable Edit Descriptors

Repeatable Edit Descriptors
These descriptions give the form, function, and requirements for each of the edit
descriptors that specify formatting of data fields. These edit descriptors can be
preceded by an unsigned integer repeat factor to specify identical formatting for a
number of values in the data list.

These descriptions of the operation of repeatable edit descriptors apply when no
decorations or modifiers are present.

The A Edit Descriptor
The A edit descriptor is used to move characters between the buffer and the data
element without conversion. This is normally used with ASCII data. The A edit
descriptor has one of these forms:

Aw OR A

w an unsigned integer constant that specifies the width, in characters, of the field
and must not exceed 255. The field processed is the next w characters
starting at the current position.

If w is not present, the field width is equal to the actual number of bytes in the
associated data element, but cannot exceed 255. Values over 255 are
reduced to 255.

After the field is processed, the current position is advanced by w characters.

On output, the operation of the A edit descriptor is as follows:

1. The number of characters specified by w, or the number of characters in the data
element, whichever is less, is moved to the external field. The transfer starts at the
left character of both the data element and the external field unless an RJ modifier
is affecting the descriptor, in which case the transferring of characters begins with
the right character of each.

2. If w is less than the number of characters in the data element, the field overflow
condition is set.

3. If w is greater than the number of characters in the data element, the remaining
characters in the external field are filled with spaces (unless another fill character is
specified by the FL modifier).

It is not mandatory that the data element be of type character. For example, an
INTEGER(16) element containing the octal value %015536 corresponds to the ASCII

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-9

The B Edit Descriptor

characters “ESC” and “^”, which can be output to an ADM-2 terminal using an A2
descriptor to control a blinking field on the screen. For example:

In the last example, the data value was stored in a 2-byte INTEGER.

The “|” character is used to denote the boundaries of the output field.

On input, the operation of the Aw edit descriptor is as follows:

1. The number of characters specified by w, or the number of characters contained in
the data element specified by n, whichever is less, is moved from the external field
to the data element. The transfer begins at the left character of both the data
element and the external field.

2. If w is less n, the data element is filled with (n-w) blanks on the right.

3. If w is greater than n, the leftmost n characters of the field are stored in the data
element.

These examples illustrate these considerations:

The “|” character is used to denote the boundaries of the input field.

The B Edit Descriptor
The binary edit descriptor is used to display or interpret data values in binary (base 2)
integer form.

The B edit descriptor has these forms:

Bw OR Bw.m

Format Data Value External Field

A 'WORD' |WORD|

A4 'WORD' |WORD|

A3 'WORD' |WOR| (overflow set)

[RJ]A3 'WORD' |ORD| (overflow set)

A5 'WORD' |WORD |

[RJ]A5 'WORD' | WORD|

A %044111 |HI|

External Field Format Data Item Length Data Element Value

|HELLO| A5 5 characters 'HELLO'

|HELLO| A3 3 characters 'HEL'

|HELLO| A6 6 characters 'HELLO '

|HELLO| A5 6 characters 'HELLO '

|HELLO| A5 3 characters 'HEL'

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-10

The D Edit Descriptor

w an unsigned integer constant that defines the total field width and cannot
exceed 255. The field processed is the w characters starting at the current
position. After the field is processed, the current position is advanced by w
characters.

m an unsigned integer constant that defines the number of digits that must be
present on output.

The B edit descriptor is used in the same manner as the I edit descriptor where the
number base (b) is 2, except that the B edit descriptor always treats the internal data
value as unsigned. (See The I Edit Descriptor on page F-14.) For example, if the data
item is an INT(16) in TAL, these conversions take place:

The “|” character is used to denote the boundaries of the output field.

The D Edit Descriptor
The exponential edit descriptor is used to display or interpret data in floating-point
form, usually used when data values have extremely large or extremely small
magnitude. The D edit descriptor is of the form:

Dw.d

This descriptor is identical to the Ew.d descriptor.

This edit descriptor is used in the same manner as the E edit descriptor (below).

The E Edit Descriptor
The exponential edit descriptor is used to display or interpret data in floating-point
form. It is usually used when data values have extremely large or extremely small
magnitude.

The E edit descriptor has one of these forms:

Ew.d OR Ew.dEe

w an unsigned integer constant that defines the total field width (including the
exponent) and cannot exceed 255. The field processed is the w characters
starting at the current position. After the field is processed, the current
position is advanced by w characters.

d an unsigned integer constant that defines the number of digits that are to
appear to the right of the decimal point in the external field.

e an unsigned integer constant that defines the number of digits in the
exponent. If Ew.d is used, e takes the value 2.

Format Internal Value Result

B16 5 | 101|

B16.6 3 | 000011|

B16.6 -5 |1111111111111101|

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-11

The E Edit Descriptor

The input field consists of an optional sign, followed by a string of digits optionally
containing a decimal point. A decimal point appearing in the input field overrides the
portion of the descriptor that specifies the decimal point location. However, if you omit
the decimal point, the rightmost d digits of the string, with leading zeros assumed if
necessary, are interpreted as the fractional part of the value represented. The string of
digits can be of any length. Those beyond the limit of precision of the internal
representation are ignored. The basic form can be followed by an exponent in one of
these forms:

• Signed integer constant

• E followed by zero or more blanks, followed by an optionally signed integer
constant

• D followed by zero or more blanks, followed by an optionally signed integer
constant

An exponent containing a D is processed identically to an exponent containing an E.

On output, the field (for a scale factor of zero) appears in this form:

{[+]} [0].n n … n E {+} e e …e
{ - } 1 2 d {-} 1 2 e

{[+]} Indicates an optional plus or a minus

{ - }

n n ... n Are the d most significant digits of the value of the data

 1 2 d after rounding

E Signals the start of the decimal exponent

{+} Indicates that a plus or minus is required

{-}

e e ... e Are the e most significant digits of the exponent

 1 2 e

The sign in the exponent is always displayed. If the exponent is zero, a plus sign is
used.

If the data is negative, the minus sign is always displayed. If the data is positive (or
zero), the display of the plus sign is dependent on the last optional plus descriptor
processed.

The zero preceding the decimal point is normally displayed, but can be omitted to
prevent field overflow. Decimal normalization is controlled by the scale factor
established by the most recently interpreted nP edit descriptor. If -d < n <= 0, the
output value has |n| leading zeros, and (d-|n|) significant digits follow the decimal
point; if 0 < n < d+2, the output value has n significant digits to the left of the decimal
point and d-n+1 digits to the right. If the number of characters produced exceeds the

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-12

The F Edit Descriptor

field width or if an exponent exceeds its specified length using the Ew.dEe field
descriptor, the entire field of width w is filled with asterisks. However, if the field width
is not exceeded when optional characters are omitted, the field is displayed without the
optional characters.

Because all characters in the output field are included in the field width, w must be
large enough to accommodate the exponent, the decimal point, and all digits and the
algebraic sign of the base number.

These examples illustrate output:

The “|” character is used to denote the boundaries of the output field.

These examples illustrate input:

The “|” character is used to denote the boundaries of the output field.

The F Edit Descriptor
The fixed-format edit descriptor is used to display or interpret data in fixed point form.

The F edit descriptor has these forms:

Fw.d OR Fw.d.m

w an unsigned integer constant that defines the total field width and cannot
exceed 255. The field processed is the w characters starting at the current
position. After the field is processed, the current position is advanced by w
characters.

d an unsigned integer constant that defines the number of digits that are to
appear to the right of the decimal point in the external field.

m an unsigned integer constant that defines the number of digits that must be
present to the left of the decimal point on output.

On input, the Fw.d edit descriptor is the same as the Ew.d edit descriptor.

Format Data Value Result

E12.3 8.76543 x 10-6 | 0.877E-05|

E12.3 -0.55555 | -0.556E+00|

E12.3 123.4567 | 0.123E+03|

E12.6E1 3.14159 | 0.314159E+1|

Note. To use the E edit descriptor for output, floating-point firmware is required.

External Field Format Data Element Value

| 0.100E+03| E12.3 100

| 100.05 | E12.5 100.05

| 12345| E12.3 12.345

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-13

The G Edit Descriptor

The output field consists of blanks if necessary, followed by a minus if the internal
value is negative or an optional plus otherwise. This is followed by a string of digits
that contains a decimal point and represents the magnitude of the internal value, as
modified by the established scale factor and rounded to the d fractional digits. If the
magnitude of the value in the output field is less than one, there are no leading zeros
except for an optional zero immediately to the left of the decimal point. The optional
zero must appear if there would otherwise be no digits in the output field. If the Fw.d.m
form is used, leading zeros are supplied if needed to satisfy the requirement of m digits
to the left of the decimal point. For example:

The “|” character is used to denote the boundaries of the output field.

The G Edit Descriptor
The general format edit descriptor can be used in place of either the E or the F edit
descriptor, since it has a combination of the capabilities of both.

The G edit descriptor has either of the forms:

Gw.d OR Gw.dEe

w an unsigned integer constant that defines the total field width and cannot
exceed 255. The field processed is the w characters starting at the current
position. After the field is processed, the current position is advanced by w
characters.

d an unsigned integer constant that defines the number of digits that are to
appear to the right of the decimal point in the external field.

e an unsigned integer constant that defines the number of digits in the
exponent, if one is present.

On input, the G edit descriptor is the same as the E edit descriptor. The method of
representation in the output field depends on the magnitude of the data being
processed, as follows:

Format Data Value Result

F10.4 123.4567 |
123.4567|

F10.4 0.000123 |
0.0001|

F10.4.
3

-4.56789 | -
004.5679|

Magnitude of Data

Not Less Than Less Than Equivalent Conversion Effected

0.1 Ew.d or Ew.dEe

0.1 1.0 F(w-n).d,n(' ')

1.0 10.0 F(w-n).(d-1),n(' ')

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-14

The I Edit Descriptor

The value of n is 4 for Gw.d format and (e+2) for Gw.dEe format. The n(‘ ’) used in the
above example indicates nth number of blanks. If the F form is chosen, then the scale
factor is ignored. This comparison between F formatting and G formatting is given by
way of illustration:

When an overflow condition occurs in a numeric field, the field is filled with asterisks (in
the absence of any specification to the contrary by an overflow decoration), as shown
above.

The “|” character is used to denote the boundaries of the output field.

The I Edit Descriptor
The integer edit descriptor is used to display or interpret data values in an integer form.

The I edit descriptor has these forms:

Iw OR Iw.m OR Iw.m.b

10.0 100.0 F(w-n).(d-2),n(' ')

. . .

. . .

. . .

10 ** (d-2) 10 ** (d-1) F(w-n).1,n(' ')

10 ** (d-1) 10 ** d F(w-n).0,n(' ')

10 ** d Ew.d or Ew.dEe

F G

Value F13.6 Conversion G13.6 Conversion

 .01234567 | 0.012346| | 0.123457E-01|

 .12345678 | 0.123457| | 0.123457 |

 1.23456789 | 1.234568| | 1.23457 |

 12.34567890 | 12.345679| | 12.3457 |

 123.45678900 | 123.456789| | 123.457 |

 1234.56789000 | 1234.567890| | 1234.57 |

 12345.67890000 | 12345.678900| | 12345.7 |

 123456.78900000 |123456.789000| | 123457. |

1234567.89000000 |*************| | 0.123457E+07|

Note. To use the G edit descriptor for output, floating-point firmware is required.

Magnitude of Data

Not Less Than Less Than Equivalent Conversion Effected

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-15

The I Edit Descriptor

w an unsigned integer constant that defines the total field width and cannot
exceed 255. The field processed is the w characters starting at the current
position. After the field is processed, the current position is advanced by w
characters.

m an unsigned integer constant that defines the number of digits that must be
present on output.

b an unsigned integer constant that defines the number base of the external
data and cannot be less than 2 or greater than 16.

On output, the Iw edit descriptor causes the external field to consist of zero or more
leading blanks (followed by a minus if the value of the internal data is negative, or an
optional plus otherwise), followed by the magnitude of the internal value in the form of
an unsigned integer constant without leading zeros. An integer constant always
consists of at least one digit. If the number of characters produced exceeds the value
of w, the entire field of width w is filled with asterisks.

The output from an Iw.m edit descriptor is the same as that from the Iw edit descriptor,
except that the unsigned integer constant consists of at least m digits and, if necessary,
has leading zeros. The value of m must not exceed the value of w. If m is zero and the
internal data is zero, the output field consists only of blank characters, regardless of
the sign control in effect.

The output from an Iw.m.b edit descriptor is the same as that from the Iw.m edit
descriptor, except that the unsigned integer constant is represented in the number
base b. With the Iw edit and Iw.m edit descriptors, the output is treated as if b were
present and equal to 10. For example:

The “|” character is used to denote the boundaries of the output field.

On input, the Iw.m edit descriptor and the Iw.m.b edit descriptor are treated identically to
the Iw edit descriptor. These edit descriptors indicate that the field to be edited
occupies w positions. In the input field, the character string must be in the form of an
optionally signed integer constant consisting only of base b digits, except for the
interpretation blanks. Leading blanks on input are not significant, and the interpretation

Format Data Value Result

I7 100 | 100|

I7.2 -1 | -01|

I7.6 100 | 000100|

I7.6 -1 |-000001|

I7.6.8 28 | 000034|

I7.1.2 -5 | -101|

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-16

The L Edit Descriptor

of any other blanks is determined by blank control descriptors (BN and BZ). For
example:

The “|” character is used to denote the boundaries of the output field.

The L Edit Descriptor
The logical edit descriptor is used to display or interpret data in logical form. The L edit
descriptor has the form:

Lw

w an unsigned integer constant that defines the total field width and cannot
exceed 255. The field processed is the w characters starting at the current
position. After the field is processed, the current position is advanced by w
characters.

On output, the L edit descriptor causes the associated data element to be evaluated in
a logical context, and a single character is inserted right-justified in the output field. If
the data value is null, the character is blank. If the data value is zero, the character is
F; for all other cases, the character is T. For example:

The “|” character is used to denote the boundaries of the output field.

The input field consists of optional blanks, optionally followed by a decimal point,
followed by an uppercase T for true (logical value -1) or an uppercase F for false
(logical value 0). The T or F can be followed by additional characters in the field. The
logical constants .TRUE. and .FALSE. are acceptable input forms; for example:

External Field Format Data Element Value

| 100| I7 100

| -01| I7 -1

| 1 | I7 1

| 1 | BZ,I7 1000

| 1 2 | BZ,I7 10200

| 1 2 | BN,I7 12

Format Data Value Result

L2 -1 | T|

L2 15769 | T|

L2 0 | F|

External Field Format Data Element Value

| T| L7 -1

| F| L7 0

| .TRUE.| L7 -1

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-17

The M Edit Descriptor

The “|” character is used to denote the boundaries of the output field.

The M Edit Descriptor
The mask formatting edit descriptor edits either alphanumeric or numeric data
according to an editing pattern or mask. Special characters within the mask indicate
where digits in the data are to be displayed; other characters are duplicated in the
output field as they appear in the mask. The M edit descriptor has the form:

M'mask'

mask a character string; mask can be enclosed in apostrophes ('), quotation
marks ("), or less-than and greater-than symbols (<>). The string supplied
must not exceed 255 characters.

The M edit descriptor is not allowed for input.

Characters in a mask that have special functions are:

Z Digit selector

9 Digit selector

V Decimal alignment character

. Decimal alignment character

The field width w is determined by the number of characters, including spaces but
excluding Vs, between the mask delimiters. The field processed is w characters
starting at the current position. After the field is processed, the current position is
advanced by w characters. Except for the decimal point alignment character, V, each
character in the mask either defines a character position in the field or is directly
inserted in the field.

The M edit descriptor causes numeric data elements to be rounded to the number of
positions specified by the mask. String data elements are processed directly. Each
digit or character of a data element is transferred to the result field in the next available
character position that corresponds to a digit selector in the mask. If the digit selector
is a 9, it causes the corresponding data digit to be transferred to the output field. The
digit selector Z causes a nonzero, or embedded zero, digit to be transferred to the field,
but inserts blanks in place of leading or trailing zeros. Character positions must be
allocated, by Z digit selectors, within the mask to provide for the inclusion of any minus
signs or decoration character strings. A decimal point in the mask can be used for
decimal point alignment of the external field. The letter V can also be used for this
purpose. If a V is present in the mask, the decimal point is located at the V, and the
position occupied by the V is deleted. If no V is present, the decimal point is located at
the rightmost occurrence of the decimal point character (usually .). If neither a V nor a

|.FALSE.| L7 0

|TUGBOAT| L7 -1

|FARLEY | L7 0

External Field Format Data Element Value

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-18

The M Edit Descriptor

decimal point character is present, the decimal point is assumed to be to the right of
the rightmost character of the entire mask.

Although leading and trailing text in a mask is always transferred to the result field, text
embedded between digit selectors is transferred only if the corresponding digits to the
right and left are transferred.

For example, a value that is intended to represent a date can be formatted with an M
field descriptor as follows:

This is a comparison of the effects of using the 9 and Z as digit selectors. The minus
sign in the preceding examples is the symbol that is automatically displayed for
negative values in the absence of any specification to the contrary by a decoration. As
shown in the preceding examples, a decimal point in the mask can be used for radix
point alignment of the external field. Additional examples follow here:

The “/\” marker is used to denote the boundaries of the output field.

In the example below, a comma specified as mask text is not displayed.

The “|”character is used to denote the boundaries of the output field.

Compare the different treatment of the embedded commas in these examples:

Data Values: 298738472, 389487.987, 666, 0.35

Format One: M<$ ZZZ,ZZZ,ZZ9 AND NO CENTS>

Format Two: M<$ 999,999,999 AND NO CENTS>

Format Data Value Result

M"99/99/99" 103179 |10/31/79|

Format Data Value Result

3M<Z99.99
>

-27.40, 12,
0

-27.40 12.00
00.00
/\ /\ /\

3M<ZZ9.99
>

-27.40, 12,
0

-27.40 12.00
0.00
/\ /\ /\

3M<ZZZ.99
>

-27.40, 12,
0

-27.40 12.00
00
/\ /\ /\

Format Data Value Result

M'Z,ZZ9.99' 32.009 | 32.01|

Format One Format Two

$ 298,738,472 AND NO CENTS $ 298,738,472 AND NO CENTS

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-19

The O Edit Descriptor

The M edit descriptor can be useful in producing visually effective reports, by
formatting values into patterns that are meaningful in terms of the data they represent.
For example, assume that four arrays contain this data:

Amount := 9758 21573 15532
Date := 031777 091779 090579
District := 'WEST','MIDWEST','SOUTH'
Telephone := 2135296800,2162296270,4047298400

This format can then be used to output the data as a table whose entries are in familiar
forms. Assuming the elements are presented to the formatter in the order: the first
elements of each array, followed by the second elements of each array, and so on,
using this format:

M<$ZZ,ZZ9>,M< Z9/99/99>,3X,A8,M< (999) 999-9999>

the result would be:

$ 9,758 3/17/77 WEST (213) 529-6800
$21,573 9/17/79 MIDWEST (216) 229-6270
$15,532 9/05/79 SOUTH (404) 729-8400

The O Edit Descriptor
The O edit descriptor is used to display or interpret data values in octal (base 8) integer
form.

The O edit descriptor has these forms:

Ow OR Ow.m

w an unsigned integer constant that defines the total field width and cannot
exceed 255. The field processed is the w characters starting at the current
position. After the field is processed, the current position is advanced by w
characters.

m an unsigned integer constant that defines the number of digits that must be
present on output.

The O edit descriptor is used in the same manner as the I edit descriptor where the
number base (b) is 8, except that the O edit descriptor always treats the internal data

$ 389,488 AND NO CENTS $ 000,389,488 AND NO CENTS

$ 666 AND NO CENTS $ 000,000,666 AND NO CENTS

$ 0 AND NO CENTS $ 000,000,000 AND NO CENTS

Format One Format Two

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-20

The Z Edit Descriptor

value as unsigned. (See The I Edit Descriptor on page F-14.) For example, if the data
item is an INT(16) in TAL, these conversions take place:

The “|” character is used to denote the boundaries of the output field.

The Z Edit Descriptor
The Z edit descriptor is used to display or interpret data values in hexadecimal
(base 16) integer form.

The Z edit descriptor has these forms:

Zw OR Zw.m

w an unsigned integer constant that defines the total field width and cannot
exceed 255. The field processed is the w characters starting at the current
position. After the field is processed, the current position is advanced by w
characters.

m an unsigned integer constant that defines the number of digits that must be
present on output.

The Z edit descriptor is used in the same manner as the I edit descriptor where the
number base (b) is 16, except that the Z edit descriptor always treats the internal data
value as unsigned. (See The I Edit Descriptor on page F-14) For example, if the data
item is an INT(16) in TAL, these conversions take place:

The “|” character is used to denote the boundaries of the output field.

Format Internal Value Result

O6 10 | 12|

O6.6 18 |000022|

O6.4 -3 |177775|

Format Internal Value Result

Z6 20 | 14|

Z6.6 26 |00001A|

Z6.2 -3 | FFFD|

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-21

Modifiers

Modifiers
Modifiers alter the normal effect of edit descriptors. Modifiers immediately precede the
edit descriptor to which they apply. If modifiers immediately precede the left
parenthesis of a group, the modifiers apply to each repeatable edit descriptor within the
group. They are enclosed in brackets, and if more than one is present, they are
separated by commas.

Field-Blanking Modifiers (BN, BZ)
There are two modifiers for blanking fields:

BN blank field if null.

BZ blank field if equal to zero.

Although most edit descriptors cause a minimum number of characters to be output, a
field-blanking modifier causes the entire field to be filled with spaces if the specified
condition is met. The null value is the value addressed by the nullptr in the
variablelist entry for the current data element.

Fill-Character Modifier (FL)
When an alphanumeric data element contains fewer characters than the field width
specified by an Aw edit descriptor, when leading or trailing zero suppression is
performed, or when embedded text in an M edit descriptor is not output because its
neighboring digits are not output, a fill character is inserted in each appropriate
character position in the output field. The fill character is normally a space, but the fill-
character modifier can be used to specify any other character for this purpose. The fill-
character modifier has the form:

FL char

char any single character, enclosed in quotation marks or apostrophes.

These are examples of fill-character replacement:

The “|” character is used to denote the boundaries of the output field.

Note. Modifiers are effective only on output. If they are supplied for input, they have no
effect.

Format Data Value Result

[FL'.']A10 'THEN' |THEN......|

[RJ,FL">"]A7 'HERE' |>>>HERE|

[FL"*"]M<$ZZ,ZZ9.99> 127.39 |$***127.39|

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-22

Overflow-Character Modifier (OC)

Overflow-Character Modifier (OC)
The overflow condition occurs if there are more characters to be placed into a field
than there are positions provided by the edit descriptors. In the absence of any
modifier or decoration to the contrary, if an overflow condition occurs in a numeric field,
the field is filled with asterisks (*). This applies to the D, E, F, G, I, and M edit
descriptors. The OC modifier can be used to substitute any other character for the
asterisk as the overflow indicator character.

The OC modifier has the form:

OC char

char any single character, enclosed in quotation marks or apostrophes.

For example, the modifier [OC ‘!’] causes the output field to be filled with exclamation
marks, instead of asterisks, if an overflow occurs:

The “|” character is used to denote the boundaries of the output field.

Justification Modifiers (LJ, RJ)
The A edit descriptor normally displays the data left justified in its field.

The justification modifiers are:

LJ Left justify (normal)

RJ Right justify (data is displayed right justified)

The RJ and LJ modifiers are used with the A edit descriptor only.

Symbol-Substitution Modifier (SS)
The symbol-substitution modifier permits the user to replace certain standard symbols
used by the formatter with other symbols. It can be used with the M edit descriptor to
free the special characters 9, V, ., and Z for use as text characters in the mask. It can
also be used with the D, E, F, and G edit descriptors to alter the standard characters
they insert in the result field. The symbol substitution modifier has the form:

SS symprs

symprs one or more pairs of symbols enclosed in quotation marks or
apostrophes. The first symbol in each pair is one of those in this table;
the second is the symbol that is to replace it temporarily.

Format Data Value Result

[OC'!']I2 100 |!!|

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-23

Symbol-Substitution Modifier (SS)

These formatting symbols can be altered by the SS modifier:

These examples show how the SS modifier can be used to permit decimal values to be
displayed as clock times, to follow European conventions (where a comma is used as
the decimal point and periods are used as digit group separators), or to alter the
function of the digit selectors in the M edit descriptor. When using the symbol
substitution with a mask format, to obtain the function of one special character which is
being altered by the symbol substitution, use the new character of the pair. With all
other formats, use the old character of the pair; for example:

The “|” character is used to denote the boundaries of the output field.

This table indicates which modifiers can be used with which edit descriptors (Y stands
for yes, the combination is permitted).

Symbo
l Function

9 Digit selector (M format)

Z Digit selector, zero suppression (M
format)

V Decimal alignment character (M
format)

 . Decimal point (D, E, F, G, and M
format)

Data Value Format Result

12.45 [SS".:"]F6.2 | 12:45|

12.45 [SS".:"]M<ZZZ:99> | 12:45|

12345.67 [SS'.,']F10.2 | 12345,67|

103179 [SS<9X>]M<XX/XX/19XX> |10/31/1979|

Edit Descriptors

Modifiers A E,D F G I L M

BZ,BN Y Y Y Y Y Y Y

LJ,RJ Y

OC Y Y Y Y Y Y

FL Y Y Y Y Y Y

SS Y Y Y Y

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-24

Decorations

Decorations
A decoration specifies a character string that can be added to the result field, the
conditions under which the string is to be added, the location at which the string is to
be added, and whether it is to be added before normal formatting is done or after it is
completed.

You can use multiple decorations, separated by commas, with the same edit
descriptor. Decorations are enclosed in brackets (together with any modifiers) and
immediately precede the edit descriptor to which they apply. If modifiers immediately
precede the left parenthesis of a group, the modifiers apply to each repeatable edit
descriptor within the group.

When a field is processed, the floating decorations appear in the same order, left to
right. If an edit descriptor within a group already has some decorations, the
decorations that are applied to the group function as if they were placed to the right of
the decorations already present. A decoration has the form:

{ M } { M } { N } ... { F } string

OR

{ N } { P } { P } { P } ... An string { Z } { Z } { O }

Character 1 Field condition specifier: M Minus
N Null
O Overflow
P Plus
Z Zero

Character 2 String location specifier: A Absolute
F Floating
P Prior

n an unsigned nonzero integer constant that specifies the actual
character position within the field at which the string is to begin.

string any character string enclosed in quotation marks or apostrophes.

Conditions
The condition specifier states that the string is to be added to the field if its value is
minus, zero, positive, or null, or if a field overflow has occurred. A null condition takes
precedence over negative, positive, and zero conditions; the overflow test is done after
those for the other conditions, and therefore precedence is not significant.
Alphanumeric data elements are considered to be positive or null only.

A decoration can have more than one condition specifier. If multiple condition
specifiers are entered, an “or” condition is understood. For example, “ZPA2‘+’ ”

Note. Only location type An can be used in combination with the O condition.

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-25

Locations

specifies that the string is to be inserted in the field if the data value is equal to or
greater than zero.

Locations
The location specifier indicates where the string is to be added to the field.

The A specifier states that the string is to begin in absolute position n within the field.
The leftmost position of the field is position 1.

The F specifier states that, once the number of data characters in the field has been
established, the string is to occupy the position or positions (for right-justified fields)
immediately to the left of the leftmost data character. This is reversed for left-justified
elements.

The P specifier states that, before normal formatting, the string is to be inserted in the
rightmost (for right-justified fields) end of the field; data characters are shifted to the left
an appropriate number of positions. This is reversed for left-justified fields.

Processing
Decoration processing is as follows:

1. The data element is determined to have a negative, positive, zero, or null value; a
null condition takes precedence over the other attributes.

2. If a P location decoration is specified and its condition is satisfied, its string is
inserted in the field.

3. Normal formatting is performed.

4. If A or F decorations are specified and their conditions met, they are applied.

5. If an attempt is made to transfer more characters to the field than can be
accommodated (in Step 2, 3, or 4), the overflow condition is set. If an overflow
decoration has been specified, it is applied.

These examples illustrate these considerations:

The “|” character is used to denote the boundaries of the output field.

Note. Only location type An can be used with the O condition.

Format Data Value Result

[MF'<',MP'>',ZPP' ']F12.2 1000.00 | 1000.00 |

[MF'<',MP'>',ZPP' ']F12.2 -1000.00 | <1000.00>|

 [MA1'CR',MPF'$']F12.2 1000.00 | $1000.00|

 [MA1'CR',MPF'$']F12.2 -100.00 |CR $100.00|

 [OA1'**OVERFLOW**']F12.2 1000000.00 | 1000000.00|

 [OA1'**OVERFLOW**']F12.2 10000000.00 |**OVERFLOW**|

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-26

Processing

As an example of how decorations apply to a group of edit descriptors, these formats
give the same results:

Format

[MF'-'](F10.2,[MZF'**']F10.2)
[MF'-']F10.2,[MZF'**',MF'-']F10.2

Using the format above:

The “/\” marker is used to denote the boundaries of the output field.

Note. These decorations are automatically applied to any numeric edit descriptor (D, E, F, G, I,
or M) for which no decoration has been specified:

MF'-'

OA1'*** ... *' (The number of asterisks is equal to the number of characteristics in the
field width.)

However, if any decoration with a condition code relating to the sign of the data is specified, the
automatic MF'-' decoration no longer applies; if negative-value indication is desired, you must
supply the appropriate decoration. If any decoration with a condition code relating to overflow
is specified, the automatic OA1'***...*' decoration no longer applies. If MF'' is specified (that is,
with no text string), then the default MF'-' is applied.

Data Values Results

0,0 0.00 **0.00
/\ /\ /\

1,1 1.00 1.00
/\ /\ /\

-1,-1 -1.00 **-1.00
/\ /\ /\

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-27

List-Directed Formatting

List-Directed Formatting
List-directed formatting provides the data conversion capabilities of the formatter
without requiring the specification of a format. The FORMATDATA procedure
determines the details of the data conversion, based on the types of the data elements.
This is particularly convenient for input because the list-directed formatting rules
provide for free-format input of data values rather than requiring data to be supplied in
fixed fields. There are fewer advantages to using list-directed formatting for output
because the output data is not necessarily arranged in a convenient readable form.

The characters in one or more list-directed buffers constitute a sequence of data-list
items and value separators. Each value is either a constant, a null value, or one of
these forms:

r*c r*

r is an unsigned, nonzero, integer constant.

r*c form is equivalent to r successive appearances of the constant c.

r* form is equivalent to r successive null values.

Neither of these forms can contain embedded blanks, except where permitted with
the constant c.

List-Directed Input

All input forms that are acceptable to FORMATDATA when directed by a format are
acceptable for list-directed input, with these exceptions:

• When the data element is a complex variable, the input form consists of a left
parenthesis followed by an ordered pair of numeric input fields separated by a
comma and followed by a right parenthesis.

• When the data element is a logical variable, the input form must not include either
slashes or commas among the optional characters for the L editing.

• When the data element is a character variable, the input form consists of a string of
characters enclosed in apostrophes. The blank, comma, and slash may appear in
the string of characters.

• A null value is specified by having no characters other than blanks between
successive value separators, no characters preceding the first value separator in
the first buffer, or the r* form. A null value has no effect on the value of the
corresponding data element. The input list item retains its previous value. A single
null value must represent an entire complex constant (not just part of it).

If a slash value separator is encountered during the processing of a buffer, data
conversion is terminated. If there are additional elements in the data list, the effect is
as if null values had been supplied for them.

Formatter Edit Descriptors

Guardian Procedure Calls Reference Manual—522629-030
F-28

List-Directed Output

On input, a value separator is one of these:

• A comma or slash optionally preceded or optionally followed by one or more
contiguous blanks (except within a character constant).

• One or more contiguous blanks between two constants or following the last
constant (except embedded blanks surrounding the real or imaginary part of a
complex constant).

• The end of the buffer (except within a character constant).

List-Directed Output

Output forms that are produced by list-directed output are the same as that required for
input with these exceptions:

• The end of a buffer can occur between the comma and the imaginary part of a
complex constant only if the entire constant is as long as, or longer than, an entire
buffer. The only embedded blanks permitted within a complex constant are
between the comma and the end of a buffer, and one blank at the beginning of the
next buffer.

• Character values are displayed without apostrophes.

• If two or more successive character values in an output record produced have
identical values, the FORMATDATA procedure produces a repeated constant of
the form r*c instead of the sequence of identical values.

• Slashes, as value separators, and null values are not produced by list-directed
output.

For output, the value separator is a single blank. A value separator is not produced
between or adjacent to character values.

Guardian Procedure Calls Reference Manual—522629-030
G-1

G
Superseded Guardian Procedure
Calls and Their Replacements

This appendix contains these tables listing superseded Guardian procedures and their
replacements:

• Superseded Guardian Procedures and Their Replacements (H06.03)

• Table G-2, Superseded Guardian Procedures and Their Replacements (G00)

• Table G-3, Superseded Guardian Procedures and Their Replacements (D40)

• Table G-4, Superseded Guardian Procedures and Their Replacements (D30)

• Table G-5, Superseded C-Series Guardian Procedures and Their Replacements
(D-Series)

Table G-1 lists the Guardian procedures that are superseded beginning in the H06.03
version of the operating system and indicates the procedures that replace them

.

Table G-2 lists the Guardian procedures that are superseded beginning in the G00
version of the operating system and indicates the procedures that replace them.

Table G-3 lists the Guardian procedures that are superseded beginning in the D40
version of the operating system and indicates the procedures that replace them. The
superseded procedures continue to be supported for TNS processes. With the
exception of the PROCESS_CREATE_ procedure, these superseded procedures
cannot be called by TNS/R native processes.

Table G-1. Superseded Guardian Procedures and Their Replacements (H06.03)

Superseded Procedure Replacement Procedure
DELAY PROCESS_DELAY_

Table G-2. Superseded Guardian Procedures and Their Replacements (G00)

Superseded Procedure Replacement Procedure
DEVICE_GETINFOBYLDEV_ CONFIG_GETINFO_BYLDEV_

DEVICE_GETINFOBYNAME_ CONFIG_GETINFO_BYNAME_

DISK_REFRESH_ (not needed)

REFRESH (not needed)

Superseded Guardian Procedure Calls and Their
Replacements

Guardian Procedure Calls Reference Manual—522629-030
G-2

Table G-4 lists the Guardian procedures that are superseded beginning in the D30
version of the operating system and indicates the new procedures that replace them.
The superseded procedures continue to be supported for compatibility.

Table G-3. Superseded Guardian Procedures and Their Replacements (D40)

This procedure Is not defined for TNS/R native processes; use
the procedure

ARMTRAP SIGACTION_INIT_

CHECKPOINT CHECKPOINTX

CHECKPOINTMANY CHECKPOINTMANYX

CURRENTSPACE (No replacement is needed)

FORMATDATA FORMATDATAX

LASTADDR ADDRESS_DELIMIT_

LASTADDRX ADDRESS_DELIMIT_

PROCESS_CREATE_* PROCESS_LAUNCH_

XBNDSTEST REFPARAM_BOUNDSCHECK_

XSTACKTEST HEADROOM_ENSURE_

*This procedure can be called by TNS/R native processes.

Table G-4. Superseded Guardian Procedures and Their Replacements (D30)

Superseded Procedure Replacement Procedure

DEFINEPOOL *POOL procedures are replaced by POOL_*
procedures. There is no one-for-one replacement.

GETPOOL *POOL procedures are replaced by POOL_*
procedures. There is no one-for-one replacement.

GROUPIDTOGROUPNAME GROUP_GETINFO_

GROUPNAMETOGROUPID GROUP_GETINFO_

PUTPOOL *POOL procedures are replaced by POOL_*
procedures. There is no one-for-one replacement.

RESIZEPOOL *POOL procedures are replaced by POOL_*
procedures. There is no one-for-one replacement.

USERDEFAULTS USER_GETINFO_

USERIDTOUSERNAME USER_GETINFO_

USERNAMETOUSERID USER_GETINFO_

VERIFYUSER USER_AUTHENTICATE_ and USER_GETINFO_

Superseded Guardian Procedure Calls and Their
Replacements

Guardian Procedure Calls Reference Manual—522629-030
G-3

Table G-5 lists the C-series Guardian procedures that are superseded beginning in the
D-series RVU of the operating system and indicates the new procedures that replace
them. The superseded procedures continue to be supported for compatibility.

Table G-5. Superseded C-Series Guardian Procedures and Their Replacements
(D-Series) (page 1 of 3)

Superseded Procedure Replacement Procedure

ABEND PROCESS_STOP_

ACTIVATEPROCESS PROCESS_ACTIVATE_

ALLOCATESEGMENT SEGMENT_ALLOCATE_

ALTER FILE_ALTERLIST_

ALTERPRIORITY PROCESS_SETINFO_

CHECKALLOCATESEGMENT SEGMENT_ALLOCATE_CHKPT_

CHECKCLOSE FILE_CLOSE_CHKPT_

CHECKDEALLOCATESEGMEN
T

SEGMENT_DEALLOCATE_CHKPT_

CHECKOPEN FILE_OPEN_CHKPT_

CLOSE FILE_CLOSE_

CLOSEEDIT CLOSEEDIT_

CONVERTPROCESSNAME FILENAME_RESOLVE_

CREATE FILE_CREATE[LIST]_

CREATEPROCESSNAME PROCESSNAME_CREATE_

CREATEREMOTENAME PROCESSNAME_CREATE_

CREATORACCESSID PROCESS_GETINFO[LIST]_

DEALLOCATESEGMENT SEGMENT_DEALLOCATE_

DEBUGPROCESS PROCESS_DEBUG_

DEVICEINFO[2] FILE_GETINFOLISTBYNAME_
FILE_GETINFOBYNAME_

DISKINFO FILE_GETINFOLISTBYNAME_

FILEINFO FILE_GETINFO[LIST][BYNAME]_

FILEINQUIRE FILE_GETINFO[LIST][BYNAME]_

FILERECINFO FILE_GETINFO[LIST][BYNAME]_

FNAME32COLLAPSE (not needed)

FNAME32EXPAND FILENAME_SCAN_ and
FILENAME_RESOLVE_

FNAME32TOFNAME (not needed)

FNAMECOLLAPSE (not needed)

Superseded Guardian Procedure Calls and Their
Replacements

Guardian Procedure Calls Reference Manual—522629-030
G-4

FNAMECOMPARE FILENAME_COMPARE_

FNAMEEXPAND FILENAME_SCAN_ and
FILENAME_RESOLVE_

FNAMETOFNAME32 (not needed)

GETCRTPID PROCESS_GETINFO[LIST]_

GETDEVNAME DEVICE_GETINFOBYLDEV_ or
FILENAME_FINDNEXT_

GETPPDENTRY PROCESS_GETPAIRINFO_

GETREMOTECRTPID PROCESS_GETINFO[LIST]_

GETSYSTEMNAME NODENUMBER_TO_NODENAME_

LASTADDR[X] ADDRESS_DELIMIT_

LASTRECEIVE FILE_GETRECEIVEINFO_

LOCATESYSTEM NODENAME_TO_NODENUMBER_

LOCKINFO FILE_GETLOCKINFO_

LOOKUPPROCESSNAME PROCESS_GETPAIRINFO_

MOM PROCESS_GETINFO[LIST]_

MYGMOM PROCESS_GETINFO[LIST]_

MYPID PROCESSHANDLE_GETMINE_ and
PROCESSHANDLE_DECOMPOSE_

MYSYSTEMNUMBER NODENAME_TO_NODENUMBER_ or
PROCESSHANDLE_GETMINE_ and
PROCESSHANDLE_DECOMPOSE_

MYTERM PROCESS_GETINFO[LIST]_

NEWPROCESS PROCESS_CREATE_ and
PROCESS_LAUNCH_

NEWPROCESSNOWAIT PROCESS_CREATE_ and
PROCESS_LAUNCH_

NEXTFILENAME FILENAME_FINDNEXT_

OPEN FILE_OPEN_

OPENEDIT OPENEDIT_

OPENINFO FILE_GETOPENINFO_

PRIORITY PROCESS_SETINFO_ or
PROCESS_GETINFO[LIST]_

PROCESSACCESSID PROCESS_GETINFO[LIST]_

Table G-5. Superseded C-Series Guardian Procedures and Their Replacements
(D-Series) (page 2 of 3)

Superseded Procedure Replacement Procedure

Superseded Guardian Procedure Calls and Their
Replacements

Guardian Procedure Calls Reference Manual—522629-030
G-5

PROCESSFILESECURITY PROCESS_SETINFO_ or
PROCESS_GETINFOLIST_

PROCESSINFO PROCESS_GETINFO[LIST]_

PROCESSTIME PROCESS_GETINFO[LIST]_

PROGRAMFILENAME PROCESS_GETINFO[LIST]_

PURGE FILE_PURGE_

RECEIVEINFO FILE_GETRECEIVEINFO_

REFRESH DISK_REFRESH_

RENAME FILE_RENAME_

SEGMENTSIZE SEGMENT_GET[BACKUP]INFO_

SENDBREAKMESSAGE BREAKMESSAGE_SEND_

SETMYTERM PROCESS_SETSTRINGINFO_

SHIFTSTRING STRING_UPSHIFT_

STEPMOM PROCESS_SETINFO_

STOP PROCESS_STOP_

SUSPENDPROCESS PROCESS_SUSPEND_

USESEGMENT SEGMENT_USE_

Table G-5. Superseded C-Series Guardian Procedures and Their Replacements
(D-Series) (page 3 of 3)

Superseded Procedure Replacement Procedure

Superseded Guardian Procedure Calls and Their
Replacements

Guardian Procedure Calls Reference Manual—522629-030
G-6

Guardian Procedure Calls Reference Manual—522629-030
H-1

H
Documented Guardian Procedures

This list shows all documented Guardian procedures and the manuals in which they
are described:

ABEND Guardian Procedure Calls Reference Manual

ABORTTRANSACTION TMF Application Programmer’s Guide

ACTIVATEPROCESS Guardian Procedure Calls Reference Manual

ACTIVATERECEIVETRANSID TMF Application Programmer’s Guide

ADDDSTTRANSITION Guardian Procedure Calls Reference Manual

ADDRESS_DELIMIT_ Guardian Procedure Calls Reference Manual

ADDRTOPROCNAME Guardian Procedure Calls Reference Manual

ALLOCATESEGMENT Guardian Procedure Calls Reference Manual

ALTER Guardian Procedure Calls Reference Manual

ALTERPRIORITY Guardian Procedure Calls Reference Manual

APS_* OSI/AS Programming Guide

ARMTRAP Guardian Procedure Calls Reference Manual

AWAITIO Guardian Procedure Calls Reference Manual

AWAITIOX Guardian Procedure Calls Reference Manual

BACKSPACEEDIT Guardian Procedure Calls Reference Manual

BEGINTRANSACTION TMF Application Programmer’s Guide

BINSEM_CLOSE_ Guardian Procedure Calls Reference Manual

BINSEM_CREATE_ Guardian Procedure Calls Reference Manual

BINSEM_FORCELOCK_ Guardian Procedure Calls Reference Manual

BINSEM_LOCK_ Guardian Procedure Calls Reference Manual

BINSEM_OPEN_ Guardian Procedure Calls Reference Manual

BINSEM_UNLOCK_ Guardian Procedure Calls Reference Manual

BREAKMESSAGE_SEND_ Guardian Procedure Calls Reference Manual

CANCEL Guardian Procedure Calls Reference Manual

CANCELPROCESSTIMEOUT Guardian Procedure Calls Reference Manual

CANCELREQ Guardian Procedure Calls Reference Manual

Documented Guardian Procedures

Guardian Procedure Calls Reference Manual—522629-030
H-2

CANCELTIMEOUT Guardian Procedure Calls Reference Manual

CHANGELIST Guardian Procedure Calls Reference Manual

CHECK^BREAK Guardian Procedure Calls Reference Manual

CHECK^FILE Guardian Procedure Calls Reference Manual

CHECKALLOCATESEGMENT Guardian Procedure Calls Reference Manual

CHECKCLOSE Guardian Procedure Calls Reference Manual

CHECKDEALLOCATESEGMENT Guardian Procedure Calls Reference Manual

CHECKDEFINE Guardian Procedure Calls Reference Manual

CHECKMONITOR Guardian Procedure Calls Reference Manual

CHECKOPEN Guardian Procedure Calls Reference Manual

CHECKPOINT Guardian Procedure Calls Reference Manual

CHECKPOINTMANY Guardian Procedure Calls Reference Manual

CHECKPOINTMANYX Guardian Procedure Calls Reference Manual

CHECKPOINTX Guardian Procedure Calls Reference Manual

CHECKRESIZESEGMENT Guardian Procedure Calls Reference Manual

CHECKSETMODE Guardian Procedure Calls Reference Manual

CHECKSWITCH Guardian Procedure Calls Reference Manual

CHILD_LOST_ Guardian Procedure Calls Reference Manual

CLOSE Guardian Procedure Calls Reference Manual

CLOSE^FILE Guardian Procedure Calls Reference Manual

CLOSEALLEDIT Guardian Procedure Calls Reference Manual

CLOSEEDIT Guardian Procedure Calls Reference Manual

CLOSEEDIT_ Guardian Procedure Calls Reference Manual

COMPLETEIOEDIT Guardian Procedure Calls Reference Manual

COMPRESSEDIT Guardian Procedure Calls Reference Manual

COMPUTEJULIANDAYNO Guardian Procedure Calls Reference Manual

COMPUTETIMESTAMP Guardian Procedure Calls Reference Manual

COMPUTETRANSID TMF Application Programmer’s Guide

CONFIG_GETINFO_BYLDEV_ Guardian Procedure Calls Reference Manual

CONFIG_GETINFO_BYLDEV2_ Guardian Procedure Calls Reference Manual

Documented Guardian Procedures

Guardian Procedure Calls Reference Manual—522629-030
H-3

CONFIG_GETINFO_BYNAME_ Guardian Procedure Calls Reference Manual

CONFIG_GETINFO_BYNAME2_ Guardian Procedure Calls Reference Manual

CONTIME Guardian Procedure Calls Reference Manual

CONTROL Guardian Procedure Calls Reference Manual

CONTROLBUF Guardian Procedure Calls Reference Manual

CONTROLMESSAGESYSTEM Guardian Procedure Calls Reference Manual

CONVERTASCIIEBCDIC Guardian Procedure Calls Reference Manual

CONVERTPROCESSNAME Guardian Procedure Calls Reference Manual

CONVERTPROCESSTIME Guardian Procedure Calls Reference Manual

CONVERTTIMESTAMP Guardian Procedure Calls Reference Manual

CPRL_* SQL/MP Programming Manual for C, SQL/MP
Programming Manual for COBOL85

CPUTIMES Guardian Procedure Calls Reference Manual

CREATE Guardian Procedure Calls Reference Manual

CREATEPROCESSNAME Guardian Procedure Calls Reference Manual

CREATEREMOTENAME Guardian Procedure Calls Reference Manual

CREATORACCESSID Guardian Procedure Calls Reference Manual

CRTPID_TO_PROCESSHANDLE_ Guardian Procedure Calls Reference Manual

CURRENTSPACE Guardian Procedure Calls Reference Manual

DAYOFWEEK Guardian Procedure Calls Reference Manual

DEALLOCATESEGMENT Guardian Procedure Calls Reference Manual

DEBUG Guardian Procedure Calls Reference Manual

DEBUGPROCESS Guardian Procedure Calls Reference Manual

DEFINEADD Guardian Procedure Calls Reference Manual

DEFINEDELETE Guardian Procedure Calls Reference Manual

DEFINEDELETEALL Guardian Procedure Calls Reference Manual

DEFINEINFO Guardian Procedure Calls Reference Manual

DEFINELIST Guardian Procedure Calls Reference Manuall

CPU_GETINFOLIST_
(Alternative name for
PROCESSOR_GETINFOLIST_)

Guardian Procedure Calls Reference
Manual

Documented Guardian Procedures

Guardian Procedure Calls Reference Manual—522629-030
H-4

DEFINEMODE Guardian Procedure Calls Reference Manual

DEFINENEXTNAME Guardian Procedure Calls Reference Manual

DEFINEPOOL Guardian Procedure Calls Reference Manual

DEFINEREADATTR Guardian Procedure Calls Reference Manual

DEFINERESTORE Guardian Procedure Calls Reference Manual

DEFINERESTOREWORK Guardian Procedure Calls Reference Manual

DEFINERESTOREWORK2 Guardian Procedure Calls Reference Manual

DEFINESAVE Guardian Procedure Calls Reference Manual

DEFINESAVEWORK Guardian Procedure Calls Reference Manual

DEFINESAVEWORK2 Guardian Procedure Calls Reference Manual

DEFINESETATTR Guardian Procedure Calls Reference Manual

DEFINESETLIKE Guardian Procedure Calls Reference Manual

DEFINEVALIDATEWORK Guardian Procedure Calls Reference Manual

DELAY Guardian Procedure Calls Reference Manual

DELETEEDIT Guardian Procedure Calls Reference Manual

DEVICE_GETINFOBYLDEV_ Guardian Procedure Calls Reference Manual

DEVICE_GETINFOBYNAME_ Guardian Procedure Calls Reference Manual

DEVICEINFO Guardian Procedure Calls Reference Manual

DEVICEINFO2 Guardian Procedure Calls Reference Manual

DISK_REFRESH_ Guardian Procedure Calls Reference Manual

DISKINFO Guardian Procedure Calls Reference Manual

DNUMIN Guardian Procedure Calls Reference Manual

DNUMOUT Guardian Procedure Calls Reference Manual

DST_TRANSITION_ADD_ Guardian Procedure Calls Reference Manual

DST_TRANSITION_DELETE_ Guardian Procedure Calls Reference Manual

DST_TRANSITION_MODIFY_ Guardian Procedure Calls Reference Manual

DST_GETINFO_ Guardian Procedure Calls Reference Manual

EDITREAD Guardian Procedure Calls Reference Manual

EDITREADINIT Guardian Procedure Calls Reference Manual

EMSADDSUBJECT EMS Manual

Documented Guardian Procedures

Guardian Procedure Calls Reference Manual—522629-030
H-5

EMSADDSUBJECTMAP EMS Manual

EMSADDTOKENMAPS EMS Manual

EMSADDTOKENS EMS Manual

EMSGET EMS Manual

EMSGETTKN EMS Manual

EMSINIT EMS Manual

EMSINITMAP EMS Manual

EMSTEXT EMS Manual

ENDTRANSACTION TMF Application Programmer’s Guide

ENFORMFINISH Enform User’s Guide

ENFORMRECEIVE Enform User’s Guide

ENFORMSTART Enform User’s Guide

ERRNO_GET Guardian Procedure Calls Reference Manual

EXTENDEDIT Guardian Procedure Calls Reference Manual

FILE_ALTERLIST_ Guardian Procedure Calls Reference Manual

FILE_CLOSE_ Guardian Procedure Calls Reference Manual

FILE_CLOSE_CHKPT_ Guardian Procedure Calls Reference Manual

FILE_CREATE_ Guardian Procedure Calls Reference Manual

FILE_CREATELIST_ Guardian Procedure Calls Reference Manual

FILE_GETINFO_ Guardian Procedure Calls Reference Manual

FILE_GETINFOBYNAME_ Guardian Procedure Calls Reference Manual

FILE_GETINFOLIST_ Guardian Procedure Calls Reference Manual

FILE_GETINFOLISTBYNAME_ Guardian Procedure Calls Reference Manual

FILE_GETLOCKINFO_ Guardian Procedure Calls Reference Manual

FILE_GETOPENINFO_ Guardian Procedure Calls Reference Manual

FILE_GETRECEIVEINFO_ Guardian Procedure Calls Reference Manual

FILE_OPEN_ Guardian Procedure Calls Reference Manual

FILE_OPEN_CHKPT_ Guardian Procedure Calls Reference Manual

FILE_PURGE_ Guardian Procedure Calls Reference Manual

FILE_RENAME_ Guardian Procedure Calls Reference Manual

Documented Guardian Procedures

Guardian Procedure Calls Reference Manual—522629-030
H-6

FILEERROR Guardian Procedure Calls Reference Manual

FILEINFO Guardian Procedure Calls Reference Manual

FILEINQUIRE Guardian Procedure Calls Reference Manual

FILENAME_COMPARE_ Guardian Procedure Calls Reference Manual

FILENAME_DECOMPOSE_ Guardian Procedure Calls Reference Manual

FILENAME_EDIT_ Guardian Procedure Calls Reference Manual

FILENAME_FINDFINISH_ Guardian Procedure Calls Reference Manual

FILENAME_FINDNEXT_ Guardian Procedure Calls Reference Manual

FILENAME_FINDSTART_ Guardian Procedure Calls Reference Manual

FILENAME_MATCH_ Guardian Procedure Calls Reference Manual

FILENAME_RESOLVE_ Guardian Procedure Calls Reference Manual

FILENAME_SCAN_ Guardian Procedure Calls Reference Manual

FILENAME_TO_OLDFILENAME_ Guardian Procedure Calls Reference Manual

FILENAME_TO_PATHNAME_ Guardian Procedure Calls Reference Manual

FILENAME_TO_PROCESSHANDLE_Guardian Procedure Calls Reference Manual

FILENAME_UNRESOLVE_ Guardian Procedure Calls Reference Manual

FILERECINFO Guardian Procedure Calls Reference Manual

FIXSTRING Guardian Procedure Calls Reference Manual

FNAME32COLLAPSE Guardian Procedure Calls Reference Manual

FNAME32EXPAND Guardian Procedure Calls Reference Manual

FNAME32TOFNAME Guardian Procedure Calls Reference Manual

FNAMECOLLAPSE Guardian Procedure Calls Reference Manual

FNAMECOMPARE Guardian Procedure Calls Reference Manual

FNAMEEXPAND Guardian Procedure Calls Reference Manual

FNAMETOFNAME32 Guardian Procedure Calls Reference Manual

FORMATCONVERT Guardian Procedure Calls Reference Manual

FORMATCONVERTX Guardian Procedure Calls Reference Manual

FORMATDATA Guardian Procedure Calls Reference Manual

FORMATDATAX Guardian Procedure Calls Reference Manual

FTM_* OSI/FTAM Programming Reference Manual

Documented Guardian Procedures

Guardian Procedure Calls Reference Manual—522629-030
H-7

GETCPCBINFO Guardian Procedure Calls Reference Manual

GETCRTPID Guardian Procedure Calls Reference Manual

GETDEVNAME Guardian Procedure Calls Reference Manual

GETINCREMENTEDIT Guardian Procedure Calls Reference Manual

GETPOOL Guardian Procedure Calls Reference Manual

GETPOOL_PAGE_ Guardian Procedure Calls Reference Manual

GETPOSITIONEDIT Guardian Procedure Calls Reference Manual

GETPPDENTRY Guardian Procedure Calls Reference Manual

GETREMOTECRTPID Guardian Procedure Calls Reference Manual

GETSYNCINFO Guardian Procedure Calls Reference Manual

GETSYSTEMNAME Guardian Procedure Calls Reference Manual

GETTMPNAME TMF Application Programmer’s Guide

GETTRANSID TMF Application Programmer’s Guide

GIVE^BREAK Guardian Procedure Calls Reference Manual

GROUP_GETINFO_ Guardian Procedure Calls Reference Manual

GROUPIDTOGROUPNAME Guardian Procedure Calls Reference Manual

GROUPMEMBER_GETNEXT_ Guardian Procedure Calls Reference Manual

GROUPNAMETOGROUPID Guardian Procedure Calls Reference Manual

HALTPOLL Guardian Procedure Calls Reference Manual

HEADROOM_ENSURE_ Guardian Procedure Calls Reference Manual

HEAPSORT Guardian Procedure Calls Reference Manual

HEAPSORTX_ Guardian Procedure Calls Reference Manual

HIST_FORMAT_ Guardian Procedure Calls Reference Manual

HIST_GETPRIOR_ Guardian Procedure Calls Reference Manual

HIST_INIT_ Guardian Procedure Calls Reference Manual

INCREMENTEDIT Guardian Procedure Calls Reference Manual

INITIALIZEEDIT Guardian Procedure Calls Reference Manual

INITIALIZER Guardian Procedure Calls Reference Manual

INTERPRETINTERVAL Guardian Procedure Calls Reference Manual

INTERPRETJULIANDAYNO Guardian Procedure Calls Reference Manual

Documented Guardian Procedures

Guardian Procedure Calls Reference Manual—522629-030
H-8

INTERPRETTIMESTAMP Guardian Procedure Calls Reference Manual

INTERPRETTRANSID TMF Application Programmer’s Guide

JULIANTIMESTAMP Guardian Procedure Calls Reference Manual

KEYPOSITION Guardian Procedure Calls Reference Manual

KEYPOSITIONX Guardian Procedure Calls Reference Manual

LABELEDTAPESUPPORT Guardian Procedure Calls Reference Manual

LASTADDR Guardian Procedure Calls Reference Manual

LASTADDRX Guardian Procedure Calls Reference Manual

LASTRECEIVE Guardian Procedure Calls Reference Manual

LOCATESYSTEM Guardian Procedure Calls Reference Manual

LOCKFILE Guardian Procedure Calls Reference Manual

LOCKINFO Guardian Procedure Calls Reference Manual

LOCKREC Guardian Procedure Calls Reference Manual

LONGJMP Guardian Procedure Calls Reference Manual

LOOKUPPROCESSNAME Guardian Procedure Calls Reference Manual

MBCS_ANY_KATAKANA_ Guardian Procedure Calls Reference Manual

MBCS_CHAR_ Guardian Procedure Calls Reference Manual

MBCS_CHARSIZE_ Guardian Procedure Calls Reference Manual

MBCS_CHARSTRING_ Guardian Procedure Calls Reference Manual

MBCS_CODESETS_SUPPORTED_ Guardian Procedure Calls Reference Manual

MBCS_DEFAULTCHARSET_ Guardian Procedure Calls Reference Manual

MBCS_EXTERNAL_TO_COMPAQ_ Guardian Procedure Calls Reference Manual

MBCS_FORMAT_CRT_FIELD_ Guardian Procedure Calls Reference Manual

MBCS_FORMAT_ITI_BUFFER_ Guardian Procedure Calls Reference Manual

MBCS_MB_TO_SB_ Guardian Procedure Calls Reference Manual

MBCS_REPLACEBLANK_ Guardian Procedure Calls Reference Manual

MBCS_SB_TO_MB_ Guardian Procedure Calls Reference Manual

MBCS_SHIFTSTRING_ Guardian Procedure Calls Reference Manual

MBCS_COMPAQ_TO_EXTERNAL_ Guardian Procedure Calls Reference Manual

MBCS_TESTBYTE_ Guardian Procedure Calls Reference Manual

Documented Guardian Procedures

Guardian Procedure Calls Reference Manual—522629-030
H-9

MBCS_TRIMFRAGMENT_ Guardian Procedure Calls Reference Manual

MEASCLOSE Measure Reference Manual

MEASCONFIGURE Measure Reference Manual

MEASCONTROL Measure Reference Manual

MEASCOUNTERBUMP Measure Reference Manual

MEASCOUNTERBUMPINIT Measure Reference Manual

MEASGETVERSION Measure Reference Manual

MEASINFO Measure Reference Manual

MEASMONCONTROL Measure Reference Manual

MEASMONSTATUS Measure Reference Manual

MEASOPEN Measure Reference Manual

MEASREAD Measure Reference Manual

MEASREAD_DIFF_ Measure Reference Manual

MEASREADACTIVE Measure Reference Manual

MEASREADCONF Measure Reference Manual

MEASSTATUS Measure Reference Manual

MEASWRITE_DIFF_ Measure Reference Manual

MESSAGESTATUS Guardian Procedure Calls Reference Manual

MESSAGESYSTEMINFO Guardian Procedure Calls Reference Manual

MFM_AWAITIOX_ OSI/AS Programming Guide

MFM_CANCELREQ_ OSI/AS Programming Guide

MOM Guardian Procedure Calls Reference Manual

MONITORCPUS Guardian Procedure Calls Reference Manual

MONITORNET Guardian Procedure Calls Reference Manual

MONITORNEW Guardian Procedure Calls Reference Manual

MOVEX Guardian Procedure Calls Reference Manual

MYGMOM Guardian Procedure Calls Reference Manual

MYPID Guardian Procedure Calls Reference Manual

MYPROCESSTIME Guardian Procedure Calls Reference Manual

MYSYSTEMNUMBER Guardian Procedure Calls Reference Manual

Documented Guardian Procedures

Guardian Procedure Calls Reference Manual—522629-030
H-10

MYTERM Guardian Procedure Calls Reference Manual

NEWPROCESS Guardian Procedure Calls Reference Manual

NEWPROCESSNOWAIT Guardian Procedure Calls Reference Manual

NEXTFILENAME Guardian Procedure Calls Reference Manual

NO^ERROR Guardian Procedure Calls Reference Manual

NODE_GETCOLDLOADINFO_ Guardian Procedure Calls Reference Manual

NODENAME_TO_NODENUMBER_ Guardian Procedure Calls Reference Manual

NODENUMBER_TO_NODENAME_ Guardian Procedure Calls Reference Manual

NUMBEREDIT Guardian Procedure Calls Reference Manual

NUMIN Guardian Procedure Calls Reference Manual

NUMOUT Guardian Procedure Calls Reference Manual

OBJFILE_GETINFOLIST_ Guardian Procedure Calls Reference Manual

OLDFILENAME_TO_FILENAME_ Guardian Procedure Calls Reference Manual

OLDSYSMSG_TO_NEWSYSMSG_ Guardian Procedure Calls Reference Manual

OPEN Guardian Procedure Calls Reference Manual

OPEN^FILE Guardian Procedure Calls Reference Manual

OPENEDIT Guardian Procedure Calls Reference Manual

OPENEDIT_ Guardian Procedure Calls Reference Manual

OPENER_LOST_ Guardian Procedure Calls Reference Manual

OPENINFO Guardian Procedure Calls Reference Manual

OSS_PID_NULL_ Guardian Procedure Calls Reference Manual

PACKEDIT Guardian Procedure Calls Reference Manual

PATHNAME_TO_FILENAME_ Guardian Procedure Calls Reference Manual

POOL_CHECK_ Guardian Procedure Calls Reference Manual

POOL_DEFINE_ Guardian Procedure Calls Reference Manual

POOL_GETINFO_ Guardian Procedure Calls Reference Manual

POOL_GETSPACE_ Guardian Procedure Calls Reference Manual

POOL_GETSPACE_PAGE_ Guardian Procedure Calls Reference Manual

POOL_PUTSPACE_ Guardian Procedure Calls Reference Manual

POOL_RESIZE_ Guardian Procedure Calls Reference Manual

Documented Guardian Procedures

Guardian Procedure Calls Reference Manual—522629-030
H-11

POSITION Guardian Procedure Calls Reference Manual

POSITIONEDIT Guardian Procedure Calls Reference Manual

PRINTCOMPLETE Spooler Programmer’s Guide

PRINTCOMPLETE2 Spooler Programmer’s Guide

PRINTINFO Spooler Programmer’s Guide

PRINTINIT Spooler Programmer’s Guide

PRINTINIT2 Spooler Programmer’s Guide

PRINTREAD Spooler Programmer’s Guide

PRINTREADCOMMAND Spooler Programmer’s Guide

PRINTSTART Spooler Programmer’s Guide

PRINTSTART2 Spooler Programmer’s Guide

PRINTSTATUS Spooler Programmer’s Guide

PRINTSTATUS2 Spooler Programmer’s Guide

PRIORITY Guardian Procedure Calls Reference Manual

PROCESS_ACTIVATE_ Guardian Procedure Calls Reference Manual

PROCESS_CREATE_ Guardian Procedure Calls Reference Manual

PROCESS_DELAY_ Guardian Procedure Calls Reference Manual

PROCESS_DEBUG_ Guardian Procedure Calls Reference Manual

PROCESS_GETINFO_ Guardian Procedure Calls Reference Manual

PROCESS_GETINFOLIST_ Guardian Procedure Calls Reference Manual

PROCESS_GETPAIRINFO_ Guardian Procedure Calls Reference Manual

PROCESS_LAUNCH_ Guardian Procedure Calls Reference Manual

PROCESS_SETINFO_ Guardian Procedure Calls Reference Manual

PROCESS_SETSTRINGINFO_ Guardian Procedure Calls Reference Manual

PROCESS_SPAWN_ Guardian Procedure Calls Reference Manual

PROCESS_STOP_ Guardian Procedure Calls Reference Manual

PROCESS_SUSPEND_ Guardian Procedure Calls Reference Manual

PROCESSACCESSID Guardian Procedure Calls Reference Manual

PROCESSFILESECURITY Guardian Procedure Calls Reference Manual

PROCESSHANDLE_COMPARE_ Guardian Procedure Calls Reference Manual

Documented Guardian Procedures

Guardian Procedure Calls Reference Manual—522629-030
H-12

PROCESSHANDLE_DECOMPOSE_ Guardian Procedure Calls Reference Manual

PROCESSHANDLE_GETMINE_ Guardian Procedure Calls Reference Manual

PROCESSHANDLE_NULLIT_ Guardian Procedure Calls Reference Manual

PROCESSHANDLE_TO_CRTPID_ Guardian Procedure Calls Reference Manual

PROCESSHANDLE_TO_FILENAME_Guardian Procedure Calls Reference Manual

PROCESSHANDLE_TO_STRING_ Guardian Procedure Calls Reference Manual

PROCESSINFO Guardian Procedure Calls Reference Manual

PROCESSNAME_CREATE_ Guardian Procedure Calls Reference Manual

PROCESSOR_GETINFOLIST_ Guardian Procedure Calls Reference Manual

PROCESSOR_GETNAME_ Guardian Procedure Calls Reference Manual

PROCESSORSTATUS Guardian Procedure Calls Reference Manual

PROCESSORTYPE Guardian Procedure Calls Reference Manual

PROCESSSTRING_SCAN_ Guardian Procedure Calls Reference Manual

PROCESSTIME Guardian Procedure Calls Reference Manual

PROGRAMFILENAME Guardian Procedure Calls Reference Manual

PURGE Guardian Procedure Calls Reference Manual

PUTPOOL Guardian Procedure Calls Reference Manual

RAISE_ Guardian Procedure Calls Reference Manual

READ Guardian Procedure Calls Reference Manual

READ^FILE Guardian Procedure Calls Reference Manual

READEDIT Guardian Procedure Calls Reference Manual

READEDITP Guardian Procedure Calls Reference Manual

READLOCK Guardian Procedure Calls Reference Manual

READLOCKX Guardian Procedure Calls Reference Manual

READUPDATE Guardian Procedure Calls Reference Manual

READUPDATELOCK Guardian Procedure Calls Reference Manual

READUPDATELOCKX Guardian Procedure Calls Reference Manual

READUPDATEX Guardian Procedure Calls Reference Manual

READX Guardian Procedure Calls Reference Manual

RECEIVEINFO Guardian Procedure Calls Reference Manual

Documented Guardian Procedures

Guardian Procedure Calls Reference Manual—522629-030
H-13

REFPARAM_BOUNDSCHECK_ Guardian Procedure Calls Reference Manual

REFRESH Guardian Procedure Calls Reference Manual

REMOTEPROCESSORSTATUS Guardian Procedure Calls Reference Manual

REMOTETOSVERSION Guardian Procedure Calls Reference Manual

RENAME Guardian Procedure Calls Reference Manual

REPLY Guardian Procedure Calls Reference Manual

REPLYX Guardian Procedure Calls Reference Manual

REPOSITION Guardian Procedure Calls Reference Manual

RESERVELCBS Guardian Procedure Calls Reference Manual

RESETSYNC Guardian Procedure Calls Reference Manual

RESIZEPOOL Guardian Procedure Calls Reference Manual

RESIZESEGMENT Guardian Procedure Calls Reference Manual

RESUMETRANSACTION TMF Application Programmer’s Guide

SAVEPOSITION Guardian Procedure Calls Reference Manual

SEGMENT_ALLOCATE_ Guardian Procedure Calls Reference Manual

SEGMENT_ALLOCATE_CHKPT_ Guardian Procedure Calls Reference Manual

SEGMENT_DEALLOCATE_ Guardian Procedure Calls Reference Manual

SEGMENT_DEALLOCATE_CHKPT_ Guardian Procedure Calls Reference Manual

SEGMENT_GETBACKUPINFO_ Guardian Procedure Calls Reference Manual

SEGMENT_GETINFO_ Guardian Procedure Calls Reference Manual

SEGMENT_USE_ Guardian Procedure Calls Reference Manual

SEGMENTSIZE Guardian Procedure Calls Reference Manual

SENDBREAKMESSAGE Guardian Procedure Calls Reference Manual

SERVERCLASS_DIALOG_ABORT_ TS/MP Pathsend and Server Programming
Manual

SERVERCLASS_DIALOG_BEGIN_ TS/MP Pathsend and Server Programming
Manual

SERVERCLASS_DIALOG_END_ TS/MP Pathsend and Server Programming
Manual

SERVERCLASS_DIALOG_SEND_ TS/MP Pathsend and Server Programming
Manual

Documented Guardian Procedures

Guardian Procedure Calls Reference Manual—522629-030
H-14

SERVERCLASS_SEND_ TS/MP Pathsend and Server Programming
Manual

SERVERCLASS_SEND_INFO_ TS/MP Pathsend and Server Programming
Manual

SET^FILE Guardian Procedure Calls Reference Manual

SETJMP_ Guardian Procedure Calls Reference Manual

SETMODE Guardian Procedure Calls Reference Manual

SETMODENOWAIT Guardian Procedure Calls Reference Manual

SETMYTERM Guardian Procedure Calls Reference Manual

SETPARAM Guardian Procedure Calls Reference Manual

SETSTOP Guardian Procedure Calls Reference Manual

SETSYNCINFO Guardian Procedure Calls Reference Manual

SETSYSTEMCLOCK Guardian Procedure Calls Reference Manual

SHIFTSTRING Guardian Procedure Calls Reference Manual

SIGACTION_ Guardian Procedure Calls Reference Manual

SIGACTION_INIT_ Guardian Procedure Calls Reference Manual

SIGACTION_RESTORE_ Guardian Procedure Calls Reference Manual

SIGACTION_SUPPLANT_ Guardian Procedure Calls Reference Manual

SIGADDSET_ Guardian Procedure Calls Reference Manual

SIGDELSET_ Guardian Procedure Calls Reference Manual

SIGEMPTYSET_ Guardian Procedure Calls Reference Manual

SIGFILLSET_ Guardian Procedure Calls Reference Manual

SIGISMEMBER_ Guardian Procedure Calls Reference Manual

SIGJMP_MASKSET_ Guardian Procedure Calls Reference Manual

SIGLONGJMP_ Guardian Procedure Calls Reference Manual

SIGNAL_ Guardian Procedure Calls Reference Manual

SIGNALPROCESSTIMEOUT Guardian Procedure Calls Reference Manual

SIGNALTIMEOUT Guardian Procedure Calls Reference Manual

SIGPENDING_ Guardian Procedure Calls Reference Manual

SIGPROCMASK_ Guardian Procedure Calls Reference Manual

SIGSETJMP_ Guardian Procedure Calls Reference Manual

Documented Guardian Procedures

Guardian Procedure Calls Reference Manual—522629-030
H-15

SIGSUSPEND_ Guardian Procedure Calls Reference Manual

SORTBUILDPARM FastSort Manual

SORTERROR FastSort Manual

SORTERRORDETAIL FastSort Manual

SORTERRORSUM FastSort Manual

SORTMERGEFINISH FastSort Manual

SORTMERGERECEIVE FastSort Manual

SORTMERGESEND FastSort Manual

SORTMERGESTART FastSort Manual

SORTMERGESTATISTICS FastSort Manual

SPI_BUFFER_FORMATFINISH_ DSM Template Services Manual

SPI_BUFFER_FORMATNEXT_ DSM Template Services Manual

SPI_BUFFER_FORMATSTART_ DSM Template Services Manual

SPI_FORMAT_CLOSE_ DSM Template Services Manual

SPOOLBATCHNAME Spooler Programmer’s Guide

SPOOLCONTROL Spooler Programmer’s Guide

SPOOLCONTROLBUF Spooler Programmer’s Guide

SPOOLEND Spooler Programmer’s Guide

SPOOLERCOMMAND Spooler Programmer’s Guide

SPOOLEREQUEST Spooler Programmer’s Guide

SPOOLEREQUEST2 Spooler Programmer’s Guide

SPOOLERSTATUS Spooler Programmer’s Guide

SPOOLERSTATUS2 Spooler Programmer’s Guide

SPOOLJOBNUM Spooler Programmer’s Guide

SPOOLSETMODE Spooler Programmer’s Guide

SPOOLSTART Spooler Programmer’s Guide

SPOOLWRITE Spooler Programmer’s Guide

SQLADDR SQL/MP Programming Manual for COBOL85

SQLCA_DISPLAY2_ SQL/MP Programming Manual for COBOL85

SQLCA_TOBUFFER2_ SQL/MP Programming Manual for COBOL85

Documented Guardian Procedures

Guardian Procedure Calls Reference Manual—522629-030
H-16

SQLCADISPLAY SQL/MP Programming Manual for C, SQL
Programming Manual for TAL

SQLCAFSCODE SQL/MP Programming Manual for COBOL85,
SQL/MP Programming Manual for C, SQL
Programming Manual for TAL

SQLCAGETINFOLIST SQL/MP Programming Manual for C, SQL
Programming Manual for TAL

SQLCATOBUFFER SQL/MP Programming Manual for C, SQL
Programming Manual for TAL

SQLGETCATALOGVERSION SQL/MP Programming Manual for COBOL85,
SQL/MP Programming Manual for C, SQL
Programming Manual for TAL

SQLGETOBJECTVERSION SQL/MP Programming Manual for COBOL85,
SQL/MP Programming Manual for C, SQL
Programming Manual for TAL

SQLGETSYSTEMVERSION SQL/MP Programming Manual for COBOL85,
SQL/MP Programming Manual for C, SQL
Programming Manual for TAL

SQLSADISPLAY SQL/MP Programming Manual for COBOL85,
SQL/MP Programming Manual for C, SQL
Programming Manual for TAL

SSGET SPI Programming Manual

SSGETTKN SPI Programming Manual

SSIDTOTEXT SPI Programming Manual

SSINIT SPI Programming Manual

SSMOVE SPI Programming Manual

SSMOVETKN SPI Programming Manual

SSNULL SPI Programming Manual

SSPUT SPI Programming Manual

SSPUTTKN SPI Programming Manual

STATUSTRANSACTION TMF Application Programmer’s Guide

STEPMOM Guardian Procedure Calls Reference Manual

STOP Guardian Procedure Calls Reference Manual

STRING_UPSHIFT_ Guardian Procedure Calls Reference Manual

SUSPENDPROCESS Guardian Procedure Calls Reference Manual

Documented Guardian Procedures

Guardian Procedure Calls Reference Manual—522629-030
H-17

SYSTEMENTRYPOINT_RISC_ Guardian Procedure Calls Reference Manual

SYSTEMENTRYPOINTLABEL Guardian Procedure Calls Reference Manual

TAKE^BREAK Guardian Procedure Calls Reference Manual

TEXTTOSSID Guardian Procedure Calls Reference Manual

TEXTTOTRANSID TMF Application Programmer’s Guide

TMF_SETTXHANDLE_ TMF Application Programmer’s Guide

TMF_SUSPEND_ TMF Application Programmer’s Guide

TMF_TXBEGIN_ TMF Application Programmer’s Guide

TMF_BEGINTAG_FROM_TXHANDLE_TMF Application Programmer’s Guide

TMF_GETTXHANDLE_ TMF Application Programmer’s Guide

TMF_GET_TX_ID_ TMF Application Programmer’s Guide

TMF_RESUME_ TMF Application Programmer’s Guide

TMF_TXHANDLE_FROM_BEGINTAG_TMF Application Programmer’s Guide

TIMESTAMP TMF Application Programmer’s Guide

TOSVERSION Guardian Procedure Calls Reference Manual

TIME Guardian Procedure Calls Reference Manual

TIMER_START_ Guardian Procedure Calls Reference Manual

TIMER_STOP_ Guardian Procedure Calls Reference Manual

TRANSIDTOTEXT TMF Application Programmer’s Guide

TS_NANOSECS_ Guardian Procedure Calls Reference Manual

TS_UNIQUE_COMPARE_ Guardian Procedure Calls Reference Manual

TS_UNIQUE_CONVERT_TO_JULIAN_Guardian Procedure Calls Reference Manual

TS_UNIQUE_CREATE_ Guardian Procedure Calls Reference Manual

UNLOCKFILE Guardian Procedure Calls Reference Manual

UNLOCKREC Guardian Procedure Calls Reference Manual

UNPACKEDIT Guardian Procedure Calls Reference Manual

USER_AUTHENTICATE_ Guardian Procedure Calls Reference Manual

USER_GETINFO_ Guardian Procedure Calls Reference Manual

USER_GETNEXT_ Guardian Procedure Calls Reference Manual

USERDEFAULTS Guardian Procedure Calls Reference Manual

Documented Guardian Procedures

Guardian Procedure Calls Reference Manual—522629-030
H-18

USERIDTOUSERNAME Guardian Procedure Calls Reference Manual

USERNAMETOUSERID Guardian Procedure Calls Reference Manual

USESEGMENT Guardian Procedure Calls Reference Manual

VERIFYUSER Guardian Procedure Calls Reference Manual

VRO_SET_ Guardian Procedure Calls Reference Manual

WAIT^FILE Guardian Procedure Calls Reference Manual

WRITE Guardian Procedure Calls Reference Manual

WRITE^FILE Guardian Procedure Calls Reference Manual

WRITEEDIT Guardian Procedure Calls Reference Manual

WRITEEDITP Guardian Procedure Calls Reference Manual

WRITEREAD Guardian Procedure Calls Reference Manual

WRITEREADX Guardian Procedure Calls Reference Manual

WRITEUPDATE Guardian Procedure Calls Reference Manual

WRITEUPDATEUNLOCK Guardian Procedure Calls Reference Manual

WRITEUPDATEUNLOCKX Guardian Procedure Calls Reference Manual

WRITEUPDATEX Guardian Procedure Calls Reference Manual

WRITEX Guardian Procedure Calls Reference Manual

XBNDSTEST Guardian Procedure Calls Reference Manual

XSTACKTEST Guardian Procedure Calls Reference Manual

Guardian Procedure Calls Reference Manual—522629-030
I-1

I
Using the DIVER and DELAY
Programs

This appendix describes the DIVER and DELAY programs which you can use to
supplement the testing of an application program that runs as a process pair. DIVER
causes a specified processor to fail and then prepares the processor for reload.
DIVER can be used with DELAY to cause repeated failures and reloads of the
processors in a system. This failure cycle allows you to test an application for fault
tolerance while the processors are being halted and reloaded.

Running the DIVER Program
You run the DIVER program in a processor selected to fail. DIVER stops the processor
such that it no longer transmits its “I’m alive” message. Because the other processors
in the system do not receive this message, they collectively declare that the processor
has failed. The difference between a processor halt and a processor running the
DIVER program is that a processor halt results in the report of a processor halt code
and a potential system freeze; a processor running the DIVER program results in the
report of the processor event message ZCPU-EVT-DIVER. For more information on
this event message, see the NonStop Kernel Event Management Programming
Manual.

• Note these cautions when running the DIVER program

• When running the DIVER program, it is recommended that the processor run-
option always be included. Otherwise, the processor in which DIVER is
intended to run is chosen by the normal process creation rules, which might
not place it in the processor that you intend to fail.

• If there is a $CMON process running in the system, it might affect the choice of
processor where DIVER will run. Unless you are sure that the $CMON
process will not alter the processor specified in the DIVER command, stop
$CMON before running DIVER.

• Do not use DIVER to try to halt a processor in order to get a dump. When
setting up the processor for a RELOAD command, DIVER destroys its memory
contents. Consult the operations guide for your system type for details on
taking dumps.

• Do not run the DIVER program if the backup CPU for its I/O processes has
been reloaded within the last five minutes. Otherwise, a CPU halt may occur.

Using the DIVER and DELAY Programs

Guardian Procedure Calls Reference Manual—522629-030
I-2

Running the DELAY Program

After stopping the processor, DIVER sets up the processor for a RELOAD command,
as if a processor reset and load operation occurred. You can then reload the
processor.

Before DIVER brings down a processor, it verifies that the requester’s process access
ID (PAID) is a member of the super group.

If the requester’s PAID is not a member of the super group, DIVER abends and the
processor continues to be operational.

The syntax to run DIVER is:

DIVER

is an implicit RUN command that starts a DIVER process.

run-option

is any valid option for the TACL RUN command. These options are described in
the TACL Reference Manual.

Running the DELAY Program
You use the DELAY program to delay the execution of the calling process for a
specified amount of time. DELAY calls the DELAY procedure for the length of time
specified. After the delay finishes, the process resumes execution.

The syntax to run DELAY is:

DELAY

is an implicit RUN command that starts a DELAY process.

run-option

is any valid option for the TACL RUN command. These options are described in
the TACL Reference Manual.

time

is an integer specifying the delay time in the specified units.

{ TIC | SEC | MIN }

specifies the units of measurement for time:

TIC hundredths of a second

DIVER / run-option [, run-option] ... /

DELAY / run-option [, run-option].../time { TIC | SEC | MIN
}

Using the DIVER and DELAY Programs

Guardian Procedure Calls Reference Manual—522629-030
I-3

Example Using DIVER and DELAY

SEC seconds
MIN minutes

Example Using DIVER and DELAY
This example uses the DIVER and DELAY programs to cause both processors (0 and
1) of a two-processor system to fail and reload repeatedly, approximately once every
seven minutes. You can increase this cycle time if your application requires more time
to recover.

1. Start the TACL command interpreter running as a process pair in processors 0
and 1. In this example, processor 0 must be the primary processor, and
processor 1 must be the backup processor for the TACL process.

2. Log on as a member of the super group.

3. Create two EDIT files (file code 101) named DIVE0 and DIVE1 that contain this
TACL commands.

The DIVE0 file contains:

The DIVE1 file contains:

4. Start your application running as a process pair in processors 0 and 1.

5. Start the processor failure cycle by entering this command at the TACL prompt.
This command starts a TACL process using DIVE0 as the IN file.

6. To stop the processor failure cycle, enter:

Note. If your test system has more than two processors, then examine the system
configuration and select processors to fail that will cause the least disruption to the system.

DIVER / CPU 1 /
DELAY 120 SEC
RELOAD 1
DELAY 5 MIN
TACL / CPU 1, NAME $DIVE1, IN DIVE1 /

DIVER / CPU 0 /
DELAY 120 SEC
RELOAD 0
DELAY 5 MIN
TACL / CPU 0, NAME $DIVE0, IN DIVE0 /

> TACL /CPU 0, NAME $DIVE0, IN DIVE0, OUT $0 /

> STOP $DIVE0
> STOP $DIVE1

Using the DIVER and DELAY Programs

Guardian Procedure Calls Reference Manual—522629-030
I-4

Example Using DIVER and DELAY

Guardian Procedure Calls Reference Manual—522629-030
J-1

J System Limits
This appendix presents a series of tables that summarize the architectural and
programmatic limits that apply on NonStop servers. For SQL/MP limits, see the
“Limits” entry in the SQL/MP Reference Manual. For TMF limits, see the TMF
Configuration and Planning Guide. For the locations of other published limits, see
Table J-7 on page J-10.

Table J-1. System-Level Limits (page 1 of 2)

Limit Description
Maximum

Value Comment

Processors per node 16

Nodes per Expand network 255

Direct neighbors per node 63

Nodes per Fox ring 14 G-series only

OSIMAGE size 128 MB OSIMAGE must be on the system-load
volume. The H-series OSIMAGE is
much smaller, because the libraries
and programs that were formerly in
OSIMAGE are now in separate object
files.

Number of parameters to a
procedure

32 TAL limit. The maximum is 32 for a
callable function and 31 if procedure is
callable and variable or extensible.
Parameters must also fit in 64 mask
bits. For C/C++ functions that are not
variable or extensible, there is
effectively no limit.

Number of characters in
procedure name in TAL or
pTAL

31 There is no specific limit for identifiers
in C/C++, but function names longer
than 32 characters cannot be exported
from the system library.

Number of entries in
destination control table
(DCT)

65,376 Devices share DCT with named
processes.

Logical device numbers
(LDEVs)

65,376

Device types 64K

Device/process subtypes 64

Number of subdevices per
device

Varies by
subsystem

See appropriate subsystem manual.

System Limits

Guardian Procedure Calls Reference Manual—522629-030
J-2

Number of tape drives per
node in a labeled tape
environment

20

System-generated names
(default, 4-character form)

30,720 Names in the form $Xnaa, $Ynaa,
$Znaa, where a is alphanumeric and n
is numeric

System-generated names
(5-character form)

30,000 Names in the form $Xnnnn, $Ynnnn,
$Znnnn

Explicitly reserved process
names

-- $X..., $Y..., $Z..., $0, $AOPR, $CMON,
$CMP, $DMnn (n is numeric), $IMON,
$IPB, $KEYS, $MLOK, $NCP, $NULL,
$OSP, $PM, $S, $SPLP, $SPLS,
$SSCP, $SYSTEM, $T, $TMP, $TRPM,
$TRMS, $TSCH

Table J-2. Per-Process Limits (page 1 of 2)

Limit Description
Maximum
Value Comment

Segment IDs
(SEGIDs)

Depends on
whether the
segment is
privileged,
nonprivileged,
assigned or
unassigned.

0 - 1023; reserved for customers;
nonprivileged

1024 - 2047; assigned by HP;
nonprivileged

2048 - 4095; assigned by HP; privileged
(in two ranges)

4096 -65425; unassigned; privileged

65426 -65535; reserved internally, used for
special classes of segments

Selectable segment
size

127.5 MB Before G05, the number of selectable
segments per process is bounded by
available aliased virtual memory. Starting
with G05, selectable segments default to
unaliased.

Size of flat segment
area

480 MB Up to 15 segments aligned on 32 MB
(region) boundaries; maximum of 128 MB
per segment (G04.00 and earlier G-series)

* All G-series RVUs and H06.05 and earlier H-series RVUs
** H06.06 and later H-series RVUs; all J-series RVUs
***H06.17 and later H-series RVUs; J06.06 and later J-series RVUs

Table J-1. System-Level Limits (page 2 of 2)

Limit Description
Maximum

Value Comment

System Limits

Guardian Procedure Calls Reference Manual—522629-030
J-3

1120 MB G05.00 and all subsequent G-series RVUs

1.5 GB H06.01 and all subsequent H-series RVUs

Open user
semaphores

64

8192***

Concurrent
outstanding messages

 4095 *

 16383 **

The default limits are 255 incoming
messages and 1,023 outgoing messages.
These limits can be modified separately
through the
CONTROLMESSAGESYSTEM procedure.

Time Slice 2 seconds for
G-series

RVUs

The time slice is the amount of time a
process can run at a given priority before it
is declared CPU-bound and has its priority
decremented.

400
milliseconds
for H-series

RVUs

This value is for NSE-A processors. This
value could decrease on faster
processors.

Table J-3. Per-Processor Limits (page 1 of 3)

Limit Description
Maximum

Value Comment

Processes 64K Architectural limit; current practical limit
is much lower.

Processes 4000 for
TNS/R

when they
are TNS

processes,
and 8000
for TNS/E

total

Implementation limit. Limit is reached
when processor runs out of a resource
such as CPU cycles, types of memory
(operating system aliased, memory,
other virtual memory, or physical
memory) or other limits documented in
this Appendix.

Time-list elements (TLEs) 3,600 for
TNS/R and
20000 for

TNS/E

Limited by system data space
availability; defaults to 1.5 times number
of configured PCBs. The last 100 TLEs
are available only to system processes.

Table J-2. Per-Process Limits (page 2 of 2)

Limit Description
Maximum
Value Comment

* All G-series RVUs and H06.05 and earlier H-series RVUs
** H06.06 and later H-series RVUs; all J-series RVUs
***H06.17 and later H-series RVUs; J06.06 and later J-series RVUs

System Limits

Guardian Procedure Calls Reference Manual—522629-030
J-4

Timer tick value 10 millisecs
for TNS/R

and 1
microsecs
for TNS/E

For example, see parameter to
PROCESS_DELAY_ procedure.

Timestamp resolution 1 microsec

Physical memory Varies with
server
model

Aliased virtual memory < 1 GB 8,189 unit segments, where 1 unit
segment = 128 KB (G04.00 and earlier
G-series RVUs)

7,933 unit segments, where 1 unit
segment = 128 KB (G05.00 and later G-
series RVUs)

SYSPOOL size 32 KB

EXTPOOL size 512 KB

FLEXPOOL size 998 MB Varies based on demand; limited by
physical and aliased virtual memory.

Open user semaphores Number of
processes

65536*****

Counters displayed by
PEEK

32 or 64 bits

Number of concurrent
process creations and
deletions

96 Number of Phoenix processes

Number of concurrent
swap file opens

32K

Absolute maximum
number of message quick
cell (MQCs)

<256K Controls the absolute maximum number
of concurrent outstanding messages
to/from the processor

Table J-3. Per-Processor Limits (page 2 of 3)

System Limits

Guardian Procedure Calls Reference Manual—522629-030
J-5

Maximum memory allowed
for MQCs

6.1 MB*

128 MB**

1GB ******

The maximum number of MQCs allowed
per MQCs processor is the lesser of the
following: (a) the absolute maximum,
and (b) the maximum number of MQCs
that can be instantiated given the
maximum memory allowed for MQCs.
Note that (b) depends on the MQC sizes
instantiated in the processor. To view the
MQC usage statistics in the processor,
use the PEEK /CPU N/ MQCINFO
command

Maximum MQC size 2,048
bytes***

8,128
bytes****

Higher messaging performance is
achieved when a message request
and/or reply is cached in an MQC.
Larger MQC sizes support a wider range
of message sizes that can benefit from
the MQC caching optimization.

* G06.24 and earlier G-series RVUs
** G06.25 and later G-series RVUs; all H-series and J-series RVUs.
*** All G-series RVUs; H06.06 and earlier RVUs
**** H06.07 and later H-series RVUs; all J-series RVUs

*****H06.17 and later H-series RVUs and J06.06 and later J-series RVUs

******H06.20 and later H-Series RVUs and J06.09 and later J-series RVUs

Table J-4. TNS vs. Native limits (page 1 of 2)

Limit Description
Maximum

Value Comment

TNS procedures per code
segment

510 PEP size; code segment = 128 KB

Unique external procedures
called from TNS program, per
code segment

512 XEP size

TNS procedure size 64 KB Practical limit

TNS user code and user library 32
segments

TNS total stack and globals 64 KB

TNS total user data space 128 KB Does not include extended
segments data space.

Accelerated user code, user
library, or system code

28 MB
each

Table J-3. Per-Processor Limits (page 3 of 3)

System Limits

Guardian Procedure Calls Reference Manual—522629-030
J-6

Native user code 32 MB on
TNS and
TNS/R

systems,
256 MB on

TNS/E
systems

Native user library 32 MB on
TNS and
TNS/R

systems,
256 MB on

TNS/E
systems

Native process SRLs 128 G-series RVUs

Native process DLLs 1000 on
TNS/R

systems,
700 on
TNS/E

systems

H-series RVUs. The native process
DLLs do not have to be contiguous;
DLLs and flat segments can be inter-
spersed in the flat-segment area.

Native stack 32 MB Default = 1 MB, H-series Default =
2MB

Native heap and globals 128 MB Before G05

1.1 GB G05 RVU

1.5 GB H-series RVUs

Native priv stack 128 KB This value represents the default
size. By calling the
HEADROOM_ENSURE_ procedure
you can increase the size in H-
series systems up to 880KB.

Native globals + heap +
flat segments + stack

640 MB Before G05

1.1 GB G05 RVUs

1.5 GB H-series RVUs

Table J-4. TNS vs. Native limits (page 2 of 2)

System Limits

Guardian Procedure Calls Reference Manual—522629-030
J-7

Table J-5. Enscribe File System Limits (page 1 of 2)
Limit Description Maximum Value Comment

File codes 64K Reserved range is limited
to 0 through 999.

File error numbers 64K Errors above 255 are
problematic through
some old interfaces.

Setmodes 64K

Controls 64K

Setparams 64K

System message numbers 32K Restricted to negative
values.

Concurrent opens H-series and J-series 16360

G-series 32720

Nowait depth Varies by device type See appropriate
subsystem manual.

Sync depth for nonretryable
writes to disk between
checkpoints

15

PFS Size 32 MB H-series RVUs

8 MB G-series RVUs

Receive depth 16300****** Size of $RECEIVE file
queue

Transactions per TFILE 1000 1 TFILE per process

Partitions per file 16

Structured disk file transfer sizes
(default mode):

Opened with structured
access

1 record

Opened with unstructured
access

4 KB

Unstructured file transfer sizes
(default mode):

Audited file write transfer
limitation

4 KB

Remote across Expand ~32 KB or 56 KB Depending upon Expand

******H06.18 and later H-series RVUs and J06.07 and later J-series RVUs

System Limits

Guardian Procedure Calls Reference Manual—522629-030
J-8

Local access/remote across
SuperCluster

56 KB With a 4 KB unstructured
buffer size

Disk file transfer sizes using
SETMODE 141

See SETMODE 141 (in
SETMODE Functions on
page 14-63) for
restrictions

Remote across Expand ~32 KB or 56 KB Depending upon Expand

Local access/remote across
SuperCluster

56 KB

Interprocess ($RECEIVE)
transfer sizes:

Remote across Expand ~32 KB or 56 KB Depending upon Expand

Local access/remote across
SuperCluster

56 KB

Tape and other device transfer
sizes:

Device-dependent

Remote across Expand ~32 KB or 56 KB Depending upon Expand

Local access/remote across
SuperCluster

56 KB

Limit Description Format 1 Files
Maximum Value

Format 2 Files
Maximum Value

Disk file partition size 2 GB minus 1 MB 1 TB

Single-partitioned disk file size 2 GB minus 1 MB 1 TB

Multipartitioned disk file sizes
(key-sequenced)

16 * (2 GB minus 1
MB)

16 TB

Multipartitioned disk file sizes
(not key-sequenced)

4 GB minus 4 KB 1 TB

Structured disk file record sizes:

Entry-sequenced 4 KB - 24 4 KB - 48

Key-sequenced 4 KB - 34 4 KB - 56

Relative 4 KB - 24 4 KB - 48

Number of records per
structured block

511 2 billion

Table J-5. Enscribe File System Limits (page 2 of 2)

******H06.18 and later H-series RVUs and J06.07 and later J-series RVUs

System Limits

Guardian Procedure Calls Reference Manual—522629-030
J-9

Table J-6. DP2 Limits

Limit Description
Maximum

Value Comment

Volumes per physical disk 1 Can be mirrored.

Structured disk block size 4 KB

Unstructured disk file buffer
size

4 KB

Number of extents per file <= 978 Depends on number of partitions and
alternate keys specified.

Disk volume size 600 GB

Cache per volume 1 GB Cache is limited to the available
physical and virtual memory space in
the processor. Configuring a cache
to be too large can cause memory
pressure in the processor, which
results in increased processor
overhead in DP2 processes and can
result in longer execution times for
other applications. In extreme cases
of memory pressure, an %11500
processor halt can occur.

Bulk I/O transfer 56 KB bytes

Number of locks 5,000 per file
open and per
transaction

Lock limits can be raised by using
the SYSGEN modifiers
MAXLOCKSPEROCB and
MAXLOCKSPERTCB. Maximum
value for these limits is 100,000.
See the System Generation Manual
for Disk and Tape Devices.
Configuring large values for these
limits increases DP2 memory
requirements and can affect DP2
response time.

Concurrent disk file opens 65, 279*

Files per volume 32,763
* H06.15 and later H-series RVUs and J06.04 and later J-series RVUs.

System Limits

Guardian Procedure Calls Reference Manual—522629-030
J-10

Table J-7. Other Published Limits

Manual Title Location in Manual

 COBOL Manual for TNS and TNS/R
Programs

 Section 20, “HP COBOL85 Limits”

COBOL Manual for TNS/E Programs Section 20, “HP COBOL85 Limits”

NonStop TUXEDO System Administration
Guide

Section 11, “NonStop TUXEDO
Configuration Limits and Defaults”

FastSort Manual Appendix E, “FastSort Limits”

Flow Map Manual Appendix F, “FMH Internal Table Limits”

FORTRAN Reference Manual Appendix E, “Compiler Limits”

SQL/MP Reference Manual “Limits” entry

TMF Configuration and Planning Guide Throughout manual

TS/MP Pathsend and Server Programming
Manual

Appendix A, “NonStop TS/MP Limits for
Pathsend Requesters”

TMF System Management Manual Appendix C, “Configuration Limits and
Defaults”

Virtual Hometerm Subsystem (VHS) Manual Appendix B, “VHS Limits”

Pathway/iTS System Management Manual Appendix C, “Configuration Limits and
Defaults”

Pathway/Pathway/XM System Management
Manual

Appendix C, “Configuration Limits and
Defaults”

PS TEXT FORMAT Reference Manual Appendix C, “Limits and Defaults”

Spooler Utilities Reference Manual Appendix G, “Spooler Limits”

Surveyor Reference Manual Appendix D, “The 128-Column Limit”

Guardian Procedure Calls Reference Manual—522629-030
K-1

K Character Set Translation
Table K-1 contains an ASCII-EBCDIC translation. The sum of the hexadecimal
row/column headings is the EBCDIC value corresponding to the ASCII value in the
body of the table. Translation is symmetric; translating the contents of any array from
ASCII to EBCDIC and back, or vice versa, returns the original text.

There is no recognized standard for EBCDIC, and several variations exist. The
mapping of Table K-1 is consistent with that in other HP products.

Table K-1. Character Set Translation

00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

00 00 10 80 90 & - BA C3 CA D1 D8 { } \ 0

01 01 11 81 91 A0 A9 / BB a j ~ D9 A J 9F 1

02 02 12 82 16 A1 AA B2 BC b k s DA B K S 2

03 03 13 83 93 A2 AB B3 BD c l t DB C L T 3

04 9C 9D 84 94 A3 AC B4 BE d m u DC D M U 4

05 09 85 0A 95 A4 AD B5 BF e n v DD E N V 5

06 86 08 17 96 A5 AE B6 C0 f o w DE F O W 6

07 7F 87 1B 04 A6 AF B7 C1 g p x DF G P X 7

08 97 18 88 98 A7 B0 B8 C2 h q y E0 H Q Y 8

09 8D 19 89 99 A8 B1 B9 ` i r z E1 I R Z 9

0A 8E 92 8A 9A [] | : C4 CB D2 E2 E8 EE F4 FA

0B 0B 8F 8B 9B . $, # C5 CC D3 E3 E9 EF F5 FB

0C 0C 1C 8C 14 < * % @ C6 CD D4 E4 EA F0 F6 FC

0D 0D 1D 05 15 () _ ' C7 CE D5 E5 EB F1 F7 FD

0E 0E 1E 06 9E + ; > = C8 CF D6 E6 EC F2 F8 FE

0F 0F 1F 07 1A ! ^ ? " C9 D0 D7 E7 ED F3 F9 FF

Character Set Translation

Guardian Procedure Calls Reference Manual—522629-030
K-2

Guardian Procedure Calls Reference Manual—522629-030
Index-1

Index

A
A edit descriptor F-8
A specifier F-25
ABEND procedure

and NetBatch 2-7
compared with STOP 2-5
description of 2-2

Abnormal deletion of a process 2-2, 12-187
Aborting a process 2-2, 12-187
Access control block 5-104, 8-5
Access ID

description of 12-62
of the calling process 12-198
of the calling process's creator 3-151
security level 5-123, 11-23

Access mode checking, on open 5-123,
11-23
Access path, in key-sequenced, entry-
sequenced, and relative files 5-139, 7-50
ACTIVATEPROCESS procedure 2-8
ADDDSTTRANSITION procedure 2-10
Address equivalencing, concerning trap
handling 2-36
Addressing

an extended data segment 14-32,
15-57
tributary stations 4-18

ADDRESS_DELIMIT_ procedure 2-12
ADDRTOPROCNAME procedure 2-17
ALLOCATESEGMENT procedure 2-20
Allocating disk extents 3-114
Allocating extended data segments 2-20
Allocating extended segments 14-5
ALTER procedure

description of 2-27
function codes 2-29

Altering
file attributes 2-27, 5-3, 14-38
process attributes 12-146, 12-153

Alternate locking mode 8-10, 8-11, 8-20
Alternate-key parameters

array format 3-139
obtaining 5-75, 5-216
specifying in CREATE procedure 3-138
specifying in FILE_CREATELIST_
procedure 5-45

ALTERPRIORITY procedure 2-31
Ancestor process

notified of a deletion 12-190
obtaining process ID 9-60

Application data stack, overwriting 2-38
Application, acquiring its own process
ID 6-5
ARMTRAP

functions 2-34
procedure 2-33

ASCII characters
conversion to signed integer
values 10-51
converting from unsigned integer
value 10-53

ASCII edit descriptor F-8
ASCII string, the space ID within 3-154
Asynchronous timed interrupts,
generating 14-59
Attributes of DEFINEs E-2
Attribute, Inspect 4-7, 12-52
Audit compression off or on 5-34, 5-41
Audited files, releasing locks 15-20, 15-23
Avoiding deadlock 8-20
AWAITIO[X] procedure

summary of operations 2-49
AWAITIO[X|XL] procedure

description of 2-40
summary of actions 2-48

B
B edit descriptor F-9

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-2

C

BACKSPACEEDIT procedure 2-51
Backup process

creating 12-254
deleting or stopping 12-187, 14-160
identification 3-38
in monitoring state 3-27, 3-34, 3-61,
5-15, 5-130
recovering from primary failure 3-36
unable to communicate with 3-36

Base address equivalencing 2-36
Batch processing

and NEWPROCESS procedure 10-21
and PROCESS_CREATE_
procedure 12-47
and PROCESS_SPAWN_
procedure 12-185

Binary edit descriptor F-9
Binary semaphore procedures

BINSEM_CLOSE_ 2-52
BINSEM_CREATE_ 2-54
BINSEM_FORCELOCK_ 2-58
BINSEM_ISMINE_ 2-60
BINSEM_LOCK_ 2-60, 2-61
BINSEM_OPEN_ 2-64
BINSEM_UNLOCK_ 2-66
using 2-56

Binary semaphores
closing 2-52
creating 2-54
listing processes waiting for 12-82
locking 2-58, 2-60, 2-61
opening 2-64
unlocking 2-66

BINSEM_CLOSE_ procedure 2-52
BINSEM_CREATE_ procedure 2-54
BINSEM_FORCELOCK_ procedure 2-58
BINSEM_ISMINE_ procedure 2-60
BINSEM_LOCK_ procedure 2-61
BINSEM_OPEN_ procedure 2-64
BINSEM_UNLOCK_ procedure 2-66

Blank interpretation edit descriptors F-1,
F-6
Blanking fields F-21
Block buffered file access 5-116, 11-16
Block length

return for a specific file 5-69, 5-216
specify for a specific file 3-137, 5-35

Block mode terminal error counters 14-106
Block of memory, returning to a buffer
pool 12-21, 12-258
BN edit descriptor F-6
BN modifier F-21
Bounds checking of reference
parameters 1-9
Bounds violation trap 12-21, 12-258
BREAK

monitoring for a file 15-2
returning to owner 6-26

BREAK handling parameters, setting or
fetching 14-106

BREAK key 3-12
Break message, sending 2-67
BREAKMESSAGE_SEND_
procedure 2-67
Breakpoints, specifying 4-6, 12-51
Break-on-device message, sending 14-36
Buffer control edit descriptors F-2, F-6
Buffer length, internal buffer, used by
EDITREAD 4-91
Buffer pool, returning a block of memory
to 12-21, 12-258
Buffered writes, enabling for audited
files 5-42
Byte, first, of extended segment
address 14-32, 15-57
BZ edit descriptor F-6
BZ modifier F-21

C
CAID 3-151, 12-62
CAID compared with PAID 3-151, 12-62,
12-198

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-3

C

Calendars
common civil 3-78
dates, converting to 3-77
day numbers, converting to year,

month, day 7-43, 7-48
definition 3-77
Julian 3-77
timestamp

range checking 7-46
returned 7-47
using to change system
clock 14-115

CANCEL procedure 3-3
Canceling

a process-time timer 3-5
an elapsed-time timer 3-8
nowait operations

a specific operation 3-6
the oldest incomplete operation 3-3

CANCELPROCESSTIMEOUT
procedure 3-5
CANCELREQ procedure 3-6
CANCELTIMEOUT procedure 3-8
CEXTDECS

support in H-Series systems 1-11
CHANGELIST procedure 3-9
Changing

disk file names 5-134, 13-51
priority 12-30, 12-34, 12-146
the home terminal 14-105

Character edit descriptor F-8
Character-substitution modifier F-22
CHECKALLOCATESEGMENT
procedure 3-22
CHECKCLOSE procedure 3-27
CHECKDEALLOCATESEGMENT
procedure 3-28
CHECKDEFINE procedure 3-31
CHECKMONITOR procedure 3-32
CHECKOPEN procedure 3-34
CHECKPOINT procedure 3-36

Checkpointing
a process’s data stack 3-38, 3-43
file synchronization information 3-38
maximum size of stack area 3-38
more than 13 pieces of
information 3-40
takeover by backup 3-39, 3-44, 3-49
to the backup process 3-36
using CHECKPOINTMANY or
CHECKPOINT 3-40

Checkpointing procedures
CHECKALLOCATESEGMENT 3-22
CHECKCLOSE 3-27
CHECKDEALLOCATESEGMENT 3-28
CHECKMONITOR 3-32
CHECKOPEN 3-34
CHECKPOINT 3-36
CHECKPOINTMANY 3-40
CHECKSETMODE 3-59
CHECKSWITCH 3-61
FILE_CLOSE_CHKPT_ 5-15
FILE_OPEN_CHKPT_ 5-130
GETSYNCINFO 6-20
MONITORCPUS 9-53
PROCESSORSTATUS 12-246
RESETSYNC 13-60
SEGMENT_ALLOCATE_CHKPT_ 14-
17
SEGMENT_DEALLOCATE_CHKPT_ 1
4-24
SETSYNCINFO 14-113

CHECKPOINTMANY procedure 3-40
CHECKPOINTX procedure 3-44, 3-51
CHECKRESIZESEGMENT procedure 3-58
CHECKSETMODE procedure 3-59
CHECKSWITCH procedure 3-61
CHECK^BREAK procedure 3-12
CHECK^FILE procedure

description of 3-13
operations table 3-21

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-4

C

CHILD_LOST_ procedure 3-62
CLASS attribute of DEFINE E-3
CLASS CATALOG DEFINEs E-3
CLASS DEFAULTS DEFINEs E-3
CLASS MAP DEFINEs E-3
CLASS SEARCH DEFINEs E-4
CLASS SORT DEFINEs E-4
CLASS SPOOL DEFINEs E-5
CLASS SUBSORT DEFINEs E-4
CLASS TAPE DEFINEs E-5
CLASS TAPECATALOG DEFINEs E-5
Classes of DEFINEs E-1
Clearing poll state bit 3-10
Clock, changing system 14-115
CLOSE procedure 3-65
CLOSEALLEDIT procedure 3-70
CLOSEEDIT procedure 3-71
CLOSEEDIT_ procedure 3-72
CLOSE^FILE procedure 3-67
Closing

a nowait file 3-67, 5-14
an open file 3-65, 3-67, 5-13
files in a backup process 3-27, 5-15
files using SIO procedure 3-67
IOEdit files 3-70, 3-71, 3-72

Colon edit descriptor F-6
Commas in parameters 1-6
Comparing

file names 5-171, 5-228
process handles 12-201
two Unique Timestamps 15-14

COMPLETEIOEDIT procedure 3-73
Completing I/O operations

description of 2-40
nowait calls 2-45
on Guardian and OSS files 5-17
on IOEdit files 3-73

Completion code
defined C-1
used with ABEND 2-4
used with PROCESS_STOP_ 12-189

used with STOP 14-162
COMPRESSEDIT procedure 3-75
Compressing an EDIT file 3-75
COMPUTEJULIANDAYNO procedure 3-77
COMPUTETIMESTAMP procedure 3-78
Concurrent opens, limit on number
of 5-119
Condition specifier F-24
CONFIG_GETINFO_BYLDEV2_
procedure 3-96
CONFIG_GETINFO_BYLDEV_
procedure 3-81
CONFIG_GETINFO_BYNAME2_
procedure 3-96
CONFIG_GETINFO_BYNAME_
procedure 3-81
CONTIME procedure 3-105
Continuous polling, stopping 7-2
Control blocks

EDIT 4-91
EDITREAD 4-93

Control information for files 4-71, 13-46
CONTROL procedure

description of 3-108
operations 3-109

Control transfer, during trap handling 2-33
CONTROLBUF procedure

description of 3-117
operations 3-119

CONTROLMESSAGESYSTEM
procedure 3-120
CONVERTASCIIEBCDIC Procedure 3-123
Converting

64-bit Julian timestamp into, Gregorian
date and time 7-45
CRTPID to process handle 3-152
data between external and internal
formats 5-239
file names

expand to normal format 5-223
external to internal form 5-231
to C-format file names 5-203

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-5

C

to external format 5-221
to process handles 5-209

format from external to internal
form 5-236
GMT to or from local time 3-127
Gregorian to 64-bit Julian 3-78
Guardian file names, to OSS
pathnames 5-205
node name to node number 10-37
node number to node name 10-38
OSS pathnames, to Guardian file
names 12-5
process handle

to file name 12-209
to process file name 12-209
to process ID 12-207
to process string 12-211

process ID to process handle 3-152
process name, from local to network
form 3-124, 5-194
quad microsecond process time 3-125
system messages to D-format 11-10
system name to system number 10-37
system number to system name 10-38
Unique Timestamp into a Julian
Timestamp 15-16

CONVERTPROCESSNAME
procedure 3-124
CONVERTPROCESSTIME
procedure 3-125
CONVERTTIMESTAMP procedure 3-127
CPU

configuration information,
obtaining 12-223
monitoring 9-53
statistics, obtaining 12-223

CPU and PIN
in GETCRTPID procedure 6-4
in GETREMOTECRTPID
procedure 6-18
in MYPID procedure 9-61

in PROCESSINFO procedure 12-215
CPU interval clock, obtaining internal,
form 15-10
CPU time spent

in busy, interrupt, or idle 3-132, 12-230
since system load 3-132, 12-230

CPUTIMES procedure 3-132
CREATE procedure

description of 3-135
failures 3-143

CREATEPROCESSNAME
procedure 3-146
CREATEREMOTENAME procedure 3-148
Creating

128-bit timestamp 15-17
files

structured 3-135, 5-31, 5-38
unstructured 3-135, 5-31, 5-38

new process nowait 10-23
process names 12-220

Creation timestamp 6-4
Creator access ID (CAID)

description of 12-62
of a new process 10-20, 12-45, 12-184
returned value 3-151

Creator process, notified of a deletion 2-5,
12-190, 14-163
CREATORACCESSID procedure 3-150
CRTPID

converting to process handle 3-152
of a remote process, obtaining 6-18
of local process, obtaining 6-4

CRTPID_TO_PROCESSHANDLE_
procedure 3-152
CUG number 14-106
Current key

length 5-67, 5-215
specifier 5-67, 5-214
value 5-67, 5-214

Current position
in structured files 5-139, 7-50

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-6

D

saving 7-54
Current primary key value 5-67, 5-215
Current priority, values and
changing 12-30, 12-34, 12-146
Current process control block, information
from 6-2
Current record pointer 5-67, 5-159
Current state indicators, after open 5-127,
11-26
CURRENTSPACE procedure 3-154
C-series file name syntax D-8

D
D edit descriptor F-10
Data communication procedures

CHANGELIST 3-9
DEFINELIST 4-18
HALTPOLL 7-2
SETPARAM 14-106

Data conversion 5-236, 5-239
Data segment

allocating extended 2-20, 14-5
deallocating extended 4-4, 14-21
information on extended 14-26, 14-29

Date
converting from Julian day number to
year, day, month 7-43
converting Gregorian to Julian 3-77
obtaining in integer form 15-6

Date and time array, form of 7-45
Daylight saving time (DST)

adding an entry to the DST table 2-10,
3-127
definition 3-127
potential problems 3-130

Daylight saving time (DST) procedures
DST_GETINFO_ 4-80
DST_TRANSITION_ADD_ 4-82
DST_TRANSITION_DELETE_ 4-86
DST_TRANSITION_MODIFY_ 4-87

DAYOFWEEK procedure 4-2

DCT (Destination control table)
See GETPPDENTRY procedure

Deadlock condition
avoiding 8-21
of multiple opens 5-118, 11-19
using
SIGNALPROCESSTIMEOUT 14-140
with locked files 8-12
with locked records 8-20

DEALLOCATESEGMENT procedure 4-4
Deallocating disk extents 3-114
Deallocating extended data segments 4-5,
14-23, 14-26
Debug facility invoked using the
DEBUGPROCESS procedure 4-8
DEBUG procedure 4-6
Debug state, for a process 4-6, 12-51
Debugging attributes, setting for a new
process 10-27
Debugging, symbolic debugger
(Inspect) 4-7, 12-52
DEBUGPROCESS procedure 4-8
Decomposing file names 5-174
Decomposing process handles 12-202
Decorations

A specifier F-25
condition specifier F-24
description of F-1, F-2, F-24
F specifier F-25
location specifier F-25
P specifier F-25
processing F-25
specifiers F-24

Default locking mode 8-10, 8-11, 8-20
DEFINE considerations

in FILE_OPEN_ procedure 5-129
in NEWPROCESS procedure 10-21
in NEWPROCESSNOWAIT
procedure 10-29
in OPEN procedure 11-28

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-7

D

in PROCESS_CREATE_
procedure 12-46
in PROCESS_SPAWN_
procedure 12-184

DEFINE names E-1
DEFINE procedures

CHECKDEFINE 3-31
DEFINEADD 4-11
DEFINEDELETE 4-13
DEFINEDELETEALL 4-15
DEFINEINFO 4-16
DEFINEMODE 4-21
DEFINENEXTNAME 4-23
DEFINEREADATTR 4-28
DEFINERESTORE 4-32
DEFINERESTOREWORK[2] 4-35
DEFINESAVE 4-36
DEFINESAVEWORK[2] 4-38
DEFINESETATTR 4-40
DEFINESETLIKE 4-42
DEFINEVALIDATEWORK 4-44

DEFINEADD procedure 4-11
DEFINEDELETE procedure 4-13
DEFINEDELETEALL procedure 4-15
DEFINEINFO procedure 4-16
DEFINELIST procedure 4-18
DEFINEMODE procedure 4-21
DEFINENEXTNAME procedure 4-23
DEFINEPOOL procedure 4-25
DEFINEREADATTR procedure 4-28
DEFINERESTORE procedure 4-32
DEFINERESTOREWORK[2]
procedures 4-35
DEFINEs

attributes E-2
CLASS attribute E-3
CLASS CATALOG E-3
CLASS DEFAULTS E-3
CLASS MAP E-3
CLASS SEARCH E-4

CLASS SORT E-4
CLASS SPOOL E-5
CLASS SUBSORT E-4
CLASS TAPE E-5
CLASS TAPECATALOG E-5
classes E-1
introduction E-1
names E-1

DEFINESAVE procedure 4-36
DEFINESAVEWORK[2] procedures 4-38
DEFINESETATTR procedure 4-40
DEFINESETLIKE procedure 4-42
DEFINEVALIDATEWORK procedure 4-44
Defining files

structured 3-135, 5-31, 5-38
unstructured 3-135, 5-31, 5-38

Definition of length-word, compare-length,
and key-length 7-52
DELAY procedure 4-45
DELAY program I-1, I-2
DELETEEDIT procedure 4-47
Deletion

of a process, abnormal 2-2, 12-187
of a process, normal 12-187, 14-160
of disk files 5-132, 12-255

Denormalization, IEEE floating-point 5-246
Descriptors, edit F-1
Destination control table

activated 2-8, 12-32
description of 8-25
suspended 12-195

Destination control table (DCT)
See GETPPDENTRY procedure

Determining time since last coldload 15-13
Device

logical attributes, obtaining 4-49, 4-60
name 3-83, 3-99, 4-61, 4-65
physical attributes, obtaining 3-81,
3-96, 4-49, 4-60
type of a file, obtaining 5-56, 5-59,
5-157

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-8

D

with DEVICEINFO[2]
procedure 4-65, 4-67

Device names D-3
Device name, obtaining device
information 3-81, 3-96, 4-60
DEVICEINFO procedure 4-65
DEVICEINFO2 procedure 4-67
Device-dependent functions, setting 14-60,
14-102
Device-dependent I/O operations

interprocess communication 3-117
nowait operations 3-116
on locked files 3-116
on magnetic tapes 3-116
requiring a data buffer, using the
CONTROLBUF procedure 3-117
using the CONTROL procedure 3-108

DEVICE_GETINFOBYLDEV_
procedure 4-49
DEVICE_GETINFOBYNAME_
procedure 4-60
Diagnostic bytes for X25AM 14-106
Dirty pages in memory, copied to swap
file 4-4, 14-23, 14-25
Disabling receipt of new, system
messages 9-56
Disk extents, allocating and
deallocating 3-114
Disk file names

C-series syntax D-8
D-series syntax D-2
expanded form of 5-233

Disk files
See also File characteristics
altering and unlocking a record 16-31
altering the contents of a record
in 16-24
and SETMODEs 14-60
attributes, altering 2-27, 5-3, 14-38
block sizes 3-138, 5-35
changing the name of 5-134, 13-51
closing 3-66, 5-14

crash-open flag on or off 5-162
creating 3-135, 5-31, 5-38
current record pointer setting 5-67,
5-159
deleting a record at the current
position 16-24, 16-31
disk process version 4-68
inserting a new record into 16-8
internal name form, temporary and
permanent 5-227
last time modified 5-79, 5-158
limit on number of opens 5-119, 11-20
locking structured and unstructured
records 8-21
maximum current nowait
operations 5-126, 11-26
maximum number of extents that can
be allocated 5-33, 5-70, 5-162
next-record pointer setting 5-66, 5-158
number of bytes written to 16-4
obtaining next file name on a
volume 5-182, 10-31
obtaining record characteristics
of 5-63, 5-213
open defaults 3-138
opening 5-114, 11-15
permanent 3-135, 5-31, 5-38
physical record length 4-66, 4-68, 5-59
positioning a disk file to a saved
position 13-58
random processing and
WRITEUPDATE 16-28
random read processing 13-23
reading a record after calling

KEYPOSITION 13-32
POSITION 13-32

record length 3-137, 5-34
refreshing 5-36
repositioning disk heads 7-54
returning the primary extent size 5-70,
5-158

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-9

E

returning the RBA location 5-158
saving a disk file’s current file
position 14-3
security check 5-121, 11-21
selecting serial or parallel writes 5-162
sequential locking and reading of
records 13-19
sequential reading 13-2
size of secondary-extent 5-70, 5-159
temporary 3-135, 5-31, 5-38
unlocking 15-18
unlocking records of 15-20
unstructured buffer size 5-162
using pseudo-temporary names 3-148
verify writes on or off 5-162
when reading and record does not
exist 13-28
writing EOF to an unstructured
file 3-116
writing out EOF, free-list pointers, audit
buffer, cache data buffer 4-71, 13-46

Disk process
See DP2

DISKINFO procedure 4-72
DISK_REFRESH_ procedure 4-71
Distributed Name Service

file name conversion 5-221, 5-225,
5-234
file name expansion 5-223

DIVER program I-1
DNUMIN procedure 4-75
DNUMOUT procedure 4-78
Documented system procedures, list H-1
Downshifting alphabetic characters 14-119
DST

See Daylight saving time
DST_GETINFO_ procedure 4-80
DST_TRANSITION_ADD_ procedure 4-82
DST_TRANSITION_DELETE_
procedure 4-86

DST_TRANSITION_MODIFY_
procedure 4-87
DTE address buffer 14-107
Duplicate requests, from requester
processes 5-108, 13-41
D-series file name syntax D-1

E
E edit descriptor F-10
EDIT control block 4-91
Edit descriptors

A F-8
B F-9
binary F-9
blank interpretation F-1, F-6
BN F-6
buffer control F-2, F-6
BZ F-6
D F-10
description of F-1
E F-10
exponential F-10
F F-12
fixed-format F-12
floating-point F-10
G F-13
general F-13
H F-4
hexadecimal F-20
I F-14
integer F-14
L F-16
literal F-1, F-4
logical F-16
M F-17
mask F-17
nonrepeatable F-1, F-3
O F-19
octal F-19
P F-5

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-10

E

plus control F-1, F-6
repeatable F-1, F-2, F-8
S F-6
scale factor F-1, F-5
SP F-6
SS F-6
T F-3
tabulation F-1, F-3
TL F-3
TR F-3
X F-3
Z F-20
/ F-6
< F-6

Edit files, nowait access 7-35
Editing file names 5-178
EDITREAD control block 4-93
EDITREAD procedure 4-89
EDITREADINIT procedure

description of 4-92
use with EDITREAD procedure 4-92

Elapsed time and a timeout
message 14-141, 14-150, 14-154
End-of-file pointer

and segment deallocation 4-5, 14-23,
14-26
item code 5-78
paramter 5-158

Entry point names, associated with a
procedure label 14-170, 14-171
ENV register bits for space ID 3-154
EOF

See End-of-file pointer
ERRNO_GET_ procedure 4-93
Error handling and retries within SIO
procedures 10-33
Error numbers, file system 13-56
Errors

in NEWPROCESS procedure 10-5,
10-7, 10-26, 10-28
retrying file I/O operations 5-152

Even unstructured files 3-144, 5-36, 5-52
Example of a Guardian procedure call 1-6
Exceptions, IEEE floating point 5-254
Exclusion mode checking, on open 5-123,
11-23
Exclusive file opens, using pseudo-
temporary names 3-148
Execution priority

changing 2-31, 12-30, 12-34, 12-146
of a new process 10-2, 12-34, 12-109,
12-157

Execution time
of a calling process returned 9-62
of a process measured 14-140
of any process in the network 12-253
setting a timer based on
execution 14-138

Expanding file names
external to internal form 5-231
network names 5-231

Exponential edit descriptor F-10
EXTDECS 1-4
Extended addresses from stack
addresses 4-26, 12-13
Extended data segment

address of first byte 14-32, 15-57
designating for use as a pool 4-25,
12-11, 12-15

Extended data segments
allocating 2-20
sharing flat segments 2-20
sharing selectable segments 2-20

Extended memory made accessible to a
program 2-20, 14-5
Extended segments

allocating 14-5
allocating flat segments 14-5
data move without absolute
addressing 9-57
deallocating 4-4, 14-21
information retrieval 12-234, 14-26,
14-29

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-11

F

sharing flat segments 14-5
EXTENDEDIT procedure 4-94
Extensible segment

in ALLOCATESEGMENT
procedure 2-24
in CHECKALLOCATESEGMENT
procedure 3-23
in SEGMENT_ALLOCATE_
procedure 14-11

Extent size
primary for disk files 5-70, 5-158
to create primary and secondary 3-136,
5-33, 5-41

Extents, allocating and deallocating 3-114
External declarations

for Guardian procedure parameters 1-5
for Guardian procedures 1-4

External file names, syntax defined D-8

F
F edit descriptor F-12
F specifier F-25
FCBs

See File control blocks
Field-blanking modifiers F-21
File access, sequential 5-116, 11-16
File characteristics, checking using
CHECK^FILE 3-21
File characteristics, obtaining

alternate key parameters 5-75, 5-216
block length 5-69, 5-216
current key length 5-67, 5-215
current key specifier 5-67, 5-214
current key value 5-67, 5-214
current primary key length 5-67, 5-215
current primary key value 5-67, 5-215
current record pointer 5-67, 5-159
device type 5-56, 5-59, 5-157
EOF pointer 5-78, 5-82, 5-158
extent size 5-70, 5-158

file code 5-56, 5-59, 5-158
file name 5-55, 5-66, 5-157
file type 5-56, 5-59, 5-215
key-sequenced parameters 5-70,
5-216
last modified time 5-79, 5-158
logical device number 5-69, 5-157
logical record length 5-69, 5-216
next open-file number 5-67, 5-163
number of extents allocated 5-70,
5-161
open flags 5-159
owner 5-71, 5-160
partition in error 5-66, 5-215
partition parameters 5-73, 5-216
partition size 5-78, 5-161
physical record length 5-59
secondary extent size 5-70, 5-159
security 5-71, 5-160
subdevice number 5-69, 5-160
sync depth 5-68, 5-102, 5-163

File closing 3-65, 5-13
File code 5-56, 5-59, 5-158
File control blocks

initializing 7-36
use with SIO procedures 7-40
writing control information 4-71, 13-46

File locking
See LOCKFILE procedure

File name
syntax defined

C-series D-8
D-series D-1

File name inquiry procedures
FILENAME_FINDFINISH_ 5-181
FILENAME_FINDNEXT_ 5-182
FILENAME_FINDSTART_ 5-186

File name manipulation procedures
description of 5-200
FILENAME_COMPARE_ 5-171

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-12

F

FILENAME_DECOMPOSE_ 5-174
FILENAME_EDIT_ 5-178
FILENAME_MATCH_ 5-192
FILENAME_RESOLVE_ 5-194
FILENAME_TO_OLDFILENAME_ 5-20
3
FILENAME_TO_PATHNAME_ 5-205
FILENAME_UNRESOLVE_ 5-210
OLDFILENAME_TO_FILENAME 11-8
PATHNAME_TO_FILENAME_ 12-5

File name pattern D-6
File name syntax

C-series D-8
D-series D-1

File names
comparing 5-171, 5-228
converting

external to internal form 5-231
internal to external form 5-226
to C-format file names 5-203
to Guardian file names 12-5
to OSS pathnames 5-205
to process handles 5-209

decomposing 5-174
editing 5-178
expanding 5-231
for nondisk devices D-3
fully and partially qualified D-1, D-8
obtaining, in alphabetic order 10-31
reserved D-1
unresolving 5-210

File opening 5-111, 11-13
File position

by primary key 12-24
saving 5-138, 14-3

File purging 5-132, 12-255
File reading 13-2, 13-23
File security

checking 5-121, 11-21
examining 12-199

level 5-121, 11-21
setting for the current process 12-199

File space reallocation
after CLOSE 3-67
after FILE_CLOSE_ 5-14

File synchronization block, resetting 13-60
File synchronization information

in CHECKPOINT procedure 3-38
in CHECKPOINTMANY
procedure 3-41

File types 3-136, 5-34
File unlocking

See UNLOCKFILE procedure
FILEERROR procedure 5-152
FILEINFO procedure

description of 5-155
which filenum and file-name parameters
are valid 5-163

FILEINQUIRE procedure
description of 5-166
item codes 5-169

FILENAME_COMPARE_ procedure 5-171
FILENAME_DECOMPOSE_
procedure 5-174
FILENAME_EDIT_ procedure 5-178
FILENAME_FINDFINISH_
procedure 5-181
FILENAME_FINDNEXT_ procedure 5-182
FILENAME_FINDSTART_
procedure 5-186
FILENAME_MATCH_ procedure 5-192
FILENAME_RESOLVE_ procedure 5-194
FILENAME_SCAN_ procedure 5-200
FILENAME_TO_OLDFILENAME_
procedure 5-203
FILENAME_TO_PATHNAME_
procedure 5-205
FILENAME_TO_PROCESSHANDLE_
procedure 5-209
FILENAME_UNRESOLVE_
procedure 5-210
Filenum parameter in

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-13

F

AWAITIO[X|XL] procedure 2-43
BACKSPACEEDIT procedure 2-52
CANCEL procedure 3-4
CANCELREQ procedure 3-7
CHANGELIST procedure 3-10
CHECKCLOSE procedure 3-27
CHECKOPEN procedure 3-35
CLOSEEDIT procedure 3-71, 3-72,
3-73
COMPLETEIOEDIT procedure 3-74
COMPRESSEDIT procedure 3-76
DEFINELIST procedure 4-19
DELETEEDIT procedure 4-48
EXTENDEDIT procedure 4-95
FILEERROR procedure 5-153
FILEINFO procedure 5-156
FILERECINFO procedure 5-214
FILE_CLOSE_ procedure 5-14
FILE_CLOSE_CHKPT_
procedure 5-16
FILE_GETINFOLIST_ procedure 5-63
FILE_GETINFO_ procedure 5-55
FILE_OPEN_ procedure 5-113
FILE_OPEN_CHKPT_ 5-131
FILE_RESTOREPOSITION_
procedure 5-137
GETINCREMENTEDIT procedure 6-10
GETPOSITIONEDIT procedure 6-15
GETSYNCINFO procedure 6-21
HALTPOLL procedure 7-2
INCREMENTEDIT procedure 7-32
LOCKFILE procedure 8-11
LOCKREC procedure 8-19
NUMBEREDIT procedure 10-50
OPEN procedure 11-14
OPENEDIT procedure 11-39
OPENEDIT_ procedure 11-43
POSITION procedure 12-25
POSITIONEDIT procedure 12-29
READEDIT procedure 13-14

READEDITP procedure 13-17
READLOCK[X]procedure 13-20
READUPDATELOCK[X]procedure 13-
33
READUPDATE[X|XL]procedure 13-25
READ[X] procedure 13-3
RENAME procedure 13-52
REPOSITION procedure 13-59
RESETSYNC procedure 13-60
SAVEPOSITION procedure 14-4
SETMODE procedure 14-61
SETMODENOWAIT procedure 14-102
SETPARAM procedure 14-107
SETSYNCINFO procedure 14-113
UNLOCKFILE procedure 15-19
UNLOCKREC procedure 15-22
WRITEEDIT procedure 16-16
WRITEEDITP procedure 16-18
WRITEREAD[X] procedure 16-21
WRITEUPDATEUNLOCK[X]
procedure 16-32
WRITEUPDATE[X]procedure 16-25
WRITE[X] procedure 16-5

FILERECINFO procedure 5-213
File, writing data to 16-4, 16-24
File-system error numbers 13-56
File-system procedures

ALTER 2-27
AWAITIO[X] 2-40
CANCEL 3-3
CANCELREQ 3-6
CLOSE 3-65
CONTROL 3-108
CONTROLBUF 3-117
CREATE 3-135
DEVICEINFO 4-65
DEVICEINFO2 4-67
DISK_REFRESH_ 4-71
EDITREAD 4-89
EDITREADINIT 4-92

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-14

F

FILEERROR 5-152
FILEINFO 5-155
FILEINQUIRE 5-166
FILERECINFO 5-213
FILE_ALTERLIST_ 5-3
FILE_CLOSE_ 5-13
FILE_COMPLETE[L]_ 5-17
FILE_COMPLETE_GETINFO_ 5-25
FILE_COMPLETE_SET_ 5-26
FILE_CREATELIST_ 5-38
FILE_CREATE_ 5-31
FILE_GETINFOBYNAME_ 5-58
FILE_GETINFOLISTBYNAME_ 5-90
FILE_GETINFOLIST_ 5-63
FILE_GETINFO_ 5-54
FILE_GETLOCKINFO_ 5-94
FILE_GETOPENINFO_ 5-100
FILE_GETRECEIVEINFO[L]_ 5-104
FILE_OPEN_ 5-111
FILE_PURGE_ 5-132
FILE_RENAME_ 5-134
FILE_RESTOREPOSITION_ 5-136
FILE_SAVEPOSITION_ 5-138
FILE_SETKEY_ 5-139
FILE_SETPOSITION_ 5-144
FNAME32COLLAPSE 5-221
FNAME32EXPAND 5-223
FNAME32TOFNAME 5-225
FNAMECOLLAPSE 5-226
FNAMECOMPARE 5-228
FNAMEEXPAND 5-231
FNAMETOFNAME32 5-234
GETDEVNAME 6-6
GETSYSTEMNAME 6-22
GROUPIDTOGROUPNAME 6-33
GROUPMEMBER_GETNEXT_ 6-34
GROUPNAMETOGROUPID 6-37
GROUP_GETINFO_ 6-27
GROUP_GETNEXT_ 6-31

KEYPOSITION 7-50
LABELEDTAPESUPPORT 8-2
LASTRECEIVE 8-5
LOCATESYSTEM 8-8
LOCKFILE 8-10
MESSAGESTATUS 9-48
MONITORNET 9-55
MOVEX 9-57
NEXTFILENAME 10-31
OPEN 11-13
OPENINFO 11-50
POSITION 12-24
PURGE 12-255
READLOCK[X] 13-19
READUPDATELOCK[X] 13-32
READUPDATE[X] 13-23
READ[X] 13-2
RECEIVEINFO 13-37
REFRESH 13-46
REMOTEPROCESSORSTATUS 13-48
RENAME 13-51
REPLY[X] 13-53
REPOSITION 13-58
SAVEPOSITION 14-3
SETMODE 14-60
SETMODENOWAIT 14-102
UNLOCKFILE 15-18
UNLOCKREC 15-20
WRITEREAD[X] 16-19
WRITEUPDATEUNLOCK[X] 16-31
WRITEUPDATE[X] 16-24
WRITE[X] 16-4

FILE_ALTERLIST_ procedure 5-3
FILE_CLOSE_ procedure 5-13
FILE_CLOSE_CHKPT_ procedure 5-15
FILE_COMPLETE[L]_ procedure 5-17
FILE_COMPLETE_GETINFO_
procedure 5-25
FILE_COMPLETE_SET_ procedure 5-26
FILE_CREATELIST_ procedure 5-38

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-15

F

FILE_CREATE_ procedure 5-31
FILE_GETINFOBYNAME_ procedure

description of 5-58
OSS file, identifying 5-60

FILE_GETINFOLISTBYNAME_
procedure 5-90
FILE_GETINFOLIST_ procedure 5-63
FILE_GETINFO_ procedure

description of 5-54
OSS file, identifying 5-56

FILE_GETLOCKINFO_ procedure 5-94
FILE_GETOPENINFO_ procedure 5-100
FILE_GETRECEIVEINFO[L]_
procedure 5-104
FILE_OPEN_ procedure

description of 5-111
functions 5-111
options, parameters 5-115

FILE_OPEN_CHKPT_ procedure 5-130
FILE_PURGE_ procedure 5-132
FILE_RENAME_ procedure 5-134
FILE_RESTOREPOSITION_
procedure 5-136
FILE_SAVEPOSITION_ procedure 5-138
FILE_SETKEY_ procedure 5-139
FILE_SETPOSITION_ procedure 5-144
FILE_SETSYNCINFO_ procedure 5-147
Fill-character modifier F-21
Fixed-format edit descriptor F-12
FIXSTRING procedure 5-218
FL modifier F-21
Flags, parameters for OPEN
procedure 11-15
Floating-point edit descriptor F-10
FNAME32COLLAPSE procedure 5-221
FNAME32EXPAND procedure 5-223
FNAME32TOFNAME procedure 5-225
FNAMECOLLAPSE procedure 5-226
FNAMECOMPARE procedure 5-228
FNAMEEXPAND procedure 5-231
FNAMETOFNAME32 procedure 5-234
FORMATCONVERT[X] procedure 5-236

FORMATDATA[X] procedure 5-239
Formatter

blank interpretation F-6
buffer control F-6
decorations F-1, F-2, F-24
edit descriptors F-3
list-directed formatting F-27
literals F-4
modifiers F-1, F-2, F-21
plus control F-6
repeatable edit descriptors F-8
scale factor F-5
specifiers F-24
tabulation F-3

Formatter edit descriptors
introduction F-1
nonrepeatable F-1
repeatable F-1

Formatter procedures
FORMATCONVERT[X] 5-236
FORMATDATA[X] 5-239

FP_IEEE_DENORM_GET_
Procedure 5-245
FP_IEEE_DENORM_SET_
Procedure 5-246
FP_IEEE_ENABLES_GET_
Procedure 5-247
FP_IEEE_ENABLES_SET_
Procedure 5-249
FP_IEEE_ENV_CLEAR_ Procedure 5-250
FP_IEEE_ENV_RESUME_
Procedure 5-252
FP_IEEE_EXCEPTIONS_GET_
Procedure 5-253
FP_IEEE_EXCEPTIONS_SET_
Procedure 5-255
FP_IEEE_ROUND_GET_ Procedure 5-256
FP_IEEE_ROUND_SET_ Procedure 5-257
Fujitsu Kanji support 9-12
Fully qualified file name, defined D-1, D-8
Functions, SETMODE 14-63

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-16

G

G
G edit descriptor F-13
General edit descriptor F-13
GETCPCBINFO procedure 6-2
GETCRTPID procedure 6-4
GETDEVNAME procedure 6-6
GETINCREMENTEDIT procedure 6-9
GETPOOL procedure 6-11
GETPOOL_PAGE_ procedure 6-12
GETPOSITIONEDIT procedure 6-14
GETPPDENTRY procedure 6-15
GETREMOTECRTPID procedure 6-18
GETSYNCINFO procedure 6-20
GETSYSTEMNAME procedure 6-22
GETSYSTEMSERIALNUMBER
Procedure 6-24
GIVE^BREAK procedure 6-26
GMOM process, notified of a
deletion 12-190, 12-193
Greenwich mean time 7-43
Gregorian date

and time array form 3-78
converting

to 64-bit Julian 3-78
to Julian 3-77

definition of 3-77
GROUPIDTOGROUPNAME
procedure 6-33
GROUPMEMBER_GETNEXT_
procedure 6-34
GROUPNAMETOGROUPID
procedure 6-37
GROUP_GETINFO_ procedure 6-27
GROUP_GETNEXT_ procedure 6-31

H
H edit descriptor F-4
HALTPOLL procedure 7-2
HEADROOM_ENSURE_ procedure 7-3
HEAPSORT procedure 7-5
HEAPSORTX_ procedure 7-7

Hexadecimal edit descriptor F-20
HIST_FORMAT_ procedure 7-9
HIST_GETPRIOR_ procedure 7-24
HIST_INIT_ procedure 7-26
Hollerith constant F-5
Home terminal

changing default home terminal 14-105
obtaining file name 9-64

I
I edit descriptor F-14
IBM Kanji support 9-12
IEEE floating point

conversion errors 10-41, 10-46
conversion procedures

NSK_FLOAT_IEEE32_TO_TNS32_
10-40

NSK_FLOAT_IEEE64_TO_TNS32_
10-40

NSK_FLOAT_IEEE64_TO_TNS64_
10-40

NSK_FLOAT_TNS32_TO_IEEE32_
10-45

NSK_FLOAT_TNS32_TO_IEEE64_
10-45

NSK_FLOAT_TNS64_TO_IEEE64_
10-45

denormalization 5-246
endian data formats 10-43
exceptions 5-254
rounding modes 5-257
status environment 5-250
status procedures

FP_IEEE_DENORM_GET_ 5-245
FP_IEEE_DENORM_SET_ 5-246
FP_IEEE_ENABLES_GET_ 5-247
FP_IEEE_ENABLES_SET_ 5-249
FP_IEEE_ENV_CLEAR_ 5-250
FP_IEEE_ENV_RESUME_ 5-252

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-17

J

FP_IEEE_EXCEPTIONS_GET_ 5-
253
FP_IEEE_EXCEPTIONS_SET_ 5-
255
FP_IEEE_ROUND_GET_ 5-256
FP_IEEE_ROUND_SET_ 5-257

traps 5-247
INCREMENTEDIT procedure 7-32
Initial priority, changing 12-30, 12-34,
12-146
INITIALIZEEDIT procedure 7-33
INITIALIZER procedure

ASSIGNs and PARAMs 7-40
description of 7-36
when ABEND is called 7-40

Initializing
EDIT file segment (EFS) 7-33
file control blocks 7-36

INSEM 2-60
Inspect 4-7, 12-52
Integer edit descriptor F-14
Interchanging primary and backup, after
processor module reload 3-61
Internal file name

converting to file name 11-8
description of D-10

Internal form, CPU interval clock 15-10
INTERPRETINTERVAL procedure 7-41
INTERPRETJULIANDAYNO
procedure 7-43
INTERPRETTIMESTAMP procedure 7-45
Interprocess communication

in FILE_OPEN_ procedure 5-127
in OPEN procedure 11-27
in READUPDATE[X] procedure 13-29
in REPLY[X] procedure 13-56
using WRITEREAD[X]
procedure 16-19

Interval-clock parameter 15-10
IOEdit procedures

BACKSPACEEDIT 2-51

CLOSEALLEDIT 3-70
CLOSEEDIT 3-71
CLOSEEDIT_ 3-72
COMPLETEIOEDIT 3-73
COMPRESSEDIT 3-75
DELETEEDIT 4-47
EXTENDEDIT 4-93, 4-94
GETINCREMENTEDIT 6-9
GETPOSITIONEDIT 6-14
INCREMENTEDIT 7-32
INITIALIZEEDIT 7-33
NUMBEREDIT 10-49
OPENEDIT 3-71, 11-38
OPENEDIT_ 3-72, 11-42
PACKEDIT 12-3
POSITIONEDIT 12-28
READEDIT 13-13
READEDITP 13-16
UNPACKEDIT 15-23
WRITEEDIT 16-15
WRITEEDITP 16-17

is 5-138
I/O completion, on IOEdit files 3-73
I/O completion, with and without SETMODE
30 2-47
I/O data buffer, for device-dependent
operations 3-117
I/O file operations

completing
on Guardian and OSS files 5-17
waiting 2-41, 5-17

errors
nonretryable operations 5-153
retryable operations 5-153

J
JMP_BUF_DEF define 14-57
Job ancestor process, notified of a
deletion 12-190, 12-193
Job, spooler attributes E-5

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-18

K

Julian calendar
See Calendars

Julian day to day of week conversion 4-2
Julian timestamp

64-bit 3-80
based on Julian date 3-80
from Gregorian date and time 3-77

JULIANTIMESTAMP procedure 7-47
Justification modifiers F-22

K
Kanji support

Fujitsu 9-12
IBM 9-12

Kanji support HP 9-12
Key description, specifying in CREATE
procedure 3-140, 5-45
Key length, current 5-67, 5-215
Key positioning

by alternate key 5-139, 7-50
by primary key 5-139, 7-50

Key specifier 5-141, 7-51
Key value, current 5-67, 5-214
KEYPOSITION[X] procedures

and file-system error 21 7-57
description of 7-50

Key, current, specifier 5-67, 5-214
Key-sequenced parameters

array format 3-139
obtaining 5-70, 5-216
specifying in CREATE procedure 3-138
specifying in FILE_CREATELIST_
procedure 5-40
specifying in FILE_CREATE_
procedure 5-35

L
L edit descriptor F-16
LABELEDTAPESUPPORT procedure 8-2

Labels, for corresponding named entry
points 14-170, 14-171
Last record in a file, positioning 7-56
LASTADDR procedure 8-3
LASTADDRX procedure 8-4
LASTRECEIVE procedure 8-5
LCT

See Local civil time
Left-justify modifier F-22
Library conflict 10-19
Library file

user and program file
differences 10-19, 12-44, 12-182
when used with NEWPROCESS 10-3

List-directed formatting F-27
Literal edit descriptors F-4
Literals

edit descriptors F-1
Hollerith constant F-5
quoted F-5

LJ modifier F-22
Loading the DST table 2-10
Local civil time (LCT) 3-127
Local form process names 3-124, 5-194
Local standard time (LST) 3-127
Local timestamp, for a conversion of
GMT 3-127
LOCATESYSTEM procedure 8-8
Location specifier F-25
Lock release, for files audited by
TMF 15-20
Locked files

accessing 8-12
reading 8-12

LOCKFILE procedure 8-10
LOCKINFO procedure 8-13
Locking a file

See LOCKFILE procedure
Locking a record

See LOCKREC, READLOCK,
READUPDATELOCK procedures

Locking modes

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-19

M

alternate
for a file 8-10
for a record 8-20

default
for a file 8-10
for a record 8-20

read, for a file 13-27
selecting, for a record 8-20

Locking queue 15-19
Locking unstructured files 8-21
LOCKREC procedure 8-18
Logical device number

obtaining 4-60, 5-157
obtaining associated name 4-49, 6-6
obtaining device information 4-49
obtaining, using FILE_GETINFOLIST_
procedure 5-69

Logical edit descriptor F-16
Logical record length 5-69, 5-216
LONGJMP 8-22
LOOKUPPROCESSNAME procedure 8-25
LST

See Local standard time

M
M edit descriptor F-17
Magnetic tape, control action when
closing 3-66, 5-14
Managing memory pools 4-27
Mask edit descriptor F-17
Maximum extents, upper limit 3-144, 5-36
Maximum number of open files 5-118,
11-19
Maximum record size, formulas 3-137,
5-34
MBCS procedures

MBCS_ANY_KATAKANA_ 9-2
MBCS_CHARSIZE_ 9-7
MBCS_CHARSTRING_ 9-8
MBCS_CHAR_ 9-3

MBCS_CODESETS_SUPPORTED_ 9-
10
MBCS_DEFAULTCHARSET_ 9-12
MBCS_EXTERNAL_TO_TANDEM_ 9-
13
MBCS_FORMAT_CRT_FIELD_ 9-19
MBCS_FORMAT_ITI_BUFFER_ 9-24
MBCS_MB_TO_SB_ 9-27
MBCS_REPLACEBLANK_ 9-29
MBCS_SB_TO_MB_ 9-32
MBCS_SHIFTSTRING_ 9-34
MBCS_TANDEM_TO_EXTERNAL_ 9-
36
MBCS_TESTBYTE_ 9-43
MBCS_TRIMFRAGMENT_ 9-46

MBCS_ANY_KATAKANA_ procedure 9-2
MBCS_CHARSIZE_ procedure 9-7
MBCS_CHARSTRING_ procedure 9-8
MBCS_CHAR_ procedure 9-3
MBCS_CODESETS_SUPPORTED_
procedure 9-10
MBCS_DEFAULTCHARSET_
procedure 9-12
MBCS_EXTERNAL_TO_TANDEM_
procedure 9-13
MBCS_FORMAT_CRT_FIELD_
procedure 9-19
MBCS_FORMAT_ITI_BUFFER_
procedure 9-24
MBCS_MB_TO_SB_ procedure 9-27
MBCS_REPLACEBLANK_ procedure 9-29
MBCS_SB_TO_MB_ procedure 9-32
MBCS_SHIFTSTRING_ procedure 9-34
MBCS_TANDEM_TO_EXTERNAL_
procedure 9-36
MBCS_TESTBYTE_ procedure 9-43
MBCS_TRIMFRAGMENT_ procedure 9-46
Measuring

elapsed time that process
executes 14-142
long time intervals 4-46, 12-55, 14-142
time the process is executing 14-140

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-20

N

Memory management procedures
SEGMENTSIZE 14-35
SEGMENT_ALLOCATE_ 14-5
SEGMENT_DEALLOCATE_ 14-21
SEGMENT_GETBACKUPINFO_ 14-26
SEGMENT_GETINFO_ 14-29
SEGMENT_USE_ 14-32

Memory pages
allotted for a new process 10-4, 12-40,
12-174
for a process opened nowait 10-26

Memory pools, managing 4-27
Memory usage information,
obtaining 12-229
Memory, block of

obtaining from a buffer pool 6-11,
12-18
returning to a buffer pool 12-21, 12-258

Memory-management procedures
ALLOCATESEGMENT 2-20
CURRENTSPACE 3-154
DEALLOCATESEGMENT 4-4
DEFINEPOOL 4-25
GETPOOL 6-11
POOL_CHECK_ 12-8
POOL_DEFINE_ 12-11
POOL_GETINFO_ 12-15
POOL_GETSPACE_ 12-18
POOL_PUTSPACE_ 12-21
POOL_RESIZE_ 12-22
PUTPOOL 12-258
RESIZEPOOL 13-61
USESEGMENT 15-57

Merge functions
See Sort functions

MESSAGESTATUS procedure 9-48
MESSAGESYSTEMINFO procedure 9-49
Message-system procedures,
CONTROLMESSAGESYSTEM 3-120
Modifiers

BN F-21
BZ F-21
description of F-1, F-2, F-21
fill-character F-21
FL F-21
justification F-22
LJ F-22
OC F-22
overflow-character F-22
RJ F-22
SS F-22
symbol-substitution F-22

MOM procedure
description of 9-51
local and remote creation 9-53

Mom process, notified of a deletion 12-190
MONITORCPUS procedure

description of 9-53
messages 9-54

Monitoring, the primary process state 3-32,
14-155
MONITORNET procedure 9-55
MONITORNEW procedure 9-56
MOVEX procedure 9-57
Multiple extended data segments 2-20
Multiple extended segments 14-5
Multiple open, by same process 5-118,
11-19
MYGMOM procedure 9-60
MYPID procedure 9-61
MYPROCESSTIME procedure 9-62
MYSYSTEMNUMBER procedure 9-63
MYTERM procedure 9-64

N
Names, reserved process 3-147, 3-150,
B-1
Negative file errors 5-230
NetBatch

See also the NetBatch User’s Guide

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-21

O

and the ABEND procedure 2-7
and the PROCESS_STOP_
procedure 12-193
and the STOP procedure 14-165

Network and local timestamp 3-129
Network device names, associated with a
logical device number 6-8
Network file names, expanding 5-233
Network, process execution time
returned 12-253
New processes

backup, creating 10-19, 12-44
creating 10-2, 12-34, 12-109, 12-157
execution priority 10-2, 12-34, 12-109,
12-157
memory pages 10-4, 12-40, 12-174
processor location 10-5, 12-38

NEWPROCESS procedure
and batch processing 10-21
description of 10-2
device subtype for named
processes 10-20
startup messages 10-20

NEWPROCESSNOWAIT procedure
description of 10-23
startup messages 10-29

NEXTFILENAME procedure 10-31
Next-record pointer 5-66, 5-158
Node name, converting to node
number 10-37
Node number, converting to node
name 10-38
NODENAME_TO_NODENUMBER_
procedure 10-37
NODENUMBER_TO_NODENAME_
procedure 10-38
NODE_GETCOLDLOADINFO_
procedure 10-35
Nondisk device names D-3
Nonexistent records, positioning 7-54
Nonrepeatable edit descriptors F-1, F-3
Normal deletion of a process 12-187

Nowait calls
canceling

oldest incomplete operation 3-3
specific calls 3-6

completing 2-45
maximum number of concurrent
opens 5-126, 11-26
record locking 8-20
setting device-dependent
functions 14-102

Nowait, a process created 10-23
NO^ERROR procedure 10-33
NSK_FLOAT_IEEE32_TO_TNS32_
Procedure 10-40
NSK_FLOAT_IEEE64_TO_TNS32_
Procedure 10-40
NSK_FLOAT_IEEE64_TO_TNS64_
Procedure 10-40
NSK_FLOAT_TNS32_TO_IEEE32_
Procedure 10-45
NSK_FLOAT_TNS32_TO_IEEE64_
Procedure 10-45
NSK_FLOAT_TNS64_TO_IEEE64_
Procedure 10-45
Null process handle, creating 12-206
Null value for an alternate-key field 3-141,
5-46
NUMBEREDIT procedure 10-49
NUMIN procedure 10-51
NUMOUT procedure 10-53

O
O edit descriptor F-19
Object file, obtaining information
about 11-2
OBJFILE_GETINFOLIST_ procedure 11-2
OC modifier F-22
Octal edit descriptor F-19
Odd unstructured files 3-144, 5-36, 5-52
OLDFILENAME_TO_FILENAME_
procedure 11-8
OLDSYSMSG_TO_NEWSYSMSG_
procedure 11-10

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-22

P

Open files
closing 3-65, 5-13
maximum 5-118, 11-19

Open flags, obtaining 5-159
OPEN procedure

description of 11-13
flags, parameters 11-15
functions 11-13

Open table, searching for lost
openers 11-46
OPENEDIT procedure 3-71, 11-38
OPENEDIT_ procedure 3-72, 11-42
OPENER_LOST_ procedure 11-46
OPENINFO procedure 11-50
Opening a file

description of 5-111, 11-13
for a backup process 3-34, 5-130
same parameters for CHECKOPEN as
OPEN 3-34

Opens, limit on number of 5-119, 11-20
OPEN^FILE procedure 11-30
Operational state, of a processor 12-246
Operations

for CHECK^FILE procedure 3-21
for CONTROL procedure 3-109

Operations for SET^FILE procedure 14-55
OSS process

arguments 12-92
command 12-92
ctty 12-83
group leader 12-93
obtaining information about 12-55,
12-65
parent pid 12-93
pid 12-64
program pathname 12-92
session leader 12-83
start time 12-93
times() function 12-93

OSS-related procedures,
PROCESS_GETINFOLIST_ 12-55, 12-65

OSS_PID_NULL_ procedure 11-54
Overflow character modifier F-22

P
P edit descriptor F-5
P register values 2-37
P specifier F-25
Packed line format in an EDIT file 12-3,
13-16, 15-23
PACKEDIT procedure 12-3
PAID 2-8, 2-31, 12-32, 12-62, 12-195,
12-198
PAID compared with CAID 3-151, 12-62,
12-198
Partially qualified file name

defined D-1, D-8
resolving 5-194

Partition in error 5-66, 5-215
Partition parameters

array format 3-142
obtaining 5-73, 5-216
specifying in CREATE procedure 3-142
specifying in FILE_CREATELIST_
procedure 5-43

Partitions, renaming 5-135, 13-53
PATHNAME_TO_FILENAME_
procedure 12-5
Path, to a system 8-8
Permanent disk file name form, to
create 3-135
Permanent files, creating 5-31, 5-38
Physical record length of a file,
obtaining 4-66, 4-68, 5-59
PID

See Process ID
Plus control edit descriptor F-1, F-6
Poll state bit 3-10
Polling

addresses 4-20
multipoint stations 3-10
types 4-20

Pool alignment 12-12

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-23

P

Pool size
changing 12-22, 13-61
range 4-26, 12-12

Pools
dynamic memory allocation 4-26,
12-13
management methods 4-26, 12-13
obtaining a block of memory from a
buffer 6-11, 12-18
returning a block of memory to a
buffer 12-21, 12-258
size of memory obtained from a
buffer 6-11, 12-18
using a portion of a user’s stack
as 4-26, 12-12

POOL_CHECK_ procedure 12-8
POOL_DEFINE_ procedure 12-11
POOL_GETINFO_ procedure 12-15
POOL_GETSPACE_ procedure 12-18
POOL_GETSPACE_PAGE_
procedure 12-19
POOL_PUTSPACE_ procedure 12-21
POOL_RESIZE_ procedure 12-22
POSITION procedure 12-24
POSITIONEDIT procedure 12-28
Positioning

by primary key, in key-sequenced
files 5-139, 7-50
by primary key, in relative and entry, by
sequenced files 5-144, 12-24
in an EDIT file 12-28
in unstructured files 5-144, 12-24
saving a current position 5-138, 14-3
to a saved position 5-136, 13-58
to the last record in a file 7-56
to the start of a file 7-55

Positioning block 5-136, 13-58, 14-3
Positioning mode, in key-sequenced, entry-
sequenced and relative files 7-52
Position, current

in structured files 5-139, 7-50
saving 7-54

Power On messages, enabling or disabling
receipt of 9-56
PPD

See Process pair directory
PPD entry from DCT index 6-15
Primary define 11-17
Primary extent size, specifying 3-136, 5-33,
5-41
Primary key value 5-67, 5-215
Primary process

closing a file in a backup process 3-27
state, monitoring 3-32

Primary process, closing a file in a backup
process 5-15
Priority

changing 2-31, 12-30, 12-34, 12-146
in NEWPROCESS procedure 10-4
in NEWPROCESSNOWAIT
procedure 10-25

PRIORITY procedure 12-30
Procedure labels, associated with an entry
point 14-170, 14-171
Procedures

checkpointing
See Checkpointing procedures

file system
See File-system procedures

formatter
See Formatter procedures

how to read syntax of 1-6
memory-management

See Memory-management
procedures

process control
See Process control procedures

security system
See Security procedures

sequential I/O
See Sequential I/O procedures

trap handling
See Trap handling procedures

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-24

P

types and their actions 1-2
utilities

See Utility procedures
Process

altering attributes 12-146, 12-153
changing execution priority 2-31,
12-146
checkpointing block of data area 3-37
creation, in nowait manner 10-23
deletion

descripton of 12-187, 14-160
notification of 14-155, 14-157
protecting against 14-111

getting information about its own
PCB 6-2
monitoring 3-62, 11-46
obtaining information about 12-55,
12-65, 12-101
owns BREAK 3-12
pair

activation 2-8, 12-32
deletion 12-187, 14-160
obtaining descriptions by
index 8-25
suspension 12-195, 14-168
unnamed 3-35, 5-16, 5-131
when both members are
activated 2-8, 12-32
when both members are
suspended 12-195

reserved names B-1
setting current file security 12-199
setting debugging attributes 10-27
spooler collector E-5
status information, obtaining 12-213
suspension 14-168
suspension, for a timed interval 4-45,
12-54
time and system time 14-143

Process access ID (PAID)

descripton of 12-62, 12-198
in ACTIVATEPROCESS procedure 2-8
in ALTERPRIORITY procedure 2-31
in PROCESS_ACTIVATE_
procedure 12-32
in PROCESS_SUSPEND_
procedure 12-195
of a new process 10-20, 12-45, 12-184

Process control block (PCB), a process
getting information about its own 6-2
Process control procedures

ABEND 2-2
ACTIVATEPROCESS 2-8
ALTERPRIORITY 2-31
BREAKMESSAGE_SEND_ 2-67
CANCELPROCESSTIMEOUT 3-5
CANCELTIMEOUT 3-8
CREATEPROCESSNAME 3-146
CREATEREMOTENAME 3-148
DELAY 4-45, 12-54
GETCRTPID 6-4
GETPPDENTRY 6-15
GETREMOTECRTPID 6-18
LOCKINFO 8-13
LOOKUPPROCESSNAME 8-25
MOM 9-51
MYGMOM 9-60
MYPID 9-61
MYSYSTEMNUMBER 9-63
MYTERM 9-64
NEWPROCESS 10-2
NEWPROCESSNOWAIT 10-23
PRIORITY 12-30, 12-34
PROCESSINFO 12-213
PROCESS_ACTIVATE_ 12-32
PROCESS_CREATE_ 12-34
PROCESS_LAUNCH_ 12-109
PROCESS_SETINFO_ 12-146
PROCESS_SETSTRINGINFO_ 12-15
3

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-25

P

PROCESS_SPAWN_ 12-157
PROCESS_STOP_ 12-187
PROCESS_SUSPEND_ 12-195
PROGRAMFILENAME 12-254
SENDBREAKMESSAGE 14-36
SETMYTERM 14-105
SETSTOP 14-111
SIGNALPROCESSTIMEOUT 14-138
SIGNALTIMEOUT 14-141, 14-150,
14-154
STEPMOM 14-155
STOP 14-160
SUSPENDPROCESS 14-168

Process creation
errors indicating outcome 10-5, 10-26,
12-36, 12-110
nowait manner 10-23

Process data stack checkpointing 3-38,
3-43
Process descriptors D-6
Process file name

C-series syntax D-11
D-series syntax

for named processes D-5
for unnamed processes D-4

Process handle
comparing 12-201
converting

to file name 12-209
to process file name 12-209
to process ID 12-207
to process string 12-211

decomposing 12-202
definition D-7
in PROCESS_ACTIVATE_
procedure 12-32
in PROCESS_SUSPEND_
procedure 12-195
initializing to null value 12-206
obtaining from a process string 12-249

obtaining one’s own 12-205
when a process pair is activated 12-32
when a process pair is
suspended 12-195

Process handle procedures
CRTPID_TO_PROCESSHANDLE_ 3-1
52
FILENAME_TO_PROCESSHANDLE_
5-209
PROCESSHANDLE_COMPARE_ 12-2
01
PROCESSHANDLE_DECOMPOSE_ 1
2-202
PROCESSHANDLE_TO_CRTPID_ 12-
207
PROCESSHANDLE_TO_FILENAME_
12-209
PROCESSHANDLE_TO_STRING_ 12
-211
PROCESSSTRING_SCAN_ 12-249

Process ID
application acquires own 6-5
converting to process handle 3-152
description of D-12
in ACTIVATEPROCESS procedure 2-8
in ALTERPRIORITY procedure 2-31
in GETCRTPID procedure 6-5
in GETREMOTECRTPID
procedure 6-18
in LASTRECEIVE procedure 8-6
in NEWPROCESS procedure 10-2
in PROCESSINFO procedure 12-215
in STEPMOM procedure 14-155
in STOP procedure 14-160
in SUSPENDPROCESS
procedure 14-168
provided by MOM procedure 9-51
when a process pair is activated 2-8

Process looping, detection of 14-59
Process management procedures

PROCESS_GETINFOLIST_ 12-65

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-26

P

PROCESS_GETINFO_ 12-55
PROCESS_GETPAIRINFO_ 12-101

Process monitoring procedures
CHILD_LOST_ 3-62
OPENER_LOST_ 11-46

Process names
converting from local to network
form 3-124, 5-194
creating 3-146, 12-220
in NEWPROCESS procedure 10-5
in NEWPROCESSNOWAIT
procedure 10-27
in PROCESS_CREATE_
procedure 12-39
in PROCESS_SPAWN_
procedure 12-174
reserved B-1
unique network-wide 3-149

Process open message 5-129, 11-28
Process pair

activation 2-8, 12-32
changing execution priority 2-31,
12-146
deletion 14-160
obtaining descriptions by index 8-25
obtaining information about 12-101
suspension 12-195, 14-168
unnamed 3-35, 5-16, 5-131
when both members are activated 2-8,
12-32
when both members are
suspended 12-195

Process pair directory
See also Destination control table
entry by index 6-15
obtaining from the DCT 8-25

Process string
converting process handle to 12-211
definition 12-252
scanning for 12-249

Process time and system time 14-143

Process wait state 12-217
PROCESSACCESSID procedure 12-198
PROCESSFILESECURITY
procedure 12-199
PROCESSHANDLE_COMPARE_
procedure 12-201
PROCESSHANDLE_DECOMPOSE_
procedure 12-202
PROCESSHANDLE_GETMINE_
procedure 12-205
PROCESSHANDLE_NULLIT_
procedure 12-206
PROCESSHANDLE_TO_CRTPID_
procedure 12-207
PROCESSHANDLE_TO_FILENAME_
procedure 12-209
PROCESSHANDLE_TO_STRING_
procedure 12-211
PROCESSINFO procedure 12-213
Processing decorations F-25
PROCESSNAME_CREATE_
procedure 12-220
Processor

configuration information,
obtaining 12-223
failures 9-53
name, obtaining 12-241
statistics, obtaining 12-223
status,

count and operational state 12-246
enabling or disabling receipt
of 9-55
obtaining in network 13-48

type, obtaining 12-247
PROCESSORSTATUS procedure 12-246
PROCESSORTYPE procedure 12-247
PROCESSOR_GETINFOLIST_
procedure 12-223
PROCESSOR_GETNAME_
procedure 12-241
PROCESSSTRING_SCAN_
procedure 12-249
PROCESSTIME procedure 12-253

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-27

Q

PROCESS_ACTIVATE_ procedure 12-32
PROCESS_CREATE_ procedure 12-34

and batch processing 12-47
description of 12-34

PROCESS_DEBUG_ procedure 12-49
PROCESS_DELAY_ procedure 12-54
PROCESS_GETINFOLIST_
procedure 12-65
PROCESS_GETINFO_ procedure 12-55
PROCESS_GETPAIRINFO_
procedure 12-101
PROCESS_LAUNCH_ procedure 12-109
PROCESS_SETINFO_ procedure 12-146
PROCESS_SETSTRINGINFO_
procedure 12-153
PROCESS_SPAWN_ procedure

and batch processing 12-185
description of 12-157

PROCESS_STOP_ procedure 12-187
PROCESS_STOP_ procedure and
NetBatch 12-193
PROCESS_SUSPEND_ procedure 12-195
Process’s data area, checkpointing a block
of the 3-37
Program file and user library file
differences 10-19, 12-44, 12-182
PROGRAMFILENAME procedure 12-254
Protecting against process deletion 14-111
Pseudo-temporary disk file names 3-148
PURGE procedure 12-255
Purging disk files 5-132, 12-255
PUTPOOL procedure 12-258

Q
Queued messages, replying to 13-56
Quoted literal F-5

R
Random

positioning 13-27
reads from disk files 13-23, 13-27

record reads from disk files 13-35
writes to an open file 16-24, 16-34

Ranges for segment IDs 2-22, 14-7
RBA

See Relative byte address
READEDIT procedure 13-13
READEDITP procedure 13-16
Reading

an EDIT file 13-13, 13-16
open files 13-2, 13-25
open records 13-19
random records of an open file 13-32
records 13-19
text from EDIT files 4-89

READLOCK[X] procedures 13-19
READUPDATELOCK[X] procedures 13-32
READUPDATE[X|XL] procedures 13-23
Ready state, returning a process to 2-8,
12-32, 12-195
Read-only segment

in CHECKALLOCATESEGMENT
procedure 3-24
in SEGMENT_ALLOCATE_
procedure 14-11

READ[X] procedures 13-2
READ^FILE procedure 13-11
Reallocating file space after CLOSE 3-67
Reallocating file space, after
FILE_CLOSE_ 5-14
RECEIVEINFO procedure 13-37
Receive-depth

in FILE_OPEN_ procedure 5-114
in OPEN procedure 11-15

Record locking
See LOCKREC procedure

Record pointer
item code 5-67
parameter 5-159
state indicators, after open 5-127,
11-26

Record size formula 3-137, 5-34

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-28

S

Record unlocking
See UNLOCKFILE, UNLOCKREC, and
WRITEUPDATEUNLOCK

Reference parameters, bounds checking
of 1-9
Reference-Parameter-Overlap 1-9
REFPARAM_BOUNDSCHECK_
procedure 13-41
REFRESH procedure 13-46
Registers, ‘L’ and ‘S’ 2-33
Register, returning the stack-marker
ENV 3-154
Relative byte address locking 8-21
Reload of a CPU, elapsed time since 3-132
Reloading a processor module 3-62
Remote CPU

failures 13-48
status changes 9-55

Remote data terminal equipment
address 14-106
Remote DCT entries

entering 3-150
obtaining 8-26

Remote process CRTPID 6-18
Remote process names, creating 3-148
REMOTEPROCESSORSTATUS
procedure 13-48
REMOTETOSVERSION procedure 13-50
RENAME procedure 13-51
Renaming disk files audited by TMF 5-135,
13-53
Renumbering lines in an EDIT file 10-49
Repeatable edit descriptors F-1, F-2, F-8
REPLY[X|XL] procedures 13-53
REPOSITION procedure 13-58
Requesters, identifying duplicate,
requests 5-108, 13-41
Reserved file names D-1
Reserved names, $X, $Y, $Z 3-147, 3-150
Reserved process names B-1
RESERVELCBS procedure, replaced by
CONTROLMESSAGESYSTEM 3-123
RESETSYNC procedure 13-60

RESIZEPOOL procedure 13-61
RESIZESEGMENT procedure 13-63
Resolving partially qualified file
names 5-194
Resynchronizing open files, by backup
process 13-60
Retrying file I/O operations 5-153
Right-justify modifier F-22
RJ modifier F-22
Rounding modes, IEEE floating point 5-257

S
S edit descriptor F-6
Sample of a Guardian procedure call 1-6
SAVEPOSITION procedure 14-3
Scale factor 5-238, 5-244
Scale factor edit descriptor F-1, F-5
Scanning

file names 5-200
for a process string 12-249

Secondary extent size
returning 5-70, 5-159
specifying 3-136, 5-33, 5-41

Security check on disk file opens 5-121,
11-21
Security procedures,
CREATORACCESSID 3-150
Security system procedures

PROCESSACCESSID 12-198
PROCESSFILESECURITY 12-199
USERDEFAULTS 15-50
USERIDTOUSERNAME 15-53
USERNAMETOUSERID 15-55
USER_AUTHENTICATE_ 15-26
USER_GETINFO_ 15-41
USER_GETNEXT_ 15-47
VERIFYUSER 15-60

Segment
deallocating extended data 4-4, 14-21
deallocation 3-30, 14-23, 14-26

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-29

S

extended data to be currently
addressable 14-32, 15-57
ID ranges 2-22, 14-7
information on extended data 12-234,
14-26, 14-29

Segment ID in AWAITIO[X|XL]
procedure 2-45
SEGMENTSIZE procedure 14-35
SEGMENT_ALLOCATE_ procedure 14-5
SEGMENT_ALLOCATE_CHKPT_
procedure 14-17
SEGMENT_DEALLOCATE_
procedure 14-21
SEGMENT_DEALLOCATE_CHKPT_
procedure 14-24
SEGMENT_GETBACKUPINFO_
procedure 14-26
SEGMENT_GETINFO_ procedure 14-29
SEGMENT_USE_ procedure 14-32
SENDBREAKMESSAGE procedure 14-36
Separate opens by same requester 5-109,
13-41
Sequential block buffering 5-116, 11-16
Sequential file access 5-116, 11-16
Sequential I/O procedures

CHECK^BREAK 3-12
CHECK^FILE 3-13
CLOSE^FILE 3-67
GIVE^BREAK 6-26
NO^ERROR 10-33
OPEN^FILE 11-30
READ^FILE 13-11
SET^FILE 14-38
TAKE^BREAK 15-2
WAIT^FILE 16-2
WRITE^FILE 16-12

Serial mirror writes only 5-42
Serial writes, selecting 5-42
SETJMP 14-56
SETJMP_ procedure 14-56
SETLOOPTIMER procedure 14-58
SETMODE procedure

default setting 14-99
description of 14-60
functions 14-63

SETMODENOWAIT procedure
description of 14-102
functions 14-63

SETMYTERM procedure 14-105
SETPARAM procedure 14-106
SETSTOP procedure 14-111
SETSYNCINFO procedure 14-113
SETSYSTEMCLOCK procedure 14-115
SETTIME messages, enabling or disabling
receipt of 9-56
Setting

device-dependent functions 14-60,
14-102
file security for the current
process 12-199
the poll state bit 3-10

Setting a timer 15-7
SET^FILE procedure

description of 14-38
operations 14-55

Shared segment
in ALLOCATESEGMENT
procedure 2-24
in CHECKALLOCATESEGMENT
procedure 3-24
in SEGMENT_ALLOCATE_
procedure 14-11

SHIFTSTRING procedure 14-119
SIGACTION_INIT_ procedure 14-121
SIGACTION_RESTORE_
procedure 14-125
SIGACTION_SUPPLANT_
procedure 14-127
SIGJMP_BUF_DEF define 14-146
SIGJMP_MASKSET_ procedure 14-133
SIGLONGJMP 14-135
SIGLONGJMP_ procedure 8-23, 14-136
Signal handling

see Signal handling procedures

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-30

S

Signal handling procedures,
SETJMP 14-56
SIGNALPROCESSTIMEOUT procedure

description of 14-138
time signal message 14-140

SIGNALTIMEOUT procedure 14-141
Signed integer values, converting to 10-51
SIGSAVE_DEF_ define 14-129
SIGSETJMP 14-144, 14-145
SIGSETJMP_ procedure 14-144
SIO procedures

See Sequential I/O procedures
Slash edit descriptor F-6
Sort functions, arrays of equal-sized
elements 7-5, 7-7
SP edit descriptor F-6
Space ID

and the stack marker ENV
register 2-36
bits in the ENV register 3-154
caller, returned 3-154
definition 2-36

Specifier of key in error 5-66, 5-215
Specifiers

A F-25
conditions F-24
description of F-24
F F-25
location F-25
P F-25

SPI termination information 2-4, 12-189,
14-162
Spooler collector process E-5
SQL objects, obtaining type information
about 5-69, 5-161
SS edit descriptor F-6
SS modifier F-22
SSIDTOTEXT Procedure 14-147
Stack addresses to extended
addresses 4-26, 12-13
Stack base for checkpointing 3-37

Stack marker ENV register and the space
ID 2-36
Stack marker ENV register, and the space
ID, a procedure that returns 3-154
Stack registers R0-R7 concerning trap
handlers 2-36
Stack, user’s designate use as a pool 4-25,
12-8, 12-11, 12-15
STACK_ALLOCATE_ procedure 14-150
STACK_DEALLOCATE_ procedure 14-154
Start of a file, positioning 7-55
Startup message, reading 7-36
Station list arrays for addressing tributary
stations 4-20
Status of primary process 3-32
STEPMOM procedure 14-155
Stop mode for a process 14-111, 14-112
STOP procedure

and NetBatch 14-165
compared with ABEND 14-163
description of 14-160

Stopping
a process 12-187, 14-160
a process pair 12-187, 14-160

Stopping a timer 15-9
Strings

editing 5-218
upshifting 14-166
upshifting and downshifting 14-119

STRING_UPSHIFT_ procedure 14-166
Structured files

creating 3-135, 5-31, 5-38
reading 13-7
reading for a subsequent, write 13-28
writing data to 16-9

Summary 12-65
Suspended state, returning a process
to 2-8, 12-32
Suspending

a process 4-46, 12-54
execution of a process 2-41, 5-17

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-31

T

Suspending a process for a timed
interval 12-54
SUSPENDPROCESS procedure 14-168
Swap file

extent allocation 2-26, 14-14
improving performance 4-5, 14-23,
14-26
when using NEWPROCESS 10-4
when using
SEGMENT_ALLOCATE_ 14-9, 14-18

Switching primary and backup
processes 3-61
Symbolic debugger 4-7, 12-52
Symbol-substitution modifier F-22
Sync ID

definition 5-108, 13-40
obtaining from
FILE_GETRECEIVEINFO[L]_
procedure 5-108
obtaining from
FILE_GETRECEIVEINFO_
procedure 5-106
obtaining from RECEIVEINFO
procedure 13-37

Synchronization block
for a disk file 6-21
of a process pair, obtaining 14-113

Sync-depth
in FILE_OPEN_ procedure 5-114
in OPEN procedure 11-15

Syntax of Guardian procedure calls, general
example 1-6
Synthetic process ID 8-7
System clock, changing 14-115
System code, process loop timeout
in 14-59
System device names 6-6
System limits J-1
System load of a CPU, elapsed time
since 3-132
System message

-5, STOP 14-165

-6, ABEND 2-7
System messages

converting from C-format to D-
format 11-10
enabling or disabling receipt of 9-56
examining to monitor processes 3-62,
11-46

System name
associated with a system number 6-22
converting to system number 10-37

System number
converting to system name 10-38
locating 8-8, 13-48
obtaining 8-8, 9-63

System procedures, list of those
documented H-1
System services, definition 1-1
System version, obtaining 13-50
SYSTEMENTRYPOINTLABEL
procedure 14-171
SYSTEMENTRYPOINT_RISC_
procedure 14-170
System-generated process names 3-148

T
T edit descriptor F-3
Tabulation edit descriptors F-1, F-3
TAKE^BREAK procedure 15-2
Tape label processing 8-2
Template for string editing 5-218, 5-220
Temporary disk file name form,
creating 3-136
Temporary file

creating 5-31, 5-38
deleted when closed 3-135, 5-31, 5-38
preventing automatic purge of 2-25,
14-14

Temporary file name,
existing when using
ALLOCATESEGMENT 2-25

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-32

T

existing when using
SEGMENT_ALLOCATE_ 14-14

Terminals
considerations for opening 5-127,
11-27
writing data to and waiting for
reply 16-19

Terminating a process 2-2
Termination information, SPI 2-4, 12-189,
14-162
Text buffer, for EDITREAD procedure

preparing 4-93
using 4-89

Text lines transferred 4-91
TEXTTOSSID procedure 15-3
The 4-80, 4-82, 4-86, 4-87, 5-136, 5-138,
5-144, 5-147, 14-133
Time

execution
of a calling process returned 9-62
of any process in the
network 12-253

obtaining in integer form 15-6
Time and day array form 7-45
Time limit

in AWAITIO[X|XL] procedure 2-44
in FILE_COMPLETE[L]_
procedure 5-19

Time measured
elapsed time that process
executes 14-142
while the process is executing 14-140

TIME procedure 15-6
Time spent since system load 3-132
Timeout during AWAITIO[X]

before completion 2-41
summary of actions 2-49

Timeout during AWAITIO[X|XL]
error indication 2-47

Timeout during FILE_COMPLETE_, before
completion 5-17
Timer

based on process execution
time 14-138
set to a given number of units of
elapsed time 14-141, 14-150, 14-154

TIMER_START_ procedure 15-7
TIMER_STOP_ procedure 15-9
Timestamp

See also Julian timestamp
48-bit 7-48, 15-10
64-bit Julian

procedures 7-48
using to change system
clock 14-115

caution 3-129
conversion from 48-bit to integer 3-105
from Gregorian date and time 3-78
Julian, range checking 7-46
network and local 3-129
returned in Julian-date-based
form 7-47

TIMESTAMP procedure 15-10
TL edit descriptor F-3
TNS/E native process, finding writable
global data 1-11
TNS/R systems, trap handling on 2-39
TOSVERSION procedure 15-12
TR edit descriptor F-3
Transfer length of a disk file 4-66, 5-59
Transferring text from an EDIT file 4-89
Trap handling

address of trap handler 2-33
ARMTRAP, procedure 2-33
on TNS/R systems 2-39
overwriting application data stack 2-38
P register values 2-37
resuming from a trap handler

at another point in the
program 2-38
at the point of the trap 2-38
exiting 2-37

saving stack registers during 2-36

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-33

U

space required 2-36
terminating a trap handler 2-37
trap handler activation and
termination 2-34
traps in protected code 2-38

Trap handling procedures
LONGJMP_ 8-22
SIGACTION_RESTORE_ 14-125
SIGACTION_SUPPLANT_ 14-127
SIGJMP_MASKSET_ 14-133
SIGLONGJMP_ 14-135
SIGSETJMP_ 14-56, 14-144

Traps
bounds violation 12-21, 12-258
faulty parameters 6-12, 12-19
IEEE floating point 5-247

Tributary stations
affect of poll bit 3-11
specifying station addresses 4-20

TS_NANOSECS_ procedure 15-13
TS_UNIQUE_COMPARE_
procedure 15-14
TS_UNIQUE_CONVERT_TO_JULIAN_
procedure 15-16
TS_UNIQUE_CREATE_ procedure 15-17

U
Unique network-wide process names

See PROCESSNAME_CREATE and
CREATEREMOTENAME procedures

UNLOCKFILE procedure 15-18
Unlocking

disk files 15-18
records 15-18, 16-31

UNLOCKREC procedure 15-20
UNPACKEDIT procedure 15-23
Unsigned integer values, converting to,
ASCII 10-53
Unstructured files

creating 3-135, 5-31, 5-38
file pointers after open 5-126, 11-26

locking records during read
operations 13-21
reading 13-9
reading for a subsequent, write 13-29
writing data to 16-10, 16-28
writing EOF to 3-116

Updating a file record
writing data to 16-24
writing data to and unlocking 16-31

Upshifting alphabetic characters 14-119
User ID, Guardian

associated with a user name 15-53
assuming 6-33, 6-37, 15-60

User library and program file
differences 10-19, 12-44, 12-182
User name associated with a Guardian user
ID 15-55
USERDEFAULTS procedure 15-50
USERIDTOUSERNAME procedure 15-53
USERNAMETOUSERID procedure 15-55
USER_AUTHENTICATE_ procedure 15-26
USER_GETINFO_ procedure 15-41
USER_GETNEXT_ procedure 15-47
USESEGMENT procedure 15-57
Utility procedures

ADDDSTTRANSITION 2-10
ADDRESS_DELIMIT_ 2-12
CHECKRESIZESEGMENT 3-58
CONTIME 3-105
CONVERTPROCESSNAME 3-124
CONVERTPROCESSTIME 3-125
CONVERTTIMESTAMP 3-127
CPUTIMES 3-132
DAYOFWEEK 4-2
DEBUG 4-6
DEBUGPROCESS 4-8
DISKINFO 4-72
DNUMIN 4-75
DNUMOUT 4-78
DST_GETINFO_ 4-80

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-34

V

DST_TRANSITION_ADD_ 4-82
DST_TRANSITION_DELETE_ 4-86
DST_TRANSITION_MODIFY_ 4-87
FIXSTRING 5-218
GETCPCBINFO 6-2
HEADROOM_ENSURE_ 7-3
HEAPSORT 7-5
HEAPSORTX_ 7-7
HIST_FORMAT_ 7-9
HIST_GETPRIOR_ 7-24
HIST_INIT_ 7-26
INITIALIZER 7-36
INTERPRETINTERVAL 7-41
INTERPRETJULIANDAYNO 7-43
INTERPRETTIMESTAMP 7-45
JULIANTIMESTAMP 7-47
LASTADDR 8-3
LASTADDRX 8-4
MONITORNEW 9-56
MYPROCESSTIME 9-62
NUMIN 10-51
NUMOUT 10-53
PROCESSORTYPE 12-247
PROCESSOR_GETNAME_ 12-241
PROCESSTIME 12-253
PROCESS_DEBUG_ 12-49
REFPARAM_BOUNDSCHECK_ 13-41
REMOTETOSVERSION 13-50
RESIZESEGMENT 13-63
SETSYSTEMCLOCK 14-115
SHIFTSTRING 14-119
SYSTEMENTRYPOINTLABEL 14-171
SYSTEMENTRYPOINT_RISC_ 14-170
TEXTTOSSID 15-3
TIME 15-6
TIMESTAMP 15-10
TOSVERSION 15-12
XBNDSTEST 16-37
XSTACKTEST 16-39

Utility programs
DELAY I-1, I-2
DIVER I-1

V
VERIFYUSER procedure 15-60
Version number of a system,
obtaining 12-229, 13-50, 15-12
voluntary rendezvous opportunity 15-59
VRO_SET_ procedure 15-59

W
Wait state, process 12-217
WAIT^FILE procedure 16-2
Writable global data, finding in a TNS/E
native process 1-11
Writeback-inhibit segment

in ALLOCATESEGMENT
procedure 14-11
in CHECKALLOCATESEGMENT
procedure 3-24

WRITEEDIT procedure 16-15
WRITEEDITP procedure 16-17
WRITEREAD[X] procedure 16-19
Writes, verify on or off 5-42
WRITEUPDATEUNLOCK[X]
procedures 16-31
WRITEUPDATE[X] procedures 16-24
Write-through caching, enabling 5-42
WRITE[X] procedures 16-4
WRITE^FILE procedure 16-12
Writing

an EDIT file 16-15, 16-17
data to a file 16-4, 16-19, 16-24
data to a file and waiting for
reply 16-19
data to a terminal 16-19
file control information 4-71, 13-46

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-35

X

X
X edit descriptor F-3
XBNDSTEST procedure 16-37
XSTACKTEST procedure 16-39

Z
Z edit descriptor F-20

Special Characters
$OSP, limit on number of opens 5-119,
11-20
$RECEIVE

and CLOSE^FILE SIO procedure 3-69
file

obtaining the message tag 5-104,
8-5, 13-37
obtaining the process ID 5-104,
8-5, 13-37
obtaining the sync ID 5-104, 13-37
reading messages 13-23
replying to a message 13-53
replying to queued
messages 13-56

in FILE_OPEN_ procedure 5-127
in OPEN procedure 11-27
protocol, using INITIALIZER 7-39

$X process name 3-147, 3-150
$Y process name 3-147, 3-150
$Z process name 3-147, 3-150
&G'[0] relative address, obtaining 8-3
&L’ relative location, concerning traps 2-33
&S’ relative location, concerning traps 2-33
/ edit descriptor F-6
< edit descriptor F-6

Index

Guardian Procedure Calls Reference Manual—522629-030
Index-36

Special Characters

	Guardian Procedure Calls Reference Manual
	What’s New in This Manual
	Manual Information
	New and Changed Information
	Changes to the 522629-029 manual:
	Changes to the H06.20/J06.09 Manual
	Changes to the H06.19/J06.08 Manual
	Changes to the H06.18/J06.07 Manual
	Changes to the H06.17/J06.06 Manual

	About This Manual
	Readership of This Manual
	Organization of This Manual
	Related Manuals
	Notation Conventions
	Hypertext Links
	General Syntax Notation
	Notation for Messages
	Notation for Management Programming Interfaces
	Change Bar Notation

	HP Encourages Your Comments

	1 Introduction to Guardian Procedure�Calls
	Types of Guardian Procedure Calls
	H-Series Guardian Procedures
	G-Series Guardian Procedures
	External Declarations Files for Guardian Procedures
	Parameter Declarations Files for Guardian Procedures
	TAL Syntax for a Guardian Procedure Call
	Reference Parameter Overlap
	Bounds Checking of Reference Parameters for Guardian Procedures
	C Syntax for a Guardian Procedure Call
	How to find the (writable) global data in an TNS/E native process

	2 Guardian Procedure Calls (A-B)
	ABEND Procedure (Superseded�by�PROCESS_STOP_ Procedure�)
	ACTIVATEPROCESS Procedure (Superseded�by�PROCESS_ACTIVATE_ Procedure�)
	ADDDSTTRANSITION Procedure (Superseded�by�DST_GETINFO_ Procedure)
	ADDRESS_DELIMIT_ Procedure
	ADDRTOPROCNAME Procedure
	ALLOCATESEGMENT Procedure (Superseded�by�SEGMENT_ALLOCATE_ Procedure�)
	ALTER Procedure (Superseded�by�FILE_ALTERLIST_ Procedure�)
	ALTERPRIORITY Procedure (Superseded�by�PROCESS_SETINFO_ Procedure�)
	ARMTRAP Procedure (Superseded�by�SIGACTION_INIT_ Procedure�)
	AWAITIO[X|XL] Procedures
	BACKSPACEEDIT Procedure
	BINSEM_CLOSE_ Procedure
	BINSEM_CREATE_ Procedure
	BINSEM_FORCELOCK_ Procedure
	BINSEM_ISMINE_Procedure
	BINSEM_LOCK_ Procedure
	BINSEM_OPEN_ Procedure
	BINSEM_UNLOCK_ Procedure
	BREAKMESSAGE_SEND_ Procedure

	3 Guardian Procedure Calls (C)
	CANCEL Procedure
	CANCELPROCESSTIMEOUT Procedure
	CANCELREQ[L] Procedure
	CANCELTIMEOUT Procedure
	CHANGELIST Procedure
	CHECK^BREAK Procedure
	CHECK^FILE Procedure
	CHECKALLOCATESEGMENT Procedure (Superseded by SEGMENT_ALLOCATE_CHKPT_ Procedure�)
	CHECKCLOSE Procedure (Superseded�by�FILE_CLOSE_CHKPT_ Procedure�)
	CHECKDEALLOCATESEGMENT Procedure (Superseded by SEGMENT_DEALLOCATE_CHKPT_ Procedure�)
	CHECKDEFINE Procedure
	CHECKMONITOR Procedure
	CHECKOPEN Procedure (Superseded�by�FILE_OPEN_CHKPT_ Procedure�)
	CHECKPOINT Procedure (Superseded�by�CHECKPOINTX Procedure�)
	CHECKPOINTMANY Procedure (Superseded�by�CHECKPOINTMANYX Procedure�)
	CHECKPOINTMANYX Procedure
	CHECKPOINTX Procedure
	CHECKRESIZESEGMENT Procedure
	CHECKSETMODE Procedure
	CHECKSWITCH Procedure
	CHILD_LOST_ Procedure
	CLOSE Procedure (Superseded�by�FILE_CLOSE_ Procedure�)
	CLOSE^FILE Procedure
	CLOSEALLEDIT Procedure
	CLOSEEDIT Procedure (Superseded�by�CLOSEEDIT_ Procedure�)
	CLOSEEDIT_ Procedure
	COMPLETEIOEDIT Procedure
	COMPRESSEDIT Procedure
	COMPUTEJULIANDAYNO Procedure
	COMPUTETIMESTAMP Procedure
	CONFIG_GETINFO_BYLDEV_ Procedure (G-Series and H�Series RVUs Only)
	CONFIG_GETINFO_BYNAME_ Procedure (G�Series and H-Series RVUs Only)
	CONFIG_GETINFO_BYLDEV2_ Procedure (G�Series and H-Series RVUs Only)
	CONFIG_GETINFO_BYNAME2_ Procedure (G�Series and H-Series RVUs Only)
	CONTIME Procedure
	CONTROL Procedure
	CONTROLBUF Procedure
	CONTROLMESSAGESYSTEM Procedure
	CONVERTASCIIEBCDIC Procedure
	CONVERTPROCESSNAME Procedure (Superseded�by�FILENAME_RESOLVE_ Procedure�)
	CONVERTPROCESSTIME Procedure
	CONVERTTIMESTAMP Procedure
	CPU_GETINFOLIST_ Procedure
	CPUTIMES Procedure
	CREATE Procedure (Superseded�by�FILE_CREATELIST_ Procedure�)
	CREATEPROCESSNAME Procedure (Superseded�by�PROCESSNAME_CREATE_ Procedure�)
	CREATEREMOTENAME Procedure (Superseded�by�PROCESSNAME_CREATE_ Procedure�)
	CREATORACCESSID Procedure (Superseded�by�PROCESS_GETINFOLIST_ Procedure�)
	CRTPID_TO_PROCESSHANDLE_ Procedure
	CURRENTSPACE Procedure (Superseded)

	4 Guardian Procedure Calls (D-E)
	DAYOFWEEK Procedure
	DEALLOCATESEGMENT Procedure (Superseded�by�SEGMENT_DEALLOCATE_ Procedure�)
	DEBUG Procedure
	DEBUGPROCESS Procedure (Superseded�by�PROCESS_DEBUG_ Procedure�)
	DEFINEADD Procedure
	DEFINEDELETE Procedure
	DEFINEDELETEALL Procedure
	DEFINEINFO Procedure
	DEFINELIST Procedure
	DEFINEMODE Procedure
	DEFINENEXTNAME Procedure
	DEFINEPOOL Procedure (Superseded�by�POOL_*�Procedures)
	DEFINEREADATTR Procedure
	DEFINERESTORE Procedure
	DEFINERESTOREWORK[2] Procedures
	DEFINESAVE Procedure
	DEFINESAVEWORK[2] Procedure
	DEFINESETATTR Procedure
	DEFINESETLIKE Procedure
	DEFINEVALIDATEWORK Procedure
	DELAY Procedure (Superseded�by�PROCESS_DELAY_ Procedure (H-Series RVUs Only))
	DELETEEDIT Procedure
	DEVICE_GETINFOBYLDEV_ Procedure (Superseded on G-series RVUs)
	DEVICE_GETINFOBYNAME_ Procedure (Superseded on G-Series RVUs)
	DEVICEINFO Procedure (Superseded�by�FILE_GETINFOBYNAME_ Procedure or �FILE_GETINFOLISTBYNAME_ Pro...
	DEVICEINFO2 Procedure (Superseded�by�FILE_GETINFOBYNAME_ Procedure or �FILE_GETINFOLISTBYNAME_ Pr...
	DISK_REFRESH_ Procedure
	DISKINFO Procedure (Superseded�by��FILE_GETINFOLISTBYNAME_ Procedure�)
	DNUMIN Procedure
	DNUMOUT Procedure
	DST_GETINFO_ Procedure
	DST_TRANSITION_ADD_ Procedure
	DST_TRANSITION_DELETE_ Procedure
	DST_TRANSITION_MODIFY_ Procedure
	EDITREAD Procedure
	EDITREADINIT Procedure
	ERRNO_GET_ Procedure
	EXTENDEDIT Procedure

	5 Guardian Procedure Calls (F)
	FILE_ALTERLIST_ Procedure
	FILE_CLOSE_ Procedure
	FILE_CLOSE_CHKPT_ Procedure
	FILE_COMPLETE[L]_ Procedure
	FILE_COMPLETE_GETINFO_ Procedure
	FILE_COMPLETE_SET_ Procedure
	FILE_CREATE_ Procedure
	FILE_CREATELIST_ Procedure
	FILE_GETINFO_ Procedure
	FILE_GETINFOBYNAME_ Procedure
	FILE_GETINFOLIST_ Procedure
	�FILE_GETINFOLISTBYNAME_ Procedure
	FILE_GETLOCKINFO_ Procedure
	FILE_GETOPENINFO_ Procedure
	FILE_GETRECEIVEINFO[L]_ Procedure
	FILE_GETSYNCINFO_ Procedure
	FILE_OPEN_ Procedure
	FILE_OPEN_CHKPT_ Procedure
	FILE_PURGE_ Procedure
	FILE_RENAME_ Procedure
	FILE_RESTOREPOSITION_ Procedure
	FILE_SAVEPOSITION_ Procedure
	FILE_SETKEY_ Procedure
	FILE_SETLASTERROR_ Procedure
	FILE_SETPOSITION_ Procedure
	FILE_SETSYNCINFO_ Procedure
	FILE_WRITEREAD_ Procedure
	FILEERROR Procedure
	FILEINFO Procedure (Superseded by FILE_GETINFOLIST_ Procedure�)
	FILEINQUIRE Procedure (Superseded by �FILE_GETINFOLISTBYNAME_ Procedure�)
	FILENAME_COMPARE_ Procedure
	FILENAME_DECOMPOSE_ Procedure
	FILENAME_EDIT_ Procedure
	FILENAME_FINDFINISH_ Procedure
	FILENAME_FINDNEXT_ Procedure
	FILENAME_FINDSTART_ Procedure
	FILENAME_MATCH_ Procedure
	FILENAME_RESOLVE_ Procedure
	FILENAME_SCAN_ Procedure
	FILENAME_TO_OLDFILENAME_ Procedure
	FILENAME_TO_PATHNAME_ Procedure
	FILENAME_TO_PROCESSHANDLE_ Procedure
	FILENAME_UNRESOLVE_ Procedure
	FILERECINFO Procedure (Superseded by �FILE_GETINFOLISTBYNAME_ Procedure�)
	FIXSTRING Procedure
	FNAME32COLLAPSE Procedure (Superseded)
	FNAME32EXPAND Procedure (Superseded�by�FILENAME_SCAN_ Procedure�)
	FNAME32TOFNAME Procedure (Superseded)
	FNAMECOLLAPSE Procedure (Superseded�by OLDFILENAME_TO_FILENAME_ Procedure)
	FNAMECOMPARE Procedure (Superseded�by�FILENAME_COMPARE_ Procedure�)
	FNAMEEXPAND Procedure (Superseded�by�FILENAME_SCAN_ Procedure and FILENAME_RESOLVE_ Procedure�)
	FNAMETOFNAME32 Procedure (Superseded)
	FORMATCONVERT[X] Procedure
	FORMATDATA[X] Procedure
	FP_IEEE_DENORM_GET_ Procedure
	FP_IEEE_DENORM_SET_ Procedure
	FP_IEEE_ENABLES_GET_ Procedure
	FP_IEEE_ENABLES_SET_ Procedure
	FP_IEEE_ENV_CLEAR_ Procedure
	FP_IEEE_ENV_RESUME_ Procedure
	FP_IEEE_EXCEPTIONS_GET_ Procedure
	FP_IEEE_EXCEPTIONS_SET_ Procedure
	FP_IEEE_ROUND_GET_ Procedure
	FP_IEEE_ROUND_SET_ Procedure

	6 Guardian Procedure Calls (G)
	GETCPCBINFO Procedure
	GETCRTPID Procedure (Superseded�by�PROCESS_GETINFOLIST_ Procedure�)
	GETDEVNAME Procedure (Superseded�by�DEVICE_GETINFOBYLDEV_ Procedure (Superseded on G-series RVUs)...
	GETINCREMENTEDIT Procedure
	GETPOOL Procedure (Superseded�by�POOL_*�Procedures)
	GETPOOL_PAGE_ Procedure (H-Series RVUs Only)
	GETPOSITIONEDIT Procedure
	GETPPDENTRY Procedure (Superseded�by�PROCESS_GETPAIRINFO_ Procedure�)
	GETREMOTECRTPID Procedure (Superseded�by�PROCESS_GETINFOLIST_ Procedure�)
	GETSYNCINFO Procedure (Superseded�by�FILE_GETSYNCINFO_ Procedure)
	GETSYSTEMNAME Procedure (Superseded by NODENUMBER_TO_NODENAME_ Procedure�)
	GETSYSTEMSERIALNUMBER Procedure
	GIVE^BREAK Procedure
	GROUP_GETINFO_ Procedure
	GROUP_GETNEXT_ Procedure
	GROUPIDTOGROUPNAME Procedure (Superseded�by�GROUP_GETINFO_ Procedure�)
	GROUPMEMBER_GETNEXT_ Procedure
	GROUPNAMETOGROUPID Procedure (Superseded�by�GROUP_GETINFO_ Procedure�)

	7 Guardian Procedure Calls (H-K)
	HALTPOLL Procedure
	HEADROOM_ENSURE_ Procedure
	HEAPSORT Procedure
	HEAPSORTX_ Procedure
	HIST_FORMAT_ Procedure
	HIST_GETPRIOR_ Procedure
	HIST_INIT_ Procedure
	INCREMENTEDIT Procedure
	INITIALIZEEDIT Procedure
	INITIALIZER Procedure
	INTERPRETINTERVAL Procedure
	INTERPRETJULIANDAYNO Procedure
	INTERPRETTIMESTAMP Procedure
	JULIANTIMESTAMP Procedure
	KEYPOSITION[X] Procedures (Superseded�by�FILE_SETKEY_ Procedure)

	8 Guardian Procedure Calls (L)
	LABELEDTAPESUPPORT Procedure
	LASTADDR Procedure (Superseded�by�ADDRESS_DELIMIT_ Procedure�)
	LASTADDRX Procedure (Superseded�by�ADDRESS_DELIMIT_ Procedure�)
	LASTRECEIVE Procedure (Superseded�by�FILE_GETRECEIVEINFO[L]_ Procedure�)
	LOCATESYSTEM Procedure (Superseded by NODENAME_TO_NODENUMBER_ Procedure�)
	LOCKFILE Procedure
	LOCKINFO Procedure (Superseded�by�FILE_GETLOCKINFO_ Procedure�)
	LOCKREC Procedure
	LONGJMP_ Procedure
	LOOKUPPROCESSNAME Procedure (Superseded�by�PROCESS_GETPAIRINFO_ Procedure�)

	9 Guardian Procedure Calls (M)
	MBCS_ANY_KATAKANA_ Procedure
	MBCS_CHAR_ Procedure
	MBCS_CHARSIZE_ Procedure
	MBCS_CHARSTRING_ Procedure
	MBCS_CODESETS_SUPPORTED_ Procedure
	MBCS_DEFAULTCHARSET_ Procedure
	MBCS_EXTERNAL_TO_TANDEM_ Procedure
	MBCS_FORMAT_CRT_FIELD_ Procedure
	MBCS_FORMAT_ITI_BUFFER_ Procedure
	MBCS_MB_TO_SB_ Procedure
	MBCS_REPLACEBLANK_ Procedure
	MBCS_SB_TO_MB_ Procedure
	MBCS_SHIFTSTRING_ Procedure
	MBCS_TANDEM_TO_EXTERNAL_ Procedure
	MBCS_TESTBYTE_ Procedure
	MBCS_TRIMFRAGMENT_ Procedure
	MESSAGESTATUS Procedure
	MESSAGESYSTEMINFO Procedure
	MOM Procedure (Superseded�by�PROCESS_GETINFOLIST_ Procedure�)
	MONITORCPUS Procedure
	MONITORNET Procedure
	MONITORNEW Procedure
	MOVEX Procedure
	MYGMOM Procedure (Superseded�by�PROCESS_GETINFOLIST_ Procedure�)
	MYPID Procedure (Superseded by�PROCESSHANDLE_GETMINE_ Procedure and PROCESSHANDLE_DECOMPOSE_ Proc...
	MYPROCESSTIME Procedure
	MYSYSTEMNUMBER Procedure (Superseded�by� NODENAME_TO_NODENUMBER_ Procedure or PROCESSHANDLE_GETMI...
	MYTERM Procedure (Superseded�by�PROCESS_GETINFOLIST_ Procedure�)

	10 Guardian Procedure Calls (N)
	NEWPROCESS Procedure (Superseded�by�PROCESS_LAUNCH_ Procedure�)
	NEWPROCESSNOWAIT Procedure (Superseded�by�PROCESS_LAUNCH_ Procedure�)
	NEXTFILENAME Procedure (Superseded�by�FILENAME_FINDNEXT_ Procedure�)
	NO^ERROR Procedure
	NODE_GETCOLDLOADINFO_ Procedure
	NODENAME_TO_NODENUMBER_ Procedure
	NODENUMBER_TO_NODENAME_ Procedure
	NSK_FLOAT_IEEE TO TNS Procedures
	NSK_FLOAT_TNS TO IEEE Procedures
	NUMBEREDIT Procedure
	NUMIN Procedure
	NUMOUT Procedure

	11 Guardian Procedure Calls (O)
	OBJFILE_GETINFOLIST_ Procedure
	OLDFILENAME_TO_FILENAME_ Procedure
	OLDSYSMSG_TO_NEWSYSMSG_ Procedure
	OPEN Procedure (Superseded�by�FILE_OPEN_ Procedure�)
	OPEN^FILE Procedure
	OPENEDIT Procedure (Superseded�by�OPENEDIT_ Procedure�)
	OPENEDIT_ Procedure
	OPENER_LOST_ Procedure
	OPENINFO Procedure (Superseded�by�FILE_GETOPENINFO_ Procedure�)
	OSS_PID_NULL_ Procedure

	12 Guardian Procedure Calls (P)
	PACKEDIT Procedure
	PATHNAME_TO_FILENAME_ Procedure
	POOL_CHECK_ Procedure
	POOL_DEFINE_ Procedure
	POOL_GETINFO_ Procedure
	POOL_GETSPACE_ Procedure
	POOL_GETSPACE_PAGE_ Procedure (H- Series RVUs Only)
	POOL_PUTSPACE_ Procedure
	POOL_RESIZE_ Procedure
	POSITION Procedure (Superseded�by�FILE_SETPOSITION_ Procedure)
	POSITIONEDIT Procedure
	PRIORITY Procedure (Superseded�by�PROCESS_SETINFO_ Procedure or PROCESS_GETINFOLIST_ Procedure�)
	PROCESS_ACTIVATE_ Procedure
	PROCESS_CREATE_ Procedure (Superseded�by�PROCESS_LAUNCH_ Procedure�)
	PROCESS_DEBUG_ Procedure
	PROCESS_DELAY_ Procedure (H-Series RVUs Only)
	PROCESS_GETINFO_ Procedure
	PROCESS_GETINFOLIST_ Procedure
	PROCESS_GETPAIRINFO_ Procedure
	PROCESS_LAUNCH_ Procedure
	PROCESS_SETINFO_ Procedure
	PROCESS_SETSTRINGINFO_ Procedure
	PROCESS_SPAWN_ Procedure
	PROCESS_STOP_ Procedure
	PROCESS_SUSPEND_ Procedure
	PROCESS_WAIT_
	PROCESSACCESSID Procedure (Superseded�by�PROCESS_GETINFOLIST_ Procedure�)
	PROCESSFILESECURITY Procedure (Superseded�by�PROCESS_SETINFO_ Procedure or PROCESS_GETINFOLIST_ P...
	PROCESSHANDLE_COMPARE_ Procedure
	PROCESSHANDLE_DECOMPOSE_ Procedure
	PROCESSHANDLE_GETMINE_ Procedure
	PROCESSHANDLE_NULLIT_ Procedure
	PROCESSHANDLE_TO_CRTPID_ Procedure
	PROCESSHANDLE_TO_FILENAME_ Procedure
	PROCESSHANDLE_TO_STRING_ Procedure
	PROCESSINFO Procedure (Superseded�by�PROCESS_GETINFOLIST_ Procedure�)
	PROCESSNAME_CREATE_ Procedure
	PROCESSOR_GETINFOLIST_ Procedure
	PROCESSOR_GETNAME_ Procedure
	PROCESSORSTATUS Procedure
	PROCESSORTYPE Procedure
	PROCESSSTRING_SCAN_ Procedure
	PROCESSTIME Procedure (Superseded�by�PROCESS_GETINFOLIST_ Procedure�)
	PROGRAMFILENAME Procedure (Superseded�by�PROCESS_GETINFOLIST_ Procedure)
	PURGE Procedure (Superseded�by�FILE_PURGE_ Procedure�)
	PUTPOOL Procedure (Superseded�by�POOL_*�Procedures)

	13 Guardian Procedure Calls (R)
	RAISE_ Procedure
	READ[X] Procedures
	READ^FILE Procedure
	READEDIT Procedure
	READEDITP Procedure
	READLOCK[X] Procedures
	READUPDATE[X|XL] Procedures
	READUPDATELOCK[X] Procedures
	RECEIVEINFO Procedure (Superseded�by�FILE_GETRECEIVEINFO[L]_ Procedure�)
	REFPARAM_BOUNDSCHECK_ Procedure
	REFRESH Procedure (Superseded�by�DISK_REFRESH_ Procedure�)
	REMOTEPROCESSORSTATUS Procedure
	REMOTETOSVERSION Procedure
	RENAME Procedure (Superseded�by�FILE_RENAME_ Procedure�)
	REPLY[X|XL] Procedures
	REPOSITION Procedure (Superseded�by�FILE_RESTOREPOSITION_ Procedure)
	RESETSYNC Procedure
	RESIZEPOOL Procedure (Superseded�by�POOL_*�Procedures)
	RESIZESEGMENT Procedure

	14 Guardian Procedure Calls (S)
	SAVEPOSITION Procedure (Superseded�by�FILE_SAVEPOSITION_ Procedure)
	SEGMENT_ALLOCATE_ Procedure
	SEGMENT_ALLOCATE_CHKPT_ Procedure
	SEGMENT_DEALLOCATE_ Procedure
	SEGMENT_DEALLOCATE_CHKPT_ Procedure
	SEGMENT_GETBACKUPINFO_ Procedure
	SEGMENT_GETINFO_ Procedure
	SEGMENT_USE_ Procedure
	SEGMENTSIZE Procedure (Superseded by SEGMENT_GETBACKUPINFO_ Procedure�)
	SENDBREAKMESSAGE Procedure (Superseded�by�BREAKMESSAGE_SEND_ Procedure�)
	SET^FILE Procedure
	SETJMP_ Procedure
	SETLOOPTIMER Procedure
	SETMODE Procedure
	SETMODENOWAIT Procedure
	SETMYTERM Procedure (Superseded�by�PROCESS_SETSTRINGINFO_ Procedure)
	SETPARAM Procedure
	SETSTOP Procedure
	SETSYNCINFO Procedure (Superseded�by�FILE_SETSYNCINFO_ Procedure)
	SETSYSTEMCLOCK Procedure
	SHIFTSTRING Procedure (Superseded�by�STRING_UPSHIFT_ Procedure�)
	SIGACTION_ Procedure
	SIGACTION_INIT_ Procedure
	SIGACTION_RESTORE_ Procedure
	SIGACTION_SUPPLANT_ Procedure
	SIGADDSET_ Procedure
	SIGDELSET_ Procedure
	SIGEMPTYSET_ Procedure
	SIGFILLSET_ Procedure
	SIGISMEMBER_ Procedure
	SIGJMP_MASKSET_ Procedure
	SIGLONGJMP_ Procedure
	SIGNAL_ Procedure
	SIGNALPROCESSTIMEOUT Procedure
	SIGNALTIMEOUT Procedure
	SIGPENDING_ Procedure
	SIGPROCMASK_ Procedure
	SIGSETJMP_ Procedure
	SIGSUSPEND_ Procedure
	SSIDTOTEXT Procedure
	STACK_ALLOCATE_ Procedure
	STACK_DEALLOCATE_ Procedure
	STEPMOM Procedure (Superseded�by�PROCESS_SETINFO_ Procedure�)
	STOP Procedure (Superseded�by�PROCESS_STOP_ Procedure�)
	STRING_UPSHIFT_ Procedure
	SUSPENDPROCESS Procedure (Superseded�by�PROCESS_SUSPEND_ Procedure�)
	SYSTEMENTRYPOINT_RISC_ Procedure
	SYSTEMENTRYPOINTLABEL Procedure

	15 Guardian Procedure Calls (T-V)
	TAKE^BREAK Procedure
	TEXTTOSSID Procedure
	TIME Procedure
	TIMER_START_ Procedure (H-Series RVUs Only)
	TIMER_STOP_ Procedure (H-Series RVUs Only)
	TIMESTAMP Procedure
	TOSVERSION Procedure
	TS_NANOSECS_ Procedure (H-Series RVUs Only)
	TS_UNIQUE_COMPARE_ Procedure (H-Series RVUs Only)
	TS_UNIQUE_CONVERT_TO_JULIAN_ Procedure (H-Series RVUs Only)
	TS_UNIQUE_CREATE_ Procedure (H-Series RVUs Only)
	UNLOCKFILE Procedure
	UNLOCKREC Procedure
	UNPACKEDIT Procedure
	USER_AUTHENTICATE_ Procedure
	USER_GETINFO_ Procedure
	USER_GETNEXT_ Procedure
	USERDEFAULTS Procedure (Superseded�by�USER_GETINFO_ Procedure�)
	USERIDTOUSERNAME Procedure (Superseded�by�USER_GETINFO_ Procedure�)
	USERIOBUFFER_ALLOW_ Procedure
	USERNAMETOUSERID Procedure (Superseded�by�USER_GETINFO_ Procedure�)
	USESEGMENT Procedure (Superseded�by�SEGMENT_USE_ Procedure�)
	VRO_SET_ Procedure (H-Series RVUs Only)
	VERIFYUSER Procedure (Superseded�by�USER_AUTHENTICATE_ Procedure and USER_GETINFO_ Procedure�)

	16 Guardian Procedure Calls (W-Z)
	WAIT^FILE Procedure
	WRITE[X] Procedures
	WRITE^FILE Procedure
	WRITEEDIT Procedure
	WRITEEDITP Procedure
	WRITEREAD[X] Procedures
	WRITEUPDATE[X] Procedures
	WRITEUPDATEUNLOCK[X] Procedures
	XBNDSTEST Procedure (Superseded�by�REFPARAM_BOUNDSCHECK_ Procedure�)
	XSTACKTEST Procedure (Superseded�by�HEADROOM_ENSURE_ Procedure�)

	A Device Types and Subtypes
	B Reserved Process Names
	C Completion Codes
	D File Names and Process Identifiers
	Reserved File Names
	Syntax
	C-Series Syntax
	OSS Pathname Syntax

	E DEFINEs
	What Is a DEFINE?
	Available DEFINE Classes

	F Formatter Edit Descriptors
	Summary of Edit Descriptors
	Nonrepeatable Edit Descriptors
	Repeatable Edit Descriptors
	Modifiers
	Decorations
	List-Directed Formatting

	G Superseded Guardian Procedure Calls and Their Replacements
	H Documented Guardian Procedures
	I Using the DIVER and DELAY Programs
	Running the DIVER Program
	Running the DELAY Program
	Example Using DIVER and DELAY

	J System Limits
	K Character Set Translation
	Index

